|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | *	linux/mm/filemap.c | 
|  | * | 
|  | * Copyright (C) 1994-1999  Linus Torvalds | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * This file handles the generic file mmap semantics used by | 
|  | * most "normal" filesystems (but you don't /have/ to use this: | 
|  | * the NFS filesystem used to do this differently, for example) | 
|  | */ | 
|  | #include <linux/export.h> | 
|  | #include <linux/compiler.h> | 
|  | #include <linux/dax.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/sched/signal.h> | 
|  | #include <linux/uaccess.h> | 
|  | #include <linux/capability.h> | 
|  | #include <linux/kernel_stat.h> | 
|  | #include <linux/gfp.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/mman.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/file.h> | 
|  | #include <linux/uio.h> | 
|  | #include <linux/error-injection.h> | 
|  | #include <linux/hash.h> | 
|  | #include <linux/writeback.h> | 
|  | #include <linux/backing-dev.h> | 
|  | #include <linux/pagevec.h> | 
|  | #include <linux/security.h> | 
|  | #include <linux/cpuset.h> | 
|  | #include <linux/hugetlb.h> | 
|  | #include <linux/memcontrol.h> | 
|  | #include <linux/cleancache.h> | 
|  | #include <linux/shmem_fs.h> | 
|  | #include <linux/rmap.h> | 
|  | #include <linux/delayacct.h> | 
|  | #include <linux/psi.h> | 
|  | #include <linux/ramfs.h> | 
|  | #include <linux/page_idle.h> | 
|  | #include <asm/pgalloc.h> | 
|  | #include <asm/tlbflush.h> | 
|  | #include "internal.h" | 
|  |  | 
|  | #define CREATE_TRACE_POINTS | 
|  | #include <trace/events/filemap.h> | 
|  |  | 
|  | /* | 
|  | * FIXME: remove all knowledge of the buffer layer from the core VM | 
|  | */ | 
|  | #include <linux/buffer_head.h> /* for try_to_free_buffers */ | 
|  |  | 
|  | #include <asm/mman.h> | 
|  |  | 
|  | /* | 
|  | * Shared mappings implemented 30.11.1994. It's not fully working yet, | 
|  | * though. | 
|  | * | 
|  | * Shared mappings now work. 15.8.1995  Bruno. | 
|  | * | 
|  | * finished 'unifying' the page and buffer cache and SMP-threaded the | 
|  | * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> | 
|  | * | 
|  | * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Lock ordering: | 
|  | * | 
|  | *  ->i_mmap_rwsem		(truncate_pagecache) | 
|  | *    ->private_lock		(__free_pte->__set_page_dirty_buffers) | 
|  | *      ->swap_lock		(exclusive_swap_page, others) | 
|  | *        ->i_pages lock | 
|  | * | 
|  | *  ->i_rwsem | 
|  | *    ->invalidate_lock		(acquired by fs in truncate path) | 
|  | *      ->i_mmap_rwsem		(truncate->unmap_mapping_range) | 
|  | * | 
|  | *  ->mmap_lock | 
|  | *    ->i_mmap_rwsem | 
|  | *      ->page_table_lock or pte_lock	(various, mainly in memory.c) | 
|  | *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock) | 
|  | * | 
|  | *  ->mmap_lock | 
|  | *    ->invalidate_lock		(filemap_fault) | 
|  | *      ->lock_page		(filemap_fault, access_process_vm) | 
|  | * | 
|  | *  ->i_rwsem			(generic_perform_write) | 
|  | *    ->mmap_lock		(fault_in_readable->do_page_fault) | 
|  | * | 
|  | *  bdi->wb.list_lock | 
|  | *    sb_lock			(fs/fs-writeback.c) | 
|  | *    ->i_pages lock		(__sync_single_inode) | 
|  | * | 
|  | *  ->i_mmap_rwsem | 
|  | *    ->anon_vma.lock		(vma_adjust) | 
|  | * | 
|  | *  ->anon_vma.lock | 
|  | *    ->page_table_lock or pte_lock	(anon_vma_prepare and various) | 
|  | * | 
|  | *  ->page_table_lock or pte_lock | 
|  | *    ->swap_lock		(try_to_unmap_one) | 
|  | *    ->private_lock		(try_to_unmap_one) | 
|  | *    ->i_pages lock		(try_to_unmap_one) | 
|  | *    ->lruvec->lru_lock	(follow_page->mark_page_accessed) | 
|  | *    ->lruvec->lru_lock	(check_pte_range->isolate_lru_page) | 
|  | *    ->private_lock		(page_remove_rmap->set_page_dirty) | 
|  | *    ->i_pages lock		(page_remove_rmap->set_page_dirty) | 
|  | *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty) | 
|  | *    ->inode->i_lock		(page_remove_rmap->set_page_dirty) | 
|  | *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg) | 
|  | *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty) | 
|  | *    ->inode->i_lock		(zap_pte_range->set_page_dirty) | 
|  | *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers) | 
|  | * | 
|  | * ->i_mmap_rwsem | 
|  | *   ->tasklist_lock            (memory_failure, collect_procs_ao) | 
|  | */ | 
|  |  | 
|  | static void page_cache_delete(struct address_space *mapping, | 
|  | struct page *page, void *shadow) | 
|  | { | 
|  | XA_STATE(xas, &mapping->i_pages, page->index); | 
|  | unsigned int nr = 1; | 
|  |  | 
|  | mapping_set_update(&xas, mapping); | 
|  |  | 
|  | /* hugetlb pages are represented by a single entry in the xarray */ | 
|  | if (!PageHuge(page)) { | 
|  | xas_set_order(&xas, page->index, compound_order(page)); | 
|  | nr = compound_nr(page); | 
|  | } | 
|  |  | 
|  | VM_BUG_ON_PAGE(!PageLocked(page), page); | 
|  | VM_BUG_ON_PAGE(PageTail(page), page); | 
|  | VM_BUG_ON_PAGE(nr != 1 && shadow, page); | 
|  |  | 
|  | xas_store(&xas, shadow); | 
|  | xas_init_marks(&xas); | 
|  |  | 
|  | page->mapping = NULL; | 
|  | /* Leave page->index set: truncation lookup relies upon it */ | 
|  | mapping->nrpages -= nr; | 
|  | } | 
|  |  | 
|  | static void unaccount_page_cache_page(struct address_space *mapping, | 
|  | struct page *page) | 
|  | { | 
|  | int nr; | 
|  |  | 
|  | /* | 
|  | * if we're uptodate, flush out into the cleancache, otherwise | 
