|  | /* | 
|  | * Copyright (C) 2015 Red Hat. All rights reserved. | 
|  | * | 
|  | * This file is released under the GPL. | 
|  | */ | 
|  |  | 
|  | #include "dm-cache-policy.h" | 
|  | #include "dm-cache-policy-internal.h" | 
|  | #include "dm.h" | 
|  |  | 
|  | #include <linux/hash.h> | 
|  | #include <linux/jiffies.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/mutex.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <linux/math64.h> | 
|  |  | 
|  | #define DM_MSG_PREFIX "cache-policy-smq" | 
|  |  | 
|  | /*----------------------------------------------------------------*/ | 
|  |  | 
|  | /* | 
|  | * Safe division functions that return zero on divide by zero. | 
|  | */ | 
|  | static unsigned safe_div(unsigned n, unsigned d) | 
|  | { | 
|  | return d ? n / d : 0u; | 
|  | } | 
|  |  | 
|  | static unsigned safe_mod(unsigned n, unsigned d) | 
|  | { | 
|  | return d ? n % d : 0u; | 
|  | } | 
|  |  | 
|  | /*----------------------------------------------------------------*/ | 
|  |  | 
|  | struct entry { | 
|  | unsigned hash_next:28; | 
|  | unsigned prev:28; | 
|  | unsigned next:28; | 
|  | unsigned level:7; | 
|  | bool dirty:1; | 
|  | bool allocated:1; | 
|  | bool sentinel:1; | 
|  |  | 
|  | dm_oblock_t oblock; | 
|  | }; | 
|  |  | 
|  | /*----------------------------------------------------------------*/ | 
|  |  | 
|  | #define INDEXER_NULL ((1u << 28u) - 1u) | 
|  |  | 
|  | /* | 
|  | * An entry_space manages a set of entries that we use for the queues. | 
|  | * The clean and dirty queues share entries, so this object is separate | 
|  | * from the queue itself. | 
|  | */ | 
|  | struct entry_space { | 
|  | struct entry *begin; | 
|  | struct entry *end; | 
|  | }; | 
|  |  | 
|  | static int space_init(struct entry_space *es, unsigned nr_entries) | 
|  | { | 
|  | if (!nr_entries) { | 
|  | es->begin = es->end = NULL; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | es->begin = vzalloc(sizeof(struct entry) * nr_entries); | 
|  | if (!es->begin) | 
|  | return -ENOMEM; | 
|  |  | 
|  | es->end = es->begin + nr_entries; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void space_exit(struct entry_space *es) | 
|  | { | 
|  | vfree(es->begin); | 
|  | } | 
|  |  | 
|  | static struct entry *__get_entry(struct entry_space *es, unsigned block) | 
|  | { | 
|  | struct entry *e; | 
|  |  | 
|  | e = es->begin + block; | 
|  | BUG_ON(e >= es->end); | 
|  |  | 
|  | return e; | 
|  | } | 
|  |  | 
|  | static unsigned to_index(struct entry_space *es, struct entry *e) | 
|  | { | 
|  | BUG_ON(e < es->begin || e >= es->end); | 
|  | return e - es->begin; | 
|  | } | 
|  |  | 
|  | static struct entry *to_entry(struct entry_space *es, unsigned block) | 
|  | { | 
|  | if (block == INDEXER_NULL) | 
|  | return NULL; | 
|  |  | 
|  | return __get_entry(es, block); | 
|  | } | 
|  |  | 
|  | /*----------------------------------------------------------------*/ | 
|  |  | 
|  | struct ilist { | 
|  | unsigned nr_elts;	/* excluding sentinel entries */ | 
|  | unsigned head, tail; | 
|  | }; | 
|  |  | 
|  | static void l_init(struct ilist *l) | 
|  | { | 
|  | l->nr_elts = 0; | 
|  | l->head = l->tail = INDEXER_NULL; | 
|  | } | 
|  |  | 
|  | static struct entry *l_head(struct entry_space *es, struct ilist *l) | 
|  | { | 
|  | return to_entry(es, l->head); | 
|  | } | 
|  |  | 
|  | static struct entry *l_tail(struct entry_space *es, struct ilist *l) | 
|  | { | 
|  | return to_entry(es, l->tail); | 
|  | } | 
|  |  | 
|  | static struct entry *l_next(struct entry_space *es, struct entry *e) | 
|  | { | 
|  | return to_entry(es, e->next); | 
|  | } | 
|  |  | 
|  | static struct entry *l_prev(struct entry_space *es, struct entry *e) | 
|  | { | 
|  | return to_entry(es, e->prev); | 
|  | } | 
|  |  | 
|  | static bool l_empty(struct ilist *l) | 
|  | { | 
|  | return l->head == INDEXER_NULL; | 
|  | } | 
|  |  | 
|  | static void l_add_head(struct entry_space *es, struct ilist *l, struct entry *e) | 
|  | { | 
|  | struct entry *head = l_head(es, l); | 
|  |  | 
|  | e->next = l->head; | 
|  | e->prev = INDEXER_NULL; | 
|  |  | 
|  | if (head) | 
|  | head->prev = l->head = to_index(es, e); | 
|  | else | 
|  | l->head = l->tail = to_index(es, e); | 
|  |  | 
|  | if (!e->sentinel) | 
|  | l->nr_elts++; | 
|  | } | 
|  |  | 
|  | static void l_add_tail(struct entry_space *es, struct ilist *l, struct entry *e) | 
|  | { | 
|  | struct entry *tail = l_tail(es, l); | 
|  |  | 
|  | e->next = INDEXER_NULL; | 
|  | e->prev = l->tail; | 
|  |  | 
|  | if (tail) | 
|  | tail->next = l->tail = to_index(es, e); | 
|  | else | 
|  | l->head = l->tail = to_index(es, e); | 
|  |  | 
|  | if (!e->sentinel) | 
|  | l->nr_elts++; | 
|  | } | 
|  |  | 
|  | static void l_add_before(struct entry_space *es, struct ilist *l, | 
|  | struct entry *old, struct entry *e) | 
|  | { | 
|  | struct entry *prev = l_prev(es, old); | 
|  |  | 
|  | if (!prev) | 
|  | l_add_head(es, l, e); | 
|  |  | 
|  | else { | 
|  | e->prev = old->prev; | 
|  | e->next = to_index(es, old); | 
|  | prev->next = old->prev = to_index(es, e); | 
|  |  | 
|  | if (!e->sentinel) | 
|  | l->nr_elts++; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void l_del(struct entry_space *es, struct ilist *l, struct entry *e) | 
|  | { | 
|  | struct entry *prev = l_prev(es, e); | 
|  | struct entry *next = l_next(es, e); | 
|  |  | 
|  | if (prev) | 
|  | prev->next = e->next; | 
|  | else | 
|  | l->head = e->next; | 
|  |  | 
|  | if (next) | 
|  | next->prev = e->prev; | 
|  | else | 
|  | l->tail = e->prev; | 
|  |  | 
|  | if (!e->sentinel) | 
|  | l->nr_elts--; | 
|  | } | 
|  |  | 
|  | static struct entry *l_pop_tail(struct entry_space *es, struct ilist *l) | 
|  | { | 
|  | struct entry *e; | 
|  |  | 
|  | for (e = l_tail(es, l); e; e = l_prev(es, e)) | 
|  | if (!e->sentinel) { | 
|  | l_del(es, l, e); | 
|  | return e; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /*----------------------------------------------------------------*/ | 
|  |  | 
|  | /* | 
|  | * The stochastic-multi-queue is a set of lru lists stacked into levels. | 
|  | * Entries are moved up levels when they are used, which loosely orders the | 
|  | * most accessed entries in the top levels and least in the bottom.  This | 
|  | * structure is *much* better than a single lru list. | 
|  | */ | 
|  | #define MAX_LEVELS 64u | 
|  |  | 
|  | struct queue { | 
|  | struct entry_space *es; | 
|  |  | 
|  | unsigned nr_elts; | 
|  | unsigned nr_levels; | 
|  | struct ilist qs[MAX_LEVELS]; | 
|  |  | 
|  | /* | 
