| // SPDX-License-Identifier: GPL-2.0 | 
 |  | 
 | #include <linux/bitops.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/bio.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/pagemap.h> | 
 | #include <linux/page-flags.h> | 
 | #include <linux/spinlock.h> | 
 | #include <linux/blkdev.h> | 
 | #include <linux/swap.h> | 
 | #include <linux/writeback.h> | 
 | #include <linux/pagevec.h> | 
 | #include <linux/prefetch.h> | 
 | #include <linux/cleancache.h> | 
 | #include <linux/fsverity.h> | 
 | #include "misc.h" | 
 | #include "extent_io.h" | 
 | #include "extent-io-tree.h" | 
 | #include "extent_map.h" | 
 | #include "ctree.h" | 
 | #include "btrfs_inode.h" | 
 | #include "volumes.h" | 
 | #include "check-integrity.h" | 
 | #include "locking.h" | 
 | #include "rcu-string.h" | 
 | #include "backref.h" | 
 | #include "disk-io.h" | 
 | #include "subpage.h" | 
 | #include "zoned.h" | 
 | #include "block-group.h" | 
 |  | 
 | static struct kmem_cache *extent_state_cache; | 
 | static struct kmem_cache *extent_buffer_cache; | 
 | static struct bio_set btrfs_bioset; | 
 |  | 
 | static inline bool extent_state_in_tree(const struct extent_state *state) | 
 | { | 
 | 	return !RB_EMPTY_NODE(&state->rb_node); | 
 | } | 
 |  | 
 | #ifdef CONFIG_BTRFS_DEBUG | 
 | static LIST_HEAD(states); | 
 | static DEFINE_SPINLOCK(leak_lock); | 
 |  | 
 | static inline void btrfs_leak_debug_add(spinlock_t *lock, | 
 | 					struct list_head *new, | 
 | 					struct list_head *head) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(lock, flags); | 
 | 	list_add(new, head); | 
 | 	spin_unlock_irqrestore(lock, flags); | 
 | } | 
 |  | 
 | static inline void btrfs_leak_debug_del(spinlock_t *lock, | 
 | 					struct list_head *entry) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(lock, flags); | 
 | 	list_del(entry); | 
 | 	spin_unlock_irqrestore(lock, flags); | 
 | } | 
 |  | 
 | void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info) | 
 | { | 
 | 	struct extent_buffer *eb; | 
 | 	unsigned long flags; | 
 |  | 
 | 	/* | 
 | 	 * If we didn't get into open_ctree our allocated_ebs will not be | 
 | 	 * initialized, so just skip this. | 
 | 	 */ | 
 | 	if (!fs_info->allocated_ebs.next) | 
 | 		return; | 
 |  | 
 | 	spin_lock_irqsave(&fs_info->eb_leak_lock, flags); | 
 | 	while (!list_empty(&fs_info->allocated_ebs)) { | 
 | 		eb = list_first_entry(&fs_info->allocated_ebs, | 
 | 				      struct extent_buffer, leak_list); | 
 | 		pr_err( | 
 | 	"BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n", | 
 | 		       eb->start, eb->len, atomic_read(&eb->refs), eb->bflags, | 
 | 		       btrfs_header_owner(eb)); | 
 | 		list_del(&eb->leak_list); | 
 | 		kmem_cache_free(extent_buffer_cache, eb); | 
 | 	} | 
 | 	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); | 
 | } | 
 |  | 
 | static inline void btrfs_extent_state_leak_debug_check(void) | 
 | { | 
 | 	struct extent_state *state; | 
 |  | 
 | 	while (!list_empty(&states)) { | 
 | 		state = list_entry(states.next, struct extent_state, leak_list); | 
 | 		pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n", | 
 | 		       state->start, state->end, state->state, | 
 | 		       extent_state_in_tree(state), | 
 | 		       refcount_read(&state->refs)); | 
 | 		list_del(&state->leak_list); | 
 | 		kmem_cache_free(extent_state_cache, state); | 
 | 	} | 
 | } | 
 |  | 
 | #define btrfs_debug_check_extent_io_range(tree, start, end)		\ | 
 | 	__btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end)) | 
 | static inline void __btrfs_debug_check_extent_io_range(const char *caller, | 
 | 		struct extent_io_tree *tree, u64 start, u64 end) | 
 | { | 
 | 	struct inode *inode = tree->private_data; | 
 | 	u64 isize; | 
 |  | 
 | 	if (!inode || !is_data_inode(inode)) | 
 | 		return; | 
 |  | 
 | 	isize = i_size_read(inode); | 
 | 	if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) { | 
 | 		btrfs_debug_rl(BTRFS_I(inode)->root->fs_info, | 
 | 		    "%s: ino %llu isize %llu odd range [%llu,%llu]", | 
 | 			caller, btrfs_ino(BTRFS_I(inode)), isize, start, end); | 
 | 	} | 
 | } | 
 | #else | 
 | #define btrfs_leak_debug_add(lock, new, head)	do {} while (0) | 
 | #define btrfs_leak_debug_del(lock, entry)	do {} while (0) | 
 | #define btrfs_extent_state_leak_debug_check()	do {} while (0) | 
 | #define btrfs_debug_check_extent_io_range(c, s, e)	do {} while (0) | 
 | #endif | 
 |  | 
 | struct tree_entry { | 
 | 	u64 start; | 
 | 	u64 end; | 
 | 	struct rb_node rb_node; | 
 | }; | 
 |  | 
 | struct extent_page_data { | 
 | 	struct btrfs_bio_ctrl bio_ctrl; | 
 | 	/* tells writepage not to lock the state bits for this range | 
 | 	 * it still does the unlocking | 
 | 	 */ | 
 | 	unsigned int extent_locked:1; | 
 |  | 
 | 	/* tells the submit_bio code to use REQ_SYNC */ | 
 | 	unsigned int sync_io:1; | 
 | }; | 
 |  | 
 | static int add_extent_changeset(struct extent_state *state, u32 bits, | 
 | 				 struct extent_changeset *changeset, | 
 | 				 int set) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	if (!changeset) | 
 | 		return 0; | 
 | 	if (set && (state->state & bits) == bits) | 
 | 		return 0; | 
 | 	if (!set && (state->state & bits) == 0) | 
 | 		return 0; | 
 | 	changeset->bytes_changed += state->end - state->start + 1; | 
 | 	ret = ulist_add(&changeset->range_changed, state->start, state->end, | 
 | 			GFP_ATOMIC); | 
 | 	return ret; | 
 | } | 
 |  | 
 | int __must_check submit_one_bio(struct bio *bio, int mirror_num, | 
 | 				unsigned long bio_flags) | 
 | { | 
 | 	blk_status_t ret = 0; | 
 | 	struct extent_io_tree *tree = bio->bi_private; | 
 |  | 
 | 	bio->bi_private = NULL; | 
 |  | 
 | 	/* Caller should ensure the bio has at least some range added */ | 
 | 	ASSERT(bio->bi_iter.bi_size); | 
 | 	if (is_data_inode(tree->private_data)) | 
 | 		ret = btrfs_submit_data_bio(tree->private_data, bio, mirror_num, | 
 | 					    bio_flags); | 
 | 	else | 
 | 		ret = btrfs_submit_metadata_bio(tree->private_data, bio, | 
 | 						mirror_num, bio_flags); | 
 |  | 
 | 	return blk_status_to_errno(ret); | 
 | } | 
 |  | 
 | /* Cleanup unsubmitted bios */ | 
 | static void end_write_bio(struct extent_page_data *epd, int ret) | 
 | { | 
 | 	struct bio *bio = epd->bio_ctrl.bio; | 
 |  | 
 | 	if (bio) { | 
 | 		bio->bi_status = errno_to_blk_status(ret); | 
 | 		bio_endio(bio); | 
 | 		epd->bio_ctrl.bio = NULL; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Submit bio from extent page data via submit_one_bio | 
 |  * | 
 |  * Return 0 if everything is OK. | 
 |  * Return <0 for error. | 
 |  */ | 
 | static int __must_check flush_write_bio(struct extent_page_data *epd) | 
 | { | 
 | 	int ret = 0; | 
 | 	struct bio *bio = epd->bio_ctrl.bio; | 
 |  | 
 | 	if (bio) { | 
 | 		ret = submit_one_bio(bio, 0, 0); | 
 | 		/* | 
 | 		 * Clean up of epd->bio is handled by its endio function. | 
 | 		 * And endio is either triggered by successful bio execution | 
 | 		 * or the error handler of submit bio hook. | 
 | 		 * So at this point, no matter what happened, we don't need | 
 | 		 * to clean up epd->bio. | 
 | 		 */ | 
 | 		epd->bio_ctrl.bio = NULL; | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | int __init extent_state_cache_init(void) | 
 | { | 
 | 	extent_state_cache = kmem_cache_create("btrfs_extent_state", | 
 | 			sizeof(struct extent_state), 0, | 
 | 			SLAB_MEM_SPREAD, NULL); | 
 | 	if (!extent_state_cache) | 
 | 		return -ENOMEM; | 
 | 	return 0; | 
 | } | 
 |  | 
 | int __init extent_io_init(void) | 
 | { | 
 | 	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer", | 
 | 			sizeof(struct extent_buffer), 0, | 
 | 			SLAB_MEM_SPREAD, NULL); | 
 | 	if (!extent_buffer_cache) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE, | 
 | 			offsetof(struct btrfs_bio, bio), | 
 | 			BIOSET_NEED_BVECS)) | 
 | 		goto free_buffer_cache; | 
 |  | 
 | 	if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE)) | 
 | 		goto free_bioset; | 
 |  | 
 | 	return 0; | 
 |  | 
 | free_bioset: | 
 | 	bioset_exit(&btrfs_bioset); | 
 |  | 
 | free_buffer_cache: | 
 | 	kmem_cache_destroy(extent_buffer_cache); | 
 | 	extent_buffer_cache = NULL; | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | void __cold extent_state_cache_exit(void) | 
 | { | 
 | 	btrfs_extent_state_leak_debug_check(); | 
 | 	kmem_cache_destroy(extent_state_cache); | 
 | } | 
 |  | 
 | void __cold extent_io_exit(void) | 
 | { | 
 | 	/* | 
 | 	 * Make sure all delayed rcu free are flushed before we | 
 | 	 * destroy caches. | 
 | 	 */ | 
 | 	rcu_barrier(); | 
 | 	kmem_cache_destroy(extent_buffer_cache); | 
 | 	bioset_exit(&btrfs_bioset); | 
 | } | 
 |  | 
 | /* | 
 |  * For the file_extent_tree, we want to hold the inode lock when we lookup and | 
 |  * update the disk_i_size, but lockdep will complain because our io_tree we hold | 
 |  * the tree lock and get the inode lock when setting delalloc.  These two things | 
 |  * are unrelated, so make a class for the file_extent_tree so we don't get the | 
 |  * two locking patterns mixed up. | 
 |  */ | 
 | static struct lock_class_key file_extent_tree_class; | 
 |  | 
 | void extent_io_tree_init(struct btrfs_fs_info *fs_info, | 
 | 			 struct extent_io_tree *tree, unsigned int owner, | 
 | 			 void *private_data) | 
 | { | 
 | 	tree->fs_info = fs_info; | 
 | 	tree->state = RB_ROOT; | 
 | 	tree->dirty_bytes = 0; | 
 | 	spin_lock_init(&tree->lock); | 
 | 	tree->private_data = private_data; | 
 | 	tree->owner = owner; | 
 | 	if (owner == IO_TREE_INODE_FILE_EXTENT) | 
 | 		lockdep_set_class(&tree->lock, &file_extent_tree_class); | 
 | } | 
 |  | 
 | void extent_io_tree_release(struct extent_io_tree *tree) | 
 | { | 
 | 	spin_lock(&tree->lock); | 
 | 	/* | 
 | 	 * Do a single barrier for the waitqueue_active check here, the state | 
 | 	 * of the waitqueue should not change once extent_io_tree_release is | 
 | 	 * called. | 
 | 	 */ | 
 | 	smp_mb(); | 
 | 	while (!RB_EMPTY_ROOT(&tree->state)) { | 
 | 		struct rb_node *node; | 
 | 		struct extent_state *state; | 
 |  | 
 | 		node = rb_first(&tree->state); | 
 | 		state = rb_entry(node, struct extent_state, rb_node); | 
 | 		rb_erase(&state->rb_node, &tree->state); | 
 | 		RB_CLEAR_NODE(&state->rb_node); | 
 | 		/* | 
 | 		 * btree io trees aren't supposed to have tasks waiting for | 
 | 		 * changes in the flags of extent states ever. | 
 | 		 */ | 
 | 		ASSERT(!waitqueue_active(&state->wq)); | 
 | 		free_extent_state(state); | 
 |  | 
 | 		cond_resched_lock(&tree->lock); | 
 | 	} | 
 | 	spin_unlock(&tree->lock); | 
 | } | 
 |  | 
 | static struct extent_state *alloc_extent_state(gfp_t mask) | 
 | { | 
 | 	struct extent_state *state; | 
 |  | 
 | 	/* | 
 | 	 * The given mask might be not appropriate for the slab allocator, | 
 | 	 * drop the unsupported bits | 
 | 	 */ | 
 | 	mask &= ~(__GFP_DMA32|__GFP_HIGHMEM); | 
 | 	state = kmem_cache_alloc(extent_state_cache, mask); | 
 | 	if (!state) | 
 | 		return state; | 
 | 	state->state = 0; | 
 | 	state->failrec = NULL; | 
 | 	RB_CLEAR_NODE(&state->rb_node); | 
 | 	btrfs_leak_debug_add(&leak_lock, &state->leak_list, &states); | 
 | 	refcount_set(&state->refs, 1); | 
 | 	init_waitqueue_head(&state->wq); | 
 | 	trace_alloc_extent_state(state, mask, _RET_IP_); | 
 | 	return state; | 
 | } | 
 |  | 
 | void free_extent_state(struct extent_state *state) | 
 | { | 
 | 	if (!state) | 
 | 		return; | 
 | 	if (refcount_dec_and_test(&state->refs)) { | 
 | 		WARN_ON(extent_state_in_tree(state)); | 
 | 		btrfs_leak_debug_del(&leak_lock, &state->leak_list); | 
 | 		trace_free_extent_state(state, _RET_IP_); | 
 | 		kmem_cache_free(extent_state_cache, state); | 
 | 	} | 
 | } | 
 |  | 
 | static struct rb_node *tree_insert(struct rb_root *root, | 
 | 				   struct rb_node *search_start, | 
 | 				   u64 offset, | 
 | 				   struct rb_node *node, | 
 | 				   struct rb_node ***p_in, | 
 | 				   struct rb_node **parent_in) | 
 | { | 
 | 	struct rb_node **p; | 
 | 	struct rb_node *parent = NULL; | 
 | 	struct tree_entry *entry; | 
 |  | 
 | 	if (p_in && parent_in) { | 
 | 		p = *p_in; | 
 | 		parent = *parent_in; | 
 | 		goto do_insert; | 
 | 	} | 
 |  | 
 | 	p = search_start ? &search_start : &root->rb_node; | 
 | 	while (*p) { | 
 | 		parent = *p; | 
 | 		entry = rb_entry(parent, struct tree_entry, rb_node); | 
 |  | 
 | 		if (offset < entry->start) | 
 | 			p = &(*p)->rb_left; | 
 | 		else if (offset > entry->end) | 
 | 			p = &(*p)->rb_right; | 
 | 		else | 
 | 			return parent; | 
 | 	} | 
 |  | 
 | do_insert: | 
 | 	rb_link_node(node, parent, p); | 
 | 	rb_insert_color(node, root); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /** | 
 |  * Search @tree for an entry that contains @offset. Such entry would have | 
 |  * entry->start <= offset && entry->end >= offset. | 
 |  * | 
 |  * @tree:       the tree to search | 
 |  * @offset:     offset that should fall within an entry in @tree | 
 |  * @next_ret:   pointer to the first entry whose range ends after @offset | 
 |  * @prev_ret:   pointer to the first entry whose range begins before @offset | 
 |  * @p_ret:      pointer where new node should be anchored (used when inserting an | 
 |  *	        entry in the tree) | 
 |  * @parent_ret: points to entry which would have been the parent of the entry, | 
 |  *               containing @offset | 
 |  * | 
 |  * This function returns a pointer to the entry that contains @offset byte | 
 |  * address. If no such entry exists, then NULL is returned and the other | 
 |  * pointer arguments to the function are filled, otherwise the found entry is | 
 |  * returned and other pointers are left untouched. | 
 |  */ | 
 | static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset, | 
 | 				      struct rb_node **next_ret, | 
 | 				      struct rb_node **prev_ret, | 
 | 				      struct rb_node ***p_ret, | 
 | 				      struct rb_node **parent_ret) | 
 | { | 
 | 	struct rb_root *root = &tree->state; | 
 | 	struct rb_node **n = &root->rb_node; | 
 | 	struct rb_node *prev = NULL; | 
 | 	struct rb_node *orig_prev = NULL; | 
 | 	struct tree_entry *entry; | 
 | 	struct tree_entry *prev_entry = NULL; | 
 |  | 
 | 	while (*n) { | 
 | 		prev = *n; | 
 | 		entry = rb_entry(prev, struct tree_entry, rb_node); | 
 | 		prev_entry = entry; | 
 |  | 
 | 		if (offset < entry->start) | 
 | 			n = &(*n)->rb_left; | 
 | 		else if (offset > entry->end) | 
 | 			n = &(*n)->rb_right; | 
 | 		else | 
 | 			return *n; | 
 | 	} | 
 |  | 
 | 	if (p_ret) | 
 | 		*p_ret = n; | 
 | 	if (parent_ret) | 
 | 		*parent_ret = prev; | 
 |  | 
 | 	if (next_ret) { | 
 | 		orig_prev = prev; | 
 | 		while (prev && offset > prev_entry->end) { | 
 | 			prev = rb_next(prev); | 
 | 			prev_entry = rb_entry(prev, struct tree_entry, rb_node); | 
 | 		} | 
 | 		*next_ret = prev; | 
 | 		prev = orig_prev; | 
 | 	} | 
 |  | 
 | 	if (prev_ret) { | 
 | 		prev_entry = rb_entry(prev, struct tree_entry, rb_node); | 
 | 		while (prev && offset < prev_entry->start) { | 
 | 			prev = rb_prev(prev); | 
 | 			prev_entry = rb_entry(prev, struct tree_entry, rb_node); | 
 | 		} | 
 | 		*prev_ret = prev; | 
 | 	} | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static inline struct rb_node * | 
 | tree_search_for_insert(struct extent_io_tree *tree, | 
 | 		       u64 offset, | 
 | 		       struct rb_node ***p_ret, | 
 | 		       struct rb_node **parent_ret) | 
 | { | 
 | 	struct rb_node *next= NULL; | 
 | 	struct rb_node *ret; | 
 |  | 
 | 	ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret); | 
 | 	if (!ret) | 
 | 		return next; | 
 | 	return ret; | 
 | } | 
 |  | 
 | static inline struct rb_node *tree_search(struct extent_io_tree *tree, | 
 | 					  u64 offset) | 
 | { | 
 | 	return tree_search_for_insert(tree, offset, NULL, NULL); | 
 | } | 
 |  | 
 | /* | 
 |  * utility function to look for merge candidates inside a given range. | 
 |  * Any extents with matching state are merged together into a single | 
 |  * extent in the tree.  Extents with EXTENT_IO in their state field | 
 |  * are not merged because the end_io handlers need to be able to do | 
 |  * operations on them without sleeping (or doing allocations/splits). | 
 |  * | 
 |  * This should be called with the tree lock held. | 
 |  */ | 
 | static void merge_state(struct extent_io_tree *tree, | 
 | 		        struct extent_state *state) | 
 | { | 
 | 	struct extent_state *other; | 
 | 	struct rb_node *other_node; | 
 |  | 
 | 	if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY)) | 
 | 		return; | 
 |  | 
 | 	other_node = rb_prev(&state->rb_node); | 
 | 	if (other_node) { | 
 | 		other = rb_entry(other_node, struct extent_state, rb_node); | 
 | 		if (other->end == state->start - 1 && | 
 | 		    other->state == state->state) { | 
 | 			if (tree->private_data && | 
 | 			    is_data_inode(tree->private_data)) | 
 | 				btrfs_merge_delalloc_extent(tree->private_data, | 
 | 							    state, other); | 
 | 			state->start = other->start; | 
 | 			rb_erase(&other->rb_node, &tree->state); | 
 | 			RB_CLEAR_NODE(&other->rb_node); | 
 | 			free_extent_state(other); | 
 | 		} | 
 | 	} | 
 | 	other_node = rb_next(&state->rb_node); | 
 | 	if (other_node) { | 
 | 		other = rb_entry(other_node, struct extent_state, rb_node); | 
 | 		if (other->start == state->end + 1 && | 
 | 		    other->state == state->state) { | 
 | 			if (tree->private_data && | 
 | 			    is_data_inode(tree->private_data)) | 
 | 				btrfs_merge_delalloc_extent(tree->private_data, | 
 | 							    state, other); | 
 | 			state->end = other->end; | 
 | 			rb_erase(&other->rb_node, &tree->state); | 
 | 			RB_CLEAR_NODE(&other->rb_node); | 
 | 			free_extent_state(other); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static void set_state_bits(struct extent_io_tree *tree, | 
 | 			   struct extent_state *state, u32 *bits, | 
 | 			   struct extent_changeset *changeset); | 
 |  | 
 | /* | 
 |  * insert an extent_state struct into the tree.  'bits' are set on the | 
 |  * struct before it is inserted. | 
 |  * | 
 |  * This may return -EEXIST if the extent is already there, in which case the | 
 |  * state struct is freed. | 
 |  * | 
 |  * The tree lock is not taken internally.  This is a utility function and | 
 |  * probably isn't what you want to call (see set/clear_extent_bit). | 
 |  */ | 
 | static int insert_state(struct extent_io_tree *tree, | 
 | 			struct extent_state *state, u64 start, u64 end, | 
 | 			struct rb_node ***p, | 
 | 			struct rb_node **parent, | 
 | 			u32 *bits, struct extent_changeset *changeset) | 
 | { | 
 | 	struct rb_node *node; | 
 |  | 
 | 	if (end < start) { | 
 | 		btrfs_err(tree->fs_info, | 
 | 			"insert state: end < start %llu %llu", end, start); | 
 | 		WARN_ON(1); | 
 | 	} | 
 | 	state->start = start; | 
 | 	state->end = end; | 
 |  | 
 | 	set_state_bits(tree, state, bits, changeset); | 
 |  | 
 | 	node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent); | 
 | 	if (node) { | 
 | 		struct extent_state *found; | 
 | 		found = rb_entry(node, struct extent_state, rb_node); | 
 | 		btrfs_err(tree->fs_info, | 
 | 		       "found node %llu %llu on insert of %llu %llu", | 
 | 		       found->start, found->end, start, end); | 
 | 		return -EEXIST; | 
 | 	} | 
 | 	merge_state(tree, state); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * split a given extent state struct in two, inserting the preallocated | 
 |  * struct 'prealloc' as the newly created second half.  'split' indicates an | 
 |  * offset inside 'orig' where it should be split. | 
 |  * | 
 |  * Before calling, | 
 |  * the tree has 'orig' at [orig->start, orig->end].  After calling, there | 
 |  * are two extent state structs in the tree: | 
 |  * prealloc: [orig->start, split - 1] | 
 |  * orig: [ split, orig->end ] | 
 |  * | 
 |  * The tree locks are not taken by this function. They need to be held | 
 |  * by the caller. | 
 |  */ | 
 | static int split_state(struct extent_io_tree *tree, struct extent_state *orig, | 
 | 		       struct extent_state *prealloc, u64 split) | 
 | { | 
 | 	struct rb_node *node; | 
 |  | 
 | 	if (tree->private_data && is_data_inode(tree->private_data)) | 
 | 		btrfs_split_delalloc_extent(tree->private_data, orig, split); | 
 |  | 
 | 	prealloc->start = orig->start; | 
 | 	prealloc->end = split - 1; | 
 | 	prealloc->state = orig->state; | 
 | 	orig->start = split; | 
 |  | 
 | 	node = tree_insert(&tree->state, &orig->rb_node, prealloc->end, | 
 | 			   &prealloc->rb_node, NULL, NULL); | 
 | 	if (node) { | 
 | 		free_extent_state(prealloc); | 
 | 		return -EEXIST; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct extent_state *next_state(struct extent_state *state) | 
 | { | 
 | 	struct rb_node *next = rb_next(&state->rb_node); | 
 | 	if (next) | 
 | 		return rb_entry(next, struct extent_state, rb_node); | 
 | 	else | 
 | 		return NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * utility function to clear some bits in an extent state struct. | 
 |  * it will optionally wake up anyone waiting on this state (wake == 1). | 
 |  * | 
 |  * If no bits are set on the state struct after clearing things, the | 
 |  * struct is freed and removed from the tree | 
 |  */ | 
 | static struct extent_state *clear_state_bit(struct extent_io_tree *tree, | 
 | 					    struct extent_state *state, | 
 | 					    u32 *bits, int wake, | 
 | 					    struct extent_changeset *changeset) | 
 | { | 
 | 	struct extent_state *next; | 
 | 	u32 bits_to_clear = *bits & ~EXTENT_CTLBITS; | 
 | 	int ret; | 
 |  | 
 | 	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) { | 
 | 		u64 range = state->end - state->start + 1; | 
 | 		WARN_ON(range > tree->dirty_bytes); | 
 | 		tree->dirty_bytes -= range; | 
 | 	} | 
 |  | 
 | 	if (tree->private_data && is_data_inode(tree->private_data)) | 
 | 		btrfs_clear_delalloc_extent(tree->private_data, state, bits); | 
 |  | 
 | 	ret = add_extent_changeset(state, bits_to_clear, changeset, 0); | 
 | 	BUG_ON(ret < 0); | 
 | 	state->state &= ~bits_to_clear; | 
 | 	if (wake) | 
 | 		wake_up(&state->wq); | 
 | 	if (state->state == 0) { | 
 | 		next = next_state(state); | 
 | 		if (extent_state_in_tree(state)) { | 
 | 			rb_erase(&state->rb_node, &tree->state); | 
 | 			RB_CLEAR_NODE(&state->rb_node); | 
 | 			free_extent_state(state); | 
 | 		} else { | 
 | 			WARN_ON(1); | 
 | 		} | 
 | 	} else { | 
 | 		merge_state(tree, state); | 
 | 		next = next_state(state); | 
 | 	} | 
 | 	return next; | 
 | } | 
 |  | 
 | static struct extent_state * | 
 | alloc_extent_state_atomic(struct extent_state *prealloc) | 
 | { | 
 | 	if (!prealloc) | 
 | 		prealloc = alloc_extent_state(GFP_ATOMIC); | 
 |  | 
 | 	return prealloc; | 
 | } | 
 |  | 
 | static void extent_io_tree_panic(struct extent_io_tree *tree, int err) | 
 | { | 
 | 	btrfs_panic(tree->fs_info, err, | 
 | 	"locking error: extent tree was modified by another thread while locked"); | 
 | } | 
 |  | 
 | /* | 
 |  * clear some bits on a range in the tree.  This may require splitting | 
 |  * or inserting elements in the tree, so the gfp mask is used to | 
 |  * indicate which allocations or sleeping are allowed. | 
 |  * | 
 |  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove | 
 |  * the given range from the tree regardless of state (ie for truncate). | 
 |  * | 
 |  * the range [start, end] is inclusive. | 
 |  * | 
 |  * This takes the tree lock, and returns 0 on success and < 0 on error. | 
 |  */ | 
 | int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, | 
 | 		       u32 bits, int wake, int delete, | 
 | 		       struct extent_state **cached_state, | 
 | 		       gfp_t mask, struct extent_changeset *changeset) | 
 | { | 
 | 	struct extent_state *state; | 
 | 	struct extent_state *cached; | 
 | 	struct extent_state *prealloc = NULL; | 
 | 	struct rb_node *node; | 
 | 	u64 last_end; | 
 | 	int err; | 
 | 	int clear = 0; | 
 |  | 
 | 	btrfs_debug_check_extent_io_range(tree, start, end); | 
 | 	trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits); | 
 |  | 
 | 	if (bits & EXTENT_DELALLOC) | 
 | 		bits |= EXTENT_NORESERVE; | 
 |  | 
 | 	if (delete) | 
 | 		bits |= ~EXTENT_CTLBITS; | 
 |  | 
 | 	if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY)) | 
 | 		clear = 1; | 
 | again: | 
 | 	if (!prealloc && gfpflags_allow_blocking(mask)) { | 
 | 		/* | 
 | 		 * Don't care for allocation failure here because we might end | 
 | 		 * up not needing the pre-allocated extent state at all, which | 
 | 		 * is the case if we only have in the tree extent states that | 
 | 		 * cover our input range and don't cover too any other range. | 
 | 		 * If we end up needing a new extent state we allocate it later. | 
 | 		 */ | 
 | 		prealloc = alloc_extent_state(mask); | 
 | 	} | 
 |  | 
 | 	spin_lock(&tree->lock); | 
 | 	if (cached_state) { | 
 | 		cached = *cached_state; | 
 |  | 
 | 		if (clear) { | 
 | 			*cached_state = NULL; | 
 | 			cached_state = NULL; | 
 | 		} | 
 |  | 
 | 		if (cached && extent_state_in_tree(cached) && | 
 | 		    cached->start <= start && cached->end > start) { | 
 | 			if (clear) | 
 | 				refcount_dec(&cached->refs); | 
 | 			state = cached; | 
 | 			goto hit_next; | 
 | 		} | 
 | 		if (clear) | 
 | 			free_extent_state(cached); | 
 | 	} | 
 | 	/* | 
 | 	 * this search will find the extents that end after | 
 | 	 * our range starts | 
 | 	 */ | 
 | 	node = tree_search(tree, start); | 
 | 	if (!node) | 
 | 		goto out; | 
 | 	state = rb_entry(node, struct extent_state, rb_node); | 
 | hit_next: | 
 | 	if (state->start > end) | 
 | 		goto out; | 
 | 	WARN_ON(state->end < start); | 
 | 	last_end = state->end; | 
 |  | 
 | 	/* the state doesn't have the wanted bits, go ahead */ | 
 | 	if (!(state->state & bits)) { | 
 | 		state = next_state(state); | 
 | 		goto next; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 *     | ---- desired range ---- | | 
 | 	 *  | state | or | 
 | 	 *  | ------------- state -------------- | | 
 | 	 * | 
 | 	 * We need to split the extent we found, and may flip | 
 | 	 * bits on second half. | 
 | 	 * | 
 | 	 * If the extent we found extends past our range, we | 
 | 	 * just split and search again.  It'll get split again | 
 | 	 * the next time though. | 
 | 	 * | 
 | 	 * If the extent we found is inside our range, we clear | 
 | 	 * the desired bit on it. | 
 | 	 */ | 
 |  | 
 | 	if (state->start < start) { | 
 | 		prealloc = alloc_extent_state_atomic(prealloc); | 
 | 		BUG_ON(!prealloc); | 
 | 		err = split_state(tree, state, prealloc, start); | 
 | 		if (err) | 
 | 			extent_io_tree_panic(tree, err); | 
 |  | 
 | 		prealloc = NULL; | 
 | 		if (err) | 
 | 			goto out; | 
 | 		if (state->end <= end) { | 
 | 			state = clear_state_bit(tree, state, &bits, wake, | 
 | 						changeset); | 
 | 			goto next; | 
 | 		} | 
 | 		goto search_again; | 
 | 	} | 
 | 	/* | 
 | 	 * | ---- desired range ---- | | 
 | 	 *                        | state | | 
 | 	 * We need to split the extent, and clear the bit | 
 | 	 * on the first half | 
 | 	 */ | 
 | 	if (state->start <= end && state->end > end) { | 
 | 		prealloc = alloc_extent_state_atomic(prealloc); | 
 | 		BUG_ON(!prealloc); | 
 | 		err = split_state(tree, state, prealloc, end + 1); | 
 | 		if (err) | 
 | 			extent_io_tree_panic(tree, err); | 
 |  | 
 | 		if (wake) | 
 | 			wake_up(&state->wq); | 
 |  | 
 | 		clear_state_bit(tree, prealloc, &bits, wake, changeset); | 
 |  | 
 | 		prealloc = NULL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	state = clear_state_bit(tree, state, &bits, wake, changeset); | 
 | next: | 
 | 	if (last_end == (u64)-1) | 
 | 		goto out; | 
 | 	start = last_end + 1; | 
 | 	if (start <= end && state && !need_resched()) | 
 | 		goto hit_next; | 
 |  | 
 | search_again: | 
 | 	if (start > end) | 
 | 		goto out; | 
 | 	spin_unlock(&tree->lock); | 
 | 	if (gfpflags_allow_blocking(mask)) | 
 | 		cond_resched(); | 
 | 	goto again; | 
 |  | 
 | out: | 
 | 	spin_unlock(&tree->lock); | 
 | 	if (prealloc) | 
 | 		free_extent_state(prealloc); | 
 |  | 
 | 	return 0; | 
 |  | 
 | } | 
 |  | 
 | static void wait_on_state(struct extent_io_tree *tree, | 
 | 			  struct extent_state *state) | 
 | 		__releases(tree->lock) | 
 | 		__acquires(tree->lock) | 
 | { | 
 | 	DEFINE_WAIT(wait); | 
 | 	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE); | 
 | 	spin_unlock(&tree->lock); | 
 | 	schedule(); | 
 | 	spin_lock(&tree->lock); | 
 | 	finish_wait(&state->wq, &wait); | 
 | } | 
 |  | 
 | /* | 
 |  * waits for one or more bits to clear on a range in the state tree. | 
 |  * The range [start, end] is inclusive. | 
 |  * The tree lock is taken by this function | 
 |  */ | 
 | static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, | 
 | 			    u32 bits) | 
 | { | 
 | 	struct extent_state *state; | 
 | 	struct rb_node *node; | 
 |  | 
 | 	btrfs_debug_check_extent_io_range(tree, start, end); | 
 |  | 
 | 	spin_lock(&tree->lock); | 
 | again: | 
 | 	while (1) { | 
 | 		/* | 
 | 		 * this search will find all the extents that end after | 
 | 		 * our range starts | 
 | 		 */ | 
 | 		node = tree_search(tree, start); | 
 | process_node: | 
 | 		if (!node) | 
 | 			break; | 
 |  | 
 | 		state = rb_entry(node, struct extent_state, rb_node); | 
 |  | 
 | 		if (state->start > end) | 
 | 			goto out; | 
 |  | 
 | 		if (state->state & bits) { | 
 | 			start = state->start; | 
 | 			refcount_inc(&state->refs); | 
 | 			wait_on_state(tree, state); | 
 | 			free_extent_state(state); | 
 | 			goto again; | 
 | 		} | 
 | 		start = state->end + 1; | 
 |  | 
 | 		if (start > end) | 
 | 			break; | 
 |  | 
 | 		if (!cond_resched_lock(&tree->lock)) { | 
 | 			node = rb_next(node); | 
 | 			goto process_node; | 
 | 		} | 
 | 	} | 
 | out: | 
 | 	spin_unlock(&tree->lock); | 
 | } | 
 |  | 
 | static void set_state_bits(struct extent_io_tree *tree, | 
 | 			   struct extent_state *state, | 
 | 			   u32 *bits, struct extent_changeset *changeset) | 
 | { | 
 | 	u32 bits_to_set = *bits & ~EXTENT_CTLBITS; | 
 | 	int ret; | 
 |  | 
 | 	if (tree->private_data && is_data_inode(tree->private_data)) | 
 | 		btrfs_set_delalloc_extent(tree->private_data, state, bits); | 
 |  | 
 | 	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) { | 
 | 		u64 range = state->end - state->start + 1; | 
 | 		tree->dirty_bytes += range; | 
 | 	} | 
 | 	ret = add_extent_changeset(state, bits_to_set, changeset, 1); | 
 | 	BUG_ON(ret < 0); | 
 | 	state->state |= bits_to_set; | 
 | } | 
 |  | 
 | static void cache_state_if_flags(struct extent_state *state, | 
 | 				 struct extent_state **cached_ptr, | 
 | 				 unsigned flags) | 
 | { | 
 | 	if (cached_ptr && !(*cached_ptr)) { | 
 | 		if (!flags || (state->state & flags)) { | 
 | 			*cached_ptr = state; | 