|  | * invalidate any existing cleancache entries.  We can't leave | 
|  | * stale data around in the cleancache once our page is gone | 
|  | */ | 
|  | if (PageUptodate(page) && PageMappedToDisk(page)) | 
|  | cleancache_put_page(page); | 
|  | else | 
|  | cleancache_invalidate_page(mapping, page); | 
|  |  | 
|  | VM_BUG_ON_PAGE(PageTail(page), page); | 
|  | VM_BUG_ON_PAGE(page_mapped(page), page); | 
|  | if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) { | 
|  | int mapcount; | 
|  |  | 
|  | pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n", | 
|  | current->comm, page_to_pfn(page)); | 
|  | dump_page(page, "still mapped when deleted"); | 
|  | dump_stack(); | 
|  | add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); | 
|  |  | 
|  | mapcount = page_mapcount(page); | 
|  | if (mapping_exiting(mapping) && | 
|  | page_count(page) >= mapcount + 2) { | 
|  | /* | 
|  | * All vmas have already been torn down, so it's | 
|  | * a good bet that actually the page is unmapped, | 
|  | * and we'd prefer not to leak it: if we're wrong, | 
|  | * some other bad page check should catch it later. | 
|  | */ | 
|  | page_mapcount_reset(page); | 
|  | page_ref_sub(page, mapcount); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* hugetlb pages do not participate in page cache accounting. */ | 
|  | if (PageHuge(page)) | 
|  | return; | 
|  |  | 
|  | nr = thp_nr_pages(page); | 
|  |  | 
|  | __mod_lruvec_page_state(page, NR_FILE_PAGES, -nr); | 
|  | if (PageSwapBacked(page)) { | 
|  | __mod_lruvec_page_state(page, NR_SHMEM, -nr); | 
|  | if (PageTransHuge(page)) | 
|  | __mod_lruvec_page_state(page, NR_SHMEM_THPS, -nr); | 
|  | } else if (PageTransHuge(page)) { | 
|  | __mod_lruvec_page_state(page, NR_FILE_THPS, -nr); | 
|  | filemap_nr_thps_dec(mapping); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * At this point page must be either written or cleaned by | 
|  | * truncate.  Dirty page here signals a bug and loss of | 
|  | * unwritten data. | 
|  | * | 
|  | * This fixes dirty accounting after removing the page entirely | 
|  | * but leaves PageDirty set: it has no effect for truncated | 
|  | * page and anyway will be cleared before returning page into | 
|  | * buddy allocator. | 
|  | */ | 
|  | if (WARN_ON_ONCE(PageDirty(page))) | 
|  | account_page_cleaned(page, mapping, inode_to_wb(mapping->host)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Delete a page from the page cache and free it. Caller has to make | 
|  | * sure the page is locked and that nobody else uses it - or that usage | 
|  | * is safe.  The caller must hold the i_pages lock. | 
|  | */ | 
|  | void __delete_from_page_cache(struct page *page, void *shadow) | 
|  | { | 
|  | struct address_space *mapping = page->mapping; | 
|  |  | 
|  | trace_mm_filemap_delete_from_page_cache(page); | 
|  |  | 
|  | unaccount_page_cache_page(mapping, page); | 
|  | page_cache_delete(mapping, page, shadow); | 
|  | } | 
|  |  | 
|  | static void page_cache_free_page(struct address_space *mapping, | 
|  | struct page *page) | 
|  | { | 
|  | void (*freepage)(struct page *); | 
|  |  | 
|  | freepage = mapping->a_ops->freepage; | 
|  | if (freepage) | 
|  | freepage(page); | 
|  |  | 
|  | if (PageTransHuge(page) && !PageHuge(page)) { | 
|  | page_ref_sub(page, thp_nr_pages(page)); | 
|  | VM_BUG_ON_PAGE(page_count(page) <= 0, page); | 
|  | } else { | 
|  | put_page(page); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * delete_from_page_cache - delete page from page cache | 
|  | * @page: the page which the kernel is trying to remove from page cache | 
|  | * | 
|  | * This must be called only on pages that have been verified to be in the page | 
|  | * cache and locked.  It will never put the page into the free list, the caller | 
|  | * has a reference on the page. | 
|  | */ | 
|  | void delete_from_page_cache(struct page *page) | 
|  | { | 
|  | struct address_space *mapping = page_mapping(page); | 
|  |  | 
|  | BUG_ON(!PageLocked(page)); | 
|  | spin_lock(&mapping->host->i_lock); | 
|  | xa_lock_irq(&mapping->i_pages); | 
|  | __delete_from_page_cache(page, NULL); | 
|  | xa_unlock_irq(&mapping->i_pages); | 
|  | if (mapping_shrinkable(mapping)) | 
|  | inode_add_lru(mapping->host); | 
|  | spin_unlock(&mapping->host->i_lock); | 
|  |  | 
|  | page_cache_free_page(mapping, page); | 
|  | } | 
|  | EXPORT_SYMBOL(delete_from_page_cache); | 
|  |  | 
|  | /* | 
|  | * page_cache_delete_batch - delete several pages from page cache | 
|  | * @mapping: the mapping to which pages belong | 
|  | * @pvec: pagevec with pages to delete | 
|  | * | 
|  | * The function walks over mapping->i_pages and removes pages passed in @pvec | 
|  | * from the mapping. The function expects @pvec to be sorted by page index | 
|  | * and is optimised for it to be dense. | 
|  | * It tolerates holes in @pvec (mapping entries at those indices are not | 
|  | * modified). The function expects only THP head pages to be present in the | 
|  | * @pvec. | 
|  | * | 
|  | * The function expects the i_pages lock to be held. | 
|  | */ | 
|  | static void page_cache_delete_batch(struct address_space *mapping, | 
|  | struct pagevec *pvec) | 
|  | { | 
|  | XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index); | 
|  | int total_pages = 0; | 
|  | int i = 0; | 
|  | struct page *page; | 
|  |  | 
|  | mapping_set_update(&xas, mapping); | 