|  | * We maintain a count of the number of entries we would like in each | 
|  | * level. | 
|  | */ | 
|  | unsigned last_target_nr_elts; | 
|  | unsigned nr_top_levels; | 
|  | unsigned nr_in_top_levels; | 
|  | unsigned target_count[MAX_LEVELS]; | 
|  | }; | 
|  |  | 
|  | static void q_init(struct queue *q, struct entry_space *es, unsigned nr_levels) | 
|  | { | 
|  | unsigned i; | 
|  |  | 
|  | q->es = es; | 
|  | q->nr_elts = 0; | 
|  | q->nr_levels = nr_levels; | 
|  |  | 
|  | for (i = 0; i < q->nr_levels; i++) { | 
|  | l_init(q->qs + i); | 
|  | q->target_count[i] = 0u; | 
|  | } | 
|  |  | 
|  | q->last_target_nr_elts = 0u; | 
|  | q->nr_top_levels = 0u; | 
|  | q->nr_in_top_levels = 0u; | 
|  | } | 
|  |  | 
|  | static unsigned q_size(struct queue *q) | 
|  | { | 
|  | return q->nr_elts; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Insert an entry to the back of the given level. | 
|  | */ | 
|  | static void q_push(struct queue *q, struct entry *e) | 
|  | { | 
|  | if (!e->sentinel) | 
|  | q->nr_elts++; | 
|  |  | 
|  | l_add_tail(q->es, q->qs + e->level, e); | 
|  | } | 
|  |  | 
|  | static void q_push_before(struct queue *q, struct entry *old, struct entry *e) | 
|  | { | 
|  | if (!e->sentinel) | 
|  | q->nr_elts++; | 
|  |  | 
|  | l_add_before(q->es, q->qs + e->level, old, e); | 
|  | } | 
|  |  | 
|  | static void q_del(struct queue *q, struct entry *e) | 
|  | { | 
|  | l_del(q->es, q->qs + e->level, e); | 
|  | if (!e->sentinel) | 
|  | q->nr_elts--; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return the oldest entry of the lowest populated level. | 
|  | */ | 
|  | static struct entry *q_peek(struct queue *q, unsigned max_level, bool can_cross_sentinel) | 
|  | { | 
|  | unsigned level; | 
|  | struct entry *e; | 
|  |  | 
|  | max_level = min(max_level, q->nr_levels); | 
|  |  | 
|  | for (level = 0; level < max_level; level++) | 
|  | for (e = l_head(q->es, q->qs + level); e; e = l_next(q->es, e)) { | 
|  | if (e->sentinel) { | 
|  | if (can_cross_sentinel) | 
|  | continue; | 
|  | else | 
|  | break; | 
|  | } | 
|  |  | 
|  | return e; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static struct entry *q_pop(struct queue *q) | 
|  | { | 
|  | struct entry *e = q_peek(q, q->nr_levels, true); | 
|  |  | 
|  | if (e) | 
|  | q_del(q, e); | 
|  |  | 
|  | return e; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Pops an entry from a level that is not past a sentinel. | 
|  | */ | 
|  | static struct entry *q_pop_old(struct queue *q, unsigned max_level) | 
|  | { | 
|  | struct entry *e = q_peek(q, max_level, false); | 
|  |  | 
|  | if (e) | 
|  | q_del(q, e); | 
|  |  | 
|  | return e; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function assumes there is a non-sentinel entry to pop.  It's only | 
|  | * used by redistribute, so we know this is true.  It also doesn't adjust | 
|  | * the q->nr_elts count. | 
|  | */ | 
|  | static struct entry *__redist_pop_from(struct queue *q, unsigned level) | 
|  | { | 
|  | struct entry *e; | 
|  |  | 
|  | for (; level < q->nr_levels; level++) | 
|  | for (e = l_head(q->es, q->qs + level); e; e = l_next(q->es, e)) | 
|  | if (!e->sentinel) { | 
|  | l_del(q->es, q->qs + e->level, e); | 
|  | return e; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void q_set_targets_subrange_(struct queue *q, unsigned nr_elts, unsigned lbegin, unsigned lend) | 
|  | { | 
|  | unsigned level, nr_levels, entries_per_level, remainder; | 
|  |  | 
|  | BUG_ON(lbegin > lend); | 
|  | BUG_ON(lend > q->nr_levels); | 
|  | nr_levels = lend - lbegin; | 
|  | entries_per_level = safe_div(nr_elts, nr_levels); | 
|  | remainder = safe_mod(nr_elts, nr_levels); | 
|  |  | 
|  | for (level = lbegin; level < lend; level++) | 
|  | q->target_count[level] = | 
|  | (level < (lbegin + remainder)) ? entries_per_level + 1u : entries_per_level; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Typically we have fewer elements in the top few levels which allows us | 
|  | * to adjust the promote threshold nicely. | 
|  | */ | 
|  | static void q_set_targets(struct queue *q) | 
|  | { | 
|  | if (q->last_target_nr_elts == q->nr_elts) | 
|  | return; | 
|  |  | 
|  | q->last_target_nr_elts = q->nr_elts; | 
|  |  | 
|  | if (q->nr_top_levels > q->nr_levels) | 
|  | q_set_targets_subrange_(q, q->nr_elts, 0, q->nr_levels); | 
|  |  | 
|  | else { | 
|  | q_set_targets_subrange_(q, q->nr_in_top_levels, | 
|  | q->nr_levels - q->nr_top_levels, q->nr_levels); | 
|  |  | 
|  | if (q->nr_in_top_levels < q->nr_elts) | 
|  | q_set_targets_subrange_(q, q->nr_elts - q->nr_in_top_levels, | 
|  | 0, q->nr_levels - q->nr_top_levels); | 
|  | else | 
|  | q_set_targets_subrange_(q, 0, 0, q->nr_levels - q->nr_top_levels); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void q_redistribute(struct queue *q) | 
|  | { | 
|  | unsigned target, level; | 
|  | struct ilist *l, *l_above; | 
|  | struct entry *e; | 
|  |  | 
|  | q_set_targets(q); | 
|  |  | 
|  | for (level = 0u; level < q->nr_levels - 1u; level++) { | 
|  | l = q->qs + level; | 
|  | target = q->target_count[level]; | 
|  |  | 
|  | /* | 
|  | * Pull down some entries from the level above. | 
|  | */ | 
|  | while (l->nr_elts < target) { | 
|  | e = __redist_pop_from(q, level + 1u); | 
|  | if (!e) { | 
|  | /* bug in nr_elts */ | 
|  | break; | 
|  | } | 
|  |  | 
|  | e->level = level; | 
|  | l_add_tail(q->es, l, e); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Push some entries up. | 
|  | */ | 
|  | l_above = q->qs + level + 1u; | 
|  | while (l->nr_elts > target) { | 
|  | e = l_pop_tail(q->es, l); | 
|  |  | 
|  | if (!e) | 
|  | /* bug in nr_elts */ | 
|  | break; | 
|  |  | 
|  | e->level = level + 1u; | 
|  | l_add_head(q->es, l_above, e); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void q_requeue_before(struct queue *q, struct entry *dest, struct entry *e, unsigned extra_levels) | 
|  | { | 
|  | struct entry *de; | 
|  | unsigned new_level; | 
|  |  | 
|  | q_del(q, e); | 
|  |  | 
|  | if (extra_levels && (e->level < q->nr_levels - 1u)) { | 
|  | new_level = min(q->nr_levels - 1u, e->level + extra_levels); | 
|  | for (de = l_head(q->es, q->qs + new_level); de; de = l_next(q->es, de)) { | 
|  | if (de->sentinel) | 
|  | continue; | 
|  |  | 
|  | q_del(q, de); | 
|  | de->level = e->level; | 
|  |  | 
|  | if (dest) | 
|  | q_push_before(q, dest, de); | 
|  | else | 
|  | q_push(q, de); | 
|  | break; | 
|  | } | 
|  |  | 
|  | e->level = new_level; | 
|  | } | 
|  |  | 
|  | q_push(q, e); | 
|  | } | 
|  |  | 
