|  | /* | 
|  | *  linux/arch/arm/mm/dma-mapping.c | 
|  | * | 
|  | *  Copyright (C) 2000-2004 Russell King | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License version 2 as | 
|  | * published by the Free Software Foundation. | 
|  | * | 
|  | *  DMA uncached mapping support. | 
|  | */ | 
|  | #include <linux/bootmem.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/genalloc.h> | 
|  | #include <linux/gfp.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/list.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/device.h> | 
|  | #include <linux/dma-mapping.h> | 
|  | #include <linux/dma-contiguous.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/memblock.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/iommu.h> | 
|  | #include <linux/io.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <linux/sizes.h> | 
|  | #include <linux/cma.h> | 
|  |  | 
|  | #include <asm/memory.h> | 
|  | #include <asm/highmem.h> | 
|  | #include <asm/cacheflush.h> | 
|  | #include <asm/tlbflush.h> | 
|  | #include <asm/mach/arch.h> | 
|  | #include <asm/dma-iommu.h> | 
|  | #include <asm/mach/map.h> | 
|  | #include <asm/system_info.h> | 
|  | #include <asm/dma-contiguous.h> | 
|  |  | 
|  | #include "dma.h" | 
|  | #include "mm.h" | 
|  |  | 
|  | struct arm_dma_alloc_args { | 
|  | struct device *dev; | 
|  | size_t size; | 
|  | gfp_t gfp; | 
|  | pgprot_t prot; | 
|  | const void *caller; | 
|  | bool want_vaddr; | 
|  | int coherent_flag; | 
|  | }; | 
|  |  | 
|  | struct arm_dma_free_args { | 
|  | struct device *dev; | 
|  | size_t size; | 
|  | void *cpu_addr; | 
|  | struct page *page; | 
|  | bool want_vaddr; | 
|  | }; | 
|  |  | 
|  | #define NORMAL	    0 | 
|  | #define COHERENT    1 | 
|  |  | 
|  | struct arm_dma_allocator { | 
|  | void *(*alloc)(struct arm_dma_alloc_args *args, | 
|  | struct page **ret_page); | 
|  | void (*free)(struct arm_dma_free_args *args); | 
|  | }; | 
|  |  | 
|  | struct arm_dma_buffer { | 
|  | struct list_head list; | 
|  | void *virt; | 
|  | struct arm_dma_allocator *allocator; | 
|  | }; | 
|  |  | 
|  | static LIST_HEAD(arm_dma_bufs); | 
|  | static DEFINE_SPINLOCK(arm_dma_bufs_lock); | 
|  |  | 
|  | static struct arm_dma_buffer *arm_dma_buffer_find(void *virt) | 
|  | { | 
|  | struct arm_dma_buffer *buf, *found = NULL; | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&arm_dma_bufs_lock, flags); | 
|  | list_for_each_entry(buf, &arm_dma_bufs, list) { | 
|  | if (buf->virt == virt) { | 
|  | list_del(&buf->list); | 
|  | found = buf; | 
|  | break; | 
|  | } | 
|  | } | 
|  | spin_unlock_irqrestore(&arm_dma_bufs_lock, flags); | 
|  | return found; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The DMA API is built upon the notion of "buffer ownership".  A buffer | 
|  | * is either exclusively owned by the CPU (and therefore may be accessed | 
|  | * by it) or exclusively owned by the DMA device.  These helper functions | 
|  | * represent the transitions between these two ownership states. | 
|  | * | 
|  | * Note, however, that on later ARMs, this notion does not work due to | 
|  | * speculative prefetches.  We model our approach on the assumption that | 
|  | * the CPU does do speculative prefetches, which means we clean caches | 
|  | * before transfers and delay cache invalidation until transfer completion. | 
|  | * | 
|  | */ | 
|  | static void __dma_page_cpu_to_dev(struct page *, unsigned long, | 
|  | size_t, enum dma_data_direction); | 
|  | static void __dma_page_dev_to_cpu(struct page *, unsigned long, | 
|  | size_t, enum dma_data_direction); | 
|  |  | 
|  | /** | 
|  | * arm_dma_map_page - map a portion of a page for streaming DMA | 
|  | * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices | 
|  | * @page: page that buffer resides in | 
|  | * @offset: offset into page for start of buffer | 
|  | * @size: size of buffer to map | 
|  | * @dir: DMA transfer direction | 
|  | * | 
|  | * Ensure that any data held in the cache is appropriately discarded | 
|  | * or written back. | 
|  | * | 
|  | * The device owns this memory once this call has completed.  The CPU | 
|  | * can regain ownership by calling dma_unmap_page(). | 
|  | */ | 
|  | static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page, | 
|  | unsigned long offset, size_t size, enum dma_data_direction dir, | 
|  | unsigned long attrs) | 
|  | { | 
|  | if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) | 
|  | __dma_page_cpu_to_dev(page, offset, size, dir); | 
|  | return pfn_to_dma(dev, page_to_pfn(page)) + offset; | 
|  | } | 
|  |  | 
|  | static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page, | 
|  | unsigned long offset, size_t size, enum dma_data_direction dir, | 
|  | unsigned long attrs) | 
|  | { | 
|  | return pfn_to_dma(dev, page_to_pfn(page)) + offset; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page() | 
|  | * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices | 
|  | * @handle: DMA address of buffer | 
|  | * @size: size of buffer (same as passed to dma_map_page) | 
|  | * @dir: DMA transfer direction (same as passed to dma_map_page) | 
|  | * | 
|  | * Unmap a page streaming mode DMA translation.  The handle and size | 
|  | * must match what was provided in the previous dma_map_page() call. | 
|  | * All other usages are undefined. | 
|  | * | 
|  | * After this call, reads by the CPU to the buffer are guaranteed to see | 
|  | * whatever the device wrote there. | 
|  | */ | 
|  | static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle, | 
|  | size_t size, enum dma_data_direction dir, unsigned long attrs) | 
|  | { | 
|  | if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) | 
|  | __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)), | 
|  | handle & ~PAGE_MASK, size, dir); | 
|  | } | 
|  |  | 
|  | static void arm_dma_sync_single_for_cpu(struct device *dev, | 
|  | dma_addr_t handle, size_t size, enum dma_data_direction dir) | 
|  | { | 
|  | unsigned int offset = handle & (PAGE_SIZE - 1); | 
|  | struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset)); | 
|  | __dma_page_dev_to_cpu(page, offset, size, dir); | 
|  | } | 
|  |  | 
|  | static void arm_dma_sync_single_for_device(struct device *dev, | 
|  | dma_addr_t handle, size_t size, enum dma_data_direction dir) | 
|  | { | 
|  | unsigned int offset = handle & (PAGE_SIZE - 1); | 
|  | struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset)); | 
|  | __dma_page_cpu_to_dev(page, offset, size, dir); | 
|  | } | 
|  |  | 
|  | const struct dma_map_ops arm_dma_ops = { | 
|  | .alloc			= arm_dma_alloc, | 
|  | .free			= arm_dma_free, | 
|  | .mmap			= arm_dma_mmap, | 
|  | .get_sgtable		= arm_dma_get_sgtable, | 
|  | .map_page		= arm_dma_map_page, | 
|  | .unmap_page		= arm_dma_unmap_page, | 
|  | .map_sg			= arm_dma_map_sg, | 
|  | .unmap_sg		= arm_dma_unmap_sg, | 
|  | .sync_single_for_cpu	= arm_dma_sync_single_for_cpu, | 
|  | .sync_single_for_device	= arm_dma_sync_single_for_device, | 
|  | .sync_sg_for_cpu	= arm_dma_sync_sg_for_cpu, | 
|  | .sync_sg_for_device	= arm_dma_sync_sg_for_device, | 
|  | }; | 
|  | EXPORT_SYMBOL(arm_dma_ops); | 
|  |  | 
|  | static void *arm_coherent_dma_alloc(struct device *dev, size_t size, | 
|  | dma_addr_t *handle, gfp_t gfp, unsigned long attrs); | 
|  | static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr, | 
|  | dma_addr_t handle, unsigned long attrs); | 
|  | static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma, | 
|  | void *cpu_addr, dma_addr_t dma_addr, size_t size, | 
|  | unsigned long attrs); | 
|  |  | 
|  | const struct dma_map_ops arm_coherent_dma_ops = { | 
|  | .alloc			= arm_coherent_dma_alloc, | 
|  | .free			= arm_coherent_dma_free, | 
|  | .mmap			= arm_coherent_dma_mmap, | 
|  | .get_sgtable		= arm_dma_get_sgtable, | 
|  | .map_page		= arm_coherent_dma_map_page, | 
|  | .map_sg			= arm_dma_map_sg, | 
|  | }; | 
|  | EXPORT_SYMBOL(arm_coherent_dma_ops); | 
|  |  | 
|  | static int __dma_supported(struct device *dev, u64 mask, bool warn) | 
|  | { | 
|  | unsigned long max_dma_pfn; | 
|  |  | 
|  | /* | 
|  | * If the mask allows for more memory than we can address, | 
|  | * and we actually have that much memory, then we must | 
|  | * indicate that DMA to this device is not supported. | 
|  | */ | 
|  | if (sizeof(mask) != sizeof(dma_addr_t) && | 
|  | mask > (dma_addr_t)~0 && | 
|  | dma_to_pfn(dev, ~0) < max_pfn - 1) { | 
|  | if (warn) { | 
|  | dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n", | 
|  | mask); | 
|  | dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n"); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | max_dma_pfn = min(max_pfn, arm_dma_pfn_limit); | 
|  |  | 
|  | /* | 
|  | * Translate the device's DMA mask to a PFN limit.  This | 
|  | * PFN number includes the page which we can DMA to. | 
|  | */ | 
|  | if (dma_to_pfn(dev, mask) < max_dma_pfn) { | 
|  | if (warn) | 
|  | dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n", | 
|  | mask, | 
|  | dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1, | 
|  | max_dma_pfn + 1); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static u64 get_coherent_dma_mask(struct device *dev) | 
|  | { | 
|  | u64 mask = (u64)DMA_BIT_MASK(32); | 
|  |  | 
|  | if (dev) { | 
|  | mask = dev->coherent_dma_mask; | 
|  |  | 
|  | /* | 
|  | * Sanity check the DMA mask - it must be non-zero, and | 
|  | * must be able to be satisfied by a DMA allocation. | 
|  | */ | 
|  | if (mask == 0) { | 
|  | dev_warn(dev, "coherent DMA mask is unset\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (!__dma_supported(dev, mask, true)) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return mask; | 
|  | } | 
|  |  | 
|  | static void __dma_clear_buffer(struct page *page, size_t size, int coherent_flag) | 
|  | { | 
|  | /* | 
|  | * Ensure that the allocated pages are zeroed, and that any data | 
|  | * lurking in the kernel direct-mapped region is invalidated. | 
