|  | /* | 
|  | * Kernel-based Virtual Machine driver for Linux | 
|  | * | 
|  | * This module enables machines with Intel VT-x extensions to run virtual | 
|  | * machines without emulation or binary translation. | 
|  | * | 
|  | * MMU support | 
|  | * | 
|  | * Copyright (C) 2006 Qumranet, Inc. | 
|  | * Copyright 2010 Red Hat, Inc. and/or its affiliates. | 
|  | * | 
|  | * Authors: | 
|  | *   Yaniv Kamay  <yaniv@qumranet.com> | 
|  | *   Avi Kivity   <avi@qumranet.com> | 
|  | * | 
|  | * This work is licensed under the terms of the GNU GPL, version 2.  See | 
|  | * the COPYING file in the top-level directory. | 
|  | * | 
|  | */ | 
|  |  | 
|  | #include "irq.h" | 
|  | #include "mmu.h" | 
|  | #include "x86.h" | 
|  | #include "kvm_cache_regs.h" | 
|  | #include "cpuid.h" | 
|  |  | 
|  | #include <linux/kvm_host.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/moduleparam.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/hugetlb.h> | 
|  | #include <linux/compiler.h> | 
|  | #include <linux/srcu.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/sched/signal.h> | 
|  | #include <linux/uaccess.h> | 
|  | #include <linux/hash.h> | 
|  | #include <linux/kern_levels.h> | 
|  |  | 
|  | #include <asm/page.h> | 
|  | #include <asm/pat.h> | 
|  | #include <asm/cmpxchg.h> | 
|  | #include <asm/io.h> | 
|  | #include <asm/vmx.h> | 
|  | #include <asm/kvm_page_track.h> | 
|  | #include "trace.h" | 
|  |  | 
|  | /* | 
|  | * When setting this variable to true it enables Two-Dimensional-Paging | 
|  | * where the hardware walks 2 page tables: | 
|  | * 1. the guest-virtual to guest-physical | 
|  | * 2. while doing 1. it walks guest-physical to host-physical | 
|  | * If the hardware supports that we don't need to do shadow paging. | 
|  | */ | 
|  | bool tdp_enabled = false; | 
|  |  | 
|  | enum { | 
|  | AUDIT_PRE_PAGE_FAULT, | 
|  | AUDIT_POST_PAGE_FAULT, | 
|  | AUDIT_PRE_PTE_WRITE, | 
|  | AUDIT_POST_PTE_WRITE, | 
|  | AUDIT_PRE_SYNC, | 
|  | AUDIT_POST_SYNC | 
|  | }; | 
|  |  | 
|  | #undef MMU_DEBUG | 
|  |  | 
|  | #ifdef MMU_DEBUG | 
|  | static bool dbg = 0; | 
|  | module_param(dbg, bool, 0644); | 
|  |  | 
|  | #define pgprintk(x...) do { if (dbg) printk(x); } while (0) | 
|  | #define rmap_printk(x...) do { if (dbg) printk(x); } while (0) | 
|  | #define MMU_WARN_ON(x) WARN_ON(x) | 
|  | #else | 
|  | #define pgprintk(x...) do { } while (0) | 
|  | #define rmap_printk(x...) do { } while (0) | 
|  | #define MMU_WARN_ON(x) do { } while (0) | 
|  | #endif | 
|  |  | 
|  | #define PTE_PREFETCH_NUM		8 | 
|  |  | 
|  | #define PT_FIRST_AVAIL_BITS_SHIFT 10 | 
|  | #define PT64_SECOND_AVAIL_BITS_SHIFT 52 | 
|  |  | 
|  | #define PT64_LEVEL_BITS 9 | 
|  |  | 
|  | #define PT64_LEVEL_SHIFT(level) \ | 
|  | (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS) | 
|  |  | 
|  | #define PT64_INDEX(address, level)\ | 
|  | (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1)) | 
|  |  | 
|  |  | 
|  | #define PT32_LEVEL_BITS 10 | 
|  |  | 
|  | #define PT32_LEVEL_SHIFT(level) \ | 
|  | (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS) | 
|  |  | 
|  | #define PT32_LVL_OFFSET_MASK(level) \ | 
|  | (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \ | 
|  | * PT32_LEVEL_BITS))) - 1)) | 
|  |  | 
|  | #define PT32_INDEX(address, level)\ | 
|  | (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1)) | 
|  |  | 
|  |  | 
|  | #define PT64_BASE_ADDR_MASK __sme_clr((((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))) | 
|  | #define PT64_DIR_BASE_ADDR_MASK \ | 
|  | (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1)) | 
|  | #define PT64_LVL_ADDR_MASK(level) \ | 
|  | (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \ | 
|  | * PT64_LEVEL_BITS))) - 1)) | 
|  | #define PT64_LVL_OFFSET_MASK(level) \ | 
|  | (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \ | 
|  | * PT64_LEVEL_BITS))) - 1)) | 
|  |  | 
|  | #define PT32_BASE_ADDR_MASK PAGE_MASK | 
|  | #define PT32_DIR_BASE_ADDR_MASK \ | 
|  | (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1)) | 
|  | #define PT32_LVL_ADDR_MASK(level) \ | 
|  | (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \ | 
|  | * PT32_LEVEL_BITS))) - 1)) | 
|  |  | 
|  | #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \ | 
|  | | shadow_x_mask | shadow_nx_mask | shadow_me_mask) | 
|  |  | 
|  | #define ACC_EXEC_MASK    1 | 
|  | #define ACC_WRITE_MASK   PT_WRITABLE_MASK | 
|  | #define ACC_USER_MASK    PT_USER_MASK | 
|  | #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK) | 
|  |  | 
|  | /* The mask for the R/X bits in EPT PTEs */ | 
|  | #define PT64_EPT_READABLE_MASK			0x1ull | 
|  | #define PT64_EPT_EXECUTABLE_MASK		0x4ull | 
|  |  | 
|  | #include <trace/events/kvm.h> | 
|  |  | 
|  | #define CREATE_TRACE_POINTS | 
|  | #include "mmutrace.h" | 
|  |  | 
|  | #define SPTE_HOST_WRITEABLE	(1ULL << PT_FIRST_AVAIL_BITS_SHIFT) | 
|  | #define SPTE_MMU_WRITEABLE	(1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1)) | 
|  |  | 
|  | #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level) | 
|  |  | 
|  | /* make pte_list_desc fit well in cache line */ | 
|  | #define PTE_LIST_EXT 3 | 
|  |  | 
|  | /* | 
|  | * Return values of handle_mmio_page_fault and mmu.page_fault: | 
|  | * RET_PF_RETRY: let CPU fault again on the address. | 
|  | * RET_PF_EMULATE: mmio page fault, emulate the instruction directly. | 
|  | * | 
|  | * For handle_mmio_page_fault only: | 
|  | * RET_PF_INVALID: the spte is invalid, let the real page fault path update it. | 
|  | */ | 
|  | enum { | 
|  | RET_PF_RETRY = 0, | 
|  | RET_PF_EMULATE = 1, | 
|  | RET_PF_INVALID = 2, | 
|  | }; | 
|  |  | 
|  | struct pte_list_desc { | 
|  | u64 *sptes[PTE_LIST_EXT]; | 
|  | struct pte_list_desc *more; | 
|  | }; | 
|  |  | 
|  | struct kvm_shadow_walk_iterator { | 
|  | u64 addr; | 
|  | hpa_t shadow_addr; | 
|  | u64 *sptep; | 
|  | int level; | 
|  | unsigned index; | 
|  | }; | 
|  |  | 
|  | static const union kvm_mmu_page_role mmu_base_role_mask = { | 
|  | .cr0_wp = 1, | 
|  | .cr4_pae = 1, | 
|  | .nxe = 1, | 
|  | .smep_andnot_wp = 1, | 
|  | .smap_andnot_wp = 1, | 
|  | .smm = 1, | 
|  | .guest_mode = 1, | 
|  | .ad_disabled = 1, | 
|  | }; | 
|  |  | 
|  | #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \ | 
|  | for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \ | 
|  | (_root), (_addr));                \ | 
|  | shadow_walk_okay(&(_walker));			           \ | 
|  | shadow_walk_next(&(_walker))) | 
|  |  | 
|  | #define for_each_shadow_entry(_vcpu, _addr, _walker)            \ | 
|  | for (shadow_walk_init(&(_walker), _vcpu, _addr);	\ | 
|  | shadow_walk_okay(&(_walker));			\ | 
|  | shadow_walk_next(&(_walker))) | 
|  |  | 
|  | #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\ | 
|  | for (shadow_walk_init(&(_walker), _vcpu, _addr);		\ | 
|  | shadow_walk_okay(&(_walker)) &&				\ | 
|  | ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\ | 
|  | __shadow_walk_next(&(_walker), spte)) | 
|  |  | 
|  | static struct kmem_cache *pte_list_desc_cache; | 
|  | static struct kmem_cache *mmu_page_header_cache; | 
|  | static struct percpu_counter kvm_total_used_mmu_pages; | 
|  |  | 
|  | static u64 __read_mostly shadow_nx_mask; | 
|  | static u64 __read_mostly shadow_x_mask;	/* mutual exclusive with nx_mask */ | 
|  | static u64 __read_mostly shadow_user_mask; | 
|  | static u64 __read_mostly shadow_accessed_mask; | 
|  | static u64 __read_mostly shadow_dirty_mask; | 
|  | static u64 __read_mostly shadow_mmio_mask; | 
|  | static u64 __read_mostly shadow_mmio_value; | 
|  | static u64 __read_mostly shadow_present_mask; | 
|  | static u64 __read_mostly shadow_me_mask; | 
|  |  | 
|  | /* | 
|  | * SPTEs used by MMUs without A/D bits are marked with shadow_acc_track_value. | 
|  | * Non-present SPTEs with shadow_acc_track_value set are in place for access | 
|  | * tracking. | 
|  | */ | 
|  | static u64 __read_mostly shadow_acc_track_mask; | 
|  | static const u64 shadow_acc_track_value = SPTE_SPECIAL_MASK; | 
|  |  | 
|  | /* | 
|  | * The mask/shift to use for saving the original R/X bits when marking the PTE | 
|  | * as not-present for access tracking purposes. We do not save the W bit as the | 
|  | * PTEs being access tracked also need to be dirty tracked, so the W bit will be | 
|  | * restored only when a write is attempted to the page. | 
|  | */ | 
|  | static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK | | 
|  | PT64_EPT_EXECUTABLE_MASK; | 
|  | static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT; | 
|  |  | 
|  | /* | 
|  | * This mask must be set on all non-zero Non-Present or Reserved SPTEs in order | 
|  | * to guard against L1TF attacks. | 
|  | */ | 
|  | static u64 __read_mostly shadow_nonpresent_or_rsvd_mask; | 
|  |  | 
|  | /* | 
|  | * The number of high-order 1 bits to use in the mask above. | 
|  | */ | 
|  | static const u64 shadow_nonpresent_or_rsvd_mask_len = 5; | 
|  |  | 
|  | /* | 
|  | * In some cases, we need to preserve the GFN of a non-present or reserved | 
|  | * SPTE when we usurp the upper five bits of the physical address space to | 
|  | * defend against L1TF, e.g. for MMIO SPTEs.  To preserve the GFN, we'll | 
|  | * shift bits of the GFN that overlap with shadow_nonpresent_or_rsvd_mask | 
|  | * left into the reserved bits, i.e. the GFN in the SPTE will be split into | 
|  | * high and low parts.  This mask covers the lower bits of the GFN. | 
|  | */ | 
|  | static u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask; | 
|  |  | 
|  |  | 
|  | static void mmu_spte_set(u64 *sptep, u64 spte); | 
|  | static union kvm_mmu_page_role | 
|  | kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu); | 
|  |  | 
|  |  | 
|  | static inline bool kvm_available_flush_tlb_with_range(void) | 
|  | { | 
|  | return kvm_x86_ops->tlb_remote_flush_with_range; | 
|  | } | 
|  |  | 
|  | static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm, | 
|  | struct kvm_tlb_range *range) | 
|  | { | 
|  | int ret = -ENOTSUPP; | 
|  |  | 
|  | if (range && kvm_x86_ops->tlb_remote_flush_with_range) | 
|  | ret = kvm_x86_ops->tlb_remote_flush_with_range(kvm, range); | 
|  |  | 
|  | if (ret) | 
|  | kvm_flush_remote_tlbs(kvm); | 
|  | } | 
|  |  | 
|  | static void kvm_flush_remote_tlbs_with_address(struct kvm *kvm, | 
|  | u64 start_gfn, u64 pages) | 
|  | { | 
|  | struct kvm_tlb_range range; | 
|  |  | 
|  | range.start_gfn = start_gfn; | 
|  | range.pages = pages; | 
|  |  | 
|  | kvm_flush_remote_tlbs_with_range(kvm, &range); | 
|  | } | 
|  |  | 
|  | void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value) | 
|  | { | 
|  | BUG_ON((mmio_mask & mmio_value) != mmio_value); | 
|  | shadow_mmio_value = mmio_value | SPTE_SPECIAL_MASK; | 
|  | shadow_mmio_mask = mmio_mask | SPTE_SPECIAL_MASK; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask); | 
|  |  | 
|  | static inline bool sp_ad_disabled(struct kvm_mmu_page *sp) | 
|  | { | 
|  | return sp->role.ad_disabled; | 
|  | } | 
|  |  | 
|  | static inline bool spte_ad_enabled(u64 spte) | 
|  | { | 
|  | MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value); | 
|  | return !(spte & shadow_acc_track_value); | 
|  | } | 
|  |  | 
|  | static inline u64 spte_shadow_accessed_mask(u64 spte) | 
|  | { | 
|  | MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value); | 
|  | return spte_ad_enabled(spte) ? shadow_accessed_mask : 0; | 
|  | } | 
|  |  | 
|  | static inline u64 spte_shadow_dirty_mask(u64 spte) | 
|  | { | 
|  | MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value); | 
|  | return spte_ad_enabled(spte) ? shadow_dirty_mask : 0; | 
|  | } | 
|  |  | 
|  | static inline bool is_access_track_spte(u64 spte) | 
|  | { | 
|  | return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * the low bit of the generation number is always presumed to be zero. | 
|  | * This disables mmio caching during memslot updates.  The concept is | 
|  | * similar to a seqcount but instead of retrying the access we just punt | 
|  | * and ignore the cache. | 
|  | * | 
|  | * spte bits 3-11 are used as bits 1-9 of the generation number, | 
|  | * the bits 52-61 are used as bits 10-19 of the generation number. | 
|  | */ | 
|  | #define MMIO_SPTE_GEN_LOW_SHIFT		2 | 
|  | #define MMIO_SPTE_GEN_HIGH_SHIFT	52 | 
|  |  | 
|  | #define MMIO_GEN_SHIFT			20 | 
|  | #define MMIO_GEN_LOW_SHIFT		10 | 
|  | #define MMIO_GEN_LOW_MASK		((1 << MMIO_GEN_LOW_SHIFT) - 2) | 
|  | #define MMIO_GEN_MASK			((1 << MMIO_GEN_SHIFT) - 1) | 
|  |  | 
|  | static u64 generation_mmio_spte_mask(unsigned int gen) | 
|  | { | 
|  | u64 mask; | 
|  |  | 
|  | WARN_ON(gen & ~MMIO_GEN_MASK); | 
|  |  | 
|  | mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT; | 
|  | mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT; | 
|  | return mask; | 
|  | } | 
|  |  | 
|  | static unsigned int get_mmio_spte_generation(u64 spte) | 
|  | { | 
|  | unsigned int gen; | 
|  |  | 
|  | spte &= ~shadow_mmio_mask; | 
|  |  | 
|  | gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK; | 
|  | gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT; | 
|  | return gen; | 
|  | } | 
|  |  | 
|  | static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK; | 
|  | } | 
|  |  | 
|  | static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn, | 
|  | unsigned access) | 
|  | { | 
|  | unsigned int gen = kvm_current_mmio_generation(vcpu); | 
|  | u64 mask = generation_mmio_spte_mask(gen); | 
|  | u64 gpa = gfn << PAGE_SHIFT; | 
|  |  | 
|  | access &= ACC_WRITE_MASK | ACC_USER_MASK; | 
|  | mask |= shadow_mmio_value | access; | 
|  | mask |= gpa | shadow_nonpresent_or_rsvd_mask; | 
|  | mask |= (gpa & shadow_nonpresent_or_rsvd_mask) | 
|  | << shadow_nonpresent_or_rsvd_mask_len; | 
|  |  | 
|  | trace_mark_mmio_spte(sptep, gfn, access, gen); | 
|  | mmu_spte_set(sptep, mask); | 
|  | } | 
|  |  | 
|  | static bool is_mmio_spte(u64 spte) | 
|  | { | 
|  | return (spte & shadow_mmio_mask) == shadow_mmio_value; | 
|  | } | 
|  |  | 
|  | static gfn_t get_mmio_spte_gfn(u64 spte) | 
|  | { | 
|  | u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask; | 
|  |  | 
|  | gpa |= (spte >> shadow_nonpresent_or_rsvd_mask_len) | 
|  | & shadow_nonpresent_or_rsvd_mask; | 
|  |  | 
|  | return gpa >> PAGE_SHIFT; | 
|  | } | 
|  |  | 
|  | static unsigned get_mmio_spte_access(u64 spte) | 
|  | { | 
|  | u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask; | 
|  | return (spte & ~mask) & ~PAGE_MASK; | 
|  | } | 
|  |  | 
|  | static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn, | 
|  | kvm_pfn_t pfn, unsigned access) | 
|  | { | 
|  | if (unlikely(is_noslot_pfn(pfn))) { | 
|  | mark_mmio_spte(vcpu, sptep, gfn, access); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte) | 
|  | { | 
|  | unsigned int kvm_gen, spte_gen; | 
|  |  | 
|  | kvm_gen = kvm_current_mmio_generation(vcpu); | 
|  | spte_gen = get_mmio_spte_generation(spte); | 
|  |  | 
|  | trace_check_mmio_spte(spte, kvm_gen, spte_gen); | 
|  | return likely(kvm_gen == spte_gen); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Sets the shadow PTE masks used by the MMU. | 
|  | * | 
|  | * Assumptions: | 
|  | *  - Setting either @accessed_mask or @dirty_mask requires setting both | 
|  | *  - At least one of @accessed_mask or @acc_track_mask must be set | 
|  | */ | 
|  | void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask, | 
|  | u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask, | 
|  | u64 acc_track_mask, u64 me_mask) | 
|  | { | 
|  | BUG_ON(!dirty_mask != !accessed_mask); | 
|  | BUG_ON(!accessed_mask && !acc_track_mask); | 
|  | BUG_ON(acc_track_mask & shadow_acc_track_value); | 
|  |  | 
|  | shadow_user_mask = user_mask; | 
|  | shadow_accessed_mask = accessed_mask; | 
|  | shadow_dirty_mask = dirty_mask; | 
|  | shadow_nx_mask = nx_mask; | 
|  | shadow_x_mask = x_mask; | 
|  | shadow_present_mask = p_mask; | 
|  | shadow_acc_track_mask = acc_track_mask; | 
|  | shadow_me_mask = me_mask; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes); | 
|  |  | 
|  | static void kvm_mmu_reset_all_pte_masks(void) | 
|  | { | 
|  | u8 low_phys_bits; | 
|  |  | 
|  | shadow_user_mask = 0; | 
|  | shadow_accessed_mask = 0; | 
|  | shadow_dirty_mask = 0; | 
|  | shadow_nx_mask = 0; | 
|  | shadow_x_mask = 0; | 
|  | shadow_mmio_mask = 0; | 
|  | shadow_present_mask = 0; | 
|  | shadow_acc_track_mask = 0; | 
|  |  | 
|  | /* | 
|  | * If the CPU has 46 or less physical address bits, then set an | 
|  | * appropriate mask to guard against L1TF attacks. Otherwise, it is | 
|  | * assumed that the CPU is not vulnerable to L1TF. | 
|  | */ | 
|  | low_phys_bits = boot_cpu_data.x86_phys_bits; | 
|  | if (boot_cpu_data.x86_phys_bits < | 
|  | 52 - shadow_nonpresent_or_rsvd_mask_len) { | 
|  | shadow_nonpresent_or_rsvd_mask = | 
|  | rsvd_bits(boot_cpu_data.x86_phys_bits - | 
|  | shadow_nonpresent_or_rsvd_mask_len, | 
|  | boot_cpu_data.x86_phys_bits - 1); | 
|  | low_phys_bits -= shadow_nonpresent_or_rsvd_mask_len; | 
|  | } | 
|  | shadow_nonpresent_or_rsvd_lower_gfn_mask = | 
|  | GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT); | 
|  | } | 
|  |  | 
|  | static int is_cpuid_PSE36(void) | 
|  | { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int is_nx(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | return vcpu->arch.efer & EFER_NX; | 
|  | } | 
|  |  | 
|  | static int is_shadow_present_pte(u64 pte) | 
|  | { | 
|  | return (pte != 0) && !is_mmio_spte(pte); | 
|  | } | 
|  |  | 
|  | static int is_large_pte(u64 pte) | 
|  | { | 
|  | return pte & PT_PAGE_SIZE_MASK; | 
|  | } | 
|  |  | 
|  | static int is_last_spte(u64 pte, int level) | 
|  | { | 
|  | if (level == PT_PAGE_TABLE_LEVEL) | 
|  | return 1; | 
|  | if (is_large_pte(pte)) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool is_executable_pte(u64 spte) | 
|  | { | 
|  | return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask; | 
|  | } | 
|  |  | 
|  | static kvm_pfn_t spte_to_pfn(u64 pte) | 
|  | { | 
|  | return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT; | 
|  | } | 
|  |  | 
|  | static gfn_t pse36_gfn_delta(u32 gpte) | 
|  | { | 
|  | int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT; | 
|  |  | 
|  | return (gpte & PT32_DIR_PSE36_MASK) << shift; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_X86_64 | 
|  | static void __set_spte(u64 *sptep, u64 spte) | 
|  | { | 
|  | WRITE_ONCE(*sptep, spte); | 
|  | } | 
|  |  | 
|  | static void __update_clear_spte_fast(u64 *sptep, u64 spte) | 
|  | { | 
|  | WRITE_ONCE(*sptep, spte); | 
|  | } | 
|  |  | 
|  | static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) | 
|  | { | 
|  | return xchg(sptep, spte); | 
|  | } | 
|  |  | 
|  | static u64 __get_spte_lockless(u64 *sptep) | 
|  | { | 
|  | return READ_ONCE(*sptep); | 
|  | } | 
|  | #else | 
|  | union split_spte { | 
|  | struct { | 
|  | u32 spte_low; | 
|  | u32 spte_high; | 
|  | }; | 
|  | u64 spte; | 
|  | }; | 
|  |  | 
|  | static void count_spte_clear(u64 *sptep, u64 spte) | 
|  | { | 
|  | struct kvm_mmu_page *sp =  page_header(__pa(sptep)); | 
|  |  | 
|  | if (is_shadow_present_pte(spte)) | 
|  | return; | 
|  |  | 
|  | /* Ensure the spte is completely set before we increase the count */ | 
|  | smp_wmb(); | 
|  | sp->clear_spte_count++; | 
|  | } | 
|  |  | 
|  | static void __set_spte(u64 *sptep, u64 spte) | 
|  | { | 
|  | union split_spte *ssptep, sspte; | 
|  |  | 
|  | ssptep = (union split_spte *)sptep; | 
|  | sspte = (union split_spte)spte; | 
|  |  | 
|  | ssptep->spte_high = sspte.spte_high; | 
|  |  | 
|  | /* | 
|  | * If we map the spte from nonpresent to present, We should store | 
|  | * the high bits firstly, then set present bit, so cpu can not | 
|  | * fetch this spte while we are setting the spte. | 
|  | */ | 
|  | smp_wmb(); | 
|  |  | 
|  | WRITE_ONCE(ssptep->spte_low, sspte.spte_low); | 
|  | } | 
|  |  | 
|  | static void __update_clear_spte_fast(u64 *sptep, u64 spte) | 
|  | { | 
|  | union split_spte *ssptep, sspte; | 
|  |  | 
|  | ssptep = (union split_spte *)sptep; | 
|  | sspte = (union split_spte)spte; | 
|  |  | 
|  | WRITE_ONCE(ssptep->spte_low, sspte.spte_low); | 
|  |  | 
|  | /* | 
|  | * If we map the spte from present to nonpresent, we should clear | 
|  | * present bit firstly to avoid vcpu fetch the old high bits. | 
|  | */ | 
|  | smp_wmb(); | 
|  |  | 
|  | ssptep->spte_high = sspte.spte_high; | 
|  | count_spte_clear(sptep, spte); | 
|  | } | 
|  |  | 
|  | static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) | 
|  | { | 
|  | union split_spte *ssptep, sspte, orig; | 
|  |  | 
|  | ssptep = (union split_spte *)sptep; | 
|  | sspte = (union split_spte)spte; | 
|  |  | 
|  | /* xchg acts as a barrier before the setting of the high bits */ | 
|  | orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low); | 
|  | orig.spte_high = ssptep->spte_high; | 
|  | ssptep->spte_high = sspte.spte_high; | 
|  | count_spte_clear(sptep, spte); | 
|  |  | 
|  | return orig.spte; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The idea using the light way get the spte on x86_32 guest is from | 
|  | * gup_get_pte(arch/x86/mm/gup.c). | 
|  | * | 
|  | * An spte tlb flush may be pending, because kvm_set_pte_rmapp | 
|  | * coalesces them and we are running out of the MMU lock.  Therefore | 
|  | * we need to protect against in-progress updates of the spte. | 
|  | * | 
|  | * Reading the spte while an update is in progress may get the old value | 
|  | * for the high part of the spte.  The race is fine for a present->non-present | 
|  | * change (because the high part of the spte is ignored for non-present spte), | 
|  | * but for a present->present change we must reread the spte. | 
|  | * | 
|  | * All such changes are done in two steps (present->non-present and | 
|  | * non-present->present), hence it is enough to count the number of | 
|  | * present->non-present updates: if it changed while reading the spte, | 
|  | * we might have hit the race.  This is done using clear_spte_count. | 
|  | */ | 
|  | static u64 __get_spte_lockless(u64 *sptep) | 
|  | { | 
|  | struct kvm_mmu_page *sp =  page_header(__pa(sptep)); | 
|  | union split_spte spte, *orig = (union split_spte *)sptep; | 
|  | int count; | 
|  |  | 
|  | retry: | 
|  | count = sp->clear_spte_count; | 
|  | smp_rmb(); | 
|  |  | 
|  | spte.spte_low = orig->spte_low; | 
|  | smp_rmb(); | 
|  |  | 
|  | spte.spte_high = orig->spte_high; | 
|  | smp_rmb(); | 
|  |  | 
|  | if (unlikely(spte.spte_low != orig->spte_low || | 
|  | count != sp->clear_spte_count)) | 
|  | goto retry; | 
|  |  | 
|  | return spte.spte; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static bool spte_can_locklessly_be_made_writable(u64 spte) | 
|  | { | 
|  | return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) == | 
|  | (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE); | 
|  | } | 
|  |  | 
|  | static bool spte_has_volatile_bits(u64 spte) | 
|  | { | 
|  | if (!is_shadow_present_pte(spte)) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * Always atomically update spte if it can be updated | 
|  | * out of mmu-lock, it can ensure dirty bit is not lost, | 
|  | * also, it can help us to get a stable is_writable_pte() | 
|  | * to ensure tlb flush is not missed. | 
|  | */ | 
|  | if (spte_can_locklessly_be_made_writable(spte) || | 
|  | is_access_track_spte(spte)) | 
|  | return true; | 
|  |  | 
|  | if (spte_ad_enabled(spte)) { | 
|  | if ((spte & shadow_accessed_mask) == 0 || | 
|  | (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool is_accessed_spte(u64 spte) | 
|  | { | 
|  | u64 accessed_mask = spte_shadow_accessed_mask(spte); | 
|  |  | 
|  | return accessed_mask ? spte & accessed_mask | 
|  | : !is_access_track_spte(spte); | 
|  | } | 
|  |  | 
|  | static bool is_dirty_spte(u64 spte) | 
|  | { | 
|  | u64 dirty_mask = spte_shadow_dirty_mask(spte); | 
|  |  | 
|  | return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK; | 
|  | } | 
|  |  | 
|  | /* Rules for using mmu_spte_set: | 
|  | * Set the sptep from nonpresent to present. | 
|  | * Note: the sptep being assigned *must* be either not present | 
|  | * or in a state where the hardware will not attempt to update | 
|  | * the spte. | 
|  | */ | 
|  | static void mmu_spte_set(u64 *sptep, u64 new_spte) | 
|  | { | 
|  | WARN_ON(is_shadow_present_pte(*sptep)); | 
|  | __set_spte(sptep, new_spte); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Update the SPTE (excluding the PFN), but do not track changes in its | 
|  | * accessed/dirty status. | 
|  | */ | 