|  | xas_for_each(&xas, page, ULONG_MAX) { | 
|  | if (i >= pagevec_count(pvec)) | 
|  | break; | 
|  |  | 
|  | /* A swap/dax/shadow entry got inserted? Skip it. */ | 
|  | if (xa_is_value(page)) | 
|  | continue; | 
|  | /* | 
|  | * A page got inserted in our range? Skip it. We have our | 
|  | * pages locked so they are protected from being removed. | 
|  | * If we see a page whose index is higher than ours, it | 
|  | * means our page has been removed, which shouldn't be | 
|  | * possible because we're holding the PageLock. | 
|  | */ | 
|  | if (page != pvec->pages[i]) { | 
|  | VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index, | 
|  | page); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | WARN_ON_ONCE(!PageLocked(page)); | 
|  |  | 
|  | if (page->index == xas.xa_index) | 
|  | page->mapping = NULL; | 
|  | /* Leave page->index set: truncation lookup relies on it */ | 
|  |  | 
|  | /* | 
|  | * Move to the next page in the vector if this is a regular | 
|  | * page or the index is of the last sub-page of this compound | 
|  | * page. | 
|  | */ | 
|  | if (page->index + compound_nr(page) - 1 == xas.xa_index) | 
|  | i++; | 
|  | xas_store(&xas, NULL); | 
|  | total_pages++; | 
|  | } | 
|  | mapping->nrpages -= total_pages; | 
|  | } | 
|  |  | 
|  | void delete_from_page_cache_batch(struct address_space *mapping, | 
|  | struct pagevec *pvec) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (!pagevec_count(pvec)) | 
|  | return; | 
|  |  | 
|  | spin_lock(&mapping->host->i_lock); | 
|  | xa_lock_irq(&mapping->i_pages); | 
|  | for (i = 0; i < pagevec_count(pvec); i++) { | 
|  | trace_mm_filemap_delete_from_page_cache(pvec->pages[i]); | 
|  |  | 
|  | unaccount_page_cache_page(mapping, pvec->pages[i]); | 
|  | } | 
|  | page_cache_delete_batch(mapping, pvec); | 
|  | xa_unlock_irq(&mapping->i_pages); | 
|  | if (mapping_shrinkable(mapping)) | 
|  | inode_add_lru(mapping->host); | 
|  | spin_unlock(&mapping->host->i_lock); | 
|  |  | 
|  | for (i = 0; i < pagevec_count(pvec); i++) | 
|  | page_cache_free_page(mapping, pvec->pages[i]); | 
|  | } | 
|  |  | 
|  | int filemap_check_errors(struct address_space *mapping) | 
|  | { | 
|  | int ret = 0; | 
|  | /* Check for outstanding write errors */ | 
|  | if (test_bit(AS_ENOSPC, &mapping->flags) && | 
|  | test_and_clear_bit(AS_ENOSPC, &mapping->flags)) | 
|  | ret = -ENOSPC; | 
|  | if (test_bit(AS_EIO, &mapping->flags) && | 
|  | test_and_clear_bit(AS_EIO, &mapping->flags)) | 
|  | ret = -EIO; | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(filemap_check_errors); | 
|  |  | 
|  | static int filemap_check_and_keep_errors(struct address_space *mapping) | 
|  | { | 
|  | /* Check for outstanding write errors */ | 
|  | if (test_bit(AS_EIO, &mapping->flags)) | 
|  | return -EIO; | 
|  | if (test_bit(AS_ENOSPC, &mapping->flags)) | 
|  | return -ENOSPC; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range | 
|  | * @mapping:	address space structure to write | 
|  | * @wbc:	the writeback_control controlling the writeout | 
|  | * | 
|  | * Call writepages on the mapping using the provided wbc to control the | 
|  | * writeout. | 
|  | * | 
|  | * Return: %0 on success, negative error code otherwise. | 
|  | */ | 
|  | int filemap_fdatawrite_wbc(struct address_space *mapping, | 
|  | struct writeback_control *wbc) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (!mapping_can_writeback(mapping) || | 
|  | !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) | 
|  | return 0; | 
|  |  | 
|  | wbc_attach_fdatawrite_inode(wbc, mapping->host); | 
|  | ret = do_writepages(mapping, wbc); | 
|  | wbc_detach_inode(wbc); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(filemap_fdatawrite_wbc); | 
|  |  | 
|  | /** | 
|  | * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range | 
|  | * @mapping:	address space structure to write | 
|  | * @start:	offset in bytes where the range starts | 
|  | * @end:	offset in bytes where the range ends (inclusive) | 
|  | * @sync_mode:	enable synchronous operation | 
|  | * | 
|  | * Start writeback against all of a mapping's dirty pages that lie | 
|  | * within the byte offsets <start, end> inclusive. | 
|  | * | 
|  | * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as | 
|  | * opposed to a regular memory cleansing writeback.  The difference between | 
|  | * these two operations is that if a dirty page/buffer is encountered, it must | 
|  | * be waited upon, and not just skipped over. | 
|  | * | 
|  | * Return: %0 on success, negative error code otherwise. | 
|  | */ | 
|  | int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, | 
|  | loff_t end, int sync_mode) | 
|  | { | 
|  | struct writeback_control wbc = { | 
|  | .sync_mode = sync_mode, | 
|  | .nr_to_write = LONG_MAX, | 
|  | .range_start = start, | 
|  | .range_end = end, | 
|  | }; | 
|  |  | 
|  | return filemap_fdatawrite_wbc(mapping, &wbc); | 
|  | } | 
|  |  | 
|  | static inline int __filemap_fdatawrite(struct address_space *mapping, | 
|  | int sync_mode) | 
|  | { | 
|  | return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); | 
|  | } | 
|  |  | 
|  | int filemap_fdatawrite(struct address_space *mapping) | 
|  | { | 
|  | return __filemap_fdatawrite(mapping, WB_SYNC_ALL); | 
|  | } | 
|  | EXPORT_SYMBOL(filemap_fdatawrite); | 
|  |  | 
|  | int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, | 
|  | loff_t end) | 
|  | { | 