|  | static void q_requeue(struct queue *q, struct entry *e, unsigned extra_levels) | 
|  | { | 
|  | q_requeue_before(q, NULL, e, extra_levels); | 
|  | } | 
|  |  | 
|  | /*----------------------------------------------------------------*/ | 
|  |  | 
|  | #define FP_SHIFT 8 | 
|  | #define SIXTEENTH (1u << (FP_SHIFT - 4u)) | 
|  | #define EIGHTH (1u << (FP_SHIFT - 3u)) | 
|  |  | 
|  | struct stats { | 
|  | unsigned hit_threshold; | 
|  | unsigned hits; | 
|  | unsigned misses; | 
|  | }; | 
|  |  | 
|  | enum performance { | 
|  | Q_POOR, | 
|  | Q_FAIR, | 
|  | Q_WELL | 
|  | }; | 
|  |  | 
|  | static void stats_init(struct stats *s, unsigned nr_levels) | 
|  | { | 
|  | s->hit_threshold = (nr_levels * 3u) / 4u; | 
|  | s->hits = 0u; | 
|  | s->misses = 0u; | 
|  | } | 
|  |  | 
|  | static void stats_reset(struct stats *s) | 
|  | { | 
|  | s->hits = s->misses = 0u; | 
|  | } | 
|  |  | 
|  | static void stats_level_accessed(struct stats *s, unsigned level) | 
|  | { | 
|  | if (level >= s->hit_threshold) | 
|  | s->hits++; | 
|  | else | 
|  | s->misses++; | 
|  | } | 
|  |  | 
|  | static void stats_miss(struct stats *s) | 
|  | { | 
|  | s->misses++; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * There are times when we don't have any confidence in the hotspot queue. | 
|  | * Such as when a fresh cache is created and the blocks have been spread | 
|  | * out across the levels, or if an io load changes.  We detect this by | 
|  | * seeing how often a lookup is in the top levels of the hotspot queue. | 
|  | */ | 
|  | static enum performance stats_assess(struct stats *s) | 
|  | { | 
|  | unsigned confidence = safe_div(s->hits << FP_SHIFT, s->hits + s->misses); | 
|  |  | 
|  | if (confidence < SIXTEENTH) | 
|  | return Q_POOR; | 
|  |  | 
|  | else if (confidence < EIGHTH) | 
|  | return Q_FAIR; | 
|  |  | 
|  | else | 
|  | return Q_WELL; | 
|  | } | 
|  |  | 
|  | /*----------------------------------------------------------------*/ | 
|  |  | 
|  | struct hash_table { | 
|  | struct entry_space *es; | 
|  | unsigned long long hash_bits; | 
|  | unsigned *buckets; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * All cache entries are stored in a chained hash table.  To save space we | 
|  | * use indexing again, and only store indexes to the next entry. | 
|  | */ | 
|  | static int h_init(struct hash_table *ht, struct entry_space *es, unsigned nr_entries) | 
|  | { | 
|  | unsigned i, nr_buckets; | 
|  |  | 
|  | ht->es = es; | 
|  | nr_buckets = roundup_pow_of_two(max(nr_entries / 4u, 16u)); | 
|  | ht->hash_bits = __ffs(nr_buckets); | 
|  |  | 
|  | ht->buckets = vmalloc(sizeof(*ht->buckets) * nr_buckets); | 
|  | if (!ht->buckets) | 
|  | return -ENOMEM; | 
|  |  | 
|  | for (i = 0; i < nr_buckets; i++) | 
|  | ht->buckets[i] = INDEXER_NULL; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void h_exit(struct hash_table *ht) | 
|  | { | 
|  | vfree(ht->buckets); | 
|  | } | 
|  |  | 
|  | static struct entry *h_head(struct hash_table *ht, unsigned bucket) | 
|  | { | 
|  | return to_entry(ht->es, ht->buckets[bucket]); | 
|  | } | 
|  |  | 
|  | static struct entry *h_next(struct hash_table *ht, struct entry *e) | 
|  | { | 
|  | return to_entry(ht->es, e->hash_next); | 
|  | } | 
|  |  | 
|  | static void __h_insert(struct hash_table *ht, unsigned bucket, struct entry *e) | 
|  | { | 
|  | e->hash_next = ht->buckets[bucket]; | 
|  | ht->buckets[bucket] = to_index(ht->es, e); | 
|  | } | 
|  |  | 
|  | static void h_insert(struct hash_table *ht, struct entry *e) | 
|  | { | 
|  | unsigned h = hash_64(from_oblock(e->oblock), ht->hash_bits); | 
|  | __h_insert(ht, h, e); | 
|  | } | 
|  |  | 
|  | static struct entry *__h_lookup(struct hash_table *ht, unsigned h, dm_oblock_t oblock, | 
|  | struct entry **prev) | 
|  | { | 
|  | struct entry *e; | 
|  |  | 
|  | *prev = NULL; | 
|  | for (e = h_head(ht, h); e; e = h_next(ht, e)) { | 
|  | if (e->oblock == oblock) | 
|  | return e; | 
|  |  | 
|  | *prev = e; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void __h_unlink(struct hash_table *ht, unsigned h, | 
|  | struct entry *e, struct entry *prev) | 
|  | { | 
|  | if (prev) | 
|  | prev->hash_next = e->hash_next; | 
|  | else | 
|  | ht->buckets[h] = e->hash_next; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Also moves each entry to the front of the bucket. | 
|  | */ | 
|  | static struct entry *h_lookup(struct hash_table *ht, dm_oblock_t oblock) | 
|  | { | 
|  | struct entry *e, *prev; | 
|  | unsigned h = hash_64(from_oblock(oblock), ht->hash_bits); | 
|  |  | 
|  | e = __h_lookup(ht, h, oblock, &prev); | 
|  | if (e && prev) { | 
|  | /* | 
|  | * Move to the front because this entry is likely | 
|  | * to be hit again. | 
|  | */ | 
|  | __h_unlink(ht, h, e, prev); | 
|  | __h_insert(ht, h, e); | 
|  | } | 
|  |  | 
|  | return e; | 
|  | } | 
|  |  | 
|  | static void h_remove(struct hash_table *ht, struct entry *e) | 
|  | { | 
|  | unsigned h = hash_64(from_oblock(e->oblock), ht->hash_bits); | 
|  | struct entry *prev; | 
|  |  | 
|  | /* | 
|  | * The down side of using a singly linked list is we have to | 
|  | * iterate the bucket to remove an item. | 
|  | */ | 
|  | e = __h_lookup(ht, h, e->oblock, &prev); | 
|  | if (e) | 
|  | __h_unlink(ht, h, e, prev); | 
|  | } | 
|  |  | 
|  | /*----------------------------------------------------------------*/ | 
|  |  | 
|  | struct entry_alloc { | 
|  | struct entry_space *es; | 
|  | unsigned begin; | 
|  |  | 
|  | unsigned nr_allocated; | 
|  | struct ilist free; | 
|  | }; | 
|  |  | 
|  | static void init_allocator(struct entry_alloc *ea, struct entry_space *es, | 
|  | unsigned begin, unsigned end) | 
|  | { | 
|  | unsigned i; | 
|  |  | 
|  | ea->es = es; | 
|  | ea->nr_allocated = 0u; | 
|  | ea->begin = begin; | 
|  |  | 
|  | l_init(&ea->free); | 
|  | for (i = begin; i != end; i++) | 
|  | l_add_tail(ea->es, &ea->free, __get_entry(ea->es, i)); | 
|  | } | 
|  |  | 
|  | static void init_entry(struct entry *e) | 
|  | { | 
|  | /* | 
|  | * We can't memset because that would clear the hotspot and | 
|  | * sentinel bits which remain constant. | 
|  | */ | 
|  | e->hash_next = INDEXER_NULL; | 
|  | e->next = INDEXER_NULL; | 
|  | e->prev = INDEXER_NULL; | 
|  | e->level = 0u; | 
|  | e->allocated = true; | 
|  | } | 
|  |  | 
|  | static struct entry *alloc_entry(struct entry_alloc *ea) | 
|  | { | 
|  | struct entry *e; | 
|  |  | 
|  | if (l_empty(&ea->free)) | 
|  | return NULL; | 
|  |  | 
|  | e = l_pop_tail(ea->es, &ea->free); | 
|  | init_entry(e); | 
|  | ea->nr_allocated++; | 
|  |  | 