|  | static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte) | 
|  | { | 
|  | u64 old_spte = *sptep; | 
|  |  | 
|  | WARN_ON(!is_shadow_present_pte(new_spte)); | 
|  |  | 
|  | if (!is_shadow_present_pte(old_spte)) { | 
|  | mmu_spte_set(sptep, new_spte); | 
|  | return old_spte; | 
|  | } | 
|  |  | 
|  | if (!spte_has_volatile_bits(old_spte)) | 
|  | __update_clear_spte_fast(sptep, new_spte); | 
|  | else | 
|  | old_spte = __update_clear_spte_slow(sptep, new_spte); | 
|  |  | 
|  | WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte)); | 
|  |  | 
|  | return old_spte; | 
|  | } | 
|  |  | 
|  | /* Rules for using mmu_spte_update: | 
|  | * Update the state bits, it means the mapped pfn is not changed. | 
|  | * | 
|  | * Whenever we overwrite a writable spte with a read-only one we | 
|  | * should flush remote TLBs. Otherwise rmap_write_protect | 
|  | * will find a read-only spte, even though the writable spte | 
|  | * might be cached on a CPU's TLB, the return value indicates this | 
|  | * case. | 
|  | * | 
|  | * Returns true if the TLB needs to be flushed | 
|  | */ | 
|  | static bool mmu_spte_update(u64 *sptep, u64 new_spte) | 
|  | { | 
|  | bool flush = false; | 
|  | u64 old_spte = mmu_spte_update_no_track(sptep, new_spte); | 
|  |  | 
|  | if (!is_shadow_present_pte(old_spte)) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * For the spte updated out of mmu-lock is safe, since | 
|  | * we always atomically update it, see the comments in | 
|  | * spte_has_volatile_bits(). | 
|  | */ | 
|  | if (spte_can_locklessly_be_made_writable(old_spte) && | 
|  | !is_writable_pte(new_spte)) | 
|  | flush = true; | 
|  |  | 
|  | /* | 
|  | * Flush TLB when accessed/dirty states are changed in the page tables, | 
|  | * to guarantee consistency between TLB and page tables. | 
|  | */ | 
|  |  | 
|  | if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) { | 
|  | flush = true; | 
|  | kvm_set_pfn_accessed(spte_to_pfn(old_spte)); | 
|  | } | 
|  |  | 
|  | if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) { | 
|  | flush = true; | 
|  | kvm_set_pfn_dirty(spte_to_pfn(old_spte)); | 
|  | } | 
|  |  | 
|  | return flush; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Rules for using mmu_spte_clear_track_bits: | 
|  | * It sets the sptep from present to nonpresent, and track the | 
|  | * state bits, it is used to clear the last level sptep. | 
|  | * Returns non-zero if the PTE was previously valid. | 
|  | */ | 
|  | static int mmu_spte_clear_track_bits(u64 *sptep) | 
|  | { | 
|  | kvm_pfn_t pfn; | 
|  | u64 old_spte = *sptep; | 
|  |  | 
|  | if (!spte_has_volatile_bits(old_spte)) | 
|  | __update_clear_spte_fast(sptep, 0ull); | 
|  | else | 
|  | old_spte = __update_clear_spte_slow(sptep, 0ull); | 
|  |  | 
|  | if (!is_shadow_present_pte(old_spte)) | 
|  | return 0; | 
|  |  | 
|  | pfn = spte_to_pfn(old_spte); | 
|  |  | 
|  | /* | 
|  | * KVM does not hold the refcount of the page used by | 
|  | * kvm mmu, before reclaiming the page, we should | 
|  | * unmap it from mmu first. | 
|  | */ | 
|  | WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn))); | 
|  |  | 
|  | if (is_accessed_spte(old_spte)) | 
|  | kvm_set_pfn_accessed(pfn); | 
|  |  | 
|  | if (is_dirty_spte(old_spte)) | 
|  | kvm_set_pfn_dirty(pfn); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Rules for using mmu_spte_clear_no_track: | 
|  | * Directly clear spte without caring the state bits of sptep, | 
|  | * it is used to set the upper level spte. | 
|  | */ | 
|  | static void mmu_spte_clear_no_track(u64 *sptep) | 
|  | { | 
|  | __update_clear_spte_fast(sptep, 0ull); | 
|  | } | 
|  |  | 
|  | static u64 mmu_spte_get_lockless(u64 *sptep) | 
|  | { | 
|  | return __get_spte_lockless(sptep); | 
|  | } | 
|  |  | 
|  | static u64 mark_spte_for_access_track(u64 spte) | 
|  | { | 
|  | if (spte_ad_enabled(spte)) | 
|  | return spte & ~shadow_accessed_mask; | 
|  |  | 
|  | if (is_access_track_spte(spte)) | 
|  | return spte; | 
|  |  | 
|  | /* | 
|  | * Making an Access Tracking PTE will result in removal of write access | 
|  | * from the PTE. So, verify that we will be able to restore the write | 
|  | * access in the fast page fault path later on. | 
|  | */ | 
|  | WARN_ONCE((spte & PT_WRITABLE_MASK) && | 
|  | !spte_can_locklessly_be_made_writable(spte), | 
|  | "kvm: Writable SPTE is not locklessly dirty-trackable\n"); | 
|  |  | 
|  | WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask << | 
|  | shadow_acc_track_saved_bits_shift), | 
|  | "kvm: Access Tracking saved bit locations are not zero\n"); | 
|  |  | 
|  | spte |= (spte & shadow_acc_track_saved_bits_mask) << | 
|  | shadow_acc_track_saved_bits_shift; | 
|  | spte &= ~shadow_acc_track_mask; | 
|  |  | 
|  | return spte; | 
|  | } | 
|  |  | 
|  | /* Restore an acc-track PTE back to a regular PTE */ | 
|  | static u64 restore_acc_track_spte(u64 spte) | 
|  | { | 
|  | u64 new_spte = spte; | 
|  | u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift) | 
|  | & shadow_acc_track_saved_bits_mask; | 
|  |  | 
|  | WARN_ON_ONCE(spte_ad_enabled(spte)); | 
|  | WARN_ON_ONCE(!is_access_track_spte(spte)); | 
|  |  | 
|  | new_spte &= ~shadow_acc_track_mask; | 
|  | new_spte &= ~(shadow_acc_track_saved_bits_mask << | 
|  | shadow_acc_track_saved_bits_shift); | 
|  | new_spte |= saved_bits; | 
|  |  | 
|  | return new_spte; | 
|  | } | 
|  |  | 
|  | /* Returns the Accessed status of the PTE and resets it at the same time. */ | 
|  | static bool mmu_spte_age(u64 *sptep) | 
|  | { | 
|  | u64 spte = mmu_spte_get_lockless(sptep); | 
|  |  | 
|  | if (!is_accessed_spte(spte)) | 
|  | return false; | 
|  |  | 
|  | if (spte_ad_enabled(spte)) { | 
|  | clear_bit((ffs(shadow_accessed_mask) - 1), | 
|  | (unsigned long *)sptep); | 
|  | } else { | 
|  | /* | 
|  | * Capture the dirty status of the page, so that it doesn't get | 
|  | * lost when the SPTE is marked for access tracking. | 
|  | */ | 
|  | if (is_writable_pte(spte)) | 
|  | kvm_set_pfn_dirty(spte_to_pfn(spte)); | 
|  |  | 
|  | spte = mark_spte_for_access_track(spte); | 
|  | mmu_spte_update_no_track(sptep, spte); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | /* | 
|  | * Prevent page table teardown by making any free-er wait during | 
|  | * kvm_flush_remote_tlbs() IPI to all active vcpus. | 
|  | */ | 
|  | local_irq_disable(); | 
|  |  | 
|  | /* | 
|  | * Make sure a following spte read is not reordered ahead of the write | 
|  | * to vcpu->mode. | 
|  | */ | 
|  | smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES); | 
|  | } | 
|  |  | 
|  | static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | /* | 
|  | * Make sure the write to vcpu->mode is not reordered in front of | 
|  | * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us | 
|  | * OUTSIDE_GUEST_MODE and proceed to free the shadow page table. | 
|  | */ | 
|  | smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE); | 
|  | local_irq_enable(); | 
|  | } | 
|  |  | 
|  | static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache, | 
|  | struct kmem_cache *base_cache, int min) | 
|  | { | 
|  | void *obj; | 
|  |  | 
|  | if (cache->nobjs >= min) | 
|  | return 0; | 
|  | while (cache->nobjs < ARRAY_SIZE(cache->objects)) { | 
|  | obj = kmem_cache_zalloc(base_cache, GFP_KERNEL); | 
|  | if (!obj) | 
|  | return cache->nobjs >= min ? 0 : -ENOMEM; | 
|  | cache->objects[cache->nobjs++] = obj; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache) | 
|  | { | 
|  | return cache->nobjs; | 
|  | } | 
|  |  | 
|  | static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc, | 
|  | struct kmem_cache *cache) | 
|  | { | 
|  | while (mc->nobjs) | 
|  | kmem_cache_free(cache, mc->objects[--mc->nobjs]); | 
|  | } | 
|  |  | 
|  | static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache, | 
|  | int min) | 
|  | { | 
|  | void *page; | 
|  |  | 
|  | if (cache->nobjs >= min) | 
|  | return 0; | 
|  | while (cache->nobjs < ARRAY_SIZE(cache->objects)) { | 
|  | page = (void *)__get_free_page(GFP_KERNEL_ACCOUNT); | 
|  | if (!page) | 
|  | return cache->nobjs >= min ? 0 : -ENOMEM; | 
|  | cache->objects[cache->nobjs++] = page; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc) | 
|  | { | 
|  | while (mc->nobjs) | 
|  | free_page((unsigned long)mc->objects[--mc->nobjs]); | 
|  | } | 
|  |  | 
|  | static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | int r; | 
|  |  | 
|  | r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache, | 
|  | pte_list_desc_cache, 8 + PTE_PREFETCH_NUM); | 
|  | if (r) | 
|  | goto out; | 
|  | r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8); | 
|  | if (r) | 
|  | goto out; | 
|  | r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache, | 
|  | mmu_page_header_cache, 4); | 
|  | out: | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static void mmu_free_memory_caches(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache, | 
|  | pte_list_desc_cache); | 
|  | mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache); | 
|  | mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache, | 
|  | mmu_page_header_cache); | 
|  | } | 
|  |  | 
|  | static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc) | 
|  | { | 
|  | void *p; | 
|  |  | 
|  | BUG_ON(!mc->nobjs); | 
|  | p = mc->objects[--mc->nobjs]; | 
|  | return p; | 
|  | } | 
|  |  | 
|  | static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache); | 
|  | } | 
|  |  | 
|  | static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc) | 
|  | { | 
|  | kmem_cache_free(pte_list_desc_cache, pte_list_desc); | 
|  | } | 
|  |  | 
|  | static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index) | 
|  | { | 
|  | if (!sp->role.direct) | 
|  | return sp->gfns[index]; | 
|  |  | 
|  | return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS)); | 
|  | } | 
|  |  | 
|  | static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn) | 
|  | { | 
|  | if (sp->role.direct) | 
|  | BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index)); | 
|  | else | 
|  | sp->gfns[index] = gfn; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return the pointer to the large page information for a given gfn, | 
|  | * handling slots that are not large page aligned. | 
|  | */ | 
|  | static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn, | 
|  | struct kvm_memory_slot *slot, | 
|  | int level) | 
|  | { | 
|  | unsigned long idx; | 
|  |  | 
|  | idx = gfn_to_index(gfn, slot->base_gfn, level); | 
|  | return &slot->arch.lpage_info[level - 2][idx]; | 
|  | } | 
|  |  | 
|  | static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot, | 
|  | gfn_t gfn, int count) | 
|  | { | 
|  | struct kvm_lpage_info *linfo; | 
|  | int i; | 
|  |  | 
|  | for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) { | 
|  | linfo = lpage_info_slot(gfn, slot, i); | 
|  | linfo->disallow_lpage += count; | 
|  | WARN_ON(linfo->disallow_lpage < 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn) | 
|  | { | 
|  | update_gfn_disallow_lpage_count(slot, gfn, 1); | 
|  | } | 
|  |  | 
|  | void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn) | 
|  | { | 
|  | update_gfn_disallow_lpage_count(slot, gfn, -1); | 
|  | } | 
|  |  | 
|  | static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) | 
|  | { | 
|  | struct kvm_memslots *slots; | 
|  | struct kvm_memory_slot *slot; | 
|  | gfn_t gfn; | 
|  |  | 
|  | kvm->arch.indirect_shadow_pages++; | 
|  | gfn = sp->gfn; | 
|  | slots = kvm_memslots_for_spte_role(kvm, sp->role); | 
|  | slot = __gfn_to_memslot(slots, gfn); | 
|  |  | 
|  | /* the non-leaf shadow pages are keeping readonly. */ | 
|  | if (sp->role.level > PT_PAGE_TABLE_LEVEL) | 
|  | return kvm_slot_page_track_add_page(kvm, slot, gfn, | 
|  | KVM_PAGE_TRACK_WRITE); | 
|  |  | 
|  | kvm_mmu_gfn_disallow_lpage(slot, gfn); | 
|  | } | 
|  |  | 
|  | static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) | 
|  | { | 
|  | struct kvm_memslots *slots; | 
|  | struct kvm_memory_slot *slot; | 
|  | gfn_t gfn; | 
|  |  | 
|  | kvm->arch.indirect_shadow_pages--; | 
|  | gfn = sp->gfn; | 
|  | slots = kvm_memslots_for_spte_role(kvm, sp->role); | 
|  | slot = __gfn_to_memslot(slots, gfn); | 
|  | if (sp->role.level > PT_PAGE_TABLE_LEVEL) | 
|  | return kvm_slot_page_track_remove_page(kvm, slot, gfn, | 
|  | KVM_PAGE_TRACK_WRITE); | 
|  |  | 
|  | kvm_mmu_gfn_allow_lpage(slot, gfn); | 
|  | } | 
|  |  | 
|  | static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level, | 
|  | struct kvm_memory_slot *slot) | 
|  | { | 
|  | struct kvm_lpage_info *linfo; | 
|  |  | 
|  | if (slot) { | 
|  | linfo = lpage_info_slot(gfn, slot, level); | 
|  | return !!linfo->disallow_lpage; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn, | 
|  | int level) | 
|  | { | 
|  | struct kvm_memory_slot *slot; | 
|  |  | 
|  | slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); | 
|  | return __mmu_gfn_lpage_is_disallowed(gfn, level, slot); | 
|  | } | 
|  |  | 
|  | static int host_mapping_level(struct kvm *kvm, gfn_t gfn) | 
|  | { | 
|  | unsigned long page_size; | 
|  | int i, ret = 0; | 
|  |  | 
|  | page_size = kvm_host_page_size(kvm, gfn); | 
|  |  | 
|  | for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) { | 
|  | if (page_size >= KVM_HPAGE_SIZE(i)) | 
|  | ret = i; | 
|  | else | 
|  | break; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot, | 
|  | bool no_dirty_log) | 
|  | { | 
|  | if (!slot || slot->flags & KVM_MEMSLOT_INVALID) | 
|  | return false; | 
|  | if (no_dirty_log && slot->dirty_bitmap) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static struct kvm_memory_slot * | 
|  | gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn, | 
|  | bool no_dirty_log) | 
|  | { | 
|  | struct kvm_memory_slot *slot; | 
|  |  | 
|  | slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); | 
|  | if (!memslot_valid_for_gpte(slot, no_dirty_log)) | 
|  | slot = NULL; | 
|  |  | 
|  | return slot; | 
|  | } | 
|  |  | 
|  | static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn, | 
|  | bool *force_pt_level) | 
|  | { | 
|  | int host_level, level, max_level; | 
|  | struct kvm_memory_slot *slot; | 
|  |  | 
|  | if (unlikely(*force_pt_level)) | 
|  | return PT_PAGE_TABLE_LEVEL; | 
|  |  | 
|  | slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn); | 
|  | *force_pt_level = !memslot_valid_for_gpte(slot, true); | 
|  | if (unlikely(*force_pt_level)) | 
|  | return PT_PAGE_TABLE_LEVEL; | 
|  |  | 
|  | host_level = host_mapping_level(vcpu->kvm, large_gfn); | 
|  |  | 
|  | if (host_level == PT_PAGE_TABLE_LEVEL) | 
|  | return host_level; | 
|  |  | 
|  | max_level = min(kvm_x86_ops->get_lpage_level(), host_level); | 
|  |  | 
|  | for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level) | 
|  | if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot)) | 
|  | break; | 
|  |  | 
|  | return level - 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * About rmap_head encoding: | 
|  | * | 
|  | * If the bit zero of rmap_head->val is clear, then it points to the only spte | 
|  | * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct | 
|  | * pte_list_desc containing more mappings. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Returns the number of pointers in the rmap chain, not counting the new one. | 
|  | */ | 
|  | static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte, | 
|  | struct kvm_rmap_head *rmap_head) | 
|  | { | 
|  | struct pte_list_desc *desc; | 
|  | int i, count = 0; | 
|  |  | 
|  | if (!rmap_head->val) { | 
|  | rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte); | 
|  | rmap_head->val = (unsigned long)spte; | 
|  | } else if (!(rmap_head->val & 1)) { | 
|  | rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte); | 
|  | desc = mmu_alloc_pte_list_desc(vcpu); | 
|  | desc->sptes[0] = (u64 *)rmap_head->val; | 
|  | desc->sptes[1] = spte; | 
|  | rmap_head->val = (unsigned long)desc | 1; | 
|  | ++count; | 
|  | } else { | 
|  | rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte); | 
|  | desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); | 
|  | while (desc->sptes[PTE_LIST_EXT-1] && desc->more) { | 
|  | desc = desc->more; | 
|  | count += PTE_LIST_EXT; | 
|  | } | 
|  | if (desc->sptes[PTE_LIST_EXT-1]) { | 
|  | desc->more = mmu_alloc_pte_list_desc(vcpu); | 
|  | desc = desc->more; | 
|  | } | 
|  | for (i = 0; desc->sptes[i]; ++i) | 
|  | ++count; | 
|  | desc->sptes[i] = spte; | 
|  | } | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static void | 
|  | pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head, | 
|  | struct pte_list_desc *desc, int i, | 
|  | struct pte_list_desc *prev_desc) | 
|  | { | 
|  | int j; | 
|  |  | 
|  | for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j) | 
|  | ; | 
|  | desc->sptes[i] = desc->sptes[j]; | 
|  | desc->sptes[j] = NULL; | 
|  | if (j != 0) | 
|  | return; | 
|  | if (!prev_desc && !desc->more) | 
|  | rmap_head->val = (unsigned long)desc->sptes[0]; | 
|  | else | 
|  | if (prev_desc) | 
|  | prev_desc->more = desc->more; | 
|  | else | 
|  | rmap_head->val = (unsigned long)desc->more | 1; | 
|  | mmu_free_pte_list_desc(desc); | 
|  | } | 
|  |  | 
|  | static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head) | 
|  | { | 
|  | struct pte_list_desc *desc; | 
|  | struct pte_list_desc *prev_desc; | 
|  | int i; | 
|  |  | 
|  | if (!rmap_head->val) { | 
|  | pr_err("%s: %p 0->BUG\n", __func__, spte); | 
|  | BUG(); | 
|  | } else if (!(rmap_head->val & 1)) { | 
|  | rmap_printk("%s:  %p 1->0\n", __func__, spte); | 
|  | if ((u64 *)rmap_head->val != spte) { | 
|  | pr_err("%s:  %p 1->BUG\n", __func__, spte); | 
|  | BUG(); | 
|  | } | 
|  | rmap_head->val = 0; | 
|  | } else { | 
|  | rmap_printk("%s:  %p many->many\n", __func__, spte); | 
|  | desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); | 
|  | prev_desc = NULL; | 
|  | while (desc) { | 
|  | for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) { | 
|  | if (desc->sptes[i] == spte) { | 
|  | pte_list_desc_remove_entry(rmap_head, | 
|  | desc, i, prev_desc); | 
|  | return; | 
|  | } | 
|  | } | 
|  | prev_desc = desc; | 
|  | desc = desc->more; | 
|  | } | 
|  | pr_err("%s: %p many->many\n", __func__, spte); | 
|  | BUG(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep) | 
|  | { | 
|  | mmu_spte_clear_track_bits(sptep); | 
|  | __pte_list_remove(sptep, rmap_head); | 
|  | } | 
|  |  | 
|  | static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level, | 
|  | struct kvm_memory_slot *slot) | 
|  | { | 
|  | unsigned long idx; | 
|  |  | 
|  | idx = gfn_to_index(gfn, slot->base_gfn, level); | 
|  | return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx]; | 
|  | } | 
|  |  | 
|  | static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, | 
|  | struct kvm_mmu_page *sp) | 
|  | { | 
|  | struct kvm_memslots *slots; | 
|  | struct kvm_memory_slot *slot; | 
|  |  | 
|  | slots = kvm_memslots_for_spte_role(kvm, sp->role); | 
|  | slot = __gfn_to_memslot(slots, gfn); | 
|  | return __gfn_to_rmap(gfn, sp->role.level, slot); | 
|  | } | 
|  |  | 
|  | static bool rmap_can_add(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct kvm_mmu_memory_cache *cache; | 
|  |  | 
|  | cache = &vcpu->arch.mmu_pte_list_desc_cache; | 
|  | return mmu_memory_cache_free_objects(cache); | 
|  | } | 
|  |  | 
|  | static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn) | 
|  | { | 
|  | struct kvm_mmu_page *sp; | 
|  | struct kvm_rmap_head *rmap_head; | 
|  |  | 
|  | sp = page_header(__pa(spte)); | 
|  | kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn); | 
|  | rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp); | 
|  | return pte_list_add(vcpu, spte, rmap_head); | 
|  | } | 
|  |  | 
|  | static void rmap_remove(struct kvm *kvm, u64 *spte) | 
|  | { | 
|  | struct kvm_mmu_page *sp; | 
|  | gfn_t gfn; | 
|  | struct kvm_rmap_head *rmap_head; | 
|  |  | 
|  | sp = page_header(__pa(spte)); | 
|  | gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt); | 
|  | rmap_head = gfn_to_rmap(kvm, gfn, sp); | 
|  | __pte_list_remove(spte, rmap_head); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Used by the following functions to iterate through the sptes linked by a | 
|  | * rmap.  All fields are private and not assumed to be used outside. | 
|  | */ | 
|  | struct rmap_iterator { | 
|  | /* private fields */ | 
|  | struct pte_list_desc *desc;	/* holds the sptep if not NULL */ | 
|  | int pos;			/* index of the sptep */ | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Iteration must be started by this function.  This should also be used after | 
|  | * removing/dropping sptes from the rmap link because in such cases the | 
|  | * information in the itererator may not be valid. | 
|  | * | 
|  | * Returns sptep if found, NULL otherwise. | 
|  | */ | 
|  | static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head, | 
|  | struct rmap_iterator *iter) | 
|  | { | 
|  | u64 *sptep; | 
|  |  | 
|  | if (!rmap_head->val) | 
|  | return NULL; | 
|  |  | 
|  | if (!(rmap_head->val & 1)) { | 
|  | iter->desc = NULL; | 
|  | sptep = (u64 *)rmap_head->val; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); | 
|  | iter->pos = 0; | 
|  | sptep = iter->desc->sptes[iter->pos]; | 
|  | out: | 
|  | BUG_ON(!is_shadow_present_pte(*sptep)); | 
|  | return sptep; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Must be used with a valid iterator: e.g. after rmap_get_first(). | 
|  | * | 
|  | * Returns sptep if found, NULL otherwise. | 
|  | */ | 
|  | static u64 *rmap_get_next(struct rmap_iterator *iter) | 
|  | { | 
|  | u64 *sptep; | 
|  |  | 
|  | if (iter->desc) { | 
|  | if (iter->pos < PTE_LIST_EXT - 1) { | 
|  | ++iter->pos; | 
|  | sptep = iter->desc->sptes[iter->pos]; | 
|  | if (sptep) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | iter->desc = iter->desc->more; | 
|  |  | 
|  | if (iter->desc) { | 
|  | iter->pos = 0; | 
|  | /* desc->sptes[0] cannot be NULL */ | 
|  | sptep = iter->desc->sptes[iter->pos]; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | out: | 
|  | BUG_ON(!is_shadow_present_pte(*sptep)); | 
|  | return sptep; | 
|  | } | 
|  |  | 
|  | #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)			\ | 
|  | for (_spte_ = rmap_get_first(_rmap_head_, _iter_);		\ | 
|  | _spte_; _spte_ = rmap_get_next(_iter_)) | 
|  |  | 
|  | static void drop_spte(struct kvm *kvm, u64 *sptep) | 
|  | { | 
|  | if (mmu_spte_clear_track_bits(sptep)) | 
|  | rmap_remove(kvm, sptep); | 
|  | } | 
|  |  | 
|  |  | 
|  | static bool __drop_large_spte(struct kvm *kvm, u64 *sptep) | 
|  | { | 
|  | if (is_large_pte(*sptep)) { | 
|  | WARN_ON(page_header(__pa(sptep))->role.level == | 
|  | PT_PAGE_TABLE_LEVEL); | 
|  | drop_spte(kvm, sptep); | 
|  | --kvm->stat.lpages; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep) | 
|  | { | 
|  | if (__drop_large_spte(vcpu->kvm, sptep)) { | 
|  | struct kvm_mmu_page *sp = page_header(__pa(sptep)); | 
|  |  | 
|  | kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn, | 
|  | KVM_PAGES_PER_HPAGE(sp->role.level)); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Write-protect on the specified @sptep, @pt_protect indicates whether | 
|  | * spte write-protection is caused by protecting shadow page table. | 
|  | * | 
|  | * Note: write protection is difference between dirty logging and spte | 
|  | * protection: | 
|  | * - for dirty logging, the spte can be set to writable at anytime if | 
|  | *   its dirty bitmap is properly set. | 
|  | * - for spte protection, the spte can be writable only after unsync-ing | 
|  | *   shadow page. | 
|  | * | 
|  | * Return true if tlb need be flushed. | 
|  | */ | 
|  | static bool spte_write_protect(u64 *sptep, bool pt_protect) | 
|  | { | 
|  | u64 spte = *sptep; | 
|  |  | 
|  | if (!is_writable_pte(spte) && | 
|  | !(pt_protect && spte_can_locklessly_be_made_writable(spte))) | 
|  | return false; | 
|  |  | 
|  | rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep); | 
|  |  | 
|  | if (pt_protect) | 
|  | spte &= ~SPTE_MMU_WRITEABLE; | 
|  | spte = spte & ~PT_WRITABLE_MASK; | 
|  |  | 
|  | return mmu_spte_update(sptep, spte); | 
|  | } | 
|  |  | 
|  | static bool __rmap_write_protect(struct kvm *kvm, | 
|  | struct kvm_rmap_head *rmap_head, | 
|  | bool pt_protect) | 
|  | { | 
|  | u64 *sptep; | 
|  | struct rmap_iterator iter; | 
|  | bool flush = false; | 
|  |  | 
|  | for_each_rmap_spte(rmap_head, &iter, sptep) | 
|  | flush |= spte_write_protect(sptep, pt_protect); | 
|  |  | 
|  | return flush; | 
|  | } | 
|  |  | 
|  | static bool spte_clear_dirty(u64 *sptep) | 