|  | return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); | 
|  | } | 
|  | EXPORT_SYMBOL(filemap_fdatawrite_range); | 
|  |  | 
|  | /** | 
|  | * filemap_flush - mostly a non-blocking flush | 
|  | * @mapping:	target address_space | 
|  | * | 
|  | * This is a mostly non-blocking flush.  Not suitable for data-integrity | 
|  | * purposes - I/O may not be started against all dirty pages. | 
|  | * | 
|  | * Return: %0 on success, negative error code otherwise. | 
|  | */ | 
|  | int filemap_flush(struct address_space *mapping) | 
|  | { | 
|  | return __filemap_fdatawrite(mapping, WB_SYNC_NONE); | 
|  | } | 
|  | EXPORT_SYMBOL(filemap_flush); | 
|  |  | 
|  | /** | 
|  | * filemap_range_has_page - check if a page exists in range. | 
|  | * @mapping:           address space within which to check | 
|  | * @start_byte:        offset in bytes where the range starts | 
|  | * @end_byte:          offset in bytes where the range ends (inclusive) | 
|  | * | 
|  | * Find at least one page in the range supplied, usually used to check if | 
|  | * direct writing in this range will trigger a writeback. | 
|  | * | 
|  | * Return: %true if at least one page exists in the specified range, | 
|  | * %false otherwise. | 
|  | */ | 
|  | bool filemap_range_has_page(struct address_space *mapping, | 
|  | loff_t start_byte, loff_t end_byte) | 
|  | { | 
|  | struct page *page; | 
|  | XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); | 
|  | pgoff_t max = end_byte >> PAGE_SHIFT; | 
|  |  | 
|  | if (end_byte < start_byte) | 
|  | return false; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | for (;;) { | 
|  | page = xas_find(&xas, max); | 
|  | if (xas_retry(&xas, page)) | 
|  | continue; | 
|  | /* Shadow entries don't count */ | 
|  | if (xa_is_value(page)) | 
|  | continue; | 
|  | /* | 
|  | * We don't need to try to pin this page; we're about to | 
|  | * release the RCU lock anyway.  It is enough to know that | 
|  | * there was a page here recently. | 
|  | */ | 
|  | break; | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return page != NULL; | 
|  | } | 
|  | EXPORT_SYMBOL(filemap_range_has_page); | 
|  |  | 
|  | static void __filemap_fdatawait_range(struct address_space *mapping, | 
|  | loff_t start_byte, loff_t end_byte) | 
|  | { | 
|  | pgoff_t index = start_byte >> PAGE_SHIFT; | 
|  | pgoff_t end = end_byte >> PAGE_SHIFT; | 
|  | struct pagevec pvec; | 
|  | int nr_pages; | 
|  |  | 
|  | if (end_byte < start_byte) | 
|  | return; | 
|  |  | 
|  | pagevec_init(&pvec); | 
|  | while (index <= end) { | 
|  | unsigned i; | 
|  |  | 
|  | nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, | 
|  | end, PAGECACHE_TAG_WRITEBACK); | 
|  | if (!nr_pages) | 
|  | break; | 
|  |  | 
|  | for (i = 0; i < nr_pages; i++) { | 
|  | struct page *page = pvec.pages[i]; | 
|  |  | 
|  | wait_on_page_writeback(page); | 
|  | ClearPageError(page); | 
|  | } | 
|  | pagevec_release(&pvec); | 
|  | cond_resched(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * filemap_fdatawait_range - wait for writeback to complete | 
|  | * @mapping:		address space structure to wait for | 
|  | * @start_byte:		offset in bytes where the range starts | 
|  | * @end_byte:		offset in bytes where the range ends (inclusive) | 
|  | * | 
|  | * Walk the list of under-writeback pages of the given address space | 
|  | * in the given range and wait for all of them.  Check error status of | 
|  | * the address space and return it. | 
|  | * | 
|  | * Since the error status of the address space is cleared by this function, | 
|  | * callers are responsible for checking the return value and handling and/or | 
|  | * reporting the error. | 
|  | * | 
|  | * Return: error status of the address space. | 
|  | */ | 
|  | int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, | 
|  | loff_t end_byte) | 
|  | { | 
|  | __filemap_fdatawait_range(mapping, start_byte, end_byte); | 
|  | return filemap_check_errors(mapping); | 
|  | } | 
|  | EXPORT_SYMBOL(filemap_fdatawait_range); | 
|  |  | 
|  | /** | 
|  | * filemap_fdatawait_range_keep_errors - wait for writeback to complete | 
|  | * @mapping:		address space structure to wait for | 
|  | * @start_byte:		offset in bytes where the range starts | 
|  | * @end_byte:		offset in bytes where the range ends (inclusive) | 
|  | * | 
|  | * Walk the list of under-writeback pages of the given address space in the | 
|  | * given range and wait for all of them.  Unlike filemap_fdatawait_range(), | 
|  | * this function does not clear error status of the address space. | 
|  | * | 
|  | * Use this function if callers don't handle errors themselves.  Expected | 
|  | * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), | 
|  | * fsfreeze(8) | 
|  | */ | 
|  | int filemap_fdatawait_range_keep_errors(struct address_space *mapping, | 
|  | loff_t start_byte, loff_t end_byte) | 
|  | { | 
|  | __filemap_fdatawait_range(mapping, start_byte, end_byte); | 
|  | return filemap_check_and_keep_errors(mapping); | 
|  | } | 
|  | EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors); | 
|  |  | 
|  | /** | 
|  | * file_fdatawait_range - wait for writeback to complete | 
|  | * @file:		file pointing to address space structure to wait for | 
|  | * @start_byte:		offset in bytes where the range starts | 
|  | * @end_byte:		offset in bytes where the range ends (inclusive) | 
|  | * | 
|  | * Walk the list of under-writeback pages of the address space that file | 