|  | return e; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This assumes the cblock hasn't already been allocated. | 
|  | */ | 
|  | static struct entry *alloc_particular_entry(struct entry_alloc *ea, unsigned i) | 
|  | { | 
|  | struct entry *e = __get_entry(ea->es, ea->begin + i); | 
|  |  | 
|  | BUG_ON(e->allocated); | 
|  |  | 
|  | l_del(ea->es, &ea->free, e); | 
|  | init_entry(e); | 
|  | ea->nr_allocated++; | 
|  |  | 
|  | return e; | 
|  | } | 
|  |  | 
|  | static void free_entry(struct entry_alloc *ea, struct entry *e) | 
|  | { | 
|  | BUG_ON(!ea->nr_allocated); | 
|  | BUG_ON(!e->allocated); | 
|  |  | 
|  | ea->nr_allocated--; | 
|  | e->allocated = false; | 
|  | l_add_tail(ea->es, &ea->free, e); | 
|  | } | 
|  |  | 
|  | static bool allocator_empty(struct entry_alloc *ea) | 
|  | { | 
|  | return l_empty(&ea->free); | 
|  | } | 
|  |  | 
|  | static unsigned get_index(struct entry_alloc *ea, struct entry *e) | 
|  | { | 
|  | return to_index(ea->es, e) - ea->begin; | 
|  | } | 
|  |  | 
|  | static struct entry *get_entry(struct entry_alloc *ea, unsigned index) | 
|  | { | 
|  | return __get_entry(ea->es, ea->begin + index); | 
|  | } | 
|  |  | 
|  | /*----------------------------------------------------------------*/ | 
|  |  | 
|  | #define NR_HOTSPOT_LEVELS 64u | 
|  | #define NR_CACHE_LEVELS 64u | 
|  |  | 
|  | #define WRITEBACK_PERIOD (10 * HZ) | 
|  | #define DEMOTE_PERIOD (60 * HZ) | 
|  |  | 
|  | #define HOTSPOT_UPDATE_PERIOD (HZ) | 
|  | #define CACHE_UPDATE_PERIOD (10u * HZ) | 
|  |  | 
|  | struct smq_policy { | 
|  | struct dm_cache_policy policy; | 
|  |  | 
|  | /* protects everything */ | 
|  | spinlock_t lock; | 
|  | dm_cblock_t cache_size; | 
|  | sector_t cache_block_size; | 
|  |  | 
|  | sector_t hotspot_block_size; | 
|  | unsigned nr_hotspot_blocks; | 
|  | unsigned cache_blocks_per_hotspot_block; | 
|  | unsigned hotspot_level_jump; | 
|  |  | 
|  | struct entry_space es; | 
|  | struct entry_alloc writeback_sentinel_alloc; | 
|  | struct entry_alloc demote_sentinel_alloc; | 
|  | struct entry_alloc hotspot_alloc; | 
|  | struct entry_alloc cache_alloc; | 
|  |  | 
|  | unsigned long *hotspot_hit_bits; | 
|  | unsigned long *cache_hit_bits; | 
|  |  | 
|  | /* | 
|  | * We maintain three queues of entries.  The cache proper, | 
|  | * consisting of a clean and dirty queue, containing the currently | 
|  | * active mappings.  The hotspot queue uses a larger block size to | 
|  | * track blocks that are being hit frequently and potential | 
|  | * candidates for promotion to the cache. | 
|  | */ | 
|  | struct queue hotspot; | 
|  | struct queue clean; | 
|  | struct queue dirty; | 
|  |  | 
|  | struct stats hotspot_stats; | 
|  | struct stats cache_stats; | 
|  |  | 
|  | /* | 
|  | * Keeps track of time, incremented by the core.  We use this to | 
|  | * avoid attributing multiple hits within the same tick. | 
|  | */ | 
|  | unsigned tick; | 
|  |  | 
|  | /* | 
|  | * The hash tables allows us to quickly find an entry by origin | 
|  | * block. | 
|  | */ | 
|  | struct hash_table table; | 
|  | struct hash_table hotspot_table; | 
|  |  | 
|  | bool current_writeback_sentinels; | 
|  | unsigned long next_writeback_period; | 
|  |  | 
|  | bool current_demote_sentinels; | 
|  | unsigned long next_demote_period; | 
|  |  | 
|  | unsigned write_promote_level; | 
|  | unsigned read_promote_level; | 
|  |  | 
|  | unsigned long next_hotspot_period; | 
|  | unsigned long next_cache_period; | 
|  | }; | 
|  |  | 
|  | /*----------------------------------------------------------------*/ | 
|  |  | 
|  | static struct entry *get_sentinel(struct entry_alloc *ea, unsigned level, bool which) | 
|  | { | 
|  | return get_entry(ea, which ? level : NR_CACHE_LEVELS + level); | 
|  | } | 
|  |  | 
|  | static struct entry *writeback_sentinel(struct smq_policy *mq, unsigned level) | 
|  | { | 
|  | return get_sentinel(&mq->writeback_sentinel_alloc, level, mq->current_writeback_sentinels); | 
|  | } | 
|  |  | 
|  | static struct entry *demote_sentinel(struct smq_policy *mq, unsigned level) | 
|  | { | 
|  | return get_sentinel(&mq->demote_sentinel_alloc, level, mq->current_demote_sentinels); | 
|  | } | 
|  |  | 
|  | static void __update_writeback_sentinels(struct smq_policy *mq) | 
|  | { | 
|  | unsigned level; | 
|  | struct queue *q = &mq->dirty; | 
|  | struct entry *sentinel; | 
|  |  | 
|  | for (level = 0; level < q->nr_levels; level++) { | 
|  | sentinel = writeback_sentinel(mq, level); | 
|  | q_del(q, sentinel); | 
|  | q_push(q, sentinel); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void __update_demote_sentinels(struct smq_policy *mq) | 
|  | { | 
|  | unsigned level; | 
|  | struct queue *q = &mq->clean; | 
|  | struct entry *sentinel; | 
|  |  | 
|  | for (level = 0; level < q->nr_levels; level++) { | 
|  | sentinel = demote_sentinel(mq, level); | 
|  | q_del(q, sentinel); | 
|  | q_push(q, sentinel); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void update_sentinels(struct smq_policy *mq) | 
|  | { | 
|  | if (time_after(jiffies, mq->next_writeback_period)) { | 
|  | __update_writeback_sentinels(mq); | 
|  | mq->next_writeback_period = jiffies + WRITEBACK_PERIOD; | 
|  | mq->current_writeback_sentinels = !mq->current_writeback_sentinels; | 
|  | } | 
|  |  | 
|  | if (time_after(jiffies, mq->next_demote_period)) { | 
|  | __update_demote_sentinels(mq); | 
|  | mq->next_demote_period = jiffies + DEMOTE_PERIOD; | 
|  | mq->current_demote_sentinels = !mq->current_demote_sentinels; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void __sentinels_init(struct smq_policy *mq) | 
|  | { | 
|  | unsigned level; | 
|  | struct entry *sentinel; | 
|  |  | 
|  | for (level = 0; level < NR_CACHE_LEVELS; level++) { | 
|  | sentinel = writeback_sentinel(mq, level); | 
|  | sentinel->level = level; | 
|  | q_push(&mq->dirty, sentinel); | 
|  |  | 
|  | sentinel = demote_sentinel(mq, level); | 
|  | sentinel->level = level; | 
|  | q_push(&mq->clean, sentinel); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void sentinels_init(struct smq_policy *mq) | 
|  | { | 
|  | mq->next_writeback_period = jiffies + WRITEBACK_PERIOD; | 
|  | mq->next_demote_period = jiffies + DEMOTE_PERIOD; | 
|  |  | 
|  | mq->current_writeback_sentinels = false; | 
|  | mq->current_demote_sentinels = false; | 
|  | __sentinels_init(mq); | 
|  |  | 
|  | mq->current_writeback_sentinels = !mq->current_writeback_sentinels; | 
|  | mq->current_demote_sentinels = !mq->current_demote_sentinels; | 
|  | __sentinels_init(mq); | 
|  | } | 
|  |  | 