|  | { | 
|  | u64 spte = *sptep; | 
|  |  | 
|  | rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep); | 
|  |  | 
|  | spte &= ~shadow_dirty_mask; | 
|  |  | 
|  | return mmu_spte_update(sptep, spte); | 
|  | } | 
|  |  | 
|  | static bool wrprot_ad_disabled_spte(u64 *sptep) | 
|  | { | 
|  | bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT, | 
|  | (unsigned long *)sptep); | 
|  | if (was_writable) | 
|  | kvm_set_pfn_dirty(spte_to_pfn(*sptep)); | 
|  |  | 
|  | return was_writable; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Gets the GFN ready for another round of dirty logging by clearing the | 
|  | *	- D bit on ad-enabled SPTEs, and | 
|  | *	- W bit on ad-disabled SPTEs. | 
|  | * Returns true iff any D or W bits were cleared. | 
|  | */ | 
|  | static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head) | 
|  | { | 
|  | u64 *sptep; | 
|  | struct rmap_iterator iter; | 
|  | bool flush = false; | 
|  |  | 
|  | for_each_rmap_spte(rmap_head, &iter, sptep) | 
|  | if (spte_ad_enabled(*sptep)) | 
|  | flush |= spte_clear_dirty(sptep); | 
|  | else | 
|  | flush |= wrprot_ad_disabled_spte(sptep); | 
|  |  | 
|  | return flush; | 
|  | } | 
|  |  | 
|  | static bool spte_set_dirty(u64 *sptep) | 
|  | { | 
|  | u64 spte = *sptep; | 
|  |  | 
|  | rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep); | 
|  |  | 
|  | spte |= shadow_dirty_mask; | 
|  |  | 
|  | return mmu_spte_update(sptep, spte); | 
|  | } | 
|  |  | 
|  | static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head) | 
|  | { | 
|  | u64 *sptep; | 
|  | struct rmap_iterator iter; | 
|  | bool flush = false; | 
|  |  | 
|  | for_each_rmap_spte(rmap_head, &iter, sptep) | 
|  | if (spte_ad_enabled(*sptep)) | 
|  | flush |= spte_set_dirty(sptep); | 
|  |  | 
|  | return flush; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages | 
|  | * @kvm: kvm instance | 
|  | * @slot: slot to protect | 
|  | * @gfn_offset: start of the BITS_PER_LONG pages we care about | 
|  | * @mask: indicates which pages we should protect | 
|  | * | 
|  | * Used when we do not need to care about huge page mappings: e.g. during dirty | 
|  | * logging we do not have any such mappings. | 
|  | */ | 
|  | static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm, | 
|  | struct kvm_memory_slot *slot, | 
|  | gfn_t gfn_offset, unsigned long mask) | 
|  | { | 
|  | struct kvm_rmap_head *rmap_head; | 
|  |  | 
|  | while (mask) { | 
|  | rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), | 
|  | PT_PAGE_TABLE_LEVEL, slot); | 
|  | __rmap_write_protect(kvm, rmap_head, false); | 
|  |  | 
|  | /* clear the first set bit */ | 
|  | mask &= mask - 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write | 
|  | * protect the page if the D-bit isn't supported. | 
|  | * @kvm: kvm instance | 
|  | * @slot: slot to clear D-bit | 
|  | * @gfn_offset: start of the BITS_PER_LONG pages we care about | 
|  | * @mask: indicates which pages we should clear D-bit | 
|  | * | 
|  | * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap. | 
|  | */ | 
|  | void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm, | 
|  | struct kvm_memory_slot *slot, | 
|  | gfn_t gfn_offset, unsigned long mask) | 
|  | { | 
|  | struct kvm_rmap_head *rmap_head; | 
|  |  | 
|  | while (mask) { | 
|  | rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), | 
|  | PT_PAGE_TABLE_LEVEL, slot); | 
|  | __rmap_clear_dirty(kvm, rmap_head); | 
|  |  | 
|  | /* clear the first set bit */ | 
|  | mask &= mask - 1; | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked); | 
|  |  | 
|  | /** | 
|  | * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected | 
|  | * PT level pages. | 
|  | * | 
|  | * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to | 
|  | * enable dirty logging for them. | 
|  | * | 
|  | * Used when we do not need to care about huge page mappings: e.g. during dirty | 
|  | * logging we do not have any such mappings. | 
|  | */ | 
|  | void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, | 
|  | struct kvm_memory_slot *slot, | 
|  | gfn_t gfn_offset, unsigned long mask) | 
|  | { | 
|  | if (kvm_x86_ops->enable_log_dirty_pt_masked) | 
|  | kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset, | 
|  | mask); | 
|  | else | 
|  | kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * kvm_arch_write_log_dirty - emulate dirty page logging | 
|  | * @vcpu: Guest mode vcpu | 
|  | * | 
|  | * Emulate arch specific page modification logging for the | 
|  | * nested hypervisor | 
|  | */ | 
|  | int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | if (kvm_x86_ops->write_log_dirty) | 
|  | return kvm_x86_ops->write_log_dirty(vcpu); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm, | 
|  | struct kvm_memory_slot *slot, u64 gfn) | 
|  | { | 
|  | struct kvm_rmap_head *rmap_head; | 
|  | int i; | 
|  | bool write_protected = false; | 
|  |  | 
|  | for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) { | 
|  | rmap_head = __gfn_to_rmap(gfn, i, slot); | 
|  | write_protected |= __rmap_write_protect(kvm, rmap_head, true); | 
|  | } | 
|  |  | 
|  | return write_protected; | 
|  | } | 
|  |  | 
|  | static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn) | 
|  | { | 
|  | struct kvm_memory_slot *slot; | 
|  |  | 
|  | slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); | 
|  | return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn); | 
|  | } | 
|  |  | 
|  | static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head) | 
|  | { | 
|  | u64 *sptep; | 
|  | struct rmap_iterator iter; | 
|  | bool flush = false; | 
|  |  | 
|  | while ((sptep = rmap_get_first(rmap_head, &iter))) { | 
|  | rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep); | 
|  |  | 
|  | pte_list_remove(rmap_head, sptep); | 
|  | flush = true; | 
|  | } | 
|  |  | 
|  | return flush; | 
|  | } | 
|  |  | 
|  | static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, | 
|  | struct kvm_memory_slot *slot, gfn_t gfn, int level, | 
|  | unsigned long data) | 
|  | { | 
|  | return kvm_zap_rmapp(kvm, rmap_head); | 
|  | } | 
|  |  | 
|  | static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, | 
|  | struct kvm_memory_slot *slot, gfn_t gfn, int level, | 
|  | unsigned long data) | 
|  | { | 
|  | u64 *sptep; | 
|  | struct rmap_iterator iter; | 
|  | int need_flush = 0; | 
|  | u64 new_spte; | 
|  | pte_t *ptep = (pte_t *)data; | 
|  | kvm_pfn_t new_pfn; | 
|  |  | 
|  | WARN_ON(pte_huge(*ptep)); | 
|  | new_pfn = pte_pfn(*ptep); | 
|  |  | 
|  | restart: | 
|  | for_each_rmap_spte(rmap_head, &iter, sptep) { | 
|  | rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n", | 
|  | sptep, *sptep, gfn, level); | 
|  |  | 
|  | need_flush = 1; | 
|  |  | 
|  | if (pte_write(*ptep)) { | 
|  | pte_list_remove(rmap_head, sptep); | 
|  | goto restart; | 
|  | } else { | 
|  | new_spte = *sptep & ~PT64_BASE_ADDR_MASK; | 
|  | new_spte |= (u64)new_pfn << PAGE_SHIFT; | 
|  |  | 
|  | new_spte &= ~PT_WRITABLE_MASK; | 
|  | new_spte &= ~SPTE_HOST_WRITEABLE; | 
|  |  | 
|  | new_spte = mark_spte_for_access_track(new_spte); | 
|  |  | 
|  | mmu_spte_clear_track_bits(sptep); | 
|  | mmu_spte_set(sptep, new_spte); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (need_flush && kvm_available_flush_tlb_with_range()) { | 
|  | kvm_flush_remote_tlbs_with_address(kvm, gfn, 1); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return need_flush; | 
|  | } | 
|  |  | 
|  | struct slot_rmap_walk_iterator { | 
|  | /* input fields. */ | 
|  | struct kvm_memory_slot *slot; | 
|  | gfn_t start_gfn; | 
|  | gfn_t end_gfn; | 
|  | int start_level; | 
|  | int end_level; | 
|  |  | 
|  | /* output fields. */ | 
|  | gfn_t gfn; | 
|  | struct kvm_rmap_head *rmap; | 
|  | int level; | 
|  |  | 
|  | /* private field. */ | 
|  | struct kvm_rmap_head *end_rmap; | 
|  | }; | 
|  |  | 
|  | static void | 
|  | rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level) | 
|  | { | 
|  | iterator->level = level; | 
|  | iterator->gfn = iterator->start_gfn; | 
|  | iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot); | 
|  | iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level, | 
|  | iterator->slot); | 
|  | } | 
|  |  | 
|  | static void | 
|  | slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator, | 
|  | struct kvm_memory_slot *slot, int start_level, | 
|  | int end_level, gfn_t start_gfn, gfn_t end_gfn) | 
|  | { | 
|  | iterator->slot = slot; | 
|  | iterator->start_level = start_level; | 
|  | iterator->end_level = end_level; | 
|  | iterator->start_gfn = start_gfn; | 
|  | iterator->end_gfn = end_gfn; | 
|  |  | 
|  | rmap_walk_init_level(iterator, iterator->start_level); | 
|  | } | 
|  |  | 
|  | static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator) | 
|  | { | 
|  | return !!iterator->rmap; | 
|  | } | 
|  |  | 
|  | static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator) | 
|  | { | 
|  | if (++iterator->rmap <= iterator->end_rmap) { | 
|  | iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (++iterator->level > iterator->end_level) { | 
|  | iterator->rmap = NULL; | 
|  | return; | 
|  | } | 
|  |  | 
|  | rmap_walk_init_level(iterator, iterator->level); | 
|  | } | 
|  |  | 
|  | #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,	\ | 
|  | _start_gfn, _end_gfn, _iter_)				\ | 
|  | for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,		\ | 
|  | _end_level_, _start_gfn, _end_gfn);	\ | 
|  | slot_rmap_walk_okay(_iter_);				\ | 
|  | slot_rmap_walk_next(_iter_)) | 
|  |  | 
|  | static int kvm_handle_hva_range(struct kvm *kvm, | 
|  | unsigned long start, | 
|  | unsigned long end, | 
|  | unsigned long data, | 
|  | int (*handler)(struct kvm *kvm, | 
|  | struct kvm_rmap_head *rmap_head, | 
|  | struct kvm_memory_slot *slot, | 
|  | gfn_t gfn, | 
|  | int level, | 
|  | unsigned long data)) | 
|  | { | 
|  | struct kvm_memslots *slots; | 
|  | struct kvm_memory_slot *memslot; | 
|  | struct slot_rmap_walk_iterator iterator; | 
|  | int ret = 0; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { | 
|  | slots = __kvm_memslots(kvm, i); | 
|  | kvm_for_each_memslot(memslot, slots) { | 
|  | unsigned long hva_start, hva_end; | 
|  | gfn_t gfn_start, gfn_end; | 
|  |  | 
|  | hva_start = max(start, memslot->userspace_addr); | 
|  | hva_end = min(end, memslot->userspace_addr + | 
|  | (memslot->npages << PAGE_SHIFT)); | 
|  | if (hva_start >= hva_end) | 
|  | continue; | 
|  | /* | 
|  | * {gfn(page) | page intersects with [hva_start, hva_end)} = | 
|  | * {gfn_start, gfn_start+1, ..., gfn_end-1}. | 
|  | */ | 
|  | gfn_start = hva_to_gfn_memslot(hva_start, memslot); | 
|  | gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot); | 
|  |  | 
|  | for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL, | 
|  | PT_MAX_HUGEPAGE_LEVEL, | 
|  | gfn_start, gfn_end - 1, | 
|  | &iterator) | 
|  | ret |= handler(kvm, iterator.rmap, memslot, | 
|  | iterator.gfn, iterator.level, data); | 
|  | } | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int kvm_handle_hva(struct kvm *kvm, unsigned long hva, | 
|  | unsigned long data, | 
|  | int (*handler)(struct kvm *kvm, | 
|  | struct kvm_rmap_head *rmap_head, | 
|  | struct kvm_memory_slot *slot, | 
|  | gfn_t gfn, int level, | 
|  | unsigned long data)) | 
|  | { | 
|  | return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler); | 
|  | } | 
|  |  | 
|  | int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end) | 
|  | { | 
|  | return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp); | 
|  | } | 
|  |  | 
|  | int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte) | 
|  | { | 
|  | return kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp); | 
|  | } | 
|  |  | 
|  | static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, | 
|  | struct kvm_memory_slot *slot, gfn_t gfn, int level, | 
|  | unsigned long data) | 
|  | { | 
|  | u64 *sptep; | 
|  | struct rmap_iterator uninitialized_var(iter); | 
|  | int young = 0; | 
|  |  | 
|  | for_each_rmap_spte(rmap_head, &iter, sptep) | 
|  | young |= mmu_spte_age(sptep); | 
|  |  | 
|  | trace_kvm_age_page(gfn, level, slot, young); | 
|  | return young; | 
|  | } | 
|  |  | 
|  | static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, | 
|  | struct kvm_memory_slot *slot, gfn_t gfn, | 
|  | int level, unsigned long data) | 
|  | { | 
|  | u64 *sptep; | 
|  | struct rmap_iterator iter; | 
|  |  | 
|  | for_each_rmap_spte(rmap_head, &iter, sptep) | 
|  | if (is_accessed_spte(*sptep)) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #define RMAP_RECYCLE_THRESHOLD 1000 | 
|  |  | 
|  | static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn) | 
|  | { | 
|  | struct kvm_rmap_head *rmap_head; | 
|  | struct kvm_mmu_page *sp; | 
|  |  | 
|  | sp = page_header(__pa(spte)); | 
|  |  | 
|  | rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp); | 
|  |  | 
|  | kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0); | 
|  | kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn, | 
|  | KVM_PAGES_PER_HPAGE(sp->role.level)); | 
|  | } | 
|  |  | 
|  | int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end) | 
|  | { | 
|  | return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp); | 
|  | } | 
|  |  | 
|  | int kvm_test_age_hva(struct kvm *kvm, unsigned long hva) | 
|  | { | 
|  | return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp); | 
|  | } | 
|  |  | 
|  | #ifdef MMU_DEBUG | 
|  | static int is_empty_shadow_page(u64 *spt) | 
|  | { | 
|  | u64 *pos; | 
|  | u64 *end; | 
|  |  | 
|  | for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++) | 
|  | if (is_shadow_present_pte(*pos)) { | 
|  | printk(KERN_ERR "%s: %p %llx\n", __func__, | 
|  | pos, *pos); | 
|  | return 0; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * This value is the sum of all of the kvm instances's | 
|  | * kvm->arch.n_used_mmu_pages values.  We need a global, | 
|  | * aggregate version in order to make the slab shrinker | 
|  | * faster | 
|  | */ | 
|  | static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr) | 
|  | { | 
|  | kvm->arch.n_used_mmu_pages += nr; | 
|  | percpu_counter_add(&kvm_total_used_mmu_pages, nr); | 
|  | } | 
|  |  | 
|  | static void kvm_mmu_free_page(struct kvm_mmu_page *sp) | 
|  | { | 
|  | MMU_WARN_ON(!is_empty_shadow_page(sp->spt)); | 
|  | hlist_del(&sp->hash_link); | 
|  | list_del(&sp->link); | 
|  | free_page((unsigned long)sp->spt); | 
|  | if (!sp->role.direct) | 
|  | free_page((unsigned long)sp->gfns); | 
|  | kmem_cache_free(mmu_page_header_cache, sp); | 
|  | } | 
|  |  | 
|  | static unsigned kvm_page_table_hashfn(gfn_t gfn) | 
|  | { | 
|  | return hash_64(gfn, KVM_MMU_HASH_SHIFT); | 
|  | } | 
|  |  | 
|  | static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu, | 
|  | struct kvm_mmu_page *sp, u64 *parent_pte) | 
|  | { | 
|  | if (!parent_pte) | 
|  | return; | 
|  |  | 
|  | pte_list_add(vcpu, parent_pte, &sp->parent_ptes); | 
|  | } | 
|  |  | 
|  | static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp, | 
|  | u64 *parent_pte) | 
|  | { | 
|  | __pte_list_remove(parent_pte, &sp->parent_ptes); | 
|  | } | 
|  |  | 
|  | static void drop_parent_pte(struct kvm_mmu_page *sp, | 
|  | u64 *parent_pte) | 
|  | { | 
|  | mmu_page_remove_parent_pte(sp, parent_pte); | 
|  | mmu_spte_clear_no_track(parent_pte); | 
|  | } | 
|  |  | 
|  | static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct) | 
|  | { | 
|  | struct kvm_mmu_page *sp; | 
|  |  | 
|  | sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache); | 
|  | sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache); | 
|  | if (!direct) | 
|  | sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache); | 
|  | set_page_private(virt_to_page(sp->spt), (unsigned long)sp); | 
|  |  | 
|  | /* | 
|  | * The active_mmu_pages list is the FIFO list, do not move the | 
|  | * page until it is zapped. kvm_zap_obsolete_pages depends on | 
|  | * this feature. See the comments in kvm_zap_obsolete_pages(). | 
|  | */ | 
|  | list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages); | 
|  | kvm_mod_used_mmu_pages(vcpu->kvm, +1); | 
|  | return sp; | 
|  | } | 
|  |  | 
|  | static void mark_unsync(u64 *spte); | 
|  | static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp) | 
|  | { | 
|  | u64 *sptep; | 
|  | struct rmap_iterator iter; | 
|  |  | 
|  | for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) { | 
|  | mark_unsync(sptep); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void mark_unsync(u64 *spte) | 
|  | { | 
|  | struct kvm_mmu_page *sp; | 
|  | unsigned int index; | 
|  |  | 
|  | sp = page_header(__pa(spte)); | 
|  | index = spte - sp->spt; | 
|  | if (__test_and_set_bit(index, sp->unsync_child_bitmap)) | 
|  | return; | 
|  | if (sp->unsync_children++) | 
|  | return; | 
|  | kvm_mmu_mark_parents_unsync(sp); | 
|  | } | 
|  |  | 
|  | static int nonpaging_sync_page(struct kvm_vcpu *vcpu, | 
|  | struct kvm_mmu_page *sp) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root) | 
|  | { | 
|  | } | 
|  |  | 
|  | static void nonpaging_update_pte(struct kvm_vcpu *vcpu, | 
|  | struct kvm_mmu_page *sp, u64 *spte, | 
|  | const void *pte) | 
|  | { | 
|  | WARN_ON(1); | 
|  | } | 
|  |  | 
|  | #define KVM_PAGE_ARRAY_NR 16 | 
|  |  | 
|  | struct kvm_mmu_pages { | 
|  | struct mmu_page_and_offset { | 
|  | struct kvm_mmu_page *sp; | 
|  | unsigned int idx; | 
|  | } page[KVM_PAGE_ARRAY_NR]; | 
|  | unsigned int nr; | 
|  | }; | 
|  |  | 
|  | static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp, | 
|  | int idx) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (sp->unsync) | 
|  | for (i=0; i < pvec->nr; i++) | 
|  | if (pvec->page[i].sp == sp) | 
|  | return 0; | 
|  |  | 
|  | pvec->page[pvec->nr].sp = sp; | 
|  | pvec->page[pvec->nr].idx = idx; | 
|  | pvec->nr++; | 
|  | return (pvec->nr == KVM_PAGE_ARRAY_NR); | 
|  | } | 
|  |  | 
|  | static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx) | 
|  | { | 
|  | --sp->unsync_children; | 
|  | WARN_ON((int)sp->unsync_children < 0); | 
|  | __clear_bit(idx, sp->unsync_child_bitmap); | 
|  | } | 
|  |  | 
|  | static int __mmu_unsync_walk(struct kvm_mmu_page *sp, | 
|  | struct kvm_mmu_pages *pvec) | 
|  | { | 
|  | int i, ret, nr_unsync_leaf = 0; | 
|  |  | 
|  | for_each_set_bit(i, sp->unsync_child_bitmap, 512) { | 
|  | struct kvm_mmu_page *child; | 
|  | u64 ent = sp->spt[i]; | 
|  |  | 
|  | if (!is_shadow_present_pte(ent) || is_large_pte(ent)) { | 
|  | clear_unsync_child_bit(sp, i); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | child = page_header(ent & PT64_BASE_ADDR_MASK); | 
|  |  | 
|  | if (child->unsync_children) { | 
|  | if (mmu_pages_add(pvec, child, i)) | 
|  | return -ENOSPC; | 
|  |  | 
|  | ret = __mmu_unsync_walk(child, pvec); | 
|  | if (!ret) { | 
|  | clear_unsync_child_bit(sp, i); | 
|  | continue; | 
|  | } else if (ret > 0) { | 
|  | nr_unsync_leaf += ret; | 
|  | } else | 
|  | return ret; | 
|  | } else if (child->unsync) { | 
|  | nr_unsync_leaf++; | 
|  | if (mmu_pages_add(pvec, child, i)) | 
|  | return -ENOSPC; | 
|  | } else | 
|  | clear_unsync_child_bit(sp, i); | 
|  | } | 
|  |  | 
|  | return nr_unsync_leaf; | 
|  | } | 
|  |  | 
|  | #define INVALID_INDEX (-1) | 
|  |  | 
|  | static int mmu_unsync_walk(struct kvm_mmu_page *sp, | 
|  | struct kvm_mmu_pages *pvec) | 
|  | { | 
|  | pvec->nr = 0; | 
|  | if (!sp->unsync_children) | 
|  | return 0; | 
|  |  | 
|  | mmu_pages_add(pvec, sp, INVALID_INDEX); | 
|  | return __mmu_unsync_walk(sp, pvec); | 
|  | } | 
|  |  | 
|  | static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp) | 
|  | { | 
|  | WARN_ON(!sp->unsync); | 
|  | trace_kvm_mmu_sync_page(sp); | 
|  | sp->unsync = 0; | 
|  | --kvm->stat.mmu_unsync; | 
|  | } | 
|  |  | 
|  | static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, | 
|  | struct list_head *invalid_list); | 
|  | static void kvm_mmu_commit_zap_page(struct kvm *kvm, | 
|  | struct list_head *invalid_list); | 
|  |  | 
|  | /* | 
|  | * NOTE: we should pay more attention on the zapped-obsolete page | 
|  | * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk | 
|  | * since it has been deleted from active_mmu_pages but still can be found | 
|  | * at hast list. | 
|  | * | 
|  | * for_each_valid_sp() has skipped that kind of pages. | 
|  | */ | 
|  | #define for_each_valid_sp(_kvm, _sp, _gfn)				\ | 
|  | hlist_for_each_entry(_sp,					\ | 
|  | &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \ | 
|  | if (is_obsolete_sp((_kvm), (_sp)) || (_sp)->role.invalid) {    \ | 
|  | } else | 
|  |  | 
|  | #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\ | 
|  | for_each_valid_sp(_kvm, _sp, _gfn)				\ | 
|  | if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else | 
|  |  | 
|  | /* @sp->gfn should be write-protected at the call site */ | 
|  | static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, | 
|  | struct list_head *invalid_list) | 
|  | { | 
|  | if (sp->role.cr4_pae != !!is_pae(vcpu) | 
|  | || vcpu->arch.mmu->sync_page(vcpu, sp) == 0) { | 
|  | kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu, | 
|  | struct list_head *invalid_list, | 
|  | bool remote_flush, bool local_flush) | 
|  | { | 
|  | if (!list_empty(invalid_list)) { | 
|  | kvm_mmu_commit_zap_page(vcpu->kvm, invalid_list); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (remote_flush) | 
|  | kvm_flush_remote_tlbs(vcpu->kvm); | 
|  | else if (local_flush) | 
|  | kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_KVM_MMU_AUDIT | 
|  | #include "mmu_audit.c" | 
|  | #else | 
|  | static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { } | 
|  | static void mmu_audit_disable(void) { } | 
|  | #endif | 
|  |  | 
|  | static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp) | 
|  | { | 
|  | return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen); | 
|  | } | 
|  |  | 
|  | static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, | 
|  | struct list_head *invalid_list) | 
|  | { | 
|  | kvm_unlink_unsync_page(vcpu->kvm, sp); | 
|  | return __kvm_sync_page(vcpu, sp, invalid_list); | 
|  | } | 
|  |  | 
|  | /* @gfn should be write-protected at the call site */ | 
|  | static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn, | 
|  | struct list_head *invalid_list) | 
|  | { | 
|  | struct kvm_mmu_page *s; | 
|  | bool ret = false; | 
|  |  | 
|  | for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) { | 
|  | if (!s->unsync) | 
|  | continue; | 
|  |  | 
|  | WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL); | 
|  | ret |= kvm_sync_page(vcpu, s, invalid_list); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | struct mmu_page_path { | 
|  | struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL]; | 
|  | unsigned int idx[PT64_ROOT_MAX_LEVEL]; | 
|  | }; | 
|  |  | 
|  | #define for_each_sp(pvec, sp, parents, i)			\ | 
|  | for (i = mmu_pages_first(&pvec, &parents);	\ | 
|  | i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\ | 
|  | i = mmu_pages_next(&pvec, &parents, i)) | 
|  |  | 
|  | static int mmu_pages_next(struct kvm_mmu_pages *pvec, | 
|  | struct mmu_page_path *parents, | 
|  | int i) | 
|  | { | 
|  | int n; | 
|  |  | 
|  | for (n = i+1; n < pvec->nr; n++) { | 
|  | struct kvm_mmu_page *sp = pvec->page[n].sp; | 
|  | unsigned idx = pvec->page[n].idx; | 
|  | int level = sp->role.level; | 
|  |  | 
|  | parents->idx[level-1] = idx; | 
|  | if (level == PT_PAGE_TABLE_LEVEL) | 
|  | break; | 
|  |  | 
|  | parents->parent[level-2] = sp; | 
|  | } | 
|  |  | 
|  | return n; | 
|  | } | 
|  |  | 
|  | static int mmu_pages_first(struct kvm_mmu_pages *pvec, | 
|  | struct mmu_page_path *parents) | 
|  | { | 
|  | struct kvm_mmu_page *sp; | 
|  | int level; | 
|  |  | 
|  | if (pvec->nr == 0) | 
|  | return 0; | 
|  |  | 
|  | WARN_ON(pvec->page[0].idx != INVALID_INDEX); | 
|  |  | 
|  | sp = pvec->page[0].sp; | 
|  | level = sp->role.level; | 
|  | WARN_ON(level == PT_PAGE_TABLE_LEVEL); | 
|  |  | 
|  | parents->parent[level-2] = sp; | 
|  |  | 
|  | /* Also set up a sentinel.  Further entries in pvec are all | 
|  | * children of sp, so this element is never overwritten. | 
|  | */ | 
|  | parents->parent[level-1] = NULL; | 
|  | return mmu_pages_next(pvec, parents, 0); | 
|  | } | 
|  |  | 
|  | static void mmu_pages_clear_parents(struct mmu_page_path *parents) | 
|  | { | 
|  | struct kvm_mmu_page *sp; | 
|  | unsigned int level = 0; | 
|  |  | 
|  | do { | 
|  | unsigned int idx = parents->idx[level]; | 
|  | sp = parents->parent[level]; | 
|  | if (!sp) | 