|  | */ | 
|  | if (PageHighMem(page)) { | 
|  | phys_addr_t base = __pfn_to_phys(page_to_pfn(page)); | 
|  | phys_addr_t end = base + size; | 
|  | while (size > 0) { | 
|  | void *ptr = kmap_atomic(page); | 
|  | memset(ptr, 0, PAGE_SIZE); | 
|  | if (coherent_flag != COHERENT) | 
|  | dmac_flush_range(ptr, ptr + PAGE_SIZE); | 
|  | kunmap_atomic(ptr); | 
|  | page++; | 
|  | size -= PAGE_SIZE; | 
|  | } | 
|  | if (coherent_flag != COHERENT) | 
|  | outer_flush_range(base, end); | 
|  | } else { | 
|  | void *ptr = page_address(page); | 
|  | memset(ptr, 0, size); | 
|  | if (coherent_flag != COHERENT) { | 
|  | dmac_flush_range(ptr, ptr + size); | 
|  | outer_flush_range(__pa(ptr), __pa(ptr) + size); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate a DMA buffer for 'dev' of size 'size' using the | 
|  | * specified gfp mask.  Note that 'size' must be page aligned. | 
|  | */ | 
|  | static struct page *__dma_alloc_buffer(struct device *dev, size_t size, | 
|  | gfp_t gfp, int coherent_flag) | 
|  | { | 
|  | unsigned long order = get_order(size); | 
|  | struct page *page, *p, *e; | 
|  |  | 
|  | page = alloc_pages(gfp, order); | 
|  | if (!page) | 
|  | return NULL; | 
|  |  | 
|  | /* | 
|  | * Now split the huge page and free the excess pages | 
|  | */ | 
|  | split_page(page, order); | 
|  | for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++) | 
|  | __free_page(p); | 
|  |  | 
|  | __dma_clear_buffer(page, size, coherent_flag); | 
|  |  | 
|  | return page; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Free a DMA buffer.  'size' must be page aligned. | 
|  | */ | 
|  | static void __dma_free_buffer(struct page *page, size_t size) | 
|  | { | 
|  | struct page *e = page + (size >> PAGE_SHIFT); | 
|  |  | 
|  | while (page < e) { | 
|  | __free_page(page); | 
|  | page++; | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MMU | 
|  |  | 
|  | static void *__alloc_from_contiguous(struct device *dev, size_t size, | 
|  | pgprot_t prot, struct page **ret_page, | 
|  | const void *caller, bool want_vaddr, | 
|  | int coherent_flag, gfp_t gfp); | 
|  |  | 
|  | static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp, | 
|  | pgprot_t prot, struct page **ret_page, | 
|  | const void *caller, bool want_vaddr); | 
|  |  | 
|  | static void * | 
|  | __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot, | 
|  | const void *caller) | 
|  | { | 
|  | /* | 
|  | * DMA allocation can be mapped to user space, so lets | 
|  | * set VM_USERMAP flags too. | 
|  | */ | 
|  | return dma_common_contiguous_remap(page, size, | 
|  | VM_ARM_DMA_CONSISTENT | VM_USERMAP, | 
|  | prot, caller); | 
|  | } | 
|  |  | 
|  | static void __dma_free_remap(void *cpu_addr, size_t size) | 
|  | { | 
|  | dma_common_free_remap(cpu_addr, size, | 
|  | VM_ARM_DMA_CONSISTENT | VM_USERMAP); | 
|  | } | 
|  |  | 
|  | #define DEFAULT_DMA_COHERENT_POOL_SIZE	SZ_256K | 
|  | static struct gen_pool *atomic_pool; | 
|  |  | 
|  | static size_t atomic_pool_size = DEFAULT_DMA_COHERENT_POOL_SIZE; | 
|  |  | 
|  | static int __init early_coherent_pool(char *p) | 
|  | { | 
|  | atomic_pool_size = memparse(p, &p); | 
|  | return 0; | 
|  | } | 
|  | early_param("coherent_pool", early_coherent_pool); | 
|  |  | 
|  | void __init init_dma_coherent_pool_size(unsigned long size) | 
|  | { | 
|  | /* | 
|  | * Catch any attempt to set the pool size too late. | 
|  | */ | 
|  | BUG_ON(atomic_pool); | 
|  |  | 
|  | /* | 
|  | * Set architecture specific coherent pool size only if | 
|  | * it has not been changed by kernel command line parameter. | 
|  | */ | 
|  | if (atomic_pool_size == DEFAULT_DMA_COHERENT_POOL_SIZE) | 
|  | atomic_pool_size = size; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialise the coherent pool for atomic allocations. | 
|  | */ | 
|  | static int __init atomic_pool_init(void) | 
|  | { | 
|  | pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL); | 
|  | gfp_t gfp = GFP_KERNEL | GFP_DMA; | 
|  | struct page *page; | 
|  | void *ptr; | 
|  |  | 
|  | atomic_pool = gen_pool_create(PAGE_SHIFT, -1); | 
|  | if (!atomic_pool) | 
|  | goto out; | 
|  | /* | 
|  | * The atomic pool is only used for non-coherent allocations | 
|  | * so we must pass NORMAL for coherent_flag. | 
|  | */ | 
|  | if (dev_get_cma_area(NULL)) | 
|  | ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot, | 
|  | &page, atomic_pool_init, true, NORMAL, | 
|  | GFP_KERNEL); | 
|  | else | 
|  | ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot, | 
|  | &page, atomic_pool_init, true); | 
|  | if (ptr) { | 
|  | int ret; | 
|  |  | 
|  | ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr, | 
|  | page_to_phys(page), | 
|  | atomic_pool_size, -1); | 
|  | if (ret) | 
|  | goto destroy_genpool; | 
|  |  | 
|  | gen_pool_set_algo(atomic_pool, | 
|  | gen_pool_first_fit_order_align, | 
|  | (void *)PAGE_SHIFT); | 
|  | pr_info("DMA: preallocated %zu KiB pool for atomic coherent allocations\n", | 
|  | atomic_pool_size / 1024); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | destroy_genpool: | 
|  | gen_pool_destroy(atomic_pool); | 
|  | atomic_pool = NULL; | 
|  | out: | 
|  | pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n", | 
|  | atomic_pool_size / 1024); | 
|  | return -ENOMEM; | 
|  | } | 
|  | /* | 
|  | * CMA is activated by core_initcall, so we must be called after it. | 
|  | */ | 
|  | postcore_initcall(atomic_pool_init); | 
|  |  | 
|  | struct dma_contig_early_reserve { | 
|  | phys_addr_t base; | 
|  | unsigned long size; | 
|  | }; | 
|  |  | 
|  | static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata; | 
|  |  | 
|  | static int dma_mmu_remap_num __initdata; | 
|  |  | 
|  | void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size) | 
|  | { | 
|  | dma_mmu_remap[dma_mmu_remap_num].base = base; | 
|  | dma_mmu_remap[dma_mmu_remap_num].size = size; | 
|  | dma_mmu_remap_num++; | 
|  | } | 
|  |  | 
|  | void __init dma_contiguous_remap(void) | 
|  | { | 
|  | int i; | 
|  | for (i = 0; i < dma_mmu_remap_num; i++) { | 
|  | phys_addr_t start = dma_mmu_remap[i].base; | 
|  | phys_addr_t end = start + dma_mmu_remap[i].size; | 
|  | struct map_desc map; | 
|  | unsigned long addr; | 
|  |  | 
|  | if (end > arm_lowmem_limit) | 
|  | end = arm_lowmem_limit; | 
|  | if (start >= end) | 
|  | continue; | 
|  |  | 
|  | map.pfn = __phys_to_pfn(start); | 
|  | map.virtual = __phys_to_virt(start); | 
|  | map.length = end - start; | 
|  | map.type = MT_MEMORY_DMA_READY; | 
|  |  | 
|  | /* | 
|  | * Clear previous low-memory mapping to ensure that the | 
|  | * TLB does not see any conflicting entries, then flush | 
|  | * the TLB of the old entries before creating new mappings. | 
|  | * | 
|  | * This ensures that any speculatively loaded TLB entries | 
|  | * (even though they may be rare) can not cause any problems, | 
|  | * and ensures that this code is architecturally compliant. | 
|  | */ | 
|  | for (addr = __phys_to_virt(start); addr < __phys_to_virt(end); | 
|  | addr += PMD_SIZE) | 
|  | pmd_clear(pmd_off_k(addr)); | 
|  |  | 
|  | flush_tlb_kernel_range(__phys_to_virt(start), | 
|  | __phys_to_virt(end)); | 
|  |  | 
|  | iotable_init(&map, 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr, | 
|  | void *data) | 
|  | { | 
|  | struct page *page = virt_to_page(addr); | 
|  | pgprot_t prot = *(pgprot_t *)data; | 
|  |  | 
|  | set_pte_ext(pte, mk_pte(page, prot), 0); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void __dma_remap(struct page *page, size_t size, pgprot_t prot) | 
|  | { | 
|  | unsigned long start = (unsigned long) page_address(page); | 
|  | unsigned end = start + size; | 
|  |  | 
|  | apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot); | 
|  | flush_tlb_kernel_range(start, end); | 
|  | } | 
|  |  | 
|  | static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp, | 
|  | pgprot_t prot, struct page **ret_page, | 
|  | const void *caller, bool want_vaddr) | 
|  | { | 
|  | struct page *page; | 
|  | void *ptr = NULL; | 
|  | /* | 
|  | * __alloc_remap_buffer is only called when the device is | 
|  | * non-coherent | 
|  | */ | 
|  | page = __dma_alloc_buffer(dev, size, gfp, NORMAL); | 
|  | if (!page) | 
|  | return NULL; | 
|  | if (!want_vaddr) | 
|  | goto out; | 
|  |  | 
|  | ptr = __dma_alloc_remap(page, size, gfp, prot, caller); | 
|  | if (!ptr) { | 
|  | __dma_free_buffer(page, size); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | out: | 
|  | *ret_page = page; | 
|  | return ptr; | 
|  | } | 
|  |  | 
|  | static void *__alloc_from_pool(size_t size, struct page **ret_page) | 
|  | { | 
|  | unsigned long val; | 
|  | void *ptr = NULL; | 
|  |  | 
|  | if (!atomic_pool) { | 
|  | WARN(1, "coherent pool not initialised!\n"); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | val = gen_pool_alloc(atomic_pool, size); | 
|  | if (val) { | 
|  | phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val); | 
|  |  | 
|  | *ret_page = phys_to_page(phys); | 
|  | ptr = (void *)val; | 
|  | } | 
|  |  | 
|  | return ptr; | 
|  | } | 
|  |  | 
|  | static bool __in_atomic_pool(void *start, size_t size) | 
|  | { | 
|  | return addr_in_gen_pool(atomic_pool, (unsigned long)start, size); | 
|  | } | 
|  |  | 
|  | static int __free_from_pool(void *start, size_t size) | 
|  | { | 
|  | if (!__in_atomic_pool(start, size)) | 
|  | return 0; | 
|  |  | 
|  | gen_pool_free(atomic_pool, (unsigned long)start, size); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static void *__alloc_from_contiguous(struct device *dev, size_t size, | 
|  | pgprot_t prot, struct page **ret_page, | 
|  | const void *caller, bool want_vaddr, | 
|  | int coherent_flag, gfp_t gfp) | 
|  | { | 
|  | unsigned long order = get_order(size); | 
|  | size_t count = size >> PAGE_SHIFT; | 
|  | struct page *page; | 
|  | void *ptr = NULL; | 
|  |  | 
|  | page = dma_alloc_from_contiguous(dev, count, order, gfp); | 
|  | if (!page) | 