|  | /*----------------------------------------------------------------*/ | 
|  |  | 
|  | /* | 
|  | * These methods tie together the dirty queue, clean queue and hash table. | 
|  | */ | 
|  | static void push_new(struct smq_policy *mq, struct entry *e) | 
|  | { | 
|  | struct queue *q = e->dirty ? &mq->dirty : &mq->clean; | 
|  | h_insert(&mq->table, e); | 
|  | q_push(q, e); | 
|  | } | 
|  |  | 
|  | static void push(struct smq_policy *mq, struct entry *e) | 
|  | { | 
|  | struct entry *sentinel; | 
|  |  | 
|  | h_insert(&mq->table, e); | 
|  |  | 
|  | /* | 
|  | * Punch this into the queue just in front of the sentinel, to | 
|  | * ensure it's cleaned straight away. | 
|  | */ | 
|  | if (e->dirty) { | 
|  | sentinel = writeback_sentinel(mq, e->level); | 
|  | q_push_before(&mq->dirty, sentinel, e); | 
|  | } else { | 
|  | sentinel = demote_sentinel(mq, e->level); | 
|  | q_push_before(&mq->clean, sentinel, e); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Removes an entry from cache.  Removes from the hash table. | 
|  | */ | 
|  | static void __del(struct smq_policy *mq, struct queue *q, struct entry *e) | 
|  | { | 
|  | q_del(q, e); | 
|  | h_remove(&mq->table, e); | 
|  | } | 
|  |  | 
|  | static void del(struct smq_policy *mq, struct entry *e) | 
|  | { | 
|  | __del(mq, e->dirty ? &mq->dirty : &mq->clean, e); | 
|  | } | 
|  |  | 
|  | static struct entry *pop_old(struct smq_policy *mq, struct queue *q, unsigned max_level) | 
|  | { | 
|  | struct entry *e = q_pop_old(q, max_level); | 
|  | if (e) | 
|  | h_remove(&mq->table, e); | 
|  | return e; | 
|  | } | 
|  |  | 
|  | static dm_cblock_t infer_cblock(struct smq_policy *mq, struct entry *e) | 
|  | { | 
|  | return to_cblock(get_index(&mq->cache_alloc, e)); | 
|  | } | 
|  |  | 
|  | static void requeue(struct smq_policy *mq, struct entry *e) | 
|  | { | 
|  | struct entry *sentinel; | 
|  |  | 
|  | if (!test_and_set_bit(from_cblock(infer_cblock(mq, e)), mq->cache_hit_bits)) { | 
|  | if (e->dirty) { | 
|  | sentinel = writeback_sentinel(mq, e->level); | 
|  | q_requeue_before(&mq->dirty, sentinel, e, 1u); | 
|  | } else { | 
|  | sentinel = demote_sentinel(mq, e->level); | 
|  | q_requeue_before(&mq->clean, sentinel, e, 1u); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static unsigned default_promote_level(struct smq_policy *mq) | 
|  | { | 
|  | /* | 
|  | * The promote level depends on the current performance of the | 
|  | * cache. | 
|  | * | 
|  | * If the cache is performing badly, then we can't afford | 
|  | * to promote much without causing performance to drop below that | 
|  | * of the origin device. | 
|  | * | 
|  | * If the cache is performing well, then we don't need to promote | 
|  | * much.  If it isn't broken, don't fix it. | 
|  | * | 
|  | * If the cache is middling then we promote more. | 
|  | * | 
|  | * This scheme reminds me of a graph of entropy vs probability of a | 
|  | * binary variable. | 
|  | */ | 
|  | static unsigned table[] = {1, 1, 1, 2, 4, 6, 7, 8, 7, 6, 4, 4, 3, 3, 2, 2, 1}; | 
|  |  | 
|  | unsigned hits = mq->cache_stats.hits; | 
|  | unsigned misses = mq->cache_stats.misses; | 
|  | unsigned index = safe_div(hits << 4u, hits + misses); | 
|  | return table[index]; | 
|  | } | 
|  |  | 
|  | static void update_promote_levels(struct smq_policy *mq) | 
|  | { | 
|  | /* | 
|  | * If there are unused cache entries then we want to be really | 
|  | * eager to promote. | 
|  | */ | 
|  | unsigned threshold_level = allocator_empty(&mq->cache_alloc) ? | 
|  | default_promote_level(mq) : (NR_HOTSPOT_LEVELS / 2u); | 
|  |  | 
|  | /* | 
|  | * If the hotspot queue is performing badly then we have little | 
|  | * confidence that we know which blocks to promote.  So we cut down | 
|  | * the amount of promotions. | 
|  | */ | 
|  | switch (stats_assess(&mq->hotspot_stats)) { | 
|  | case Q_POOR: | 
|  | threshold_level /= 4u; | 
|  | break; | 
|  |  | 
|  | case Q_FAIR: | 
|  | threshold_level /= 2u; | 
|  | break; | 
|  |  | 
|  | case Q_WELL: | 
|  | break; | 
|  | } | 
|  |  | 
|  | mq->read_promote_level = NR_HOTSPOT_LEVELS - threshold_level; | 
|  | mq->write_promote_level = (NR_HOTSPOT_LEVELS - threshold_level) + 2u; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the hotspot queue is performing badly, then we try and move entries | 
|  | * around more quickly. | 
|  | */ | 
|  | static void update_level_jump(struct smq_policy *mq) | 
|  | { | 
|  | switch (stats_assess(&mq->hotspot_stats)) { | 
|  | case Q_POOR: | 
|  | mq->hotspot_level_jump = 4u; | 
|  | break; | 
|  |  | 
|  | case Q_FAIR: | 
|  | mq->hotspot_level_jump = 2u; | 
|  | break; | 
|  |  | 
|  | case Q_WELL: | 
|  | mq->hotspot_level_jump = 1u; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void end_hotspot_period(struct smq_policy *mq) | 
|  | { | 
|  | clear_bitset(mq->hotspot_hit_bits, mq->nr_hotspot_blocks); | 
|  | update_promote_levels(mq); | 
|  |  | 
|  | if (time_after(jiffies, mq->next_hotspot_period)) { | 
|  | update_level_jump(mq); | 
|  | q_redistribute(&mq->hotspot); | 
|  | stats_reset(&mq->hotspot_stats); | 
|  | mq->next_hotspot_period = jiffies + HOTSPOT_UPDATE_PERIOD; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void end_cache_period(struct smq_policy *mq) | 
|  | { | 
|  | if (time_after(jiffies, mq->next_cache_period)) { | 
|  | clear_bitset(mq->cache_hit_bits, from_cblock(mq->cache_size)); | 
|  |  | 
|  | q_redistribute(&mq->dirty); | 
|  | q_redistribute(&mq->clean); | 
|  | stats_reset(&mq->cache_stats); | 
|  |  | 
|  | mq->next_cache_period = jiffies + CACHE_UPDATE_PERIOD; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int demote_cblock(struct smq_policy *mq, | 
|  | struct policy_locker *locker, | 
|  | dm_oblock_t *oblock) | 
|  | { | 
|  | struct entry *demoted = q_peek(&mq->clean, mq->clean.nr_levels, false); | 
|  | if (!demoted) | 
|  | /* | 
|  | * We could get a block from mq->dirty, but that | 
|  | * would add extra latency to the triggering bio as it | 
|  | * waits for the writeback.  Better to not promote this | 
|  | * time and hope there's a clean block next time this block | 
|  | * is hit. | 
|  | */ | 
|  | return -ENOSPC; | 
|  |  | 
|  | if (locker->fn(locker, demoted->oblock)) | 
|  | /* | 
|  | * We couldn't lock this block. | 
|  | */ | 
|  | return -EBUSY; | 
|  |  | 
|  | del(mq, demoted); | 
|  | *oblock = demoted->oblock; | 
|  | free_entry(&mq->cache_alloc, demoted); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | enum promote_result { | 
|  | PROMOTE_NOT, | 
|  | PROMOTE_TEMPORARY, | 