|  | * refers to, in the given range and wait for all of them.  Check error | 
|  | * status of the address space vs. the file->f_wb_err cursor and return it. | 
|  | * | 
|  | * Since the error status of the file is advanced by this function, | 
|  | * callers are responsible for checking the return value and handling and/or | 
|  | * reporting the error. | 
|  | * | 
|  | * Return: error status of the address space vs. the file->f_wb_err cursor. | 
|  | */ | 
|  | int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte) | 
|  | { | 
|  | struct address_space *mapping = file->f_mapping; | 
|  |  | 
|  | __filemap_fdatawait_range(mapping, start_byte, end_byte); | 
|  | return file_check_and_advance_wb_err(file); | 
|  | } | 
|  | EXPORT_SYMBOL(file_fdatawait_range); | 
|  |  | 
|  | /** | 
|  | * filemap_fdatawait_keep_errors - wait for writeback without clearing errors | 
|  | * @mapping: address space structure to wait for | 
|  | * | 
|  | * Walk the list of under-writeback pages of the given address space | 
|  | * and wait for all of them.  Unlike filemap_fdatawait(), this function | 
|  | * does not clear error status of the address space. | 
|  | * | 
|  | * Use this function if callers don't handle errors themselves.  Expected | 
|  | * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), | 
|  | * fsfreeze(8) | 
|  | * | 
|  | * Return: error status of the address space. | 
|  | */ | 
|  | int filemap_fdatawait_keep_errors(struct address_space *mapping) | 
|  | { | 
|  | __filemap_fdatawait_range(mapping, 0, LLONG_MAX); | 
|  | return filemap_check_and_keep_errors(mapping); | 
|  | } | 
|  | EXPORT_SYMBOL(filemap_fdatawait_keep_errors); | 
|  |  | 
|  | /* Returns true if writeback might be needed or already in progress. */ | 
|  | static bool mapping_needs_writeback(struct address_space *mapping) | 
|  | { | 
|  | return mapping->nrpages; | 
|  | } | 
|  |  | 
|  | static bool filemap_range_has_writeback(struct address_space *mapping, | 
|  | loff_t start_byte, loff_t end_byte) | 
|  | { | 
|  | XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); | 
|  | pgoff_t max = end_byte >> PAGE_SHIFT; | 
|  | struct page *page; | 
|  |  | 
|  | if (end_byte < start_byte) | 
|  | return false; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | xas_for_each(&xas, page, max) { | 
|  | if (xas_retry(&xas, page)) | 
|  | continue; | 
|  | if (xa_is_value(page)) | 
|  | continue; | 
|  | if (PageDirty(page) || PageLocked(page) || PageWriteback(page)) | 
|  | break; | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | return page != NULL; | 
|  |  | 
|  | } | 
|  |  | 
|  | /** | 
|  | * filemap_range_needs_writeback - check if range potentially needs writeback | 
|  | * @mapping:           address space within which to check | 
|  | * @start_byte:        offset in bytes where the range starts | 
|  | * @end_byte:          offset in bytes where the range ends (inclusive) | 
|  | * | 
|  | * Find at least one page in the range supplied, usually used to check if | 
|  | * direct writing in this range will trigger a writeback. Used by O_DIRECT | 
|  | * read/write with IOCB_NOWAIT, to see if the caller needs to do | 
|  | * filemap_write_and_wait_range() before proceeding. | 
|  | * | 
|  | * Return: %true if the caller should do filemap_write_and_wait_range() before | 
|  | * doing O_DIRECT to a page in this range, %false otherwise. | 
|  | */ | 
|  | bool filemap_range_needs_writeback(struct address_space *mapping, | 
|  | loff_t start_byte, loff_t end_byte) | 
|  | { | 
|  | if (!mapping_needs_writeback(mapping)) | 
|  | return false; | 
|  | if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && | 
|  | !mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) | 
|  | return false; | 
|  | return filemap_range_has_writeback(mapping, start_byte, end_byte); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(filemap_range_needs_writeback); | 
|  |  | 
|  | /** | 
|  | * filemap_write_and_wait_range - write out & wait on a file range | 
|  | * @mapping:	the address_space for the pages | 
|  | * @lstart:	offset in bytes where the range starts | 
|  | * @lend:	offset in bytes where the range ends (inclusive) | 
|  | * | 
|  | * Write out and wait upon file offsets lstart->lend, inclusive. | 
|  | * | 
|  | * Note that @lend is inclusive (describes the last byte to be written) so | 
|  | * that this function can be used to write to the very end-of-file (end = -1). | 
|  | * | 
|  | * Return: error status of the address space. | 
|  | */ | 
|  | int filemap_write_and_wait_range(struct address_space *mapping, | 
|  | loff_t lstart, loff_t lend) | 
|  | { | 
|  | int err = 0; | 
|  |  | 
|  | if (mapping_needs_writeback(mapping)) { | 
|  | err = __filemap_fdatawrite_range(mapping, lstart, lend, | 
|  | WB_SYNC_ALL); | 
|  | /* | 
|  | * Even if the above returned error, the pages may be | 
|  | * written partially (e.g. -ENOSPC), so we wait for it. | 
|  | * But the -EIO is special case, it may indicate the worst | 
|  | * thing (e.g. bug) happened, so we avoid waiting for it. | 
|  | */ | 
|  | if (err != -EIO) { | 
|  | int err2 = filemap_fdatawait_range(mapping, | 
|  | lstart, lend); | 
|  | if (!err) | 
|  | err = err2; | 
|  | } else { | 
|  | /* Clear any previously stored errors */ | 
|  | filemap_check_errors(mapping); | 
|  | } | 
|  | } else { | 
|  | err = filemap_check_errors(mapping); | 