|  | return NULL; | 
|  |  | 
|  | __dma_clear_buffer(page, size, coherent_flag); | 
|  |  | 
|  | if (!want_vaddr) | 
|  | goto out; | 
|  |  | 
|  | if (PageHighMem(page)) { | 
|  | ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller); | 
|  | if (!ptr) { | 
|  | dma_release_from_contiguous(dev, page, count); | 
|  | return NULL; | 
|  | } | 
|  | } else { | 
|  | __dma_remap(page, size, prot); | 
|  | ptr = page_address(page); | 
|  | } | 
|  |  | 
|  | out: | 
|  | *ret_page = page; | 
|  | return ptr; | 
|  | } | 
|  |  | 
|  | static void __free_from_contiguous(struct device *dev, struct page *page, | 
|  | void *cpu_addr, size_t size, bool want_vaddr) | 
|  | { | 
|  | if (want_vaddr) { | 
|  | if (PageHighMem(page)) | 
|  | __dma_free_remap(cpu_addr, size); | 
|  | else | 
|  | __dma_remap(page, size, PAGE_KERNEL); | 
|  | } | 
|  | dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT); | 
|  | } | 
|  |  | 
|  | static inline pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot) | 
|  | { | 
|  | prot = (attrs & DMA_ATTR_WRITE_COMBINE) ? | 
|  | pgprot_writecombine(prot) : | 
|  | pgprot_dmacoherent(prot); | 
|  | return prot; | 
|  | } | 
|  |  | 
|  | #define nommu() 0 | 
|  |  | 
|  | #else	/* !CONFIG_MMU */ | 
|  |  | 
|  | #define nommu() 1 | 
|  |  | 
|  | #define __get_dma_pgprot(attrs, prot)				__pgprot(0) | 
|  | #define __alloc_remap_buffer(dev, size, gfp, prot, ret, c, wv)	NULL | 
|  | #define __alloc_from_pool(size, ret_page)			NULL | 
|  | #define __alloc_from_contiguous(dev, size, prot, ret, c, wv, coherent_flag, gfp)	NULL | 
|  | #define __free_from_pool(cpu_addr, size)			do { } while (0) | 
|  | #define __free_from_contiguous(dev, page, cpu_addr, size, wv)	do { } while (0) | 
|  | #define __dma_free_remap(cpu_addr, size)			do { } while (0) | 
|  |  | 
|  | #endif	/* CONFIG_MMU */ | 
|  |  | 
|  | static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp, | 
|  | struct page **ret_page) | 
|  | { | 
|  | struct page *page; | 
|  | /* __alloc_simple_buffer is only called when the device is coherent */ | 
|  | page = __dma_alloc_buffer(dev, size, gfp, COHERENT); | 
|  | if (!page) | 
|  | return NULL; | 
|  |  | 
|  | *ret_page = page; | 
|  | return page_address(page); | 
|  | } | 
|  |  | 
|  | static void *simple_allocator_alloc(struct arm_dma_alloc_args *args, | 
|  | struct page **ret_page) | 
|  | { | 
|  | return __alloc_simple_buffer(args->dev, args->size, args->gfp, | 
|  | ret_page); | 
|  | } | 
|  |  | 
|  | static void simple_allocator_free(struct arm_dma_free_args *args) | 
|  | { | 
|  | __dma_free_buffer(args->page, args->size); | 
|  | } | 
|  |  | 
|  | static struct arm_dma_allocator simple_allocator = { | 
|  | .alloc = simple_allocator_alloc, | 
|  | .free = simple_allocator_free, | 
|  | }; | 
|  |  | 
|  | static void *cma_allocator_alloc(struct arm_dma_alloc_args *args, | 
|  | struct page **ret_page) | 
|  | { | 
|  | return __alloc_from_contiguous(args->dev, args->size, args->prot, | 
|  | ret_page, args->caller, | 
|  | args->want_vaddr, args->coherent_flag, | 
|  | args->gfp); | 
|  | } | 
|  |  | 
|  | static void cma_allocator_free(struct arm_dma_free_args *args) | 
|  | { | 
|  | __free_from_contiguous(args->dev, args->page, args->cpu_addr, | 
|  | args->size, args->want_vaddr); | 
|  | } | 
|  |  | 
|  | static struct arm_dma_allocator cma_allocator = { | 
|  | .alloc = cma_allocator_alloc, | 
|  | .free = cma_allocator_free, | 
|  | }; | 
|  |  | 
|  | static void *pool_allocator_alloc(struct arm_dma_alloc_args *args, | 
|  | struct page **ret_page) | 
|  | { | 
|  | return __alloc_from_pool(args->size, ret_page); | 
|  | } | 
|  |  | 
|  | static void pool_allocator_free(struct arm_dma_free_args *args) | 
|  | { | 
|  | __free_from_pool(args->cpu_addr, args->size); | 
|  | } | 
|  |  | 
|  | static struct arm_dma_allocator pool_allocator = { | 
|  | .alloc = pool_allocator_alloc, | 
|  | .free = pool_allocator_free, | 
|  | }; | 
|  |  | 
|  | static void *remap_allocator_alloc(struct arm_dma_alloc_args *args, | 
|  | struct page **ret_page) | 
|  | { | 
|  | return __alloc_remap_buffer(args->dev, args->size, args->gfp, | 
|  | args->prot, ret_page, args->caller, | 
|  | args->want_vaddr); | 
|  | } | 
|  |  | 
|  | static void remap_allocator_free(struct arm_dma_free_args *args) | 
|  | { | 
|  | if (args->want_vaddr) | 
|  | __dma_free_remap(args->cpu_addr, args->size); | 
|  |  | 
|  | __dma_free_buffer(args->page, args->size); | 
|  | } | 
|  |  | 
|  | static struct arm_dma_allocator remap_allocator = { | 
|  | .alloc = remap_allocator_alloc, | 
|  | .free = remap_allocator_free, | 
|  | }; | 
|  |  | 
|  | static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, | 
|  | gfp_t gfp, pgprot_t prot, bool is_coherent, | 
|  | unsigned long attrs, const void *caller) | 
|  | { | 
|  | u64 mask = get_coherent_dma_mask(dev); | 
|  | struct page *page = NULL; | 
|  | void *addr; | 
|  | bool allowblock, cma; | 
|  | struct arm_dma_buffer *buf; | 
|  | struct arm_dma_alloc_args args = { | 
|  | .dev = dev, | 
|  | .size = PAGE_ALIGN(size), | 
|  | .gfp = gfp, | 
|  | .prot = prot, | 
|  | .caller = caller, | 
|  | .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0), | 
|  | .coherent_flag = is_coherent ? COHERENT : NORMAL, | 
|  | }; | 
|  |  | 
|  | #ifdef CONFIG_DMA_API_DEBUG | 
|  | u64 limit = (mask + 1) & ~mask; | 
|  | if (limit && size >= limit) { | 
|  | dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n", | 
|  | size, mask); | 
|  | return NULL; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | if (!mask) | 
|  | return NULL; | 
|  |  | 
|  | buf = kzalloc(sizeof(*buf), | 
|  | gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM)); | 
|  | if (!buf) | 
|  | return NULL; | 
|  |  | 
|  | if (mask < 0xffffffffULL) | 
|  | gfp |= GFP_DMA; | 
|  |  | 
|  | /* | 
|  | * Following is a work-around (a.k.a. hack) to prevent pages | 
|  | * with __GFP_COMP being passed to split_page() which cannot | 
|  | * handle them.  The real problem is that this flag probably | 
|  | * should be 0 on ARM as it is not supported on this | 
|  | * platform; see CONFIG_HUGETLBFS. | 
|  | */ | 
|  | gfp &= ~(__GFP_COMP); | 
|  | args.gfp = gfp; | 
|  |  | 
|  | *handle = DMA_ERROR_CODE; | 
|  | allowblock = gfpflags_allow_blocking(gfp); | 
|  | cma = allowblock ? dev_get_cma_area(dev) : false; | 
|  |  | 
|  | if (cma) | 
|  | buf->allocator = &cma_allocator; | 
|  | else if (nommu() || is_coherent) | 
|  | buf->allocator = &simple_allocator; | 
|  | else if (allowblock) | 
|  | buf->allocator = &remap_allocator; | 
|  | else | 
|  | buf->allocator = &pool_allocator; | 
|  |  | 
|  | addr = buf->allocator->alloc(&args, &page); | 
|  |  | 
|  | if (page) { | 
|  | unsigned long flags; | 
|  |  | 
|  | *handle = pfn_to_dma(dev, page_to_pfn(page)); | 
|  | buf->virt = args.want_vaddr ? addr : page; | 
|  |  | 
|  | spin_lock_irqsave(&arm_dma_bufs_lock, flags); | 
|  | list_add(&buf->list, &arm_dma_bufs); | 
|  | spin_unlock_irqrestore(&arm_dma_bufs_lock, flags); | 
|  | } else { | 
|  | kfree(buf); | 
|  | } | 
|  |  | 
|  | return args.want_vaddr ? addr : page; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate DMA-coherent memory space and return both the kernel remapped | 
|  | * virtual and bus address for that space. | 
|  | */ | 
|  | void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, | 
|  | gfp_t gfp, unsigned long attrs) | 
|  | { | 
|  | pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL); | 
|  |  | 
|  | return __dma_alloc(dev, size, handle, gfp, prot, false, | 
|  | attrs, __builtin_return_address(0)); | 
|  | } | 
|  |  | 
|  | static void *arm_coherent_dma_alloc(struct device *dev, size_t size, | 
|  | dma_addr_t *handle, gfp_t gfp, unsigned long attrs) | 
|  | { | 
|  | return __dma_alloc(dev, size, handle, gfp, PAGE_KERNEL, true, | 
|  | attrs, __builtin_return_address(0)); | 
|  | } | 
|  |  | 
|  | static int __arm_dma_mmap(struct device *dev, struct vm_area_struct *vma, | 
|  | void *cpu_addr, dma_addr_t dma_addr, size_t size, | 
|  | unsigned long attrs) | 
|  | { | 
|  | int ret = -ENXIO; | 
|  | #ifdef CONFIG_MMU | 
|  | unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; | 
|  | unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; | 
|  | unsigned long pfn = dma_to_pfn(dev, dma_addr); | 
|  | unsigned long off = vma->vm_pgoff; | 
|  |  | 
|  | if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret)) | 
|  | return ret; | 
|  |  | 
|  | if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) { | 
|  | ret = remap_pfn_range(vma, vma->vm_start, | 
|  | pfn + off, | 
|  | vma->vm_end - vma->vm_start, | 
|  | vma->vm_page_prot); | 
|  | } | 
|  | #else | 
|  | ret = vm_iomap_memory(vma, vma->vm_start, | 
|  | (vma->vm_end - vma->vm_start)); | 
|  | #endif	/* CONFIG_MMU */ | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Create userspace mapping for the DMA-coherent memory. | 
|  | */ | 
|  | static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma, | 
|  | void *cpu_addr, dma_addr_t dma_addr, size_t size, | 
|  | unsigned long attrs) | 
|  | { | 
|  | return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs); | 
|  | } | 
|  |  | 
|  | int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma, | 
|  | void *cpu_addr, dma_addr_t dma_addr, size_t size, | 
|  | unsigned long attrs) | 
|  | { | 
|  | #ifdef CONFIG_MMU | 
|  | vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot); | 
|  | #endif	/* CONFIG_MMU */ | 
|  | return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Free a buffer as defined by the above mapping. | 
|  | */ | 
|  | static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr, | 
|  | dma_addr_t handle, unsigned long attrs, | 
|  | bool is_coherent) | 
|  | { | 
|  | struct page *page = pfn_to_page(dma_to_pfn(dev, handle)); | 
|  | struct arm_dma_buffer *buf; | 
|  | struct arm_dma_free_args args = { | 
|  | .dev = dev, | 
|  | .size = PAGE_ALIGN(size), | 