|  | return; | 
|  |  | 
|  | WARN_ON(idx == INVALID_INDEX); | 
|  | clear_unsync_child_bit(sp, idx); | 
|  | level++; | 
|  | } while (!sp->unsync_children); | 
|  | } | 
|  |  | 
|  | static void mmu_sync_children(struct kvm_vcpu *vcpu, | 
|  | struct kvm_mmu_page *parent) | 
|  | { | 
|  | int i; | 
|  | struct kvm_mmu_page *sp; | 
|  | struct mmu_page_path parents; | 
|  | struct kvm_mmu_pages pages; | 
|  | LIST_HEAD(invalid_list); | 
|  | bool flush = false; | 
|  |  | 
|  | while (mmu_unsync_walk(parent, &pages)) { | 
|  | bool protected = false; | 
|  |  | 
|  | for_each_sp(pages, sp, parents, i) | 
|  | protected |= rmap_write_protect(vcpu, sp->gfn); | 
|  |  | 
|  | if (protected) { | 
|  | kvm_flush_remote_tlbs(vcpu->kvm); | 
|  | flush = false; | 
|  | } | 
|  |  | 
|  | for_each_sp(pages, sp, parents, i) { | 
|  | flush |= kvm_sync_page(vcpu, sp, &invalid_list); | 
|  | mmu_pages_clear_parents(&parents); | 
|  | } | 
|  | if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) { | 
|  | kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush); | 
|  | cond_resched_lock(&vcpu->kvm->mmu_lock); | 
|  | flush = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush); | 
|  | } | 
|  |  | 
|  | static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp) | 
|  | { | 
|  | atomic_set(&sp->write_flooding_count,  0); | 
|  | } | 
|  |  | 
|  | static void clear_sp_write_flooding_count(u64 *spte) | 
|  | { | 
|  | struct kvm_mmu_page *sp =  page_header(__pa(spte)); | 
|  |  | 
|  | __clear_sp_write_flooding_count(sp); | 
|  | } | 
|  |  | 
|  | static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu, | 
|  | gfn_t gfn, | 
|  | gva_t gaddr, | 
|  | unsigned level, | 
|  | int direct, | 
|  | unsigned access) | 
|  | { | 
|  | union kvm_mmu_page_role role; | 
|  | unsigned quadrant; | 
|  | struct kvm_mmu_page *sp; | 
|  | bool need_sync = false; | 
|  | bool flush = false; | 
|  | int collisions = 0; | 
|  | LIST_HEAD(invalid_list); | 
|  |  | 
|  | role = vcpu->arch.mmu->mmu_role.base; | 
|  | role.level = level; | 
|  | role.direct = direct; | 
|  | if (role.direct) | 
|  | role.cr4_pae = 0; | 
|  | role.access = access; | 
|  | if (!vcpu->arch.mmu->direct_map | 
|  | && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) { | 
|  | quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level)); | 
|  | quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1; | 
|  | role.quadrant = quadrant; | 
|  | } | 
|  | for_each_valid_sp(vcpu->kvm, sp, gfn) { | 
|  | if (sp->gfn != gfn) { | 
|  | collisions++; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (!need_sync && sp->unsync) | 
|  | need_sync = true; | 
|  |  | 
|  | if (sp->role.word != role.word) | 
|  | continue; | 
|  |  | 
|  | if (sp->unsync) { | 
|  | /* The page is good, but __kvm_sync_page might still end | 
|  | * up zapping it.  If so, break in order to rebuild it. | 
|  | */ | 
|  | if (!__kvm_sync_page(vcpu, sp, &invalid_list)) | 
|  | break; | 
|  |  | 
|  | WARN_ON(!list_empty(&invalid_list)); | 
|  | kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); | 
|  | } | 
|  |  | 
|  | if (sp->unsync_children) | 
|  | kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); | 
|  |  | 
|  | __clear_sp_write_flooding_count(sp); | 
|  | trace_kvm_mmu_get_page(sp, false); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ++vcpu->kvm->stat.mmu_cache_miss; | 
|  |  | 
|  | sp = kvm_mmu_alloc_page(vcpu, direct); | 
|  |  | 
|  | sp->gfn = gfn; | 
|  | sp->role = role; | 
|  | hlist_add_head(&sp->hash_link, | 
|  | &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]); | 
|  | if (!direct) { | 
|  | /* | 
|  | * we should do write protection before syncing pages | 
|  | * otherwise the content of the synced shadow page may | 
|  | * be inconsistent with guest page table. | 
|  | */ | 
|  | account_shadowed(vcpu->kvm, sp); | 
|  | if (level == PT_PAGE_TABLE_LEVEL && | 
|  | rmap_write_protect(vcpu, gfn)) | 
|  | kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1); | 
|  |  | 
|  | if (level > PT_PAGE_TABLE_LEVEL && need_sync) | 
|  | flush |= kvm_sync_pages(vcpu, gfn, &invalid_list); | 
|  | } | 
|  | sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen; | 
|  | clear_page(sp->spt); | 
|  | trace_kvm_mmu_get_page(sp, true); | 
|  |  | 
|  | kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush); | 
|  | out: | 
|  | if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions) | 
|  | vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions; | 
|  | return sp; | 
|  | } | 
|  |  | 
|  | static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator, | 
|  | struct kvm_vcpu *vcpu, hpa_t root, | 
|  | u64 addr) | 
|  | { | 
|  | iterator->addr = addr; | 
|  | iterator->shadow_addr = root; | 
|  | iterator->level = vcpu->arch.mmu->shadow_root_level; | 
|  |  | 
|  | if (iterator->level == PT64_ROOT_4LEVEL && | 
|  | vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL && | 
|  | !vcpu->arch.mmu->direct_map) | 
|  | --iterator->level; | 
|  |  | 
|  | if (iterator->level == PT32E_ROOT_LEVEL) { | 
|  | /* | 
|  | * prev_root is currently only used for 64-bit hosts. So only | 
|  | * the active root_hpa is valid here. | 
|  | */ | 
|  | BUG_ON(root != vcpu->arch.mmu->root_hpa); | 
|  |  | 
|  | iterator->shadow_addr | 
|  | = vcpu->arch.mmu->pae_root[(addr >> 30) & 3]; | 
|  | iterator->shadow_addr &= PT64_BASE_ADDR_MASK; | 
|  | --iterator->level; | 
|  | if (!iterator->shadow_addr) | 
|  | iterator->level = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator, | 
|  | struct kvm_vcpu *vcpu, u64 addr) | 
|  | { | 
|  | shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa, | 
|  | addr); | 
|  | } | 
|  |  | 
|  | static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator) | 
|  | { | 
|  | if (iterator->level < PT_PAGE_TABLE_LEVEL) | 
|  | return false; | 
|  |  | 
|  | iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level); | 
|  | iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator, | 
|  | u64 spte) | 
|  | { | 
|  | if (is_last_spte(spte, iterator->level)) { | 
|  | iterator->level = 0; | 
|  | return; | 
|  | } | 
|  |  | 
|  | iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK; | 
|  | --iterator->level; | 
|  | } | 
|  |  | 
|  | static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator) | 
|  | { | 
|  | __shadow_walk_next(iterator, *iterator->sptep); | 
|  | } | 
|  |  | 
|  | static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep, | 
|  | struct kvm_mmu_page *sp) | 
|  | { | 
|  | u64 spte; | 
|  |  | 
|  | BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK); | 
|  |  | 
|  | spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK | | 
|  | shadow_user_mask | shadow_x_mask | shadow_me_mask; | 
|  |  | 
|  | if (sp_ad_disabled(sp)) | 
|  | spte |= shadow_acc_track_value; | 
|  | else | 
|  | spte |= shadow_accessed_mask; | 
|  |  | 
|  | mmu_spte_set(sptep, spte); | 
|  |  | 
|  | mmu_page_add_parent_pte(vcpu, sp, sptep); | 
|  |  | 
|  | if (sp->unsync_children || sp->unsync) | 
|  | mark_unsync(sptep); | 
|  | } | 
|  |  | 
|  | static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, | 
|  | unsigned direct_access) | 
|  | { | 
|  | if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) { | 
|  | struct kvm_mmu_page *child; | 
|  |  | 
|  | /* | 
|  | * For the direct sp, if the guest pte's dirty bit | 
|  | * changed form clean to dirty, it will corrupt the | 
|  | * sp's access: allow writable in the read-only sp, | 
|  | * so we should update the spte at this point to get | 
|  | * a new sp with the correct access. | 
|  | */ | 
|  | child = page_header(*sptep & PT64_BASE_ADDR_MASK); | 
|  | if (child->role.access == direct_access) | 
|  | return; | 
|  |  | 
|  | drop_parent_pte(child, sptep); | 
|  | kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp, | 
|  | u64 *spte) | 
|  | { | 
|  | u64 pte; | 
|  | struct kvm_mmu_page *child; | 
|  |  | 
|  | pte = *spte; | 
|  | if (is_shadow_present_pte(pte)) { | 
|  | if (is_last_spte(pte, sp->role.level)) { | 
|  | drop_spte(kvm, spte); | 
|  | if (is_large_pte(pte)) | 
|  | --kvm->stat.lpages; | 
|  | } else { | 
|  | child = page_header(pte & PT64_BASE_ADDR_MASK); | 
|  | drop_parent_pte(child, spte); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (is_mmio_spte(pte)) | 
|  | mmu_spte_clear_no_track(spte); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static void kvm_mmu_page_unlink_children(struct kvm *kvm, | 
|  | struct kvm_mmu_page *sp) | 
|  | { | 
|  | unsigned i; | 
|  |  | 
|  | for (i = 0; i < PT64_ENT_PER_PAGE; ++i) | 
|  | mmu_page_zap_pte(kvm, sp, sp->spt + i); | 
|  | } | 
|  |  | 
|  | static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp) | 
|  | { | 
|  | u64 *sptep; | 
|  | struct rmap_iterator iter; | 
|  |  | 
|  | while ((sptep = rmap_get_first(&sp->parent_ptes, &iter))) | 
|  | drop_parent_pte(sp, sptep); | 
|  | } | 
|  |  | 
|  | static int mmu_zap_unsync_children(struct kvm *kvm, | 
|  | struct kvm_mmu_page *parent, | 
|  | struct list_head *invalid_list) | 
|  | { | 
|  | int i, zapped = 0; | 
|  | struct mmu_page_path parents; | 
|  | struct kvm_mmu_pages pages; | 
|  |  | 
|  | if (parent->role.level == PT_PAGE_TABLE_LEVEL) | 
|  | return 0; | 
|  |  | 
|  | while (mmu_unsync_walk(parent, &pages)) { | 
|  | struct kvm_mmu_page *sp; | 
|  |  | 
|  | for_each_sp(pages, sp, parents, i) { | 
|  | kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); | 
|  | mmu_pages_clear_parents(&parents); | 
|  | zapped++; | 
|  | } | 
|  | } | 
|  |  | 
|  | return zapped; | 
|  | } | 
|  |  | 
|  | static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, | 
|  | struct list_head *invalid_list) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | trace_kvm_mmu_prepare_zap_page(sp); | 
|  | ++kvm->stat.mmu_shadow_zapped; | 
|  | ret = mmu_zap_unsync_children(kvm, sp, invalid_list); | 
|  | kvm_mmu_page_unlink_children(kvm, sp); | 
|  | kvm_mmu_unlink_parents(kvm, sp); | 
|  |  | 
|  | if (!sp->role.invalid && !sp->role.direct) | 
|  | unaccount_shadowed(kvm, sp); | 
|  |  | 
|  | if (sp->unsync) | 
|  | kvm_unlink_unsync_page(kvm, sp); | 
|  | if (!sp->root_count) { | 
|  | /* Count self */ | 
|  | ret++; | 
|  | list_move(&sp->link, invalid_list); | 
|  | kvm_mod_used_mmu_pages(kvm, -1); | 
|  | } else { | 
|  | list_move(&sp->link, &kvm->arch.active_mmu_pages); | 
|  |  | 
|  | /* | 
|  | * The obsolete pages can not be used on any vcpus. | 
|  | * See the comments in kvm_mmu_invalidate_zap_all_pages(). | 
|  | */ | 
|  | if (!sp->role.invalid && !is_obsolete_sp(kvm, sp)) | 
|  | kvm_reload_remote_mmus(kvm); | 
|  | } | 
|  |  | 
|  | sp->role.invalid = 1; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void kvm_mmu_commit_zap_page(struct kvm *kvm, | 
|  | struct list_head *invalid_list) | 
|  | { | 
|  | struct kvm_mmu_page *sp, *nsp; | 
|  |  | 
|  | if (list_empty(invalid_list)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * We need to make sure everyone sees our modifications to | 
|  | * the page tables and see changes to vcpu->mode here. The barrier | 
|  | * in the kvm_flush_remote_tlbs() achieves this. This pairs | 
|  | * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end. | 
|  | * | 
|  | * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit | 
|  | * guest mode and/or lockless shadow page table walks. | 
|  | */ | 
|  | kvm_flush_remote_tlbs(kvm); | 
|  |  | 
|  | list_for_each_entry_safe(sp, nsp, invalid_list, link) { | 
|  | WARN_ON(!sp->role.invalid || sp->root_count); | 
|  | kvm_mmu_free_page(sp); | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool prepare_zap_oldest_mmu_page(struct kvm *kvm, | 
|  | struct list_head *invalid_list) | 
|  | { | 
|  | struct kvm_mmu_page *sp; | 
|  |  | 
|  | if (list_empty(&kvm->arch.active_mmu_pages)) | 
|  | return false; | 
|  |  | 
|  | sp = list_last_entry(&kvm->arch.active_mmu_pages, | 
|  | struct kvm_mmu_page, link); | 
|  | return kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Changing the number of mmu pages allocated to the vm | 
|  | * Note: if goal_nr_mmu_pages is too small, you will get dead lock | 
|  | */ | 
|  | void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages) | 
|  | { | 
|  | LIST_HEAD(invalid_list); | 
|  |  | 
|  | spin_lock(&kvm->mmu_lock); | 
|  |  | 
|  | if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) { | 
|  | /* Need to free some mmu pages to achieve the goal. */ | 
|  | while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) | 
|  | if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list)) | 
|  | break; | 
|  |  | 
|  | kvm_mmu_commit_zap_page(kvm, &invalid_list); | 
|  | goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages; | 
|  | } | 
|  |  | 
|  | kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages; | 
|  |  | 
|  | spin_unlock(&kvm->mmu_lock); | 
|  | } | 
|  |  | 
|  | int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn) | 
|  | { | 
|  | struct kvm_mmu_page *sp; | 
|  | LIST_HEAD(invalid_list); | 
|  | int r; | 
|  |  | 
|  | pgprintk("%s: looking for gfn %llx\n", __func__, gfn); | 
|  | r = 0; | 
|  | spin_lock(&kvm->mmu_lock); | 
|  | for_each_gfn_indirect_valid_sp(kvm, sp, gfn) { | 
|  | pgprintk("%s: gfn %llx role %x\n", __func__, gfn, | 
|  | sp->role.word); | 
|  | r = 1; | 
|  | kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); | 
|  | } | 
|  | kvm_mmu_commit_zap_page(kvm, &invalid_list); | 
|  | spin_unlock(&kvm->mmu_lock); | 
|  |  | 
|  | return r; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page); | 
|  |  | 
|  | static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp) | 
|  | { | 
|  | trace_kvm_mmu_unsync_page(sp); | 
|  | ++vcpu->kvm->stat.mmu_unsync; | 
|  | sp->unsync = 1; | 
|  |  | 
|  | kvm_mmu_mark_parents_unsync(sp); | 
|  | } | 
|  |  | 
|  | static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn, | 
|  | bool can_unsync) | 
|  | { | 
|  | struct kvm_mmu_page *sp; | 
|  |  | 
|  | if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE)) | 
|  | return true; | 
|  |  | 
|  | for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) { | 
|  | if (!can_unsync) | 
|  | return true; | 
|  |  | 
|  | if (sp->unsync) | 
|  | continue; | 
|  |  | 
|  | WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL); | 
|  | kvm_unsync_page(vcpu, sp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We need to ensure that the marking of unsync pages is visible | 
|  | * before the SPTE is updated to allow writes because | 
|  | * kvm_mmu_sync_roots() checks the unsync flags without holding | 
|  | * the MMU lock and so can race with this. If the SPTE was updated | 
|  | * before the page had been marked as unsync-ed, something like the | 
|  | * following could happen: | 
|  | * | 
|  | * CPU 1                    CPU 2 | 
|  | * --------------------------------------------------------------------- | 
|  | * 1.2 Host updates SPTE | 
|  | *     to be writable | 
|  | *                      2.1 Guest writes a GPTE for GVA X. | 
|  | *                          (GPTE being in the guest page table shadowed | 
|  | *                           by the SP from CPU 1.) | 
|  | *                          This reads SPTE during the page table walk. | 
|  | *                          Since SPTE.W is read as 1, there is no | 
|  | *                          fault. | 
|  | * | 
|  | *                      2.2 Guest issues TLB flush. | 
|  | *                          That causes a VM Exit. | 
|  | * | 
|  | *                      2.3 kvm_mmu_sync_pages() reads sp->unsync. | 
|  | *                          Since it is false, so it just returns. | 
|  | * | 
|  | *                      2.4 Guest accesses GVA X. | 
|  | *                          Since the mapping in the SP was not updated, | 
|  | *                          so the old mapping for GVA X incorrectly | 
|  | *                          gets used. | 
|  | * 1.1 Host marks SP | 
|  | *     as unsync | 
|  | *     (sp->unsync = true) | 
|  | * | 
|  | * The write barrier below ensures that 1.1 happens before 1.2 and thus | 
|  | * the situation in 2.4 does not arise. The implicit barrier in 2.2 | 
|  | * pairs with this write barrier. | 
|  | */ | 
|  | smp_wmb(); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool kvm_is_mmio_pfn(kvm_pfn_t pfn) | 
|  | { | 
|  | if (pfn_valid(pfn)) | 
|  | return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) && | 
|  | /* | 
|  | * Some reserved pages, such as those from NVDIMM | 
|  | * DAX devices, are not for MMIO, and can be mapped | 
|  | * with cached memory type for better performance. | 
|  | * However, the above check misconceives those pages | 
|  | * as MMIO, and results in KVM mapping them with UC | 
|  | * memory type, which would hurt the performance. | 
|  | * Therefore, we check the host memory type in addition | 
|  | * and only treat UC/UC-/WC pages as MMIO. | 
|  | */ | 
|  | (!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn)); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Bits which may be returned by set_spte() */ | 
|  | #define SET_SPTE_WRITE_PROTECTED_PT	BIT(0) | 
|  | #define SET_SPTE_NEED_REMOTE_TLB_FLUSH	BIT(1) | 
|  |  | 
|  | static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep, | 
|  | unsigned pte_access, int level, | 
|  | gfn_t gfn, kvm_pfn_t pfn, bool speculative, | 
|  | bool can_unsync, bool host_writable) | 
|  | { | 
|  | u64 spte = 0; | 
|  | int ret = 0; | 
|  | struct kvm_mmu_page *sp; | 
|  |  | 
|  | if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access)) | 
|  | return 0; | 
|  |  | 
|  | sp = page_header(__pa(sptep)); | 
|  | if (sp_ad_disabled(sp)) | 
|  | spte |= shadow_acc_track_value; | 
|  |  | 
|  | /* | 
|  | * For the EPT case, shadow_present_mask is 0 if hardware | 
|  | * supports exec-only page table entries.  In that case, | 
|  | * ACC_USER_MASK and shadow_user_mask are used to represent | 
|  | * read access.  See FNAME(gpte_access) in paging_tmpl.h. | 
|  | */ | 
|  | spte |= shadow_present_mask; | 
|  | if (!speculative) | 
|  | spte |= spte_shadow_accessed_mask(spte); | 
|  |  | 
|  | if (pte_access & ACC_EXEC_MASK) | 
|  | spte |= shadow_x_mask; | 
|  | else | 
|  | spte |= shadow_nx_mask; | 
|  |  | 
|  | if (pte_access & ACC_USER_MASK) | 
|  | spte |= shadow_user_mask; | 
|  |  | 
|  | if (level > PT_PAGE_TABLE_LEVEL) | 
|  | spte |= PT_PAGE_SIZE_MASK; | 
|  | if (tdp_enabled) | 
|  | spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn, | 
|  | kvm_is_mmio_pfn(pfn)); | 
|  |  | 
|  | if (host_writable) | 
|  | spte |= SPTE_HOST_WRITEABLE; | 
|  | else | 
|  | pte_access &= ~ACC_WRITE_MASK; | 
|  |  | 
|  | if (!kvm_is_mmio_pfn(pfn)) | 
|  | spte |= shadow_me_mask; | 
|  |  | 
|  | spte |= (u64)pfn << PAGE_SHIFT; | 
|  |  | 
|  | if (pte_access & ACC_WRITE_MASK) { | 
|  |  | 
|  | /* | 
|  | * Other vcpu creates new sp in the window between | 
|  | * mapping_level() and acquiring mmu-lock. We can | 
|  | * allow guest to retry the access, the mapping can | 
|  | * be fixed if guest refault. | 
|  | */ | 
|  | if (level > PT_PAGE_TABLE_LEVEL && | 
|  | mmu_gfn_lpage_is_disallowed(vcpu, gfn, level)) | 
|  | goto done; | 
|  |  | 
|  | spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE; | 
|  |  | 
|  | /* | 
|  | * Optimization: for pte sync, if spte was writable the hash | 
|  | * lookup is unnecessary (and expensive). Write protection | 
|  | * is responsibility of mmu_get_page / kvm_sync_page. | 
|  | * Same reasoning can be applied to dirty page accounting. | 
|  | */ | 
|  | if (!can_unsync && is_writable_pte(*sptep)) | 
|  | goto set_pte; | 
|  |  | 
|  | if (mmu_need_write_protect(vcpu, gfn, can_unsync)) { | 
|  | pgprintk("%s: found shadow page for %llx, marking ro\n", | 
|  | __func__, gfn); | 
|  | ret |= SET_SPTE_WRITE_PROTECTED_PT; | 
|  | pte_access &= ~ACC_WRITE_MASK; | 
|  | spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (pte_access & ACC_WRITE_MASK) { | 
|  | kvm_vcpu_mark_page_dirty(vcpu, gfn); | 
|  | spte |= spte_shadow_dirty_mask(spte); | 
|  | } | 
|  |  | 
|  | if (speculative) | 
|  | spte = mark_spte_for_access_track(spte); | 
|  |  | 
|  | set_pte: | 
|  | if (mmu_spte_update(sptep, spte)) | 
|  | ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH; | 
|  | done: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access, | 
|  | int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn, | 
|  | bool speculative, bool host_writable) | 
|  | { | 
|  | int was_rmapped = 0; | 
|  | int rmap_count; | 
|  | int set_spte_ret; | 
|  | int ret = RET_PF_RETRY; | 
|  | bool flush = false; | 
|  |  | 
|  | pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__, | 
|  | *sptep, write_fault, gfn); | 
|  |  | 
|  | if (is_shadow_present_pte(*sptep)) { | 
|  | /* | 
|  | * If we overwrite a PTE page pointer with a 2MB PMD, unlink | 
|  | * the parent of the now unreachable PTE. | 
|  | */ | 
|  | if (level > PT_PAGE_TABLE_LEVEL && | 
|  | !is_large_pte(*sptep)) { | 
|  | struct kvm_mmu_page *child; | 
|  | u64 pte = *sptep; | 
|  |  | 
|  | child = page_header(pte & PT64_BASE_ADDR_MASK); | 
|  | drop_parent_pte(child, sptep); | 
|  | flush = true; | 
|  | } else if (pfn != spte_to_pfn(*sptep)) { | 
|  | pgprintk("hfn old %llx new %llx\n", | 
|  | spte_to_pfn(*sptep), pfn); | 
|  | drop_spte(vcpu->kvm, sptep); | 
|  | flush = true; | 
|  | } else | 
|  | was_rmapped = 1; | 
|  | } | 
|  |  | 
|  | set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn, | 
|  | speculative, true, host_writable); | 
|  | if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) { | 
|  | if (write_fault) | 
|  | ret = RET_PF_EMULATE; | 
|  | kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); | 
|  | } | 
|  |  | 
|  | if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush) | 
|  | kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, | 
|  | KVM_PAGES_PER_HPAGE(level)); | 
|  |  | 
|  | if (unlikely(is_mmio_spte(*sptep))) | 
|  | ret = RET_PF_EMULATE; | 
|  |  | 
|  | pgprintk("%s: setting spte %llx\n", __func__, *sptep); | 
|  | pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n", | 
|  | is_large_pte(*sptep)? "2MB" : "4kB", | 
|  | *sptep & PT_WRITABLE_MASK ? "RW" : "R", gfn, | 
|  | *sptep, sptep); | 
|  | if (!was_rmapped && is_large_pte(*sptep)) | 
|  | ++vcpu->kvm->stat.lpages; | 
|  |  | 
|  | if (is_shadow_present_pte(*sptep)) { | 
|  | if (!was_rmapped) { | 
|  | rmap_count = rmap_add(vcpu, sptep, gfn); | 
|  | if (rmap_count > RMAP_RECYCLE_THRESHOLD) | 
|  | rmap_recycle(vcpu, sptep, gfn); | 
|  | } | 
|  | } | 
|  |  | 
|  | kvm_release_pfn_clean(pfn); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn, | 
|  | bool no_dirty_log) | 
|  | { | 
|  | struct kvm_memory_slot *slot; | 
|  |  | 
|  | slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log); | 
|  | if (!slot) | 
|  | return KVM_PFN_ERR_FAULT; | 
|  |  | 
|  | return gfn_to_pfn_memslot_atomic(slot, gfn); | 
|  | } | 
|  |  | 
|  | static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu, | 
|  | struct kvm_mmu_page *sp, | 
|  | u64 *start, u64 *end) | 
|  | { | 
|  | struct page *pages[PTE_PREFETCH_NUM]; | 
|  | struct kvm_memory_slot *slot; | 
|  | unsigned access = sp->role.access; | 
|  | int i, ret; | 
|  | gfn_t gfn; | 
|  |  | 
|  | gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt); | 
|  | slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK); | 
|  | if (!slot) | 
|  | return -1; | 
|  |  | 
|  | ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start); | 
|  | if (ret <= 0) | 
|  | return -1; | 
|  |  | 
|  | for (i = 0; i < ret; i++, gfn++, start++) | 
|  | mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn, | 
|  | page_to_pfn(pages[i]), true, true); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void __direct_pte_prefetch(struct kvm_vcpu *vcpu, | 
|  | struct kvm_mmu_page *sp, u64 *sptep) | 
|  | { | 
|  | u64 *spte, *start = NULL; | 
|  | int i; | 
|  |  | 
|  | WARN_ON(!sp->role.direct); | 
|  |  | 
|  | i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1); | 
|  | spte = sp->spt + i; | 
|  |  | 
|  | for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) { | 
|  | if (is_shadow_present_pte(*spte) || spte == sptep) { | 
|  | if (!start) | 
|  | continue; | 
|  | if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0) | 
|  | break; | 
|  | start = NULL; | 
|  | } else if (!start) | 
|  | start = spte; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep) | 
|  | { | 
|  | struct kvm_mmu_page *sp; | 
|  |  | 
|  | sp = page_header(__pa(sptep)); | 
|  |  | 
|  | /* | 
|  | * Without accessed bits, there's no way to distinguish between | 