 | 			refcount_inc(&state->refs); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static void cache_state(struct extent_state *state, | 
 | 			struct extent_state **cached_ptr) | 
 | { | 
 | 	return cache_state_if_flags(state, cached_ptr, | 
 | 				    EXTENT_LOCKED | EXTENT_BOUNDARY); | 
 | } | 
 |  | 
 | /* | 
 |  * set some bits on a range in the tree.  This may require allocations or | 
 |  * sleeping, so the gfp mask is used to indicate what is allowed. | 
 |  * | 
 |  * If any of the exclusive bits are set, this will fail with -EEXIST if some | 
 |  * part of the range already has the desired bits set.  The start of the | 
 |  * existing range is returned in failed_start in this case. | 
 |  * | 
 |  * [start, end] is inclusive This takes the tree lock. | 
 |  */ | 
 | int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, u32 bits, | 
 | 		   u32 exclusive_bits, u64 *failed_start, | 
 | 		   struct extent_state **cached_state, gfp_t mask, | 
 | 		   struct extent_changeset *changeset) | 
 | { | 
 | 	struct extent_state *state; | 
 | 	struct extent_state *prealloc = NULL; | 
 | 	struct rb_node *node; | 
 | 	struct rb_node **p; | 
 | 	struct rb_node *parent; | 
 | 	int err = 0; | 
 | 	u64 last_start; | 
 | 	u64 last_end; | 
 |  | 
 | 	btrfs_debug_check_extent_io_range(tree, start, end); | 
 | 	trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits); | 
 |  | 
 | 	if (exclusive_bits) | 
 | 		ASSERT(failed_start); | 
 | 	else | 
 | 		ASSERT(failed_start == NULL); | 
 | again: | 
 | 	if (!prealloc && gfpflags_allow_blocking(mask)) { | 
 | 		/* | 
 | 		 * Don't care for allocation failure here because we might end | 
 | 		 * up not needing the pre-allocated extent state at all, which | 
 | 		 * is the case if we only have in the tree extent states that | 
 | 		 * cover our input range and don't cover too any other range. | 
 | 		 * If we end up needing a new extent state we allocate it later. | 
 | 		 */ | 
 | 		prealloc = alloc_extent_state(mask); | 
 | 	} | 
 |  | 
 | 	spin_lock(&tree->lock); | 
 | 	if (cached_state && *cached_state) { | 
 | 		state = *cached_state; | 
 | 		if (state->start <= start && state->end > start && | 
 | 		    extent_state_in_tree(state)) { | 
 | 			node = &state->rb_node; | 
 | 			goto hit_next; | 
 | 		} | 
 | 	} | 
 | 	/* | 
 | 	 * this search will find all the extents that end after | 
 | 	 * our range starts. | 
 | 	 */ | 
 | 	node = tree_search_for_insert(tree, start, &p, &parent); | 
 | 	if (!node) { | 
 | 		prealloc = alloc_extent_state_atomic(prealloc); | 
 | 		BUG_ON(!prealloc); | 
 | 		err = insert_state(tree, prealloc, start, end, | 
 | 				   &p, &parent, &bits, changeset); | 
 | 		if (err) | 
 | 			extent_io_tree_panic(tree, err); | 
 |  | 
 | 		cache_state(prealloc, cached_state); | 
 | 		prealloc = NULL; | 
 | 		goto out; | 
 | 	} | 
 | 	state = rb_entry(node, struct extent_state, rb_node); | 
 | hit_next: | 
 | 	last_start = state->start; | 
 | 	last_end = state->end; | 
 |  | 
 | 	/* | 
 | 	 * | ---- desired range ---- | | 
 | 	 * | state | | 
 | 	 * | 
 | 	 * Just lock what we found and keep going | 
 | 	 */ | 
 | 	if (state->start == start && state->end <= end) { | 
 | 		if (state->state & exclusive_bits) { | 
 | 			*failed_start = state->start; | 
 | 			err = -EEXIST; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		set_state_bits(tree, state, &bits, changeset); | 
 | 		cache_state(state, cached_state); | 
 | 		merge_state(tree, state); | 
 | 		if (last_end == (u64)-1) | 
 | 			goto out; | 
 | 		start = last_end + 1; | 
 | 		state = next_state(state); | 
 | 		if (start < end && state && state->start == start && | 
 | 		    !need_resched()) | 
 | 			goto hit_next; | 
 | 		goto search_again; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 *     | ---- desired range ---- | | 
 | 	 * | state | | 
 | 	 *   or | 
 | 	 * | ------------- state -------------- | | 
 | 	 * | 
 | 	 * We need to split the extent we found, and may flip bits on | 
 | 	 * second half. | 
 | 	 * | 
 | 	 * If the extent we found extends past our | 
 | 	 * range, we just split and search again.  It'll get split | 
 | 	 * again the next time though. | 
 | 	 * | 
 | 	 * If the extent we found is inside our range, we set the | 
 | 	 * desired bit on it. | 
 | 	 */ | 
 | 	if (state->start < start) { | 
 | 		if (state->state & exclusive_bits) { | 
 | 			*failed_start = start; | 
 | 			err = -EEXIST; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * If this extent already has all the bits we want set, then | 
 | 		 * skip it, not necessary to split it or do anything with it. | 
 | 		 */ | 
 | 		if ((state->state & bits) == bits) { | 
 | 			start = state->end + 1; | 
 | 			cache_state(state, cached_state); | 
 | 			goto search_again; | 
 | 		} | 
 |  | 
 | 		prealloc = alloc_extent_state_atomic(prealloc); | 
 | 		BUG_ON(!prealloc); | 
 | 		err = split_state(tree, state, prealloc, start); | 
 | 		if (err) | 
 | 			extent_io_tree_panic(tree, err); | 
 |  | 
 | 		prealloc = NULL; | 
 | 		if (err) | 
 | 			goto out; | 
 | 		if (state->end <= end) { | 
 | 			set_state_bits(tree, state, &bits, changeset); | 
 | 			cache_state(state, cached_state); | 
 | 			merge_state(tree, state); | 
 | 			if (last_end == (u64)-1) | 
 | 				goto out; | 
 | 			start = last_end + 1; | 
 | 			state = next_state(state); | 
 | 			if (start < end && state && state->start == start && | 
 | 			    !need_resched()) | 
 | 				goto hit_next; | 
 | 		} | 
 | 		goto search_again; | 
 | 	} | 
 | 	/* | 
 | 	 * | ---- desired range ---- | | 
 | 	 *     | state | or               | state | | 
 | 	 * | 
 | 	 * There's a hole, we need to insert something in it and | 
 | 	 * ignore the extent we found. | 
 | 	 */ | 
 | 	if (state->start > start) { | 
 | 		u64 this_end; | 
 | 		if (end < last_start) | 
 | 			this_end = end; | 
 | 		else | 
 | 			this_end = last_start - 1; | 
 |  | 
 | 		prealloc = alloc_extent_state_atomic(prealloc); | 
 | 		BUG_ON(!prealloc); | 
 |  | 
 | 		/* | 
 | 		 * Avoid to free 'prealloc' if it can be merged with | 
 | 		 * the later extent. | 
 | 		 */ | 
 | 		err = insert_state(tree, prealloc, start, this_end, | 
 | 				   NULL, NULL, &bits, changeset); | 
 | 		if (err) | 
 | 			extent_io_tree_panic(tree, err); | 
 |  | 
 | 		cache_state(prealloc, cached_state); | 
 | 		prealloc = NULL; | 
 | 		start = this_end + 1; | 
 | 		goto search_again; | 
 | 	} | 
 | 	/* | 
 | 	 * | ---- desired range ---- | | 
 | 	 *                        | state | | 
 | 	 * We need to split the extent, and set the bit | 
 | 	 * on the first half | 
 | 	 */ | 
 | 	if (state->start <= end && state->end > end) { | 
 | 		if (state->state & exclusive_bits) { | 
 | 			*failed_start = start; | 
 | 			err = -EEXIST; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		prealloc = alloc_extent_state_atomic(prealloc); | 
 | 		BUG_ON(!prealloc); | 
 | 		err = split_state(tree, state, prealloc, end + 1); | 
 | 		if (err) | 
 | 			extent_io_tree_panic(tree, err); | 
 |  | 
 | 		set_state_bits(tree, prealloc, &bits, changeset); | 
 | 		cache_state(prealloc, cached_state); | 
 | 		merge_state(tree, prealloc); | 
 | 		prealloc = NULL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | search_again: | 
 | 	if (start > end) | 
 | 		goto out; | 
 | 	spin_unlock(&tree->lock); | 
 | 	if (gfpflags_allow_blocking(mask)) | 
 | 		cond_resched(); | 
 | 	goto again; | 
 |  | 
 | out: | 
 | 	spin_unlock(&tree->lock); | 
 | 	if (prealloc) | 
 | 		free_extent_state(prealloc); | 
 |  | 
 | 	return err; | 
 |  | 
 | } | 
 |  | 
 | /** | 
 |  * convert_extent_bit - convert all bits in a given range from one bit to | 
 |  * 			another | 
 |  * @tree:	the io tree to search | 
 |  * @start:	the start offset in bytes | 
 |  * @end:	the end offset in bytes (inclusive) | 
 |  * @bits:	the bits to set in this range | 
 |  * @clear_bits:	the bits to clear in this range | 
 |  * @cached_state:	state that we're going to cache | 
 |  * | 
 |  * This will go through and set bits for the given range.  If any states exist | 
 |  * already in this range they are set with the given bit and cleared of the | 
 |  * clear_bits.  This is only meant to be used by things that are mergeable, ie | 
 |  * converting from say DELALLOC to DIRTY.  This is not meant to be used with | 
 |  * boundary bits like LOCK. | 
 |  * | 
 |  * All allocations are done with GFP_NOFS. | 
 |  */ | 
 | int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, | 
 | 		       u32 bits, u32 clear_bits, | 
 | 		       struct extent_state **cached_state) | 
 | { | 
 | 	struct extent_state *state; | 
 | 	struct extent_state *prealloc = NULL; | 
 | 	struct rb_node *node; | 
 | 	struct rb_node **p; | 
 | 	struct rb_node *parent; | 
 | 	int err = 0; | 
 | 	u64 last_start; | 
 | 	u64 last_end; | 
 | 	bool first_iteration = true; | 
 |  | 
 | 	btrfs_debug_check_extent_io_range(tree, start, end); | 
 | 	trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits, | 
 | 				       clear_bits); | 
 |  | 
 | again: | 
 | 	if (!prealloc) { | 
 | 		/* | 
 | 		 * Best effort, don't worry if extent state allocation fails | 
 | 		 * here for the first iteration. We might have a cached state | 
 | 		 * that matches exactly the target range, in which case no | 
 | 		 * extent state allocations are needed. We'll only know this | 
 | 		 * after locking the tree. | 
 | 		 */ | 
 | 		prealloc = alloc_extent_state(GFP_NOFS); | 
 | 		if (!prealloc && !first_iteration) | 
 | 			return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	spin_lock(&tree->lock); | 
 | 	if (cached_state && *cached_state) { | 
 | 		state = *cached_state; | 
 | 		if (state->start <= start && state->end > start && | 
 | 		    extent_state_in_tree(state)) { | 
 | 			node = &state->rb_node; | 
 | 			goto hit_next; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * this search will find all the extents that end after | 
 | 	 * our range starts. | 
 | 	 */ | 
 | 	node = tree_search_for_insert(tree, start, &p, &parent); | 
 | 	if (!node) { | 
 | 		prealloc = alloc_extent_state_atomic(prealloc); | 
 | 		if (!prealloc) { | 
 | 			err = -ENOMEM; | 
 | 			goto out; | 
 | 		} | 
 | 		err = insert_state(tree, prealloc, start, end, | 
 | 				   &p, &parent, &bits, NULL); | 
 | 		if (err) | 
 | 			extent_io_tree_panic(tree, err); | 
 | 		cache_state(prealloc, cached_state); | 
 | 		prealloc = NULL; | 
 | 		goto out; | 
 | 	} | 
 | 	state = rb_entry(node, struct extent_state, rb_node); | 
 | hit_next: | 
 | 	last_start = state->start; | 
 | 	last_end = state->end; | 
 |  | 
 | 	/* | 
 | 	 * | ---- desired range ---- | | 
 | 	 * | state | | 
 | 	 * | 
 | 	 * Just lock what we found and keep going | 
 | 	 */ | 
 | 	if (state->start == start && state->end <= end) { | 
 | 		set_state_bits(tree, state, &bits, NULL); | 
 | 		cache_state(state, cached_state); | 
 | 		state = clear_state_bit(tree, state, &clear_bits, 0, NULL); | 
 | 		if (last_end == (u64)-1) | 
 | 			goto out; | 
 | 		start = last_end + 1; | 
 | 		if (start < end && state && state->start == start && | 
 | 		    !need_resched()) | 
 | 			goto hit_next; | 
 | 		goto search_again; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 *     | ---- desired range ---- | | 
 | 	 * | state | | 
 | 	 *   or | 
 | 	 * | ------------- state -------------- | | 
 | 	 * | 
 | 	 * We need to split the extent we found, and may flip bits on | 
 | 	 * second half. | 
 | 	 * | 
 | 	 * If the extent we found extends past our | 
 | 	 * range, we just split and search again.  It'll get split | 
 | 	 * again the next time though. | 
 | 	 * | 
 | 	 * If the extent we found is inside our range, we set the | 
 | 	 * desired bit on it. | 
 | 	 */ | 
 | 	if (state->start < start) { | 
 | 		prealloc = alloc_extent_state_atomic(prealloc); | 
 | 		if (!prealloc) { | 
 | 			err = -ENOMEM; | 
 | 			goto out; | 
 | 		} | 
 | 		err = split_state(tree, state, prealloc, start); | 
 | 		if (err) | 
 | 			extent_io_tree_panic(tree, err); | 
 | 		prealloc = NULL; | 
 | 		if (err) | 
 | 			goto out; | 
 | 		if (state->end <= end) { | 
 | 			set_state_bits(tree, state, &bits, NULL); | 
 | 			cache_state(state, cached_state); | 
 | 			state = clear_state_bit(tree, state, &clear_bits, 0, | 
 | 						NULL); | 
 | 			if (last_end == (u64)-1) | 
 | 				goto out; | 
 | 			start = last_end + 1; | 
 | 			if (start < end && state && state->start == start && | 
 | 			    !need_resched()) | 
 | 				goto hit_next; | 
 | 		} | 
 | 		goto search_again; | 
 | 	} | 
 | 	/* | 
 | 	 * | ---- desired range ---- | | 
 | 	 *     | state | or               | state | | 
 | 	 * | 
 | 	 * There's a hole, we need to insert something in it and | 
 | 	 * ignore the extent we found. | 
 | 	 */ | 
 | 	if (state->start > start) { | 
 | 		u64 this_end; | 
 | 		if (end < last_start) | 
 | 			this_end = end; | 
 | 		else | 
 | 			this_end = last_start - 1; | 
 |  | 
 | 		prealloc = alloc_extent_state_atomic(prealloc); | 
 | 		if (!prealloc) { | 
 | 			err = -ENOMEM; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Avoid to free 'prealloc' if it can be merged with | 
 | 		 * the later extent. | 
 | 		 */ | 
 | 		err = insert_state(tree, prealloc, start, this_end, | 
 | 				   NULL, NULL, &bits, NULL); | 
 | 		if (err) | 
 | 			extent_io_tree_panic(tree, err); | 
 | 		cache_state(prealloc, cached_state); | 
 | 		prealloc = NULL; | 
 | 		start = this_end + 1; | 
 | 		goto search_again; | 
 | 	} | 
 | 	/* | 
 | 	 * | ---- desired range ---- | | 
 | 	 *                        | state | | 
 | 	 * We need to split the extent, and set the bit | 
 | 	 * on the first half | 
 | 	 */ | 
 | 	if (state->start <= end && state->end > end) { | 
 | 		prealloc = alloc_extent_state_atomic(prealloc); | 
 | 		if (!prealloc) { | 
 | 			err = -ENOMEM; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		err = split_state(tree, state, prealloc, end + 1); | 
 | 		if (err) | 
 | 			extent_io_tree_panic(tree, err); | 
 |  | 
 | 		set_state_bits(tree, prealloc, &bits, NULL); | 
 | 		cache_state(prealloc, cached_state); | 
 | 		clear_state_bit(tree, prealloc, &clear_bits, 0, NULL); | 
 | 		prealloc = NULL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | search_again: | 
 | 	if (start > end) | 
 | 		goto out; | 
 | 	spin_unlock(&tree->lock); | 
 | 	cond_resched(); | 
 | 	first_iteration = false; | 
 | 	goto again; | 
 |  | 
 | out: | 
 | 	spin_unlock(&tree->lock); | 
 | 	if (prealloc) | 
 | 		free_extent_state(prealloc); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | /* wrappers around set/clear extent bit */ | 
 | int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, | 
 | 			   u32 bits, struct extent_changeset *changeset) | 
 | { | 
 | 	/* | 
 | 	 * We don't support EXTENT_LOCKED yet, as current changeset will | 
 | 	 * record any bits changed, so for EXTENT_LOCKED case, it will | 
 | 	 * either fail with -EEXIST or changeset will record the whole | 
 | 	 * range. | 
 | 	 */ | 
 | 	BUG_ON(bits & EXTENT_LOCKED); | 
 |  | 
 | 	return set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS, | 
 | 			      changeset); | 
 | } | 
 |  | 
 | int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end, | 
 | 			   u32 bits) | 
 | { | 
 | 	return set_extent_bit(tree, start, end, bits, 0, NULL, NULL, | 
 | 			      GFP_NOWAIT, NULL); | 
 | } | 
 |  | 
 | int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, | 
 | 		     u32 bits, int wake, int delete, | 
 | 		     struct extent_state **cached) | 
 | { | 
 | 	return __clear_extent_bit(tree, start, end, bits, wake, delete, | 
 | 				  cached, GFP_NOFS, NULL); | 
 | } | 
 |  | 
 | int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, | 
 | 		u32 bits, struct extent_changeset *changeset) | 
 | { | 
 | 	/* | 
 | 	 * Don't support EXTENT_LOCKED case, same reason as | 
 | 	 * set_record_extent_bits(). | 
 | 	 */ | 
 | 	BUG_ON(bits & EXTENT_LOCKED); | 
 |  | 
 | 	return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS, | 
 | 				  changeset); | 
 | } | 
 |  | 
 | /* | 
 |  * either insert or lock state struct between start and end use mask to tell | 
 |  * us if waiting is desired. | 
 |  */ | 
 | int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, | 
 | 		     struct extent_state **cached_state) | 
 | { | 
 | 	int err; | 
 | 	u64 failed_start; | 
 |  | 
 | 	while (1) { | 
 | 		err = set_extent_bit(tree, start, end, EXTENT_LOCKED, | 
 | 				     EXTENT_LOCKED, &failed_start, | 
 | 				     cached_state, GFP_NOFS, NULL); | 
 | 		if (err == -EEXIST) { | 
 | 			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED); | 
 | 			start = failed_start; | 
 | 		} else | 
 | 			break; | 
 | 		WARN_ON(start > end); | 
 | 	} | 
 | 	return err; | 
 | } | 
 |  | 
 | int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end) | 
 | { | 
 | 	int err; | 
 | 	u64 failed_start; | 
 |  | 
 | 	err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED, | 
 | 			     &failed_start, NULL, GFP_NOFS, NULL); | 
 | 	if (err == -EEXIST) { | 
 | 		if (failed_start > start) | 
 | 			clear_extent_bit(tree, start, failed_start - 1, | 
 | 					 EXTENT_LOCKED, 1, 0, NULL); | 
 | 		return 0; | 
 | 	} | 
 | 	return 1; | 
 | } | 
 |  | 
 | void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end) | 
 | { | 
 | 	unsigned long index = start >> PAGE_SHIFT; | 
 | 	unsigned long end_index = end >> PAGE_SHIFT; | 
 | 	struct page *page; | 
 |  | 
 | 	while (index <= end_index) { | 
 | 		page = find_get_page(inode->i_mapping, index); | 
 | 		BUG_ON(!page); /* Pages should be in the extent_io_tree */ | 
 | 		clear_page_dirty_for_io(page); | 
 | 		put_page(page); | 
 | 		index++; | 
 | 	} | 
 | } | 
 |  | 
 | void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end) | 
 | { | 
 | 	unsigned long index = start >> PAGE_SHIFT; | 
 | 	unsigned long end_index = end >> PAGE_SHIFT; | 
 | 	struct page *page; | 
 |  | 
 | 	while (index <= end_index) { | 
 | 		page = find_get_page(inode->i_mapping, index); | 
 | 		BUG_ON(!page); /* Pages should be in the extent_io_tree */ | 
 | 		__set_page_dirty_nobuffers(page); | 
 | 		account_page_redirty(page); | 
 | 		put_page(page); | 
 | 		index++; | 
 | 	} | 
 | } | 
 |  | 
 | /* find the first state struct with 'bits' set after 'start', and | 
 |  * return it.  tree->lock must be held.  NULL will returned if | 
 |  * nothing was found after 'start' | 
 |  */ | 
 | static struct extent_state * | 
 | find_first_extent_bit_state(struct extent_io_tree *tree, u64 start, u32 bits) | 
 | { | 
 | 	struct rb_node *node; | 
 | 	struct extent_state *state; | 
 |  | 
 | 	/* | 
 | 	 * this search will find all the extents that end after | 
 | 	 * our range starts. | 
 | 	 */ | 
 | 	node = tree_search(tree, start); | 
 | 	if (!node) | 
 | 		goto out; | 
 |  | 
 | 	while (1) { | 
 | 		state = rb_entry(node, struct extent_state, rb_node); | 
 | 		if (state->end >= start && (state->state & bits)) | 
 | 			return state; | 
 |  | 
 | 		node = rb_next(node); | 
 | 		if (!node) | 
 | 			break; | 
 | 	} | 
 | out: | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * Find the first offset in the io tree with one or more @bits set. | 
 |  * | 
 |  * Note: If there are multiple bits set in @bits, any of them will match. | 
 |  * | 
 |  * Return 0 if we find something, and update @start_ret and @end_ret. | 
 |  * Return 1 if we found nothing. | 
 |  */ | 
 | int find_first_extent_bit(struct extent_io_tree *tree, u64 start, | 
 | 			  u64 *start_ret, u64 *end_ret, u32 bits, | 
 | 			  struct extent_state **cached_state) | 
 | { | 
 | 	struct extent_state *state; | 
 | 	int ret = 1; | 
 |  | 
 | 	spin_lock(&tree->lock); | 
 | 	if (cached_state && *cached_state) { | 
 | 		state = *cached_state; | 
 | 		if (state->end == start - 1 && extent_state_in_tree(state)) { | 
 | 			while ((state = next_state(state)) != NULL) { | 
 | 				if (state->state & bits) | 
 | 					goto got_it; | 
 | 			} | 
 | 			free_extent_state(*cached_state); | 
 | 			*cached_state = NULL; | 
 | 			goto out; | 
 | 		} | 
 | 		free_extent_state(*cached_state); | 
 | 		*cached_state = NULL; | 
 | 	} | 
 |  | 
 | 	state = find_first_extent_bit_state(tree, start, bits); | 
 | got_it: | 
 | 	if (state) { | 
 | 		cache_state_if_flags(state, cached_state, 0); | 
 | 		*start_ret = state->start; | 
 | 		*end_ret = state->end; | 
 | 		ret = 0; | 
 | 	} | 
 | out: | 
 | 	spin_unlock(&tree->lock); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * Find a contiguous area of bits | 
 |  * | 
 |  * @tree:      io tree to check | 
 |  * @start:     offset to start the search from | 
 |  * @start_ret: the first offset we found with the bits set | 
 |  * @end_ret:   the final contiguous range of the bits that were set | 
 |  * @bits:      bits to look for | 
 |  * | 
 |  * set_extent_bit and clear_extent_bit can temporarily split contiguous ranges | 
 |  * to set bits appropriately, and then merge them again.  During this time it | 
 |  * will drop the tree->lock, so use this helper if you want to find the actual | 
 |  * contiguous area for given bits.  We will search to the first bit we find, and | 
 |  * then walk down the tree until we find a non-contiguous area.  The area | 
 |  * returned will be the full contiguous area with the bits set. | 
 |  */ | 
 | int find_contiguous_extent_bit(struct extent_io_tree *tree, u64 start, | 
 | 			       u64 *start_ret, u64 *end_ret, u32 bits) | 
 | { | 
 | 	struct extent_state *state; | 
 | 	int ret = 1; | 
 |  | 
 | 	spin_lock(&tree->lock); | 
 | 	state = find_first_extent_bit_state(tree, start, bits); | 
 | 	if (state) { | 
 | 		*start_ret = state->start; | 
 | 		*end_ret = state->end; | 
 | 		while ((state = next_state(state)) != NULL) { | 
 | 			if (state->start > (*end_ret + 1)) | 
 | 				break; | 
 | 			*end_ret = state->end; | 
 | 		} | 
 | 		ret = 0; | 
 | 	} | 
 | 	spin_unlock(&tree->lock); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * Find the first range that has @bits not set. This range could start before | 
 |  * @start. | 
 |  * | 
 |  * @tree:      the tree to search | 
 |  * @start:     offset at/after which the found extent should start | 
 |  * @start_ret: records the beginning of the range | 
 |  * @end_ret:   records the end of the range (inclusive) | 
 |  * @bits:      the set of bits which must be unset | 
 |  * | 
 |  * Since unallocated range is also considered one which doesn't have the bits | 
 |  * set it's possible that @end_ret contains -1, this happens in case the range | 
 |  * spans (last_range_end, end of device]. In this case it's up to the caller to | 
 |  * trim @end_ret to the appropriate size. | 
 |  */ | 
 | void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start, | 
 | 				 u64 *start_ret, u64 *end_ret, u32 bits) | 
 | { | 
 | 	struct extent_state *state; | 
 | 	struct rb_node *node, *prev = NULL, *next; | 
 |  | 
 | 	spin_lock(&tree->lock); | 
 |  | 
 | 	/* Find first extent with bits cleared */ | 
 | 	while (1) { | 
 | 		node = __etree_search(tree, start, &next, &prev, NULL, NULL); | 
 | 		if (!node && !next && !prev) { | 
 | 			/* | 
 | 			 * Tree is completely empty, send full range and let | 
 | 			 * caller deal with it | 
 | 			 */ | 
 | 			*start_ret = 0; | 
 | 			*end_ret = -1; | 
 | 			goto out; | 
 | 		} else if (!node && !next) { | 
 | 			/* | 
 | 			 * We are past the last allocated chunk, set start at | 
 | 			 * the end of the last extent. | 
 | 			 */ | 
 | 			state = rb_entry(prev, struct extent_state, rb_node); | 
 | 			*start_ret = state->end + 1; | 
 | 			*end_ret = -1; | 
 | 			goto out; | 
 | 		} else if (!node) { | 
 | 			node = next; | 
 | 		} | 
 | 		/* | 
 | 		 * At this point 'node' either contains 'start' or start is | 
 | 		 * before 'node' | 
 | 		 */ | 
 | 		state = rb_entry(node, struct extent_state, rb_node); | 
 |  | 
 | 		if (in_range(start, state->start, state->end - state->start + 1)) { | 
 | 			if (state->state & bits) { | 
 | 				/* | 
 | 				 * |--range with bits sets--| | 
 | 				 *    | | 
 | 				 *    start | 
 | 				 */ | 
 | 				start = state->end + 1; | 
 | 			} else { | 
 | 				/* | 
 | 				 * 'start' falls within a range that doesn't | 
 | 				 * have the bits set, so take its start as | 
 | 				 * the beginning of the desired range | 
 | 				 * | 
 | 				 * |--range with bits cleared----| | 
 | 				 *      | | 
 | 				 *      start | 
 | 				 */ | 
 | 				*start_ret = state->start; | 
 | 				break; | 
 | 			} | 
 | 		} else { | 
 | 			/* | 
 | 			 * |---prev range---|---hole/unset---|---node range---| | 
 | 			 *                          | | 
 | 			 *                        start | 
 | 			 * | 
 | 			 *                        or | 
 | 			 * | 
 | 			 * |---hole/unset--||--first node--| | 
 | 			 * 0   | | 
 | 			 *    start | 
 | 			 */ | 
 | 			if (prev) { | 
 | 				state = rb_entry(prev, struct extent_state, | 
 | 						 rb_node); | 
 | 				*start_ret = state->end + 1; | 
 | 			} else { | 
 | 				*start_ret = 0; | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Find the longest stretch from start until an entry which has the | 
 | 	 * bits set | 
 | 	 */ | 
 | 	while (1) { | 
 | 		state = rb_entry(node, struct extent_state, rb_node); | 
 | 		if (state->end >= start && !(state->state & bits)) { | 
 | 			*end_ret = state->end; | 
 | 		} else { | 
 | 			*end_ret = state->start - 1; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		node = rb_next(node); | 
 | 		if (!node) | 
 | 			break; | 
 | 	} | 
 | out: | 
 | 	spin_unlock(&tree->lock); | 
 | } | 
 |  | 
 | /* | 
 |  * find a contiguous range of bytes in the file marked as delalloc, not | 
 |  * more than 'max_bytes'.  start and end are used to return the range, | 
 |  * | 
 |  * true is returned if we find something, false if nothing was in the tree | 
 |  */ | 
 | bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start, | 
 | 			       u64 *end, u64 max_bytes, | 
 | 			       struct extent_state **cached_state) | 
 | { | 
 | 	struct rb_node *node; | 
 | 	struct extent_state *state; | 
 | 	u64 cur_start = *start; | 
 | 	bool found = false; | 
 | 	u64 total_bytes = 0; | 
 |  | 
 | 	spin_lock(&tree->lock); | 
 |  | 
 | 	/* | 
 | 	 * this search will find all the extents that end after | 
 | 	 * our range starts. | 
 | 	 */ | 
 | 	node = tree_search(tree, cur_start); | 
 | 	if (!node) { | 
 | 		*end = (u64)-1; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	while (1) { | 
 | 		state = rb_entry(node, struct extent_state, rb_node); | 
 | 		if (found && (state->start != cur_start || | 
 | 			      (state->state & EXTENT_BOUNDARY))) { | 
 | 			goto out; | 
 | 		} | 
 | 		if (!(state->state & EXTENT_DELALLOC)) { | 
 | 			if (!found) | 
 | 				*end = state->end; | 
 | 			goto out; | 
 | 		} | 
 | 		if (!found) { | 
 | 			*start = state->start; | 
 | 			*cached_state = state; | 
 | 			refcount_inc(&state->refs); | 
 | 		} | 
 | 		found = true; | 
 | 		*end = state->end; | 
 | 		cur_start = state->end + 1; | 
 | 		node = rb_next(node); | 
 | 		total_bytes += state->end - state->start + 1; | 
 | 		if (total_bytes >= max_bytes) | 
 | 			break; | 
 | 		if (!node) | 
 | 			break; | 
 | 	} | 
 | out: | 
 | 	spin_unlock(&tree->lock); | 
 | 	return found; | 
 | } | 
 |  | 
 | /* | 
 |  * Process one page for __process_pages_contig(). | 
 |  * | 
 |  * Return >0 if we hit @page == @locked_page. | 
 |  * Return 0 if we updated the page status. | 
 |  * Return -EGAIN if the we need to try again. | 
 |  * (For PAGE_LOCK case but got dirty page or page not belong to mapping) | 
 |  */ | 
 | static int process_one_page(struct btrfs_fs_info *fs_info, | 
 | 			    struct address_space *mapping, | 
 | 			    struct page *page, struct page *locked_page, | 
 | 			    unsigned long page_ops, u64 start, u64 end) | 
 | { | 
 | 	u32 len; | 
 |  | 
 | 	ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX); | 
 | 	len = end + 1 - start; | 
 |  | 
 | 	if (page_ops & PAGE_SET_ORDERED) | 
 | 		btrfs_page_clamp_set_ordered(fs_info, page, start, len); | 
 | 	if (page_ops & PAGE_SET_ERROR) | 
 | 		btrfs_page_clamp_set_error(fs_info, page, start, len); | 
 | 	if (page_ops & PAGE_START_WRITEBACK) { | 
 | 		btrfs_page_clamp_clear_dirty(fs_info, page, start, len); | 
 | 		btrfs_page_clamp_set_writeback(fs_info, page, start, len); | 
 | 	} | 
 | 	if (page_ops & PAGE_END_WRITEBACK) | 
 | 		btrfs_page_clamp_clear_writeback(fs_info, page, start, len); | 
 |  | 
 | 	if (page == locked_page) | 
 | 		return 1; | 
 |  | 
 | 	if (page_ops & PAGE_LOCK) { | 
 | 		int ret; | 
 |  | 
 | 		ret = btrfs_page_start_writer_lock(fs_info, page, start, len); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 		if (!PageDirty(page) || page->mapping != mapping) { | 
 | 			btrfs_page_end_writer_lock(fs_info, page, start, len); | 
 | 			return -EAGAIN; | 
 | 		} | 
 | 	} | 
 | 	if (page_ops & PAGE_UNLOCK) | 
 | 		btrfs_page_end_writer_lock(fs_info, page, start, len); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int __process_pages_contig(struct address_space *mapping, | 
 | 				  struct page *locked_page, | 
 | 				  u64 start, u64 end, unsigned long page_ops, | 
 | 				  u64 *processed_end) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb); | 
 | 	pgoff_t start_index = start >> PAGE_SHIFT; | 
 | 	pgoff_t end_index = end >> PAGE_SHIFT; | 
 | 	pgoff_t index = start_index; | 
 | 	unsigned long nr_pages = end_index - start_index + 1; | 
 | 	unsigned long pages_processed = 0; | 
 | 	struct page *pages[16]; | 
 | 	int err = 0; | 
 | 	int i; | 
 |  | 
 | 	if (page_ops & PAGE_LOCK) { | 
 | 		ASSERT(page_ops == PAGE_LOCK); | 
 | 		ASSERT(processed_end && *processed_end == start); | 
 | 	} | 
 |  | 
 | 	if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0) | 
 | 		mapping_set_error(mapping, -EIO); | 
 |  | 
 | 	while (nr_pages > 0) { | 
 | 		int found_pages; | 
 |  | 
 | 		found_pages = find_get_pages_contig(mapping, index, | 
 | 				     min_t(unsigned long, | 
 | 				     nr_pages, ARRAY_SIZE(pages)), pages); | 
 | 		if (found_pages == 0) { | 
 | 			/* | 
 | 			 * Only if we're going to lock these pages, we can find | 
 | 			 * nothing at @index. | 
 | 			 */ | 
 | 			ASSERT(page_ops & PAGE_LOCK); | 
 | 			err = -EAGAIN; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		for (i = 0; i < found_pages; i++) { | 
 | 			int process_ret; | 
 |  | 
 | 			process_ret = process_one_page(fs_info, mapping, | 
 | 					pages[i], locked_page, page_ops, | 
 | 					start, end); | 
 | 			if (process_ret < 0) { | 
 | 				for (; i < found_pages; i++) | 
 | 					put_page(pages[i]); | 
 | 				err = -EAGAIN; | 
 | 				goto out; | 
 | 			} | 
 | 			put_page(pages[i]); | 
 | 			pages_processed++; | 
 | 		} | 
 | 		nr_pages -= found_pages; | 