|  | .cpu_addr = cpu_addr, | 
|  | .page = page, | 
|  | .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0), | 
|  | }; | 
|  |  | 
|  | buf = arm_dma_buffer_find(cpu_addr); | 
|  | if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr)) | 
|  | return; | 
|  |  | 
|  | buf->allocator->free(&args); | 
|  | kfree(buf); | 
|  | } | 
|  |  | 
|  | void arm_dma_free(struct device *dev, size_t size, void *cpu_addr, | 
|  | dma_addr_t handle, unsigned long attrs) | 
|  | { | 
|  | __arm_dma_free(dev, size, cpu_addr, handle, attrs, false); | 
|  | } | 
|  |  | 
|  | static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr, | 
|  | dma_addr_t handle, unsigned long attrs) | 
|  | { | 
|  | __arm_dma_free(dev, size, cpu_addr, handle, attrs, true); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems | 
|  | * that the intention is to allow exporting memory allocated via the | 
|  | * coherent DMA APIs through the dma_buf API, which only accepts a | 
|  | * scattertable.  This presents a couple of problems: | 
|  | * 1. Not all memory allocated via the coherent DMA APIs is backed by | 
|  | *    a struct page | 
|  | * 2. Passing coherent DMA memory into the streaming APIs is not allowed | 
|  | *    as we will try to flush the memory through a different alias to that | 
|  | *    actually being used (and the flushes are redundant.) | 
|  | */ | 
|  | int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt, | 
|  | void *cpu_addr, dma_addr_t handle, size_t size, | 
|  | unsigned long attrs) | 
|  | { | 
|  | unsigned long pfn = dma_to_pfn(dev, handle); | 
|  | struct page *page; | 
|  | int ret; | 
|  |  | 
|  | /* If the PFN is not valid, we do not have a struct page */ | 
|  | if (!pfn_valid(pfn)) | 
|  | return -ENXIO; | 
|  |  | 
|  | page = pfn_to_page(pfn); | 
|  |  | 
|  | ret = sg_alloc_table(sgt, 1, GFP_KERNEL); | 
|  | if (unlikely(ret)) | 
|  | return ret; | 
|  |  | 
|  | sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void dma_cache_maint_page(struct page *page, unsigned long offset, | 
|  | size_t size, enum dma_data_direction dir, | 
|  | void (*op)(const void *, size_t, int)) | 
|  | { | 
|  | unsigned long pfn; | 
|  | size_t left = size; | 
|  |  | 
|  | pfn = page_to_pfn(page) + offset / PAGE_SIZE; | 
|  | offset %= PAGE_SIZE; | 
|  |  | 
|  | /* | 
|  | * A single sg entry may refer to multiple physically contiguous | 
|  | * pages.  But we still need to process highmem pages individually. | 
|  | * If highmem is not configured then the bulk of this loop gets | 
|  | * optimized out. | 
|  | */ | 
|  | do { | 
|  | size_t len = left; | 
|  | void *vaddr; | 
|  |  | 
|  | page = pfn_to_page(pfn); | 
|  |  | 
|  | if (PageHighMem(page)) { | 
|  | if (len + offset > PAGE_SIZE) | 
|  | len = PAGE_SIZE - offset; | 
|  |  | 
|  | if (cache_is_vipt_nonaliasing()) { | 
|  | vaddr = kmap_atomic(page); | 
|  | op(vaddr + offset, len, dir); | 
|  | kunmap_atomic(vaddr); | 
|  | } else { | 
|  | vaddr = kmap_high_get(page); | 
|  | if (vaddr) { | 
|  | op(vaddr + offset, len, dir); | 
|  | kunmap_high(page); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | vaddr = page_address(page) + offset; | 
|  | op(vaddr, len, dir); | 
|  | } | 
|  | offset = 0; | 
|  | pfn++; | 
|  | left -= len; | 
|  | } while (left); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Make an area consistent for devices. | 
|  | * Note: Drivers should NOT use this function directly, as it will break | 
|  | * platforms with CONFIG_DMABOUNCE. | 
|  | * Use the driver DMA support - see dma-mapping.h (dma_sync_*) | 
|  | */ | 
|  | static void __dma_page_cpu_to_dev(struct page *page, unsigned long off, | 
|  | size_t size, enum dma_data_direction dir) | 
|  | { | 
|  | phys_addr_t paddr; | 
|  |  | 
|  | dma_cache_maint_page(page, off, size, dir, dmac_map_area); | 
|  |  | 
|  | paddr = page_to_phys(page) + off; | 
|  | if (dir == DMA_FROM_DEVICE) { | 
|  | outer_inv_range(paddr, paddr + size); | 
|  | } else { | 
|  | outer_clean_range(paddr, paddr + size); | 
|  | } | 
|  | /* FIXME: non-speculating: flush on bidirectional mappings? */ | 
|  | } | 
|  |  | 
|  | static void __dma_page_dev_to_cpu(struct page *page, unsigned long off, | 
|  | size_t size, enum dma_data_direction dir) | 
|  | { | 
|  | phys_addr_t paddr = page_to_phys(page) + off; | 
|  |  | 
|  | /* FIXME: non-speculating: not required */ | 
|  | /* in any case, don't bother invalidating if DMA to device */ | 
|  | if (dir != DMA_TO_DEVICE) { | 
|  | outer_inv_range(paddr, paddr + size); | 
|  |  | 
|  | dma_cache_maint_page(page, off, size, dir, dmac_unmap_area); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Mark the D-cache clean for these pages to avoid extra flushing. | 
|  | */ | 
|  | if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) { | 
|  | unsigned long pfn; | 
|  | size_t left = size; | 
|  |  | 
|  | pfn = page_to_pfn(page) + off / PAGE_SIZE; | 
|  | off %= PAGE_SIZE; | 
|  | if (off) { | 
|  | pfn++; | 
|  | left -= PAGE_SIZE - off; | 
|  | } | 
|  | while (left >= PAGE_SIZE) { | 
|  | page = pfn_to_page(pfn++); | 
|  | set_bit(PG_dcache_clean, &page->flags); | 
|  | left -= PAGE_SIZE; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA | 
|  | * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices | 
|  | * @sg: list of buffers | 
|  | * @nents: number of buffers to map | 
|  | * @dir: DMA transfer direction | 
|  | * | 
|  | * Map a set of buffers described by scatterlist in streaming mode for DMA. | 
|  | * This is the scatter-gather version of the dma_map_single interface. | 
|  | * Here the scatter gather list elements are each tagged with the | 
|  | * appropriate dma address and length.  They are obtained via | 
|  | * sg_dma_{address,length}. | 
|  | * | 
|  | * Device ownership issues as mentioned for dma_map_single are the same | 
|  | * here. | 
|  | */ | 
|  | int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, | 
|  | enum dma_data_direction dir, unsigned long attrs) | 
|  | { | 
|  | const struct dma_map_ops *ops = get_dma_ops(dev); | 
|  | struct scatterlist *s; | 
|  | int i, j; | 
|  |  | 
|  | for_each_sg(sg, s, nents, i) { | 
|  | #ifdef CONFIG_NEED_SG_DMA_LENGTH | 
|  | s->dma_length = s->length; | 
|  | #endif | 
|  | s->dma_address = ops->map_page(dev, sg_page(s), s->offset, | 
|  | s->length, dir, attrs); | 
|  | if (dma_mapping_error(dev, s->dma_address)) | 
|  | goto bad_mapping; | 
|  | } | 
|  | return nents; | 
|  |  | 
|  | bad_mapping: | 
|  | for_each_sg(sg, s, i, j) | 
|  | ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg | 
|  | * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices | 
|  | * @sg: list of buffers | 
|  | * @nents: number of buffers to unmap (same as was passed to dma_map_sg) | 
|  | * @dir: DMA transfer direction (same as was passed to dma_map_sg) | 
|  | * | 
|  | * Unmap a set of streaming mode DMA translations.  Again, CPU access | 
|  | * rules concerning calls here are the same as for dma_unmap_single(). | 
|  | */ | 
|  | void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, | 
|  | enum dma_data_direction dir, unsigned long attrs) | 
|  | { | 
|  | const struct dma_map_ops *ops = get_dma_ops(dev); | 
|  | struct scatterlist *s; | 
|  |  | 
|  | int i; | 
|  |  | 
|  | for_each_sg(sg, s, nents, i) | 
|  | ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * arm_dma_sync_sg_for_cpu | 
|  | * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices | 
|  | * @sg: list of buffers | 
|  | * @nents: number of buffers to map (returned from dma_map_sg) | 
|  | * @dir: DMA transfer direction (same as was passed to dma_map_sg) | 
|  | */ | 
|  | void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, | 
|  | int nents, enum dma_data_direction dir) | 
|  | { | 
|  | const struct dma_map_ops *ops = get_dma_ops(dev); | 
|  | struct scatterlist *s; | 
|  | int i; | 
|  |  | 
|  | for_each_sg(sg, s, nents, i) | 
|  | ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length, | 
|  | dir); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * arm_dma_sync_sg_for_device | 
|  | * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices | 
|  | * @sg: list of buffers | 
|  | * @nents: number of buffers to map (returned from dma_map_sg) | 
|  | * @dir: DMA transfer direction (same as was passed to dma_map_sg) | 
|  | */ | 
|  | void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, | 
|  | int nents, enum dma_data_direction dir) | 
|  | { | 
|  | const struct dma_map_ops *ops = get_dma_ops(dev); | 
|  | struct scatterlist *s; | 
|  | int i; | 
|  |  | 
|  | for_each_sg(sg, s, nents, i) | 
|  | ops->sync_single_for_device(dev, sg_dma_address(s), s->length, | 
|  | dir); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return whether the given device DMA address mask can be supported | 
|  | * properly.  For example, if your device can only drive the low 24-bits | 
|  | * during bus mastering, then you would pass 0x00ffffff as the mask | 
|  | * to this function. | 
|  | */ | 
|  | int dma_supported(struct device *dev, u64 mask) | 
|  | { | 
|  | return __dma_supported(dev, mask, false); | 
|  | } | 
|  | EXPORT_SYMBOL(dma_supported); | 
|  |  | 
|  | #define PREALLOC_DMA_DEBUG_ENTRIES	4096 | 
|  |  | 
|  | static int __init dma_debug_do_init(void) | 
|  | { | 
|  | dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES); | 
|  | return 0; | 
|  | } | 
|  | core_initcall(dma_debug_do_init); | 
|  |  | 
|  | #ifdef CONFIG_ARM_DMA_USE_IOMMU | 
|  |  | 
|  | static int __dma_info_to_prot(enum dma_data_direction dir, unsigned long attrs) | 
|  | { | 
|  | int prot = 0; | 
|  |  | 
|  | if (attrs & DMA_ATTR_PRIVILEGED) | 
|  | prot |= IOMMU_PRIV; | 
|  |  | 
|  | switch (dir) { | 
|  | case DMA_BIDIRECTIONAL: | 
|  | return prot | IOMMU_READ | IOMMU_WRITE; | 
|  | case DMA_TO_DEVICE: | 
|  | return prot | IOMMU_READ; | 
|  | case DMA_FROM_DEVICE: | 
|  | return prot | IOMMU_WRITE; | 
|  | default: | 