|  | * actually accessed translations and prefetched, so disable pte | 
|  | * prefetch if accessed bits aren't available. | 
|  | */ | 
|  | if (sp_ad_disabled(sp)) | 
|  | return; | 
|  |  | 
|  | if (sp->role.level > PT_PAGE_TABLE_LEVEL) | 
|  | return; | 
|  |  | 
|  | __direct_pte_prefetch(vcpu, sp, sptep); | 
|  | } | 
|  |  | 
|  | static int __direct_map(struct kvm_vcpu *vcpu, int write, int map_writable, | 
|  | int level, gfn_t gfn, kvm_pfn_t pfn, bool prefault) | 
|  | { | 
|  | struct kvm_shadow_walk_iterator iterator; | 
|  | struct kvm_mmu_page *sp; | 
|  | int emulate = 0; | 
|  | gfn_t pseudo_gfn; | 
|  |  | 
|  | if (!VALID_PAGE(vcpu->arch.mmu->root_hpa)) | 
|  | return 0; | 
|  |  | 
|  | for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) { | 
|  | if (iterator.level == level) { | 
|  | emulate = mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, | 
|  | write, level, gfn, pfn, prefault, | 
|  | map_writable); | 
|  | direct_pte_prefetch(vcpu, iterator.sptep); | 
|  | ++vcpu->stat.pf_fixed; | 
|  | break; | 
|  | } | 
|  |  | 
|  | drop_large_spte(vcpu, iterator.sptep); | 
|  | if (!is_shadow_present_pte(*iterator.sptep)) { | 
|  | u64 base_addr = iterator.addr; | 
|  |  | 
|  | base_addr &= PT64_LVL_ADDR_MASK(iterator.level); | 
|  | pseudo_gfn = base_addr >> PAGE_SHIFT; | 
|  | sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr, | 
|  | iterator.level - 1, 1, ACC_ALL); | 
|  |  | 
|  | link_shadow_page(vcpu, iterator.sptep, sp); | 
|  | } | 
|  | } | 
|  | return emulate; | 
|  | } | 
|  |  | 
|  | static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk) | 
|  | { | 
|  | send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk); | 
|  | } | 
|  |  | 
|  | static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn) | 
|  | { | 
|  | /* | 
|  | * Do not cache the mmio info caused by writing the readonly gfn | 
|  | * into the spte otherwise read access on readonly gfn also can | 
|  | * caused mmio page fault and treat it as mmio access. | 
|  | */ | 
|  | if (pfn == KVM_PFN_ERR_RO_FAULT) | 
|  | return RET_PF_EMULATE; | 
|  |  | 
|  | if (pfn == KVM_PFN_ERR_HWPOISON) { | 
|  | kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current); | 
|  | return RET_PF_RETRY; | 
|  | } | 
|  |  | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu, | 
|  | gfn_t *gfnp, kvm_pfn_t *pfnp, | 
|  | int *levelp) | 
|  | { | 
|  | kvm_pfn_t pfn = *pfnp; | 
|  | gfn_t gfn = *gfnp; | 
|  | int level = *levelp; | 
|  |  | 
|  | /* | 
|  | * Check if it's a transparent hugepage. If this would be an | 
|  | * hugetlbfs page, level wouldn't be set to | 
|  | * PT_PAGE_TABLE_LEVEL and there would be no adjustment done | 
|  | * here. | 
|  | */ | 
|  | if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) && | 
|  | level == PT_PAGE_TABLE_LEVEL && | 
|  | PageTransCompoundMap(pfn_to_page(pfn)) && | 
|  | !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) { | 
|  | unsigned long mask; | 
|  | /* | 
|  | * mmu_notifier_retry was successful and we hold the | 
|  | * mmu_lock here, so the pmd can't become splitting | 
|  | * from under us, and in turn | 
|  | * __split_huge_page_refcount() can't run from under | 
|  | * us and we can safely transfer the refcount from | 
|  | * PG_tail to PG_head as we switch the pfn to tail to | 
|  | * head. | 
|  | */ | 
|  | *levelp = level = PT_DIRECTORY_LEVEL; | 
|  | mask = KVM_PAGES_PER_HPAGE(level) - 1; | 
|  | VM_BUG_ON((gfn & mask) != (pfn & mask)); | 
|  | if (pfn & mask) { | 
|  | gfn &= ~mask; | 
|  | *gfnp = gfn; | 
|  | kvm_release_pfn_clean(pfn); | 
|  | pfn &= ~mask; | 
|  | kvm_get_pfn(pfn); | 
|  | *pfnp = pfn; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn, | 
|  | kvm_pfn_t pfn, unsigned access, int *ret_val) | 
|  | { | 
|  | /* The pfn is invalid, report the error! */ | 
|  | if (unlikely(is_error_pfn(pfn))) { | 
|  | *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (unlikely(is_noslot_pfn(pfn))) | 
|  | vcpu_cache_mmio_info(vcpu, gva, gfn, access); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool page_fault_can_be_fast(u32 error_code) | 
|  | { | 
|  | /* | 
|  | * Do not fix the mmio spte with invalid generation number which | 
|  | * need to be updated by slow page fault path. | 
|  | */ | 
|  | if (unlikely(error_code & PFERR_RSVD_MASK)) | 
|  | return false; | 
|  |  | 
|  | /* See if the page fault is due to an NX violation */ | 
|  | if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK)) | 
|  | == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK)))) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * #PF can be fast if: | 
|  | * 1. The shadow page table entry is not present, which could mean that | 
|  | *    the fault is potentially caused by access tracking (if enabled). | 
|  | * 2. The shadow page table entry is present and the fault | 
|  | *    is caused by write-protect, that means we just need change the W | 
|  | *    bit of the spte which can be done out of mmu-lock. | 
|  | * | 
|  | * However, if access tracking is disabled we know that a non-present | 
|  | * page must be a genuine page fault where we have to create a new SPTE. | 
|  | * So, if access tracking is disabled, we return true only for write | 
|  | * accesses to a present page. | 
|  | */ | 
|  |  | 
|  | return shadow_acc_track_mask != 0 || | 
|  | ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK)) | 
|  | == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Returns true if the SPTE was fixed successfully. Otherwise, | 
|  | * someone else modified the SPTE from its original value. | 
|  | */ | 
|  | static bool | 
|  | fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, | 
|  | u64 *sptep, u64 old_spte, u64 new_spte) | 
|  | { | 
|  | gfn_t gfn; | 
|  |  | 
|  | WARN_ON(!sp->role.direct); | 
|  |  | 
|  | /* | 
|  | * Theoretically we could also set dirty bit (and flush TLB) here in | 
|  | * order to eliminate unnecessary PML logging. See comments in | 
|  | * set_spte. But fast_page_fault is very unlikely to happen with PML | 
|  | * enabled, so we do not do this. This might result in the same GPA | 
|  | * to be logged in PML buffer again when the write really happens, and | 
|  | * eventually to be called by mark_page_dirty twice. But it's also no | 
|  | * harm. This also avoids the TLB flush needed after setting dirty bit | 
|  | * so non-PML cases won't be impacted. | 
|  | * | 
|  | * Compare with set_spte where instead shadow_dirty_mask is set. | 
|  | */ | 
|  | if (cmpxchg64(sptep, old_spte, new_spte) != old_spte) | 
|  | return false; | 
|  |  | 
|  | if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) { | 
|  | /* | 
|  | * The gfn of direct spte is stable since it is | 
|  | * calculated by sp->gfn. | 
|  | */ | 
|  | gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt); | 
|  | kvm_vcpu_mark_page_dirty(vcpu, gfn); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool is_access_allowed(u32 fault_err_code, u64 spte) | 
|  | { | 
|  | if (fault_err_code & PFERR_FETCH_MASK) | 
|  | return is_executable_pte(spte); | 
|  |  | 
|  | if (fault_err_code & PFERR_WRITE_MASK) | 
|  | return is_writable_pte(spte); | 
|  |  | 
|  | /* Fault was on Read access */ | 
|  | return spte & PT_PRESENT_MASK; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return value: | 
|  | * - true: let the vcpu to access on the same address again. | 
|  | * - false: let the real page fault path to fix it. | 
|  | */ | 
|  | static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level, | 
|  | u32 error_code) | 
|  | { | 
|  | struct kvm_shadow_walk_iterator iterator; | 
|  | struct kvm_mmu_page *sp; | 
|  | bool fault_handled = false; | 
|  | u64 spte = 0ull; | 
|  | uint retry_count = 0; | 
|  |  | 
|  | if (!VALID_PAGE(vcpu->arch.mmu->root_hpa)) | 
|  | return false; | 
|  |  | 
|  | if (!page_fault_can_be_fast(error_code)) | 
|  | return false; | 
|  |  | 
|  | walk_shadow_page_lockless_begin(vcpu); | 
|  |  | 
|  | do { | 
|  | u64 new_spte; | 
|  |  | 
|  | for_each_shadow_entry_lockless(vcpu, gva, iterator, spte) | 
|  | if (!is_shadow_present_pte(spte) || | 
|  | iterator.level < level) | 
|  | break; | 
|  |  | 
|  | sp = page_header(__pa(iterator.sptep)); | 
|  | if (!is_last_spte(spte, sp->role.level)) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * Check whether the memory access that caused the fault would | 
|  | * still cause it if it were to be performed right now. If not, | 
|  | * then this is a spurious fault caused by TLB lazily flushed, | 
|  | * or some other CPU has already fixed the PTE after the | 
|  | * current CPU took the fault. | 
|  | * | 
|  | * Need not check the access of upper level table entries since | 
|  | * they are always ACC_ALL. | 
|  | */ | 
|  | if (is_access_allowed(error_code, spte)) { | 
|  | fault_handled = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | new_spte = spte; | 
|  |  | 
|  | if (is_access_track_spte(spte)) | 
|  | new_spte = restore_acc_track_spte(new_spte); | 
|  |  | 
|  | /* | 
|  | * Currently, to simplify the code, write-protection can | 
|  | * be removed in the fast path only if the SPTE was | 
|  | * write-protected for dirty-logging or access tracking. | 
|  | */ | 
|  | if ((error_code & PFERR_WRITE_MASK) && | 
|  | spte_can_locklessly_be_made_writable(spte)) | 
|  | { | 
|  | new_spte |= PT_WRITABLE_MASK; | 
|  |  | 
|  | /* | 
|  | * Do not fix write-permission on the large spte.  Since | 
|  | * we only dirty the first page into the dirty-bitmap in | 
|  | * fast_pf_fix_direct_spte(), other pages are missed | 
|  | * if its slot has dirty logging enabled. | 
|  | * | 
|  | * Instead, we let the slow page fault path create a | 
|  | * normal spte to fix the access. | 
|  | * | 
|  | * See the comments in kvm_arch_commit_memory_region(). | 
|  | */ | 
|  | if (sp->role.level > PT_PAGE_TABLE_LEVEL) | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Verify that the fault can be handled in the fast path */ | 
|  | if (new_spte == spte || | 
|  | !is_access_allowed(error_code, new_spte)) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * Currently, fast page fault only works for direct mapping | 
|  | * since the gfn is not stable for indirect shadow page. See | 
|  | * Documentation/virtual/kvm/locking.txt to get more detail. | 
|  | */ | 
|  | fault_handled = fast_pf_fix_direct_spte(vcpu, sp, | 
|  | iterator.sptep, spte, | 
|  | new_spte); | 
|  | if (fault_handled) | 
|  | break; | 
|  |  | 
|  | if (++retry_count > 4) { | 
|  | printk_once(KERN_WARNING | 
|  | "kvm: Fast #PF retrying more than 4 times.\n"); | 
|  | break; | 
|  | } | 
|  |  | 
|  | } while (true); | 
|  |  | 
|  | trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep, | 
|  | spte, fault_handled); | 
|  | walk_shadow_page_lockless_end(vcpu); | 
|  |  | 
|  | return fault_handled; | 
|  | } | 
|  |  | 
|  | static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn, | 
|  | gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable); | 
|  | static int make_mmu_pages_available(struct kvm_vcpu *vcpu); | 
|  |  | 
|  | static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code, | 
|  | gfn_t gfn, bool prefault) | 
|  | { | 
|  | int r; | 
|  | int level; | 
|  | bool force_pt_level = false; | 
|  | kvm_pfn_t pfn; | 
|  | unsigned long mmu_seq; | 
|  | bool map_writable, write = error_code & PFERR_WRITE_MASK; | 
|  |  | 
|  | level = mapping_level(vcpu, gfn, &force_pt_level); | 
|  | if (likely(!force_pt_level)) { | 
|  | /* | 
|  | * This path builds a PAE pagetable - so we can map | 
|  | * 2mb pages at maximum. Therefore check if the level | 
|  | * is larger than that. | 
|  | */ | 
|  | if (level > PT_DIRECTORY_LEVEL) | 
|  | level = PT_DIRECTORY_LEVEL; | 
|  |  | 
|  | gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1); | 
|  | } | 
|  |  | 
|  | if (fast_page_fault(vcpu, v, level, error_code)) | 
|  | return RET_PF_RETRY; | 
|  |  | 
|  | mmu_seq = vcpu->kvm->mmu_notifier_seq; | 
|  | smp_rmb(); | 
|  |  | 
|  | if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable)) | 
|  | return RET_PF_RETRY; | 
|  |  | 
|  | if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r)) | 
|  | return r; | 
|  |  | 
|  | spin_lock(&vcpu->kvm->mmu_lock); | 
|  | if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) | 
|  | goto out_unlock; | 
|  | if (make_mmu_pages_available(vcpu) < 0) | 
|  | goto out_unlock; | 
|  | if (likely(!force_pt_level)) | 
|  | transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level); | 
|  | r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault); | 
|  | spin_unlock(&vcpu->kvm->mmu_lock); | 
|  |  | 
|  | return r; | 
|  |  | 
|  | out_unlock: | 
|  | spin_unlock(&vcpu->kvm->mmu_lock); | 
|  | kvm_release_pfn_clean(pfn); | 
|  | return RET_PF_RETRY; | 
|  | } | 
|  |  | 
|  | static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa, | 
|  | struct list_head *invalid_list) | 
|  | { | 
|  | struct kvm_mmu_page *sp; | 
|  |  | 
|  | if (!VALID_PAGE(*root_hpa)) | 
|  | return; | 
|  |  | 
|  | sp = page_header(*root_hpa & PT64_BASE_ADDR_MASK); | 
|  | --sp->root_count; | 
|  | if (!sp->root_count && sp->role.invalid) | 
|  | kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); | 
|  |  | 
|  | *root_hpa = INVALID_PAGE; | 
|  | } | 
|  |  | 
|  | /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */ | 
|  | void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, | 
|  | ulong roots_to_free) | 
|  | { | 
|  | int i; | 
|  | LIST_HEAD(invalid_list); | 
|  | bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT; | 
|  |  | 
|  | BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG); | 
|  |  | 
|  | /* Before acquiring the MMU lock, see if we need to do any real work. */ | 
|  | if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) { | 
|  | for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) | 
|  | if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) && | 
|  | VALID_PAGE(mmu->prev_roots[i].hpa)) | 
|  | break; | 
|  |  | 
|  | if (i == KVM_MMU_NUM_PREV_ROOTS) | 
|  | return; | 
|  | } | 
|  |  | 
|  | spin_lock(&vcpu->kvm->mmu_lock); | 
|  |  | 
|  | for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) | 
|  | if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) | 
|  | mmu_free_root_page(vcpu->kvm, &mmu->prev_roots[i].hpa, | 
|  | &invalid_list); | 
|  |  | 
|  | if (free_active_root) { | 
|  | if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL && | 
|  | (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) { | 
|  | mmu_free_root_page(vcpu->kvm, &mmu->root_hpa, | 
|  | &invalid_list); | 
|  | } else { | 
|  | for (i = 0; i < 4; ++i) | 
|  | if (mmu->pae_root[i] != 0) | 
|  | mmu_free_root_page(vcpu->kvm, | 
|  | &mmu->pae_root[i], | 
|  | &invalid_list); | 
|  | mmu->root_hpa = INVALID_PAGE; | 
|  | } | 
|  | } | 
|  |  | 
|  | kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list); | 
|  | spin_unlock(&vcpu->kvm->mmu_lock); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_mmu_free_roots); | 
|  |  | 
|  | static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) { | 
|  | kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); | 
|  | ret = 1; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct kvm_mmu_page *sp; | 
|  | unsigned i; | 
|  |  | 
|  | if (vcpu->arch.mmu->shadow_root_level >= PT64_ROOT_4LEVEL) { | 
|  | spin_lock(&vcpu->kvm->mmu_lock); | 
|  | if(make_mmu_pages_available(vcpu) < 0) { | 
|  | spin_unlock(&vcpu->kvm->mmu_lock); | 
|  | return -ENOSPC; | 
|  | } | 
|  | sp = kvm_mmu_get_page(vcpu, 0, 0, | 
|  | vcpu->arch.mmu->shadow_root_level, 1, ACC_ALL); | 
|  | ++sp->root_count; | 
|  | spin_unlock(&vcpu->kvm->mmu_lock); | 
|  | vcpu->arch.mmu->root_hpa = __pa(sp->spt); | 
|  | } else if (vcpu->arch.mmu->shadow_root_level == PT32E_ROOT_LEVEL) { | 
|  | for (i = 0; i < 4; ++i) { | 
|  | hpa_t root = vcpu->arch.mmu->pae_root[i]; | 
|  |  | 
|  | MMU_WARN_ON(VALID_PAGE(root)); | 
|  | spin_lock(&vcpu->kvm->mmu_lock); | 
|  | if (make_mmu_pages_available(vcpu) < 0) { | 
|  | spin_unlock(&vcpu->kvm->mmu_lock); | 
|  | return -ENOSPC; | 
|  | } | 
|  | sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT), | 
|  | i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL); | 
|  | root = __pa(sp->spt); | 
|  | ++sp->root_count; | 
|  | spin_unlock(&vcpu->kvm->mmu_lock); | 
|  | vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK; | 
|  | } | 
|  | vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root); | 
|  | } else | 
|  | BUG(); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct kvm_mmu_page *sp; | 
|  | u64 pdptr, pm_mask; | 
|  | gfn_t root_gfn; | 
|  | int i; | 
|  |  | 
|  | root_gfn = vcpu->arch.mmu->get_cr3(vcpu) >> PAGE_SHIFT; | 
|  |  | 
|  | if (mmu_check_root(vcpu, root_gfn)) | 
|  | return 1; | 
|  |  | 
|  | /* | 
|  | * Do we shadow a long mode page table? If so we need to | 
|  | * write-protect the guests page table root. | 
|  | */ | 
|  | if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) { | 
|  | hpa_t root = vcpu->arch.mmu->root_hpa; | 
|  |  | 
|  | MMU_WARN_ON(VALID_PAGE(root)); | 
|  |  | 
|  | spin_lock(&vcpu->kvm->mmu_lock); | 
|  | if (make_mmu_pages_available(vcpu) < 0) { | 
|  | spin_unlock(&vcpu->kvm->mmu_lock); | 
|  | return -ENOSPC; | 
|  | } | 
|  | sp = kvm_mmu_get_page(vcpu, root_gfn, 0, | 
|  | vcpu->arch.mmu->shadow_root_level, 0, ACC_ALL); | 
|  | root = __pa(sp->spt); | 
|  | ++sp->root_count; | 
|  | spin_unlock(&vcpu->kvm->mmu_lock); | 
|  | vcpu->arch.mmu->root_hpa = root; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We shadow a 32 bit page table. This may be a legacy 2-level | 
|  | * or a PAE 3-level page table. In either case we need to be aware that | 
|  | * the shadow page table may be a PAE or a long mode page table. | 
|  | */ | 
|  | pm_mask = PT_PRESENT_MASK; | 
|  | if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) | 
|  | pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK; | 
|  |  | 
|  | for (i = 0; i < 4; ++i) { | 
|  | hpa_t root = vcpu->arch.mmu->pae_root[i]; | 
|  |  | 
|  | MMU_WARN_ON(VALID_PAGE(root)); | 
|  | if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) { | 
|  | pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i); | 
|  | if (!(pdptr & PT_PRESENT_MASK)) { | 
|  | vcpu->arch.mmu->pae_root[i] = 0; | 
|  | continue; | 
|  | } | 
|  | root_gfn = pdptr >> PAGE_SHIFT; | 
|  | if (mmu_check_root(vcpu, root_gfn)) | 
|  | return 1; | 
|  | } | 
|  | spin_lock(&vcpu->kvm->mmu_lock); | 
|  | if (make_mmu_pages_available(vcpu) < 0) { | 
|  | spin_unlock(&vcpu->kvm->mmu_lock); | 
|  | return -ENOSPC; | 
|  | } | 
|  | sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL, | 
|  | 0, ACC_ALL); | 
|  | root = __pa(sp->spt); | 
|  | ++sp->root_count; | 
|  | spin_unlock(&vcpu->kvm->mmu_lock); | 
|  |  | 
|  | vcpu->arch.mmu->pae_root[i] = root | pm_mask; | 
|  | } | 
|  | vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root); | 
|  |  | 
|  | /* | 
|  | * If we shadow a 32 bit page table with a long mode page | 
|  | * table we enter this path. | 
|  | */ | 
|  | if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) { | 
|  | if (vcpu->arch.mmu->lm_root == NULL) { | 
|  | /* | 
|  | * The additional page necessary for this is only | 
|  | * allocated on demand. | 
|  | */ | 
|  |  | 
|  | u64 *lm_root; | 
|  |  | 
|  | lm_root = (void*)get_zeroed_page(GFP_KERNEL); | 
|  | if (lm_root == NULL) | 
|  | return 1; | 
|  |  | 
|  | lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask; | 
|  |  | 
|  | vcpu->arch.mmu->lm_root = lm_root; | 
|  | } | 
|  |  | 
|  | vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int mmu_alloc_roots(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | if (vcpu->arch.mmu->direct_map) | 
|  | return mmu_alloc_direct_roots(vcpu); | 
|  | else | 
|  | return mmu_alloc_shadow_roots(vcpu); | 
|  | } | 
|  |  | 
|  | void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | int i; | 
|  | struct kvm_mmu_page *sp; | 
|  |  | 
|  | if (vcpu->arch.mmu->direct_map) | 
|  | return; | 
|  |  | 
|  | if (!VALID_PAGE(vcpu->arch.mmu->root_hpa)) | 
|  | return; | 
|  |  | 
|  | vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); | 
|  |  | 
|  | if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) { | 
|  | hpa_t root = vcpu->arch.mmu->root_hpa; | 
|  | sp = page_header(root); | 
|  |  | 
|  | /* | 
|  | * Even if another CPU was marking the SP as unsync-ed | 
|  | * simultaneously, any guest page table changes are not | 
|  | * guaranteed to be visible anyway until this VCPU issues a TLB | 
|  | * flush strictly after those changes are made. We only need to | 
|  | * ensure that the other CPU sets these flags before any actual | 
|  | * changes to the page tables are made. The comments in | 
|  | * mmu_need_write_protect() describe what could go wrong if this | 
|  | * requirement isn't satisfied. | 
|  | */ | 
|  | if (!smp_load_acquire(&sp->unsync) && | 
|  | !smp_load_acquire(&sp->unsync_children)) | 
|  | return; | 
|  |  | 
|  | spin_lock(&vcpu->kvm->mmu_lock); | 
|  | kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC); | 
|  |  | 
|  | mmu_sync_children(vcpu, sp); | 
|  |  | 
|  | kvm_mmu_audit(vcpu, AUDIT_POST_SYNC); | 
|  | spin_unlock(&vcpu->kvm->mmu_lock); | 
|  | return; | 
|  | } | 
|  |  | 
|  | spin_lock(&vcpu->kvm->mmu_lock); | 
|  | kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC); | 
|  |  | 
|  | for (i = 0; i < 4; ++i) { | 
|  | hpa_t root = vcpu->arch.mmu->pae_root[i]; | 
|  |  | 
|  | if (root && VALID_PAGE(root)) { | 
|  | root &= PT64_BASE_ADDR_MASK; | 
|  | sp = page_header(root); | 
|  | mmu_sync_children(vcpu, sp); | 
|  | } | 
|  | } | 
|  |  | 
|  | kvm_mmu_audit(vcpu, AUDIT_POST_SYNC); | 
|  | spin_unlock(&vcpu->kvm->mmu_lock); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots); | 
|  |  | 
|  | static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr, | 
|  | u32 access, struct x86_exception *exception) | 
|  | { | 
|  | if (exception) | 
|  | exception->error_code = 0; | 
|  | return vaddr; | 
|  | } | 
|  |  | 
|  | static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr, | 
|  | u32 access, | 
|  | struct x86_exception *exception) | 
|  | { | 
|  | if (exception) | 
|  | exception->error_code = 0; | 
|  | return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception); | 
|  | } | 
|  |  | 
|  | static bool | 
|  | __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level) | 
|  | { | 
|  | int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f; | 
|  |  | 
|  | return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) | | 
|  | ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0); | 
|  | } | 
|  |  | 
|  | static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level) | 
|  | { | 
|  | return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level); | 
|  | } | 
|  |  | 
|  | static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level) | 
|  | { | 
|  | return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level); | 
|  | } | 
|  |  | 
|  | static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct) | 
|  | { | 
|  | /* | 
|  | * A nested guest cannot use the MMIO cache if it is using nested | 
|  | * page tables, because cr2 is a nGPA while the cache stores GPAs. | 
|  | */ | 
|  | if (mmu_is_nested(vcpu)) | 
|  | return false; | 
|  |  | 
|  | if (direct) | 
|  | return vcpu_match_mmio_gpa(vcpu, addr); | 
|  |  | 
|  | return vcpu_match_mmio_gva(vcpu, addr); | 
|  | } | 
|  |  | 
|  | /* return true if reserved bit is detected on spte. */ | 
|  | static bool | 
|  | walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep) | 
|  | { | 
|  | struct kvm_shadow_walk_iterator iterator; | 
|  | u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull; | 
|  | int root, leaf; | 
|  | bool reserved = false; | 
|  |  | 
|  | if (!VALID_PAGE(vcpu->arch.mmu->root_hpa)) | 
|  | goto exit; | 
|  |  | 
|  | walk_shadow_page_lockless_begin(vcpu); | 
|  |  | 
|  | for (shadow_walk_init(&iterator, vcpu, addr), | 
|  | leaf = root = iterator.level; | 
|  | shadow_walk_okay(&iterator); | 
|  | __shadow_walk_next(&iterator, spte)) { | 
|  | spte = mmu_spte_get_lockless(iterator.sptep); | 
|  |  | 
|  | sptes[leaf - 1] = spte; | 
|  | leaf--; | 
|  |  | 
|  | if (!is_shadow_present_pte(spte)) | 
|  | break; | 
|  |  | 
|  | reserved |= is_shadow_zero_bits_set(vcpu->arch.mmu, spte, | 
|  | iterator.level); | 
|  | } | 
|  |  | 
|  | walk_shadow_page_lockless_end(vcpu); | 
|  |  | 
|  | if (reserved) { | 
|  | pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n", | 
|  | __func__, addr); | 
|  | while (root > leaf) { | 