|  | } | 
|  | return err; | 
|  | } | 
|  | EXPORT_SYMBOL(filemap_write_and_wait_range); | 
|  |  | 
|  | void __filemap_set_wb_err(struct address_space *mapping, int err) | 
|  | { | 
|  | errseq_t eseq = errseq_set(&mapping->wb_err, err); | 
|  |  | 
|  | trace_filemap_set_wb_err(mapping, eseq); | 
|  | } | 
|  | EXPORT_SYMBOL(__filemap_set_wb_err); | 
|  |  | 
|  | /** | 
|  | * file_check_and_advance_wb_err - report wb error (if any) that was previously | 
|  | * 				   and advance wb_err to current one | 
|  | * @file: struct file on which the error is being reported | 
|  | * | 
|  | * When userland calls fsync (or something like nfsd does the equivalent), we | 
|  | * want to report any writeback errors that occurred since the last fsync (or | 
|  | * since the file was opened if there haven't been any). | 
|  | * | 
|  | * Grab the wb_err from the mapping. If it matches what we have in the file, | 
|  | * then just quickly return 0. The file is all caught up. | 
|  | * | 
|  | * If it doesn't match, then take the mapping value, set the "seen" flag in | 
|  | * it and try to swap it into place. If it works, or another task beat us | 
|  | * to it with the new value, then update the f_wb_err and return the error | 
|  | * portion. The error at this point must be reported via proper channels | 
|  | * (a'la fsync, or NFS COMMIT operation, etc.). | 
|  | * | 
|  | * While we handle mapping->wb_err with atomic operations, the f_wb_err | 
|  | * value is protected by the f_lock since we must ensure that it reflects | 
|  | * the latest value swapped in for this file descriptor. | 
|  | * | 
|  | * Return: %0 on success, negative error code otherwise. | 
|  | */ | 
|  | int file_check_and_advance_wb_err(struct file *file) | 
|  | { | 
|  | int err = 0; | 
|  | errseq_t old = READ_ONCE(file->f_wb_err); | 
|  | struct address_space *mapping = file->f_mapping; | 
|  |  | 
|  | /* Locklessly handle the common case where nothing has changed */ | 
|  | if (errseq_check(&mapping->wb_err, old)) { | 
|  | /* Something changed, must use slow path */ | 
|  | spin_lock(&file->f_lock); | 
|  | old = file->f_wb_err; | 
|  | err = errseq_check_and_advance(&mapping->wb_err, | 
|  | &file->f_wb_err); | 
|  | trace_file_check_and_advance_wb_err(file, old); | 
|  | spin_unlock(&file->f_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We're mostly using this function as a drop in replacement for | 
|  | * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect | 
|  | * that the legacy code would have had on these flags. | 
|  | */ | 
|  | clear_bit(AS_EIO, &mapping->flags); | 
|  | clear_bit(AS_ENOSPC, &mapping->flags); | 
|  | return err; | 
|  | } | 
|  | EXPORT_SYMBOL(file_check_and_advance_wb_err); | 
|  |  | 
|  | /** | 
|  | * file_write_and_wait_range - write out & wait on a file range | 
|  | * @file:	file pointing to address_space with pages | 
|  | * @lstart:	offset in bytes where the range starts | 
|  | * @lend:	offset in bytes where the range ends (inclusive) | 
|  | * | 
|  | * Write out and wait upon file offsets lstart->lend, inclusive. | 
|  | * | 
|  | * Note that @lend is inclusive (describes the last byte to be written) so | 
|  | * that this function can be used to write to the very end-of-file (end = -1). | 
|  | * | 
|  | * After writing out and waiting on the data, we check and advance the | 
|  | * f_wb_err cursor to the latest value, and return any errors detected there. | 
|  | * | 
|  | * Return: %0 on success, negative error code otherwise. | 
|  | */ | 
|  | int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend) | 
|  | { | 
|  | int err = 0, err2; | 
|  | struct address_space *mapping = file->f_mapping; | 
|  |  | 
|  | if (mapping_needs_writeback(mapping)) { | 
|  | err = __filemap_fdatawrite_range(mapping, lstart, lend, | 
|  | WB_SYNC_ALL); | 
|  | /* See comment of filemap_write_and_wait() */ | 
|  | if (err != -EIO) | 
|  | __filemap_fdatawait_range(mapping, lstart, lend); | 
|  | } | 
|  | err2 = file_check_and_advance_wb_err(file); | 
|  | if (!err) | 
|  | err = err2; | 
|  | return err; | 
|  | } | 
|  | EXPORT_SYMBOL(file_write_and_wait_range); | 
|  |  | 
|  | /** | 
|  | * replace_page_cache_page - replace a pagecache page with a new one | 
|  | * @old:	page to be replaced | 
|  | * @new:	page to replace with | 
|  | * | 
|  | * This function replaces a page in the pagecache with a new one.  On | 
|  | * success it acquires the pagecache reference for the new page and | 
|  | * drops it for the old page.  Both the old and new pages must be | 
|  | * locked.  This function does not add the new page to the LRU, the | 
|  | * caller must do that. | 
|  | * | 
|  | * The remove + add is atomic.  This function cannot fail. | 
|  | */ | 
|  | void replace_page_cache_page(struct page *old, struct page *new) | 
|  | { | 
|  | struct folio *fold = page_folio(old); | 
|  | struct folio *fnew = page_folio(new); | 
|  | struct address_space *mapping = old->mapping; | 
|  | void (*freepage)(struct page *) = mapping->a_ops->freepage; | 
|  | pgoff_t offset = old->index; | 
|  | XA_STATE(xas, &mapping->i_pages, offset); | 
|  |  | 
|  | VM_BUG_ON_PAGE(!PageLocked(old), old); | 
|  | VM_BUG_ON_PAGE(!PageLocked(new), new); | 
|  | VM_BUG_ON_PAGE(new->mapping, new); | 
|  |  | 
|  | get_page(new); | 
|  | new->mapping = mapping; | 
|  | new->index = offset; | 
|  |  | 
|  | mem_cgroup_migrate(fold, fnew); | 
|  |  | 