 | 		index += found_pages; | 
 | 		cond_resched(); | 
 | 	} | 
 | out: | 
 | 	if (err && processed_end) { | 
 | 		/* | 
 | 		 * Update @processed_end. I know this is awful since it has | 
 | 		 * two different return value patterns (inclusive vs exclusive). | 
 | 		 * | 
 | 		 * But the exclusive pattern is necessary if @start is 0, or we | 
 | 		 * underflow and check against processed_end won't work as | 
 | 		 * expected. | 
 | 		 */ | 
 | 		if (pages_processed) | 
 | 			*processed_end = min(end, | 
 | 			((u64)(start_index + pages_processed) << PAGE_SHIFT) - 1); | 
 | 		else | 
 | 			*processed_end = start; | 
 | 	} | 
 | 	return err; | 
 | } | 
 |  | 
 | static noinline void __unlock_for_delalloc(struct inode *inode, | 
 | 					   struct page *locked_page, | 
 | 					   u64 start, u64 end) | 
 | { | 
 | 	unsigned long index = start >> PAGE_SHIFT; | 
 | 	unsigned long end_index = end >> PAGE_SHIFT; | 
 |  | 
 | 	ASSERT(locked_page); | 
 | 	if (index == locked_page->index && end_index == index) | 
 | 		return; | 
 |  | 
 | 	__process_pages_contig(inode->i_mapping, locked_page, start, end, | 
 | 			       PAGE_UNLOCK, NULL); | 
 | } | 
 |  | 
 | static noinline int lock_delalloc_pages(struct inode *inode, | 
 | 					struct page *locked_page, | 
 | 					u64 delalloc_start, | 
 | 					u64 delalloc_end) | 
 | { | 
 | 	unsigned long index = delalloc_start >> PAGE_SHIFT; | 
 | 	unsigned long end_index = delalloc_end >> PAGE_SHIFT; | 
 | 	u64 processed_end = delalloc_start; | 
 | 	int ret; | 
 |  | 
 | 	ASSERT(locked_page); | 
 | 	if (index == locked_page->index && index == end_index) | 
 | 		return 0; | 
 |  | 
 | 	ret = __process_pages_contig(inode->i_mapping, locked_page, delalloc_start, | 
 | 				     delalloc_end, PAGE_LOCK, &processed_end); | 
 | 	if (ret == -EAGAIN && processed_end > delalloc_start) | 
 | 		__unlock_for_delalloc(inode, locked_page, delalloc_start, | 
 | 				      processed_end); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Find and lock a contiguous range of bytes in the file marked as delalloc, no | 
 |  * more than @max_bytes. | 
 |  * | 
 |  * @start:	The original start bytenr to search. | 
 |  *		Will store the extent range start bytenr. | 
 |  * @end:	The original end bytenr of the search range | 
 |  *		Will store the extent range end bytenr. | 
 |  * | 
 |  * Return true if we find a delalloc range which starts inside the original | 
 |  * range, and @start/@end will store the delalloc range start/end. | 
 |  * | 
 |  * Return false if we can't find any delalloc range which starts inside the | 
 |  * original range, and @start/@end will be the non-delalloc range start/end. | 
 |  */ | 
 | EXPORT_FOR_TESTS | 
 | noinline_for_stack bool find_lock_delalloc_range(struct inode *inode, | 
 | 				    struct page *locked_page, u64 *start, | 
 | 				    u64 *end) | 
 | { | 
 | 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; | 
 | 	const u64 orig_start = *start; | 
 | 	const u64 orig_end = *end; | 
 | 	u64 max_bytes = BTRFS_MAX_EXTENT_SIZE; | 
 | 	u64 delalloc_start; | 
 | 	u64 delalloc_end; | 
 | 	bool found; | 
 | 	struct extent_state *cached_state = NULL; | 
 | 	int ret; | 
 | 	int loops = 0; | 
 |  | 
 | 	/* Caller should pass a valid @end to indicate the search range end */ | 
 | 	ASSERT(orig_end > orig_start); | 
 |  | 
 | 	/* The range should at least cover part of the page */ | 
 | 	ASSERT(!(orig_start >= page_offset(locked_page) + PAGE_SIZE || | 
 | 		 orig_end <= page_offset(locked_page))); | 
 | again: | 
 | 	/* step one, find a bunch of delalloc bytes starting at start */ | 
 | 	delalloc_start = *start; | 
 | 	delalloc_end = 0; | 
 | 	found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end, | 
 | 					  max_bytes, &cached_state); | 
 | 	if (!found || delalloc_end <= *start || delalloc_start > orig_end) { | 
 | 		*start = delalloc_start; | 
 |  | 
 | 		/* @delalloc_end can be -1, never go beyond @orig_end */ | 
 | 		*end = min(delalloc_end, orig_end); | 
 | 		free_extent_state(cached_state); | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * start comes from the offset of locked_page.  We have to lock | 
 | 	 * pages in order, so we can't process delalloc bytes before | 
 | 	 * locked_page | 
 | 	 */ | 
 | 	if (delalloc_start < *start) | 
 | 		delalloc_start = *start; | 
 |  | 
 | 	/* | 
 | 	 * make sure to limit the number of pages we try to lock down | 
 | 	 */ | 
 | 	if (delalloc_end + 1 - delalloc_start > max_bytes) | 
 | 		delalloc_end = delalloc_start + max_bytes - 1; | 
 |  | 
 | 	/* step two, lock all the pages after the page that has start */ | 
 | 	ret = lock_delalloc_pages(inode, locked_page, | 
 | 				  delalloc_start, delalloc_end); | 
 | 	ASSERT(!ret || ret == -EAGAIN); | 
 | 	if (ret == -EAGAIN) { | 
 | 		/* some of the pages are gone, lets avoid looping by | 
 | 		 * shortening the size of the delalloc range we're searching | 
 | 		 */ | 
 | 		free_extent_state(cached_state); | 
 | 		cached_state = NULL; | 
 | 		if (!loops) { | 
 | 			max_bytes = PAGE_SIZE; | 
 | 			loops = 1; | 
 | 			goto again; | 
 | 		} else { | 
 | 			found = false; | 
 | 			goto out_failed; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* step three, lock the state bits for the whole range */ | 
 | 	lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state); | 
 |  | 
 | 	/* then test to make sure it is all still delalloc */ | 
 | 	ret = test_range_bit(tree, delalloc_start, delalloc_end, | 
 | 			     EXTENT_DELALLOC, 1, cached_state); | 
 | 	if (!ret) { | 
 | 		unlock_extent_cached(tree, delalloc_start, delalloc_end, | 
 | 				     &cached_state); | 
 | 		__unlock_for_delalloc(inode, locked_page, | 
 | 			      delalloc_start, delalloc_end); | 
 | 		cond_resched(); | 
 | 		goto again; | 
 | 	} | 
 | 	free_extent_state(cached_state); | 
 | 	*start = delalloc_start; | 
 | 	*end = delalloc_end; | 
 | out_failed: | 
 | 	return found; | 
 | } | 
 |  | 
 | void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end, | 
 | 				  struct page *locked_page, | 
 | 				  u32 clear_bits, unsigned long page_ops) | 
 | { | 
 | 	clear_extent_bit(&inode->io_tree, start, end, clear_bits, 1, 0, NULL); | 
 |  | 
 | 	__process_pages_contig(inode->vfs_inode.i_mapping, locked_page, | 
 | 			       start, end, page_ops, NULL); | 
 | } | 
 |  | 
 | /* | 
 |  * count the number of bytes in the tree that have a given bit(s) | 
 |  * set.  This can be fairly slow, except for EXTENT_DIRTY which is | 
 |  * cached.  The total number found is returned. | 
 |  */ | 
 | u64 count_range_bits(struct extent_io_tree *tree, | 
 | 		     u64 *start, u64 search_end, u64 max_bytes, | 
 | 		     u32 bits, int contig) | 
 | { | 
 | 	struct rb_node *node; | 
 | 	struct extent_state *state; | 
 | 	u64 cur_start = *start; | 
 | 	u64 total_bytes = 0; | 
 | 	u64 last = 0; | 
 | 	int found = 0; | 
 |  | 
 | 	if (WARN_ON(search_end <= cur_start)) | 
 | 		return 0; | 
 |  | 
 | 	spin_lock(&tree->lock); | 
 | 	if (cur_start == 0 && bits == EXTENT_DIRTY) { | 
 | 		total_bytes = tree->dirty_bytes; | 
 | 		goto out; | 
 | 	} | 
 | 	/* | 
 | 	 * this search will find all the extents that end after | 
 | 	 * our range starts. | 
 | 	 */ | 
 | 	node = tree_search(tree, cur_start); | 
 | 	if (!node) | 
 | 		goto out; | 
 |  | 
 | 	while (1) { | 
 | 		state = rb_entry(node, struct extent_state, rb_node); | 
 | 		if (state->start > search_end) | 
 | 			break; | 
 | 		if (contig && found && state->start > last + 1) | 
 | 			break; | 
 | 		if (state->end >= cur_start && (state->state & bits) == bits) { | 
 | 			total_bytes += min(search_end, state->end) + 1 - | 
 | 				       max(cur_start, state->start); | 
 | 			if (total_bytes >= max_bytes) | 
 | 				break; | 
 | 			if (!found) { | 
 | 				*start = max(cur_start, state->start); | 
 | 				found = 1; | 
 | 			} | 
 | 			last = state->end; | 
 | 		} else if (contig && found) { | 
 | 			break; | 
 | 		} | 
 | 		node = rb_next(node); | 
 | 		if (!node) | 
 | 			break; | 
 | 	} | 
 | out: | 
 | 	spin_unlock(&tree->lock); | 
 | 	return total_bytes; | 
 | } | 
 |  | 
 | /* | 
 |  * set the private field for a given byte offset in the tree.  If there isn't | 
 |  * an extent_state there already, this does nothing. | 
 |  */ | 
 | int set_state_failrec(struct extent_io_tree *tree, u64 start, | 
 | 		      struct io_failure_record *failrec) | 
 | { | 
 | 	struct rb_node *node; | 
 | 	struct extent_state *state; | 
 | 	int ret = 0; | 
 |  | 
 | 	spin_lock(&tree->lock); | 
 | 	/* | 
 | 	 * this search will find all the extents that end after | 
 | 	 * our range starts. | 
 | 	 */ | 
 | 	node = tree_search(tree, start); | 
 | 	if (!node) { | 
 | 		ret = -ENOENT; | 
 | 		goto out; | 
 | 	} | 
 | 	state = rb_entry(node, struct extent_state, rb_node); | 
 | 	if (state->start != start) { | 
 | 		ret = -ENOENT; | 
 | 		goto out; | 
 | 	} | 
 | 	state->failrec = failrec; | 
 | out: | 
 | 	spin_unlock(&tree->lock); | 
 | 	return ret; | 
 | } | 
 |  | 
 | struct io_failure_record *get_state_failrec(struct extent_io_tree *tree, u64 start) | 
 | { | 
 | 	struct rb_node *node; | 
 | 	struct extent_state *state; | 
 | 	struct io_failure_record *failrec; | 
 |  | 
 | 	spin_lock(&tree->lock); | 
 | 	/* | 
 | 	 * this search will find all the extents that end after | 
 | 	 * our range starts. | 
 | 	 */ | 
 | 	node = tree_search(tree, start); | 
 | 	if (!node) { | 
 | 		failrec = ERR_PTR(-ENOENT); | 
 | 		goto out; | 
 | 	} | 
 | 	state = rb_entry(node, struct extent_state, rb_node); | 
 | 	if (state->start != start) { | 
 | 		failrec = ERR_PTR(-ENOENT); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	failrec = state->failrec; | 
 | out: | 
 | 	spin_unlock(&tree->lock); | 
 | 	return failrec; | 
 | } | 
 |  | 
 | /* | 
 |  * searches a range in the state tree for a given mask. | 
 |  * If 'filled' == 1, this returns 1 only if every extent in the tree | 
 |  * has the bits set.  Otherwise, 1 is returned if any bit in the | 
 |  * range is found set. | 
 |  */ | 
 | int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end, | 
 | 		   u32 bits, int filled, struct extent_state *cached) | 
 | { | 
 | 	struct extent_state *state = NULL; | 
 | 	struct rb_node *node; | 
 | 	int bitset = 0; | 
 |  | 
 | 	spin_lock(&tree->lock); | 
 | 	if (cached && extent_state_in_tree(cached) && cached->start <= start && | 
 | 	    cached->end > start) | 
 | 		node = &cached->rb_node; | 
 | 	else | 
 | 		node = tree_search(tree, start); | 
 | 	while (node && start <= end) { | 
 | 		state = rb_entry(node, struct extent_state, rb_node); | 
 |  | 
 | 		if (filled && state->start > start) { | 
 | 			bitset = 0; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		if (state->start > end) | 
 | 			break; | 
 |  | 
 | 		if (state->state & bits) { | 
 | 			bitset = 1; | 
 | 			if (!filled) | 
 | 				break; | 
 | 		} else if (filled) { | 
 | 			bitset = 0; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		if (state->end == (u64)-1) | 
 | 			break; | 
 |  | 
 | 		start = state->end + 1; | 
 | 		if (start > end) | 
 | 			break; | 
 | 		node = rb_next(node); | 
 | 		if (!node) { | 
 | 			if (filled) | 
 | 				bitset = 0; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	spin_unlock(&tree->lock); | 
 | 	return bitset; | 
 | } | 
 |  | 
 | int free_io_failure(struct extent_io_tree *failure_tree, | 
 | 		    struct extent_io_tree *io_tree, | 
 | 		    struct io_failure_record *rec) | 
 | { | 
 | 	int ret; | 
 | 	int err = 0; | 
 |  | 
 | 	set_state_failrec(failure_tree, rec->start, NULL); | 
 | 	ret = clear_extent_bits(failure_tree, rec->start, | 
 | 				rec->start + rec->len - 1, | 
 | 				EXTENT_LOCKED | EXTENT_DIRTY); | 
 | 	if (ret) | 
 | 		err = ret; | 
 |  | 
 | 	ret = clear_extent_bits(io_tree, rec->start, | 
 | 				rec->start + rec->len - 1, | 
 | 				EXTENT_DAMAGED); | 
 | 	if (ret && !err) | 
 | 		err = ret; | 
 |  | 
 | 	kfree(rec); | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * this bypasses the standard btrfs submit functions deliberately, as | 
 |  * the standard behavior is to write all copies in a raid setup. here we only | 
 |  * want to write the one bad copy. so we do the mapping for ourselves and issue | 
 |  * submit_bio directly. | 
 |  * to avoid any synchronization issues, wait for the data after writing, which | 
 |  * actually prevents the read that triggered the error from finishing. | 
 |  * currently, there can be no more than two copies of every data bit. thus, | 
 |  * exactly one rewrite is required. | 
 |  */ | 
 | static int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start, | 
 | 			     u64 length, u64 logical, struct page *page, | 
 | 			     unsigned int pg_offset, int mirror_num) | 
 | { | 
 | 	struct bio *bio; | 
 | 	struct btrfs_device *dev; | 
 | 	u64 map_length = 0; | 
 | 	u64 sector; | 
 | 	struct btrfs_io_context *bioc = NULL; | 
 | 	int ret; | 
 |  | 
 | 	ASSERT(!(fs_info->sb->s_flags & SB_RDONLY)); | 
 | 	BUG_ON(!mirror_num); | 
 |  | 
 | 	if (btrfs_is_zoned(fs_info)) | 
 | 		return btrfs_repair_one_zone(fs_info, logical); | 
 |  | 
 | 	bio = btrfs_bio_alloc(1); | 
 | 	bio->bi_iter.bi_size = 0; | 
 | 	map_length = length; | 
 |  | 
 | 	/* | 
 | 	 * Avoid races with device replace and make sure our bioc has devices | 
 | 	 * associated to its stripes that don't go away while we are doing the | 
 | 	 * read repair operation. | 
 | 	 */ | 
 | 	btrfs_bio_counter_inc_blocked(fs_info); | 
 | 	if (btrfs_is_parity_mirror(fs_info, logical, length)) { | 
 | 		/* | 
 | 		 * Note that we don't use BTRFS_MAP_WRITE because it's supposed | 
 | 		 * to update all raid stripes, but here we just want to correct | 
 | 		 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad | 
 | 		 * stripe's dev and sector. | 
 | 		 */ | 
 | 		ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical, | 
 | 				      &map_length, &bioc, 0); | 
 | 		if (ret) { | 
 | 			btrfs_bio_counter_dec(fs_info); | 
 | 			bio_put(bio); | 
 | 			return -EIO; | 
 | 		} | 
 | 		ASSERT(bioc->mirror_num == 1); | 
 | 	} else { | 
 | 		ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, | 
 | 				      &map_length, &bioc, mirror_num); | 
 | 		if (ret) { | 
 | 			btrfs_bio_counter_dec(fs_info); | 
 | 			bio_put(bio); | 
 | 			return -EIO; | 
 | 		} | 
 | 		BUG_ON(mirror_num != bioc->mirror_num); | 
 | 	} | 
 |  | 
 | 	sector = bioc->stripes[bioc->mirror_num - 1].physical >> 9; | 
 | 	bio->bi_iter.bi_sector = sector; | 
 | 	dev = bioc->stripes[bioc->mirror_num - 1].dev; | 
 | 	btrfs_put_bioc(bioc); | 
 | 	if (!dev || !dev->bdev || | 
 | 	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) { | 
 | 		btrfs_bio_counter_dec(fs_info); | 
 | 		bio_put(bio); | 
 | 		return -EIO; | 
 | 	} | 
 | 	bio_set_dev(bio, dev->bdev); | 
 | 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC; | 
 | 	bio_add_page(bio, page, length, pg_offset); | 
 |  | 
 | 	if (btrfsic_submit_bio_wait(bio)) { | 
 | 		/* try to remap that extent elsewhere? */ | 
 | 		btrfs_bio_counter_dec(fs_info); | 
 | 		bio_put(bio); | 
 | 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); | 
 | 		return -EIO; | 
 | 	} | 
 |  | 
 | 	btrfs_info_rl_in_rcu(fs_info, | 
 | 		"read error corrected: ino %llu off %llu (dev %s sector %llu)", | 
 | 				  ino, start, | 
 | 				  rcu_str_deref(dev->name), sector); | 
 | 	btrfs_bio_counter_dec(fs_info); | 
 | 	bio_put(bio); | 
 | 	return 0; | 
 | } | 
 |  | 
 | int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, int mirror_num) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = eb->fs_info; | 
 | 	u64 start = eb->start; | 
 | 	int i, num_pages = num_extent_pages(eb); | 
 | 	int ret = 0; | 
 |  | 
 | 	if (sb_rdonly(fs_info->sb)) | 
 | 		return -EROFS; | 
 |  | 
 | 	for (i = 0; i < num_pages; i++) { | 
 | 		struct page *p = eb->pages[i]; | 
 |  | 
 | 		ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p, | 
 | 					start - page_offset(p), mirror_num); | 
 | 		if (ret) | 
 | 			break; | 
 | 		start += PAGE_SIZE; | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * each time an IO finishes, we do a fast check in the IO failure tree | 
 |  * to see if we need to process or clean up an io_failure_record | 
 |  */ | 
 | int clean_io_failure(struct btrfs_fs_info *fs_info, | 
 | 		     struct extent_io_tree *failure_tree, | 
 | 		     struct extent_io_tree *io_tree, u64 start, | 
 | 		     struct page *page, u64 ino, unsigned int pg_offset) | 
 | { | 
 | 	u64 private; | 
 | 	struct io_failure_record *failrec; | 
 | 	struct extent_state *state; | 
 | 	int num_copies; | 
 | 	int ret; | 
 |  | 
 | 	private = 0; | 
 | 	ret = count_range_bits(failure_tree, &private, (u64)-1, 1, | 
 | 			       EXTENT_DIRTY, 0); | 
 | 	if (!ret) | 
 | 		return 0; | 
 |  | 
 | 	failrec = get_state_failrec(failure_tree, start); | 
 | 	if (IS_ERR(failrec)) | 
 | 		return 0; | 
 |  | 
 | 	BUG_ON(!failrec->this_mirror); | 
 |  | 
 | 	if (sb_rdonly(fs_info->sb)) | 
 | 		goto out; | 
 |  | 
 | 	spin_lock(&io_tree->lock); | 
 | 	state = find_first_extent_bit_state(io_tree, | 
 | 					    failrec->start, | 
 | 					    EXTENT_LOCKED); | 
 | 	spin_unlock(&io_tree->lock); | 
 |  | 
 | 	if (state && state->start <= failrec->start && | 
 | 	    state->end >= failrec->start + failrec->len - 1) { | 
 | 		num_copies = btrfs_num_copies(fs_info, failrec->logical, | 
 | 					      failrec->len); | 
 | 		if (num_copies > 1)  { | 
 | 			repair_io_failure(fs_info, ino, start, failrec->len, | 
 | 					  failrec->logical, page, pg_offset, | 
 | 					  failrec->failed_mirror); | 
 | 		} | 
 | 	} | 
 |  | 
 | out: | 
 | 	free_io_failure(failure_tree, io_tree, failrec); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Can be called when | 
 |  * - hold extent lock | 
 |  * - under ordered extent | 
 |  * - the inode is freeing | 
 |  */ | 
 | void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end) | 
 | { | 
 | 	struct extent_io_tree *failure_tree = &inode->io_failure_tree; | 
 | 	struct io_failure_record *failrec; | 
 | 	struct extent_state *state, *next; | 
 |  | 
 | 	if (RB_EMPTY_ROOT(&failure_tree->state)) | 
 | 		return; | 
 |  | 
 | 	spin_lock(&failure_tree->lock); | 
 | 	state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY); | 
 | 	while (state) { | 
 | 		if (state->start > end) | 
 | 			break; | 
 |  | 
 | 		ASSERT(state->end <= end); | 
 |  | 
 | 		next = next_state(state); | 
 |  | 
 | 		failrec = state->failrec; | 
 | 		free_extent_state(state); | 
 | 		kfree(failrec); | 
 |  | 
 | 		state = next; | 
 | 	} | 
 | 	spin_unlock(&failure_tree->lock); | 
 | } | 
 |  | 
 | static struct io_failure_record *btrfs_get_io_failure_record(struct inode *inode, | 
 | 							     u64 start) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
 | 	struct io_failure_record *failrec; | 
 | 	struct extent_map *em; | 
 | 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; | 
 | 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; | 
 | 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; | 
 | 	const u32 sectorsize = fs_info->sectorsize; | 
 | 	int ret; | 
 | 	u64 logical; | 
 |  | 
 | 	failrec = get_state_failrec(failure_tree, start); | 
 | 	if (!IS_ERR(failrec)) { | 
 | 		btrfs_debug(fs_info, | 
 | 	"Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu", | 
 | 			failrec->logical, failrec->start, failrec->len); | 
 | 		/* | 
 | 		 * when data can be on disk more than twice, add to failrec here | 
 | 		 * (e.g. with a list for failed_mirror) to make | 
 | 		 * clean_io_failure() clean all those errors at once. | 
 | 		 */ | 
 |  | 
 | 		return failrec; | 
 | 	} | 
 |  | 
 | 	failrec = kzalloc(sizeof(*failrec), GFP_NOFS); | 
 | 	if (!failrec) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	failrec->start = start; | 
 | 	failrec->len = sectorsize; | 
 | 	failrec->this_mirror = 0; | 
 | 	failrec->bio_flags = 0; | 
 |  | 
 | 	read_lock(&em_tree->lock); | 
 | 	em = lookup_extent_mapping(em_tree, start, failrec->len); | 
 | 	if (!em) { | 
 | 		read_unlock(&em_tree->lock); | 
 | 		kfree(failrec); | 
 | 		return ERR_PTR(-EIO); | 
 | 	} | 
 |  | 
 | 	if (em->start > start || em->start + em->len <= start) { | 
 | 		free_extent_map(em); | 
 | 		em = NULL; | 
 | 	} | 
 | 	read_unlock(&em_tree->lock); | 
 | 	if (!em) { | 
 | 		kfree(failrec); | 
 | 		return ERR_PTR(-EIO); | 
 | 	} | 
 |  | 
 | 	logical = start - em->start; | 
 | 	logical = em->block_start + logical; | 
 | 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { | 
 | 		logical = em->block_start; | 
 | 		failrec->bio_flags = EXTENT_BIO_COMPRESSED; | 
 | 		extent_set_compress_type(&failrec->bio_flags, em->compress_type); | 
 | 	} | 
 |  | 
 | 	btrfs_debug(fs_info, | 
 | 		    "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu", | 
 | 		    logical, start, failrec->len); | 
 |  | 
 | 	failrec->logical = logical; | 
 | 	free_extent_map(em); | 
 |  | 
 | 	/* Set the bits in the private failure tree */ | 
 | 	ret = set_extent_bits(failure_tree, start, start + sectorsize - 1, | 
 | 			      EXTENT_LOCKED | EXTENT_DIRTY); | 
 | 	if (ret >= 0) { | 
 | 		ret = set_state_failrec(failure_tree, start, failrec); | 
 | 		/* Set the bits in the inode's tree */ | 
 | 		ret = set_extent_bits(tree, start, start + sectorsize - 1, | 
 | 				      EXTENT_DAMAGED); | 
 | 	} else if (ret < 0) { | 
 | 		kfree(failrec); | 
 | 		return ERR_PTR(ret); | 
 | 	} | 
 |  | 
 | 	return failrec; | 
 | } | 
 |  | 
 | static bool btrfs_check_repairable(struct inode *inode, | 
 | 				   struct io_failure_record *failrec, | 
 | 				   int failed_mirror) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
 | 	int num_copies; | 
 |  | 
 | 	num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len); | 
 | 	if (num_copies == 1) { | 
 | 		/* | 
 | 		 * we only have a single copy of the data, so don't bother with | 
 | 		 * all the retry and error correction code that follows. no | 
 | 		 * matter what the error is, it is very likely to persist. | 
 | 		 */ | 
 | 		btrfs_debug(fs_info, | 
 | 			"Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d", | 
 | 			num_copies, failrec->this_mirror, failed_mirror); | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	/* The failure record should only contain one sector */ | 
 | 	ASSERT(failrec->len == fs_info->sectorsize); | 
 |  | 
 | 	/* | 
 | 	 * There are two premises: | 
 | 	 * a) deliver good data to the caller | 
 | 	 * b) correct the bad sectors on disk | 
 | 	 * | 
 | 	 * Since we're only doing repair for one sector, we only need to get | 
 | 	 * a good copy of the failed sector and if we succeed, we have setup | 
 | 	 * everything for repair_io_failure to do the rest for us. | 
 | 	 */ | 
 | 	failrec->failed_mirror = failed_mirror; | 
 | 	failrec->this_mirror++; | 
 | 	if (failrec->this_mirror == failed_mirror) | 
 | 		failrec->this_mirror++; | 
 |  | 
 | 	if (failrec->this_mirror > num_copies) { | 
 | 		btrfs_debug(fs_info, | 
 | 			"Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d", | 
 | 			num_copies, failrec->this_mirror, failed_mirror); | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | int btrfs_repair_one_sector(struct inode *inode, | 
 | 			    struct bio *failed_bio, u32 bio_offset, | 
 | 			    struct page *page, unsigned int pgoff, | 
 | 			    u64 start, int failed_mirror, | 
 | 			    submit_bio_hook_t *submit_bio_hook) | 
 | { | 
 | 	struct io_failure_record *failrec; | 
 | 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
 | 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; | 
 | 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; | 
 | 	struct btrfs_bio *failed_bbio = btrfs_bio(failed_bio); | 
 | 	const int icsum = bio_offset >> fs_info->sectorsize_bits; | 
 | 	struct bio *repair_bio; | 
 | 	struct btrfs_bio *repair_bbio; | 
 | 	blk_status_t status; | 
 |  | 
 | 	btrfs_debug(fs_info, | 
 | 		   "repair read error: read error at %llu", start); | 
 |  | 
 | 	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE); | 
 |  | 
 | 	failrec = btrfs_get_io_failure_record(inode, start); | 
 | 	if (IS_ERR(failrec)) | 
 | 		return PTR_ERR(failrec); | 
 |  | 
 |  | 
 | 	if (!btrfs_check_repairable(inode, failrec, failed_mirror)) { | 
 | 		free_io_failure(failure_tree, tree, failrec); | 
 | 		return -EIO; | 
 | 	} | 
 |  | 
 | 	repair_bio = btrfs_bio_alloc(1); | 
 | 	repair_bbio = btrfs_bio(repair_bio); | 
 | 	repair_bio->bi_opf = REQ_OP_READ; | 
 | 	repair_bio->bi_end_io = failed_bio->bi_end_io; | 
 | 	repair_bio->bi_iter.bi_sector = failrec->logical >> 9; | 
 | 	repair_bio->bi_private = failed_bio->bi_private; | 
 |  | 
 | 	if (failed_bbio->csum) { | 
 | 		const u32 csum_size = fs_info->csum_size; | 
 |  | 
 | 		repair_bbio->csum = repair_bbio->csum_inline; | 
 | 		memcpy(repair_bbio->csum, | 
 | 		       failed_bbio->csum + csum_size * icsum, csum_size); | 
 | 	} | 
 |  | 
 | 	bio_add_page(repair_bio, page, failrec->len, pgoff); | 
 | 	repair_bbio->iter = repair_bio->bi_iter; | 
 |  | 
 | 	btrfs_debug(btrfs_sb(inode->i_sb), | 
 | 		    "repair read error: submitting new read to mirror %d", | 
 | 		    failrec->this_mirror); | 
 |  | 
 | 	status = submit_bio_hook(inode, repair_bio, failrec->this_mirror, | 
 | 				 failrec->bio_flags); | 
 | 	if (status) { | 
 | 		free_io_failure(failure_tree, tree, failrec); | 
 | 		bio_put(repair_bio); | 
 | 	} | 
 | 	return blk_status_to_errno(status); | 
 | } | 
 |  | 
 | static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); | 
 |  | 
 | 	ASSERT(page_offset(page) <= start && | 
 | 	       start + len <= page_offset(page) + PAGE_SIZE); | 
 |  | 
 | 	if (uptodate) { | 
 | 		if (fsverity_active(page->mapping->host) && | 
 | 		    !PageError(page) && | 
 | 		    !PageUptodate(page) && | 
 | 		    start < i_size_read(page->mapping->host) && | 
 | 		    !fsverity_verify_page(page)) { | 
 | 			btrfs_page_set_error(fs_info, page, start, len); | 
 | 		} else { | 
 | 			btrfs_page_set_uptodate(fs_info, page, start, len); | 
 | 		} | 
 | 	} else { | 
 | 		btrfs_page_clear_uptodate(fs_info, page, start, len); | 
 | 		btrfs_page_set_error(fs_info, page, start, len); | 
 | 	} | 
 |  | 
 | 	if (fs_info->sectorsize == PAGE_SIZE) | 
 | 		unlock_page(page); | 
 | 	else | 
 | 		btrfs_subpage_end_reader(fs_info, page, start, len); | 
 | } | 
 |  | 
 | static blk_status_t submit_read_repair(struct inode *inode, | 
 | 				      struct bio *failed_bio, u32 bio_offset, | 
 | 				      struct page *page, unsigned int pgoff, | 
 | 				      u64 start, u64 end, int failed_mirror, | 
 | 				      unsigned int error_bitmap, | 
 | 				      submit_bio_hook_t *submit_bio_hook) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
 | 	const u32 sectorsize = fs_info->sectorsize; | 
 | 	const int nr_bits = (end + 1 - start) >> fs_info->sectorsize_bits; | 
 | 	int error = 0; | 
 | 	int i; | 
 |  | 
 | 	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE); | 
 |  | 
 | 	/* We're here because we had some read errors or csum mismatch */ | 
 | 	ASSERT(error_bitmap); | 
 |  | 
 | 	/* | 
 | 	 * We only get called on buffered IO, thus page must be mapped and bio | 
 | 	 * must not be cloned. | 
 | 	 */ | 
 | 	ASSERT(page->mapping && !bio_flagged(failed_bio, BIO_CLONED)); | 
 |  | 
 | 	/* Iterate through all the sectors in the range */ | 
 | 	for (i = 0; i < nr_bits; i++) { | 
 | 		const unsigned int offset = i * sectorsize; | 
 | 		struct extent_state *cached = NULL; | 
 | 		bool uptodate = false; | 
 | 		int ret; | 
 |  | 
 | 		if (!(error_bitmap & (1U << i))) { | 
 | 			/* | 
 | 			 * This sector has no error, just end the page read | 
 | 			 * and unlock the range. | 
 | 			 */ | 
 | 			uptodate = true; | 
 | 			goto next; | 
 | 		} | 
 |  | 
 | 		ret = btrfs_repair_one_sector(inode, failed_bio, | 
 | 				bio_offset + offset, | 
 | 				page, pgoff + offset, start + offset, | 
 | 				failed_mirror, submit_bio_hook); | 
 | 		if (!ret) { | 
 | 			/* | 
 | 			 * We have submitted the read repair, the page release | 
 | 			 * will be handled by the endio function of the | 
 | 			 * submitted repair bio. | 
 | 			 * Thus we don't need to do any thing here. | 
 | 			 */ | 
 | 			continue; | 
 | 		} | 
 | 		/* | 
 | 		 * Repair failed, just record the error but still continue. | 
 | 		 * Or the remaining sectors will not be properly unlocked. | 
 | 		 */ | 
 | 		if (!error) | 
 | 			error = ret; | 
 | next: | 
 | 		end_page_read(page, uptodate, start + offset, sectorsize); | 
 | 		if (uptodate) | 
 | 			set_extent_uptodate(&BTRFS_I(inode)->io_tree, | 
 | 					start + offset, | 
 | 					start + offset + sectorsize - 1, | 
 | 					&cached, GFP_ATOMIC); | 
 | 		unlock_extent_cached_atomic(&BTRFS_I(inode)->io_tree, | 
 | 				start + offset, | 
 | 				start + offset + sectorsize - 1, | 
 | 				&cached); | 
 | 	} | 
 | 	return errno_to_blk_status(error); | 
 | } | 
 |  | 
 | /* lots and lots of room for performance fixes in the end_bio funcs */ | 
 |  | 
 | void end_extent_writepage(struct page *page, int err, u64 start, u64 end) | 
 | { | 
 | 	struct btrfs_inode *inode; | 
 | 	const bool uptodate = (err == 0); | 
 | 	int ret = 0; | 
 |  | 
 | 	ASSERT(page && page->mapping); | 
 | 	inode = BTRFS_I(page->mapping->host); | 
 | 	btrfs_writepage_endio_finish_ordered(inode, page, start, end, uptodate); | 
 |  | 
 | 	if (!uptodate) { | 
 | 		const struct btrfs_fs_info *fs_info = inode->root->fs_info; | 
 | 		u32 len; | 
 |  | 
 | 		ASSERT(end + 1 - start <= U32_MAX); | 
 | 		len = end + 1 - start; | 
 |  | 
 | 		btrfs_page_clear_uptodate(fs_info, page, start, len); | 
 | 		btrfs_page_set_error(fs_info, page, start, len); | 
 | 		ret = err < 0 ? err : -EIO; | 
 | 		mapping_set_error(page->mapping, ret); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * after a writepage IO is done, we need to: | 
 |  * clear the uptodate bits on error | 
 |  * clear the writeback bits in the extent tree for this IO | 
 |  * end_page_writeback if the page has no more pending IO | 
 |  * | 
 |  * Scheduling is not allowed, so the extent state tree is expected | 
 |  * to have one and only one object corresponding to this IO. | 
 |  */ | 
 | static void end_bio_extent_writepage(struct bio *bio) | 
 | { | 
 | 	int error = blk_status_to_errno(bio->bi_status); | 
 | 	struct bio_vec *bvec; | 
 | 	u64 start; | 
 | 	u64 end; | 
 | 	struct bvec_iter_all iter_all; | 
 | 	bool first_bvec = true; | 
 |  | 
 | 	ASSERT(!bio_flagged(bio, BIO_CLONED)); | 
 | 	bio_for_each_segment_all(bvec, bio, iter_all) { | 
 | 		struct page *page = bvec->bv_page; | 
 | 		struct inode *inode = page->mapping->host; | 
 | 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
 | 		const u32 sectorsize = fs_info->sectorsize; | 
 |  | 
 | 		/* Our read/write should always be sector aligned. */ | 
