|  | /* | 
|  | * Copyright (c) 2015 Linaro Ltd. | 
|  | * Author: Pi-Cheng Chen <pi-cheng.chen@linaro.org> | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License version 2 as | 
|  | * published by the Free Software Foundation. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | * GNU General Public License for more details. | 
|  | */ | 
|  |  | 
|  | #include <linux/clk.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/cpu_cooling.h> | 
|  | #include <linux/cpufreq.h> | 
|  | #include <linux/cpumask.h> | 
|  | #include <linux/of.h> | 
|  | #include <linux/platform_device.h> | 
|  | #include <linux/pm_opp.h> | 
|  | #include <linux/regulator/consumer.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/thermal.h> | 
|  |  | 
|  | #define MIN_VOLT_SHIFT		(100000) | 
|  | #define MAX_VOLT_SHIFT		(200000) | 
|  | #define MAX_VOLT_LIMIT		(1150000) | 
|  | #define VOLT_TOL		(10000) | 
|  |  | 
|  | /* | 
|  | * The struct mtk_cpu_dvfs_info holds necessary information for doing CPU DVFS | 
|  | * on each CPU power/clock domain of Mediatek SoCs. Each CPU cluster in | 
|  | * Mediatek SoCs has two voltage inputs, Vproc and Vsram. In some cases the two | 
|  | * voltage inputs need to be controlled under a hardware limitation: | 
|  | * 100mV < Vsram - Vproc < 200mV | 
|  | * | 
|  | * When scaling the clock frequency of a CPU clock domain, the clock source | 
|  | * needs to be switched to another stable PLL clock temporarily until | 
|  | * the original PLL becomes stable at target frequency. | 
|  | */ | 
|  | struct mtk_cpu_dvfs_info { | 
|  | struct device *cpu_dev; | 
|  | struct regulator *proc_reg; | 
|  | struct regulator *sram_reg; | 
|  | struct clk *cpu_clk; | 
|  | struct clk *inter_clk; | 
|  | struct thermal_cooling_device *cdev; | 
|  | int intermediate_voltage; | 
|  | bool need_voltage_tracking; | 
|  | }; | 
|  |  | 
|  | static int mtk_cpufreq_voltage_tracking(struct mtk_cpu_dvfs_info *info, | 
|  | int new_vproc) | 
|  | { | 
|  | struct regulator *proc_reg = info->proc_reg; | 
|  | struct regulator *sram_reg = info->sram_reg; | 
|  | int old_vproc, old_vsram, new_vsram, vsram, vproc, ret; | 
|  |  | 
|  | old_vproc = regulator_get_voltage(proc_reg); | 
|  | old_vsram = regulator_get_voltage(sram_reg); | 
|  | /* Vsram should not exceed the maximum allowed voltage of SoC. */ | 
|  | new_vsram = min(new_vproc + MIN_VOLT_SHIFT, MAX_VOLT_LIMIT); | 
|  |  | 
|  | if (old_vproc < new_vproc) { | 
|  | /* | 
|  | * When scaling up voltages, Vsram and Vproc scale up step | 
|  | * by step. At each step, set Vsram to (Vproc + 200mV) first, | 
|  | * then set Vproc to (Vsram - 100mV). | 
|  | * Keep doing it until Vsram and Vproc hit target voltages. | 
|  | */ | 
|  | do { | 
|  | old_vsram = regulator_get_voltage(sram_reg); | 
|  | old_vproc = regulator_get_voltage(proc_reg); | 
|  |  | 
|  | vsram = min(new_vsram, old_vproc + MAX_VOLT_SHIFT); | 
|  |  | 
|  | if (vsram + VOLT_TOL >= MAX_VOLT_LIMIT) { | 
|  | vsram = MAX_VOLT_LIMIT; | 
|  |  | 
|  | /* | 
|  | * If the target Vsram hits the maximum voltage, | 
|  | * try to set the exact voltage value first. | 
|  | */ | 
|  | ret = regulator_set_voltage(sram_reg, vsram, | 
|  | vsram); | 
|  | if (ret) | 
|  | ret = regulator_set_voltage(sram_reg, | 
|  | vsram - VOLT_TOL, | 
|  | vsram); | 
|  |  | 
|  | vproc = new_vproc; | 
|  | } else { | 