|  | xas_lock_irq(&xas); | 
|  | xas_store(&xas, new); | 
|  |  | 
|  | old->mapping = NULL; | 
|  | /* hugetlb pages do not participate in page cache accounting. */ | 
|  | if (!PageHuge(old)) | 
|  | __dec_lruvec_page_state(old, NR_FILE_PAGES); | 
|  | if (!PageHuge(new)) | 
|  | __inc_lruvec_page_state(new, NR_FILE_PAGES); | 
|  | if (PageSwapBacked(old)) | 
|  | __dec_lruvec_page_state(old, NR_SHMEM); | 
|  | if (PageSwapBacked(new)) | 
|  | __inc_lruvec_page_state(new, NR_SHMEM); | 
|  | xas_unlock_irq(&xas); | 
|  | if (freepage) | 
|  | freepage(old); | 
|  | put_page(old); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(replace_page_cache_page); | 
|  |  | 
|  | noinline int __filemap_add_folio(struct address_space *mapping, | 
|  | struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp) | 
|  | { | 
|  | XA_STATE(xas, &mapping->i_pages, index); | 
|  | int huge = folio_test_hugetlb(folio); | 
|  | int error; | 
|  | bool charged = false; | 
|  |  | 
|  | VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); | 
|  | VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio); | 
|  | mapping_set_update(&xas, mapping); | 
|  |  | 
|  | folio_get(folio); | 
|  | folio->mapping = mapping; | 
|  | folio->index = index; | 
|  |  | 
|  | if (!huge) { | 
|  | error = mem_cgroup_charge(folio, NULL, gfp); | 
|  | VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio); | 
|  | if (error) | 
|  | goto error; | 
|  | charged = true; | 
|  | } | 
|  |  | 
|  | gfp &= GFP_RECLAIM_MASK; | 
|  |  | 
|  | do { | 
|  | unsigned int order = xa_get_order(xas.xa, xas.xa_index); | 
|  | void *entry, *old = NULL; | 
|  |  | 
|  | if (order > folio_order(folio)) | 
|  | xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index), | 
|  | order, gfp); | 
|  | xas_lock_irq(&xas); | 
|  | xas_for_each_conflict(&xas, entry) { | 
|  | old = entry; | 
|  | if (!xa_is_value(entry)) { | 
|  | xas_set_err(&xas, -EEXIST); | 
|  | goto unlock; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (old) { | 
|  | if (shadowp) | 
|  | *shadowp = old; | 
|  | /* entry may have been split before we acquired lock */ | 
|  | order = xa_get_order(xas.xa, xas.xa_index); | 
|  | if (order > folio_order(folio)) { | 
|  | xas_split(&xas, old, order); | 
|  | xas_reset(&xas); | 
|  | } | 
|  | } | 
|  |  | 
|  | xas_store(&xas, folio); | 
|  | if (xas_error(&xas)) | 
|  | goto unlock; | 
|  |  | 
|  | mapping->nrpages++; | 
|  |  | 
|  | /* hugetlb pages do not participate in page cache accounting */ | 
|  | if (!huge) | 
|  | __lruvec_stat_add_folio(folio, NR_FILE_PAGES); | 
|  | unlock: | 
|  | xas_unlock_irq(&xas); | 
|  | } while (xas_nomem(&xas, gfp)); | 
|  |  | 
|  | if (xas_error(&xas)) { | 
|  | error = xas_error(&xas); | 
|  | if (charged) | 
|  | mem_cgroup_uncharge(folio); | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | trace_mm_filemap_add_to_page_cache(&folio->page); | 
|  | return 0; | 
|  | error: | 
|  | folio->mapping = NULL; | 
|  | /* Leave page->index set: truncation relies upon it */ | 
|  | folio_put(folio); | 
|  | return error; | 
|  | } | 
|  | ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO); | 
|  |  | 
|  | /** | 
|  | * add_to_page_cache_locked - add a locked page to the pagecache | 
|  | * @page:	page to add | 
|  | * @mapping:	the page's address_space | 
|  | * @offset:	page index | 
|  | * @gfp_mask:	page allocation mode | 
|  | * | 
|  | * This function is used to add a page to the pagecache. It must be locked. | 
|  | * This function does not add the page to the LRU.  The caller must do that. | 
|  | * | 
|  | * Return: %0 on success, negative error code otherwise. | 
|  | */ | 
|  | int add_to_page_cache_locked(struct page *page, struct address_space *mapping, | 
|  | pgoff_t offset, gfp_t gfp_mask) | 
|  | { | 
|  | return __filemap_add_folio(mapping, page_folio(page), offset, | 
|  | gfp_mask, NULL); | 
|  | } | 
|  | EXPORT_SYMBOL(add_to_page_cache_locked); | 
|  |  | 
|  | int filemap_add_folio(struct address_space *mapping, struct folio *folio, | 
|  | pgoff_t index, gfp_t gfp) | 
|  | { | 
|  | void *shadow = NULL; | 
|  | int ret; | 
|  |  | 
|  | __folio_set_locked(folio); | 
|  | ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow); | 
|  | if (unlikely(ret)) | 
|  | __folio_clear_locked(folio); | 
|  | else { | 
|  | /* | 
|  | * The folio might have been evicted from cache only | 
|  | * recently, in which case it should be activated like | 
|  | * any other repeatedly accessed folio. | 
|  | * The exception is folios getting rewritten; evicting other | 
|  | * data from the working set, only to cache data that will | 
|  | * get overwritten with something else, is a waste of memory. | 
|  | */ | 
|  | WARN_ON_ONCE(folio_test_active(folio)); | 
|  | if (!(gfp & __GFP_WRITE) && shadow) | 
|  | workingset_refault(folio, shadow); | 
|  | folio_add_lru(folio); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(filemap_add_folio); | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order) | 
|  | { | 
|  | int n; | 
|  | struct folio *folio; | 
|  |  | 
|  | if (cpuset_do_page_mem_spread()) { | 
|  | unsigned int cpuset_mems_cookie; | 
|  | do { | 
|  | cpuset_mems_cookie = read_mems_allowed_begin(); | 
|  | n = cpuset_mem_spread_node(); | 
|  | folio = __folio_alloc_node(gfp, order, n); | 
|  | } while (!folio && read_mems_allowed_retry(cpuset_mems_cookie)); | 
|  |  | 
|  | return folio; | 
|  | } | 