 | 		if (!IS_ALIGNED(bvec->bv_offset, sectorsize)) | 
 | 			btrfs_err(fs_info, | 
 | 		"partial page write in btrfs with offset %u and length %u", | 
 | 				  bvec->bv_offset, bvec->bv_len); | 
 | 		else if (!IS_ALIGNED(bvec->bv_len, sectorsize)) | 
 | 			btrfs_info(fs_info, | 
 | 		"incomplete page write with offset %u and length %u", | 
 | 				   bvec->bv_offset, bvec->bv_len); | 
 |  | 
 | 		start = page_offset(page) + bvec->bv_offset; | 
 | 		end = start + bvec->bv_len - 1; | 
 |  | 
 | 		if (first_bvec) { | 
 | 			btrfs_record_physical_zoned(inode, start, bio); | 
 | 			first_bvec = false; | 
 | 		} | 
 |  | 
 | 		end_extent_writepage(page, error, start, end); | 
 |  | 
 | 		btrfs_page_clear_writeback(fs_info, page, start, bvec->bv_len); | 
 | 	} | 
 |  | 
 | 	bio_put(bio); | 
 | } | 
 |  | 
 | /* | 
 |  * Record previously processed extent range | 
 |  * | 
 |  * For endio_readpage_release_extent() to handle a full extent range, reducing | 
 |  * the extent io operations. | 
 |  */ | 
 | struct processed_extent { | 
 | 	struct btrfs_inode *inode; | 
 | 	/* Start of the range in @inode */ | 
 | 	u64 start; | 
 | 	/* End of the range in @inode */ | 
 | 	u64 end; | 
 | 	bool uptodate; | 
 | }; | 
 |  | 
 | /* | 
 |  * Try to release processed extent range | 
 |  * | 
 |  * May not release the extent range right now if the current range is | 
 |  * contiguous to processed extent. | 
 |  * | 
 |  * Will release processed extent when any of @inode, @uptodate, the range is | 
 |  * no longer contiguous to the processed range. | 
 |  * | 
 |  * Passing @inode == NULL will force processed extent to be released. | 
 |  */ | 
 | static void endio_readpage_release_extent(struct processed_extent *processed, | 
 | 			      struct btrfs_inode *inode, u64 start, u64 end, | 
 | 			      bool uptodate) | 
 | { | 
 | 	struct extent_state *cached = NULL; | 
 | 	struct extent_io_tree *tree; | 
 |  | 
 | 	/* The first extent, initialize @processed */ | 
 | 	if (!processed->inode) | 
 | 		goto update; | 
 |  | 
 | 	/* | 
 | 	 * Contiguous to processed extent, just uptodate the end. | 
 | 	 * | 
 | 	 * Several things to notice: | 
 | 	 * | 
 | 	 * - bio can be merged as long as on-disk bytenr is contiguous | 
 | 	 *   This means we can have page belonging to other inodes, thus need to | 
 | 	 *   check if the inode still matches. | 
 | 	 * - bvec can contain range beyond current page for multi-page bvec | 
 | 	 *   Thus we need to do processed->end + 1 >= start check | 
 | 	 */ | 
 | 	if (processed->inode == inode && processed->uptodate == uptodate && | 
 | 	    processed->end + 1 >= start && end >= processed->end) { | 
 | 		processed->end = end; | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	tree = &processed->inode->io_tree; | 
 | 	/* | 
 | 	 * Now we don't have range contiguous to the processed range, release | 
 | 	 * the processed range now. | 
 | 	 */ | 
 | 	if (processed->uptodate && tree->track_uptodate) | 
 | 		set_extent_uptodate(tree, processed->start, processed->end, | 
 | 				    &cached, GFP_ATOMIC); | 
 | 	unlock_extent_cached_atomic(tree, processed->start, processed->end, | 
 | 				    &cached); | 
 |  | 
 | update: | 
 | 	/* Update processed to current range */ | 
 | 	processed->inode = inode; | 
 | 	processed->start = start; | 
 | 	processed->end = end; | 
 | 	processed->uptodate = uptodate; | 
 | } | 
 |  | 
 | static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page) | 
 | { | 
 | 	ASSERT(PageLocked(page)); | 
 | 	if (fs_info->sectorsize == PAGE_SIZE) | 
 | 		return; | 
 |  | 
 | 	ASSERT(PagePrivate(page)); | 
 | 	btrfs_subpage_start_reader(fs_info, page, page_offset(page), PAGE_SIZE); | 
 | } | 
 |  | 
 | /* | 
 |  * Find extent buffer for a givne bytenr. | 
 |  * | 
 |  * This is for end_bio_extent_readpage(), thus we can't do any unsafe locking | 
 |  * in endio context. | 
 |  */ | 
 | static struct extent_buffer *find_extent_buffer_readpage( | 
 | 		struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr) | 
 | { | 
 | 	struct extent_buffer *eb; | 
 |  | 
 | 	/* | 
 | 	 * For regular sectorsize, we can use page->private to grab extent | 
 | 	 * buffer | 
 | 	 */ | 
 | 	if (fs_info->sectorsize == PAGE_SIZE) { | 
 | 		ASSERT(PagePrivate(page) && page->private); | 
 | 		return (struct extent_buffer *)page->private; | 
 | 	} | 
 |  | 
 | 	/* For subpage case, we need to lookup buffer radix tree */ | 
 | 	rcu_read_lock(); | 
 | 	eb = radix_tree_lookup(&fs_info->buffer_radix, | 
 | 			       bytenr >> fs_info->sectorsize_bits); | 
 | 	rcu_read_unlock(); | 
 | 	ASSERT(eb); | 
 | 	return eb; | 
 | } | 
 |  | 
 | /* | 
 |  * after a readpage IO is done, we need to: | 
 |  * clear the uptodate bits on error | 
 |  * set the uptodate bits if things worked | 
 |  * set the page up to date if all extents in the tree are uptodate | 
 |  * clear the lock bit in the extent tree | 
 |  * unlock the page if there are no other extents locked for it | 
 |  * | 
 |  * Scheduling is not allowed, so the extent state tree is expected | 
 |  * to have one and only one object corresponding to this IO. | 
 |  */ | 
 | static void end_bio_extent_readpage(struct bio *bio) | 
 | { | 
 | 	struct bio_vec *bvec; | 
 | 	struct btrfs_bio *bbio = btrfs_bio(bio); | 
 | 	struct extent_io_tree *tree, *failure_tree; | 
 | 	struct processed_extent processed = { 0 }; | 
 | 	/* | 
 | 	 * The offset to the beginning of a bio, since one bio can never be | 
 | 	 * larger than UINT_MAX, u32 here is enough. | 
 | 	 */ | 
 | 	u32 bio_offset = 0; | 
 | 	int mirror; | 
 | 	int ret; | 
 | 	struct bvec_iter_all iter_all; | 
 |  | 
 | 	ASSERT(!bio_flagged(bio, BIO_CLONED)); | 
 | 	bio_for_each_segment_all(bvec, bio, iter_all) { | 
 | 		bool uptodate = !bio->bi_status; | 
 | 		struct page *page = bvec->bv_page; | 
 | 		struct inode *inode = page->mapping->host; | 
 | 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
 | 		const u32 sectorsize = fs_info->sectorsize; | 
 | 		unsigned int error_bitmap = (unsigned int)-1; | 
 | 		u64 start; | 
 | 		u64 end; | 
 | 		u32 len; | 
 |  | 
 | 		btrfs_debug(fs_info, | 
 | 			"end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u", | 
 | 			bio->bi_iter.bi_sector, bio->bi_status, | 
 | 			bbio->mirror_num); | 
 | 		tree = &BTRFS_I(inode)->io_tree; | 
 | 		failure_tree = &BTRFS_I(inode)->io_failure_tree; | 
 |  | 
 | 		/* | 
 | 		 * We always issue full-sector reads, but if some block in a | 
 | 		 * page fails to read, blk_update_request() will advance | 
 | 		 * bv_offset and adjust bv_len to compensate.  Print a warning | 
 | 		 * for unaligned offsets, and an error if they don't add up to | 
 | 		 * a full sector. | 
 | 		 */ | 
 | 		if (!IS_ALIGNED(bvec->bv_offset, sectorsize)) | 
 | 			btrfs_err(fs_info, | 
 | 		"partial page read in btrfs with offset %u and length %u", | 
 | 				  bvec->bv_offset, bvec->bv_len); | 
 | 		else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len, | 
 | 				     sectorsize)) | 
 | 			btrfs_info(fs_info, | 
 | 		"incomplete page read with offset %u and length %u", | 
 | 				   bvec->bv_offset, bvec->bv_len); | 
 |  | 
 | 		start = page_offset(page) + bvec->bv_offset; | 
 | 		end = start + bvec->bv_len - 1; | 
 | 		len = bvec->bv_len; | 
 |  | 
 | 		mirror = bbio->mirror_num; | 
 | 		if (likely(uptodate)) { | 
 | 			if (is_data_inode(inode)) { | 
 | 				error_bitmap = btrfs_verify_data_csum(bbio, | 
 | 						bio_offset, page, start, end); | 
 | 				ret = error_bitmap; | 
 | 			} else { | 
 | 				ret = btrfs_validate_metadata_buffer(bbio, | 
 | 					page, start, end, mirror); | 
 | 			} | 
 | 			if (ret) | 
 | 				uptodate = false; | 
 | 			else | 
 | 				clean_io_failure(BTRFS_I(inode)->root->fs_info, | 
 | 						 failure_tree, tree, start, | 
 | 						 page, | 
 | 						 btrfs_ino(BTRFS_I(inode)), 0); | 
 | 		} | 
 |  | 
 | 		if (likely(uptodate)) | 
 | 			goto readpage_ok; | 
 |  | 
 | 		if (is_data_inode(inode)) { | 
 | 			/* | 
 | 			 * btrfs_submit_read_repair() will handle all the good | 
 | 			 * and bad sectors, we just continue to the next bvec. | 
 | 			 */ | 
 | 			submit_read_repair(inode, bio, bio_offset, page, | 
 | 					   start - page_offset(page), start, | 
 | 					   end, mirror, error_bitmap, | 
 | 					   btrfs_submit_data_bio); | 
 |  | 
 | 			ASSERT(bio_offset + len > bio_offset); | 
 | 			bio_offset += len; | 
 | 			continue; | 
 | 		} else { | 
 | 			struct extent_buffer *eb; | 
 |  | 
 | 			eb = find_extent_buffer_readpage(fs_info, page, start); | 
 | 			set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); | 
 | 			eb->read_mirror = mirror; | 
 | 			atomic_dec(&eb->io_pages); | 
 | 			if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, | 
 | 					       &eb->bflags)) | 
 | 				btree_readahead_hook(eb, -EIO); | 
 | 		} | 
 | readpage_ok: | 
 | 		if (likely(uptodate)) { | 
 | 			loff_t i_size = i_size_read(inode); | 
 | 			pgoff_t end_index = i_size >> PAGE_SHIFT; | 
 |  | 
 | 			/* | 
 | 			 * Zero out the remaining part if this range straddles | 
 | 			 * i_size. | 
 | 			 * | 
 | 			 * Here we should only zero the range inside the bvec, | 
 | 			 * not touch anything else. | 
 | 			 * | 
 | 			 * NOTE: i_size is exclusive while end is inclusive. | 
 | 			 */ | 
 | 			if (page->index == end_index && i_size <= end) { | 
 | 				u32 zero_start = max(offset_in_page(i_size), | 
 | 						     offset_in_page(start)); | 
 |  | 
 | 				zero_user_segment(page, zero_start, | 
 | 						  offset_in_page(end) + 1); | 
 | 			} | 
 | 		} | 
 | 		ASSERT(bio_offset + len > bio_offset); | 
 | 		bio_offset += len; | 
 |  | 
 | 		/* Update page status and unlock */ | 
 | 		end_page_read(page, uptodate, start, len); | 
 | 		endio_readpage_release_extent(&processed, BTRFS_I(inode), | 
 | 					      start, end, PageUptodate(page)); | 
 | 	} | 
 | 	/* Release the last extent */ | 
 | 	endio_readpage_release_extent(&processed, NULL, 0, 0, false); | 
 | 	btrfs_bio_free_csum(bbio); | 
 | 	bio_put(bio); | 
 | } | 
 |  | 
 | /* | 
 |  * Initialize the members up to but not including 'bio'. Use after allocating a | 
 |  * new bio by bio_alloc_bioset as it does not initialize the bytes outside of | 
 |  * 'bio' because use of __GFP_ZERO is not supported. | 
 |  */ | 
 | static inline void btrfs_bio_init(struct btrfs_bio *bbio) | 
 | { | 
 | 	memset(bbio, 0, offsetof(struct btrfs_bio, bio)); | 
 | } | 
 |  | 
 | /* | 
 |  * Allocate a btrfs_io_bio, with @nr_iovecs as maximum number of iovecs. | 
 |  * | 
 |  * The bio allocation is backed by bioset and does not fail. | 
 |  */ | 
 | struct bio *btrfs_bio_alloc(unsigned int nr_iovecs) | 
 | { | 
 | 	struct bio *bio; | 
 |  | 
 | 	ASSERT(0 < nr_iovecs && nr_iovecs <= BIO_MAX_VECS); | 
 | 	bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset); | 
 | 	btrfs_bio_init(btrfs_bio(bio)); | 
 | 	return bio; | 
 | } | 
 |  | 
 | struct bio *btrfs_bio_clone(struct bio *bio) | 
 | { | 
 | 	struct btrfs_bio *bbio; | 
 | 	struct bio *new; | 
 |  | 
 | 	/* Bio allocation backed by a bioset does not fail */ | 
 | 	new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset); | 
 | 	bbio = btrfs_bio(new); | 
 | 	btrfs_bio_init(bbio); | 
 | 	bbio->iter = bio->bi_iter; | 
 | 	return new; | 
 | } | 
 |  | 
 | struct bio *btrfs_bio_clone_partial(struct bio *orig, u64 offset, u64 size) | 
 | { | 
 | 	struct bio *bio; | 
 | 	struct btrfs_bio *bbio; | 
 |  | 
 | 	ASSERT(offset <= UINT_MAX && size <= UINT_MAX); | 
 |  | 
 | 	/* this will never fail when it's backed by a bioset */ | 
 | 	bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset); | 
 | 	ASSERT(bio); | 
 |  | 
 | 	bbio = btrfs_bio(bio); | 
 | 	btrfs_bio_init(bbio); | 
 |  | 
 | 	bio_trim(bio, offset >> 9, size >> 9); | 
 | 	bbio->iter = bio->bi_iter; | 
 | 	return bio; | 
 | } | 
 |  | 
 | /** | 
 |  * Attempt to add a page to bio | 
 |  * | 
 |  * @bio:	destination bio | 
 |  * @page:	page to add to the bio | 
 |  * @disk_bytenr:  offset of the new bio or to check whether we are adding | 
 |  *                a contiguous page to the previous one | 
 |  * @pg_offset:	starting offset in the page | 
 |  * @size:	portion of page that we want to write | 
 |  * @prev_bio_flags:  flags of previous bio to see if we can merge the current one | 
 |  * @bio_flags:	flags of the current bio to see if we can merge them | 
 |  * | 
 |  * Attempt to add a page to bio considering stripe alignment etc. | 
 |  * | 
 |  * Return >= 0 for the number of bytes added to the bio. | 
 |  * Can return 0 if the current bio is already at stripe/zone boundary. | 
 |  * Return <0 for error. | 
 |  */ | 
 | static int btrfs_bio_add_page(struct btrfs_bio_ctrl *bio_ctrl, | 
 | 			      struct page *page, | 
 | 			      u64 disk_bytenr, unsigned int size, | 
 | 			      unsigned int pg_offset, | 
 | 			      unsigned long bio_flags) | 
 | { | 
 | 	struct bio *bio = bio_ctrl->bio; | 
 | 	u32 bio_size = bio->bi_iter.bi_size; | 
 | 	u32 real_size; | 
 | 	const sector_t sector = disk_bytenr >> SECTOR_SHIFT; | 
 | 	bool contig; | 
 | 	int ret; | 
 |  | 
 | 	ASSERT(bio); | 
 | 	/* The limit should be calculated when bio_ctrl->bio is allocated */ | 
 | 	ASSERT(bio_ctrl->len_to_oe_boundary && bio_ctrl->len_to_stripe_boundary); | 
 | 	if (bio_ctrl->bio_flags != bio_flags) | 
 | 		return 0; | 
 |  | 
 | 	if (bio_ctrl->bio_flags & EXTENT_BIO_COMPRESSED) | 
 | 		contig = bio->bi_iter.bi_sector == sector; | 
 | 	else | 
 | 		contig = bio_end_sector(bio) == sector; | 
 | 	if (!contig) | 
 | 		return 0; | 
 |  | 
 | 	real_size = min(bio_ctrl->len_to_oe_boundary, | 
 | 			bio_ctrl->len_to_stripe_boundary) - bio_size; | 
 | 	real_size = min(real_size, size); | 
 |  | 
 | 	/* | 
 | 	 * If real_size is 0, never call bio_add_*_page(), as even size is 0, | 
 | 	 * bio will still execute its endio function on the page! | 
 | 	 */ | 
 | 	if (real_size == 0) | 
 | 		return 0; | 
 |  | 
 | 	if (bio_op(bio) == REQ_OP_ZONE_APPEND) | 
 | 		ret = bio_add_zone_append_page(bio, page, real_size, pg_offset); | 
 | 	else | 
 | 		ret = bio_add_page(bio, page, real_size, pg_offset); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int calc_bio_boundaries(struct btrfs_bio_ctrl *bio_ctrl, | 
 | 			       struct btrfs_inode *inode, u64 file_offset) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = inode->root->fs_info; | 
 | 	struct btrfs_io_geometry geom; | 
 | 	struct btrfs_ordered_extent *ordered; | 
 | 	struct extent_map *em; | 
 | 	u64 logical = (bio_ctrl->bio->bi_iter.bi_sector << SECTOR_SHIFT); | 
 | 	int ret; | 
 |  | 
 | 	/* | 
 | 	 * Pages for compressed extent are never submitted to disk directly, | 
 | 	 * thus it has no real boundary, just set them to U32_MAX. | 
 | 	 * | 
 | 	 * The split happens for real compressed bio, which happens in | 
 | 	 * btrfs_submit_compressed_read/write(). | 
 | 	 */ | 
 | 	if (bio_ctrl->bio_flags & EXTENT_BIO_COMPRESSED) { | 
 | 		bio_ctrl->len_to_oe_boundary = U32_MAX; | 
 | 		bio_ctrl->len_to_stripe_boundary = U32_MAX; | 
 | 		return 0; | 
 | 	} | 
 | 	em = btrfs_get_chunk_map(fs_info, logical, fs_info->sectorsize); | 
 | 	if (IS_ERR(em)) | 
 | 		return PTR_ERR(em); | 
 | 	ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio_ctrl->bio), | 
 | 				    logical, &geom); | 
 | 	free_extent_map(em); | 
 | 	if (ret < 0) { | 
 | 		return ret; | 
 | 	} | 
 | 	if (geom.len > U32_MAX) | 
 | 		bio_ctrl->len_to_stripe_boundary = U32_MAX; | 
 | 	else | 
 | 		bio_ctrl->len_to_stripe_boundary = (u32)geom.len; | 
 |  | 
 | 	if (!btrfs_is_zoned(fs_info) || | 
 | 	    bio_op(bio_ctrl->bio) != REQ_OP_ZONE_APPEND) { | 
 | 		bio_ctrl->len_to_oe_boundary = U32_MAX; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* Ordered extent not yet created, so we're good */ | 
 | 	ordered = btrfs_lookup_ordered_extent(inode, file_offset); | 
 | 	if (!ordered) { | 
 | 		bio_ctrl->len_to_oe_boundary = U32_MAX; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX, | 
 | 		ordered->disk_bytenr + ordered->disk_num_bytes - logical); | 
 | 	btrfs_put_ordered_extent(ordered); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int alloc_new_bio(struct btrfs_inode *inode, | 
 | 			 struct btrfs_bio_ctrl *bio_ctrl, | 
 | 			 struct writeback_control *wbc, | 
 | 			 unsigned int opf, | 
 | 			 bio_end_io_t end_io_func, | 
 | 			 u64 disk_bytenr, u32 offset, u64 file_offset, | 
 | 			 unsigned long bio_flags) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = inode->root->fs_info; | 
 | 	struct bio *bio; | 
 | 	int ret; | 
 |  | 
 | 	bio = btrfs_bio_alloc(BIO_MAX_VECS); | 
 | 	/* | 
 | 	 * For compressed page range, its disk_bytenr is always @disk_bytenr | 
 | 	 * passed in, no matter if we have added any range into previous bio. | 
 | 	 */ | 
 | 	if (bio_flags & EXTENT_BIO_COMPRESSED) | 
 | 		bio->bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; | 
 | 	else | 
 | 		bio->bi_iter.bi_sector = (disk_bytenr + offset) >> SECTOR_SHIFT; | 
 | 	bio_ctrl->bio = bio; | 
 | 	bio_ctrl->bio_flags = bio_flags; | 
 | 	bio->bi_end_io = end_io_func; | 
 | 	bio->bi_private = &inode->io_tree; | 
 | 	bio->bi_write_hint = inode->vfs_inode.i_write_hint; | 
 | 	bio->bi_opf = opf; | 
 | 	ret = calc_bio_boundaries(bio_ctrl, inode, file_offset); | 
 | 	if (ret < 0) | 
 | 		goto error; | 
 | 	if (wbc) { | 
 | 		struct block_device *bdev; | 
 |  | 
 | 		bdev = fs_info->fs_devices->latest_dev->bdev; | 
 | 		bio_set_dev(bio, bdev); | 
 | 		wbc_init_bio(wbc, bio); | 
 | 	} | 
 | 	if (btrfs_is_zoned(fs_info) && bio_op(bio) == REQ_OP_ZONE_APPEND) { | 
 | 		struct btrfs_device *device; | 
 |  | 
 | 		device = btrfs_zoned_get_device(fs_info, disk_bytenr, | 
 | 						fs_info->sectorsize); | 
 | 		if (IS_ERR(device)) { | 
 | 			ret = PTR_ERR(device); | 
 | 			goto error; | 
 | 		} | 
 |  | 
 | 		btrfs_bio(bio)->device = device; | 
 | 	} | 
 | 	return 0; | 
 | error: | 
 | 	bio_ctrl->bio = NULL; | 
 | 	bio->bi_status = errno_to_blk_status(ret); | 
 | 	bio_endio(bio); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * @opf:	bio REQ_OP_* and REQ_* flags as one value | 
 |  * @wbc:	optional writeback control for io accounting | 
 |  * @page:	page to add to the bio | 
 |  * @disk_bytenr: logical bytenr where the write will be | 
 |  * @size:	portion of page that we want to write to | 
 |  * @pg_offset:	offset of the new bio or to check whether we are adding | 
 |  *              a contiguous page to the previous one | 
 |  * @bio_ret:	must be valid pointer, newly allocated bio will be stored there | 
 |  * @end_io_func:     end_io callback for new bio | 
 |  * @mirror_num:	     desired mirror to read/write | 
 |  * @prev_bio_flags:  flags of previous bio to see if we can merge the current one | 
 |  * @bio_flags:	flags of the current bio to see if we can merge them | 
 |  */ | 
 | static int submit_extent_page(unsigned int opf, | 
 | 			      struct writeback_control *wbc, | 
 | 			      struct btrfs_bio_ctrl *bio_ctrl, | 
 | 			      struct page *page, u64 disk_bytenr, | 
 | 			      size_t size, unsigned long pg_offset, | 
 | 			      bio_end_io_t end_io_func, | 
 | 			      int mirror_num, | 
 | 			      unsigned long bio_flags, | 
 | 			      bool force_bio_submit) | 
 | { | 
 | 	int ret = 0; | 
 | 	struct btrfs_inode *inode = BTRFS_I(page->mapping->host); | 
 | 	unsigned int cur = pg_offset; | 
 |  | 
 | 	ASSERT(bio_ctrl); | 
 |  | 
 | 	ASSERT(pg_offset < PAGE_SIZE && size <= PAGE_SIZE && | 
 | 	       pg_offset + size <= PAGE_SIZE); | 
 | 	if (force_bio_submit && bio_ctrl->bio) { | 
 | 		ret = submit_one_bio(bio_ctrl->bio, mirror_num, bio_ctrl->bio_flags); | 
 | 		bio_ctrl->bio = NULL; | 
 | 		if (ret < 0) | 
 | 			return ret; | 
 | 	} | 
 |  | 
 | 	while (cur < pg_offset + size) { | 
 | 		u32 offset = cur - pg_offset; | 
 | 		int added; | 
 |  | 
 | 		/* Allocate new bio if needed */ | 
 | 		if (!bio_ctrl->bio) { | 
 | 			ret = alloc_new_bio(inode, bio_ctrl, wbc, opf, | 
 | 					    end_io_func, disk_bytenr, offset, | 
 | 					    page_offset(page) + cur, | 
 | 					    bio_flags); | 
 | 			if (ret < 0) | 
 | 				return ret; | 
 | 		} | 
 | 		/* | 
 | 		 * We must go through btrfs_bio_add_page() to ensure each | 
 | 		 * page range won't cross various boundaries. | 
 | 		 */ | 
 | 		if (bio_flags & EXTENT_BIO_COMPRESSED) | 
 | 			added = btrfs_bio_add_page(bio_ctrl, page, disk_bytenr, | 
 | 					size - offset, pg_offset + offset, | 
 | 					bio_flags); | 
 | 		else | 
 | 			added = btrfs_bio_add_page(bio_ctrl, page, | 
 | 					disk_bytenr + offset, size - offset, | 
 | 					pg_offset + offset, bio_flags); | 
 |  | 
 | 		/* Metadata page range should never be split */ | 
 | 		if (!is_data_inode(&inode->vfs_inode)) | 
 | 			ASSERT(added == 0 || added == size - offset); | 
 |  | 
 | 		/* At least we added some page, update the account */ | 
 | 		if (wbc && added) | 
 | 			wbc_account_cgroup_owner(wbc, page, added); | 
 |  | 
 | 		/* We have reached boundary, submit right now */ | 
 | 		if (added < size - offset) { | 
 | 			/* The bio should contain some page(s) */ | 
 | 			ASSERT(bio_ctrl->bio->bi_iter.bi_size); | 
 | 			ret = submit_one_bio(bio_ctrl->bio, mirror_num, | 
 | 					bio_ctrl->bio_flags); | 
 | 			bio_ctrl->bio = NULL; | 
 | 			if (ret < 0) | 
 | 				return ret; | 
 | 		} | 
 | 		cur += added; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int attach_extent_buffer_page(struct extent_buffer *eb, | 
 | 				     struct page *page, | 
 | 				     struct btrfs_subpage *prealloc) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = eb->fs_info; | 
 | 	int ret = 0; | 
 |  | 
 | 	/* | 
 | 	 * If the page is mapped to btree inode, we should hold the private | 
 | 	 * lock to prevent race. | 
 | 	 * For cloned or dummy extent buffers, their pages are not mapped and | 
 | 	 * will not race with any other ebs. | 
 | 	 */ | 
 | 	if (page->mapping) | 
 | 		lockdep_assert_held(&page->mapping->private_lock); | 
 |  | 
 | 	if (fs_info->sectorsize == PAGE_SIZE) { | 
 | 		if (!PagePrivate(page)) | 
 | 			attach_page_private(page, eb); | 
 | 		else | 
 | 			WARN_ON(page->private != (unsigned long)eb); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* Already mapped, just free prealloc */ | 
 | 	if (PagePrivate(page)) { | 
 | 		btrfs_free_subpage(prealloc); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (prealloc) | 
 | 		/* Has preallocated memory for subpage */ | 
 | 		attach_page_private(page, prealloc); | 
 | 	else | 
 | 		/* Do new allocation to attach subpage */ | 
 | 		ret = btrfs_attach_subpage(fs_info, page, | 
 | 					   BTRFS_SUBPAGE_METADATA); | 
 | 	return ret; | 
 | } | 
 |  | 
 | int set_page_extent_mapped(struct page *page) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info; | 
 |  | 
 | 	ASSERT(page->mapping); | 
 |  | 
 | 	if (PagePrivate(page)) | 
 | 		return 0; | 
 |  | 
 | 	fs_info = btrfs_sb(page->mapping->host->i_sb); | 
 |  | 
 | 	if (fs_info->sectorsize < PAGE_SIZE) | 
 | 		return btrfs_attach_subpage(fs_info, page, BTRFS_SUBPAGE_DATA); | 
 |  | 
 | 	attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE); | 
 | 	return 0; | 
 | } | 
 |  | 
 | void clear_page_extent_mapped(struct page *page) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info; | 
 |  | 
 | 	ASSERT(page->mapping); | 
 |  | 
 | 	if (!PagePrivate(page)) | 
 | 		return; | 
 |  | 
 | 	fs_info = btrfs_sb(page->mapping->host->i_sb); | 
 | 	if (fs_info->sectorsize < PAGE_SIZE) | 
 | 		return btrfs_detach_subpage(fs_info, page); | 
 |  | 
 | 	detach_page_private(page); | 
 | } | 
 |  | 
 | static struct extent_map * | 
 | __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset, | 
 | 		 u64 start, u64 len, struct extent_map **em_cached) | 
 | { | 
 | 	struct extent_map *em; | 
 |  | 
 | 	if (em_cached && *em_cached) { | 
 | 		em = *em_cached; | 
 | 		if (extent_map_in_tree(em) && start >= em->start && | 
 | 		    start < extent_map_end(em)) { | 
 | 			refcount_inc(&em->refs); | 
 | 			return em; | 
 | 		} | 
 |  | 
 | 		free_extent_map(em); | 
 | 		*em_cached = NULL; | 
 | 	} | 
 |  | 
 | 	em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len); | 
 | 	if (em_cached && !IS_ERR_OR_NULL(em)) { | 
 | 		BUG_ON(*em_cached); | 
 | 		refcount_inc(&em->refs); | 
 | 		*em_cached = em; | 
 | 	} | 
 | 	return em; | 
 | } | 
 | /* | 
 |  * basic readpage implementation.  Locked extent state structs are inserted | 
 |  * into the tree that are removed when the IO is done (by the end_io | 
 |  * handlers) | 
 |  * XXX JDM: This needs looking at to ensure proper page locking | 
 |  * return 0 on success, otherwise return error | 
 |  */ | 
 | int btrfs_do_readpage(struct page *page, struct extent_map **em_cached, | 
 | 		      struct btrfs_bio_ctrl *bio_ctrl, | 
 | 		      unsigned int read_flags, u64 *prev_em_start) | 
 | { | 
 | 	struct inode *inode = page->mapping->host; | 
 | 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
 | 	u64 start = page_offset(page); | 
 | 	const u64 end = start + PAGE_SIZE - 1; | 
 | 	u64 cur = start; | 
 | 	u64 extent_offset; | 
 | 	u64 last_byte = i_size_read(inode); | 
 | 	u64 block_start; | 
 | 	u64 cur_end; | 
 | 	struct extent_map *em; | 
 | 	int ret = 0; | 
 | 	int nr = 0; | 
 | 	size_t pg_offset = 0; | 
 | 	size_t iosize; | 
 | 	size_t blocksize = inode->i_sb->s_blocksize; | 
 | 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; | 
 |  | 
 | 	ret = set_page_extent_mapped(page); | 
 | 	if (ret < 0) { | 
 | 		unlock_extent(tree, start, end); | 
 | 		btrfs_page_set_error(fs_info, page, start, PAGE_SIZE); | 
 | 		unlock_page(page); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (!PageUptodate(page)) { | 
 | 		if (cleancache_get_page(page) == 0) { | 
 | 			BUG_ON(blocksize != PAGE_SIZE); | 
 | 			unlock_extent(tree, start, end); | 
 | 			unlock_page(page); | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (page->index == last_byte >> PAGE_SHIFT) { | 
 | 		size_t zero_offset = offset_in_page(last_byte); | 
 |  | 
 | 		if (zero_offset) { | 
 | 			iosize = PAGE_SIZE - zero_offset; | 
 | 			memzero_page(page, zero_offset, iosize); | 
 | 			flush_dcache_page(page); | 
 | 		} | 
 | 	} | 
 | 	begin_page_read(fs_info, page); | 
 | 	while (cur <= end) { | 
 | 		unsigned long this_bio_flag = 0; | 
 | 		bool force_bio_submit = false; | 
 | 		u64 disk_bytenr; | 
 |  | 
 | 		ASSERT(IS_ALIGNED(cur, fs_info->sectorsize)); | 
 | 		if (cur >= last_byte) { | 
 | 			struct extent_state *cached = NULL; | 
 |  | 
 | 			iosize = PAGE_SIZE - pg_offset; | 
 | 			memzero_page(page, pg_offset, iosize); | 
 | 			flush_dcache_page(page); | 
 | 			set_extent_uptodate(tree, cur, cur + iosize - 1, | 
 | 					    &cached, GFP_NOFS); | 
 | 			unlock_extent_cached(tree, cur, | 
 | 					     cur + iosize - 1, &cached); | 
 | 			end_page_read(page, true, cur, iosize); | 
 | 			break; | 
 | 		} | 
 | 		em = __get_extent_map(inode, page, pg_offset, cur, | 
 | 				      end - cur + 1, em_cached); | 
 | 		if (IS_ERR_OR_NULL(em)) { | 
 | 			unlock_extent(tree, cur, end); | 
 | 			end_page_read(page, false, cur, end + 1 - cur); | 
 | 			break; | 
 | 		} | 
 | 		extent_offset = cur - em->start; | 
 | 		BUG_ON(extent_map_end(em) <= cur); | 
 | 		BUG_ON(end < cur); | 
 |  | 
 | 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { | 
 | 			this_bio_flag |= EXTENT_BIO_COMPRESSED; | 
 | 			extent_set_compress_type(&this_bio_flag, | 
 | 						 em->compress_type); | 
 | 		} | 
 |  | 
 | 		iosize = min(extent_map_end(em) - cur, end - cur + 1); | 
 | 		cur_end = min(extent_map_end(em) - 1, end); | 
 | 		iosize = ALIGN(iosize, blocksize); | 
 | 		if (this_bio_flag & EXTENT_BIO_COMPRESSED) | 
 | 			disk_bytenr = em->block_start; | 
 | 		else | 
 | 			disk_bytenr = em->block_start + extent_offset; | 
 | 		block_start = em->block_start; | 
 | 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) | 
 | 			block_start = EXTENT_MAP_HOLE; | 
 |  | 
 | 		/* | 
 | 		 * If we have a file range that points to a compressed extent | 
 | 		 * and it's followed by a consecutive file range that points | 
 | 		 * to the same compressed extent (possibly with a different | 
 | 		 * offset and/or length, so it either points to the whole extent | 
 | 		 * or only part of it), we must make sure we do not submit a | 
 | 		 * single bio to populate the pages for the 2 ranges because | 
 | 		 * this makes the compressed extent read zero out the pages | 
 | 		 * belonging to the 2nd range. Imagine the following scenario: | 
 | 		 * | 
 | 		 *  File layout | 
 | 		 *  [0 - 8K]                     [8K - 24K] | 
 | 		 *    |                               | | 
 | 		 *    |                               | | 
 | 		 * points to extent X,         points to extent X, | 
 | 		 * offset 4K, length of 8K     offset 0, length 16K | 
 | 		 * | 
 | 		 * [extent X, compressed length = 4K uncompressed length = 16K] | 
 | 		 * | 
 | 		 * If the bio to read the compressed extent covers both ranges, | 
 | 		 * it will decompress extent X into the pages belonging to the | 
 | 		 * first range and then it will stop, zeroing out the remaining | 
 | 		 * pages that belong to the other range that points to extent X. | 
 | 		 * So here we make sure we submit 2 bios, one for the first | 
 | 		 * range and another one for the third range. Both will target | 
 | 		 * the same physical extent from disk, but we can't currently | 
 | 		 * make the compressed bio endio callback populate the pages | 
 | 		 * for both ranges because each compressed bio is tightly | 
 | 		 * coupled with a single extent map, and each range can have | 
 | 		 * an extent map with a different offset value relative to the | 
 | 		 * uncompressed data of our extent and different lengths. This | 
 | 		 * is a corner case so we prioritize correctness over | 
 | 		 * non-optimal behavior (submitting 2 bios for the same extent). | 
 | 		 */ | 
 | 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) && | 
 | 		    prev_em_start && *prev_em_start != (u64)-1 && | 
 | 		    *prev_em_start != em->start) | 
 | 			force_bio_submit = true; | 
 |  | 
 | 		if (prev_em_start) | 
 | 			*prev_em_start = em->start; | 
 |  | 
 | 		free_extent_map(em); | 
 | 		em = NULL; | 
 |  | 
 | 		/* we've found a hole, just zero and go on */ | 
 | 		if (block_start == EXTENT_MAP_HOLE) { | 
 | 			struct extent_state *cached = NULL; | 
 |  | 
 | 			memzero_page(page, pg_offset, iosize); | 
 | 			flush_dcache_page(page); | 
 |  | 
 | 			set_extent_uptodate(tree, cur, cur + iosize - 1, | 
 | 					    &cached, GFP_NOFS); | 
 | 			unlock_extent_cached(tree, cur, | 
 | 					     cur + iosize - 1, &cached); | 
 | 			end_page_read(page, true, cur, iosize); | 
 | 			cur = cur + iosize; | 
 | 			pg_offset += iosize; | 
 | 			continue; | 
 | 		} | 