|  | ret = regulator_set_voltage(sram_reg, vsram, | 
|  | vsram + VOLT_TOL); | 
|  |  | 
|  | vproc = vsram - MIN_VOLT_SHIFT; | 
|  | } | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = regulator_set_voltage(proc_reg, vproc, | 
|  | vproc + VOLT_TOL); | 
|  | if (ret) { | 
|  | regulator_set_voltage(sram_reg, old_vsram, | 
|  | old_vsram); | 
|  | return ret; | 
|  | } | 
|  | } while (vproc < new_vproc || vsram < new_vsram); | 
|  | } else if (old_vproc > new_vproc) { | 
|  | /* | 
|  | * When scaling down voltages, Vsram and Vproc scale down step | 
|  | * by step. At each step, set Vproc to (Vsram - 200mV) first, | 
|  | * then set Vproc to (Vproc + 100mV). | 
|  | * Keep doing it until Vsram and Vproc hit target voltages. | 
|  | */ | 
|  | do { | 
|  | old_vproc = regulator_get_voltage(proc_reg); | 
|  | old_vsram = regulator_get_voltage(sram_reg); | 
|  |  | 
|  | vproc = max(new_vproc, old_vsram - MAX_VOLT_SHIFT); | 
|  | ret = regulator_set_voltage(proc_reg, vproc, | 
|  | vproc + VOLT_TOL); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (vproc == new_vproc) | 
|  | vsram = new_vsram; | 
|  | else | 
|  | vsram = max(new_vsram, vproc + MIN_VOLT_SHIFT); | 
|  |  | 
|  | if (vsram + VOLT_TOL >= MAX_VOLT_LIMIT) { | 
|  | vsram = MAX_VOLT_LIMIT; | 
|  |  | 
|  | /* | 
|  | * If the target Vsram hits the maximum voltage, | 
|  | * try to set the exact voltage value first. | 
|  | */ | 
|  | ret = regulator_set_voltage(sram_reg, vsram, | 
|  | vsram); | 
|  | if (ret) | 
|  | ret = regulator_set_voltage(sram_reg, | 
|  | vsram - VOLT_TOL, | 
|  | vsram); | 
|  | } else { | 
|  | ret = regulator_set_voltage(sram_reg, vsram, | 
|  | vsram + VOLT_TOL); | 
|  | } | 
|  |  | 
|  | if (ret) { | 
|  | regulator_set_voltage(proc_reg, old_vproc, | 
|  | old_vproc); | 
|  | return ret; | 
|  | } | 
|  | } while (vproc > new_vproc + VOLT_TOL || | 
|  | vsram > new_vsram + VOLT_TOL); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int mtk_cpufreq_set_voltage(struct mtk_cpu_dvfs_info *info, int vproc) | 
|  | { | 
|  | if (info->need_voltage_tracking) | 
|  | return mtk_cpufreq_voltage_tracking(info, vproc); | 
|  | else | 
|  | return regulator_set_voltage(info->proc_reg, vproc, | 
|  | vproc + VOLT_TOL); | 
|  | } | 
|  |  | 
|  | static int mtk_cpufreq_set_target(struct cpufreq_policy *policy, | 
|  | unsigned int index) | 
|  | { | 
|  | struct cpufreq_frequency_table *freq_table = policy->freq_table; | 
|  | struct clk *cpu_clk = policy->clk; | 
|  | struct clk *armpll = clk_get_parent(cpu_clk); | 
|  | struct mtk_cpu_dvfs_info *info = policy->driver_data; | 
|  | struct device *cpu_dev = info->cpu_dev; | 
|  | struct dev_pm_opp *opp; | 
|  | long freq_hz, old_freq_hz; | 
|  | int vproc, old_vproc, inter_vproc, target_vproc, ret; | 
|  |  | 
|  | inter_vproc = info->intermediate_voltage; | 
|  |  | 
|  | old_freq_hz = clk_get_rate(cpu_clk); | 
|  | old_vproc = regulator_get_voltage(info->proc_reg); | 
|  |  | 
|  | freq_hz = freq_table[index].frequency * 1000; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_hz); | 
|  | if (IS_ERR(opp)) { | 
|  | rcu_read_unlock(); | 
|  | pr_err("cpu%d: failed to find OPP for %ld\n", | 
|  | policy->cpu, freq_hz); | 
|  | return PTR_ERR(opp); | 
|  | } | 
|  | vproc = dev_pm_opp_get_voltage(opp); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | /* | 
|  | * If the new voltage or the intermediate voltage is higher than the | 