|  | pr_err("------ spte 0x%llx level %d.\n", | 
|  | sptes[root - 1], root); | 
|  | root--; | 
|  | } | 
|  | } | 
|  | exit: | 
|  | *sptep = spte; | 
|  | return reserved; | 
|  | } | 
|  |  | 
|  | static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct) | 
|  | { | 
|  | u64 spte; | 
|  | bool reserved; | 
|  |  | 
|  | if (mmio_info_in_cache(vcpu, addr, direct)) | 
|  | return RET_PF_EMULATE; | 
|  |  | 
|  | reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte); | 
|  | if (WARN_ON(reserved)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (is_mmio_spte(spte)) { | 
|  | gfn_t gfn = get_mmio_spte_gfn(spte); | 
|  | unsigned access = get_mmio_spte_access(spte); | 
|  |  | 
|  | if (!check_mmio_spte(vcpu, spte)) | 
|  | return RET_PF_INVALID; | 
|  |  | 
|  | if (direct) | 
|  | addr = 0; | 
|  |  | 
|  | trace_handle_mmio_page_fault(addr, gfn, access); | 
|  | vcpu_cache_mmio_info(vcpu, addr, gfn, access); | 
|  | return RET_PF_EMULATE; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the page table is zapped by other cpus, let CPU fault again on | 
|  | * the address. | 
|  | */ | 
|  | return RET_PF_RETRY; | 
|  | } | 
|  |  | 
|  | static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu, | 
|  | u32 error_code, gfn_t gfn) | 
|  | { | 
|  | if (unlikely(error_code & PFERR_RSVD_MASK)) | 
|  | return false; | 
|  |  | 
|  | if (!(error_code & PFERR_PRESENT_MASK) || | 
|  | !(error_code & PFERR_WRITE_MASK)) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * guest is writing the page which is write tracked which can | 
|  | * not be fixed by page fault handler. | 
|  | */ | 
|  | if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr) | 
|  | { | 
|  | struct kvm_shadow_walk_iterator iterator; | 
|  | u64 spte; | 
|  |  | 
|  | if (!VALID_PAGE(vcpu->arch.mmu->root_hpa)) | 
|  | return; | 
|  |  | 
|  | walk_shadow_page_lockless_begin(vcpu); | 
|  | for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) { | 
|  | clear_sp_write_flooding_count(iterator.sptep); | 
|  | if (!is_shadow_present_pte(spte)) | 
|  | break; | 
|  | } | 
|  | walk_shadow_page_lockless_end(vcpu); | 
|  | } | 
|  |  | 
|  | static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva, | 
|  | u32 error_code, bool prefault) | 
|  | { | 
|  | gfn_t gfn = gva >> PAGE_SHIFT; | 
|  | int r; | 
|  |  | 
|  | pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code); | 
|  |  | 
|  | if (page_fault_handle_page_track(vcpu, error_code, gfn)) | 
|  | return RET_PF_EMULATE; | 
|  |  | 
|  | r = mmu_topup_memory_caches(vcpu); | 
|  | if (r) | 
|  | return r; | 
|  |  | 
|  | MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)); | 
|  |  | 
|  |  | 
|  | return nonpaging_map(vcpu, gva & PAGE_MASK, | 
|  | error_code, gfn, prefault); | 
|  | } | 
|  |  | 
|  | static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn) | 
|  | { | 
|  | struct kvm_arch_async_pf arch; | 
|  |  | 
|  | arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id; | 
|  | arch.gfn = gfn; | 
|  | arch.direct_map = vcpu->arch.mmu->direct_map; | 
|  | arch.cr3 = vcpu->arch.mmu->get_cr3(vcpu); | 
|  |  | 
|  | return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch); | 
|  | } | 
|  |  | 
|  | bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | if (unlikely(!lapic_in_kernel(vcpu) || | 
|  | kvm_event_needs_reinjection(vcpu) || | 
|  | vcpu->arch.exception.pending)) | 
|  | return false; | 
|  |  | 
|  | if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu)) | 
|  | return false; | 
|  |  | 
|  | return kvm_x86_ops->interrupt_allowed(vcpu); | 
|  | } | 
|  |  | 
|  | static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn, | 
|  | gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable) | 
|  | { | 
|  | struct kvm_memory_slot *slot; | 
|  | bool async; | 
|  |  | 
|  | /* | 
|  | * Don't expose private memslots to L2. | 
|  | */ | 
|  | if (is_guest_mode(vcpu) && !kvm_is_visible_gfn(vcpu->kvm, gfn)) { | 
|  | *pfn = KVM_PFN_NOSLOT; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); | 
|  | async = false; | 
|  | *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable); | 
|  | if (!async) | 
|  | return false; /* *pfn has correct page already */ | 
|  |  | 
|  | if (!prefault && kvm_can_do_async_pf(vcpu)) { | 
|  | trace_kvm_try_async_get_page(gva, gfn); | 
|  | if (kvm_find_async_pf_gfn(vcpu, gfn)) { | 
|  | trace_kvm_async_pf_doublefault(gva, gfn); | 
|  | kvm_make_request(KVM_REQ_APF_HALT, vcpu); | 
|  | return true; | 
|  | } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code, | 
|  | u64 fault_address, char *insn, int insn_len) | 
|  | { | 
|  | int r = 1; | 
|  |  | 
|  | vcpu->arch.l1tf_flush_l1d = true; | 
|  | switch (vcpu->arch.apf.host_apf_reason) { | 
|  | default: | 
|  | trace_kvm_page_fault(fault_address, error_code); | 
|  |  | 
|  | if (kvm_event_needs_reinjection(vcpu)) | 
|  | kvm_mmu_unprotect_page_virt(vcpu, fault_address); | 
|  | r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn, | 
|  | insn_len); | 
|  | break; | 
|  | case KVM_PV_REASON_PAGE_NOT_PRESENT: | 
|  | vcpu->arch.apf.host_apf_reason = 0; | 
|  | local_irq_disable(); | 
|  | kvm_async_pf_task_wait(fault_address, 0); | 
|  | local_irq_enable(); | 
|  | break; | 
|  | case KVM_PV_REASON_PAGE_READY: | 
|  | vcpu->arch.apf.host_apf_reason = 0; | 
|  | local_irq_disable(); | 
|  | kvm_async_pf_task_wake(fault_address); | 
|  | local_irq_enable(); | 
|  | break; | 
|  | } | 
|  | return r; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_handle_page_fault); | 
|  |  | 
|  | static bool | 
|  | check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level) | 
|  | { | 
|  | int page_num = KVM_PAGES_PER_HPAGE(level); | 
|  |  | 
|  | gfn &= ~(page_num - 1); | 
|  |  | 
|  | return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num); | 
|  | } | 
|  |  | 
|  | static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code, | 
|  | bool prefault) | 
|  | { | 
|  | kvm_pfn_t pfn; | 
|  | int r; | 
|  | int level; | 
|  | bool force_pt_level; | 
|  | gfn_t gfn = gpa >> PAGE_SHIFT; | 
|  | unsigned long mmu_seq; | 
|  | int write = error_code & PFERR_WRITE_MASK; | 
|  | bool map_writable; | 
|  |  | 
|  | MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)); | 
|  |  | 
|  | if (page_fault_handle_page_track(vcpu, error_code, gfn)) | 
|  | return RET_PF_EMULATE; | 
|  |  | 
|  | r = mmu_topup_memory_caches(vcpu); | 
|  | if (r) | 
|  | return r; | 
|  |  | 
|  | force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn, | 
|  | PT_DIRECTORY_LEVEL); | 
|  | level = mapping_level(vcpu, gfn, &force_pt_level); | 
|  | if (likely(!force_pt_level)) { | 
|  | if (level > PT_DIRECTORY_LEVEL && | 
|  | !check_hugepage_cache_consistency(vcpu, gfn, level)) | 
|  | level = PT_DIRECTORY_LEVEL; | 
|  | gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1); | 
|  | } | 
|  |  | 
|  | if (fast_page_fault(vcpu, gpa, level, error_code)) | 
|  | return RET_PF_RETRY; | 
|  |  | 
|  | mmu_seq = vcpu->kvm->mmu_notifier_seq; | 
|  | smp_rmb(); | 
|  |  | 
|  | if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable)) | 
|  | return RET_PF_RETRY; | 
|  |  | 
|  | if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r)) | 
|  | return r; | 
|  |  | 
|  | spin_lock(&vcpu->kvm->mmu_lock); | 
|  | if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) | 
|  | goto out_unlock; | 
|  | if (make_mmu_pages_available(vcpu) < 0) | 
|  | goto out_unlock; | 
|  | if (likely(!force_pt_level)) | 
|  | transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level); | 
|  | r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault); | 
|  | spin_unlock(&vcpu->kvm->mmu_lock); | 
|  |  | 
|  | return r; | 
|  |  | 
|  | out_unlock: | 
|  | spin_unlock(&vcpu->kvm->mmu_lock); | 
|  | kvm_release_pfn_clean(pfn); | 
|  | return RET_PF_RETRY; | 
|  | } | 
|  |  | 
|  | static void nonpaging_init_context(struct kvm_vcpu *vcpu, | 
|  | struct kvm_mmu *context) | 
|  | { | 
|  | context->page_fault = nonpaging_page_fault; | 
|  | context->gva_to_gpa = nonpaging_gva_to_gpa; | 
|  | context->sync_page = nonpaging_sync_page; | 
|  | context->invlpg = nonpaging_invlpg; | 
|  | context->update_pte = nonpaging_update_pte; | 
|  | context->root_level = 0; | 
|  | context->shadow_root_level = PT32E_ROOT_LEVEL; | 
|  | context->direct_map = true; | 
|  | context->nx = false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find out if a previously cached root matching the new CR3/role is available. | 
|  | * The current root is also inserted into the cache. | 
|  | * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is | 
|  | * returned. | 
|  | * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and | 
|  | * false is returned. This root should now be freed by the caller. | 
|  | */ | 
|  | static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_cr3, | 
|  | union kvm_mmu_page_role new_role) | 
|  | { | 
|  | uint i; | 
|  | struct kvm_mmu_root_info root; | 
|  | struct kvm_mmu *mmu = vcpu->arch.mmu; | 
|  |  | 
|  | root.cr3 = mmu->get_cr3(vcpu); | 
|  | root.hpa = mmu->root_hpa; | 
|  |  | 
|  | for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { | 
|  | swap(root, mmu->prev_roots[i]); | 
|  |  | 
|  | if (new_cr3 == root.cr3 && VALID_PAGE(root.hpa) && | 
|  | page_header(root.hpa) != NULL && | 
|  | new_role.word == page_header(root.hpa)->role.word) | 
|  | break; | 
|  | } | 
|  |  | 
|  | mmu->root_hpa = root.hpa; | 
|  |  | 
|  | return i < KVM_MMU_NUM_PREV_ROOTS; | 
|  | } | 
|  |  | 
|  | static bool fast_cr3_switch(struct kvm_vcpu *vcpu, gpa_t new_cr3, | 
|  | union kvm_mmu_page_role new_role, | 
|  | bool skip_tlb_flush) | 
|  | { | 
|  | struct kvm_mmu *mmu = vcpu->arch.mmu; | 
|  |  | 
|  | /* | 
|  | * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid | 
|  | * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs | 
|  | * later if necessary. | 
|  | */ | 
|  | if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL && | 
|  | mmu->root_level >= PT64_ROOT_4LEVEL) { | 
|  | if (mmu_check_root(vcpu, new_cr3 >> PAGE_SHIFT)) | 
|  | return false; | 
|  |  | 
|  | if (cached_root_available(vcpu, new_cr3, new_role)) { | 
|  | /* | 
|  | * It is possible that the cached previous root page is | 
|  | * obsolete because of a change in the MMU | 
|  | * generation number. However, that is accompanied by | 
|  | * KVM_REQ_MMU_RELOAD, which will free the root that we | 
|  | * have set here and allocate a new one. | 
|  | */ | 
|  |  | 
|  | kvm_make_request(KVM_REQ_LOAD_CR3, vcpu); | 
|  | if (!skip_tlb_flush) { | 
|  | kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); | 
|  | kvm_x86_ops->tlb_flush(vcpu, true); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The last MMIO access's GVA and GPA are cached in the | 
|  | * VCPU. When switching to a new CR3, that GVA->GPA | 
|  | * mapping may no longer be valid. So clear any cached | 
|  | * MMIO info even when we don't need to sync the shadow | 
|  | * page tables. | 
|  | */ | 
|  | vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); | 
|  |  | 
|  | __clear_sp_write_flooding_count( | 
|  | page_header(mmu->root_hpa)); | 
|  |  | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static void __kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3, | 
|  | union kvm_mmu_page_role new_role, | 
|  | bool skip_tlb_flush) | 
|  | { | 
|  | if (!fast_cr3_switch(vcpu, new_cr3, new_role, skip_tlb_flush)) | 
|  | kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, | 
|  | KVM_MMU_ROOT_CURRENT); | 
|  | } | 
|  |  | 
|  | void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3, bool skip_tlb_flush) | 
|  | { | 
|  | __kvm_mmu_new_cr3(vcpu, new_cr3, kvm_mmu_calc_root_page_role(vcpu), | 
|  | skip_tlb_flush); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_mmu_new_cr3); | 
|  |  | 
|  | static unsigned long get_cr3(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | return kvm_read_cr3(vcpu); | 
|  | } | 
|  |  | 
|  | static void inject_page_fault(struct kvm_vcpu *vcpu, | 
|  | struct x86_exception *fault) | 
|  | { | 
|  | vcpu->arch.mmu->inject_page_fault(vcpu, fault); | 
|  | } | 
|  |  | 
|  | static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn, | 
|  | unsigned access, int *nr_present) | 
|  | { | 
|  | if (unlikely(is_mmio_spte(*sptep))) { | 
|  | if (gfn != get_mmio_spte_gfn(*sptep)) { | 
|  | mmu_spte_clear_no_track(sptep); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | (*nr_present)++; | 
|  | mark_mmio_spte(vcpu, sptep, gfn, access); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static inline bool is_last_gpte(struct kvm_mmu *mmu, | 
|  | unsigned level, unsigned gpte) | 
|  | { | 
|  | /* | 
|  | * The RHS has bit 7 set iff level < mmu->last_nonleaf_level. | 
|  | * If it is clear, there are no large pages at this level, so clear | 
|  | * PT_PAGE_SIZE_MASK in gpte if that is the case. | 
|  | */ | 
|  | gpte &= level - mmu->last_nonleaf_level; | 
|  |  | 
|  | /* | 
|  | * PT_PAGE_TABLE_LEVEL always terminates.  The RHS has bit 7 set | 
|  | * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means | 
|  | * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then. | 
|  | */ | 
|  | gpte |= level - PT_PAGE_TABLE_LEVEL - 1; | 
|  |  | 
|  | return gpte & PT_PAGE_SIZE_MASK; | 
|  | } | 
|  |  | 
|  | #define PTTYPE_EPT 18 /* arbitrary */ | 
|  | #define PTTYPE PTTYPE_EPT | 
|  | #include "paging_tmpl.h" | 
|  | #undef PTTYPE | 
|  |  | 
|  | #define PTTYPE 64 | 
|  | #include "paging_tmpl.h" | 
|  | #undef PTTYPE | 
|  |  | 
|  | #define PTTYPE 32 | 
|  | #include "paging_tmpl.h" | 
|  | #undef PTTYPE | 
|  |  | 
|  | static void | 
|  | __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu, | 
|  | struct rsvd_bits_validate *rsvd_check, | 
|  | int maxphyaddr, int level, bool nx, bool gbpages, | 
|  | bool pse, bool amd) | 
|  | { | 
|  | u64 exb_bit_rsvd = 0; | 
|  | u64 gbpages_bit_rsvd = 0; | 
|  | u64 nonleaf_bit8_rsvd = 0; | 
|  |  | 
|  | rsvd_check->bad_mt_xwr = 0; | 
|  |  | 
|  | if (!nx) | 
|  | exb_bit_rsvd = rsvd_bits(63, 63); | 
|  | if (!gbpages) | 
|  | gbpages_bit_rsvd = rsvd_bits(7, 7); | 
|  |  | 
|  | /* | 
|  | * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for | 
|  | * leaf entries) on AMD CPUs only. | 
|  | */ | 
|  | if (amd) | 
|  | nonleaf_bit8_rsvd = rsvd_bits(8, 8); | 
|  |  | 
|  | switch (level) { | 
|  | case PT32_ROOT_LEVEL: | 
|  | /* no rsvd bits for 2 level 4K page table entries */ | 
|  | rsvd_check->rsvd_bits_mask[0][1] = 0; | 
|  | rsvd_check->rsvd_bits_mask[0][0] = 0; | 
|  | rsvd_check->rsvd_bits_mask[1][0] = | 
|  | rsvd_check->rsvd_bits_mask[0][0]; | 
|  |  | 
|  | if (!pse) { | 
|  | rsvd_check->rsvd_bits_mask[1][1] = 0; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (is_cpuid_PSE36()) | 
|  | /* 36bits PSE 4MB page */ | 
|  | rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21); | 
|  | else | 
|  | /* 32 bits PSE 4MB page */ | 
|  | rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21); | 
|  | break; | 
|  | case PT32E_ROOT_LEVEL: | 
|  | rsvd_check->rsvd_bits_mask[0][2] = | 
|  | rsvd_bits(maxphyaddr, 63) | | 
|  | rsvd_bits(5, 8) | rsvd_bits(1, 2);	/* PDPTE */ | 
|  | rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd | | 
|  | rsvd_bits(maxphyaddr, 62);	/* PDE */ | 
|  | rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd | | 
|  | rsvd_bits(maxphyaddr, 62); 	/* PTE */ | 
|  | rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd | | 
|  | rsvd_bits(maxphyaddr, 62) | | 
|  | rsvd_bits(13, 20);		/* large page */ | 
|  | rsvd_check->rsvd_bits_mask[1][0] = | 
|  | rsvd_check->rsvd_bits_mask[0][0]; | 
|  | break; | 
|  | case PT64_ROOT_5LEVEL: | 
|  | rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd | | 
|  | nonleaf_bit8_rsvd | rsvd_bits(7, 7) | | 
|  | rsvd_bits(maxphyaddr, 51); | 
|  | rsvd_check->rsvd_bits_mask[1][4] = | 
|  | rsvd_check->rsvd_bits_mask[0][4]; | 
|  | /* fall through */ | 
|  | case PT64_ROOT_4LEVEL: | 
|  | rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd | | 
|  | nonleaf_bit8_rsvd | rsvd_bits(7, 7) | | 
|  | rsvd_bits(maxphyaddr, 51); | 
|  | rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd | | 
|  | nonleaf_bit8_rsvd | gbpages_bit_rsvd | | 
|  | rsvd_bits(maxphyaddr, 51); | 
|  | rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd | | 
|  | rsvd_bits(maxphyaddr, 51); | 
|  | rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd | | 
|  | rsvd_bits(maxphyaddr, 51); | 
|  | rsvd_check->rsvd_bits_mask[1][3] = | 
|  | rsvd_check->rsvd_bits_mask[0][3]; | 
|  | rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd | | 
|  | gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) | | 
|  | rsvd_bits(13, 29); | 
|  | rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd | | 
|  | rsvd_bits(maxphyaddr, 51) | | 
|  | rsvd_bits(13, 20);		/* large page */ | 
|  | rsvd_check->rsvd_bits_mask[1][0] = | 
|  | rsvd_check->rsvd_bits_mask[0][0]; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu, | 
|  | struct kvm_mmu *context) | 
|  | { | 
|  | __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check, | 
|  | cpuid_maxphyaddr(vcpu), context->root_level, | 
|  | context->nx, | 
|  | guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES), | 
|  | is_pse(vcpu), guest_cpuid_is_amd(vcpu)); | 
|  | } | 
|  |  | 
|  | static void | 
|  | __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check, | 
|  | int maxphyaddr, bool execonly) | 
|  | { | 
|  | u64 bad_mt_xwr; | 
|  |  | 
|  | rsvd_check->rsvd_bits_mask[0][4] = | 
|  | rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7); | 
|  | rsvd_check->rsvd_bits_mask[0][3] = | 
|  | rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7); | 
|  | rsvd_check->rsvd_bits_mask[0][2] = | 
|  | rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6); | 
|  | rsvd_check->rsvd_bits_mask[0][1] = | 
|  | rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6); | 
|  | rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51); | 
|  |  | 
|  | /* large page */ | 
|  | rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4]; | 
|  | rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3]; | 
|  | rsvd_check->rsvd_bits_mask[1][2] = | 
|  | rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29); | 
|  | rsvd_check->rsvd_bits_mask[1][1] = | 
|  | rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20); | 
|  | rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0]; | 
|  |  | 
|  | bad_mt_xwr = 0xFFull << (2 * 8);	/* bits 3..5 must not be 2 */ | 
|  | bad_mt_xwr |= 0xFFull << (3 * 8);	/* bits 3..5 must not be 3 */ | 
|  | bad_mt_xwr |= 0xFFull << (7 * 8);	/* bits 3..5 must not be 7 */ | 
|  | bad_mt_xwr |= REPEAT_BYTE(1ull << 2);	/* bits 0..2 must not be 010 */ | 
|  | bad_mt_xwr |= REPEAT_BYTE(1ull << 6);	/* bits 0..2 must not be 110 */ | 
|  | if (!execonly) { | 
|  | /* bits 0..2 must not be 100 unless VMX capabilities allow it */ | 
|  | bad_mt_xwr |= REPEAT_BYTE(1ull << 4); | 
|  | } | 
|  | rsvd_check->bad_mt_xwr = bad_mt_xwr; | 
|  | } | 
|  |  | 
|  | static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu, | 
|  | struct kvm_mmu *context, bool execonly) | 
|  | { | 
|  | __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check, | 
|  | cpuid_maxphyaddr(vcpu), execonly); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * the page table on host is the shadow page table for the page | 
|  | * table in guest or amd nested guest, its mmu features completely | 
|  | * follow the features in guest. | 
|  | */ | 
|  | void | 
|  | reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context) | 
|  | { | 
|  | bool uses_nx = context->nx || | 
|  | context->mmu_role.base.smep_andnot_wp; | 
|  | struct rsvd_bits_validate *shadow_zero_check; | 
|  | int i; | 
|  |  | 
|  | /* | 
|  | * Passing "true" to the last argument is okay; it adds a check | 
|  | * on bit 8 of the SPTEs which KVM doesn't use anyway. | 
|  | */ | 
|  | shadow_zero_check = &context->shadow_zero_check; | 
|  | __reset_rsvds_bits_mask(vcpu, shadow_zero_check, | 
|  | boot_cpu_data.x86_phys_bits, | 
|  | context->shadow_root_level, uses_nx, | 
|  | guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES), | 
|  | is_pse(vcpu), true); | 
|  |  | 
|  | if (!shadow_me_mask) | 
|  | return; | 
|  |  | 
|  | for (i = context->shadow_root_level; --i >= 0;) { | 
|  | shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask; | 
|  | shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask; | 
|  | } | 
|  |  | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask); | 
|  |  | 
|  | static inline bool boot_cpu_is_amd(void) | 
|  | { | 
|  | WARN_ON_ONCE(!tdp_enabled); | 
|  | return shadow_x_mask == 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * the direct page table on host, use as much mmu features as | 
|  | * possible, however, kvm currently does not do execution-protection. | 
|  | */ | 
|  | static void | 
|  | reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, | 
|  | struct kvm_mmu *context) | 
|  | { | 
|  | struct rsvd_bits_validate *shadow_zero_check; | 
|  | int i; | 
|  |  | 
|  | shadow_zero_check = &context->shadow_zero_check; | 
|  |  | 
|  | if (boot_cpu_is_amd()) | 
|  | __reset_rsvds_bits_mask(vcpu, shadow_zero_check, | 
|  | boot_cpu_data.x86_phys_bits, | 
|  | context->shadow_root_level, false, | 
|  | boot_cpu_has(X86_FEATURE_GBPAGES), | 
|  | true, true); | 
|  | else | 
|  | __reset_rsvds_bits_mask_ept(shadow_zero_check, | 
|  | boot_cpu_data.x86_phys_bits, | 
|  | false); | 
|  |  | 
|  | if (!shadow_me_mask) | 
|  | return; | 
|  |  | 
|  | for (i = context->shadow_root_level; --i >= 0;) { | 
|  | shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask; | 
|  | shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * as the comments in reset_shadow_zero_bits_mask() except it | 
|  | * is the shadow page table for intel nested guest. | 
|  | */ | 
|  | static void | 
|  | reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, | 
|  | struct kvm_mmu *context, bool execonly) | 
|  | { | 
|  | __reset_rsvds_bits_mask_ept(&context->shadow_zero_check, | 
|  | boot_cpu_data.x86_phys_bits, execonly); | 
|  | } | 
|  |  | 
|  | #define BYTE_MASK(access) \ | 
|  | ((1 & (access) ? 2 : 0) | \ | 
|  | (2 & (access) ? 4 : 0) | \ | 
|  | (3 & (access) ? 8 : 0) | \ | 
|  | (4 & (access) ? 16 : 0) | \ | 
|  | (5 & (access) ? 32 : 0) | \ | 
|  | (6 & (access) ? 64 : 0) | \ | 
|  | (7 & (access) ? 128 : 0)) | 
|  |  | 
|  |  | 
|  | static void update_permission_bitmask(struct kvm_vcpu *vcpu, | 
|  | struct kvm_mmu *mmu, bool ept) | 
|  | { | 
|  | unsigned byte; | 
|  |  | 
|  | const u8 x = BYTE_MASK(ACC_EXEC_MASK); | 
|  | const u8 w = BYTE_MASK(ACC_WRITE_MASK); | 
|  | const u8 u = BYTE_MASK(ACC_USER_MASK); | 
|  |  | 
|  | bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0; | 
|  | bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0; | 
|  | bool cr0_wp = is_write_protection(vcpu); | 
|  |  | 
|  | for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) { | 
|  | unsigned pfec = byte << 1; | 
|  |  | 
|  | /* | 
|  | * Each "*f" variable has a 1 bit for each UWX value | 
|  | * that causes a fault with the given PFEC. | 
|  | */ | 
|  |  | 
|  | /* Faults from writes to non-writable pages */ | 
|  | u8 wf = (pfec & PFERR_WRITE_MASK) ? ~w : 0; | 
|  | /* Faults from user mode accesses to supervisor pages */ | 
|  | u8 uf = (pfec & PFERR_USER_MASK) ? ~u : 0; | 
|  | /* Faults from fetches of non-executable pages*/ | 
|  | u8 ff = (pfec & PFERR_FETCH_MASK) ? ~x : 0; | 
|  | /* Faults from kernel mode fetches of user pages */ | 
|  | u8 smepf = 0; | 
|  | /* Faults from kernel mode accesses of user pages */ | 
|  | u8 smapf = 0; | 
|  |  | 
|  | if (!ept) { | 
|  | /* Faults from kernel mode accesses to user pages */ | 
|  | u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u; | 
|  |  | 
|  | /* Not really needed: !nx will cause pte.nx to fault */ | 
|  | if (!mmu->nx) | 
|  | ff = 0; | 
|  |  | 
|  | /* Allow supervisor writes if !cr0.wp */ | 
|  | if (!cr0_wp) | 
|  | wf = (pfec & PFERR_USER_MASK) ? wf : 0; | 
|  |  | 
|  | /* Disallow supervisor fetches of user code if cr4.smep */ | 
|  | if (cr4_smep) | 
|  | smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0; | 
|  |  | 
|  | /* | 
|  | * SMAP:kernel-mode data accesses from user-mode | 
|  | * mappings should fault. A fault is considered | 
|  | * as a SMAP violation if all of the following | 
|  | * conditions are true: | 
|  | *   - X86_CR4_SMAP is set in CR4 | 
|  | *   - A user page is accessed | 
|  | *   - The access is not a fetch | 
|  | *   - Page fault in kernel mode | 