|  | return prot; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* IOMMU */ | 
|  |  | 
|  | static int extend_iommu_mapping(struct dma_iommu_mapping *mapping); | 
|  |  | 
|  | static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping, | 
|  | size_t size) | 
|  | { | 
|  | unsigned int order = get_order(size); | 
|  | unsigned int align = 0; | 
|  | unsigned int count, start; | 
|  | size_t mapping_size = mapping->bits << PAGE_SHIFT; | 
|  | unsigned long flags; | 
|  | dma_addr_t iova; | 
|  | int i; | 
|  |  | 
|  | if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT) | 
|  | order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT; | 
|  |  | 
|  | count = PAGE_ALIGN(size) >> PAGE_SHIFT; | 
|  | align = (1 << order) - 1; | 
|  |  | 
|  | spin_lock_irqsave(&mapping->lock, flags); | 
|  | for (i = 0; i < mapping->nr_bitmaps; i++) { | 
|  | start = bitmap_find_next_zero_area(mapping->bitmaps[i], | 
|  | mapping->bits, 0, count, align); | 
|  |  | 
|  | if (start > mapping->bits) | 
|  | continue; | 
|  |  | 
|  | bitmap_set(mapping->bitmaps[i], start, count); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * No unused range found. Try to extend the existing mapping | 
|  | * and perform a second attempt to reserve an IO virtual | 
|  | * address range of size bytes. | 
|  | */ | 
|  | if (i == mapping->nr_bitmaps) { | 
|  | if (extend_iommu_mapping(mapping)) { | 
|  | spin_unlock_irqrestore(&mapping->lock, flags); | 
|  | return DMA_ERROR_CODE; | 
|  | } | 
|  |  | 
|  | start = bitmap_find_next_zero_area(mapping->bitmaps[i], | 
|  | mapping->bits, 0, count, align); | 
|  |  | 
|  | if (start > mapping->bits) { | 
|  | spin_unlock_irqrestore(&mapping->lock, flags); | 
|  | return DMA_ERROR_CODE; | 
|  | } | 
|  |  | 
|  | bitmap_set(mapping->bitmaps[i], start, count); | 
|  | } | 
|  | spin_unlock_irqrestore(&mapping->lock, flags); | 
|  |  | 
|  | iova = mapping->base + (mapping_size * i); | 
|  | iova += start << PAGE_SHIFT; | 
|  |  | 
|  | return iova; | 
|  | } | 
|  |  | 
|  | static inline void __free_iova(struct dma_iommu_mapping *mapping, | 
|  | dma_addr_t addr, size_t size) | 
|  | { | 
|  | unsigned int start, count; | 
|  | size_t mapping_size = mapping->bits << PAGE_SHIFT; | 
|  | unsigned long flags; | 
|  | dma_addr_t bitmap_base; | 
|  | u32 bitmap_index; | 
|  |  | 
|  | if (!size) | 
|  | return; | 
|  |  | 
|  | bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size; | 
|  | BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions); | 
|  |  | 
|  | bitmap_base = mapping->base + mapping_size * bitmap_index; | 
|  |  | 
|  | start = (addr - bitmap_base) >>	PAGE_SHIFT; | 
|  |  | 
|  | if (addr + size > bitmap_base + mapping_size) { | 
|  | /* | 
|  | * The address range to be freed reaches into the iova | 
|  | * range of the next bitmap. This should not happen as | 
|  | * we don't allow this in __alloc_iova (at the | 
|  | * moment). | 
|  | */ | 
|  | BUG(); | 
|  | } else | 
|  | count = size >> PAGE_SHIFT; | 
|  |  | 
|  | spin_lock_irqsave(&mapping->lock, flags); | 
|  | bitmap_clear(mapping->bitmaps[bitmap_index], start, count); | 
|  | spin_unlock_irqrestore(&mapping->lock, flags); | 
|  | } | 
|  |  | 
|  | /* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */ | 
|  | static const int iommu_order_array[] = { 9, 8, 4, 0 }; | 
|  |  | 
|  | static struct page **__iommu_alloc_buffer(struct device *dev, size_t size, | 
|  | gfp_t gfp, unsigned long attrs, | 
|  | int coherent_flag) | 
|  | { | 
|  | struct page **pages; | 
|  | int count = size >> PAGE_SHIFT; | 
|  | int array_size = count * sizeof(struct page *); | 
|  | int i = 0; | 
|  | int order_idx = 0; | 
|  |  | 
|  | if (array_size <= PAGE_SIZE) | 
|  | pages = kzalloc(array_size, GFP_KERNEL); | 
|  | else | 
|  | pages = vzalloc(array_size); | 
|  | if (!pages) | 
|  | return NULL; | 
|  |  | 
|  | if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) | 
|  | { | 
|  | unsigned long order = get_order(size); | 
|  | struct page *page; | 
|  |  | 
|  | page = dma_alloc_from_contiguous(dev, count, order, gfp); | 
|  | if (!page) | 
|  | goto error; | 
|  |  | 
|  | __dma_clear_buffer(page, size, coherent_flag); | 
|  |  | 
|  | for (i = 0; i < count; i++) | 
|  | pages[i] = page + i; | 
|  |  | 
|  | return pages; | 
|  | } | 
|  |  | 
|  | /* Go straight to 4K chunks if caller says it's OK. */ | 
|  | if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES) | 
|  | order_idx = ARRAY_SIZE(iommu_order_array) - 1; | 
|  |  | 
|  | /* | 
|  | * IOMMU can map any pages, so himem can also be used here | 
|  | */ | 
|  | gfp |= __GFP_NOWARN | __GFP_HIGHMEM; | 
|  |  | 
|  | while (count) { | 
|  | int j, order; | 
|  |  | 
|  | order = iommu_order_array[order_idx]; | 
|  |  | 
|  | /* Drop down when we get small */ | 
|  | if (__fls(count) < order) { | 
|  | order_idx++; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (order) { | 
|  | /* See if it's easy to allocate a high-order chunk */ | 
|  | pages[i] = alloc_pages(gfp | __GFP_NORETRY, order); | 
|  |  | 
|  | /* Go down a notch at first sign of pressure */ | 
|  | if (!pages[i]) { | 
|  | order_idx++; | 
|  | continue; | 
|  | } | 
|  | } else { | 
|  | pages[i] = alloc_pages(gfp, 0); | 
|  | if (!pages[i]) | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | if (order) { | 
|  | split_page(pages[i], order); | 
|  | j = 1 << order; | 
|  | while (--j) | 
|  | pages[i + j] = pages[i] + j; | 
|  | } | 
|  |  | 
|  | __dma_clear_buffer(pages[i], PAGE_SIZE << order, coherent_flag); | 
|  | i += 1 << order; | 
|  | count -= 1 << order; | 
|  | } | 
|  |  | 
|  | return pages; | 
|  | error: | 
|  | while (i--) | 
|  | if (pages[i]) | 
|  | __free_pages(pages[i], 0); | 
|  | kvfree(pages); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static int __iommu_free_buffer(struct device *dev, struct page **pages, | 
|  | size_t size, unsigned long attrs) | 
|  | { | 
|  | int count = size >> PAGE_SHIFT; | 
|  | int i; | 
|  |  | 
|  | if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) { | 
|  | dma_release_from_contiguous(dev, pages[0], count); | 
|  | } else { | 
|  | for (i = 0; i < count; i++) | 
|  | if (pages[i]) | 
|  | __free_pages(pages[i], 0); | 
|  | } | 
|  |  | 
|  | kvfree(pages); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Create a CPU mapping for a specified pages | 
|  | */ | 
|  | static void * | 
|  | __iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot, | 
|  | const void *caller) | 
|  | { | 
|  | return dma_common_pages_remap(pages, size, | 
|  | VM_ARM_DMA_CONSISTENT | VM_USERMAP, prot, caller); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Create a mapping in device IO address space for specified pages | 
|  | */ | 
|  | static dma_addr_t | 
|  | __iommu_create_mapping(struct device *dev, struct page **pages, size_t size, | 
|  | unsigned long attrs) | 
|  | { | 
|  | struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); | 
|  | unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; | 
|  | dma_addr_t dma_addr, iova; | 
|  | int i; | 
|  |  | 
|  | dma_addr = __alloc_iova(mapping, size); | 
|  | if (dma_addr == DMA_ERROR_CODE) | 
|  | return dma_addr; | 
|  |  | 
|  | iova = dma_addr; | 
|  | for (i = 0; i < count; ) { | 
|  | int ret; | 
|  |  | 
|  | unsigned int next_pfn = page_to_pfn(pages[i]) + 1; | 
|  | phys_addr_t phys = page_to_phys(pages[i]); | 
|  | unsigned int len, j; | 
|  |  | 
|  | for (j = i + 1; j < count; j++, next_pfn++) | 
|  | if (page_to_pfn(pages[j]) != next_pfn) | 
|  | break; | 
|  |  | 
|  | len = (j - i) << PAGE_SHIFT; | 
|  | ret = iommu_map(mapping->domain, iova, phys, len, | 
|  | __dma_info_to_prot(DMA_BIDIRECTIONAL, attrs)); | 
|  | if (ret < 0) | 
|  | goto fail; | 
|  | iova += len; | 
|  | i = j; | 
|  | } | 
|  | return dma_addr; | 
|  | fail: | 
|  | iommu_unmap(mapping->domain, dma_addr, iova-dma_addr); | 
|  | __free_iova(mapping, dma_addr, size); | 
|  | return DMA_ERROR_CODE; | 
|  | } | 
|  |  | 
|  | static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size) | 
|  | { | 
|  | struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); | 
|  |  | 
|  | /* | 
|  | * add optional in-page offset from iova to size and align | 
|  | * result to page size | 
|  | */ | 
|  | size = PAGE_ALIGN((iova & ~PAGE_MASK) + size); | 
|  | iova &= PAGE_MASK; | 
|  |  | 
|  | iommu_unmap(mapping->domain, iova, size); | 
|  | __free_iova(mapping, iova, size); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct page **__atomic_get_pages(void *addr) | 
|  | { | 
|  | struct page *page; | 
|  | phys_addr_t phys; | 
|  |  | 
|  | phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr); | 
|  | page = phys_to_page(phys); | 
|  |  | 
|  | return (struct page **)page; | 
|  | } | 
|  |  | 
|  | static struct page **__iommu_get_pages(void *cpu_addr, unsigned long attrs) | 
|  | { | 
|  | struct vm_struct *area; | 
|  |  | 
|  | if (__in_atomic_pool(cpu_addr, PAGE_SIZE)) | 
|  | return __atomic_get_pages(cpu_addr); | 
|  |  | 
|  | if (attrs & DMA_ATTR_NO_KERNEL_MAPPING) | 
|  | return cpu_addr; | 
|  |  | 
|  | area = find_vm_area(cpu_addr); | 
|  | if (area && (area->flags & VM_ARM_DMA_CONSISTENT)) | 
|  | return area->pages; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void *__iommu_alloc_simple(struct device *dev, size_t size, gfp_t gfp, | 
|  | dma_addr_t *handle, int coherent_flag, | 
|  | unsigned long attrs) | 
|  | { | 
|  | struct page *page; | 
|  | void *addr; | 
|  |  | 
|  | if (coherent_flag  == COHERENT) | 
|  | addr = __alloc_simple_buffer(dev, size, gfp, &page); | 
|  | else | 
|  | addr = __alloc_from_pool(size, &page); | 
|  | if (!addr) | 
|  | return NULL; | 
|  |  | 
|  | *handle = __iommu_create_mapping(dev, &page, size, attrs); | 
|  | if (*handle == DMA_ERROR_CODE) | 
|  | goto err_mapping; | 
|  |  | 
|  | return addr; | 
|  |  | 
|  | err_mapping: | 
|  | __free_from_pool(addr, size); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void __iommu_free_atomic(struct device *dev, void *cpu_addr, | 