|  | PROMOTE_PERMANENT | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Converts a boolean into a promote result. | 
|  | */ | 
|  | static enum promote_result maybe_promote(bool promote) | 
|  | { | 
|  | return promote ? PROMOTE_PERMANENT : PROMOTE_NOT; | 
|  | } | 
|  |  | 
|  | static enum promote_result should_promote(struct smq_policy *mq, struct entry *hs_e, struct bio *bio, | 
|  | bool fast_promote) | 
|  | { | 
|  | if (bio_data_dir(bio) == WRITE) { | 
|  | if (!allocator_empty(&mq->cache_alloc) && fast_promote) | 
|  | return PROMOTE_TEMPORARY; | 
|  |  | 
|  | else | 
|  | return maybe_promote(hs_e->level >= mq->write_promote_level); | 
|  | } else | 
|  | return maybe_promote(hs_e->level >= mq->read_promote_level); | 
|  | } | 
|  |  | 
|  | static void insert_in_cache(struct smq_policy *mq, dm_oblock_t oblock, | 
|  | struct policy_locker *locker, | 
|  | struct policy_result *result, enum promote_result pr) | 
|  | { | 
|  | int r; | 
|  | struct entry *e; | 
|  |  | 
|  | if (allocator_empty(&mq->cache_alloc)) { | 
|  | result->op = POLICY_REPLACE; | 
|  | r = demote_cblock(mq, locker, &result->old_oblock); | 
|  | if (r) { | 
|  | result->op = POLICY_MISS; | 
|  | return; | 
|  | } | 
|  |  | 
|  | } else | 
|  | result->op = POLICY_NEW; | 
|  |  | 
|  | e = alloc_entry(&mq->cache_alloc); | 
|  | BUG_ON(!e); | 
|  | e->oblock = oblock; | 
|  |  | 
|  | if (pr == PROMOTE_TEMPORARY) | 
|  | push(mq, e); | 
|  | else | 
|  | push_new(mq, e); | 
|  |  | 
|  | result->cblock = infer_cblock(mq, e); | 
|  | } | 
|  |  | 
|  | static dm_oblock_t to_hblock(struct smq_policy *mq, dm_oblock_t b) | 
|  | { | 
|  | sector_t r = from_oblock(b); | 
|  | (void) sector_div(r, mq->cache_blocks_per_hotspot_block); | 
|  | return to_oblock(r); | 
|  | } | 
|  |  | 
|  | static struct entry *update_hotspot_queue(struct smq_policy *mq, dm_oblock_t b, struct bio *bio) | 
|  | { | 
|  | unsigned hi; | 
|  | dm_oblock_t hb = to_hblock(mq, b); | 
|  | struct entry *e = h_lookup(&mq->hotspot_table, hb); | 
|  |  | 
|  | if (e) { | 
|  | stats_level_accessed(&mq->hotspot_stats, e->level); | 
|  |  | 
|  | hi = get_index(&mq->hotspot_alloc, e); | 
|  | q_requeue(&mq->hotspot, e, | 
|  | test_and_set_bit(hi, mq->hotspot_hit_bits) ? | 
|  | 0u : mq->hotspot_level_jump); | 
|  |  | 
|  | } else { | 
|  | stats_miss(&mq->hotspot_stats); | 
|  |  | 
|  | e = alloc_entry(&mq->hotspot_alloc); | 
|  | if (!e) { | 
|  | e = q_pop(&mq->hotspot); | 
|  | if (e) { | 
|  | h_remove(&mq->hotspot_table, e); | 
|  | hi = get_index(&mq->hotspot_alloc, e); | 
|  | clear_bit(hi, mq->hotspot_hit_bits); | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | if (e) { | 
|  | e->oblock = hb; | 
|  | q_push(&mq->hotspot, e); | 
|  | h_insert(&mq->hotspot_table, e); | 
|  | } | 
|  | } | 
|  |  | 
|  | return e; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Looks the oblock up in the hash table, then decides whether to put in | 
|  | * pre_cache, or cache etc. | 
|  | */ | 
|  | static int map(struct smq_policy *mq, struct bio *bio, dm_oblock_t oblock, | 
|  | bool can_migrate, bool fast_promote, | 
|  | struct policy_locker *locker, struct policy_result *result) | 
|  | { | 
|  | struct entry *e, *hs_e; | 
|  | enum promote_result pr; | 
|  |  | 
|  | hs_e = update_hotspot_queue(mq, oblock, bio); | 
|  |  | 
|  | e = h_lookup(&mq->table, oblock); | 
|  | if (e) { | 
|  | stats_level_accessed(&mq->cache_stats, e->level); | 
|  |  | 
|  | requeue(mq, e); | 
|  | result->op = POLICY_HIT; | 
|  | result->cblock = infer_cblock(mq, e); | 
|  |  | 
|  | } else { | 
|  | stats_miss(&mq->cache_stats); | 
|  |  | 
|  | pr = should_promote(mq, hs_e, bio, fast_promote); | 
|  | if (pr == PROMOTE_NOT) | 
|  | result->op = POLICY_MISS; | 
|  |  | 
|  | else { | 
|  | if (!can_migrate) { | 
|  | result->op = POLICY_MISS; | 
|  | return -EWOULDBLOCK; | 
|  | } | 
|  |  | 
|  | insert_in_cache(mq, oblock, locker, result, pr); | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /*----------------------------------------------------------------*/ | 
|  |  | 
|  | /* | 
|  | * Public interface, via the policy struct.  See dm-cache-policy.h for a | 
|  | * description of these. | 
|  | */ | 
|  |  | 
|  | static struct smq_policy *to_smq_policy(struct dm_cache_policy *p) | 
|  | { | 
|  | return container_of(p, struct smq_policy, policy); | 
|  | } | 
|  |  | 
|  | static void smq_destroy(struct dm_cache_policy *p) | 
|  | { | 
|  | struct smq_policy *mq = to_smq_policy(p); | 
|  |  | 
|  | h_exit(&mq->hotspot_table); | 
|  | h_exit(&mq->table); | 
|  | free_bitset(mq->hotspot_hit_bits); | 
|  | free_bitset(mq->cache_hit_bits); | 
|  | space_exit(&mq->es); | 
|  | kfree(mq); | 
|  | } | 
|  |  | 
|  | static int smq_map(struct dm_cache_policy *p, dm_oblock_t oblock, | 
|  | bool can_block, bool can_migrate, bool fast_promote, | 
|  | struct bio *bio, struct policy_locker *locker, | 
|  | struct policy_result *result) | 
|  | { | 
|  | int r; | 
|  | unsigned long flags; | 
|  | struct smq_policy *mq = to_smq_policy(p); | 
|  |  | 
|  | result->op = POLICY_MISS; | 
|  |  | 
|  | spin_lock_irqsave(&mq->lock, flags); | 
|  | r = map(mq, bio, oblock, can_migrate, fast_promote, locker, result); | 
|  | spin_unlock_irqrestore(&mq->lock, flags); | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static int smq_lookup(struct dm_cache_policy *p, dm_oblock_t oblock, dm_cblock_t *cblock) | 
|  | { | 
|  | int r; | 
|  | unsigned long flags; | 
|  | struct smq_policy *mq = to_smq_policy(p); | 
|  | struct entry *e; | 
|  |  | 
|  | spin_lock_irqsave(&mq->lock, flags); | 
|  | e = h_lookup(&mq->table, oblock); | 
|  | if (e) { | 
|  | *cblock = infer_cblock(mq, e); | 
|  | r = 0; | 
|  | } else | 
|  | r = -ENOENT; | 
|  | spin_unlock_irqrestore(&mq->lock, flags); | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static void __smq_set_clear_dirty(struct smq_policy *mq, dm_oblock_t oblock, bool set) | 
|  | { | 
|  | struct entry *e; | 
|  |  | 
|  | e = h_lookup(&mq->table, oblock); | 
|  | BUG_ON(!e); | 
|  |  | 
|  | del(mq, e); | 
|  | e->dirty = set; | 
|  | push(mq, e); | 
|  | } | 
|  |  | 
|  | static void smq_set_dirty(struct dm_cache_policy *p, dm_oblock_t oblock) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct smq_policy *mq = to_smq_policy(p); | 
|  |  | 
|  | spin_lock_irqsave(&mq->lock, flags); | 
|  | __smq_set_clear_dirty(mq, oblock, true); | 
|  | spin_unlock_irqrestore(&mq->lock, flags); | 
|  | } | 
|  |  | 
|  | static void smq_clear_dirty(struct dm_cache_policy *p, dm_oblock_t oblock) | 
|  | { | 