|  | *   - if CPL = 3 or X86_EFLAGS_AC is clear | 
|  | * | 
|  | * Here, we cover the first three conditions. | 
|  | * The fourth is computed dynamically in permission_fault(); | 
|  | * PFERR_RSVD_MASK bit will be set in PFEC if the access is | 
|  | * *not* subject to SMAP restrictions. | 
|  | */ | 
|  | if (cr4_smap) | 
|  | smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf; | 
|  | } | 
|  |  | 
|  | mmu->permissions[byte] = ff | uf | wf | smepf | smapf; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * PKU is an additional mechanism by which the paging controls access to | 
|  | * user-mode addresses based on the value in the PKRU register.  Protection | 
|  | * key violations are reported through a bit in the page fault error code. | 
|  | * Unlike other bits of the error code, the PK bit is not known at the | 
|  | * call site of e.g. gva_to_gpa; it must be computed directly in | 
|  | * permission_fault based on two bits of PKRU, on some machine state (CR4, | 
|  | * CR0, EFER, CPL), and on other bits of the error code and the page tables. | 
|  | * | 
|  | * In particular the following conditions come from the error code, the | 
|  | * page tables and the machine state: | 
|  | * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1 | 
|  | * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch) | 
|  | * - PK is always zero if U=0 in the page tables | 
|  | * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access. | 
|  | * | 
|  | * The PKRU bitmask caches the result of these four conditions.  The error | 
|  | * code (minus the P bit) and the page table's U bit form an index into the | 
|  | * PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed | 
|  | * with the two bits of the PKRU register corresponding to the protection key. | 
|  | * For the first three conditions above the bits will be 00, thus masking | 
|  | * away both AD and WD.  For all reads or if the last condition holds, WD | 
|  | * only will be masked away. | 
|  | */ | 
|  | static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, | 
|  | bool ept) | 
|  | { | 
|  | unsigned bit; | 
|  | bool wp; | 
|  |  | 
|  | if (ept) { | 
|  | mmu->pkru_mask = 0; | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */ | 
|  | if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) { | 
|  | mmu->pkru_mask = 0; | 
|  | return; | 
|  | } | 
|  |  | 
|  | wp = is_write_protection(vcpu); | 
|  |  | 
|  | for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) { | 
|  | unsigned pfec, pkey_bits; | 
|  | bool check_pkey, check_write, ff, uf, wf, pte_user; | 
|  |  | 
|  | pfec = bit << 1; | 
|  | ff = pfec & PFERR_FETCH_MASK; | 
|  | uf = pfec & PFERR_USER_MASK; | 
|  | wf = pfec & PFERR_WRITE_MASK; | 
|  |  | 
|  | /* PFEC.RSVD is replaced by ACC_USER_MASK. */ | 
|  | pte_user = pfec & PFERR_RSVD_MASK; | 
|  |  | 
|  | /* | 
|  | * Only need to check the access which is not an | 
|  | * instruction fetch and is to a user page. | 
|  | */ | 
|  | check_pkey = (!ff && pte_user); | 
|  | /* | 
|  | * write access is controlled by PKRU if it is a | 
|  | * user access or CR0.WP = 1. | 
|  | */ | 
|  | check_write = check_pkey && wf && (uf || wp); | 
|  |  | 
|  | /* PKRU.AD stops both read and write access. */ | 
|  | pkey_bits = !!check_pkey; | 
|  | /* PKRU.WD stops write access. */ | 
|  | pkey_bits |= (!!check_write) << 1; | 
|  |  | 
|  | mmu->pkru_mask |= (pkey_bits & 3) << pfec; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu) | 
|  | { | 
|  | unsigned root_level = mmu->root_level; | 
|  |  | 
|  | mmu->last_nonleaf_level = root_level; | 
|  | if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu)) | 
|  | mmu->last_nonleaf_level++; | 
|  | } | 
|  |  | 
|  | static void paging64_init_context_common(struct kvm_vcpu *vcpu, | 
|  | struct kvm_mmu *context, | 
|  | int level) | 
|  | { | 
|  | context->nx = is_nx(vcpu); | 
|  | context->root_level = level; | 
|  |  | 
|  | reset_rsvds_bits_mask(vcpu, context); | 
|  | update_permission_bitmask(vcpu, context, false); | 
|  | update_pkru_bitmask(vcpu, context, false); | 
|  | update_last_nonleaf_level(vcpu, context); | 
|  |  | 
|  | MMU_WARN_ON(!is_pae(vcpu)); | 
|  | context->page_fault = paging64_page_fault; | 
|  | context->gva_to_gpa = paging64_gva_to_gpa; | 
|  | context->sync_page = paging64_sync_page; | 
|  | context->invlpg = paging64_invlpg; | 
|  | context->update_pte = paging64_update_pte; | 
|  | context->shadow_root_level = level; | 
|  | context->direct_map = false; | 
|  | } | 
|  |  | 
|  | static void paging64_init_context(struct kvm_vcpu *vcpu, | 
|  | struct kvm_mmu *context) | 
|  | { | 
|  | int root_level = is_la57_mode(vcpu) ? | 
|  | PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL; | 
|  |  | 
|  | paging64_init_context_common(vcpu, context, root_level); | 
|  | } | 
|  |  | 
|  | static void paging32_init_context(struct kvm_vcpu *vcpu, | 
|  | struct kvm_mmu *context) | 
|  | { | 
|  | context->nx = false; | 
|  | context->root_level = PT32_ROOT_LEVEL; | 
|  |  | 
|  | reset_rsvds_bits_mask(vcpu, context); | 
|  | update_permission_bitmask(vcpu, context, false); | 
|  | update_pkru_bitmask(vcpu, context, false); | 
|  | update_last_nonleaf_level(vcpu, context); | 
|  |  | 
|  | context->page_fault = paging32_page_fault; | 
|  | context->gva_to_gpa = paging32_gva_to_gpa; | 
|  | context->sync_page = paging32_sync_page; | 
|  | context->invlpg = paging32_invlpg; | 
|  | context->update_pte = paging32_update_pte; | 
|  | context->shadow_root_level = PT32E_ROOT_LEVEL; | 
|  | context->direct_map = false; | 
|  | } | 
|  |  | 
|  | static void paging32E_init_context(struct kvm_vcpu *vcpu, | 
|  | struct kvm_mmu *context) | 
|  | { | 
|  | paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL); | 
|  | } | 
|  |  | 
|  | static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | union kvm_mmu_extended_role ext = {0}; | 
|  |  | 
|  | ext.cr0_pg = !!is_paging(vcpu); | 
|  | ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP); | 
|  | ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP); | 
|  | ext.cr4_pse = !!is_pse(vcpu); | 
|  | ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE); | 
|  | ext.cr4_la57 = !!kvm_read_cr4_bits(vcpu, X86_CR4_LA57); | 
|  |  | 
|  | ext.valid = 1; | 
|  |  | 
|  | return ext; | 
|  | } | 
|  |  | 
|  | static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu, | 
|  | bool base_only) | 
|  | { | 
|  | union kvm_mmu_role role = {0}; | 
|  |  | 
|  | role.base.access = ACC_ALL; | 
|  | role.base.nxe = !!is_nx(vcpu); | 
|  | role.base.cr4_pae = !!is_pae(vcpu); | 
|  | role.base.cr0_wp = is_write_protection(vcpu); | 
|  | role.base.smm = is_smm(vcpu); | 
|  | role.base.guest_mode = is_guest_mode(vcpu); | 
|  |  | 
|  | if (base_only) | 
|  | return role; | 
|  |  | 
|  | role.ext = kvm_calc_mmu_role_ext(vcpu); | 
|  |  | 
|  | return role; | 
|  | } | 
|  |  | 
|  | static union kvm_mmu_role | 
|  | kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only) | 
|  | { | 
|  | union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only); | 
|  |  | 
|  | role.base.ad_disabled = (shadow_accessed_mask == 0); | 
|  | role.base.level = kvm_x86_ops->get_tdp_level(vcpu); | 
|  | role.base.direct = true; | 
|  |  | 
|  | return role; | 
|  | } | 
|  |  | 
|  | static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct kvm_mmu *context = vcpu->arch.mmu; | 
|  | union kvm_mmu_role new_role = | 
|  | kvm_calc_tdp_mmu_root_page_role(vcpu, false); | 
|  |  | 
|  | new_role.base.word &= mmu_base_role_mask.word; | 
|  | if (new_role.as_u64 == context->mmu_role.as_u64) | 
|  | return; | 
|  |  | 
|  | context->mmu_role.as_u64 = new_role.as_u64; | 
|  | context->page_fault = tdp_page_fault; | 
|  | context->sync_page = nonpaging_sync_page; | 
|  | context->invlpg = nonpaging_invlpg; | 
|  | context->update_pte = nonpaging_update_pte; | 
|  | context->shadow_root_level = kvm_x86_ops->get_tdp_level(vcpu); | 
|  | context->direct_map = true; | 
|  | context->set_cr3 = kvm_x86_ops->set_tdp_cr3; | 
|  | context->get_cr3 = get_cr3; | 
|  | context->get_pdptr = kvm_pdptr_read; | 
|  | context->inject_page_fault = kvm_inject_page_fault; | 
|  |  | 
|  | if (!is_paging(vcpu)) { | 
|  | context->nx = false; | 
|  | context->gva_to_gpa = nonpaging_gva_to_gpa; | 
|  | context->root_level = 0; | 
|  | } else if (is_long_mode(vcpu)) { | 
|  | context->nx = is_nx(vcpu); | 
|  | context->root_level = is_la57_mode(vcpu) ? | 
|  | PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL; | 
|  | reset_rsvds_bits_mask(vcpu, context); | 
|  | context->gva_to_gpa = paging64_gva_to_gpa; | 
|  | } else if (is_pae(vcpu)) { | 
|  | context->nx = is_nx(vcpu); | 
|  | context->root_level = PT32E_ROOT_LEVEL; | 
|  | reset_rsvds_bits_mask(vcpu, context); | 
|  | context->gva_to_gpa = paging64_gva_to_gpa; | 
|  | } else { | 
|  | context->nx = false; | 
|  | context->root_level = PT32_ROOT_LEVEL; | 
|  | reset_rsvds_bits_mask(vcpu, context); | 
|  | context->gva_to_gpa = paging32_gva_to_gpa; | 
|  | } | 
|  |  | 
|  | update_permission_bitmask(vcpu, context, false); | 
|  | update_pkru_bitmask(vcpu, context, false); | 
|  | update_last_nonleaf_level(vcpu, context); | 
|  | reset_tdp_shadow_zero_bits_mask(vcpu, context); | 
|  | } | 
|  |  | 
|  | static union kvm_mmu_role | 
|  | kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only) | 
|  | { | 
|  | union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only); | 
|  |  | 
|  | role.base.smep_andnot_wp = role.ext.cr4_smep && | 
|  | !is_write_protection(vcpu); | 
|  | role.base.smap_andnot_wp = role.ext.cr4_smap && | 
|  | !is_write_protection(vcpu); | 
|  | role.base.direct = !is_paging(vcpu); | 
|  |  | 
|  | if (!is_long_mode(vcpu)) | 
|  | role.base.level = PT32E_ROOT_LEVEL; | 
|  | else if (is_la57_mode(vcpu)) | 
|  | role.base.level = PT64_ROOT_5LEVEL; | 
|  | else | 
|  | role.base.level = PT64_ROOT_4LEVEL; | 
|  |  | 
|  | return role; | 
|  | } | 
|  |  | 
|  | void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct kvm_mmu *context = vcpu->arch.mmu; | 
|  | union kvm_mmu_role new_role = | 
|  | kvm_calc_shadow_mmu_root_page_role(vcpu, false); | 
|  |  | 
|  | new_role.base.word &= mmu_base_role_mask.word; | 
|  | if (new_role.as_u64 == context->mmu_role.as_u64) | 
|  | return; | 
|  |  | 
|  | if (!is_paging(vcpu)) | 
|  | nonpaging_init_context(vcpu, context); | 
|  | else if (is_long_mode(vcpu)) | 
|  | paging64_init_context(vcpu, context); | 
|  | else if (is_pae(vcpu)) | 
|  | paging32E_init_context(vcpu, context); | 
|  | else | 
|  | paging32_init_context(vcpu, context); | 
|  |  | 
|  | context->mmu_role.as_u64 = new_role.as_u64; | 
|  | reset_shadow_zero_bits_mask(vcpu, context); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu); | 
|  |  | 
|  | static union kvm_mmu_role | 
|  | kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty, | 
|  | bool execonly) | 
|  | { | 
|  | union kvm_mmu_role role; | 
|  |  | 
|  | /* Base role is inherited from root_mmu */ | 
|  | role.base.word = vcpu->arch.root_mmu.mmu_role.base.word; | 
|  | role.ext = kvm_calc_mmu_role_ext(vcpu); | 
|  |  | 
|  | role.base.level = PT64_ROOT_4LEVEL; | 
|  | role.base.direct = false; | 
|  | role.base.ad_disabled = !accessed_dirty; | 
|  | role.base.guest_mode = true; | 
|  | role.base.access = ACC_ALL; | 
|  |  | 
|  | role.ext.execonly = execonly; | 
|  |  | 
|  | return role; | 
|  | } | 
|  |  | 
|  | void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly, | 
|  | bool accessed_dirty, gpa_t new_eptp) | 
|  | { | 
|  | struct kvm_mmu *context = vcpu->arch.mmu; | 
|  | union kvm_mmu_role new_role = | 
|  | kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty, | 
|  | execonly); | 
|  |  | 
|  | __kvm_mmu_new_cr3(vcpu, new_eptp, new_role.base, false); | 
|  |  | 
|  | new_role.base.word &= mmu_base_role_mask.word; | 
|  | if (new_role.as_u64 == context->mmu_role.as_u64) | 
|  | return; | 
|  |  | 
|  | context->shadow_root_level = PT64_ROOT_4LEVEL; | 
|  |  | 
|  | context->nx = true; | 
|  | context->ept_ad = accessed_dirty; | 
|  | context->page_fault = ept_page_fault; | 
|  | context->gva_to_gpa = ept_gva_to_gpa; | 
|  | context->sync_page = ept_sync_page; | 
|  | context->invlpg = ept_invlpg; | 
|  | context->update_pte = ept_update_pte; | 
|  | context->root_level = PT64_ROOT_4LEVEL; | 
|  | context->direct_map = false; | 
|  | context->mmu_role.as_u64 = new_role.as_u64; | 
|  |  | 
|  | update_permission_bitmask(vcpu, context, true); | 
|  | update_pkru_bitmask(vcpu, context, true); | 
|  | update_last_nonleaf_level(vcpu, context); | 
|  | reset_rsvds_bits_mask_ept(vcpu, context, execonly); | 
|  | reset_ept_shadow_zero_bits_mask(vcpu, context, execonly); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu); | 
|  |  | 
|  | static void init_kvm_softmmu(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct kvm_mmu *context = vcpu->arch.mmu; | 
|  |  | 
|  | kvm_init_shadow_mmu(vcpu); | 
|  | context->set_cr3           = kvm_x86_ops->set_cr3; | 
|  | context->get_cr3           = get_cr3; | 
|  | context->get_pdptr         = kvm_pdptr_read; | 
|  | context->inject_page_fault = kvm_inject_page_fault; | 
|  | } | 
|  |  | 
|  | static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false); | 
|  | struct kvm_mmu *g_context = &vcpu->arch.nested_mmu; | 
|  |  | 
|  | new_role.base.word &= mmu_base_role_mask.word; | 
|  | if (new_role.as_u64 == g_context->mmu_role.as_u64) | 
|  | return; | 
|  |  | 
|  | g_context->mmu_role.as_u64 = new_role.as_u64; | 
|  | g_context->get_cr3           = get_cr3; | 
|  | g_context->get_pdptr         = kvm_pdptr_read; | 
|  | g_context->inject_page_fault = kvm_inject_page_fault; | 
|  |  | 
|  | /* | 
|  | * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using | 
|  | * L1's nested page tables (e.g. EPT12). The nested translation | 
|  | * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using | 
|  | * L2's page tables as the first level of translation and L1's | 
|  | * nested page tables as the second level of translation. Basically | 
|  | * the gva_to_gpa functions between mmu and nested_mmu are swapped. | 
|  | */ | 
|  | if (!is_paging(vcpu)) { | 
|  | g_context->nx = false; | 
|  | g_context->root_level = 0; | 
|  | g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested; | 
|  | } else if (is_long_mode(vcpu)) { | 
|  | g_context->nx = is_nx(vcpu); | 
|  | g_context->root_level = is_la57_mode(vcpu) ? | 
|  | PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL; | 
|  | reset_rsvds_bits_mask(vcpu, g_context); | 
|  | g_context->gva_to_gpa = paging64_gva_to_gpa_nested; | 
|  | } else if (is_pae(vcpu)) { | 
|  | g_context->nx = is_nx(vcpu); | 
|  | g_context->root_level = PT32E_ROOT_LEVEL; | 
|  | reset_rsvds_bits_mask(vcpu, g_context); | 
|  | g_context->gva_to_gpa = paging64_gva_to_gpa_nested; | 
|  | } else { | 
|  | g_context->nx = false; | 
|  | g_context->root_level = PT32_ROOT_LEVEL; | 
|  | reset_rsvds_bits_mask(vcpu, g_context); | 
|  | g_context->gva_to_gpa = paging32_gva_to_gpa_nested; | 
|  | } | 
|  |  | 
|  | update_permission_bitmask(vcpu, g_context, false); | 
|  | update_pkru_bitmask(vcpu, g_context, false); | 
|  | update_last_nonleaf_level(vcpu, g_context); | 
|  | } | 
|  |  | 
|  | void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots) | 
|  | { | 
|  | if (reset_roots) { | 
|  | uint i; | 
|  |  | 
|  | vcpu->arch.mmu->root_hpa = INVALID_PAGE; | 
|  |  | 
|  | for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) | 
|  | vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID; | 
|  | } | 
|  |  | 
|  | if (mmu_is_nested(vcpu)) | 
|  | init_kvm_nested_mmu(vcpu); | 
|  | else if (tdp_enabled) | 
|  | init_kvm_tdp_mmu(vcpu); | 
|  | else | 
|  | init_kvm_softmmu(vcpu); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_init_mmu); | 
|  |  | 
|  | static union kvm_mmu_page_role | 
|  | kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | union kvm_mmu_role role; | 
|  |  | 
|  | if (tdp_enabled) | 
|  | role = kvm_calc_tdp_mmu_root_page_role(vcpu, true); | 
|  | else | 
|  | role = kvm_calc_shadow_mmu_root_page_role(vcpu, true); | 
|  |  | 
|  | return role.base; | 
|  | } | 
|  |  | 
|  | void kvm_mmu_reset_context(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | kvm_mmu_unload(vcpu); | 
|  | kvm_init_mmu(vcpu, true); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_mmu_reset_context); | 
|  |  | 
|  | int kvm_mmu_load(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | int r; | 
|  |  | 
|  | r = mmu_topup_memory_caches(vcpu); | 
|  | if (r) | 
|  | goto out; | 
|  | r = mmu_alloc_roots(vcpu); | 
|  | kvm_mmu_sync_roots(vcpu); | 
|  | if (r) | 
|  | goto out; | 
|  | kvm_mmu_load_cr3(vcpu); | 
|  | kvm_x86_ops->tlb_flush(vcpu, true); | 
|  | out: | 
|  | return r; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_mmu_load); | 
|  |  | 
|  | void kvm_mmu_unload(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL); | 
|  | WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa)); | 
|  | kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL); | 
|  | WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa)); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_mmu_unload); | 
|  |  | 
|  | static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu, | 
|  | struct kvm_mmu_page *sp, u64 *spte, | 
|  | const void *new) | 
|  | { | 
|  | if (sp->role.level != PT_PAGE_TABLE_LEVEL) { | 
|  | ++vcpu->kvm->stat.mmu_pde_zapped; | 
|  | return; | 
|  | } | 
|  |  | 
|  | ++vcpu->kvm->stat.mmu_pte_updated; | 
|  | vcpu->arch.mmu->update_pte(vcpu, sp, spte, new); | 
|  | } | 
|  |  | 
|  | static bool need_remote_flush(u64 old, u64 new) | 
|  | { | 
|  | if (!is_shadow_present_pte(old)) | 
|  | return false; | 
|  | if (!is_shadow_present_pte(new)) | 
|  | return true; | 
|  | if ((old ^ new) & PT64_BASE_ADDR_MASK) | 
|  | return true; | 
|  | old ^= shadow_nx_mask; | 
|  | new ^= shadow_nx_mask; | 
|  | return (old & ~new & PT64_PERM_MASK) != 0; | 
|  | } | 
|  |  | 
|  | static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa, | 
|  | int *bytes) | 
|  | { | 
|  | u64 gentry = 0; | 
|  | int r; | 
|  |  | 
|  | /* | 
|  | * Assume that the pte write on a page table of the same type | 
|  | * as the current vcpu paging mode since we update the sptes only | 
|  | * when they have the same mode. | 
|  | */ | 
|  | if (is_pae(vcpu) && *bytes == 4) { | 
|  | /* Handle a 32-bit guest writing two halves of a 64-bit gpte */ | 
|  | *gpa &= ~(gpa_t)7; | 
|  | *bytes = 8; | 
|  | } | 
|  |  | 
|  | if (*bytes == 4 || *bytes == 8) { | 
|  | r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes); | 
|  | if (r) | 
|  | gentry = 0; | 
|  | } | 
|  |  | 
|  | return gentry; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we're seeing too many writes to a page, it may no longer be a page table, | 
|  | * or we may be forking, in which case it is better to unmap the page. | 
|  | */ | 
|  | static bool detect_write_flooding(struct kvm_mmu_page *sp) | 
|  | { | 
|  | /* | 
|  | * Skip write-flooding detected for the sp whose level is 1, because | 
|  | * it can become unsync, then the guest page is not write-protected. | 
|  | */ | 
|  | if (sp->role.level == PT_PAGE_TABLE_LEVEL) | 
|  | return false; | 
|  |  | 
|  | atomic_inc(&sp->write_flooding_count); | 
|  | return atomic_read(&sp->write_flooding_count) >= 3; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Misaligned accesses are too much trouble to fix up; also, they usually | 
|  | * indicate a page is not used as a page table. | 
|  | */ | 
|  | static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa, | 
|  | int bytes) | 
|  | { | 
|  | unsigned offset, pte_size, misaligned; | 
|  |  | 
|  | pgprintk("misaligned: gpa %llx bytes %d role %x\n", | 
|  | gpa, bytes, sp->role.word); | 
|  |  | 
|  | offset = offset_in_page(gpa); | 
|  | pte_size = sp->role.cr4_pae ? 8 : 4; | 
|  |  | 
|  | /* | 
|  | * Sometimes, the OS only writes the last one bytes to update status | 
|  | * bits, for example, in linux, andb instruction is used in clear_bit(). | 
|  | */ | 
|  | if (!(offset & (pte_size - 1)) && bytes == 1) | 
|  | return false; | 
|  |  | 
|  | misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1); | 
|  | misaligned |= bytes < 4; | 
|  |  | 
|  | return misaligned; | 
|  | } | 
|  |  | 
|  | static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte) | 
|  | { | 
|  | unsigned page_offset, quadrant; | 
|  | u64 *spte; | 
|  | int level; | 
|  |  | 
|  | page_offset = offset_in_page(gpa); | 
|  | level = sp->role.level; | 
|  | *nspte = 1; | 
|  | if (!sp->role.cr4_pae) { | 
|  | page_offset <<= 1;	/* 32->64 */ | 
|  | /* | 
|  | * A 32-bit pde maps 4MB while the shadow pdes map | 
|  | * only 2MB.  So we need to double the offset again | 
|  | * and zap two pdes instead of one. | 
|  | */ | 
|  | if (level == PT32_ROOT_LEVEL) { | 
|  | page_offset &= ~7; /* kill rounding error */ | 
|  | page_offset <<= 1; | 
|  | *nspte = 2; | 
|  | } | 
|  | quadrant = page_offset >> PAGE_SHIFT; | 
|  | page_offset &= ~PAGE_MASK; | 
|  | if (quadrant != sp->role.quadrant) | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | spte = &sp->spt[page_offset / sizeof(*spte)]; | 
|  | return spte; | 
|  | } | 
|  |  | 
|  | static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa, | 
|  | const u8 *new, int bytes, | 
|  | struct kvm_page_track_notifier_node *node) | 
|  | { | 
|  | gfn_t gfn = gpa >> PAGE_SHIFT; | 
|  | struct kvm_mmu_page *sp; | 
|  | LIST_HEAD(invalid_list); | 
|  | u64 entry, gentry, *spte; | 
|  | int npte; | 
|  | bool remote_flush, local_flush; | 
|  |  | 
|  | /* | 
|  | * If we don't have indirect shadow pages, it means no page is | 
|  | * write-protected, so we can exit simply. | 
|  | */ | 
|  | if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages)) | 
|  | return; | 
|  |  | 
|  | remote_flush = local_flush = false; | 
|  |  | 
|  | pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes); | 
|  |  | 
|  | /* | 
|  | * No need to care whether allocation memory is successful | 
|  | * or not since pte prefetch is skiped if it does not have | 
|  | * enough objects in the cache. | 
|  | */ | 
|  | mmu_topup_memory_caches(vcpu); | 
|  |  | 
|  | spin_lock(&vcpu->kvm->mmu_lock); | 
|  |  | 
|  | gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes); | 
|  |  | 
|  | ++vcpu->kvm->stat.mmu_pte_write; | 
|  | kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE); | 
|  |  | 
|  | for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) { | 
|  | if (detect_write_misaligned(sp, gpa, bytes) || | 
|  | detect_write_flooding(sp)) { | 
|  | kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list); | 
|  | ++vcpu->kvm->stat.mmu_flooded; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | spte = get_written_sptes(sp, gpa, &npte); | 
|  | if (!spte) | 
|  | continue; | 
|  |  | 
|  | local_flush = true; | 
|  | while (npte--) { | 
|  | u32 base_role = vcpu->arch.mmu->mmu_role.base.word; | 
|  |  | 
|  | entry = *spte; | 
|  | mmu_page_zap_pte(vcpu->kvm, sp, spte); | 
|  | if (gentry && | 
|  | !((sp->role.word ^ base_role) | 
|  | & mmu_base_role_mask.word) && rmap_can_add(vcpu)) | 
|  | mmu_pte_write_new_pte(vcpu, sp, spte, &gentry); | 
|  | if (need_remote_flush(entry, *spte)) | 
|  | remote_flush = true; | 
|  | ++spte; | 
|  | } | 
|  | } | 
|  | kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush); | 
|  | kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE); | 
|  | spin_unlock(&vcpu->kvm->mmu_lock); | 
|  | } | 
|  |  | 
|  | int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva) | 
|  | { | 
|  | gpa_t gpa; | 
|  | int r; | 
|  |  | 
|  | if (vcpu->arch.mmu->direct_map) | 
|  | return 0; | 
|  |  | 
|  | gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL); | 
|  |  | 
|  | r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT); | 
|  |  | 
|  | return r; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt); | 
|  |  | 
|  | static int make_mmu_pages_available(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | LIST_HEAD(invalid_list); | 
|  |  | 
|  | if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES)) | 
|  | return 0; | 
|  |  | 
|  | while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) { | 
|  | if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list)) | 
|  | break; | 
|  |  | 
|  | ++vcpu->kvm->stat.mmu_recycled; | 
|  | } | 
|  | kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list); | 
|  |  | 
|  | if (!kvm_mmu_available_pages(vcpu->kvm)) | 
|  | return -ENOSPC; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u64 error_code, | 