|  | * current voltage, scale up voltage first. | 
|  | */ | 
|  | target_vproc = (inter_vproc > vproc) ? inter_vproc : vproc; | 
|  | if (old_vproc < target_vproc) { | 
|  | ret = mtk_cpufreq_set_voltage(info, target_vproc); | 
|  | if (ret) { | 
|  | pr_err("cpu%d: failed to scale up voltage!\n", | 
|  | policy->cpu); | 
|  | mtk_cpufreq_set_voltage(info, old_vproc); | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Reparent the CPU clock to intermediate clock. */ | 
|  | ret = clk_set_parent(cpu_clk, info->inter_clk); | 
|  | if (ret) { | 
|  | pr_err("cpu%d: failed to re-parent cpu clock!\n", | 
|  | policy->cpu); | 
|  | mtk_cpufreq_set_voltage(info, old_vproc); | 
|  | WARN_ON(1); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Set the original PLL to target rate. */ | 
|  | ret = clk_set_rate(armpll, freq_hz); | 
|  | if (ret) { | 
|  | pr_err("cpu%d: failed to scale cpu clock rate!\n", | 
|  | policy->cpu); | 
|  | clk_set_parent(cpu_clk, armpll); | 
|  | mtk_cpufreq_set_voltage(info, old_vproc); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Set parent of CPU clock back to the original PLL. */ | 
|  | ret = clk_set_parent(cpu_clk, armpll); | 
|  | if (ret) { | 
|  | pr_err("cpu%d: failed to re-parent cpu clock!\n", | 
|  | policy->cpu); | 
|  | mtk_cpufreq_set_voltage(info, inter_vproc); | 
|  | WARN_ON(1); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the new voltage is lower than the intermediate voltage or the | 
|  | * original voltage, scale down to the new voltage. | 
|  | */ | 
|  | if (vproc < inter_vproc || vproc < old_vproc) { | 
|  | ret = mtk_cpufreq_set_voltage(info, vproc); | 
|  | if (ret) { | 
|  | pr_err("cpu%d: failed to scale down voltage!\n", | 
|  | policy->cpu); | 
|  | clk_set_parent(cpu_clk, info->inter_clk); | 
|  | clk_set_rate(armpll, old_freq_hz); | 
|  | clk_set_parent(cpu_clk, armpll); | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void mtk_cpufreq_ready(struct cpufreq_policy *policy) | 
|  | { | 
|  | struct mtk_cpu_dvfs_info *info = policy->driver_data; | 
|  | struct device_node *np = of_node_get(info->cpu_dev->of_node); | 
|  |  | 
|  | if (WARN_ON(!np)) | 
|  | return; | 
|  |  | 
|  | if (of_find_property(np, "#cooling-cells", NULL)) { | 
|  | info->cdev = of_cpufreq_cooling_register(np, | 
|  | policy->related_cpus); | 
|  |  | 
|  | if (IS_ERR(info->cdev)) { | 
|  | dev_err(info->cpu_dev, | 
|  | "running cpufreq without cooling device: %ld\n", | 
|  | PTR_ERR(info->cdev)); | 
|  |  | 
|  | info->cdev = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | of_node_put(np); | 
|  | } | 
|  |  | 
|  | static int mtk_cpu_dvfs_info_init(struct mtk_cpu_dvfs_info *info, int cpu) | 
|  | { | 
|  | struct device *cpu_dev; | 
|  | struct regulator *proc_reg = ERR_PTR(-ENODEV); | 
|  | struct regulator *sram_reg = ERR_PTR(-ENODEV); | 
|  | struct clk *cpu_clk = ERR_PTR(-ENODEV); | 
|  | struct clk *inter_clk = ERR_PTR(-ENODEV); | 
|  | struct dev_pm_opp *opp; | 
|  | unsigned long rate; | 
|  | int ret; | 
|  |  | 
|  | cpu_dev = get_cpu_device(cpu); | 
|  | if (!cpu_dev) { | 
|  | pr_err("failed to get cpu%d device\n", cpu); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | cpu_clk = clk_get(cpu_dev, "cpu"); | 
|  | if (IS_ERR(cpu_clk)) { | 
|  | if (PTR_ERR(cpu_clk) == -EPROBE_DEFER) | 
|  | pr_warn("cpu clk for cpu%d not ready, retry.\n", cpu); | 