|  | dma_addr_t handle, size_t size, int coherent_flag) | 
|  | { | 
|  | __iommu_remove_mapping(dev, handle, size); | 
|  | if (coherent_flag == COHERENT) | 
|  | __dma_free_buffer(virt_to_page(cpu_addr), size); | 
|  | else | 
|  | __free_from_pool(cpu_addr, size); | 
|  | } | 
|  |  | 
|  | static void *__arm_iommu_alloc_attrs(struct device *dev, size_t size, | 
|  | dma_addr_t *handle, gfp_t gfp, unsigned long attrs, | 
|  | int coherent_flag) | 
|  | { | 
|  | pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL); | 
|  | struct page **pages; | 
|  | void *addr = NULL; | 
|  |  | 
|  | *handle = DMA_ERROR_CODE; | 
|  | size = PAGE_ALIGN(size); | 
|  |  | 
|  | if (coherent_flag  == COHERENT || !gfpflags_allow_blocking(gfp)) | 
|  | return __iommu_alloc_simple(dev, size, gfp, handle, | 
|  | coherent_flag, attrs); | 
|  |  | 
|  | /* | 
|  | * Following is a work-around (a.k.a. hack) to prevent pages | 
|  | * with __GFP_COMP being passed to split_page() which cannot | 
|  | * handle them.  The real problem is that this flag probably | 
|  | * should be 0 on ARM as it is not supported on this | 
|  | * platform; see CONFIG_HUGETLBFS. | 
|  | */ | 
|  | gfp &= ~(__GFP_COMP); | 
|  |  | 
|  | pages = __iommu_alloc_buffer(dev, size, gfp, attrs, coherent_flag); | 
|  | if (!pages) | 
|  | return NULL; | 
|  |  | 
|  | *handle = __iommu_create_mapping(dev, pages, size, attrs); | 
|  | if (*handle == DMA_ERROR_CODE) | 
|  | goto err_buffer; | 
|  |  | 
|  | if (attrs & DMA_ATTR_NO_KERNEL_MAPPING) | 
|  | return pages; | 
|  |  | 
|  | addr = __iommu_alloc_remap(pages, size, gfp, prot, | 
|  | __builtin_return_address(0)); | 
|  | if (!addr) | 
|  | goto err_mapping; | 
|  |  | 
|  | return addr; | 
|  |  | 
|  | err_mapping: | 
|  | __iommu_remove_mapping(dev, *handle, size); | 
|  | err_buffer: | 
|  | __iommu_free_buffer(dev, pages, size, attrs); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void *arm_iommu_alloc_attrs(struct device *dev, size_t size, | 
|  | dma_addr_t *handle, gfp_t gfp, unsigned long attrs) | 
|  | { | 
|  | return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, NORMAL); | 
|  | } | 
|  |  | 
|  | static void *arm_coherent_iommu_alloc_attrs(struct device *dev, size_t size, | 
|  | dma_addr_t *handle, gfp_t gfp, unsigned long attrs) | 
|  | { | 
|  | return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, COHERENT); | 
|  | } | 
|  |  | 
|  | static int __arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma, | 
|  | void *cpu_addr, dma_addr_t dma_addr, size_t size, | 
|  | unsigned long attrs) | 
|  | { | 
|  | unsigned long uaddr = vma->vm_start; | 
|  | unsigned long usize = vma->vm_end - vma->vm_start; | 
|  | struct page **pages = __iommu_get_pages(cpu_addr, attrs); | 
|  | unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; | 
|  | unsigned long off = vma->vm_pgoff; | 
|  |  | 
|  | if (!pages) | 
|  | return -ENXIO; | 
|  |  | 
|  | if (off >= nr_pages || (usize >> PAGE_SHIFT) > nr_pages - off) | 
|  | return -ENXIO; | 
|  |  | 
|  | pages += off; | 
|  |  | 
|  | do { | 
|  | int ret = vm_insert_page(vma, uaddr, *pages++); | 
|  | if (ret) { | 
|  | pr_err("Remapping memory failed: %d\n", ret); | 
|  | return ret; | 
|  | } | 
|  | uaddr += PAGE_SIZE; | 
|  | usize -= PAGE_SIZE; | 
|  | } while (usize > 0); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | static int arm_iommu_mmap_attrs(struct device *dev, | 
|  | struct vm_area_struct *vma, void *cpu_addr, | 
|  | dma_addr_t dma_addr, size_t size, unsigned long attrs) | 
|  | { | 
|  | vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot); | 
|  |  | 
|  | return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs); | 
|  | } | 
|  |  | 
|  | static int arm_coherent_iommu_mmap_attrs(struct device *dev, | 
|  | struct vm_area_struct *vma, void *cpu_addr, | 
|  | dma_addr_t dma_addr, size_t size, unsigned long attrs) | 
|  | { | 
|  | return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * free a page as defined by the above mapping. | 
|  | * Must not be called with IRQs disabled. | 
|  | */ | 
|  | void __arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr, | 
|  | dma_addr_t handle, unsigned long attrs, int coherent_flag) | 
|  | { | 
|  | struct page **pages; | 
|  | size = PAGE_ALIGN(size); | 
|  |  | 
|  | if (coherent_flag == COHERENT || __in_atomic_pool(cpu_addr, size)) { | 
|  | __iommu_free_atomic(dev, cpu_addr, handle, size, coherent_flag); | 
|  | return; | 
|  | } | 
|  |  | 
|  | pages = __iommu_get_pages(cpu_addr, attrs); | 
|  | if (!pages) { | 
|  | WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0) { | 
|  | dma_common_free_remap(cpu_addr, size, | 
|  | VM_ARM_DMA_CONSISTENT | VM_USERMAP); | 
|  | } | 
|  |  | 
|  | __iommu_remove_mapping(dev, handle, size); | 
|  | __iommu_free_buffer(dev, pages, size, attrs); | 
|  | } | 
|  |  | 
|  | void arm_iommu_free_attrs(struct device *dev, size_t size, | 
|  | void *cpu_addr, dma_addr_t handle, unsigned long attrs) | 
|  | { | 
|  | __arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, NORMAL); | 
|  | } | 
|  |  | 
|  | void arm_coherent_iommu_free_attrs(struct device *dev, size_t size, | 
|  | void *cpu_addr, dma_addr_t handle, unsigned long attrs) | 
|  | { | 
|  | __arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, COHERENT); | 
|  | } | 
|  |  | 
|  | static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt, | 
|  | void *cpu_addr, dma_addr_t dma_addr, | 
|  | size_t size, unsigned long attrs) | 
|  | { | 
|  | unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; | 
|  | struct page **pages = __iommu_get_pages(cpu_addr, attrs); | 
|  |  | 
|  | if (!pages) | 
|  | return -ENXIO; | 
|  |  | 
|  | return sg_alloc_table_from_pages(sgt, pages, count, 0, size, | 
|  | GFP_KERNEL); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Map a part of the scatter-gather list into contiguous io address space | 
|  | */ | 
|  | static int __map_sg_chunk(struct device *dev, struct scatterlist *sg, | 
|  | size_t size, dma_addr_t *handle, | 
|  | enum dma_data_direction dir, unsigned long attrs, | 
|  | bool is_coherent) | 
|  | { | 
|  | struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); | 
|  | dma_addr_t iova, iova_base; | 
|  | int ret = 0; | 
|  | unsigned int count; | 
|  | struct scatterlist *s; | 
|  | int prot; | 
|  |  | 
|  | size = PAGE_ALIGN(size); | 
|  | *handle = DMA_ERROR_CODE; | 
|  |  | 
|  | iova_base = iova = __alloc_iova(mapping, size); | 
|  | if (iova == DMA_ERROR_CODE) | 
|  | return -ENOMEM; | 
|  |  | 
|  | for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) { | 
|  | phys_addr_t phys = page_to_phys(sg_page(s)); | 
|  | unsigned int len = PAGE_ALIGN(s->offset + s->length); | 
|  |  | 
|  | if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) | 
|  | __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir); | 
|  |  | 
|  | prot = __dma_info_to_prot(dir, attrs); | 
|  |  | 
|  | ret = iommu_map(mapping->domain, iova, phys, len, prot); | 
|  | if (ret < 0) | 
|  | goto fail; | 
|  | count += len >> PAGE_SHIFT; | 
|  | iova += len; | 
|  | } | 
|  | *handle = iova_base; | 
|  |  | 
|  | return 0; | 
|  | fail: | 
|  | iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE); | 
|  | __free_iova(mapping, iova_base, size); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents, | 
|  | enum dma_data_direction dir, unsigned long attrs, | 
|  | bool is_coherent) | 
|  | { | 
|  | struct scatterlist *s = sg, *dma = sg, *start = sg; | 
|  | int i, count = 0; | 
|  | unsigned int offset = s->offset; | 
|  | unsigned int size = s->offset + s->length; | 
|  | unsigned int max = dma_get_max_seg_size(dev); | 
|  |  | 
|  | for (i = 1; i < nents; i++) { | 
|  | s = sg_next(s); | 
|  |  | 
|  | s->dma_address = DMA_ERROR_CODE; | 
|  | s->dma_length = 0; | 
|  |  | 
|  | if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) { | 
|  | if (__map_sg_chunk(dev, start, size, &dma->dma_address, | 
|  | dir, attrs, is_coherent) < 0) | 
|  | goto bad_mapping; | 
|  |  | 
|  | dma->dma_address += offset; | 
|  | dma->dma_length = size - offset; | 
|  |  | 
|  | size = offset = s->offset; | 
|  | start = s; | 
|  | dma = sg_next(dma); | 
|  | count += 1; | 
|  | } | 
|  | size += s->length; | 
|  | } | 
|  | if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs, | 
|  | is_coherent) < 0) | 
|  | goto bad_mapping; | 
|  |  | 
|  | dma->dma_address += offset; | 
|  | dma->dma_length = size - offset; | 
|  |  | 
|  | return count+1; | 
|  |  | 
|  | bad_mapping: | 
|  | for_each_sg(sg, s, count, i) | 
|  | __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA | 
|  | * @dev: valid struct device pointer | 
|  | * @sg: list of buffers | 
|  | * @nents: number of buffers to map | 
|  | * @dir: DMA transfer direction | 
|  | * | 
|  | * Map a set of i/o coherent buffers described by scatterlist in streaming | 
|  | * mode for DMA. The scatter gather list elements are merged together (if | 
|  | * possible) and tagged with the appropriate dma address and length. They are | 
|  | * obtained via sg_dma_{address,length}. | 
|  | */ | 
|  | int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg, | 
|  | int nents, enum dma_data_direction dir, unsigned long attrs) | 
|  | { | 
|  | return __iommu_map_sg(dev, sg, nents, dir, attrs, true); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA | 
|  | * @dev: valid struct device pointer | 
|  | * @sg: list of buffers | 
|  | * @nents: number of buffers to map | 
|  | * @dir: DMA transfer direction | 
|  | * | 
|  | * Map a set of buffers described by scatterlist in streaming mode for DMA. | 
|  | * The scatter gather list elements are merged together (if possible) and | 
|  | * tagged with the appropriate dma address and length. They are obtained via | 
|  | * sg_dma_{address,length}. | 
|  | */ | 
|  | int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg, | 