|  | void *insn, int insn_len) | 
|  | { | 
|  | int r, emulation_type = 0; | 
|  | enum emulation_result er; | 
|  | bool direct = vcpu->arch.mmu->direct_map; | 
|  |  | 
|  | /* With shadow page tables, fault_address contains a GVA or nGPA.  */ | 
|  | if (vcpu->arch.mmu->direct_map) { | 
|  | vcpu->arch.gpa_available = true; | 
|  | vcpu->arch.gpa_val = cr2; | 
|  | } | 
|  |  | 
|  | r = RET_PF_INVALID; | 
|  | if (unlikely(error_code & PFERR_RSVD_MASK)) { | 
|  | r = handle_mmio_page_fault(vcpu, cr2, direct); | 
|  | if (r == RET_PF_EMULATE) | 
|  | goto emulate; | 
|  | } | 
|  |  | 
|  | if (r == RET_PF_INVALID) { | 
|  | r = vcpu->arch.mmu->page_fault(vcpu, cr2, | 
|  | lower_32_bits(error_code), | 
|  | false); | 
|  | WARN_ON(r == RET_PF_INVALID); | 
|  | } | 
|  |  | 
|  | if (r == RET_PF_RETRY) | 
|  | return 1; | 
|  | if (r < 0) | 
|  | return r; | 
|  |  | 
|  | /* | 
|  | * Before emulating the instruction, check if the error code | 
|  | * was due to a RO violation while translating the guest page. | 
|  | * This can occur when using nested virtualization with nested | 
|  | * paging in both guests. If true, we simply unprotect the page | 
|  | * and resume the guest. | 
|  | */ | 
|  | if (vcpu->arch.mmu->direct_map && | 
|  | (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) { | 
|  | kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2)); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still | 
|  | * optimistically try to just unprotect the page and let the processor | 
|  | * re-execute the instruction that caused the page fault.  Do not allow | 
|  | * retrying MMIO emulation, as it's not only pointless but could also | 
|  | * cause us to enter an infinite loop because the processor will keep | 
|  | * faulting on the non-existent MMIO address.  Retrying an instruction | 
|  | * from a nested guest is also pointless and dangerous as we are only | 
|  | * explicitly shadowing L1's page tables, i.e. unprotecting something | 
|  | * for L1 isn't going to magically fix whatever issue cause L2 to fail. | 
|  | */ | 
|  | if (!mmio_info_in_cache(vcpu, cr2, direct) && !is_guest_mode(vcpu)) | 
|  | emulation_type = EMULTYPE_ALLOW_RETRY; | 
|  | emulate: | 
|  | /* | 
|  | * On AMD platforms, under certain conditions insn_len may be zero on #NPF. | 
|  | * This can happen if a guest gets a page-fault on data access but the HW | 
|  | * table walker is not able to read the instruction page (e.g instruction | 
|  | * page is not present in memory). In those cases we simply restart the | 
|  | * guest. | 
|  | */ | 
|  | if (unlikely(insn && !insn_len)) | 
|  | return 1; | 
|  |  | 
|  | er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len); | 
|  |  | 
|  | switch (er) { | 
|  | case EMULATE_DONE: | 
|  | return 1; | 
|  | case EMULATE_USER_EXIT: | 
|  | ++vcpu->stat.mmio_exits; | 
|  | /* fall through */ | 
|  | case EMULATE_FAIL: | 
|  | return 0; | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_mmu_page_fault); | 
|  |  | 
|  | void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva) | 
|  | { | 
|  | struct kvm_mmu *mmu = vcpu->arch.mmu; | 
|  | int i; | 
|  |  | 
|  | /* INVLPG on a * non-canonical address is a NOP according to the SDM.  */ | 
|  | if (is_noncanonical_address(gva, vcpu)) | 
|  | return; | 
|  |  | 
|  | mmu->invlpg(vcpu, gva, mmu->root_hpa); | 
|  |  | 
|  | /* | 
|  | * INVLPG is required to invalidate any global mappings for the VA, | 
|  | * irrespective of PCID. Since it would take us roughly similar amount | 
|  | * of work to determine whether any of the prev_root mappings of the VA | 
|  | * is marked global, or to just sync it blindly, so we might as well | 
|  | * just always sync it. | 
|  | * | 
|  | * Mappings not reachable via the current cr3 or the prev_roots will be | 
|  | * synced when switching to that cr3, so nothing needs to be done here | 
|  | * for them. | 
|  | */ | 
|  | for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) | 
|  | if (VALID_PAGE(mmu->prev_roots[i].hpa)) | 
|  | mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa); | 
|  |  | 
|  | kvm_x86_ops->tlb_flush_gva(vcpu, gva); | 
|  | ++vcpu->stat.invlpg; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_mmu_invlpg); | 
|  |  | 
|  | void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid) | 
|  | { | 
|  | struct kvm_mmu *mmu = vcpu->arch.mmu; | 
|  | bool tlb_flush = false; | 
|  | uint i; | 
|  |  | 
|  | if (pcid == kvm_get_active_pcid(vcpu)) { | 
|  | mmu->invlpg(vcpu, gva, mmu->root_hpa); | 
|  | tlb_flush = true; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { | 
|  | if (VALID_PAGE(mmu->prev_roots[i].hpa) && | 
|  | pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].cr3)) { | 
|  | mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa); | 
|  | tlb_flush = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (tlb_flush) | 
|  | kvm_x86_ops->tlb_flush_gva(vcpu, gva); | 
|  |  | 
|  | ++vcpu->stat.invlpg; | 
|  |  | 
|  | /* | 
|  | * Mappings not reachable via the current cr3 or the prev_roots will be | 
|  | * synced when switching to that cr3, so nothing needs to be done here | 
|  | * for them. | 
|  | */ | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva); | 
|  |  | 
|  | void kvm_enable_tdp(void) | 
|  | { | 
|  | tdp_enabled = true; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_enable_tdp); | 
|  |  | 
|  | void kvm_disable_tdp(void) | 
|  | { | 
|  | tdp_enabled = false; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_disable_tdp); | 
|  |  | 
|  | static void free_mmu_pages(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | free_page((unsigned long)vcpu->arch.mmu->pae_root); | 
|  | free_page((unsigned long)vcpu->arch.mmu->lm_root); | 
|  | } | 
|  |  | 
|  | static int alloc_mmu_pages(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct page *page; | 
|  | int i; | 
|  |  | 
|  | if (tdp_enabled) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64. | 
|  | * Therefore we need to allocate shadow page tables in the first | 
|  | * 4GB of memory, which happens to fit the DMA32 zone. | 
|  | */ | 
|  | page = alloc_page(GFP_KERNEL | __GFP_DMA32); | 
|  | if (!page) | 
|  | return -ENOMEM; | 
|  |  | 
|  | vcpu->arch.mmu->pae_root = page_address(page); | 
|  | for (i = 0; i < 4; ++i) | 
|  | vcpu->arch.mmu->pae_root[i] = INVALID_PAGE; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int kvm_mmu_create(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | uint i; | 
|  |  | 
|  | vcpu->arch.mmu = &vcpu->arch.root_mmu; | 
|  | vcpu->arch.walk_mmu = &vcpu->arch.root_mmu; | 
|  |  | 
|  | vcpu->arch.root_mmu.root_hpa = INVALID_PAGE; | 
|  | vcpu->arch.root_mmu.translate_gpa = translate_gpa; | 
|  | for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) | 
|  | vcpu->arch.root_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID; | 
|  |  | 
|  | vcpu->arch.guest_mmu.root_hpa = INVALID_PAGE; | 
|  | vcpu->arch.guest_mmu.translate_gpa = translate_gpa; | 
|  | for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) | 
|  | vcpu->arch.guest_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID; | 
|  |  | 
|  | vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa; | 
|  | return alloc_mmu_pages(vcpu); | 
|  | } | 
|  |  | 
|  | static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm, | 
|  | struct kvm_memory_slot *slot, | 
|  | struct kvm_page_track_notifier_node *node) | 
|  | { | 
|  | kvm_mmu_invalidate_zap_all_pages(kvm); | 
|  | } | 
|  |  | 
|  | void kvm_mmu_init_vm(struct kvm *kvm) | 
|  | { | 
|  | struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker; | 
|  |  | 
|  | node->track_write = kvm_mmu_pte_write; | 
|  | node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot; | 
|  | kvm_page_track_register_notifier(kvm, node); | 
|  | } | 
|  |  | 
|  | void kvm_mmu_uninit_vm(struct kvm *kvm) | 
|  | { | 
|  | struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker; | 
|  |  | 
|  | kvm_page_track_unregister_notifier(kvm, node); | 
|  | } | 
|  |  | 
|  | /* The return value indicates if tlb flush on all vcpus is needed. */ | 
|  | typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head); | 
|  |  | 
|  | /* The caller should hold mmu-lock before calling this function. */ | 
|  | static __always_inline bool | 
|  | slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot, | 
|  | slot_level_handler fn, int start_level, int end_level, | 
|  | gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb) | 
|  | { | 
|  | struct slot_rmap_walk_iterator iterator; | 
|  | bool flush = false; | 
|  |  | 
|  | for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn, | 
|  | end_gfn, &iterator) { | 
|  | if (iterator.rmap) | 
|  | flush |= fn(kvm, iterator.rmap); | 
|  |  | 
|  | if (need_resched() || spin_needbreak(&kvm->mmu_lock)) { | 
|  | if (flush && lock_flush_tlb) { | 
|  | kvm_flush_remote_tlbs(kvm); | 
|  | flush = false; | 
|  | } | 
|  | cond_resched_lock(&kvm->mmu_lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (flush && lock_flush_tlb) { | 
|  | kvm_flush_remote_tlbs(kvm); | 
|  | flush = false; | 
|  | } | 
|  |  | 
|  | return flush; | 
|  | } | 
|  |  | 
|  | static __always_inline bool | 
|  | slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot, | 
|  | slot_level_handler fn, int start_level, int end_level, | 
|  | bool lock_flush_tlb) | 
|  | { | 
|  | return slot_handle_level_range(kvm, memslot, fn, start_level, | 
|  | end_level, memslot->base_gfn, | 
|  | memslot->base_gfn + memslot->npages - 1, | 
|  | lock_flush_tlb); | 
|  | } | 
|  |  | 
|  | static __always_inline bool | 
|  | slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot, | 
|  | slot_level_handler fn, bool lock_flush_tlb) | 
|  | { | 
|  | return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL, | 
|  | PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb); | 
|  | } | 
|  |  | 
|  | static __always_inline bool | 
|  | slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot, | 
|  | slot_level_handler fn, bool lock_flush_tlb) | 
|  | { | 
|  | return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1, | 
|  | PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb); | 
|  | } | 
|  |  | 
|  | static __always_inline bool | 
|  | slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot, | 
|  | slot_level_handler fn, bool lock_flush_tlb) | 
|  | { | 
|  | return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL, | 
|  | PT_PAGE_TABLE_LEVEL, lock_flush_tlb); | 
|  | } | 
|  |  | 
|  | void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end) | 
|  | { | 
|  | struct kvm_memslots *slots; | 
|  | struct kvm_memory_slot *memslot; | 
|  | bool flush_tlb = true; | 
|  | bool flush = false; | 
|  | int i; | 
|  |  | 
|  | if (kvm_available_flush_tlb_with_range()) | 
|  | flush_tlb = false; | 
|  |  | 
|  | spin_lock(&kvm->mmu_lock); | 
|  | for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { | 
|  | slots = __kvm_memslots(kvm, i); | 
|  | kvm_for_each_memslot(memslot, slots) { | 
|  | gfn_t start, end; | 
|  |  | 
|  | start = max(gfn_start, memslot->base_gfn); | 
|  | end = min(gfn_end, memslot->base_gfn + memslot->npages); | 
|  | if (start >= end) | 
|  | continue; | 
|  |  | 
|  | flush |= slot_handle_level_range(kvm, memslot, | 
|  | kvm_zap_rmapp, PT_PAGE_TABLE_LEVEL, | 
|  | PT_MAX_HUGEPAGE_LEVEL, start, | 
|  | end - 1, flush_tlb); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (flush) | 
|  | kvm_flush_remote_tlbs_with_address(kvm, gfn_start, | 
|  | gfn_end - gfn_start + 1); | 
|  |  | 
|  | spin_unlock(&kvm->mmu_lock); | 
|  | } | 
|  |  | 
|  | static bool slot_rmap_write_protect(struct kvm *kvm, | 
|  | struct kvm_rmap_head *rmap_head) | 
|  | { | 
|  | return __rmap_write_protect(kvm, rmap_head, false); | 
|  | } | 
|  |  | 
|  | void kvm_mmu_slot_remove_write_access(struct kvm *kvm, | 
|  | struct kvm_memory_slot *memslot) | 
|  | { | 
|  | bool flush; | 
|  |  | 
|  | spin_lock(&kvm->mmu_lock); | 
|  | flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect, | 
|  | false); | 
|  | spin_unlock(&kvm->mmu_lock); | 
|  |  | 
|  | /* | 
|  | * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log() | 
|  | * which do tlb flush out of mmu-lock should be serialized by | 
|  | * kvm->slots_lock otherwise tlb flush would be missed. | 
|  | */ | 
|  | lockdep_assert_held(&kvm->slots_lock); | 
|  |  | 
|  | /* | 
|  | * We can flush all the TLBs out of the mmu lock without TLB | 
|  | * corruption since we just change the spte from writable to | 
|  | * readonly so that we only need to care the case of changing | 
|  | * spte from present to present (changing the spte from present | 
|  | * to nonpresent will flush all the TLBs immediately), in other | 
|  | * words, the only case we care is mmu_spte_update() where we | 
|  | * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE | 
|  | * instead of PT_WRITABLE_MASK, that means it does not depend | 
|  | * on PT_WRITABLE_MASK anymore. | 
|  | */ | 
|  | if (flush) | 
|  | kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn, | 
|  | memslot->npages); | 
|  | } | 
|  |  | 
|  | static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm, | 
|  | struct kvm_rmap_head *rmap_head) | 
|  | { | 
|  | u64 *sptep; | 
|  | struct rmap_iterator iter; | 
|  | int need_tlb_flush = 0; | 
|  | kvm_pfn_t pfn; | 
|  | struct kvm_mmu_page *sp; | 
|  |  | 
|  | restart: | 
|  | for_each_rmap_spte(rmap_head, &iter, sptep) { | 
|  | sp = page_header(__pa(sptep)); | 
|  | pfn = spte_to_pfn(*sptep); | 
|  |  | 
|  | /* | 
|  | * We cannot do huge page mapping for indirect shadow pages, | 
|  | * which are found on the last rmap (level = 1) when not using | 
|  | * tdp; such shadow pages are synced with the page table in | 
|  | * the guest, and the guest page table is using 4K page size | 
|  | * mapping if the indirect sp has level = 1. | 
|  | */ | 
|  | if (sp->role.direct && | 
|  | !kvm_is_reserved_pfn(pfn) && | 
|  | PageTransCompoundMap(pfn_to_page(pfn))) { | 
|  | pte_list_remove(rmap_head, sptep); | 
|  |  | 
|  | if (kvm_available_flush_tlb_with_range()) | 
|  | kvm_flush_remote_tlbs_with_address(kvm, sp->gfn, | 
|  | KVM_PAGES_PER_HPAGE(sp->role.level)); | 
|  | else | 
|  | need_tlb_flush = 1; | 
|  |  | 
|  | goto restart; | 
|  | } | 
|  | } | 
|  |  | 
|  | return need_tlb_flush; | 
|  | } | 
|  |  | 
|  | void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm, | 
|  | const struct kvm_memory_slot *memslot) | 
|  | { | 
|  | /* FIXME: const-ify all uses of struct kvm_memory_slot.  */ | 
|  | spin_lock(&kvm->mmu_lock); | 
|  | slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot, | 
|  | kvm_mmu_zap_collapsible_spte, true); | 
|  | spin_unlock(&kvm->mmu_lock); | 
|  | } | 
|  |  | 
|  | void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm, | 
|  | struct kvm_memory_slot *memslot) | 
|  | { | 
|  | bool flush; | 
|  |  | 
|  | spin_lock(&kvm->mmu_lock); | 
|  | flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false); | 
|  | spin_unlock(&kvm->mmu_lock); | 
|  |  | 
|  | lockdep_assert_held(&kvm->slots_lock); | 
|  |  | 
|  | /* | 
|  | * It's also safe to flush TLBs out of mmu lock here as currently this | 
|  | * function is only used for dirty logging, in which case flushing TLB | 
|  | * out of mmu lock also guarantees no dirty pages will be lost in | 
|  | * dirty_bitmap. | 
|  | */ | 
|  | if (flush) | 
|  | kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn, | 
|  | memslot->npages); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty); | 
|  |  | 
|  | void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm, | 
|  | struct kvm_memory_slot *memslot) | 
|  | { | 
|  | bool flush; | 
|  |  | 
|  | spin_lock(&kvm->mmu_lock); | 
|  | flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect, | 
|  | false); | 
|  | spin_unlock(&kvm->mmu_lock); | 
|  |  | 
|  | /* see kvm_mmu_slot_remove_write_access */ | 
|  | lockdep_assert_held(&kvm->slots_lock); | 
|  |  | 
|  | if (flush) | 
|  | kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn, | 
|  | memslot->npages); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access); | 
|  |  | 
|  | void kvm_mmu_slot_set_dirty(struct kvm *kvm, | 
|  | struct kvm_memory_slot *memslot) | 
|  | { | 
|  | bool flush; | 
|  |  | 
|  | spin_lock(&kvm->mmu_lock); | 
|  | flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false); | 
|  | spin_unlock(&kvm->mmu_lock); | 
|  |  | 
|  | lockdep_assert_held(&kvm->slots_lock); | 
|  |  | 
|  | /* see kvm_mmu_slot_leaf_clear_dirty */ | 
|  | if (flush) | 
|  | kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn, | 
|  | memslot->npages); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty); | 
|  |  | 
|  | #define BATCH_ZAP_PAGES	10 | 
|  | static void kvm_zap_obsolete_pages(struct kvm *kvm) | 
|  | { | 
|  | struct kvm_mmu_page *sp, *node; | 
|  | int batch = 0; | 
|  |  | 
|  | restart: | 
|  | list_for_each_entry_safe_reverse(sp, node, | 
|  | &kvm->arch.active_mmu_pages, link) { | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * No obsolete page exists before new created page since | 
|  | * active_mmu_pages is the FIFO list. | 
|  | */ | 
|  | if (!is_obsolete_sp(kvm, sp)) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * Since we are reversely walking the list and the invalid | 
|  | * list will be moved to the head, skip the invalid page | 
|  | * can help us to avoid the infinity list walking. | 
|  | */ | 
|  | if (sp->role.invalid) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * Need not flush tlb since we only zap the sp with invalid | 
|  | * generation number. | 
|  | */ | 
|  | if (batch >= BATCH_ZAP_PAGES && | 
|  | cond_resched_lock(&kvm->mmu_lock)) { | 
|  | batch = 0; | 
|  | goto restart; | 
|  | } | 
|  |  | 
|  | ret = kvm_mmu_prepare_zap_page(kvm, sp, | 
|  | &kvm->arch.zapped_obsolete_pages); | 
|  | batch += ret; | 
|  |  | 
|  | if (ret) | 
|  | goto restart; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Should flush tlb before free page tables since lockless-walking | 
|  | * may use the pages. | 
|  | */ | 
|  | kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Fast invalidate all shadow pages and use lock-break technique | 
|  | * to zap obsolete pages. | 
|  | * | 
|  | * It's required when memslot is being deleted or VM is being | 
|  | * destroyed, in these cases, we should ensure that KVM MMU does | 
|  | * not use any resource of the being-deleted slot or all slots | 
|  | * after calling the function. | 
|  | */ | 
|  | void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm) | 
|  | { | 
|  | spin_lock(&kvm->mmu_lock); | 
|  | trace_kvm_mmu_invalidate_zap_all_pages(kvm); | 
|  | kvm->arch.mmu_valid_gen++; | 
|  |  | 
|  | /* | 
|  | * Notify all vcpus to reload its shadow page table | 
|  | * and flush TLB. Then all vcpus will switch to new | 
|  | * shadow page table with the new mmu_valid_gen. | 
|  | * | 
|  | * Note: we should do this under the protection of | 
|  | * mmu-lock, otherwise, vcpu would purge shadow page | 
|  | * but miss tlb flush. | 
|  | */ | 
|  | kvm_reload_remote_mmus(kvm); | 
|  |  | 
|  | kvm_zap_obsolete_pages(kvm); | 
|  | spin_unlock(&kvm->mmu_lock); | 
|  | } | 
|  |  | 
|  | static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm) | 
|  | { | 
|  | return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages)); | 
|  | } | 
|  |  | 
|  | void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots) | 
|  | { | 
|  | /* | 
|  | * The very rare case: if the generation-number is round, | 
|  | * zap all shadow pages. | 
|  | */ | 
|  | if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) { | 
|  | kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n"); | 
|  | kvm_mmu_invalidate_zap_all_pages(kvm); | 
|  | } | 
|  | } | 
|  |  | 
|  | static unsigned long | 
|  | mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) | 
|  | { | 
|  | struct kvm *kvm; | 
|  | int nr_to_scan = sc->nr_to_scan; | 
|  | unsigned long freed = 0; | 
|  |  | 
|  | spin_lock(&kvm_lock); | 
|  |  | 
|  | list_for_each_entry(kvm, &vm_list, vm_list) { | 
|  | int idx; | 
|  | LIST_HEAD(invalid_list); | 
|  |  | 
|  | /* | 
|  | * Never scan more than sc->nr_to_scan VM instances. | 
|  | * Will not hit this condition practically since we do not try | 
|  | * to shrink more than one VM and it is very unlikely to see | 
|  | * !n_used_mmu_pages so many times. | 
|  | */ | 
|  | if (!nr_to_scan--) | 
|  | break; | 
|  | /* | 
|  | * n_used_mmu_pages is accessed without holding kvm->mmu_lock | 
|  | * here. We may skip a VM instance errorneosly, but we do not | 
|  | * want to shrink a VM that only started to populate its MMU | 
|  | * anyway. | 
|  | */ | 
|  | if (!kvm->arch.n_used_mmu_pages && | 
|  | !kvm_has_zapped_obsolete_pages(kvm)) | 
|  | continue; | 
|  |  | 
|  | idx = srcu_read_lock(&kvm->srcu); | 
|  | spin_lock(&kvm->mmu_lock); | 
|  |  | 
|  | if (kvm_has_zapped_obsolete_pages(kvm)) { | 
|  | kvm_mmu_commit_zap_page(kvm, | 
|  | &kvm->arch.zapped_obsolete_pages); | 
|  | goto unlock; | 
|  | } | 
|  |  | 
|  | if (prepare_zap_oldest_mmu_page(kvm, &invalid_list)) | 
|  | freed++; | 
|  | kvm_mmu_commit_zap_page(kvm, &invalid_list); | 
|  |  | 
|  | unlock: | 
|  | spin_unlock(&kvm->mmu_lock); | 
|  | srcu_read_unlock(&kvm->srcu, idx); | 
|  |  | 
|  | /* | 
|  | * unfair on small ones | 
|  | * per-vm shrinkers cry out | 
|  | * sadness comes quickly | 
|  | */ | 
|  | list_move_tail(&kvm->vm_list, &vm_list); | 
|  | break; | 
|  | } | 
|  |  | 
|  | spin_unlock(&kvm_lock); | 
|  | return freed; | 
|  | } | 
|  |  | 
|  | static unsigned long | 
|  | mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc) | 
|  | { | 
|  | return percpu_counter_read_positive(&kvm_total_used_mmu_pages); | 
|  | } | 
|  |  | 
|  | static struct shrinker mmu_shrinker = { | 
|  | .count_objects = mmu_shrink_count, | 
|  | .scan_objects = mmu_shrink_scan, | 
|  | .seeks = DEFAULT_SEEKS * 10, | 
|  | }; | 
|  |  | 
|  | static void mmu_destroy_caches(void) | 
|  | { | 
|  | kmem_cache_destroy(pte_list_desc_cache); | 
|  | kmem_cache_destroy(mmu_page_header_cache); | 
|  | } | 
|  |  | 
|  | int kvm_mmu_module_init(void) | 
|  | { | 
|  | int ret = -ENOMEM; | 
|  |  | 
|  | /* | 
|  | * MMU roles use union aliasing which is, generally speaking, an | 
|  | * undefined behavior. However, we supposedly know how compilers behave | 
|  | * and the current status quo is unlikely to change. Guardians below are | 
|  | * supposed to let us know if the assumption becomes false. | 
|  | */ | 
|  | BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32)); | 
|  | BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32)); | 
|  | BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64)); | 
|  |  | 
|  | kvm_mmu_reset_all_pte_masks(); | 
|  |  | 
|  | pte_list_desc_cache = kmem_cache_create("pte_list_desc", | 
|  | sizeof(struct pte_list_desc), | 
|  | 0, SLAB_ACCOUNT, NULL); | 
|  | if (!pte_list_desc_cache) | 
|  | goto out; | 
|  |  | 
|  | mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header", | 
|  | sizeof(struct kvm_mmu_page), | 
|  | 0, SLAB_ACCOUNT, NULL); | 
|  | if (!mmu_page_header_cache) | 
|  | goto out; | 
|  |  | 
|  | if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL)) | 
|  | goto out; | 
|  |  | 
|  | ret = register_shrinker(&mmu_shrinker); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out: | 
|  | mmu_destroy_caches(); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Calculate mmu pages needed for kvm. | 
|  | */ | 
|  | unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm) | 
|  | { | 
|  | unsigned int nr_mmu_pages; | 
|  | unsigned int  nr_pages = 0; | 
|  | struct kvm_memslots *slots; | 
|  | struct kvm_memory_slot *memslot; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { | 
|  | slots = __kvm_memslots(kvm, i); | 
|  |  | 
|  | kvm_for_each_memslot(memslot, slots) | 
|  | nr_pages += memslot->npages; | 
|  | } | 
|  |  | 
|  | nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000; | 
|  | nr_mmu_pages = max(nr_mmu_pages, | 
|  | (unsigned int) KVM_MIN_ALLOC_MMU_PAGES); | 
|  |  | 
|  | return nr_mmu_pages; | 
|  | } | 
|  |  | 
|  | void kvm_mmu_destroy(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | kvm_mmu_unload(vcpu); | 
|  | free_mmu_pages(vcpu); | 
|  | mmu_free_memory_caches(vcpu); | 
|  | } | 
|  |  | 
|  | void kvm_mmu_module_exit(void) | 
|  | { | 
|  | mmu_destroy_caches(); | 
|  | percpu_counter_destroy(&kvm_total_used_mmu_pages); | 
|  | unregister_shrinker(&mmu_shrinker); | 
|  | mmu_audit_disable(); | 
|  | } |