|  | else | 
|  | pr_err("failed to get cpu clk for cpu%d\n", cpu); | 
|  |  | 
|  | ret = PTR_ERR(cpu_clk); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | inter_clk = clk_get(cpu_dev, "intermediate"); | 
|  | if (IS_ERR(inter_clk)) { | 
|  | if (PTR_ERR(inter_clk) == -EPROBE_DEFER) | 
|  | pr_warn("intermediate clk for cpu%d not ready, retry.\n", | 
|  | cpu); | 
|  | else | 
|  | pr_err("failed to get intermediate clk for cpu%d\n", | 
|  | cpu); | 
|  |  | 
|  | ret = PTR_ERR(inter_clk); | 
|  | goto out_free_resources; | 
|  | } | 
|  |  | 
|  | proc_reg = regulator_get_exclusive(cpu_dev, "proc"); | 
|  | if (IS_ERR(proc_reg)) { | 
|  | if (PTR_ERR(proc_reg) == -EPROBE_DEFER) | 
|  | pr_warn("proc regulator for cpu%d not ready, retry.\n", | 
|  | cpu); | 
|  | else | 
|  | pr_err("failed to get proc regulator for cpu%d\n", | 
|  | cpu); | 
|  |  | 
|  | ret = PTR_ERR(proc_reg); | 
|  | goto out_free_resources; | 
|  | } | 
|  |  | 
|  | /* Both presence and absence of sram regulator are valid cases. */ | 
|  | sram_reg = regulator_get_exclusive(cpu_dev, "sram"); | 
|  |  | 
|  | ret = dev_pm_opp_of_add_table(cpu_dev); | 
|  | if (ret) { | 
|  | pr_warn("no OPP table for cpu%d\n", cpu); | 
|  | goto out_free_resources; | 
|  | } | 
|  |  | 
|  | /* Search a safe voltage for intermediate frequency. */ | 
|  | rate = clk_get_rate(inter_clk); | 
|  | rcu_read_lock(); | 
|  | opp = dev_pm_opp_find_freq_ceil(cpu_dev, &rate); | 
|  | if (IS_ERR(opp)) { | 
|  | rcu_read_unlock(); | 
|  | pr_err("failed to get intermediate opp for cpu%d\n", cpu); | 
|  | ret = PTR_ERR(opp); | 
|  | goto out_free_opp_table; | 
|  | } | 
|  | info->intermediate_voltage = dev_pm_opp_get_voltage(opp); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | info->cpu_dev = cpu_dev; | 
|  | info->proc_reg = proc_reg; | 
|  | info->sram_reg = IS_ERR(sram_reg) ? NULL : sram_reg; | 
|  | info->cpu_clk = cpu_clk; | 
|  | info->inter_clk = inter_clk; | 
|  |  | 
|  | /* | 
|  | * If SRAM regulator is present, software "voltage tracking" is needed | 
|  | * for this CPU power domain. | 
|  | */ | 
|  | info->need_voltage_tracking = !IS_ERR(sram_reg); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_free_opp_table: | 
|  | dev_pm_opp_of_remove_table(cpu_dev); | 
|  |  | 
|  | out_free_resources: | 
|  | if (!IS_ERR(proc_reg)) | 
|  | regulator_put(proc_reg); | 
|  | if (!IS_ERR(sram_reg)) | 
|  | regulator_put(sram_reg); | 
|  | if (!IS_ERR(cpu_clk)) | 
|  | clk_put(cpu_clk); | 
|  | if (!IS_ERR(inter_clk)) | 
|  | clk_put(inter_clk); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void mtk_cpu_dvfs_info_release(struct mtk_cpu_dvfs_info *info) | 
|  | { | 
|  | if (!IS_ERR(info->proc_reg)) | 
|  | regulator_put(info->proc_reg); | 
|  | if (!IS_ERR(info->sram_reg)) | 
|  | regulator_put(info->sram_reg); | 
|  | if (!IS_ERR(info->cpu_clk)) | 
|  | clk_put(info->cpu_clk); | 
|  | if (!IS_ERR(info->inter_clk)) | 
|  | clk_put(info->inter_clk); | 
|  |  | 
|  | dev_pm_opp_of_remove_table(info->cpu_dev); | 
|  | } | 
|  |  | 
|  | static int mtk_cpufreq_init(struct cpufreq_policy *policy) | 
|  | { | 
|  | struct mtk_cpu_dvfs_info *info; | 
|  | struct cpufreq_frequency_table *freq_table; | 
|  | int ret; | 
|  |  | 
|  | info = kzalloc(sizeof(*info), GFP_KERNEL); | 
|  | if (!info) | 
|  | return -ENOMEM; | 
|  |  | 