 | 		/* the get_extent function already copied into the page */ | 
 | 		if (test_range_bit(tree, cur, cur_end, | 
 | 				   EXTENT_UPTODATE, 1, NULL)) { | 
 | 			unlock_extent(tree, cur, cur + iosize - 1); | 
 | 			end_page_read(page, true, cur, iosize); | 
 | 			cur = cur + iosize; | 
 | 			pg_offset += iosize; | 
 | 			continue; | 
 | 		} | 
 | 		/* we have an inline extent but it didn't get marked up | 
 | 		 * to date.  Error out | 
 | 		 */ | 
 | 		if (block_start == EXTENT_MAP_INLINE) { | 
 | 			unlock_extent(tree, cur, cur + iosize - 1); | 
 | 			end_page_read(page, false, cur, iosize); | 
 | 			cur = cur + iosize; | 
 | 			pg_offset += iosize; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		ret = submit_extent_page(REQ_OP_READ | read_flags, NULL, | 
 | 					 bio_ctrl, page, disk_bytenr, iosize, | 
 | 					 pg_offset, | 
 | 					 end_bio_extent_readpage, 0, | 
 | 					 this_bio_flag, | 
 | 					 force_bio_submit); | 
 | 		if (!ret) { | 
 | 			nr++; | 
 | 		} else { | 
 | 			unlock_extent(tree, cur, cur + iosize - 1); | 
 | 			end_page_read(page, false, cur, iosize); | 
 | 			goto out; | 
 | 		} | 
 | 		cur = cur + iosize; | 
 | 		pg_offset += iosize; | 
 | 	} | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | static inline void contiguous_readpages(struct page *pages[], int nr_pages, | 
 | 					u64 start, u64 end, | 
 | 					struct extent_map **em_cached, | 
 | 					struct btrfs_bio_ctrl *bio_ctrl, | 
 | 					u64 *prev_em_start) | 
 | { | 
 | 	struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host); | 
 | 	int index; | 
 |  | 
 | 	btrfs_lock_and_flush_ordered_range(inode, start, end, NULL); | 
 |  | 
 | 	for (index = 0; index < nr_pages; index++) { | 
 | 		btrfs_do_readpage(pages[index], em_cached, bio_ctrl, | 
 | 				  REQ_RAHEAD, prev_em_start); | 
 | 		put_page(pages[index]); | 
 | 	} | 
 | } | 
 |  | 
 | static void update_nr_written(struct writeback_control *wbc, | 
 | 			      unsigned long nr_written) | 
 | { | 
 | 	wbc->nr_to_write -= nr_written; | 
 | } | 
 |  | 
 | /* | 
 |  * helper for __extent_writepage, doing all of the delayed allocation setup. | 
 |  * | 
 |  * This returns 1 if btrfs_run_delalloc_range function did all the work required | 
 |  * to write the page (copy into inline extent).  In this case the IO has | 
 |  * been started and the page is already unlocked. | 
 |  * | 
 |  * This returns 0 if all went well (page still locked) | 
 |  * This returns < 0 if there were errors (page still locked) | 
 |  */ | 
 | static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode, | 
 | 		struct page *page, struct writeback_control *wbc, | 
 | 		unsigned long *nr_written) | 
 | { | 
 | 	const u64 page_end = page_offset(page) + PAGE_SIZE - 1; | 
 | 	u64 delalloc_start = page_offset(page); | 
 | 	u64 delalloc_to_write = 0; | 
 | 	int ret; | 
 | 	int page_started = 0; | 
 |  | 
 | 	while (delalloc_start < page_end) { | 
 | 		u64 delalloc_end = page_end; | 
 | 		bool found; | 
 |  | 
 | 		found = find_lock_delalloc_range(&inode->vfs_inode, page, | 
 | 					       &delalloc_start, | 
 | 					       &delalloc_end); | 
 | 		if (!found) { | 
 | 			delalloc_start = delalloc_end + 1; | 
 | 			continue; | 
 | 		} | 
 | 		ret = btrfs_run_delalloc_range(inode, page, delalloc_start, | 
 | 				delalloc_end, &page_started, nr_written, wbc); | 
 | 		if (ret) { | 
 | 			btrfs_page_set_error(inode->root->fs_info, page, | 
 | 					     page_offset(page), PAGE_SIZE); | 
 | 			return ret; | 
 | 		} | 
 | 		/* | 
 | 		 * delalloc_end is already one less than the total length, so | 
 | 		 * we don't subtract one from PAGE_SIZE | 
 | 		 */ | 
 | 		delalloc_to_write += (delalloc_end - delalloc_start + | 
 | 				      PAGE_SIZE) >> PAGE_SHIFT; | 
 | 		delalloc_start = delalloc_end + 1; | 
 | 	} | 
 | 	if (wbc->nr_to_write < delalloc_to_write) { | 
 | 		int thresh = 8192; | 
 |  | 
 | 		if (delalloc_to_write < thresh * 2) | 
 | 			thresh = delalloc_to_write; | 
 | 		wbc->nr_to_write = min_t(u64, delalloc_to_write, | 
 | 					 thresh); | 
 | 	} | 
 |  | 
 | 	/* did the fill delalloc function already unlock and start | 
 | 	 * the IO? | 
 | 	 */ | 
 | 	if (page_started) { | 
 | 		/* | 
 | 		 * we've unlocked the page, so we can't update | 
 | 		 * the mapping's writeback index, just update | 
 | 		 * nr_to_write. | 
 | 		 */ | 
 | 		wbc->nr_to_write -= *nr_written; | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Find the first byte we need to write. | 
 |  * | 
 |  * For subpage, one page can contain several sectors, and | 
 |  * __extent_writepage_io() will just grab all extent maps in the page | 
 |  * range and try to submit all non-inline/non-compressed extents. | 
 |  * | 
 |  * This is a big problem for subpage, we shouldn't re-submit already written | 
 |  * data at all. | 
 |  * This function will lookup subpage dirty bit to find which range we really | 
 |  * need to submit. | 
 |  * | 
 |  * Return the next dirty range in [@start, @end). | 
 |  * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE. | 
 |  */ | 
 | static void find_next_dirty_byte(struct btrfs_fs_info *fs_info, | 
 | 				 struct page *page, u64 *start, u64 *end) | 
 | { | 
 | 	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private; | 
 | 	struct btrfs_subpage_info *spi = fs_info->subpage_info; | 
 | 	u64 orig_start = *start; | 
 | 	/* Declare as unsigned long so we can use bitmap ops */ | 
 | 	unsigned long flags; | 
 | 	int range_start_bit; | 
 | 	int range_end_bit; | 
 |  | 
 | 	/* | 
 | 	 * For regular sector size == page size case, since one page only | 
 | 	 * contains one sector, we return the page offset directly. | 
 | 	 */ | 
 | 	if (fs_info->sectorsize == PAGE_SIZE) { | 
 | 		*start = page_offset(page); | 
 | 		*end = page_offset(page) + PAGE_SIZE; | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	range_start_bit = spi->dirty_offset + | 
 | 			  (offset_in_page(orig_start) >> fs_info->sectorsize_bits); | 
 |  | 
 | 	/* We should have the page locked, but just in case */ | 
 | 	spin_lock_irqsave(&subpage->lock, flags); | 
 | 	bitmap_next_set_region(subpage->bitmaps, &range_start_bit, &range_end_bit, | 
 | 			       spi->dirty_offset + spi->bitmap_nr_bits); | 
 | 	spin_unlock_irqrestore(&subpage->lock, flags); | 
 |  | 
 | 	range_start_bit -= spi->dirty_offset; | 
 | 	range_end_bit -= spi->dirty_offset; | 
 |  | 
 | 	*start = page_offset(page) + range_start_bit * fs_info->sectorsize; | 
 | 	*end = page_offset(page) + range_end_bit * fs_info->sectorsize; | 
 | } | 
 |  | 
 | /* | 
 |  * helper for __extent_writepage.  This calls the writepage start hooks, | 
 |  * and does the loop to map the page into extents and bios. | 
 |  * | 
 |  * We return 1 if the IO is started and the page is unlocked, | 
 |  * 0 if all went well (page still locked) | 
 |  * < 0 if there were errors (page still locked) | 
 |  */ | 
 | static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode, | 
 | 				 struct page *page, | 
 | 				 struct writeback_control *wbc, | 
 | 				 struct extent_page_data *epd, | 
 | 				 loff_t i_size, | 
 | 				 unsigned long nr_written, | 
 | 				 int *nr_ret) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = inode->root->fs_info; | 
 | 	u64 cur = page_offset(page); | 
 | 	u64 end = cur + PAGE_SIZE - 1; | 
 | 	u64 extent_offset; | 
 | 	u64 block_start; | 
 | 	struct extent_map *em; | 
 | 	int ret = 0; | 
 | 	int nr = 0; | 
 | 	u32 opf = REQ_OP_WRITE; | 
 | 	const unsigned int write_flags = wbc_to_write_flags(wbc); | 
 | 	bool compressed; | 
 |  | 
 | 	ret = btrfs_writepage_cow_fixup(page); | 
 | 	if (ret) { | 
 | 		/* Fixup worker will requeue */ | 
 | 		redirty_page_for_writepage(wbc, page); | 
 | 		update_nr_written(wbc, nr_written); | 
 | 		unlock_page(page); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * we don't want to touch the inode after unlocking the page, | 
 | 	 * so we update the mapping writeback index now | 
 | 	 */ | 
 | 	update_nr_written(wbc, nr_written + 1); | 
 |  | 
 | 	while (cur <= end) { | 
 | 		u64 disk_bytenr; | 
 | 		u64 em_end; | 
 | 		u64 dirty_range_start = cur; | 
 | 		u64 dirty_range_end; | 
 | 		u32 iosize; | 
 |  | 
 | 		if (cur >= i_size) { | 
 | 			btrfs_writepage_endio_finish_ordered(inode, page, cur, | 
 | 							     end, true); | 
 | 			/* | 
 | 			 * This range is beyond i_size, thus we don't need to | 
 | 			 * bother writing back. | 
 | 			 * But we still need to clear the dirty subpage bit, or | 
 | 			 * the next time the page gets dirtied, we will try to | 
 | 			 * writeback the sectors with subpage dirty bits, | 
 | 			 * causing writeback without ordered extent. | 
 | 			 */ | 
 | 			btrfs_page_clear_dirty(fs_info, page, cur, end + 1 - cur); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		find_next_dirty_byte(fs_info, page, &dirty_range_start, | 
 | 				     &dirty_range_end); | 
 | 		if (cur < dirty_range_start) { | 
 | 			cur = dirty_range_start; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		em = btrfs_get_extent(inode, NULL, 0, cur, end - cur + 1); | 
 | 		if (IS_ERR_OR_NULL(em)) { | 
 | 			btrfs_page_set_error(fs_info, page, cur, end - cur + 1); | 
 | 			ret = PTR_ERR_OR_ZERO(em); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		extent_offset = cur - em->start; | 
 | 		em_end = extent_map_end(em); | 
 | 		ASSERT(cur <= em_end); | 
 | 		ASSERT(cur < end); | 
 | 		ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize)); | 
 | 		ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize)); | 
 | 		block_start = em->block_start; | 
 | 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); | 
 | 		disk_bytenr = em->block_start + extent_offset; | 
 |  | 
 | 		/* | 
 | 		 * Note that em_end from extent_map_end() and dirty_range_end from | 
 | 		 * find_next_dirty_byte() are all exclusive | 
 | 		 */ | 
 | 		iosize = min(min(em_end, end + 1), dirty_range_end) - cur; | 
 |  | 
 | 		if (btrfs_use_zone_append(inode, em->block_start)) | 
 | 			opf = REQ_OP_ZONE_APPEND; | 
 |  | 
 | 		free_extent_map(em); | 
 | 		em = NULL; | 
 |  | 
 | 		/* | 
 | 		 * compressed and inline extents are written through other | 
 | 		 * paths in the FS | 
 | 		 */ | 
 | 		if (compressed || block_start == EXTENT_MAP_HOLE || | 
 | 		    block_start == EXTENT_MAP_INLINE) { | 
 | 			if (compressed) | 
 | 				nr++; | 
 | 			else | 
 | 				btrfs_writepage_endio_finish_ordered(inode, | 
 | 						page, cur, cur + iosize - 1, true); | 
 | 			btrfs_page_clear_dirty(fs_info, page, cur, iosize); | 
 | 			cur += iosize; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		btrfs_set_range_writeback(inode, cur, cur + iosize - 1); | 
 | 		if (!PageWriteback(page)) { | 
 | 			btrfs_err(inode->root->fs_info, | 
 | 				   "page %lu not writeback, cur %llu end %llu", | 
 | 			       page->index, cur, end); | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Although the PageDirty bit is cleared before entering this | 
 | 		 * function, subpage dirty bit is not cleared. | 
 | 		 * So clear subpage dirty bit here so next time we won't submit | 
 | 		 * page for range already written to disk. | 
 | 		 */ | 
 | 		btrfs_page_clear_dirty(fs_info, page, cur, iosize); | 
 |  | 
 | 		ret = submit_extent_page(opf | write_flags, wbc, | 
 | 					 &epd->bio_ctrl, page, | 
 | 					 disk_bytenr, iosize, | 
 | 					 cur - page_offset(page), | 
 | 					 end_bio_extent_writepage, | 
 | 					 0, 0, false); | 
 | 		if (ret) { | 
 | 			btrfs_page_set_error(fs_info, page, cur, iosize); | 
 | 			if (PageWriteback(page)) | 
 | 				btrfs_page_clear_writeback(fs_info, page, cur, | 
 | 							   iosize); | 
 | 		} | 
 |  | 
 | 		cur += iosize; | 
 | 		nr++; | 
 | 	} | 
 | 	/* | 
 | 	 * If we finish without problem, we should not only clear page dirty, | 
 | 	 * but also empty subpage dirty bits | 
 | 	 */ | 
 | 	if (!ret) | 
 | 		btrfs_page_assert_not_dirty(fs_info, page); | 
 | 	*nr_ret = nr; | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * the writepage semantics are similar to regular writepage.  extent | 
 |  * records are inserted to lock ranges in the tree, and as dirty areas | 
 |  * are found, they are marked writeback.  Then the lock bits are removed | 
 |  * and the end_io handler clears the writeback ranges | 
 |  * | 
 |  * Return 0 if everything goes well. | 
 |  * Return <0 for error. | 
 |  */ | 
 | static int __extent_writepage(struct page *page, struct writeback_control *wbc, | 
 | 			      struct extent_page_data *epd) | 
 | { | 
 | 	struct inode *inode = page->mapping->host; | 
 | 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
 | 	const u64 page_start = page_offset(page); | 
 | 	const u64 page_end = page_start + PAGE_SIZE - 1; | 
 | 	int ret; | 
 | 	int nr = 0; | 
 | 	size_t pg_offset; | 
 | 	loff_t i_size = i_size_read(inode); | 
 | 	unsigned long end_index = i_size >> PAGE_SHIFT; | 
 | 	unsigned long nr_written = 0; | 
 |  | 
 | 	trace___extent_writepage(page, inode, wbc); | 
 |  | 
 | 	WARN_ON(!PageLocked(page)); | 
 |  | 
 | 	btrfs_page_clear_error(btrfs_sb(inode->i_sb), page, | 
 | 			       page_offset(page), PAGE_SIZE); | 
 |  | 
 | 	pg_offset = offset_in_page(i_size); | 
 | 	if (page->index > end_index || | 
 | 	   (page->index == end_index && !pg_offset)) { | 
 | 		page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE); | 
 | 		unlock_page(page); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (page->index == end_index) { | 
 | 		memzero_page(page, pg_offset, PAGE_SIZE - pg_offset); | 
 | 		flush_dcache_page(page); | 
 | 	} | 
 |  | 
 | 	ret = set_page_extent_mapped(page); | 
 | 	if (ret < 0) { | 
 | 		SetPageError(page); | 
 | 		goto done; | 
 | 	} | 
 |  | 
 | 	if (!epd->extent_locked) { | 
 | 		ret = writepage_delalloc(BTRFS_I(inode), page, wbc, &nr_written); | 
 | 		if (ret == 1) | 
 | 			return 0; | 
 | 		if (ret) | 
 | 			goto done; | 
 | 	} | 
 |  | 
 | 	ret = __extent_writepage_io(BTRFS_I(inode), page, wbc, epd, i_size, | 
 | 				    nr_written, &nr); | 
 | 	if (ret == 1) | 
 | 		return 0; | 
 |  | 
 | done: | 
 | 	if (nr == 0) { | 
 | 		/* make sure the mapping tag for page dirty gets cleared */ | 
 | 		set_page_writeback(page); | 
 | 		end_page_writeback(page); | 
 | 	} | 
 | 	/* | 
 | 	 * Here we used to have a check for PageError() and then set @ret and | 
 | 	 * call end_extent_writepage(). | 
 | 	 * | 
 | 	 * But in fact setting @ret here will cause different error paths | 
 | 	 * between subpage and regular sectorsize. | 
 | 	 * | 
 | 	 * For regular page size, we never submit current page, but only add | 
 | 	 * current page to current bio. | 
 | 	 * The bio submission can only happen in next page. | 
 | 	 * Thus if we hit the PageError() branch, @ret is already set to | 
 | 	 * non-zero value and will not get updated for regular sectorsize. | 
 | 	 * | 
 | 	 * But for subpage case, it's possible we submit part of current page, | 
 | 	 * thus can get PageError() set by submitted bio of the same page, | 
 | 	 * while our @ret is still 0. | 
 | 	 * | 
 | 	 * So here we unify the behavior and don't set @ret. | 
 | 	 * Error can still be properly passed to higher layer as page will | 
 | 	 * be set error, here we just don't handle the IO failure. | 
 | 	 * | 
 | 	 * NOTE: This is just a hotfix for subpage. | 
 | 	 * The root fix will be properly ending ordered extent when we hit | 
 | 	 * an error during writeback. | 
 | 	 * | 
 | 	 * But that needs a bigger refactoring, as we not only need to grab the | 
 | 	 * submitted OE, but also need to know exactly at which bytenr we hit | 
 | 	 * the error. | 
 | 	 * Currently the full page based __extent_writepage_io() is not | 
 | 	 * capable of that. | 
 | 	 */ | 
 | 	if (PageError(page)) | 
 | 		end_extent_writepage(page, ret, page_start, page_end); | 
 | 	if (epd->extent_locked) { | 
 | 		/* | 
 | 		 * If epd->extent_locked, it's from extent_write_locked_range(), | 
 | 		 * the page can either be locked by lock_page() or | 
 | 		 * process_one_page(). | 
 | 		 * Let btrfs_page_unlock_writer() handle both cases. | 
 | 		 */ | 
 | 		ASSERT(wbc); | 
 | 		btrfs_page_unlock_writer(fs_info, page, wbc->range_start, | 
 | 					 wbc->range_end + 1 - wbc->range_start); | 
 | 	} else { | 
 | 		unlock_page(page); | 
 | 	} | 
 | 	ASSERT(ret <= 0); | 
 | 	return ret; | 
 | } | 
 |  | 
 | void wait_on_extent_buffer_writeback(struct extent_buffer *eb) | 
 | { | 
 | 	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK, | 
 | 		       TASK_UNINTERRUPTIBLE); | 
 | } | 
 |  | 
 | static void end_extent_buffer_writeback(struct extent_buffer *eb) | 
 | { | 
 | 	if (test_bit(EXTENT_BUFFER_ZONE_FINISH, &eb->bflags)) | 
 | 		btrfs_zone_finish_endio(eb->fs_info, eb->start, eb->len); | 
 |  | 
 | 	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); | 
 | 	smp_mb__after_atomic(); | 
 | 	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK); | 
 | } | 
 |  | 
 | /* | 
 |  * Lock extent buffer status and pages for writeback. | 
 |  * | 
 |  * May try to flush write bio if we can't get the lock. | 
 |  * | 
 |  * Return  0 if the extent buffer doesn't need to be submitted. | 
 |  *           (E.g. the extent buffer is not dirty) | 
 |  * Return >0 is the extent buffer is submitted to bio. | 
 |  * Return <0 if something went wrong, no page is locked. | 
 |  */ | 
 | static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb, | 
 | 			  struct extent_page_data *epd) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = eb->fs_info; | 
 | 	int i, num_pages, failed_page_nr; | 
 | 	int flush = 0; | 
 | 	int ret = 0; | 
 |  | 
 | 	if (!btrfs_try_tree_write_lock(eb)) { | 
 | 		ret = flush_write_bio(epd); | 
 | 		if (ret < 0) | 
 | 			return ret; | 
 | 		flush = 1; | 
 | 		btrfs_tree_lock(eb); | 
 | 	} | 
 |  | 
 | 	if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) { | 
 | 		btrfs_tree_unlock(eb); | 
 | 		if (!epd->sync_io) | 
 | 			return 0; | 
 | 		if (!flush) { | 
 | 			ret = flush_write_bio(epd); | 
 | 			if (ret < 0) | 
 | 				return ret; | 
 | 			flush = 1; | 
 | 		} | 
 | 		while (1) { | 
 | 			wait_on_extent_buffer_writeback(eb); | 
 | 			btrfs_tree_lock(eb); | 
 | 			if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) | 
 | 				break; | 
 | 			btrfs_tree_unlock(eb); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We need to do this to prevent races in people who check if the eb is | 
 | 	 * under IO since we can end up having no IO bits set for a short period | 
 | 	 * of time. | 
 | 	 */ | 
 | 	spin_lock(&eb->refs_lock); | 
 | 	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { | 
 | 		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); | 
 | 		spin_unlock(&eb->refs_lock); | 
 | 		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); | 
 | 		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, | 
 | 					 -eb->len, | 
 | 					 fs_info->dirty_metadata_batch); | 
 | 		ret = 1; | 
 | 	} else { | 
 | 		spin_unlock(&eb->refs_lock); | 
 | 	} | 
 |  | 
 | 	btrfs_tree_unlock(eb); | 
 |  | 
 | 	/* | 
 | 	 * Either we don't need to submit any tree block, or we're submitting | 
 | 	 * subpage eb. | 
 | 	 * Subpage metadata doesn't use page locking at all, so we can skip | 
 | 	 * the page locking. | 
 | 	 */ | 
 | 	if (!ret || fs_info->sectorsize < PAGE_SIZE) | 
 | 		return ret; | 
 |  | 
 | 	num_pages = num_extent_pages(eb); | 
 | 	for (i = 0; i < num_pages; i++) { | 
 | 		struct page *p = eb->pages[i]; | 
 |  | 
 | 		if (!trylock_page(p)) { | 
 | 			if (!flush) { | 
 | 				int err; | 
 |  | 
 | 				err = flush_write_bio(epd); | 
 | 				if (err < 0) { | 
 | 					ret = err; | 
 | 					failed_page_nr = i; | 
 | 					goto err_unlock; | 
 | 				} | 
 | 				flush = 1; | 
 | 			} | 
 | 			lock_page(p); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | err_unlock: | 
 | 	/* Unlock already locked pages */ | 
 | 	for (i = 0; i < failed_page_nr; i++) | 
 | 		unlock_page(eb->pages[i]); | 
 | 	/* | 
 | 	 * Clear EXTENT_BUFFER_WRITEBACK and wake up anyone waiting on it. | 
 | 	 * Also set back EXTENT_BUFFER_DIRTY so future attempts to this eb can | 
 | 	 * be made and undo everything done before. | 
 | 	 */ | 
 | 	btrfs_tree_lock(eb); | 
 | 	spin_lock(&eb->refs_lock); | 
 | 	set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); | 
 | 	end_extent_buffer_writeback(eb); | 
 | 	spin_unlock(&eb->refs_lock); | 
 | 	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, eb->len, | 
 | 				 fs_info->dirty_metadata_batch); | 
 | 	btrfs_clear_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); | 
 | 	btrfs_tree_unlock(eb); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void set_btree_ioerr(struct page *page, struct extent_buffer *eb) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = eb->fs_info; | 
 |  | 
 | 	btrfs_page_set_error(fs_info, page, eb->start, eb->len); | 
 | 	if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * A read may stumble upon this buffer later, make sure that it gets an | 
 | 	 * error and knows there was an error. | 
 | 	 */ | 
 | 	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); | 
 |  | 
 | 	/* | 
 | 	 * We need to set the mapping with the io error as well because a write | 
 | 	 * error will flip the file system readonly, and then syncfs() will | 
 | 	 * return a 0 because we are readonly if we don't modify the err seq for | 
 | 	 * the superblock. | 
 | 	 */ | 
 | 	mapping_set_error(page->mapping, -EIO); | 
 |  | 
 | 	/* | 
 | 	 * If we error out, we should add back the dirty_metadata_bytes | 
 | 	 * to make it consistent. | 
 | 	 */ | 
 | 	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, | 
 | 				 eb->len, fs_info->dirty_metadata_batch); | 
 |  | 
 | 	/* | 
 | 	 * If writeback for a btree extent that doesn't belong to a log tree | 
 | 	 * failed, increment the counter transaction->eb_write_errors. | 
 | 	 * We do this because while the transaction is running and before it's | 
 | 	 * committing (when we call filemap_fdata[write|wait]_range against | 
 | 	 * the btree inode), we might have | 
 | 	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it | 
 | 	 * returns an error or an error happens during writeback, when we're | 
 | 	 * committing the transaction we wouldn't know about it, since the pages | 
 | 	 * can be no longer dirty nor marked anymore for writeback (if a | 
 | 	 * subsequent modification to the extent buffer didn't happen before the | 
 | 	 * transaction commit), which makes filemap_fdata[write|wait]_range not | 
 | 	 * able to find the pages tagged with SetPageError at transaction | 
 | 	 * commit time. So if this happens we must abort the transaction, | 
 | 	 * otherwise we commit a super block with btree roots that point to | 
 | 	 * btree nodes/leafs whose content on disk is invalid - either garbage | 
 | 	 * or the content of some node/leaf from a past generation that got | 
 | 	 * cowed or deleted and is no longer valid. | 
 | 	 * | 
 | 	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would | 
 | 	 * not be enough - we need to distinguish between log tree extents vs | 
 | 	 * non-log tree extents, and the next filemap_fdatawait_range() call | 
 | 	 * will catch and clear such errors in the mapping - and that call might | 
 | 	 * be from a log sync and not from a transaction commit. Also, checking | 
 | 	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is | 
 | 	 * not done and would not be reliable - the eb might have been released | 
 | 	 * from memory and reading it back again means that flag would not be | 
 | 	 * set (since it's a runtime flag, not persisted on disk). | 
 | 	 * | 
 | 	 * Using the flags below in the btree inode also makes us achieve the | 
 | 	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started | 
 | 	 * writeback for all dirty pages and before filemap_fdatawait_range() | 
 | 	 * is called, the writeback for all dirty pages had already finished | 
 | 	 * with errors - because we were not using AS_EIO/AS_ENOSPC, | 
 | 	 * filemap_fdatawait_range() would return success, as it could not know | 
 | 	 * that writeback errors happened (the pages were no longer tagged for | 
 | 	 * writeback). | 
 | 	 */ | 
 | 	switch (eb->log_index) { | 
 | 	case -1: | 
 | 		set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags); | 
 | 		break; | 
 | 	case 0: | 
 | 		set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags); | 
 | 		break; | 
 | 	case 1: | 
 | 		set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags); | 
 | 		break; | 
 | 	default: | 
 | 		BUG(); /* unexpected, logic error */ | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * The endio specific version which won't touch any unsafe spinlock in endio | 
 |  * context. | 
 |  */ | 
 | static struct extent_buffer *find_extent_buffer_nolock( | 
 | 		struct btrfs_fs_info *fs_info, u64 start) | 
 | { | 
 | 	struct extent_buffer *eb; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	eb = radix_tree_lookup(&fs_info->buffer_radix, | 
 | 			       start >> fs_info->sectorsize_bits); | 
 | 	if (eb && atomic_inc_not_zero(&eb->refs)) { | 
 | 		rcu_read_unlock(); | 
 | 		return eb; | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * The endio function for subpage extent buffer write. | 
 |  * | 
 |  * Unlike end_bio_extent_buffer_writepage(), we only call end_page_writeback() | 
 |  * after all extent buffers in the page has finished their writeback. | 
 |  */ | 
 | static void end_bio_subpage_eb_writepage(struct bio *bio) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info; | 
 | 	struct bio_vec *bvec; | 
 | 	struct bvec_iter_all iter_all; | 
 |  | 
 | 	fs_info = btrfs_sb(bio_first_page_all(bio)->mapping->host->i_sb); | 
 | 	ASSERT(fs_info->sectorsize < PAGE_SIZE); | 
 |  | 
 | 	ASSERT(!bio_flagged(bio, BIO_CLONED)); | 
 | 	bio_for_each_segment_all(bvec, bio, iter_all) { | 
 | 		struct page *page = bvec->bv_page; | 
 | 		u64 bvec_start = page_offset(page) + bvec->bv_offset; | 
 | 		u64 bvec_end = bvec_start + bvec->bv_len - 1; | 
 | 		u64 cur_bytenr = bvec_start; | 
 |  | 
 | 		ASSERT(IS_ALIGNED(bvec->bv_len, fs_info->nodesize)); | 
 |  | 
 | 		/* Iterate through all extent buffers in the range */ | 
 | 		while (cur_bytenr <= bvec_end) { | 
 | 			struct extent_buffer *eb; | 
 | 			int done; | 
 |  | 
 | 			/* | 
 | 			 * Here we can't use find_extent_buffer(), as it may | 
 | 			 * try to lock eb->refs_lock, which is not safe in endio | 
 | 			 * context. | 
 | 			 */ | 
 | 			eb = find_extent_buffer_nolock(fs_info, cur_bytenr); | 
 | 			ASSERT(eb); | 
 |  | 
 | 			cur_bytenr = eb->start + eb->len; | 
 |  | 
 | 			ASSERT(test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)); | 
 | 			done = atomic_dec_and_test(&eb->io_pages); | 
 | 			ASSERT(done); | 
 |  | 
 | 			if (bio->bi_status || | 
 | 			    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) { | 
 | 				ClearPageUptodate(page); | 
 | 				set_btree_ioerr(page, eb); | 
 | 			} | 
 |  | 
 | 			btrfs_subpage_clear_writeback(fs_info, page, eb->start, | 
 | 						      eb->len); | 
 | 			end_extent_buffer_writeback(eb); | 
 | 			/* | 
 | 			 * free_extent_buffer() will grab spinlock which is not | 
 | 			 * safe in endio context. Thus here we manually dec | 
 | 			 * the ref. | 
 | 			 */ | 
 | 			atomic_dec(&eb->refs); | 
 | 		} | 
 | 	} | 
 | 	bio_put(bio); | 
 | } | 
 |  | 
 | static void end_bio_extent_buffer_writepage(struct bio *bio) | 
 | { | 
 | 	struct bio_vec *bvec; | 
 | 	struct extent_buffer *eb; | 
 | 	int done; | 
 | 	struct bvec_iter_all iter_all; | 
 |  | 
 | 	ASSERT(!bio_flagged(bio, BIO_CLONED)); | 
 | 	bio_for_each_segment_all(bvec, bio, iter_all) { | 
 | 		struct page *page = bvec->bv_page; | 
 |  | 
 | 		eb = (struct extent_buffer *)page->private; | 
 | 		BUG_ON(!eb); | 
 | 		done = atomic_dec_and_test(&eb->io_pages); | 
 |  | 
 | 		if (bio->bi_status || | 
 | 		    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) { | 
 | 			ClearPageUptodate(page); | 
 | 			set_btree_ioerr(page, eb); | 
 | 		} | 
 |  | 
 | 		end_page_writeback(page); | 
 |  | 
 | 		if (!done) | 
 | 			continue; | 
 |  | 
 | 		end_extent_buffer_writeback(eb); | 
 | 	} | 
 |  | 
 | 	bio_put(bio); | 
 | } | 
 |  | 
 | static void prepare_eb_write(struct extent_buffer *eb) | 
 | { | 
 | 	u32 nritems; | 
 | 	unsigned long start; | 
 | 	unsigned long end; | 
 |  | 
 | 	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); | 
 | 	atomic_set(&eb->io_pages, num_extent_pages(eb)); | 
 |  | 
 | 	/* Set btree blocks beyond nritems with 0 to avoid stale content */ | 
 | 	nritems = btrfs_header_nritems(eb); | 
 | 	if (btrfs_header_level(eb) > 0) { | 
 | 		end = btrfs_node_key_ptr_offset(nritems); | 
 | 		memzero_extent_buffer(eb, end, eb->len - end); | 
 | 	} else { | 
 | 		/* | 
 | 		 * Leaf: | 
 | 		 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0 | 
 | 		 */ | 
 | 		start = btrfs_item_nr_offset(nritems); | 
 | 		end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb); | 
 | 		memzero_extent_buffer(eb, start, end - start); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Unlike the work in write_one_eb(), we rely completely on extent locking. | 
 |  * Page locking is only utilized at minimum to keep the VMM code happy. | 
 |  */ | 
 | static int write_one_subpage_eb(struct extent_buffer *eb, | 
 | 				struct writeback_control *wbc, | 
 | 				struct extent_page_data *epd) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = eb->fs_info; | 
 | 	struct page *page = eb->pages[0]; | 
 | 	unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META; | 
 | 	bool no_dirty_ebs = false; | 
 | 	int ret; | 
 |  | 
 | 	prepare_eb_write(eb); | 
 |  | 
 | 	/* clear_page_dirty_for_io() in subpage helper needs page locked */ | 
 | 	lock_page(page); | 
 | 	btrfs_subpage_set_writeback(fs_info, page, eb->start, eb->len); | 
 |  | 
 | 	/* Check if this is the last dirty bit to update nr_written */ | 
 | 	no_dirty_ebs = btrfs_subpage_clear_and_test_dirty(fs_info, page, | 
 | 							  eb->start, eb->len); | 
 | 	if (no_dirty_ebs) | 
 | 		clear_page_dirty_for_io(page); | 
 |  | 
 | 	ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc, | 
 | 			&epd->bio_ctrl, page, eb->start, eb->len, | 
 | 			eb->start - page_offset(page), | 
 | 			end_bio_subpage_eb_writepage, 0, 0, false); | 
 | 	if (ret) { | 
 | 		btrfs_subpage_clear_writeback(fs_info, page, eb->start, eb->len); | 
 | 		set_btree_ioerr(page, eb); | 
 | 		unlock_page(page); | 
 |  | 
 | 		if (atomic_dec_and_test(&eb->io_pages)) | 
 | 			end_extent_buffer_writeback(eb); | 
 | 		return -EIO; | 
 | 	} | 
 | 	unlock_page(page); | 
 | 	/* | 
 | 	 * Submission finished without problem, if no range of the page is | 
 | 	 * dirty anymore, we have submitted a page.  Update nr_written in wbc. | 
 | 	 */ | 
 | 	if (no_dirty_ebs) | 