|  | int nents, enum dma_data_direction dir, unsigned long attrs) | 
|  | { | 
|  | return __iommu_map_sg(dev, sg, nents, dir, attrs, false); | 
|  | } | 
|  |  | 
|  | static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg, | 
|  | int nents, enum dma_data_direction dir, | 
|  | unsigned long attrs, bool is_coherent) | 
|  | { | 
|  | struct scatterlist *s; | 
|  | int i; | 
|  |  | 
|  | for_each_sg(sg, s, nents, i) { | 
|  | if (sg_dma_len(s)) | 
|  | __iommu_remove_mapping(dev, sg_dma_address(s), | 
|  | sg_dma_len(s)); | 
|  | if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) | 
|  | __dma_page_dev_to_cpu(sg_page(s), s->offset, | 
|  | s->length, dir); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg | 
|  | * @dev: valid struct device pointer | 
|  | * @sg: list of buffers | 
|  | * @nents: number of buffers to unmap (same as was passed to dma_map_sg) | 
|  | * @dir: DMA transfer direction (same as was passed to dma_map_sg) | 
|  | * | 
|  | * Unmap a set of streaming mode DMA translations.  Again, CPU access | 
|  | * rules concerning calls here are the same as for dma_unmap_single(). | 
|  | */ | 
|  | void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, | 
|  | int nents, enum dma_data_direction dir, | 
|  | unsigned long attrs) | 
|  | { | 
|  | __iommu_unmap_sg(dev, sg, nents, dir, attrs, true); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg | 
|  | * @dev: valid struct device pointer | 
|  | * @sg: list of buffers | 
|  | * @nents: number of buffers to unmap (same as was passed to dma_map_sg) | 
|  | * @dir: DMA transfer direction (same as was passed to dma_map_sg) | 
|  | * | 
|  | * Unmap a set of streaming mode DMA translations.  Again, CPU access | 
|  | * rules concerning calls here are the same as for dma_unmap_single(). | 
|  | */ | 
|  | void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, | 
|  | enum dma_data_direction dir, | 
|  | unsigned long attrs) | 
|  | { | 
|  | __iommu_unmap_sg(dev, sg, nents, dir, attrs, false); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * arm_iommu_sync_sg_for_cpu | 
|  | * @dev: valid struct device pointer | 
|  | * @sg: list of buffers | 
|  | * @nents: number of buffers to map (returned from dma_map_sg) | 
|  | * @dir: DMA transfer direction (same as was passed to dma_map_sg) | 
|  | */ | 
|  | void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, | 
|  | int nents, enum dma_data_direction dir) | 
|  | { | 
|  | struct scatterlist *s; | 
|  | int i; | 
|  |  | 
|  | for_each_sg(sg, s, nents, i) | 
|  | __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir); | 
|  |  | 
|  | } | 
|  |  | 
|  | /** | 
|  | * arm_iommu_sync_sg_for_device | 
|  | * @dev: valid struct device pointer | 
|  | * @sg: list of buffers | 
|  | * @nents: number of buffers to map (returned from dma_map_sg) | 
|  | * @dir: DMA transfer direction (same as was passed to dma_map_sg) | 
|  | */ | 
|  | void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg, | 
|  | int nents, enum dma_data_direction dir) | 
|  | { | 
|  | struct scatterlist *s; | 
|  | int i; | 
|  |  | 
|  | for_each_sg(sg, s, nents, i) | 
|  | __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir); | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | * arm_coherent_iommu_map_page | 
|  | * @dev: valid struct device pointer | 
|  | * @page: page that buffer resides in | 
|  | * @offset: offset into page for start of buffer | 
|  | * @size: size of buffer to map | 
|  | * @dir: DMA transfer direction | 
|  | * | 
|  | * Coherent IOMMU aware version of arm_dma_map_page() | 
|  | */ | 
|  | static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page, | 
|  | unsigned long offset, size_t size, enum dma_data_direction dir, | 
|  | unsigned long attrs) | 
|  | { | 
|  | struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); | 
|  | dma_addr_t dma_addr; | 
|  | int ret, prot, len = PAGE_ALIGN(size + offset); | 
|  |  | 
|  | dma_addr = __alloc_iova(mapping, len); | 
|  | if (dma_addr == DMA_ERROR_CODE) | 
|  | return dma_addr; | 
|  |  | 
|  | prot = __dma_info_to_prot(dir, attrs); | 
|  |  | 
|  | ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot); | 
|  | if (ret < 0) | 
|  | goto fail; | 
|  |  | 
|  | return dma_addr + offset; | 
|  | fail: | 
|  | __free_iova(mapping, dma_addr, len); | 
|  | return DMA_ERROR_CODE; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * arm_iommu_map_page | 
|  | * @dev: valid struct device pointer | 
|  | * @page: page that buffer resides in | 
|  | * @offset: offset into page for start of buffer | 
|  | * @size: size of buffer to map | 
|  | * @dir: DMA transfer direction | 
|  | * | 
|  | * IOMMU aware version of arm_dma_map_page() | 
|  | */ | 
|  | static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page, | 
|  | unsigned long offset, size_t size, enum dma_data_direction dir, | 
|  | unsigned long attrs) | 
|  | { | 
|  | if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) | 
|  | __dma_page_cpu_to_dev(page, offset, size, dir); | 
|  |  | 
|  | return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * arm_coherent_iommu_unmap_page | 
|  | * @dev: valid struct device pointer | 
|  | * @handle: DMA address of buffer | 
|  | * @size: size of buffer (same as passed to dma_map_page) | 
|  | * @dir: DMA transfer direction (same as passed to dma_map_page) | 
|  | * | 
|  | * Coherent IOMMU aware version of arm_dma_unmap_page() | 
|  | */ | 
|  | static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle, | 
|  | size_t size, enum dma_data_direction dir, unsigned long attrs) | 
|  | { | 
|  | struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); | 
|  | dma_addr_t iova = handle & PAGE_MASK; | 
|  | int offset = handle & ~PAGE_MASK; | 
|  | int len = PAGE_ALIGN(size + offset); | 
|  |  | 
|  | if (!iova) | 
|  | return; | 
|  |  | 
|  | iommu_unmap(mapping->domain, iova, len); | 
|  | __free_iova(mapping, iova, len); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * arm_iommu_unmap_page | 
|  | * @dev: valid struct device pointer | 
|  | * @handle: DMA address of buffer | 
|  | * @size: size of buffer (same as passed to dma_map_page) | 
|  | * @dir: DMA transfer direction (same as passed to dma_map_page) | 
|  | * | 
|  | * IOMMU aware version of arm_dma_unmap_page() | 
|  | */ | 
|  | static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle, | 
|  | size_t size, enum dma_data_direction dir, unsigned long attrs) | 
|  | { | 
|  | struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); | 
|  | dma_addr_t iova = handle & PAGE_MASK; | 
|  | struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); | 
|  | int offset = handle & ~PAGE_MASK; | 
|  | int len = PAGE_ALIGN(size + offset); | 
|  |  | 
|  | if (!iova) | 
|  | return; | 
|  |  | 
|  | if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) | 
|  | __dma_page_dev_to_cpu(page, offset, size, dir); | 
|  |  | 
|  | iommu_unmap(mapping->domain, iova, len); | 
|  | __free_iova(mapping, iova, len); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * arm_iommu_map_resource - map a device resource for DMA | 
|  | * @dev: valid struct device pointer | 
|  | * @phys_addr: physical address of resource | 
|  | * @size: size of resource to map | 
|  | * @dir: DMA transfer direction | 
|  | */ | 
|  | static dma_addr_t arm_iommu_map_resource(struct device *dev, | 
|  | phys_addr_t phys_addr, size_t size, | 
|  | enum dma_data_direction dir, unsigned long attrs) | 
|  | { | 
|  | struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); | 
|  | dma_addr_t dma_addr; | 
|  | int ret, prot; | 
|  | phys_addr_t addr = phys_addr & PAGE_MASK; | 
|  | unsigned int offset = phys_addr & ~PAGE_MASK; | 
|  | size_t len = PAGE_ALIGN(size + offset); | 
|  |  | 
|  | dma_addr = __alloc_iova(mapping, len); | 
|  | if (dma_addr == DMA_ERROR_CODE) | 
|  | return dma_addr; | 
|  |  | 
|  | prot = __dma_info_to_prot(dir, attrs) | IOMMU_MMIO; | 
|  |  | 
|  | ret = iommu_map(mapping->domain, dma_addr, addr, len, prot); | 
|  | if (ret < 0) | 
|  | goto fail; | 
|  |  | 
|  | return dma_addr + offset; | 
|  | fail: | 
|  | __free_iova(mapping, dma_addr, len); | 
|  | return DMA_ERROR_CODE; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * arm_iommu_unmap_resource - unmap a device DMA resource | 
|  | * @dev: valid struct device pointer | 
|  | * @dma_handle: DMA address to resource | 
|  | * @size: size of resource to map | 
|  | * @dir: DMA transfer direction | 
|  | */ | 
|  | static void arm_iommu_unmap_resource(struct device *dev, dma_addr_t dma_handle, | 
|  | size_t size, enum dma_data_direction dir, | 
|  | unsigned long attrs) | 
|  | { | 
|  | struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); | 
|  | dma_addr_t iova = dma_handle & PAGE_MASK; | 
|  | unsigned int offset = dma_handle & ~PAGE_MASK; | 
|  | size_t len = PAGE_ALIGN(size + offset); | 
|  |  | 
|  | if (!iova) | 
|  | return; | 
|  |  | 
|  | iommu_unmap(mapping->domain, iova, len); | 
|  | __free_iova(mapping, iova, len); | 
|  | } | 
|  |  | 
|  | static void arm_iommu_sync_single_for_cpu(struct device *dev, | 
|  | dma_addr_t handle, size_t size, enum dma_data_direction dir) | 
|  | { | 
|  | struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); | 
|  | dma_addr_t iova = handle & PAGE_MASK; | 
|  | struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); | 
|  | unsigned int offset = handle & ~PAGE_MASK; | 
|  |  | 
|  | if (!iova) | 
|  | return; | 
|  |  | 
|  | __dma_page_dev_to_cpu(page, offset, size, dir); | 
|  | } | 
|  |  | 
|  | static void arm_iommu_sync_single_for_device(struct device *dev, | 
|  | dma_addr_t handle, size_t size, enum dma_data_direction dir) | 
|  | { | 
|  | struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); | 
|  | dma_addr_t iova = handle & PAGE_MASK; | 
|  | struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); | 
|  | unsigned int offset = handle & ~PAGE_MASK; | 
|  |  | 
|  | if (!iova) | 