|  | struct smq_policy *mq = to_smq_policy(p); | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&mq->lock, flags); | 
|  | __smq_set_clear_dirty(mq, oblock, false); | 
|  | spin_unlock_irqrestore(&mq->lock, flags); | 
|  | } | 
|  |  | 
|  | static int smq_load_mapping(struct dm_cache_policy *p, | 
|  | dm_oblock_t oblock, dm_cblock_t cblock, | 
|  | uint32_t hint, bool hint_valid) | 
|  | { | 
|  | struct smq_policy *mq = to_smq_policy(p); | 
|  | struct entry *e; | 
|  |  | 
|  | e = alloc_particular_entry(&mq->cache_alloc, from_cblock(cblock)); | 
|  | e->oblock = oblock; | 
|  | e->dirty = false;	/* this gets corrected in a minute */ | 
|  | e->level = hint_valid ? min(hint, NR_CACHE_LEVELS - 1) : 1; | 
|  | push(mq, e); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int smq_save_hints(struct smq_policy *mq, struct queue *q, | 
|  | policy_walk_fn fn, void *context) | 
|  | { | 
|  | int r; | 
|  | unsigned level; | 
|  | struct entry *e; | 
|  |  | 
|  | for (level = 0; level < q->nr_levels; level++) | 
|  | for (e = l_head(q->es, q->qs + level); e; e = l_next(q->es, e)) { | 
|  | if (!e->sentinel) { | 
|  | r = fn(context, infer_cblock(mq, e), | 
|  | e->oblock, e->level); | 
|  | if (r) | 
|  | return r; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int smq_walk_mappings(struct dm_cache_policy *p, policy_walk_fn fn, | 
|  | void *context) | 
|  | { | 
|  | struct smq_policy *mq = to_smq_policy(p); | 
|  | int r = 0; | 
|  |  | 
|  | /* | 
|  | * We don't need to lock here since this method is only called once | 
|  | * the IO has stopped. | 
|  | */ | 
|  | r = smq_save_hints(mq, &mq->clean, fn, context); | 
|  | if (!r) | 
|  | r = smq_save_hints(mq, &mq->dirty, fn, context); | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static void __remove_mapping(struct smq_policy *mq, dm_oblock_t oblock) | 
|  | { | 
|  | struct entry *e; | 
|  |  | 
|  | e = h_lookup(&mq->table, oblock); | 
|  | BUG_ON(!e); | 
|  |  | 
|  | del(mq, e); | 
|  | free_entry(&mq->cache_alloc, e); | 
|  | } | 
|  |  | 
|  | static void smq_remove_mapping(struct dm_cache_policy *p, dm_oblock_t oblock) | 
|  | { | 
|  | struct smq_policy *mq = to_smq_policy(p); | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&mq->lock, flags); | 
|  | __remove_mapping(mq, oblock); | 
|  | spin_unlock_irqrestore(&mq->lock, flags); | 
|  | } | 
|  |  | 
|  | static int __remove_cblock(struct smq_policy *mq, dm_cblock_t cblock) | 
|  | { | 
|  | struct entry *e = get_entry(&mq->cache_alloc, from_cblock(cblock)); | 
|  |  | 
|  | if (!e || !e->allocated) | 
|  | return -ENODATA; | 
|  |  | 
|  | del(mq, e); | 
|  | free_entry(&mq->cache_alloc, e); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int smq_remove_cblock(struct dm_cache_policy *p, dm_cblock_t cblock) | 
|  | { | 
|  | int r; | 
|  | unsigned long flags; | 
|  | struct smq_policy *mq = to_smq_policy(p); | 
|  |  | 
|  | spin_lock_irqsave(&mq->lock, flags); | 
|  | r = __remove_cblock(mq, cblock); | 
|  | spin_unlock_irqrestore(&mq->lock, flags); | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  |  | 
|  | #define CLEAN_TARGET_CRITICAL 5u /* percent */ | 
|  |  | 
|  | static bool clean_target_met(struct smq_policy *mq, bool critical) | 
|  | { | 
|  | if (critical) { | 
|  | /* | 
|  | * Cache entries may not be populated.  So we're cannot rely on the | 
|  | * size of the clean queue. | 
|  | */ | 
|  | unsigned nr_clean = from_cblock(mq->cache_size) - q_size(&mq->dirty); | 
|  | unsigned target = from_cblock(mq->cache_size) * CLEAN_TARGET_CRITICAL / 100u; | 
|  |  | 
|  | return nr_clean >= target; | 
|  | } else | 
|  | return !q_size(&mq->dirty); | 
|  | } | 
|  |  | 
|  | static int __smq_writeback_work(struct smq_policy *mq, dm_oblock_t *oblock, | 
|  | dm_cblock_t *cblock, bool critical_only) | 
|  | { | 
|  | struct entry *e = NULL; | 
|  | bool target_met = clean_target_met(mq, critical_only); | 
|  |  | 
|  | if (critical_only) | 
|  | /* | 
|  | * Always try and keep the bottom level clean. | 
|  | */ | 
|  | e = pop_old(mq, &mq->dirty, target_met ? 1u : mq->dirty.nr_levels); | 
|  |  | 
|  | else | 
|  | e = pop_old(mq, &mq->dirty, mq->dirty.nr_levels); | 
|  |  | 
|  | if (!e) | 
|  | return -ENODATA; | 
|  |  | 
|  | *oblock = e->oblock; | 
|  | *cblock = infer_cblock(mq, e); | 
|  | e->dirty = false; | 
|  | push_new(mq, e); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int smq_writeback_work(struct dm_cache_policy *p, dm_oblock_t *oblock, | 
|  | dm_cblock_t *cblock, bool critical_only) | 
|  | { | 
|  | int r; | 
|  | unsigned long flags; | 
|  | struct smq_policy *mq = to_smq_policy(p); | 
|  |  | 
|  | spin_lock_irqsave(&mq->lock, flags); | 
|  | r = __smq_writeback_work(mq, oblock, cblock, critical_only); | 
|  | spin_unlock_irqrestore(&mq->lock, flags); | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static void __force_mapping(struct smq_policy *mq, | 
|  | dm_oblock_t current_oblock, dm_oblock_t new_oblock) | 
|  | { | 
|  | struct entry *e = h_lookup(&mq->table, current_oblock); | 
|  |  | 
|  | if (e) { | 
|  | del(mq, e); | 
|  | e->oblock = new_oblock; | 
|  | e->dirty = true; | 
|  | push(mq, e); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void smq_force_mapping(struct dm_cache_policy *p, | 
|  | dm_oblock_t current_oblock, dm_oblock_t new_oblock) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct smq_policy *mq = to_smq_policy(p); | 
|  |  | 
|  | spin_lock_irqsave(&mq->lock, flags); | 
|  | __force_mapping(mq, current_oblock, new_oblock); | 
|  | spin_unlock_irqrestore(&mq->lock, flags); | 
|  | } | 
|  |  | 
|  | static dm_cblock_t smq_residency(struct dm_cache_policy *p) | 
|  | { | 
|  | dm_cblock_t r; | 
|  | unsigned long flags; | 
|  | struct smq_policy *mq = to_smq_policy(p); | 
|  |  | 
|  | spin_lock_irqsave(&mq->lock, flags); | 
|  | r = to_cblock(mq->cache_alloc.nr_allocated); | 
|  | spin_unlock_irqrestore(&mq->lock, flags); | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static void smq_tick(struct dm_cache_policy *p, bool can_block) | 
|  | { | 
|  | struct smq_policy *mq = to_smq_policy(p); | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&mq->lock, flags); | 
|  | mq->tick++; | 
|  | update_sentinels(mq); | 
|  | end_hotspot_period(mq); | 
|  | end_cache_period(mq); | 
|  | spin_unlock_irqrestore(&mq->lock, flags); | 
|  | } | 
|  |  | 
|  | /* Init the policy plugin interface function pointers. */ | 
|  | static void init_policy_functions(struct smq_policy *mq) | 
|  | { | 
|  | mq->policy.destroy = smq_destroy; | 
|  | mq->policy.map = smq_map; | 
|  | mq->policy.lookup = smq_lookup; | 