|  | ret = mtk_cpu_dvfs_info_init(info, policy->cpu); | 
|  | if (ret) { | 
|  | pr_err("%s failed to initialize dvfs info for cpu%d\n", | 
|  | __func__, policy->cpu); | 
|  | goto out_free_dvfs_info; | 
|  | } | 
|  |  | 
|  | ret = dev_pm_opp_init_cpufreq_table(info->cpu_dev, &freq_table); | 
|  | if (ret) { | 
|  | pr_err("failed to init cpufreq table for cpu%d: %d\n", | 
|  | policy->cpu, ret); | 
|  | goto out_release_dvfs_info; | 
|  | } | 
|  |  | 
|  | ret = cpufreq_table_validate_and_show(policy, freq_table); | 
|  | if (ret) { | 
|  | pr_err("%s: invalid frequency table: %d\n", __func__, ret); | 
|  | goto out_free_cpufreq_table; | 
|  | } | 
|  |  | 
|  | /* CPUs in the same cluster share a clock and power domain. */ | 
|  | cpumask_copy(policy->cpus, &cpu_topology[policy->cpu].core_sibling); | 
|  | policy->driver_data = info; | 
|  | policy->clk = info->cpu_clk; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_free_cpufreq_table: | 
|  | dev_pm_opp_free_cpufreq_table(info->cpu_dev, &freq_table); | 
|  |  | 
|  | out_release_dvfs_info: | 
|  | mtk_cpu_dvfs_info_release(info); | 
|  |  | 
|  | out_free_dvfs_info: | 
|  | kfree(info); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int mtk_cpufreq_exit(struct cpufreq_policy *policy) | 
|  | { | 
|  | struct mtk_cpu_dvfs_info *info = policy->driver_data; | 
|  |  | 
|  | cpufreq_cooling_unregister(info->cdev); | 
|  | dev_pm_opp_free_cpufreq_table(info->cpu_dev, &policy->freq_table); | 
|  | mtk_cpu_dvfs_info_release(info); | 
|  | kfree(info); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct cpufreq_driver mt8173_cpufreq_driver = { | 
|  | .flags = CPUFREQ_STICKY | CPUFREQ_NEED_INITIAL_FREQ_CHECK, | 
|  | .verify = cpufreq_generic_frequency_table_verify, | 
|  | .target_index = mtk_cpufreq_set_target, | 
|  | .get = cpufreq_generic_get, | 
|  | .init = mtk_cpufreq_init, | 
|  | .exit = mtk_cpufreq_exit, | 
|  | .ready = mtk_cpufreq_ready, | 
|  | .name = "mtk-cpufreq", | 
|  | .attr = cpufreq_generic_attr, | 
|  | }; | 
|  |  | 
|  | static int mt8173_cpufreq_probe(struct platform_device *pdev) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = cpufreq_register_driver(&mt8173_cpufreq_driver); | 
|  | if (ret) | 
|  | pr_err("failed to register mtk cpufreq driver\n"); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static struct platform_driver mt8173_cpufreq_platdrv = { | 
|  | .driver = { | 
|  | .name	= "mt8173-cpufreq", | 
|  | }, | 
|  | .probe		= mt8173_cpufreq_probe, | 
|  | }; | 
|  |  | 
|  | static int mt8173_cpufreq_driver_init(void) | 
|  | { | 
|  | struct platform_device *pdev; | 
|  | int err; | 
|  |  | 
|  | if (!of_machine_is_compatible("mediatek,mt8173")) | 
|  | return -ENODEV; | 
|  |  | 
|  | err = platform_driver_register(&mt8173_cpufreq_platdrv); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | /* | 
|  | * Since there's no place to hold device registration code and no | 
|  | * device tree based way to match cpufreq driver yet, both the driver | 
|  | * and the device registration codes are put here to handle defer | 
|  | * probing. | 
|  | */ | 
|  | pdev = platform_device_register_simple("mt8173-cpufreq", -1, NULL, 0); | 
|  | if (IS_ERR(pdev)) { | 
|  | pr_err("failed to register mtk-cpufreq platform device\n"); | 
|  | return PTR_ERR(pdev); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | device_initcall(mt8173_cpufreq_driver_init); |