|  | return; | 
|  |  | 
|  | __dma_page_cpu_to_dev(page, offset, size, dir); | 
|  | } | 
|  |  | 
|  | const struct dma_map_ops iommu_ops = { | 
|  | .alloc		= arm_iommu_alloc_attrs, | 
|  | .free		= arm_iommu_free_attrs, | 
|  | .mmap		= arm_iommu_mmap_attrs, | 
|  | .get_sgtable	= arm_iommu_get_sgtable, | 
|  |  | 
|  | .map_page		= arm_iommu_map_page, | 
|  | .unmap_page		= arm_iommu_unmap_page, | 
|  | .sync_single_for_cpu	= arm_iommu_sync_single_for_cpu, | 
|  | .sync_single_for_device	= arm_iommu_sync_single_for_device, | 
|  |  | 
|  | .map_sg			= arm_iommu_map_sg, | 
|  | .unmap_sg		= arm_iommu_unmap_sg, | 
|  | .sync_sg_for_cpu	= arm_iommu_sync_sg_for_cpu, | 
|  | .sync_sg_for_device	= arm_iommu_sync_sg_for_device, | 
|  |  | 
|  | .map_resource		= arm_iommu_map_resource, | 
|  | .unmap_resource		= arm_iommu_unmap_resource, | 
|  | }; | 
|  |  | 
|  | const struct dma_map_ops iommu_coherent_ops = { | 
|  | .alloc		= arm_coherent_iommu_alloc_attrs, | 
|  | .free		= arm_coherent_iommu_free_attrs, | 
|  | .mmap		= arm_coherent_iommu_mmap_attrs, | 
|  | .get_sgtable	= arm_iommu_get_sgtable, | 
|  |  | 
|  | .map_page	= arm_coherent_iommu_map_page, | 
|  | .unmap_page	= arm_coherent_iommu_unmap_page, | 
|  |  | 
|  | .map_sg		= arm_coherent_iommu_map_sg, | 
|  | .unmap_sg	= arm_coherent_iommu_unmap_sg, | 
|  |  | 
|  | .map_resource	= arm_iommu_map_resource, | 
|  | .unmap_resource	= arm_iommu_unmap_resource, | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * arm_iommu_create_mapping | 
|  | * @bus: pointer to the bus holding the client device (for IOMMU calls) | 
|  | * @base: start address of the valid IO address space | 
|  | * @size: maximum size of the valid IO address space | 
|  | * | 
|  | * Creates a mapping structure which holds information about used/unused | 
|  | * IO address ranges, which is required to perform memory allocation and | 
|  | * mapping with IOMMU aware functions. | 
|  | * | 
|  | * The client device need to be attached to the mapping with | 
|  | * arm_iommu_attach_device function. | 
|  | */ | 
|  | struct dma_iommu_mapping * | 
|  | arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size) | 
|  | { | 
|  | unsigned int bits = size >> PAGE_SHIFT; | 
|  | unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long); | 
|  | struct dma_iommu_mapping *mapping; | 
|  | int extensions = 1; | 
|  | int err = -ENOMEM; | 
|  |  | 
|  | /* currently only 32-bit DMA address space is supported */ | 
|  | if (size > DMA_BIT_MASK(32) + 1) | 
|  | return ERR_PTR(-ERANGE); | 
|  |  | 
|  | if (!bitmap_size) | 
|  | return ERR_PTR(-EINVAL); | 
|  |  | 
|  | if (bitmap_size > PAGE_SIZE) { | 
|  | extensions = bitmap_size / PAGE_SIZE; | 
|  | bitmap_size = PAGE_SIZE; | 
|  | } | 
|  |  | 
|  | mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL); | 
|  | if (!mapping) | 
|  | goto err; | 
|  |  | 
|  | mapping->bitmap_size = bitmap_size; | 
|  | mapping->bitmaps = kzalloc(extensions * sizeof(unsigned long *), | 
|  | GFP_KERNEL); | 
|  | if (!mapping->bitmaps) | 
|  | goto err2; | 
|  |  | 
|  | mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL); | 
|  | if (!mapping->bitmaps[0]) | 
|  | goto err3; | 
|  |  | 
|  | mapping->nr_bitmaps = 1; | 
|  | mapping->extensions = extensions; | 
|  | mapping->base = base; | 
|  | mapping->bits = BITS_PER_BYTE * bitmap_size; | 
|  |  | 
|  | spin_lock_init(&mapping->lock); | 
|  |  | 
|  | mapping->domain = iommu_domain_alloc(bus); | 
|  | if (!mapping->domain) | 
|  | goto err4; | 
|  |  | 
|  | kref_init(&mapping->kref); | 
|  | return mapping; | 
|  | err4: | 
|  | kfree(mapping->bitmaps[0]); | 
|  | err3: | 
|  | kfree(mapping->bitmaps); | 
|  | err2: | 
|  | kfree(mapping); | 
|  | err: | 
|  | return ERR_PTR(err); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(arm_iommu_create_mapping); | 
|  |  | 
|  | static void release_iommu_mapping(struct kref *kref) | 
|  | { | 
|  | int i; | 
|  | struct dma_iommu_mapping *mapping = | 
|  | container_of(kref, struct dma_iommu_mapping, kref); | 
|  |  | 
|  | iommu_domain_free(mapping->domain); | 
|  | for (i = 0; i < mapping->nr_bitmaps; i++) | 
|  | kfree(mapping->bitmaps[i]); | 
|  | kfree(mapping->bitmaps); | 
|  | kfree(mapping); | 
|  | } | 
|  |  | 
|  | static int extend_iommu_mapping(struct dma_iommu_mapping *mapping) | 
|  | { | 
|  | int next_bitmap; | 
|  |  | 
|  | if (mapping->nr_bitmaps >= mapping->extensions) | 
|  | return -EINVAL; | 
|  |  | 
|  | next_bitmap = mapping->nr_bitmaps; | 
|  | mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size, | 
|  | GFP_ATOMIC); | 
|  | if (!mapping->bitmaps[next_bitmap]) | 
|  | return -ENOMEM; | 
|  |  | 
|  | mapping->nr_bitmaps++; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping) | 
|  | { | 
|  | if (mapping) | 
|  | kref_put(&mapping->kref, release_iommu_mapping); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(arm_iommu_release_mapping); | 
|  |  | 
|  | static int __arm_iommu_attach_device(struct device *dev, | 
|  | struct dma_iommu_mapping *mapping) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | err = iommu_attach_device(mapping->domain, dev); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | kref_get(&mapping->kref); | 
|  | to_dma_iommu_mapping(dev) = mapping; | 
|  |  | 
|  | pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * arm_iommu_attach_device | 
|  | * @dev: valid struct device pointer | 
|  | * @mapping: io address space mapping structure (returned from | 
|  | *	arm_iommu_create_mapping) | 
|  | * | 
|  | * Attaches specified io address space mapping to the provided device. | 
|  | * This replaces the dma operations (dma_map_ops pointer) with the | 
|  | * IOMMU aware version. | 
|  | * | 
|  | * More than one client might be attached to the same io address space | 
|  | * mapping. | 
|  | */ | 
|  | int arm_iommu_attach_device(struct device *dev, | 
|  | struct dma_iommu_mapping *mapping) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | err = __arm_iommu_attach_device(dev, mapping); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | set_dma_ops(dev, &iommu_ops); | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(arm_iommu_attach_device); | 
|  |  | 
|  | static void __arm_iommu_detach_device(struct device *dev) | 
|  | { | 
|  | struct dma_iommu_mapping *mapping; | 
|  |  | 
|  | mapping = to_dma_iommu_mapping(dev); | 
|  | if (!mapping) { | 
|  | dev_warn(dev, "Not attached\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | iommu_detach_device(mapping->domain, dev); | 
|  | kref_put(&mapping->kref, release_iommu_mapping); | 
|  | to_dma_iommu_mapping(dev) = NULL; | 
|  |  | 
|  | pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * arm_iommu_detach_device | 
|  | * @dev: valid struct device pointer | 
|  | * | 
|  | * Detaches the provided device from a previously attached map. | 
|  | * This voids the dma operations (dma_map_ops pointer) | 
|  | */ | 
|  | void arm_iommu_detach_device(struct device *dev) | 
|  | { | 
|  | __arm_iommu_detach_device(dev); | 
|  | set_dma_ops(dev, NULL); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(arm_iommu_detach_device); | 
|  |  | 
|  | static const struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent) | 
|  | { | 
|  | return coherent ? &iommu_coherent_ops : &iommu_ops; | 
|  | } | 
|  |  | 
|  | static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size, | 
|  | const struct iommu_ops *iommu) | 
|  | { | 
|  | struct dma_iommu_mapping *mapping; | 
|  |  | 
|  | if (!iommu) | 
|  | return false; | 
|  |  | 
|  | mapping = arm_iommu_create_mapping(dev->bus, dma_base, size); | 
|  | if (IS_ERR(mapping)) { | 
|  | pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n", | 
|  | size, dev_name(dev)); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (__arm_iommu_attach_device(dev, mapping)) { | 
|  | pr_warn("Failed to attached device %s to IOMMU_mapping\n", | 
|  | dev_name(dev)); | 
|  | arm_iommu_release_mapping(mapping); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void arm_teardown_iommu_dma_ops(struct device *dev) | 
|  | { | 
|  | struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); | 
|  |  | 
|  | if (!mapping) | 
|  | return; | 
|  |  | 
|  | __arm_iommu_detach_device(dev); | 
|  | arm_iommu_release_mapping(mapping); | 
|  | } | 
|  |  | 
|  | #else | 
|  |  | 
|  | static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size, | 
|  | const struct iommu_ops *iommu) | 
|  | { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static void arm_teardown_iommu_dma_ops(struct device *dev) { } | 
|  |  | 
|  | #define arm_get_iommu_dma_map_ops arm_get_dma_map_ops | 
|  |  | 
|  | #endif	/* CONFIG_ARM_DMA_USE_IOMMU */ | 
|  |  | 
|  | static const struct dma_map_ops *arm_get_dma_map_ops(bool coherent) | 
|  | { | 
|  | return coherent ? &arm_coherent_dma_ops : &arm_dma_ops; | 
|  | } | 
|  |  | 
|  | void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size, | 
|  | const struct iommu_ops *iommu, bool coherent) | 
|  | { | 
|  | const struct dma_map_ops *dma_ops; | 
|  |  | 
|  | dev->archdata.dma_coherent = coherent; | 
|  |  | 
|  | /* | 
|  | * Don't override the dma_ops if they have already been set. Ideally | 
|  | * this should be the only location where dma_ops are set, remove this | 
|  | * check when all other callers of set_dma_ops will have disappeared. | 
|  | */ | 
|  | if (dev->dma_ops) | 
|  | return; | 
|  |  | 
|  | if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu)) | 
|  | dma_ops = arm_get_iommu_dma_map_ops(coherent); | 
|  | else | 
|  | dma_ops = arm_get_dma_map_ops(coherent); | 
|  |  | 
|  | set_dma_ops(dev, dma_ops); | 
|  |  | 
|  | #ifdef CONFIG_XEN | 
|  | if (xen_initial_domain()) { | 
|  | dev->archdata.dev_dma_ops = dev->dma_ops; | 
|  | dev->dma_ops = xen_dma_ops; | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void arch_teardown_dma_ops(struct device *dev) | 
|  | { | 
|  | arm_teardown_iommu_dma_ops(dev); | 
|  | } |