 | 		update_nr_written(wbc, 1); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static noinline_for_stack int write_one_eb(struct extent_buffer *eb, | 
 | 			struct writeback_control *wbc, | 
 | 			struct extent_page_data *epd) | 
 | { | 
 | 	u64 disk_bytenr = eb->start; | 
 | 	int i, num_pages; | 
 | 	unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META; | 
 | 	int ret = 0; | 
 |  | 
 | 	prepare_eb_write(eb); | 
 |  | 
 | 	num_pages = num_extent_pages(eb); | 
 | 	for (i = 0; i < num_pages; i++) { | 
 | 		struct page *p = eb->pages[i]; | 
 |  | 
 | 		clear_page_dirty_for_io(p); | 
 | 		set_page_writeback(p); | 
 | 		ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc, | 
 | 					 &epd->bio_ctrl, p, disk_bytenr, | 
 | 					 PAGE_SIZE, 0, | 
 | 					 end_bio_extent_buffer_writepage, | 
 | 					 0, 0, false); | 
 | 		if (ret) { | 
 | 			set_btree_ioerr(p, eb); | 
 | 			if (PageWriteback(p)) | 
 | 				end_page_writeback(p); | 
 | 			if (atomic_sub_and_test(num_pages - i, &eb->io_pages)) | 
 | 				end_extent_buffer_writeback(eb); | 
 | 			ret = -EIO; | 
 | 			break; | 
 | 		} | 
 | 		disk_bytenr += PAGE_SIZE; | 
 | 		update_nr_written(wbc, 1); | 
 | 		unlock_page(p); | 
 | 	} | 
 |  | 
 | 	if (unlikely(ret)) { | 
 | 		for (; i < num_pages; i++) { | 
 | 			struct page *p = eb->pages[i]; | 
 | 			clear_page_dirty_for_io(p); | 
 | 			unlock_page(p); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Submit one subpage btree page. | 
 |  * | 
 |  * The main difference to submit_eb_page() is: | 
 |  * - Page locking | 
 |  *   For subpage, we don't rely on page locking at all. | 
 |  * | 
 |  * - Flush write bio | 
 |  *   We only flush bio if we may be unable to fit current extent buffers into | 
 |  *   current bio. | 
 |  * | 
 |  * Return >=0 for the number of submitted extent buffers. | 
 |  * Return <0 for fatal error. | 
 |  */ | 
 | static int submit_eb_subpage(struct page *page, | 
 | 			     struct writeback_control *wbc, | 
 | 			     struct extent_page_data *epd) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); | 
 | 	int submitted = 0; | 
 | 	u64 page_start = page_offset(page); | 
 | 	int bit_start = 0; | 
 | 	int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits; | 
 | 	int ret; | 
 |  | 
 | 	/* Lock and write each dirty extent buffers in the range */ | 
 | 	while (bit_start < fs_info->subpage_info->bitmap_nr_bits) { | 
 | 		struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private; | 
 | 		struct extent_buffer *eb; | 
 | 		unsigned long flags; | 
 | 		u64 start; | 
 |  | 
 | 		/* | 
 | 		 * Take private lock to ensure the subpage won't be detached | 
 | 		 * in the meantime. | 
 | 		 */ | 
 | 		spin_lock(&page->mapping->private_lock); | 
 | 		if (!PagePrivate(page)) { | 
 | 			spin_unlock(&page->mapping->private_lock); | 
 | 			break; | 
 | 		} | 
 | 		spin_lock_irqsave(&subpage->lock, flags); | 
 | 		if (!test_bit(bit_start + fs_info->subpage_info->dirty_offset, | 
 | 			      subpage->bitmaps)) { | 
 | 			spin_unlock_irqrestore(&subpage->lock, flags); | 
 | 			spin_unlock(&page->mapping->private_lock); | 
 | 			bit_start++; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		start = page_start + bit_start * fs_info->sectorsize; | 
 | 		bit_start += sectors_per_node; | 
 |  | 
 | 		/* | 
 | 		 * Here we just want to grab the eb without touching extra | 
 | 		 * spin locks, so call find_extent_buffer_nolock(). | 
 | 		 */ | 
 | 		eb = find_extent_buffer_nolock(fs_info, start); | 
 | 		spin_unlock_irqrestore(&subpage->lock, flags); | 
 | 		spin_unlock(&page->mapping->private_lock); | 
 |  | 
 | 		/* | 
 | 		 * The eb has already reached 0 refs thus find_extent_buffer() | 
 | 		 * doesn't return it. We don't need to write back such eb | 
 | 		 * anyway. | 
 | 		 */ | 
 | 		if (!eb) | 
 | 			continue; | 
 |  | 
 | 		ret = lock_extent_buffer_for_io(eb, epd); | 
 | 		if (ret == 0) { | 
 | 			free_extent_buffer(eb); | 
 | 			continue; | 
 | 		} | 
 | 		if (ret < 0) { | 
 | 			free_extent_buffer(eb); | 
 | 			goto cleanup; | 
 | 		} | 
 | 		ret = write_one_subpage_eb(eb, wbc, epd); | 
 | 		free_extent_buffer(eb); | 
 | 		if (ret < 0) | 
 | 			goto cleanup; | 
 | 		submitted++; | 
 | 	} | 
 | 	return submitted; | 
 |  | 
 | cleanup: | 
 | 	/* We hit error, end bio for the submitted extent buffers */ | 
 | 	end_write_bio(epd, ret); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Submit all page(s) of one extent buffer. | 
 |  * | 
 |  * @page:	the page of one extent buffer | 
 |  * @eb_context:	to determine if we need to submit this page, if current page | 
 |  *		belongs to this eb, we don't need to submit | 
 |  * | 
 |  * The caller should pass each page in their bytenr order, and here we use | 
 |  * @eb_context to determine if we have submitted pages of one extent buffer. | 
 |  * | 
 |  * If we have, we just skip until we hit a new page that doesn't belong to | 
 |  * current @eb_context. | 
 |  * | 
 |  * If not, we submit all the page(s) of the extent buffer. | 
 |  * | 
 |  * Return >0 if we have submitted the extent buffer successfully. | 
 |  * Return 0 if we don't need to submit the page, as it's already submitted by | 
 |  * previous call. | 
 |  * Return <0 for fatal error. | 
 |  */ | 
 | static int submit_eb_page(struct page *page, struct writeback_control *wbc, | 
 | 			  struct extent_page_data *epd, | 
 | 			  struct extent_buffer **eb_context) | 
 | { | 
 | 	struct address_space *mapping = page->mapping; | 
 | 	struct btrfs_block_group *cache = NULL; | 
 | 	struct extent_buffer *eb; | 
 | 	int ret; | 
 |  | 
 | 	if (!PagePrivate(page)) | 
 | 		return 0; | 
 |  | 
 | 	if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE) | 
 | 		return submit_eb_subpage(page, wbc, epd); | 
 |  | 
 | 	spin_lock(&mapping->private_lock); | 
 | 	if (!PagePrivate(page)) { | 
 | 		spin_unlock(&mapping->private_lock); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	eb = (struct extent_buffer *)page->private; | 
 |  | 
 | 	/* | 
 | 	 * Shouldn't happen and normally this would be a BUG_ON but no point | 
 | 	 * crashing the machine for something we can survive anyway. | 
 | 	 */ | 
 | 	if (WARN_ON(!eb)) { | 
 | 		spin_unlock(&mapping->private_lock); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (eb == *eb_context) { | 
 | 		spin_unlock(&mapping->private_lock); | 
 | 		return 0; | 
 | 	} | 
 | 	ret = atomic_inc_not_zero(&eb->refs); | 
 | 	spin_unlock(&mapping->private_lock); | 
 | 	if (!ret) | 
 | 		return 0; | 
 |  | 
 | 	if (!btrfs_check_meta_write_pointer(eb->fs_info, eb, &cache)) { | 
 | 		/* | 
 | 		 * If for_sync, this hole will be filled with | 
 | 		 * trasnsaction commit. | 
 | 		 */ | 
 | 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) | 
 | 			ret = -EAGAIN; | 
 | 		else | 
 | 			ret = 0; | 
 | 		free_extent_buffer(eb); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	*eb_context = eb; | 
 |  | 
 | 	ret = lock_extent_buffer_for_io(eb, epd); | 
 | 	if (ret <= 0) { | 
 | 		btrfs_revert_meta_write_pointer(cache, eb); | 
 | 		if (cache) | 
 | 			btrfs_put_block_group(cache); | 
 | 		free_extent_buffer(eb); | 
 | 		return ret; | 
 | 	} | 
 | 	if (cache) { | 
 | 		/* Impiles write in zoned mode */ | 
 | 		btrfs_put_block_group(cache); | 
 | 		/* Mark the last eb in a block group */ | 
 | 		if (cache->seq_zone && eb->start + eb->len == cache->zone_capacity) | 
 | 			set_bit(EXTENT_BUFFER_ZONE_FINISH, &eb->bflags); | 
 | 	} | 
 | 	ret = write_one_eb(eb, wbc, epd); | 
 | 	free_extent_buffer(eb); | 
 | 	if (ret < 0) | 
 | 		return ret; | 
 | 	return 1; | 
 | } | 
 |  | 
 | int btree_write_cache_pages(struct address_space *mapping, | 
 | 				   struct writeback_control *wbc) | 
 | { | 
 | 	struct extent_buffer *eb_context = NULL; | 
 | 	struct extent_page_data epd = { | 
 | 		.bio_ctrl = { 0 }, | 
 | 		.extent_locked = 0, | 
 | 		.sync_io = wbc->sync_mode == WB_SYNC_ALL, | 
 | 	}; | 
 | 	struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info; | 
 | 	int ret = 0; | 
 | 	int done = 0; | 
 | 	int nr_to_write_done = 0; | 
 | 	struct pagevec pvec; | 
 | 	int nr_pages; | 
 | 	pgoff_t index; | 
 | 	pgoff_t end;		/* Inclusive */ | 
 | 	int scanned = 0; | 
 | 	xa_mark_t tag; | 
 |  | 
 | 	pagevec_init(&pvec); | 
 | 	if (wbc->range_cyclic) { | 
 | 		index = mapping->writeback_index; /* Start from prev offset */ | 
 | 		end = -1; | 
 | 		/* | 
 | 		 * Start from the beginning does not need to cycle over the | 
 | 		 * range, mark it as scanned. | 
 | 		 */ | 
 | 		scanned = (index == 0); | 
 | 	} else { | 
 | 		index = wbc->range_start >> PAGE_SHIFT; | 
 | 		end = wbc->range_end >> PAGE_SHIFT; | 
 | 		scanned = 1; | 
 | 	} | 
 | 	if (wbc->sync_mode == WB_SYNC_ALL) | 
 | 		tag = PAGECACHE_TAG_TOWRITE; | 
 | 	else | 
 | 		tag = PAGECACHE_TAG_DIRTY; | 
 | 	btrfs_zoned_meta_io_lock(fs_info); | 
 | retry: | 
 | 	if (wbc->sync_mode == WB_SYNC_ALL) | 
 | 		tag_pages_for_writeback(mapping, index, end); | 
 | 	while (!done && !nr_to_write_done && (index <= end) && | 
 | 	       (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, | 
 | 			tag))) { | 
 | 		unsigned i; | 
 |  | 
 | 		for (i = 0; i < nr_pages; i++) { | 
 | 			struct page *page = pvec.pages[i]; | 
 |  | 
 | 			ret = submit_eb_page(page, wbc, &epd, &eb_context); | 
 | 			if (ret == 0) | 
 | 				continue; | 
 | 			if (ret < 0) { | 
 | 				done = 1; | 
 | 				break; | 
 | 			} | 
 |  | 
 | 			/* | 
 | 			 * the filesystem may choose to bump up nr_to_write. | 
 | 			 * We have to make sure to honor the new nr_to_write | 
 | 			 * at any time | 
 | 			 */ | 
 | 			nr_to_write_done = wbc->nr_to_write <= 0; | 
 | 		} | 
 | 		pagevec_release(&pvec); | 
 | 		cond_resched(); | 
 | 	} | 
 | 	if (!scanned && !done) { | 
 | 		/* | 
 | 		 * We hit the last page and there is more work to be done: wrap | 
 | 		 * back to the start of the file | 
 | 		 */ | 
 | 		scanned = 1; | 
 | 		index = 0; | 
 | 		goto retry; | 
 | 	} | 
 | 	if (ret < 0) { | 
 | 		end_write_bio(&epd, ret); | 
 | 		goto out; | 
 | 	} | 
 | 	/* | 
 | 	 * If something went wrong, don't allow any metadata write bio to be | 
 | 	 * submitted. | 
 | 	 * | 
 | 	 * This would prevent use-after-free if we had dirty pages not | 
 | 	 * cleaned up, which can still happen by fuzzed images. | 
 | 	 * | 
 | 	 * - Bad extent tree | 
 | 	 *   Allowing existing tree block to be allocated for other trees. | 
 | 	 * | 
 | 	 * - Log tree operations | 
 | 	 *   Exiting tree blocks get allocated to log tree, bumps its | 
 | 	 *   generation, then get cleaned in tree re-balance. | 
 | 	 *   Such tree block will not be written back, since it's clean, | 
 | 	 *   thus no WRITTEN flag set. | 
 | 	 *   And after log writes back, this tree block is not traced by | 
 | 	 *   any dirty extent_io_tree. | 
 | 	 * | 
 | 	 * - Offending tree block gets re-dirtied from its original owner | 
 | 	 *   Since it has bumped generation, no WRITTEN flag, it can be | 
 | 	 *   reused without COWing. This tree block will not be traced | 
 | 	 *   by btrfs_transaction::dirty_pages. | 
 | 	 * | 
 | 	 *   Now such dirty tree block will not be cleaned by any dirty | 
 | 	 *   extent io tree. Thus we don't want to submit such wild eb | 
 | 	 *   if the fs already has error. | 
 | 	 */ | 
 | 	if (!BTRFS_FS_ERROR(fs_info)) { | 
 | 		ret = flush_write_bio(&epd); | 
 | 	} else { | 
 | 		ret = -EROFS; | 
 | 		end_write_bio(&epd, ret); | 
 | 	} | 
 | out: | 
 | 	btrfs_zoned_meta_io_unlock(fs_info); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * Walk the list of dirty pages of the given address space and write all of them. | 
 |  * | 
 |  * @mapping: address space structure to write | 
 |  * @wbc:     subtract the number of written pages from *@wbc->nr_to_write | 
 |  * @epd:     holds context for the write, namely the bio | 
 |  * | 
 |  * If a page is already under I/O, write_cache_pages() skips it, even | 
 |  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback, | 
 |  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync() | 
 |  * and msync() need to guarantee that all the data which was dirty at the time | 
 |  * the call was made get new I/O started against them.  If wbc->sync_mode is | 
 |  * WB_SYNC_ALL then we were called for data integrity and we must wait for | 
 |  * existing IO to complete. | 
 |  */ | 
 | static int extent_write_cache_pages(struct address_space *mapping, | 
 | 			     struct writeback_control *wbc, | 
 | 			     struct extent_page_data *epd) | 
 | { | 
 | 	struct inode *inode = mapping->host; | 
 | 	int ret = 0; | 
 | 	int done = 0; | 
 | 	int nr_to_write_done = 0; | 
 | 	struct pagevec pvec; | 
 | 	int nr_pages; | 
 | 	pgoff_t index; | 
 | 	pgoff_t end;		/* Inclusive */ | 
 | 	pgoff_t done_index; | 
 | 	int range_whole = 0; | 
 | 	int scanned = 0; | 
 | 	xa_mark_t tag; | 
 |  | 
 | 	/* | 
 | 	 * We have to hold onto the inode so that ordered extents can do their | 
 | 	 * work when the IO finishes.  The alternative to this is failing to add | 
 | 	 * an ordered extent if the igrab() fails there and that is a huge pain | 
 | 	 * to deal with, so instead just hold onto the inode throughout the | 
 | 	 * writepages operation.  If it fails here we are freeing up the inode | 
 | 	 * anyway and we'd rather not waste our time writing out stuff that is | 
 | 	 * going to be truncated anyway. | 
 | 	 */ | 
 | 	if (!igrab(inode)) | 
 | 		return 0; | 
 |  | 
 | 	pagevec_init(&pvec); | 
 | 	if (wbc->range_cyclic) { | 
 | 		index = mapping->writeback_index; /* Start from prev offset */ | 
 | 		end = -1; | 
 | 		/* | 
 | 		 * Start from the beginning does not need to cycle over the | 
 | 		 * range, mark it as scanned. | 
 | 		 */ | 
 | 		scanned = (index == 0); | 
 | 	} else { | 
 | 		index = wbc->range_start >> PAGE_SHIFT; | 
 | 		end = wbc->range_end >> PAGE_SHIFT; | 
 | 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) | 
 | 			range_whole = 1; | 
 | 		scanned = 1; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We do the tagged writepage as long as the snapshot flush bit is set | 
 | 	 * and we are the first one who do the filemap_flush() on this inode. | 
 | 	 * | 
 | 	 * The nr_to_write == LONG_MAX is needed to make sure other flushers do | 
 | 	 * not race in and drop the bit. | 
 | 	 */ | 
 | 	if (range_whole && wbc->nr_to_write == LONG_MAX && | 
 | 	    test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH, | 
 | 			       &BTRFS_I(inode)->runtime_flags)) | 
 | 		wbc->tagged_writepages = 1; | 
 |  | 
 | 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) | 
 | 		tag = PAGECACHE_TAG_TOWRITE; | 
 | 	else | 
 | 		tag = PAGECACHE_TAG_DIRTY; | 
 | retry: | 
 | 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) | 
 | 		tag_pages_for_writeback(mapping, index, end); | 
 | 	done_index = index; | 
 | 	while (!done && !nr_to_write_done && (index <= end) && | 
 | 			(nr_pages = pagevec_lookup_range_tag(&pvec, mapping, | 
 | 						&index, end, tag))) { | 
 | 		unsigned i; | 
 |  | 
 | 		for (i = 0; i < nr_pages; i++) { | 
 | 			struct page *page = pvec.pages[i]; | 
 |  | 
 | 			done_index = page->index + 1; | 
 | 			/* | 
 | 			 * At this point we hold neither the i_pages lock nor | 
 | 			 * the page lock: the page may be truncated or | 
 | 			 * invalidated (changing page->mapping to NULL), | 
 | 			 * or even swizzled back from swapper_space to | 
 | 			 * tmpfs file mapping | 
 | 			 */ | 
 | 			if (!trylock_page(page)) { | 
 | 				ret = flush_write_bio(epd); | 
 | 				BUG_ON(ret < 0); | 
 | 				lock_page(page); | 
 | 			} | 
 |  | 
 | 			if (unlikely(page->mapping != mapping)) { | 
 | 				unlock_page(page); | 
 | 				continue; | 
 | 			} | 
 |  | 
 | 			if (wbc->sync_mode != WB_SYNC_NONE) { | 
 | 				if (PageWriteback(page)) { | 
 | 					ret = flush_write_bio(epd); | 
 | 					BUG_ON(ret < 0); | 
 | 				} | 
 | 				wait_on_page_writeback(page); | 
 | 			} | 
 |  | 
 | 			if (PageWriteback(page) || | 
 | 			    !clear_page_dirty_for_io(page)) { | 
 | 				unlock_page(page); | 
 | 				continue; | 
 | 			} | 
 |  | 
 | 			ret = __extent_writepage(page, wbc, epd); | 
 | 			if (ret < 0) { | 
 | 				done = 1; | 
 | 				break; | 
 | 			} | 
 |  | 
 | 			/* | 
 | 			 * the filesystem may choose to bump up nr_to_write. | 
 | 			 * We have to make sure to honor the new nr_to_write | 
 | 			 * at any time | 
 | 			 */ | 
 | 			nr_to_write_done = wbc->nr_to_write <= 0; | 
 | 		} | 
 | 		pagevec_release(&pvec); | 
 | 		cond_resched(); | 
 | 	} | 
 | 	if (!scanned && !done) { | 
 | 		/* | 
 | 		 * We hit the last page and there is more work to be done: wrap | 
 | 		 * back to the start of the file | 
 | 		 */ | 
 | 		scanned = 1; | 
 | 		index = 0; | 
 |  | 
 | 		/* | 
 | 		 * If we're looping we could run into a page that is locked by a | 
 | 		 * writer and that writer could be waiting on writeback for a | 
 | 		 * page in our current bio, and thus deadlock, so flush the | 
 | 		 * write bio here. | 
 | 		 */ | 
 | 		ret = flush_write_bio(epd); | 
 | 		if (!ret) | 
 | 			goto retry; | 
 | 	} | 
 |  | 
 | 	if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole)) | 
 | 		mapping->writeback_index = done_index; | 
 |  | 
 | 	btrfs_add_delayed_iput(inode); | 
 | 	return ret; | 
 | } | 
 |  | 
 | int extent_write_full_page(struct page *page, struct writeback_control *wbc) | 
 | { | 
 | 	int ret; | 
 | 	struct extent_page_data epd = { | 
 | 		.bio_ctrl = { 0 }, | 
 | 		.extent_locked = 0, | 
 | 		.sync_io = wbc->sync_mode == WB_SYNC_ALL, | 
 | 	}; | 
 |  | 
 | 	ret = __extent_writepage(page, wbc, &epd); | 
 | 	ASSERT(ret <= 0); | 
 | 	if (ret < 0) { | 
 | 		end_write_bio(&epd, ret); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	ret = flush_write_bio(&epd); | 
 | 	ASSERT(ret <= 0); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Submit the pages in the range to bio for call sites which delalloc range has | 
 |  * already been ran (aka, ordered extent inserted) and all pages are still | 
 |  * locked. | 
 |  */ | 
 | int extent_write_locked_range(struct inode *inode, u64 start, u64 end) | 
 | { | 
 | 	bool found_error = false; | 
 | 	int first_error = 0; | 
 | 	int ret = 0; | 
 | 	struct address_space *mapping = inode->i_mapping; | 
 | 	struct page *page; | 
 | 	u64 cur = start; | 
 | 	unsigned long nr_pages; | 
 | 	const u32 sectorsize = btrfs_sb(inode->i_sb)->sectorsize; | 
 | 	struct extent_page_data epd = { | 
 | 		.bio_ctrl = { 0 }, | 
 | 		.extent_locked = 1, | 
 | 		.sync_io = 1, | 
 | 	}; | 
 | 	struct writeback_control wbc_writepages = { | 
 | 		.sync_mode	= WB_SYNC_ALL, | 
 | 		.range_start	= start, | 
 | 		.range_end	= end + 1, | 
 | 		/* We're called from an async helper function */ | 
 | 		.punt_to_cgroup	= 1, | 
 | 		.no_cgroup_owner = 1, | 
 | 	}; | 
 |  | 
 | 	ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize)); | 
 | 	nr_pages = (round_up(end, PAGE_SIZE) - round_down(start, PAGE_SIZE)) >> | 
 | 		   PAGE_SHIFT; | 
 | 	wbc_writepages.nr_to_write = nr_pages * 2; | 
 |  | 
 | 	wbc_attach_fdatawrite_inode(&wbc_writepages, inode); | 
 | 	while (cur <= end) { | 
 | 		u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end); | 
 |  | 
 | 		page = find_get_page(mapping, cur >> PAGE_SHIFT); | 
 | 		/* | 
 | 		 * All pages in the range are locked since | 
 | 		 * btrfs_run_delalloc_range(), thus there is no way to clear | 
 | 		 * the page dirty flag. | 
 | 		 */ | 
 | 		ASSERT(PageLocked(page)); | 
 | 		ASSERT(PageDirty(page)); | 
 | 		clear_page_dirty_for_io(page); | 
 | 		ret = __extent_writepage(page, &wbc_writepages, &epd); | 
 | 		ASSERT(ret <= 0); | 
 | 		if (ret < 0) { | 
 | 			found_error = true; | 
 | 			first_error = ret; | 
 | 		} | 
 | 		put_page(page); | 
 | 		cur = cur_end + 1; | 
 | 	} | 
 |  | 
 | 	if (!found_error) | 
 | 		ret = flush_write_bio(&epd); | 
 | 	else | 
 | 		end_write_bio(&epd, ret); | 
 |  | 
 | 	wbc_detach_inode(&wbc_writepages); | 
 | 	if (found_error) | 
 | 		return first_error; | 
 | 	return ret; | 
 | } | 
 |  | 
 | int extent_writepages(struct address_space *mapping, | 
 | 		      struct writeback_control *wbc) | 
 | { | 
 | 	struct inode *inode = mapping->host; | 
 | 	const bool data_reloc = btrfs_is_data_reloc_root(BTRFS_I(inode)->root); | 
 | 	const bool zoned = btrfs_is_zoned(BTRFS_I(inode)->root->fs_info); | 
 | 	int ret = 0; | 
 | 	struct extent_page_data epd = { | 
 | 		.bio_ctrl = { 0 }, | 
 | 		.extent_locked = 0, | 
 | 		.sync_io = wbc->sync_mode == WB_SYNC_ALL, | 
 | 	}; | 
 |  | 
 | 	/* | 
 | 	 * Allow only a single thread to do the reloc work in zoned mode to | 
 | 	 * protect the write pointer updates. | 
 | 	 */ | 
 | 	if (data_reloc && zoned) | 
 | 		btrfs_inode_lock(inode, 0); | 
 | 	ret = extent_write_cache_pages(mapping, wbc, &epd); | 
 | 	if (data_reloc && zoned) | 
 | 		btrfs_inode_unlock(inode, 0); | 
 | 	ASSERT(ret <= 0); | 
 | 	if (ret < 0) { | 
 | 		end_write_bio(&epd, ret); | 
 | 		return ret; | 
 | 	} | 
 | 	ret = flush_write_bio(&epd); | 
 | 	return ret; | 
 | } | 
 |  | 
 | void extent_readahead(struct readahead_control *rac) | 
 | { | 
 | 	struct btrfs_bio_ctrl bio_ctrl = { 0 }; | 
 | 	struct page *pagepool[16]; | 
 | 	struct extent_map *em_cached = NULL; | 
 | 	u64 prev_em_start = (u64)-1; | 
 | 	int nr; | 
 |  | 
 | 	while ((nr = readahead_page_batch(rac, pagepool))) { | 
 | 		u64 contig_start = readahead_pos(rac); | 
 | 		u64 contig_end = contig_start + readahead_batch_length(rac) - 1; | 
 |  | 
 | 		contiguous_readpages(pagepool, nr, contig_start, contig_end, | 
 | 				&em_cached, &bio_ctrl, &prev_em_start); | 
 | 	} | 
 |  | 
 | 	if (em_cached) | 
 | 		free_extent_map(em_cached); | 
 |  | 
 | 	if (bio_ctrl.bio) { | 
 | 		if (submit_one_bio(bio_ctrl.bio, 0, bio_ctrl.bio_flags)) | 
 | 			return; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * basic invalidatepage code, this waits on any locked or writeback | 
 |  * ranges corresponding to the page, and then deletes any extent state | 
 |  * records from the tree | 
 |  */ | 
 | int extent_invalidatepage(struct extent_io_tree *tree, | 
 | 			  struct page *page, unsigned long offset) | 
 | { | 
 | 	struct extent_state *cached_state = NULL; | 
 | 	u64 start = page_offset(page); | 
 | 	u64 end = start + PAGE_SIZE - 1; | 
 | 	size_t blocksize = page->mapping->host->i_sb->s_blocksize; | 
 |  | 
 | 	/* This function is only called for the btree inode */ | 
 | 	ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO); | 
 |  | 
 | 	start += ALIGN(offset, blocksize); | 
 | 	if (start > end) | 
 | 		return 0; | 
 |  | 
 | 	lock_extent_bits(tree, start, end, &cached_state); | 
 | 	wait_on_page_writeback(page); | 
 |  | 
 | 	/* | 
 | 	 * Currently for btree io tree, only EXTENT_LOCKED is utilized, | 
 | 	 * so here we only need to unlock the extent range to free any | 
 | 	 * existing extent state. | 
 | 	 */ | 
 | 	unlock_extent_cached(tree, start, end, &cached_state); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * a helper for releasepage, this tests for areas of the page that | 
 |  * are locked or under IO and drops the related state bits if it is safe | 
 |  * to drop the page. | 
 |  */ | 
 | static int try_release_extent_state(struct extent_io_tree *tree, | 
 | 				    struct page *page, gfp_t mask) | 
 | { | 
 | 	u64 start = page_offset(page); | 
 | 	u64 end = start + PAGE_SIZE - 1; | 
 | 	int ret = 1; | 
 |  | 
 | 	if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) { | 
 | 		ret = 0; | 
 | 	} else { | 
 | 		/* | 
 | 		 * At this point we can safely clear everything except the | 
 | 		 * locked bit, the nodatasum bit and the delalloc new bit. | 
 | 		 * The delalloc new bit will be cleared by ordered extent | 
 | 		 * completion. | 
 | 		 */ | 
 | 		ret = __clear_extent_bit(tree, start, end, | 
 | 			 ~(EXTENT_LOCKED | EXTENT_NODATASUM | EXTENT_DELALLOC_NEW), | 
 | 			 0, 0, NULL, mask, NULL); | 
 |  | 
 | 		/* if clear_extent_bit failed for enomem reasons, | 
 | 		 * we can't allow the release to continue. | 
 | 		 */ | 
 | 		if (ret < 0) | 
 | 			ret = 0; | 
 | 		else | 
 | 			ret = 1; | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * a helper for releasepage.  As long as there are no locked extents | 
 |  * in the range corresponding to the page, both state records and extent | 
 |  * map records are removed | 
 |  */ | 
 | int try_release_extent_mapping(struct page *page, gfp_t mask) | 
 | { | 
 | 	struct extent_map *em; | 
 | 	u64 start = page_offset(page); | 
 | 	u64 end = start + PAGE_SIZE - 1; | 
 | 	struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host); | 
 | 	struct extent_io_tree *tree = &btrfs_inode->io_tree; | 
 | 	struct extent_map_tree *map = &btrfs_inode->extent_tree; | 
 |  | 
 | 	if (gfpflags_allow_blocking(mask) && | 
 | 	    page->mapping->host->i_size > SZ_16M) { | 
 | 		u64 len; | 
 | 		while (start <= end) { | 
 | 			struct btrfs_fs_info *fs_info; | 
 | 			u64 cur_gen; | 
 |  | 
 | 			len = end - start + 1; | 
 | 			write_lock(&map->lock); | 
 | 			em = lookup_extent_mapping(map, start, len); | 
 | 			if (!em) { | 
 | 				write_unlock(&map->lock); | 
 | 				break; | 
 | 			} | 
 | 			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) || | 
 | 			    em->start != start) { | 
 | 				write_unlock(&map->lock); | 
 | 				free_extent_map(em); | 
 | 				break; | 
 | 			} | 
 | 			if (test_range_bit(tree, em->start, | 
 | 					   extent_map_end(em) - 1, | 
 | 					   EXTENT_LOCKED, 0, NULL)) | 
 | 				goto next; | 
 | 			/* | 
 | 			 * If it's not in the list of modified extents, used | 
 | 			 * by a fast fsync, we can remove it. If it's being | 
 | 			 * logged we can safely remove it since fsync took an | 
 | 			 * extra reference on the em. | 
 | 			 */ | 
 | 			if (list_empty(&em->list) || | 
 | 			    test_bit(EXTENT_FLAG_LOGGING, &em->flags)) | 
 | 				goto remove_em; | 
 | 			/* | 
 | 			 * If it's in the list of modified extents, remove it | 
 | 			 * only if its generation is older then the current one, | 
 | 			 * in which case we don't need it for a fast fsync. | 
 | 			 * Otherwise don't remove it, we could be racing with an | 
 | 			 * ongoing fast fsync that could miss the new extent. | 
 | 			 */ | 
 | 			fs_info = btrfs_inode->root->fs_info; | 
 | 			spin_lock(&fs_info->trans_lock); | 
 | 			cur_gen = fs_info->generation; | 
 | 			spin_unlock(&fs_info->trans_lock); | 
 | 			if (em->generation >= cur_gen) | 
 | 				goto next; | 
 | remove_em: | 
 | 			/* | 
 | 			 * We only remove extent maps that are not in the list of | 
 | 			 * modified extents or that are in the list but with a | 
 | 			 * generation lower then the current generation, so there | 
 | 			 * is no need to set the full fsync flag on the inode (it | 
 | 			 * hurts the fsync performance for workloads with a data | 
 | 			 * size that exceeds or is close to the system's memory). | 
 | 			 */ | 
 | 			remove_extent_mapping(map, em); | 
 | 			/* once for the rb tree */ | 
 | 			free_extent_map(em); | 
 | next: | 
 | 			start = extent_map_end(em); | 
 | 			write_unlock(&map->lock); | 
 |  | 
 | 			/* once for us */ | 
 | 			free_extent_map(em); | 
 |  | 
 | 			cond_resched(); /* Allow large-extent preemption. */ | 
 | 		} | 
 | 	} | 
 | 	return try_release_extent_state(tree, page, mask); | 
 | } | 
 |  | 
 | /* | 
 |  * helper function for fiemap, which doesn't want to see any holes. | 
 |  * This maps until we find something past 'last' | 
 |  */ | 
 | static struct extent_map *get_extent_skip_holes(struct btrfs_inode *inode, | 
 | 						u64 offset, u64 last) | 
 | { | 
 | 	u64 sectorsize = btrfs_inode_sectorsize(inode); | 
 | 	struct extent_map *em; | 
 | 	u64 len; | 
 |  | 
 | 	if (offset >= last) | 
 | 		return NULL; | 
 |  | 
 | 	while (1) { | 
 | 		len = last - offset; | 
 | 		if (len == 0) | 
 | 			break; | 
 | 		len = ALIGN(len, sectorsize); | 
 | 		em = btrfs_get_extent_fiemap(inode, offset, len); | 
 | 		if (IS_ERR_OR_NULL(em)) | 
 | 			return em; | 
 |  | 
 | 		/* if this isn't a hole return it */ | 
 | 		if (em->block_start != EXTENT_MAP_HOLE) | 
 | 			return em; | 
 |  | 
 | 		/* this is a hole, advance to the next extent */ | 
 | 		offset = extent_map_end(em); | 
 | 		free_extent_map(em); | 
 | 		if (offset >= last) | 
 | 			break; | 
 | 	} | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * To cache previous fiemap extent | 
 |  * | 
 |  * Will be used for merging fiemap extent | 
 |  */ | 
 | struct fiemap_cache { | 
 | 	u64 offset; | 
 | 	u64 phys; | 
 | 	u64 len; | 
 | 	u32 flags; | 
 | 	bool cached; | 
 | }; | 
 |  | 
 | /* | 
 |  * Helper to submit fiemap extent. | 
 |  * | 
 |  * Will try to merge current fiemap extent specified by @offset, @phys, | 
 |  * @len and @flags with cached one. | 
 |  * And only when we fails to merge, cached one will be submitted as | 
 |  * fiemap extent. | 
 |  * | 
 |  * Return value is the same as fiemap_fill_next_extent(). | 
 |  */ | 
 | static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo, | 
 | 				struct fiemap_cache *cache, | 
 | 				u64 offset, u64 phys, u64 len, u32 flags) | 
 | { | 
 | 	int ret = 0; | 
 |  | 
 | 	if (!cache->cached) | 
 | 		goto assign; | 
 |  | 
 | 	/* | 
 | 	 * Sanity check, extent_fiemap() should have ensured that new | 
 | 	 * fiemap extent won't overlap with cached one. | 
 | 	 * Not recoverable. | 
 | 	 * | 
 | 	 * NOTE: Physical address can overlap, due to compression | 
 | 	 */ | 
 | 	if (cache->offset + cache->len > offset) { | 
 | 		WARN_ON(1); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Only merges fiemap extents if | 
 | 	 * 1) Their logical addresses are continuous | 
 | 	 * | 
 | 	 * 2) Their physical addresses are continuous | 
 | 	 *    So truly compressed (physical size smaller than logical size) | 
 | 	 *    extents won't get merged with each other | 
 | 	 * | 
 | 	 * 3) Share same flags except FIEMAP_EXTENT_LAST | 
 | 	 *    So regular extent won't get merged with prealloc extent | 
 | 	 */ | 
 | 	if (cache->offset + cache->len  == offset && | 
 | 	    cache->phys + cache->len == phys  && | 
 | 	    (cache->flags & ~FIEMAP_EXTENT_LAST) == | 
 | 			(flags & ~FIEMAP_EXTENT_LAST)) { | 
 | 		cache->len += len; | 
 | 		cache->flags |= flags; | 
 | 		goto try_submit_last; | 
 | 	} | 
 |  | 
 | 	/* Not mergeable, need to submit cached one */ | 
 | 	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, | 
 | 				      cache->len, cache->flags); | 
 | 	cache->cached = false; | 
 | 	if (ret) | 
 | 		return ret; | 
 | assign: | 
 | 	cache->cached = true; | 
 | 	cache->offset = offset; | 
 | 	cache->phys = phys; | 
 | 	cache->len = len; | 
 | 	cache->flags = flags; | 
 | try_submit_last: | 
 | 	if (cache->flags & FIEMAP_EXTENT_LAST) { | 
 | 		ret = fiemap_fill_next_extent(fieinfo, cache->offset, | 