|  | mq->policy.set_dirty = smq_set_dirty; | 
|  | mq->policy.clear_dirty = smq_clear_dirty; | 
|  | mq->policy.load_mapping = smq_load_mapping; | 
|  | mq->policy.walk_mappings = smq_walk_mappings; | 
|  | mq->policy.remove_mapping = smq_remove_mapping; | 
|  | mq->policy.remove_cblock = smq_remove_cblock; | 
|  | mq->policy.writeback_work = smq_writeback_work; | 
|  | mq->policy.force_mapping = smq_force_mapping; | 
|  | mq->policy.residency = smq_residency; | 
|  | mq->policy.tick = smq_tick; | 
|  | } | 
|  |  | 
|  | static bool too_many_hotspot_blocks(sector_t origin_size, | 
|  | sector_t hotspot_block_size, | 
|  | unsigned nr_hotspot_blocks) | 
|  | { | 
|  | return (hotspot_block_size * nr_hotspot_blocks) > origin_size; | 
|  | } | 
|  |  | 
|  | static void calc_hotspot_params(sector_t origin_size, | 
|  | sector_t cache_block_size, | 
|  | unsigned nr_cache_blocks, | 
|  | sector_t *hotspot_block_size, | 
|  | unsigned *nr_hotspot_blocks) | 
|  | { | 
|  | *hotspot_block_size = cache_block_size * 16u; | 
|  | *nr_hotspot_blocks = max(nr_cache_blocks / 4u, 1024u); | 
|  |  | 
|  | while ((*hotspot_block_size > cache_block_size) && | 
|  | too_many_hotspot_blocks(origin_size, *hotspot_block_size, *nr_hotspot_blocks)) | 
|  | *hotspot_block_size /= 2u; | 
|  | } | 
|  |  | 
|  | static struct dm_cache_policy *smq_create(dm_cblock_t cache_size, | 
|  | sector_t origin_size, | 
|  | sector_t cache_block_size) | 
|  | { | 
|  | unsigned i; | 
|  | unsigned nr_sentinels_per_queue = 2u * NR_CACHE_LEVELS; | 
|  | unsigned total_sentinels = 2u * nr_sentinels_per_queue; | 
|  | struct smq_policy *mq = kzalloc(sizeof(*mq), GFP_KERNEL); | 
|  |  | 
|  | if (!mq) | 
|  | return NULL; | 
|  |  | 
|  | init_policy_functions(mq); | 
|  | mq->cache_size = cache_size; | 
|  | mq->cache_block_size = cache_block_size; | 
|  |  | 
|  | calc_hotspot_params(origin_size, cache_block_size, from_cblock(cache_size), | 
|  | &mq->hotspot_block_size, &mq->nr_hotspot_blocks); | 
|  |  | 
|  | mq->cache_blocks_per_hotspot_block = div64_u64(mq->hotspot_block_size, mq->cache_block_size); | 
|  | mq->hotspot_level_jump = 1u; | 
|  | if (space_init(&mq->es, total_sentinels + mq->nr_hotspot_blocks + from_cblock(cache_size))) { | 
|  | DMERR("couldn't initialize entry space"); | 
|  | goto bad_pool_init; | 
|  | } | 
|  |  | 
|  | init_allocator(&mq->writeback_sentinel_alloc, &mq->es, 0, nr_sentinels_per_queue); | 
|  | for (i = 0; i < nr_sentinels_per_queue; i++) | 
|  | get_entry(&mq->writeback_sentinel_alloc, i)->sentinel = true; | 
|  |  | 
|  | init_allocator(&mq->demote_sentinel_alloc, &mq->es, nr_sentinels_per_queue, total_sentinels); | 
|  | for (i = 0; i < nr_sentinels_per_queue; i++) | 
|  | get_entry(&mq->demote_sentinel_alloc, i)->sentinel = true; | 
|  |  | 
|  | init_allocator(&mq->hotspot_alloc, &mq->es, total_sentinels, | 
|  | total_sentinels + mq->nr_hotspot_blocks); | 
|  |  | 
|  | init_allocator(&mq->cache_alloc, &mq->es, | 
|  | total_sentinels + mq->nr_hotspot_blocks, | 
|  | total_sentinels + mq->nr_hotspot_blocks + from_cblock(cache_size)); | 
|  |  | 
|  | mq->hotspot_hit_bits = alloc_bitset(mq->nr_hotspot_blocks); | 
|  | if (!mq->hotspot_hit_bits) { | 
|  | DMERR("couldn't allocate hotspot hit bitset"); | 
|  | goto bad_hotspot_hit_bits; | 
|  | } | 
|  | clear_bitset(mq->hotspot_hit_bits, mq->nr_hotspot_blocks); | 
|  |  | 
|  | if (from_cblock(cache_size)) { | 
|  | mq->cache_hit_bits = alloc_bitset(from_cblock(cache_size)); | 
|  | if (!mq->cache_hit_bits) { | 
|  | DMERR("couldn't allocate cache hit bitset"); | 
|  | goto bad_cache_hit_bits; | 
|  | } | 
|  | clear_bitset(mq->cache_hit_bits, from_cblock(mq->cache_size)); | 
|  | } else | 
|  | mq->cache_hit_bits = NULL; | 
|  |  | 
|  | mq->tick = 0; | 
|  | spin_lock_init(&mq->lock); | 
|  |  | 
|  | q_init(&mq->hotspot, &mq->es, NR_HOTSPOT_LEVELS); | 
|  | mq->hotspot.nr_top_levels = 8; | 
|  | mq->hotspot.nr_in_top_levels = min(mq->nr_hotspot_blocks / NR_HOTSPOT_LEVELS, | 
|  | from_cblock(mq->cache_size) / mq->cache_blocks_per_hotspot_block); | 
|  |  | 
|  | q_init(&mq->clean, &mq->es, NR_CACHE_LEVELS); | 
|  | q_init(&mq->dirty, &mq->es, NR_CACHE_LEVELS); | 
|  |  | 
|  | stats_init(&mq->hotspot_stats, NR_HOTSPOT_LEVELS); | 
|  | stats_init(&mq->cache_stats, NR_CACHE_LEVELS); | 
|  |  | 
|  | if (h_init(&mq->table, &mq->es, from_cblock(cache_size))) | 
|  | goto bad_alloc_table; | 
|  |  | 
|  | if (h_init(&mq->hotspot_table, &mq->es, mq->nr_hotspot_blocks)) | 
|  | goto bad_alloc_hotspot_table; | 
|  |  | 
|  | sentinels_init(mq); | 
|  | mq->write_promote_level = mq->read_promote_level = NR_HOTSPOT_LEVELS; | 
|  |  | 
|  | mq->next_hotspot_period = jiffies; | 
|  | mq->next_cache_period = jiffies; | 
|  |  | 
|  | return &mq->policy; | 
|  |  | 
|  | bad_alloc_hotspot_table: | 
|  | h_exit(&mq->table); | 
|  | bad_alloc_table: | 
|  | free_bitset(mq->cache_hit_bits); | 
|  | bad_cache_hit_bits: | 
|  | free_bitset(mq->hotspot_hit_bits); | 
|  | bad_hotspot_hit_bits: | 
|  | space_exit(&mq->es); | 
|  | bad_pool_init: | 
|  | kfree(mq); | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /*----------------------------------------------------------------*/ | 
|  |  | 
|  | static struct dm_cache_policy_type smq_policy_type = { | 
|  | .name = "smq", | 
|  | .version = {1, 0, 0}, | 
|  | .hint_size = 4, | 
|  | .owner = THIS_MODULE, | 
|  | .create = smq_create | 
|  | }; | 
|  |  | 
|  | static struct dm_cache_policy_type default_policy_type = { | 
|  | .name = "default", | 
|  | .version = {1, 4, 0}, | 
|  | .hint_size = 4, | 
|  | .owner = THIS_MODULE, | 
|  | .create = smq_create, | 
|  | .real = &smq_policy_type | 
|  | }; | 
|  |  | 
|  | static int __init smq_init(void) | 
|  | { | 
|  | int r; | 
|  |  | 
|  | r = dm_cache_policy_register(&smq_policy_type); | 
|  | if (r) { | 
|  | DMERR("register failed %d", r); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | r = dm_cache_policy_register(&default_policy_type); | 
|  | if (r) { | 
|  | DMERR("register failed (as default) %d", r); | 
|  | dm_cache_policy_unregister(&smq_policy_type); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void __exit smq_exit(void) | 
|  | { | 
|  | dm_cache_policy_unregister(&smq_policy_type); | 
|  | dm_cache_policy_unregister(&default_policy_type); | 
|  | } | 
|  |  | 
|  | module_init(smq_init); | 
|  | module_exit(smq_exit); | 
|  |  | 
|  | MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); | 
|  | MODULE_LICENSE("GPL"); | 
|  | MODULE_DESCRIPTION("smq cache policy"); | 
|  |  | 
|  | MODULE_ALIAS("dm-cache-default"); |