 | 				cache->phys, cache->len, cache->flags); | 
 | 		cache->cached = false; | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Emit last fiemap cache | 
 |  * | 
 |  * The last fiemap cache may still be cached in the following case: | 
 |  * 0		      4k		    8k | 
 |  * |<- Fiemap range ->| | 
 |  * |<------------  First extent ----------->| | 
 |  * | 
 |  * In this case, the first extent range will be cached but not emitted. | 
 |  * So we must emit it before ending extent_fiemap(). | 
 |  */ | 
 | static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo, | 
 | 				  struct fiemap_cache *cache) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	if (!cache->cached) | 
 | 		return 0; | 
 |  | 
 | 	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, | 
 | 				      cache->len, cache->flags); | 
 | 	cache->cached = false; | 
 | 	if (ret > 0) | 
 | 		ret = 0; | 
 | 	return ret; | 
 | } | 
 |  | 
 | int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo, | 
 | 		  u64 start, u64 len) | 
 | { | 
 | 	int ret = 0; | 
 | 	u64 off; | 
 | 	u64 max = start + len; | 
 | 	u32 flags = 0; | 
 | 	u32 found_type; | 
 | 	u64 last; | 
 | 	u64 last_for_get_extent = 0; | 
 | 	u64 disko = 0; | 
 | 	u64 isize = i_size_read(&inode->vfs_inode); | 
 | 	struct btrfs_key found_key; | 
 | 	struct extent_map *em = NULL; | 
 | 	struct extent_state *cached_state = NULL; | 
 | 	struct btrfs_path *path; | 
 | 	struct btrfs_root *root = inode->root; | 
 | 	struct fiemap_cache cache = { 0 }; | 
 | 	struct ulist *roots; | 
 | 	struct ulist *tmp_ulist; | 
 | 	int end = 0; | 
 | 	u64 em_start = 0; | 
 | 	u64 em_len = 0; | 
 | 	u64 em_end = 0; | 
 |  | 
 | 	if (len == 0) | 
 | 		return -EINVAL; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	roots = ulist_alloc(GFP_KERNEL); | 
 | 	tmp_ulist = ulist_alloc(GFP_KERNEL); | 
 | 	if (!roots || !tmp_ulist) { | 
 | 		ret = -ENOMEM; | 
 | 		goto out_free_ulist; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We can't initialize that to 'start' as this could miss extents due | 
 | 	 * to extent item merging | 
 | 	 */ | 
 | 	off = 0; | 
 | 	start = round_down(start, btrfs_inode_sectorsize(inode)); | 
 | 	len = round_up(max, btrfs_inode_sectorsize(inode)) - start; | 
 |  | 
 | 	/* | 
 | 	 * lookup the last file extent.  We're not using i_size here | 
 | 	 * because there might be preallocation past i_size | 
 | 	 */ | 
 | 	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1, | 
 | 				       0); | 
 | 	if (ret < 0) { | 
 | 		goto out_free_ulist; | 
 | 	} else { | 
 | 		WARN_ON(!ret); | 
 | 		if (ret == 1) | 
 | 			ret = 0; | 
 | 	} | 
 |  | 
 | 	path->slots[0]--; | 
 | 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); | 
 | 	found_type = found_key.type; | 
 |  | 
 | 	/* No extents, but there might be delalloc bits */ | 
 | 	if (found_key.objectid != btrfs_ino(inode) || | 
 | 	    found_type != BTRFS_EXTENT_DATA_KEY) { | 
 | 		/* have to trust i_size as the end */ | 
 | 		last = (u64)-1; | 
 | 		last_for_get_extent = isize; | 
 | 	} else { | 
 | 		/* | 
 | 		 * remember the start of the last extent.  There are a | 
 | 		 * bunch of different factors that go into the length of the | 
 | 		 * extent, so its much less complex to remember where it started | 
 | 		 */ | 
 | 		last = found_key.offset; | 
 | 		last_for_get_extent = last + 1; | 
 | 	} | 
 | 	btrfs_release_path(path); | 
 |  | 
 | 	/* | 
 | 	 * we might have some extents allocated but more delalloc past those | 
 | 	 * extents.  so, we trust isize unless the start of the last extent is | 
 | 	 * beyond isize | 
 | 	 */ | 
 | 	if (last < isize) { | 
 | 		last = (u64)-1; | 
 | 		last_for_get_extent = isize; | 
 | 	} | 
 |  | 
 | 	lock_extent_bits(&inode->io_tree, start, start + len - 1, | 
 | 			 &cached_state); | 
 |  | 
 | 	em = get_extent_skip_holes(inode, start, last_for_get_extent); | 
 | 	if (!em) | 
 | 		goto out; | 
 | 	if (IS_ERR(em)) { | 
 | 		ret = PTR_ERR(em); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	while (!end) { | 
 | 		u64 offset_in_extent = 0; | 
 |  | 
 | 		/* break if the extent we found is outside the range */ | 
 | 		if (em->start >= max || extent_map_end(em) < off) | 
 | 			break; | 
 |  | 
 | 		/* | 
 | 		 * get_extent may return an extent that starts before our | 
 | 		 * requested range.  We have to make sure the ranges | 
 | 		 * we return to fiemap always move forward and don't | 
 | 		 * overlap, so adjust the offsets here | 
 | 		 */ | 
 | 		em_start = max(em->start, off); | 
 |  | 
 | 		/* | 
 | 		 * record the offset from the start of the extent | 
 | 		 * for adjusting the disk offset below.  Only do this if the | 
 | 		 * extent isn't compressed since our in ram offset may be past | 
 | 		 * what we have actually allocated on disk. | 
 | 		 */ | 
 | 		if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) | 
 | 			offset_in_extent = em_start - em->start; | 
 | 		em_end = extent_map_end(em); | 
 | 		em_len = em_end - em_start; | 
 | 		flags = 0; | 
 | 		if (em->block_start < EXTENT_MAP_LAST_BYTE) | 
 | 			disko = em->block_start + offset_in_extent; | 
 | 		else | 
 | 			disko = 0; | 
 |  | 
 | 		/* | 
 | 		 * bump off for our next call to get_extent | 
 | 		 */ | 
 | 		off = extent_map_end(em); | 
 | 		if (off >= max) | 
 | 			end = 1; | 
 |  | 
 | 		if (em->block_start == EXTENT_MAP_LAST_BYTE) { | 
 | 			end = 1; | 
 | 			flags |= FIEMAP_EXTENT_LAST; | 
 | 		} else if (em->block_start == EXTENT_MAP_INLINE) { | 
 | 			flags |= (FIEMAP_EXTENT_DATA_INLINE | | 
 | 				  FIEMAP_EXTENT_NOT_ALIGNED); | 
 | 		} else if (em->block_start == EXTENT_MAP_DELALLOC) { | 
 | 			flags |= (FIEMAP_EXTENT_DELALLOC | | 
 | 				  FIEMAP_EXTENT_UNKNOWN); | 
 | 		} else if (fieinfo->fi_extents_max) { | 
 | 			u64 bytenr = em->block_start - | 
 | 				(em->start - em->orig_start); | 
 |  | 
 | 			/* | 
 | 			 * As btrfs supports shared space, this information | 
 | 			 * can be exported to userspace tools via | 
 | 			 * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0 | 
 | 			 * then we're just getting a count and we can skip the | 
 | 			 * lookup stuff. | 
 | 			 */ | 
 | 			ret = btrfs_check_shared(root, btrfs_ino(inode), | 
 | 						 bytenr, roots, tmp_ulist); | 
 | 			if (ret < 0) | 
 | 				goto out_free; | 
 | 			if (ret) | 
 | 				flags |= FIEMAP_EXTENT_SHARED; | 
 | 			ret = 0; | 
 | 		} | 
 | 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) | 
 | 			flags |= FIEMAP_EXTENT_ENCODED; | 
 | 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) | 
 | 			flags |= FIEMAP_EXTENT_UNWRITTEN; | 
 |  | 
 | 		free_extent_map(em); | 
 | 		em = NULL; | 
 | 		if ((em_start >= last) || em_len == (u64)-1 || | 
 | 		   (last == (u64)-1 && isize <= em_end)) { | 
 | 			flags |= FIEMAP_EXTENT_LAST; | 
 | 			end = 1; | 
 | 		} | 
 |  | 
 | 		/* now scan forward to see if this is really the last extent. */ | 
 | 		em = get_extent_skip_holes(inode, off, last_for_get_extent); | 
 | 		if (IS_ERR(em)) { | 
 | 			ret = PTR_ERR(em); | 
 | 			goto out; | 
 | 		} | 
 | 		if (!em) { | 
 | 			flags |= FIEMAP_EXTENT_LAST; | 
 | 			end = 1; | 
 | 		} | 
 | 		ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko, | 
 | 					   em_len, flags); | 
 | 		if (ret) { | 
 | 			if (ret == 1) | 
 | 				ret = 0; | 
 | 			goto out_free; | 
 | 		} | 
 | 	} | 
 | out_free: | 
 | 	if (!ret) | 
 | 		ret = emit_last_fiemap_cache(fieinfo, &cache); | 
 | 	free_extent_map(em); | 
 | out: | 
 | 	unlock_extent_cached(&inode->io_tree, start, start + len - 1, | 
 | 			     &cached_state); | 
 |  | 
 | out_free_ulist: | 
 | 	btrfs_free_path(path); | 
 | 	ulist_free(roots); | 
 | 	ulist_free(tmp_ulist); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void __free_extent_buffer(struct extent_buffer *eb) | 
 | { | 
 | 	kmem_cache_free(extent_buffer_cache, eb); | 
 | } | 
 |  | 
 | int extent_buffer_under_io(const struct extent_buffer *eb) | 
 | { | 
 | 	return (atomic_read(&eb->io_pages) || | 
 | 		test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) || | 
 | 		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); | 
 | } | 
 |  | 
 | static bool page_range_has_eb(struct btrfs_fs_info *fs_info, struct page *page) | 
 | { | 
 | 	struct btrfs_subpage *subpage; | 
 |  | 
 | 	lockdep_assert_held(&page->mapping->private_lock); | 
 |  | 
 | 	if (PagePrivate(page)) { | 
 | 		subpage = (struct btrfs_subpage *)page->private; | 
 | 		if (atomic_read(&subpage->eb_refs)) | 
 | 			return true; | 
 | 		/* | 
 | 		 * Even there is no eb refs here, we may still have | 
 | 		 * end_page_read() call relying on page::private. | 
 | 		 */ | 
 | 		if (atomic_read(&subpage->readers)) | 
 | 			return true; | 
 | 	} | 
 | 	return false; | 
 | } | 
 |  | 
 | static void detach_extent_buffer_page(struct extent_buffer *eb, struct page *page) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = eb->fs_info; | 
 | 	const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); | 
 |  | 
 | 	/* | 
 | 	 * For mapped eb, we're going to change the page private, which should | 
 | 	 * be done under the private_lock. | 
 | 	 */ | 
 | 	if (mapped) | 
 | 		spin_lock(&page->mapping->private_lock); | 
 |  | 
 | 	if (!PagePrivate(page)) { | 
 | 		if (mapped) | 
 | 			spin_unlock(&page->mapping->private_lock); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (fs_info->sectorsize == PAGE_SIZE) { | 
 | 		/* | 
 | 		 * We do this since we'll remove the pages after we've | 
 | 		 * removed the eb from the radix tree, so we could race | 
 | 		 * and have this page now attached to the new eb.  So | 
 | 		 * only clear page_private if it's still connected to | 
 | 		 * this eb. | 
 | 		 */ | 
 | 		if (PagePrivate(page) && | 
 | 		    page->private == (unsigned long)eb) { | 
 | 			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); | 
 | 			BUG_ON(PageDirty(page)); | 
 | 			BUG_ON(PageWriteback(page)); | 
 | 			/* | 
 | 			 * We need to make sure we haven't be attached | 
 | 			 * to a new eb. | 
 | 			 */ | 
 | 			detach_page_private(page); | 
 | 		} | 
 | 		if (mapped) | 
 | 			spin_unlock(&page->mapping->private_lock); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * For subpage, we can have dummy eb with page private.  In this case, | 
 | 	 * we can directly detach the private as such page is only attached to | 
 | 	 * one dummy eb, no sharing. | 
 | 	 */ | 
 | 	if (!mapped) { | 
 | 		btrfs_detach_subpage(fs_info, page); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	btrfs_page_dec_eb_refs(fs_info, page); | 
 |  | 
 | 	/* | 
 | 	 * We can only detach the page private if there are no other ebs in the | 
 | 	 * page range and no unfinished IO. | 
 | 	 */ | 
 | 	if (!page_range_has_eb(fs_info, page)) | 
 | 		btrfs_detach_subpage(fs_info, page); | 
 |  | 
 | 	spin_unlock(&page->mapping->private_lock); | 
 | } | 
 |  | 
 | /* Release all pages attached to the extent buffer */ | 
 | static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb) | 
 | { | 
 | 	int i; | 
 | 	int num_pages; | 
 |  | 
 | 	ASSERT(!extent_buffer_under_io(eb)); | 
 |  | 
 | 	num_pages = num_extent_pages(eb); | 
 | 	for (i = 0; i < num_pages; i++) { | 
 | 		struct page *page = eb->pages[i]; | 
 |  | 
 | 		if (!page) | 
 | 			continue; | 
 |  | 
 | 		detach_extent_buffer_page(eb, page); | 
 |  | 
 | 		/* One for when we allocated the page */ | 
 | 		put_page(page); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Helper for releasing the extent buffer. | 
 |  */ | 
 | static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) | 
 | { | 
 | 	btrfs_release_extent_buffer_pages(eb); | 
 | 	btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list); | 
 | 	__free_extent_buffer(eb); | 
 | } | 
 |  | 
 | static struct extent_buffer * | 
 | __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start, | 
 | 		      unsigned long len) | 
 | { | 
 | 	struct extent_buffer *eb = NULL; | 
 |  | 
 | 	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL); | 
 | 	eb->start = start; | 
 | 	eb->len = len; | 
 | 	eb->fs_info = fs_info; | 
 | 	eb->bflags = 0; | 
 | 	init_rwsem(&eb->lock); | 
 |  | 
 | 	btrfs_leak_debug_add(&fs_info->eb_leak_lock, &eb->leak_list, | 
 | 			     &fs_info->allocated_ebs); | 
 | 	INIT_LIST_HEAD(&eb->release_list); | 
 |  | 
 | 	spin_lock_init(&eb->refs_lock); | 
 | 	atomic_set(&eb->refs, 1); | 
 | 	atomic_set(&eb->io_pages, 0); | 
 |  | 
 | 	ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE); | 
 |  | 
 | 	return eb; | 
 | } | 
 |  | 
 | struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src) | 
 | { | 
 | 	int i; | 
 | 	struct page *p; | 
 | 	struct extent_buffer *new; | 
 | 	int num_pages = num_extent_pages(src); | 
 |  | 
 | 	new = __alloc_extent_buffer(src->fs_info, src->start, src->len); | 
 | 	if (new == NULL) | 
 | 		return NULL; | 
 |  | 
 | 	/* | 
 | 	 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as | 
 | 	 * btrfs_release_extent_buffer() have different behavior for | 
 | 	 * UNMAPPED subpage extent buffer. | 
 | 	 */ | 
 | 	set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags); | 
 |  | 
 | 	for (i = 0; i < num_pages; i++) { | 
 | 		int ret; | 
 |  | 
 | 		p = alloc_page(GFP_NOFS); | 
 | 		if (!p) { | 
 | 			btrfs_release_extent_buffer(new); | 
 | 			return NULL; | 
 | 		} | 
 | 		ret = attach_extent_buffer_page(new, p, NULL); | 
 | 		if (ret < 0) { | 
 | 			put_page(p); | 
 | 			btrfs_release_extent_buffer(new); | 
 | 			return NULL; | 
 | 		} | 
 | 		WARN_ON(PageDirty(p)); | 
 | 		new->pages[i] = p; | 
 | 		copy_page(page_address(p), page_address(src->pages[i])); | 
 | 	} | 
 | 	set_extent_buffer_uptodate(new); | 
 |  | 
 | 	return new; | 
 | } | 
 |  | 
 | struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, | 
 | 						  u64 start, unsigned long len) | 
 | { | 
 | 	struct extent_buffer *eb; | 
 | 	int num_pages; | 
 | 	int i; | 
 |  | 
 | 	eb = __alloc_extent_buffer(fs_info, start, len); | 
 | 	if (!eb) | 
 | 		return NULL; | 
 |  | 
 | 	num_pages = num_extent_pages(eb); | 
 | 	for (i = 0; i < num_pages; i++) { | 
 | 		int ret; | 
 |  | 
 | 		eb->pages[i] = alloc_page(GFP_NOFS); | 
 | 		if (!eb->pages[i]) | 
 | 			goto err; | 
 | 		ret = attach_extent_buffer_page(eb, eb->pages[i], NULL); | 
 | 		if (ret < 0) | 
 | 			goto err; | 
 | 	} | 
 | 	set_extent_buffer_uptodate(eb); | 
 | 	btrfs_set_header_nritems(eb, 0); | 
 | 	set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); | 
 |  | 
 | 	return eb; | 
 | err: | 
 | 	for (; i > 0; i--) { | 
 | 		detach_extent_buffer_page(eb, eb->pages[i - 1]); | 
 | 		__free_page(eb->pages[i - 1]); | 
 | 	} | 
 | 	__free_extent_buffer(eb); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, | 
 | 						u64 start) | 
 | { | 
 | 	return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize); | 
 | } | 
 |  | 
 | static void check_buffer_tree_ref(struct extent_buffer *eb) | 
 | { | 
 | 	int refs; | 
 | 	/* | 
 | 	 * The TREE_REF bit is first set when the extent_buffer is added | 
 | 	 * to the radix tree. It is also reset, if unset, when a new reference | 
 | 	 * is created by find_extent_buffer. | 
 | 	 * | 
 | 	 * It is only cleared in two cases: freeing the last non-tree | 
 | 	 * reference to the extent_buffer when its STALE bit is set or | 
 | 	 * calling releasepage when the tree reference is the only reference. | 
 | 	 * | 
 | 	 * In both cases, care is taken to ensure that the extent_buffer's | 
 | 	 * pages are not under io. However, releasepage can be concurrently | 
 | 	 * called with creating new references, which is prone to race | 
 | 	 * conditions between the calls to check_buffer_tree_ref in those | 
 | 	 * codepaths and clearing TREE_REF in try_release_extent_buffer. | 
 | 	 * | 
 | 	 * The actual lifetime of the extent_buffer in the radix tree is | 
 | 	 * adequately protected by the refcount, but the TREE_REF bit and | 
 | 	 * its corresponding reference are not. To protect against this | 
 | 	 * class of races, we call check_buffer_tree_ref from the codepaths | 
 | 	 * which trigger io after they set eb->io_pages. Note that once io is | 
 | 	 * initiated, TREE_REF can no longer be cleared, so that is the | 
 | 	 * moment at which any such race is best fixed. | 
 | 	 */ | 
 | 	refs = atomic_read(&eb->refs); | 
 | 	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) | 
 | 		return; | 
 |  | 
 | 	spin_lock(&eb->refs_lock); | 
 | 	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) | 
 | 		atomic_inc(&eb->refs); | 
 | 	spin_unlock(&eb->refs_lock); | 
 | } | 
 |  | 
 | static void mark_extent_buffer_accessed(struct extent_buffer *eb, | 
 | 		struct page *accessed) | 
 | { | 
 | 	int num_pages, i; | 
 |  | 
 | 	check_buffer_tree_ref(eb); | 
 |  | 
 | 	num_pages = num_extent_pages(eb); | 
 | 	for (i = 0; i < num_pages; i++) { | 
 | 		struct page *p = eb->pages[i]; | 
 |  | 
 | 		if (p != accessed) | 
 | 			mark_page_accessed(p); | 
 | 	} | 
 | } | 
 |  | 
 | struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info, | 
 | 					 u64 start) | 
 | { | 
 | 	struct extent_buffer *eb; | 
 |  | 
 | 	eb = find_extent_buffer_nolock(fs_info, start); | 
 | 	if (!eb) | 
 | 		return NULL; | 
 | 	/* | 
 | 	 * Lock our eb's refs_lock to avoid races with free_extent_buffer(). | 
 | 	 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and | 
 | 	 * another task running free_extent_buffer() might have seen that flag | 
 | 	 * set, eb->refs == 2, that the buffer isn't under IO (dirty and | 
 | 	 * writeback flags not set) and it's still in the tree (flag | 
 | 	 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of | 
 | 	 * decrementing the extent buffer's reference count twice.  So here we | 
 | 	 * could race and increment the eb's reference count, clear its stale | 
 | 	 * flag, mark it as dirty and drop our reference before the other task | 
 | 	 * finishes executing free_extent_buffer, which would later result in | 
 | 	 * an attempt to free an extent buffer that is dirty. | 
 | 	 */ | 
 | 	if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) { | 
 | 		spin_lock(&eb->refs_lock); | 
 | 		spin_unlock(&eb->refs_lock); | 
 | 	} | 
 | 	mark_extent_buffer_accessed(eb, NULL); | 
 | 	return eb; | 
 | } | 
 |  | 
 | #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS | 
 | struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info, | 
 | 					u64 start) | 
 | { | 
 | 	struct extent_buffer *eb, *exists = NULL; | 
 | 	int ret; | 
 |  | 
 | 	eb = find_extent_buffer(fs_info, start); | 
 | 	if (eb) | 
 | 		return eb; | 
 | 	eb = alloc_dummy_extent_buffer(fs_info, start); | 
 | 	if (!eb) | 
 | 		return ERR_PTR(-ENOMEM); | 
 | 	eb->fs_info = fs_info; | 
 | again: | 
 | 	ret = radix_tree_preload(GFP_NOFS); | 
 | 	if (ret) { | 
 | 		exists = ERR_PTR(ret); | 
 | 		goto free_eb; | 
 | 	} | 
 | 	spin_lock(&fs_info->buffer_lock); | 
 | 	ret = radix_tree_insert(&fs_info->buffer_radix, | 
 | 				start >> fs_info->sectorsize_bits, eb); | 
 | 	spin_unlock(&fs_info->buffer_lock); | 
 | 	radix_tree_preload_end(); | 
 | 	if (ret == -EEXIST) { | 
 | 		exists = find_extent_buffer(fs_info, start); | 
 | 		if (exists) | 
 | 			goto free_eb; | 
 | 		else | 
 | 			goto again; | 
 | 	} | 
 | 	check_buffer_tree_ref(eb); | 
 | 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); | 
 |  | 
 | 	return eb; | 
 | free_eb: | 
 | 	btrfs_release_extent_buffer(eb); | 
 | 	return exists; | 
 | } | 
 | #endif | 
 |  | 
 | static struct extent_buffer *grab_extent_buffer( | 
 | 		struct btrfs_fs_info *fs_info, struct page *page) | 
 | { | 
 | 	struct extent_buffer *exists; | 
 |  | 
 | 	/* | 
 | 	 * For subpage case, we completely rely on radix tree to ensure we | 
 | 	 * don't try to insert two ebs for the same bytenr.  So here we always | 
 | 	 * return NULL and just continue. | 
 | 	 */ | 
 | 	if (fs_info->sectorsize < PAGE_SIZE) | 
 | 		return NULL; | 
 |  | 
 | 	/* Page not yet attached to an extent buffer */ | 
 | 	if (!PagePrivate(page)) | 
 | 		return NULL; | 
 |  | 
 | 	/* | 
 | 	 * We could have already allocated an eb for this page and attached one | 
 | 	 * so lets see if we can get a ref on the existing eb, and if we can we | 
 | 	 * know it's good and we can just return that one, else we know we can | 
 | 	 * just overwrite page->private. | 
 | 	 */ | 
 | 	exists = (struct extent_buffer *)page->private; | 
 | 	if (atomic_inc_not_zero(&exists->refs)) | 
 | 		return exists; | 
 |  | 
 | 	WARN_ON(PageDirty(page)); | 
 | 	detach_page_private(page); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info, | 
 | 					  u64 start, u64 owner_root, int level) | 
 | { | 
 | 	unsigned long len = fs_info->nodesize; | 
 | 	int num_pages; | 
 | 	int i; | 
 | 	unsigned long index = start >> PAGE_SHIFT; | 
 | 	struct extent_buffer *eb; | 
 | 	struct extent_buffer *exists = NULL; | 
 | 	struct page *p; | 
 | 	struct address_space *mapping = fs_info->btree_inode->i_mapping; | 
 | 	int uptodate = 1; | 
 | 	int ret; | 
 |  | 
 | 	if (!IS_ALIGNED(start, fs_info->sectorsize)) { | 
 | 		btrfs_err(fs_info, "bad tree block start %llu", start); | 
 | 		return ERR_PTR(-EINVAL); | 
 | 	} | 
 |  | 
 | #if BITS_PER_LONG == 32 | 
 | 	if (start >= MAX_LFS_FILESIZE) { | 
 | 		btrfs_err_rl(fs_info, | 
 | 		"extent buffer %llu is beyond 32bit page cache limit", start); | 
 | 		btrfs_err_32bit_limit(fs_info); | 
 | 		return ERR_PTR(-EOVERFLOW); | 
 | 	} | 
 | 	if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD) | 
 | 		btrfs_warn_32bit_limit(fs_info); | 
 | #endif | 
 |  | 
 | 	if (fs_info->sectorsize < PAGE_SIZE && | 
 | 	    offset_in_page(start) + len > PAGE_SIZE) { | 
 | 		btrfs_err(fs_info, | 
 | 		"tree block crosses page boundary, start %llu nodesize %lu", | 
 | 			  start, len); | 
 | 		return ERR_PTR(-EINVAL); | 
 | 	} | 
 |  | 
 | 	eb = find_extent_buffer(fs_info, start); | 
 | 	if (eb) | 
 | 		return eb; | 
 |  | 
 | 	eb = __alloc_extent_buffer(fs_info, start, len); | 
 | 	if (!eb) | 
 | 		return ERR_PTR(-ENOMEM); | 
 | 	btrfs_set_buffer_lockdep_class(owner_root, eb, level); | 
 |  | 
 | 	num_pages = num_extent_pages(eb); | 
 | 	for (i = 0; i < num_pages; i++, index++) { | 
 | 		struct btrfs_subpage *prealloc = NULL; | 
 |  | 
 | 		p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL); | 
 | 		if (!p) { | 
 | 			exists = ERR_PTR(-ENOMEM); | 
 | 			goto free_eb; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Preallocate page->private for subpage case, so that we won't | 
 | 		 * allocate memory with private_lock hold.  The memory will be | 
 | 		 * freed by attach_extent_buffer_page() or freed manually if | 
 | 		 * we exit earlier. | 
 | 		 * | 
 | 		 * Although we have ensured one subpage eb can only have one | 
 | 		 * page, but it may change in the future for 16K page size | 
 | 		 * support, so we still preallocate the memory in the loop. | 
 | 		 */ | 
 | 		if (fs_info->sectorsize < PAGE_SIZE) { | 
 | 			prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA); | 
 | 			if (IS_ERR(prealloc)) { | 
 | 				ret = PTR_ERR(prealloc); | 
 | 				unlock_page(p); | 
 | 				put_page(p); | 
 | 				exists = ERR_PTR(ret); | 
 | 				goto free_eb; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		spin_lock(&mapping->private_lock); | 
 | 		exists = grab_extent_buffer(fs_info, p); | 
 | 		if (exists) { | 
 | 			spin_unlock(&mapping->private_lock); | 
 | 			unlock_page(p); | 
 | 			put_page(p); | 
 | 			mark_extent_buffer_accessed(exists, p); | 
 | 			btrfs_free_subpage(prealloc); | 
 | 			goto free_eb; | 
 | 		} | 
 | 		/* Should not fail, as we have preallocated the memory */ | 
 | 		ret = attach_extent_buffer_page(eb, p, prealloc); | 
 | 		ASSERT(!ret); | 
 | 		/* | 
 | 		 * To inform we have extra eb under allocation, so that | 
 | 		 * detach_extent_buffer_page() won't release the page private | 
 | 		 * when the eb hasn't yet been inserted into radix tree. | 
 | 		 * | 
 | 		 * The ref will be decreased when the eb released the page, in | 
 | 		 * detach_extent_buffer_page(). | 
 | 		 * Thus needs no special handling in error path. | 
 | 		 */ | 
 | 		btrfs_page_inc_eb_refs(fs_info, p); | 
 | 		spin_unlock(&mapping->private_lock); | 
 |  | 
 | 		WARN_ON(btrfs_page_test_dirty(fs_info, p, eb->start, eb->len)); | 
 | 		eb->pages[i] = p; | 
 | 		if (!PageUptodate(p)) | 
 | 			uptodate = 0; | 
 |  | 
 | 		/* | 
 | 		 * We can't unlock the pages just yet since the extent buffer | 
 | 		 * hasn't been properly inserted in the radix tree, this | 
 | 		 * opens a race with btree_releasepage which can free a page | 
 | 		 * while we are still filling in all pages for the buffer and | 
 | 		 * we could crash. | 
 | 		 */ | 
 | 	} | 
 | 	if (uptodate) | 
 | 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); | 
 | again: | 
 | 	ret = radix_tree_preload(GFP_NOFS); | 
 | 	if (ret) { | 
 | 		exists = ERR_PTR(ret); | 
 | 		goto free_eb; | 
 | 	} | 
 |  | 
 | 	spin_lock(&fs_info->buffer_lock); | 
 | 	ret = radix_tree_insert(&fs_info->buffer_radix, | 
 | 				start >> fs_info->sectorsize_bits, eb); | 
 | 	spin_unlock(&fs_info->buffer_lock); | 
 | 	radix_tree_preload_end(); | 
 | 	if (ret == -EEXIST) { | 
 | 		exists = find_extent_buffer(fs_info, start); | 
 | 		if (exists) | 
 | 			goto free_eb; | 
 | 		else | 
 | 			goto again; | 
 | 	} | 
 | 	/* add one reference for the tree */ | 
 | 	check_buffer_tree_ref(eb); | 
 | 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); | 
 |  | 
 | 	/* | 
 | 	 * Now it's safe to unlock the pages because any calls to | 
 | 	 * btree_releasepage will correctly detect that a page belongs to a | 
 | 	 * live buffer and won't free them prematurely. | 
 | 	 */ | 
 | 	for (i = 0; i < num_pages; i++) | 
 | 		unlock_page(eb->pages[i]); | 
 | 	return eb; | 
 |  | 
 | free_eb: | 
 | 	WARN_ON(!atomic_dec_and_test(&eb->refs)); | 
 | 	for (i = 0; i < num_pages; i++) { | 
 | 		if (eb->pages[i]) | 
 | 			unlock_page(eb->pages[i]); | 
 | 	} | 
 |  | 
 | 	btrfs_release_extent_buffer(eb); | 
 | 	return exists; | 
 | } | 
 |  | 
 | static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) | 
 | { | 
 | 	struct extent_buffer *eb = | 
 | 			container_of(head, struct extent_buffer, rcu_head); | 
 |  | 
 | 	__free_extent_buffer(eb); | 
 | } | 
 |  | 
 | static int release_extent_buffer(struct extent_buffer *eb) | 
 | 	__releases(&eb->refs_lock) | 
 | { | 
 | 	lockdep_assert_held(&eb->refs_lock); | 
 |  | 
 | 	WARN_ON(atomic_read(&eb->refs) == 0); | 
 | 	if (atomic_dec_and_test(&eb->refs)) { | 
 | 		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) { | 
 | 			struct btrfs_fs_info *fs_info = eb->fs_info; | 
 |  | 
 | 			spin_unlock(&eb->refs_lock); | 
 |  | 
 | 			spin_lock(&fs_info->buffer_lock); | 
 | 			radix_tree_delete(&fs_info->buffer_radix, | 
 | 					  eb->start >> fs_info->sectorsize_bits); | 
 | 			spin_unlock(&fs_info->buffer_lock); | 
 | 		} else { | 
 | 			spin_unlock(&eb->refs_lock); | 
 | 		} | 
 |  | 
 | 		btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list); | 
 | 		/* Should be safe to release our pages at this point */ | 
 | 		btrfs_release_extent_buffer_pages(eb); | 
 | #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS | 
 | 		if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) { | 
 | 			__free_extent_buffer(eb); | 
 | 			return 1; | 
 | 		} | 
 | #endif | 
 | 		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); | 
 | 		return 1; | 
 | 	} | 
 | 	spin_unlock(&eb->refs_lock); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | void free_extent_buffer(struct extent_buffer *eb) | 
 | { | 
 | 	int refs; | 
 | 	int old; | 
 | 	if (!eb) | 
 | 		return; | 
 |  | 
 | 	while (1) { | 
 | 		refs = atomic_read(&eb->refs); | 
 | 		if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3) | 
 | 		    || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && | 
 | 			refs == 1)) | 
 | 			break; | 
 | 		old = atomic_cmpxchg(&eb->refs, refs, refs - 1); | 
 | 		if (old == refs) | 
 | 			return; | 
 | 	} | 
 |  | 
 | 	spin_lock(&eb->refs_lock); | 
 | 	if (atomic_read(&eb->refs) == 2 && | 
 | 	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) && | 
 | 	    !extent_buffer_under_io(eb) && | 
 | 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) | 
 | 		atomic_dec(&eb->refs); | 
 |  | 
 | 	/* | 
 | 	 * I know this is terrible, but it's temporary until we stop tracking | 
 | 	 * the uptodate bits and such for the extent buffers. | 
 | 	 */ | 
 | 	release_extent_buffer(eb); | 
 | } | 
 |  | 
 | void free_extent_buffer_stale(struct extent_buffer *eb) | 
 | { | 
 | 	if (!eb) | 
 | 		return; | 
 |  | 
 | 	spin_lock(&eb->refs_lock); | 
 | 	set_bit(EXTENT_BUFFER_STALE, &eb->bflags); | 
 |  | 
 | 	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) && | 
 | 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) | 
 | 		atomic_dec(&eb->refs); | 
 | 	release_extent_buffer(eb); | 
 | } | 
 |  | 
 | static void btree_clear_page_dirty(struct page *page) | 
 | { | 
 | 	ASSERT(PageDirty(page)); | 
 | 	ASSERT(PageLocked(page)); | 
 | 	clear_page_dirty_for_io(page); | 
 | 	xa_lock_irq(&page->mapping->i_pages); | 
 | 	if (!PageDirty(page)) | 
 | 		__xa_clear_mark(&page->mapping->i_pages, | 
 | 				page_index(page), PAGECACHE_TAG_DIRTY); | 
 | 	xa_unlock_irq(&page->mapping->i_pages); | 
 | } | 
 |  | 
 | static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = eb->fs_info; | 
 | 	struct page *page = eb->pages[0]; | 
 | 	bool last; | 
 |  | 
 | 	/* btree_clear_page_dirty() needs page locked */ | 
 | 	lock_page(page); | 
 | 	last = btrfs_subpage_clear_and_test_dirty(fs_info, page, eb->start, | 
 | 						  eb->len); | 
 | 	if (last) | 
 | 		btree_clear_page_dirty(page); | 
 | 	unlock_page(page); | 
 | 	WARN_ON(atomic_read(&eb->refs) == 0); | 
 | } | 
 |  | 
 | void clear_extent_buffer_dirty(const struct extent_buffer *eb) | 
 | { | 
 | 	int i; | 
 | 	int num_pages; | 
 | 	struct page *page; | 
 |  | 
 | 	if (eb->fs_info->sectorsize < PAGE_SIZE) | 
 | 		return clear_subpage_extent_buffer_dirty(eb); | 
 |  | 
 | 	num_pages = num_extent_pages(eb); | 
 |  | 
 | 	for (i = 0; i < num_pages; i++) { | 
 | 		page = eb->pages[i]; | 
 | 		if (!PageDirty(page)) | 
 | 			continue; | 
 | 		lock_page(page); | 
 | 		btree_clear_page_dirty(page); | 
 | 		ClearPageError(page); | 
 | 		unlock_page(page); | 
 | 	} | 
 | 	WARN_ON(atomic_read(&eb->refs) == 0); | 
 | } | 
 |  | 
 | bool set_extent_buffer_dirty(struct extent_buffer *eb) | 
 | { | 
 | 	int i; | 
 | 	int num_pages; | 
 | 	bool was_dirty; | 
 |  | 
 | 	check_buffer_tree_ref(eb); | 
 |  | 
 | 	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); | 
 |  | 
 | 	num_pages = num_extent_pages(eb); | 
 | 	WARN_ON(atomic_read(&eb->refs) == 0); | 
 | 	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)); | 
 |  | 
 | 	if (!was_dirty) { | 
 | 		bool subpage = eb->fs_info->sectorsize < PAGE_SIZE; | 
 |  | 
 | 		/* | 
 | 		 * For subpage case, we can have other extent buffers in the | 
 | 		 * same page, and in clear_subpage_extent_buffer_dirty() we | 
 | 		 * have to clear page dirty without subpage lock held. | 
 | 		 * This can cause race where our page gets dirty cleared after | 
 | 		 * we just set it. | 
 | 		 * | 
 | 		 * Thankfully, clear_subpage_extent_buffer_dirty() has locked | 
 | 		 * its page for other reasons, we can use page lock to prevent | 
 | 		 * the above race. | 
 | 		 */ | 
 | 		if (subpage) | 
 | 			lock_page(eb->pages[0]); | 
 | 		for (i = 0; i < num_pages; i++) | 
 | 			btrfs_page_set_dirty(eb->fs_info, eb->pages[i], | 
 | 					     eb->start, eb->len); | 
 | 		if (subpage) | 
 | 			unlock_page(eb->pages[0]); | 
 | 	} | 
 | #ifdef CONFIG_BTRFS_DEBUG | 
 | 	for (i = 0; i < num_pages; i++) | 
 | 		ASSERT(PageDirty(eb->pages[i])); | 
 | #endif | 
 |  | 
 | 	return was_dirty; | 
 | } | 
 |  | 
 | void clear_extent_buffer_uptodate(struct extent_buffer *eb) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = eb->fs_info; | 
 | 	struct page *page; | 
 | 	int num_pages; | 
 | 	int i; | 
 |  | 
 | 	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); | 
 | 	num_pages = num_extent_pages(eb); | 
 | 	for (i = 0; i < num_pages; i++) { | 
 | 		page = eb->pages[i]; | 
 | 		if (page) | 
 | 			btrfs_page_clear_uptodate(fs_info, page, | 
 | 						  eb->start, eb->len); | 
 | 	} | 
 | } | 
 |  | 
 | void set_extent_buffer_uptodate(struct extent_buffer *eb) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = eb->fs_info; | 
 | 	struct page *page; | 
 | 	int num_pages; | 
 | 	int i; | 
 |  | 
 | 	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); | 
 | 	num_pages = num_extent_pages(eb); | 
 | 	for (i = 0; i < num_pages; i++) { | 
 | 		page = eb->pages[i]; | 
 | 		btrfs_page_set_uptodate(fs_info, page, eb->start, eb->len); | 
 | 	} | 
 | } | 
 |  | 
 | static int read_extent_buffer_subpage(struct extent_buffer *eb, int wait, | 
 | 				      int mirror_num) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = eb->fs_info; | 
 | 	struct extent_io_tree *io_tree; | 
 | 	struct page *page = eb->pages[0]; | 
 | 	struct btrfs_bio_ctrl bio_ctrl = { 0 }; | 
 | 	int ret = 0; | 
 |  | 
 | 	ASSERT(!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags)); | 
 | 	ASSERT(PagePrivate(page)); | 
 | 	io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree; | 
 |  | 
 | 	if (wait == WAIT_NONE) { | 
 | 		if (!try_lock_extent(io_tree, eb->start, eb->start + eb->len - 1)) | 
 | 			return -EAGAIN; | 
 | 	} else { | 
 | 		ret = lock_extent(io_tree, eb->start, eb->start + eb->len - 1); | 
 | 		if (ret < 0) | 
 | 			return ret; | 
 | 	} | 
 |  | 
 | 	ret = 0; | 
 | 	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags) || | 
 | 	    PageUptodate(page) || | 
 | 	    btrfs_subpage_test_uptodate(fs_info, page, eb->start, eb->len)) { | 
 | 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); | 
 | 		unlock_extent(io_tree, eb->start, eb->start + eb->len - 1); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); | 
 | 	eb->read_mirror = 0; | 
 | 	atomic_set(&eb->io_pages, 1); | 
 | 	check_buffer_tree_ref(eb); | 
 | 	btrfs_subpage_clear_error(fs_info, page, eb->start, eb->len); | 
 |  | 
 | 	btrfs_subpage_start_reader(fs_info, page, eb->start, eb->len); | 
 | 	ret = submit_extent_page(REQ_OP_READ | REQ_META, NULL, &bio_ctrl, | 
 | 				 page, eb->start, eb->len, | 
 | 				 eb->start - page_offset(page), | 
 | 				 end_bio_extent_readpage, mirror_num, 0, | 
 | 				 true); | 
 | 	if (ret) { | 
 | 		/* | 
 | 		 * In the endio function, if we hit something wrong we will | 
 | 		 * increase the io_pages, so here we need to decrease it for | 
 | 		 * error path. | 
 | 		 */ | 
 | 		atomic_dec(&eb->io_pages); | 
 | 	} | 
 | 	if (bio_ctrl.bio) { | 
 | 		int tmp; | 
 |  | 
 | 		tmp = submit_one_bio(bio_ctrl.bio, mirror_num, 0); | 
 | 		bio_ctrl.bio = NULL; | 
 | 		if (tmp < 0) | 
 | 			return tmp; | 
 | 	} | 
 | 	if (ret || wait != WAIT_COMPLETE) | 
 | 		return ret; | 
 |  | 
 | 	wait_extent_bit(io_tree, eb->start, eb->start + eb->len - 1, EXTENT_LOCKED); | 
 | 	if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) | 
 | 		ret = -EIO; | 
 | 	return ret; | 
 | } | 
 |  | 
 | int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num) | 
 | { | 
 | 	int i; | 
 | 	struct page *page; | 
 | 	int err; | 
 | 	int ret = 0; | 
 | 	int locked_pages = 0; | 
 | 	int all_uptodate = 1; | 
 | 	int num_pages; | 
 | 	unsigned long num_reads = 0; | 
 | 	struct btrfs_bio_ctrl bio_ctrl = { 0 }; | 
 |  | 
 | 	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) | 
 | 		return 0; | 
 |  | 
 | 	if (eb->fs_info->sectorsize < PAGE_SIZE) | 
 | 		return read_extent_buffer_subpage(eb, wait, mirror_num); | 
 |  | 
 | 	num_pages = num_extent_pages(eb); | 
 | 	for (i = 0; i < num_pages; i++) { | 
 | 		page = eb->pages[i]; | 
 | 		if (wait == WAIT_NONE) { | 
 | 			/* | 
 | 			 * WAIT_NONE is only utilized by readahead. If we can't | 
 | 			 * acquire the lock atomically it means either the eb | 
 | 			 * is being read out or under modification. | 
 | 			 * Either way the eb will be or has been cached, | 
 | 			 * readahead can exit safely. | 
 | 			 */ | 
 | 			if (!trylock_page(page)) | 
 | 				goto unlock_exit; | 
 | 		} else { | 
 | 			lock_page(page); | 
 | 		} | 
 | 		locked_pages++; | 
 | 	} | 
 | 	/* | 
 | 	 * We need to firstly lock all pages to make sure that | 
 | 	 * the uptodate bit of our pages won't be affected by | 
 | 	 * clear_extent_buffer_uptodate(). | 
 | 	 */ | 
 | 	for (i = 0; i < num_pages; i++) { | 
 | 		page = eb->pages[i]; | 
 | 		if (!PageUptodate(page)) { | 
 | 			num_reads++; | 
 | 			all_uptodate = 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (all_uptodate) { | 
 | 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); | 
 | 		goto unlock_exit; | 
 | 	} | 
 |  | 
 | 	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); | 
 | 	eb->read_mirror = 0; | 
 | 	atomic_set(&eb->io_pages, num_reads); | 
 | 	/* | 
 | 	 * It is possible for releasepage to clear the TREE_REF bit before we | 
 | 	 * set io_pages. See check_buffer_tree_ref for a more detailed comment. | 
 | 	 */ | 
 | 	check_buffer_tree_ref(eb); | 
 | 	for (i = 0; i < num_pages; i++) { | 
 | 		page = eb->pages[i]; | 
 |  | 
 | 		if (!PageUptodate(page)) { | 
 | 			if (ret) { | 
 | 				atomic_dec(&eb->io_pages); | 
 | 				unlock_page(page); | 
 | 				continue; | 
 | 			} | 
 |  | 
 | 			ClearPageError(page); | 
 | 			err = submit_extent_page(REQ_OP_READ | REQ_META, NULL, | 
 | 					 &bio_ctrl, page, page_offset(page), | 
 | 					 PAGE_SIZE, 0, end_bio_extent_readpage, | 
 | 					 mirror_num, 0, false); | 
 | 			if (err) { | 
 | 				/* | 
 | 				 * We failed to submit the bio so it's the | 
 | 				 * caller's responsibility to perform cleanup | 
 | 				 * i.e unlock page/set error bit. | 
 | 				 */ | 
 | 				ret = err; | 
 | 				SetPageError(page); | 
 | 				unlock_page(page); | 
 | 				atomic_dec(&eb->io_pages); | 
 | 			} | 
 | 		} else { | 
 | 			unlock_page(page); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (bio_ctrl.bio) { | 
 | 		err = submit_one_bio(bio_ctrl.bio, mirror_num, bio_ctrl.bio_flags); | 
 | 		bio_ctrl.bio = NULL; | 
 | 		if (err) | 
 | 			return err; | 
 | 	} | 
 |  | 
 | 	if (ret || wait != WAIT_COMPLETE) | 
 | 		return ret; | 
 |  | 
 | 	for (i = 0; i < num_pages; i++) { | 
 | 		page = eb->pages[i]; | 
 | 		wait_on_page_locked(page); | 
 | 		if (!PageUptodate(page)) | 
 | 			ret = -EIO; | 
 | 	} | 
 |  | 
 | 	return ret; | 
 |  | 
 | unlock_exit: | 
 | 	while (locked_pages > 0) { | 
 | 		locked_pages--; | 
 | 		page = eb->pages[locked_pages]; | 
 | 		unlock_page(page); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | static bool report_eb_range(const struct extent_buffer *eb, unsigned long start, | 
 | 			    unsigned long len) | 
 | { | 
 | 	btrfs_warn(eb->fs_info, | 
 | 		"access to eb bytenr %llu len %lu out of range start %lu len %lu", | 
 | 		eb->start, eb->len, start, len); | 
 | 	WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | /* | 
 |  * Check if the [start, start + len) range is valid before reading/writing | 
 |  * the eb. | 
 |  * NOTE: @start and @len are offset inside the eb, not logical address. | 
 |  * | 
 |  * Caller should not touch the dst/src memory if this function returns error. | 
 |  */ | 
 | static inline int check_eb_range(const struct extent_buffer *eb, | 
 | 				 unsigned long start, unsigned long len) | 
 | { | 
 | 	unsigned long offset; | 
 |  | 
 | 	/* start, start + len should not go beyond eb->len nor overflow */ | 
 | 	if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len)) | 
 | 		return report_eb_range(eb, start, len); | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | void read_extent_buffer(const struct extent_buffer *eb, void *dstv, | 
 | 			unsigned long start, unsigned long len) | 
 | { | 
 | 	size_t cur; | 
 | 	size_t offset; | 
 | 	struct page *page; | 
 | 	char *kaddr; | 
 | 	char *dst = (char *)dstv; | 
 | 	unsigned long i = get_eb_page_index(start); | 
 |  | 
 | 	if (check_eb_range(eb, start, len)) | 
 | 		return; | 
 |  | 
 | 	offset = get_eb_offset_in_page(eb, start); | 
 |  | 
 | 	while (len > 0) { | 
 | 		page = eb->pages[i]; | 
 |  | 
 | 		cur = min(len, (PAGE_SIZE - offset)); | 
 | 		kaddr = page_address(page); | 
 | 		memcpy(dst, kaddr + offset, cur); | 
 |  | 
 | 		dst += cur; | 
 | 		len -= cur; | 
 | 		offset = 0; | 
 | 		i++; | 
 | 	} | 
 | } | 
 |  | 
 | int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb, | 
 | 				       void __user *dstv, | 
 | 				       unsigned long start, unsigned long len) | 
 | { | 
 | 	size_t cur; | 
 | 	size_t offset; | 
 | 	struct page *page; | 
 | 	char *kaddr; | 
 | 	char __user *dst = (char __user *)dstv; | 
 | 	unsigned long i = get_eb_page_index(start); | 
 | 	int ret = 0; | 
 |  | 
 | 	WARN_ON(start > eb->len); | 
 | 	WARN_ON(start + len > eb->start + eb->len); | 
 |  | 
 | 	offset = get_eb_offset_in_page(eb, start); | 
 |  | 
 | 	while (len > 0) { | 
 | 		page = eb->pages[i]; | 
 |  | 
 | 		cur = min(len, (PAGE_SIZE - offset)); | 
 | 		kaddr = page_address(page); | 
 | 		if (copy_to_user_nofault(dst, kaddr + offset, cur)) { | 
 | 			ret = -EFAULT; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		dst += cur; | 
 | 		len -= cur; | 
 | 		offset = 0; | 
 | 		i++; | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv, | 
 | 			 unsigned long start, unsigned long len) | 
 | { | 
 | 	size_t cur; | 
 | 	size_t offset; | 
 | 	struct page *page; | 
 | 	char *kaddr; | 
 | 	char *ptr = (char *)ptrv; | 
 | 	unsigned long i = get_eb_page_index(start); | 
 | 	int ret = 0; | 
 |  | 
 | 	if (check_eb_range(eb, start, len)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	offset = get_eb_offset_in_page(eb, start); | 
 |  | 
 | 	while (len > 0) { | 
 | 		page = eb->pages[i]; | 
 |  | 
 | 		cur = min(len, (PAGE_SIZE - offset)); | 
 |  | 
 | 		kaddr = page_address(page); | 
 | 		ret = memcmp(ptr, kaddr + offset, cur); | 
 | 		if (ret) | 
 | 			break; | 
 |  | 
 | 		ptr += cur; | 
 | 		len -= cur; | 
 | 		offset = 0; | 
 | 		i++; | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Check that the extent buffer is uptodate. | 
 |  * | 
 |  * For regular sector size == PAGE_SIZE case, check if @page is uptodate. | 
 |  * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE. | 
 |  */ | 
 | static void assert_eb_page_uptodate(const struct extent_buffer *eb, | 
 | 				    struct page *page) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = eb->fs_info; | 
 |  | 
 | 	if (fs_info->sectorsize < PAGE_SIZE) { | 
 | 		bool uptodate; | 
 |  | 
 | 		uptodate = btrfs_subpage_test_uptodate(fs_info, page, | 
 | 						       eb->start, eb->len); | 
 | 		WARN_ON(!uptodate); | 
 | 	} else { | 
 | 		WARN_ON(!PageUptodate(page)); | 
 | 	} | 
 | } | 
 |  | 
 | void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb, | 
 | 		const void *srcv) | 
 | { | 
 | 	char *kaddr; | 
 |  | 
 | 	assert_eb_page_uptodate(eb, eb->pages[0]); | 
 | 	kaddr = page_address(eb->pages[0]) + | 
 | 		get_eb_offset_in_page(eb, offsetof(struct btrfs_header, | 
 | 						   chunk_tree_uuid)); | 
 | 	memcpy(kaddr, srcv, BTRFS_FSID_SIZE); | 
 | } | 
 |  | 
 | void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv) | 
 | { | 
 | 	char *kaddr; | 
 |  | 
 | 	assert_eb_page_uptodate(eb, eb->pages[0]); | 
 | 	kaddr = page_address(eb->pages[0]) + | 
 | 		get_eb_offset_in_page(eb, offsetof(struct btrfs_header, fsid)); | 
 | 	memcpy(kaddr, srcv, BTRFS_FSID_SIZE); | 
 | } | 
 |  | 
 | void write_extent_buffer(const struct extent_buffer *eb, const void *srcv, | 
 | 			 unsigned long start, unsigned long len) | 
 | { | 
 | 	size_t cur; | 
 | 	size_t offset; | 
 | 	struct page *page; | 
 | 	char *kaddr; | 
 | 	char *src = (char *)srcv; | 
 | 	unsigned long i = get_eb_page_index(start); | 
 |  | 
 | 	WARN_ON(test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)); | 
 |  | 
 | 	if (check_eb_range(eb, start, len)) | 
 | 		return; | 
 |  | 
 | 	offset = get_eb_offset_in_page(eb, start); | 
 |  | 
 | 	while (len > 0) { | 
 | 		page = eb->pages[i]; | 
 | 		assert_eb_page_uptodate(eb, page); | 
 |  | 
 | 		cur = min(len, PAGE_SIZE - offset); | 
 | 		kaddr = page_address(page); | 
 | 		memcpy(kaddr + offset, src, cur); | 
 |  | 
 | 		src += cur; | 
 | 		len -= cur; | 
 | 		offset = 0; | 
 | 		i++; | 
 | 	} | 
 | } | 
 |  | 
 | void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start, | 
 | 		unsigned long len) | 
 | { | 
 | 	size_t cur; | 
 | 	size_t offset; | 
 | 	struct page *page; | 
 | 	char *kaddr; | 
 | 	unsigned long i = get_eb_page_index(start); | 
 |  | 
 | 	if (check_eb_range(eb, start, len)) | 
 | 		return; | 
 |  | 
 | 	offset = get_eb_offset_in_page(eb, start); | 
 |  | 
 | 	while (len > 0) { | 
 | 		page = eb->pages[i]; | 
 | 		assert_eb_page_uptodate(eb, page); | 
 |  | 
 | 		cur = min(len, PAGE_SIZE - offset); | 
 | 		kaddr = page_address(page); | 
 | 		memset(kaddr + offset, 0, cur); | 
 |  | 
 | 		len -= cur; | 
 | 		offset = 0; | 
 | 		i++; | 
 | 	} | 
 | } | 
 |  | 
 | void copy_extent_buffer_full(const struct extent_buffer *dst, | 
 | 			     const struct extent_buffer *src) | 
 | { | 
 | 	int i; | 
 | 	int num_pages; | 
 |  | 
 | 	ASSERT(dst->len == src->len); | 
 |  | 
 | 	if (dst->fs_info->sectorsize == PAGE_SIZE) { | 
 | 		num_pages = num_extent_pages(dst); | 
 | 		for (i = 0; i < num_pages; i++) | 
 | 			copy_page(page_address(dst->pages[i]), | 
 | 				  page_address(src->pages[i])); | 
 | 	} else { | 
 | 		size_t src_offset = get_eb_offset_in_page(src, 0); | 
 | 		size_t dst_offset = get_eb_offset_in_page(dst, 0); | 
 |  | 
 | 		ASSERT(src->fs_info->sectorsize < PAGE_SIZE); | 
 | 		memcpy(page_address(dst->pages[0]) + dst_offset, | 
 | 		       page_address(src->pages[0]) + src_offset, | 
 | 		       src->len); | 
 | 	} | 
 | } | 
 |  | 
 | void copy_extent_buffer(const struct extent_buffer *dst, | 
 | 			const struct extent_buffer *src, | 
 | 			unsigned long dst_offset, unsigned long src_offset, | 
 | 			unsigned long len) | 
 | { | 
 | 	u64 dst_len = dst->len; | 
 | 	size_t cur; | 
 | 	size_t offset; | 
 | 	struct page *page; | 
 | 	char *kaddr; | 
 | 	unsigned long i = get_eb_page_index(dst_offset); | 
 |  | 
 | 	if (check_eb_range(dst, dst_offset, len) || | 
 | 	    check_eb_range(src, src_offset, len)) | 
 | 		return; | 
 |  | 
 | 	WARN_ON(src->len != dst_len); | 
 |  | 
 | 	offset = get_eb_offset_in_page(dst, dst_offset); | 
 |  | 
 | 	while (len > 0) { | 
 | 		page = dst->pages[i]; | 
 | 		assert_eb_page_uptodate(dst, page); | 
 |  | 
 | 		cur = min(len, (unsigned long)(PAGE_SIZE - offset)); | 
 |  | 
 | 		kaddr = page_address(page); | 
 | 		read_extent_buffer(src, kaddr + offset, src_offset, cur); | 
 |  | 
 | 		src_offset += cur; | 
 | 		len -= cur; | 
 | 		offset = 0; | 
 | 		i++; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * eb_bitmap_offset() - calculate the page and offset of the byte containing the | 
 |  * given bit number | 
 |  * @eb: the extent buffer | 
 |  * @start: offset of the bitmap item in the extent buffer | 
 |  * @nr: bit number | 
 |  * @page_index: return index of the page in the extent buffer that contains the | 
 |  * given bit number | 
 |  * @page_offset: return offset into the page given by page_index | 
 |  * | 
 |  * This helper hides the ugliness of finding the byte in an extent buffer which | 
 |  * contains a given bit. | 
 |  */ | 
 | static inline void eb_bitmap_offset(const struct extent_buffer *eb, | 
 | 				    unsigned long start, unsigned long nr, | 
 | 				    unsigned long *page_index, | 
 | 				    size_t *page_offset) | 
 | { | 
 | 	size_t byte_offset = BIT_BYTE(nr); | 
 | 	size_t offset; | 
 |  | 
 | 	/* | 
 | 	 * The byte we want is the offset of the extent buffer + the offset of | 
 | 	 * the bitmap item in the extent buffer + the offset of the byte in the | 
 | 	 * bitmap item. | 
 | 	 */ | 
 | 	offset = start + offset_in_page(eb->start) + byte_offset; | 
 |  | 
 | 	*page_index = offset >> PAGE_SHIFT; | 
 | 	*page_offset = offset_in_page(offset); | 
 | } | 
 |  | 
 | /** | 
 |  * extent_buffer_test_bit - determine whether a bit in a bitmap item is set | 
 |  * @eb: the extent buffer | 
 |  * @start: offset of the bitmap item in the extent buffer | 
 |  * @nr: bit number to test | 
 |  */ | 
 | int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start, | 
 | 			   unsigned long nr) | 
 | { | 
 | 	u8 *kaddr; | 
 | 	struct page *page; | 
 | 	unsigned long i; | 
 | 	size_t offset; | 
 |  | 
 | 	eb_bitmap_offset(eb, start, nr, &i, &offset); | 
 | 	page = eb->pages[i]; | 
 | 	assert_eb_page_uptodate(eb, page); | 
 | 	kaddr = page_address(page); | 
 | 	return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1))); | 
 | } | 
 |  | 
 | /** | 
 |  * extent_buffer_bitmap_set - set an area of a bitmap | 
 |  * @eb: the extent buffer | 
 |  * @start: offset of the bitmap item in the extent buffer | 
 |  * @pos: bit number of the first bit | 
 |  * @len: number of bits to set | 
 |  */ | 
 | void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start, | 
 | 			      unsigned long pos, unsigned long len) | 
 | { | 
 | 	u8 *kaddr; | 
 | 	struct page *page; | 
 | 	unsigned long i; | 
 | 	size_t offset; | 
 | 	const unsigned int size = pos + len; | 
 | 	int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE); | 
 | 	u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos); | 
 |  | 
 | 	eb_bitmap_offset(eb, start, pos, &i, &offset); | 
 | 	page = eb->pages[i]; | 
 | 	assert_eb_page_uptodate(eb, page); | 
 | 	kaddr = page_address(page); | 
 |  | 
 | 	while (len >= bits_to_set) { | 
 | 		kaddr[offset] |= mask_to_set; | 
 | 		len -= bits_to_set; | 
 | 		bits_to_set = BITS_PER_BYTE; | 
 | 		mask_to_set = ~0; | 
 | 		if (++offset >= PAGE_SIZE && len > 0) { | 
 | 			offset = 0; | 
 | 			page = eb->pages[++i]; | 
 | 			assert_eb_page_uptodate(eb, page); | 
 | 			kaddr = page_address(page); | 
 | 		} | 
 | 	} | 
 | 	if (len) { | 
 | 		mask_to_set &= BITMAP_LAST_BYTE_MASK(size); | 
 | 		kaddr[offset] |= mask_to_set; | 
 | 	} | 
 | } | 
 |  | 
 |  | 
 | /** | 
 |  * extent_buffer_bitmap_clear - clear an area of a bitmap | 
 |  * @eb: the extent buffer | 
 |  * @start: offset of the bitmap item in the extent buffer | 
 |  * @pos: bit number of the first bit | 
 |  * @len: number of bits to clear | 
 |  */ | 
 | void extent_buffer_bitmap_clear(const struct extent_buffer *eb, | 
 | 				unsigned long start, unsigned long pos, | 
 | 				unsigned long len) | 
 | { | 
 | 	u8 *kaddr; | 
 | 	struct page *page; | 
 | 	unsigned long i; | 
 | 	size_t offset; | 
 | 	const unsigned int size = pos + len; | 
 | 	int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE); | 
 | 	u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos); | 
 |  | 
 | 	eb_bitmap_offset(eb, start, pos, &i, &offset); | 
 | 	page = eb->pages[i]; | 
 | 	assert_eb_page_uptodate(eb, page); | 
 | 	kaddr = page_address(page); | 
 |  | 
 | 	while (len >= bits_to_clear) { | 
 | 		kaddr[offset] &= ~mask_to_clear; | 
 | 		len -= bits_to_clear; | 
 | 		bits_to_clear = BITS_PER_BYTE; | 
 | 		mask_to_clear = ~0; | 
 | 		if (++offset >= PAGE_SIZE && len > 0) { | 
 | 			offset = 0; | 
 | 			page = eb->pages[++i]; | 
 | 			assert_eb_page_uptodate(eb, page); | 
 | 			kaddr = page_address(page); | 
 | 		} | 
 | 	} | 
 | 	if (len) { | 
 | 		mask_to_clear &= BITMAP_LAST_BYTE_MASK(size); | 
 | 		kaddr[offset] &= ~mask_to_clear; | 
 | 	} | 
 | } | 
 |  | 
 | static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) | 
 | { | 
 | 	unsigned long distance = (src > dst) ? src - dst : dst - src; | 
 | 	return distance < len; | 
 | } | 
 |  | 
 | static void copy_pages(struct page *dst_page, struct page *src_page, | 
 | 		       unsigned long dst_off, unsigned long src_off, | 
 | 		       unsigned long len) | 
 | { | 
 | 	char *dst_kaddr = page_address(dst_page); | 
 | 	char *src_kaddr; | 
 | 	int must_memmove = 0; | 
 |  | 
 | 	if (dst_page != src_page) { | 
 | 		src_kaddr = page_address(src_page); | 
 | 	} else { | 
 | 		src_kaddr = dst_kaddr; | 
 | 		if (areas_overlap(src_off, dst_off, len)) | 
 | 			must_memmove = 1; | 
 | 	} | 
 |  | 
 | 	if (must_memmove) | 
 | 		memmove(dst_kaddr + dst_off, src_kaddr + src_off, len); | 
 | 	else | 
 | 		memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len); | 
 | } | 
 |  | 
 | void memcpy_extent_buffer(const struct extent_buffer *dst, | 
 | 			  unsigned long dst_offset, unsigned long src_offset, | 
 | 			  unsigned long len) | 
 | { | 
 | 	size_t cur; | 
 | 	size_t dst_off_in_page; | 
 | 	size_t src_off_in_page; | 
 | 	unsigned long dst_i; | 
 | 	unsigned long src_i; | 
 |  | 
 | 	if (check_eb_range(dst, dst_offset, len) || | 
 | 	    check_eb_range(dst, src_offset, len)) | 
 | 		return; | 
 |  | 
 | 	while (len > 0) { | 
 | 		dst_off_in_page = get_eb_offset_in_page(dst, dst_offset); | 
 | 		src_off_in_page = get_eb_offset_in_page(dst, src_offset); | 
 |  | 
 | 		dst_i = get_eb_page_index(dst_offset); | 
 | 		src_i = get_eb_page_index(src_offset); | 
 |  | 
 | 		cur = min(len, (unsigned long)(PAGE_SIZE - | 
 | 					       src_off_in_page)); | 
 | 		cur = min_t(unsigned long, cur, | 
 | 			(unsigned long)(PAGE_SIZE - dst_off_in_page)); | 
 |  | 
 | 		copy_pages(dst->pages[dst_i], dst->pages[src_i], | 
 | 			   dst_off_in_page, src_off_in_page, cur); | 
 |  | 
 | 		src_offset += cur; | 
 | 		dst_offset += cur; | 
 | 		len -= cur; | 
 | 	} | 
 | } | 
 |  | 
 | void memmove_extent_buffer(const struct extent_buffer *dst, | 
 | 			   unsigned long dst_offset, unsigned long src_offset, | 
 | 			   unsigned long len) | 
 | { | 
 | 	size_t cur; | 
 | 	size_t dst_off_in_page; | 
 | 	size_t src_off_in_page; | 
 | 	unsigned long dst_end = dst_offset + len - 1; | 
 | 	unsigned long src_end = src_offset + len - 1; | 
 | 	unsigned long dst_i; | 
 | 	unsigned long src_i; | 
 |  | 
 | 	if (check_eb_range(dst, dst_offset, len) || | 
 | 	    check_eb_range(dst, src_offset, len)) | 
 | 		return; | 
 | 	if (dst_offset < src_offset) { | 
 | 		memcpy_extent_buffer(dst, dst_offset, src_offset, len); | 
 | 		return; | 
 | 	} | 
 | 	while (len > 0) { | 
 | 		dst_i = get_eb_page_index(dst_end); | 
 | 		src_i = get_eb_page_index(src_end); | 
 |  | 
 | 		dst_off_in_page = get_eb_offset_in_page(dst, dst_end); | 
 | 		src_off_in_page = get_eb_offset_in_page(dst, src_end); | 
 |  | 
 | 		cur = min_t(unsigned long, len, src_off_in_page + 1); | 
 | 		cur = min(cur, dst_off_in_page + 1); | 
 | 		copy_pages(dst->pages[dst_i], dst->pages[src_i], | 
 | 			   dst_off_in_page - cur + 1, | 
 | 			   src_off_in_page - cur + 1, cur); | 
 |  | 
 | 		dst_end -= cur; | 
 | 		src_end -= cur; | 
 | 		len -= cur; | 
 | 	} | 
 | } | 
 |  | 
 | #define GANG_LOOKUP_SIZE	16 | 
 | static struct extent_buffer *get_next_extent_buffer( | 
 | 		struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr) | 
 | { | 
 | 	struct extent_buffer *gang[GANG_LOOKUP_SIZE]; | 
 | 	struct extent_buffer *found = NULL; | 
 | 	u64 page_start = page_offset(page); | 
 | 	u64 cur = page_start; | 
 |  | 
 | 	ASSERT(in_range(bytenr, page_start, PAGE_SIZE)); | 
 | 	lockdep_assert_held(&fs_info->buffer_lock); | 
 |  | 
 | 	while (cur < page_start + PAGE_SIZE) { | 
 | 		int ret; | 
 | 		int i; | 
 |  | 
 | 		ret = radix_tree_gang_lookup(&fs_info->buffer_radix, | 
 | 				(void **)gang, cur >> fs_info->sectorsize_bits, | 
 | 				min_t(unsigned int, GANG_LOOKUP_SIZE, | 
 | 				      PAGE_SIZE / fs_info->nodesize)); | 
 | 		if (ret == 0) | 
 | 			goto out; | 
 | 		for (i = 0; i < ret; i++) { | 
 | 			/* Already beyond page end */ | 
 | 			if (gang[i]->start >= page_start + PAGE_SIZE) | 
 | 				goto out; | 
 | 			/* Found one */ | 
 | 			if (gang[i]->start >= bytenr) { | 
 | 				found = gang[i]; | 
 | 				goto out; | 
 | 			} | 
 | 		} | 
 | 		cur = gang[ret - 1]->start + gang[ret - 1]->len; | 
 | 	} | 
 | out: | 
 | 	return found; | 
 | } | 
 |  | 
 | static int try_release_subpage_extent_buffer(struct page *page) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); | 
 | 	u64 cur = page_offset(page); | 
 | 	const u64 end = page_offset(page) + PAGE_SIZE; | 
 | 	int ret; | 
 |  | 
 | 	while (cur < end) { | 
 | 		struct extent_buffer *eb = NULL; | 
 |  | 
 | 		/* | 
 | 		 * Unlike try_release_extent_buffer() which uses page->private | 
 | 		 * to grab buffer, for subpage case we rely on radix tree, thus | 
 | 		 * we need to ensure radix tree consistency. | 
 | 		 * | 
 | 		 * We also want an atomic snapshot of the radix tree, thus go | 
 | 		 * with spinlock rather than RCU. | 
 | 		 */ | 
 | 		spin_lock(&fs_info->buffer_lock); | 
 | 		eb = get_next_extent_buffer(fs_info, page, cur); | 
 | 		if (!eb) { | 
 | 			/* No more eb in the page range after or at cur */ | 
 | 			spin_unlock(&fs_info->buffer_lock); | 
 | 			break; | 
 | 		} | 
 | 		cur = eb->start + eb->len; | 
 |  | 
 | 		/* | 
 | 		 * The same as try_release_extent_buffer(), to ensure the eb | 
 | 		 * won't disappear out from under us. | 
 | 		 */ | 
 | 		spin_lock(&eb->refs_lock); | 
 | 		if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { | 
 | 			spin_unlock(&eb->refs_lock); | 
 | 			spin_unlock(&fs_info->buffer_lock); | 
 | 			break; | 
 | 		} | 
 | 		spin_unlock(&fs_info->buffer_lock); | 
 |  | 
 | 		/* | 
 | 		 * If tree ref isn't set then we know the ref on this eb is a | 
 | 		 * real ref, so just return, this eb will likely be freed soon | 
 | 		 * anyway. | 
 | 		 */ | 
 | 		if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { | 
 | 			spin_unlock(&eb->refs_lock); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Here we don't care about the return value, we will always | 
 | 		 * check the page private at the end.  And | 
 | 		 * release_extent_buffer() will release the refs_lock. | 
 | 		 */ | 
 | 		release_extent_buffer(eb); | 
 | 	} | 
 | 	/* | 
 | 	 * Finally to check if we have cleared page private, as if we have | 
 | 	 * released all ebs in the page, the page private should be cleared now. | 
 | 	 */ | 
 | 	spin_lock(&page->mapping->private_lock); | 
 | 	if (!PagePrivate(page)) | 
 | 		ret = 1; | 
 | 	else | 
 | 		ret = 0; | 
 | 	spin_unlock(&page->mapping->private_lock); | 
 | 	return ret; | 
 |  | 
 | } | 
 |  | 
 | int try_release_extent_buffer(struct page *page) | 
 | { | 
 | 	struct extent_buffer *eb; | 
 |  | 
 | 	if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE) | 
 | 		return try_release_subpage_extent_buffer(page); | 
 |  | 
 | 	/* | 
 | 	 * We need to make sure nobody is changing page->private, as we rely on | 
 | 	 * page->private as the pointer to extent buffer. | 
 | 	 */ | 
 | 	spin_lock(&page->mapping->private_lock); | 
 | 	if (!PagePrivate(page)) { | 
 | 		spin_unlock(&page->mapping->private_lock); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	eb = (struct extent_buffer *)page->private; | 
 | 	BUG_ON(!eb); | 
 |  | 
 | 	/* | 
 | 	 * This is a little awful but should be ok, we need to make sure that | 
 | 	 * the eb doesn't disappear out from under us while we're looking at | 
 | 	 * this page. | 
 | 	 */ | 
 | 	spin_lock(&eb->refs_lock); | 
 | 	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { | 
 | 		spin_unlock(&eb->refs_lock); | 
 | 		spin_unlock(&page->mapping->private_lock); | 
 | 		return 0; | 
 | 	} | 
 | 	spin_unlock(&page->mapping->private_lock); | 
 |  | 
 | 	/* | 
 | 	 * If tree ref isn't set then we know the ref on this eb is a real ref, | 
 | 	 * so just return, this page will likely be freed soon anyway. | 
 | 	 */ | 
 | 	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { | 
 | 		spin_unlock(&eb->refs_lock); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	return release_extent_buffer(eb); | 
 | } | 
 |  | 
 | /* | 
 |  * btrfs_readahead_tree_block - attempt to readahead a child block | 
 |  * @fs_info:	the fs_info | 
 |  * @bytenr:	bytenr to read | 
 |  * @owner_root: objectid of the root that owns this eb | 
 |  * @gen:	generation for the uptodate check, can be 0 | 
 |  * @level:	level for the eb | 
 |  * | 
 |  * Attempt to readahead a tree block at @bytenr.  If @gen is 0 then we do a | 
 |  * normal uptodate check of the eb, without checking the generation.  If we have | 
 |  * to read the block we will not block on anything. | 
 |  */ | 
 | void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info, | 
 | 				u64 bytenr, u64 owner_root, u64 gen, int level) | 
 | { | 
 | 	struct extent_buffer *eb; | 
 | 	int ret; | 
 |  | 
 | 	eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level); | 
 | 	if (IS_ERR(eb)) | 
 | 		return; | 
 |  | 
 | 	if (btrfs_buffer_uptodate(eb, gen, 1)) { | 
 | 		free_extent_buffer(eb); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	ret = read_extent_buffer_pages(eb, WAIT_NONE, 0); | 
 | 	if (ret < 0) | 
 | 		free_extent_buffer_stale(eb); | 
 | 	else | 
 | 		free_extent_buffer(eb); | 
 | } | 
 |  | 
 | /* | 
 |  * btrfs_readahead_node_child - readahead a node's child block | 
 |  * @node:	parent node we're reading from | 
 |  * @slot:	slot in the parent node for the child we want to read | 
 |  * | 
 |  * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at | 
 |  * the slot in the node provided. | 
 |  */ | 
 | void btrfs_readahead_node_child(struct extent_buffer *node, int slot) | 
 | { | 
 | 	btrfs_readahead_tree_block(node->fs_info, | 
 | 				   btrfs_node_blockptr(node, slot), | 
 | 				   btrfs_header_owner(node), | 
 | 				   btrfs_node_ptr_generation(node, slot), | 
 | 				   btrfs_header_level(node) - 1); | 
 | } |