|  | return folio_alloc(gfp, order); | 
|  | } | 
|  | EXPORT_SYMBOL(filemap_alloc_folio); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * filemap_invalidate_lock_two - lock invalidate_lock for two mappings | 
|  | * | 
|  | * Lock exclusively invalidate_lock of any passed mapping that is not NULL. | 
|  | * | 
|  | * @mapping1: the first mapping to lock | 
|  | * @mapping2: the second mapping to lock | 
|  | */ | 
|  | void filemap_invalidate_lock_two(struct address_space *mapping1, | 
|  | struct address_space *mapping2) | 
|  | { | 
|  | if (mapping1 > mapping2) | 
|  | swap(mapping1, mapping2); | 
|  | if (mapping1) | 
|  | down_write(&mapping1->invalidate_lock); | 
|  | if (mapping2 && mapping1 != mapping2) | 
|  | down_write_nested(&mapping2->invalidate_lock, 1); | 
|  | } | 
|  | EXPORT_SYMBOL(filemap_invalidate_lock_two); | 
|  |  | 
|  | /* | 
|  | * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings | 
|  | * | 
|  | * Unlock exclusive invalidate_lock of any passed mapping that is not NULL. | 
|  | * | 
|  | * @mapping1: the first mapping to unlock | 
|  | * @mapping2: the second mapping to unlock | 
|  | */ | 
|  | void filemap_invalidate_unlock_two(struct address_space *mapping1, | 
|  | struct address_space *mapping2) | 
|  | { | 
|  | if (mapping1) | 
|  | up_write(&mapping1->invalidate_lock); | 
|  | if (mapping2 && mapping1 != mapping2) | 
|  | up_write(&mapping2->invalidate_lock); | 
|  | } | 
|  | EXPORT_SYMBOL(filemap_invalidate_unlock_two); | 
|  |  | 
|  | /* | 
|  | * In order to wait for pages to become available there must be | 
|  | * waitqueues associated with pages. By using a hash table of | 
|  | * waitqueues where the bucket discipline is to maintain all | 
|  | * waiters on the same queue and wake all when any of the pages | 
|  | * become available, and for the woken contexts to check to be | 
|  | * sure the appropriate page became available, this saves space | 
|  | * at a cost of "thundering herd" phenomena during rare hash | 
|  | * collisions. | 
|  | */ | 
|  | #define PAGE_WAIT_TABLE_BITS 8 | 
|  | #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS) | 
|  | static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned; | 
|  |  | 
|  | static wait_queue_head_t *folio_waitqueue(struct folio *folio) | 
|  | { | 
|  | return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)]; | 
|  | } | 
|  |  | 
|  | void __init pagecache_init(void) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++) | 
|  | init_waitqueue_head(&folio_wait_table[i]); | 
|  |  | 
|  | page_writeback_init(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The page wait code treats the "wait->flags" somewhat unusually, because | 
|  | * we have multiple different kinds of waits, not just the usual "exclusive" | 
|  | * one. | 
|  | * | 
|  | * We have: | 
|  | * | 
|  | *  (a) no special bits set: | 
|  | * | 
|  | *	We're just waiting for the bit to be released, and when a waker | 
|  | *	calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up, | 
|  | *	and remove it from the wait queue. | 
|  | * | 
|  | *	Simple and straightforward. | 
|  | * | 
|  | *  (b) WQ_FLAG_EXCLUSIVE: | 
|  | * | 
|  | *	The waiter is waiting to get the lock, and only one waiter should | 
|  | *	be woken up to avoid any thundering herd behavior. We'll set the | 
|  | *	WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue. | 
|  | * | 
|  | *	This is the traditional exclusive wait. | 
|  | * | 
|  | *  (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM: | 
|  | * | 
|  | *	The waiter is waiting to get the bit, and additionally wants the | 
|  | *	lock to be transferred to it for fair lock behavior. If the lock | 
|  | *	cannot be taken, we stop walking the wait queue without waking | 
|  | *	the waiter. | 
|  | * | 
|  | *	This is the "fair lock handoff" case, and in addition to setting | 
|  | *	WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see | 
|  | *	that it now has the lock. | 
|  | */ | 
|  | static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg) | 
|  | { | 
|  | unsigned int flags; | 
|  | struct wait_page_key *key = arg; | 
|  | struct wait_page_queue *wait_page | 
|  | = container_of(wait, struct wait_page_queue, wait); | 
|  |  | 
|  | if (!wake_page_match(wait_page, key)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * If it's a lock handoff wait, we get the bit for it, and | 
|  | * stop walking (and do not wake it up) if we can't. | 
|  | */ | 
|  | flags = wait->flags; | 
|  | if (flags & WQ_FLAG_EXCLUSIVE) { | 
|  | if (test_bit(key->bit_nr, &key->folio->flags)) | 
|  | return -1; | 
|  | if (flags & WQ_FLAG_CUSTOM) { | 
|  | if (test_and_set_bit(key->bit_nr, &key->folio->flags)) | 
|  | return -1; | 
|  | flags |= WQ_FLAG_DONE; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We are holding the wait-queue lock, but the waiter that | 
|  | * is waiting for this will be checking the flags without | 
|  | * any locking. | 
|  | * | 
|  | * So update the flags atomically, and wake up the waiter | 
|  | * afterwards to avoid any races. This store-release pairs | 
|  | * with the load-acquire in folio_wait_bit_common(). | 
|  | */ | 
|  | smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN); | 
|  | wake_up_state(wait->private, mode); | 
|  |  | 
|  | /* | 
|  | * Ok, we have successfully done what we're waiting for, | 
|  | * and we can unconditionally remove the wait entry. | 
|  | * | 
|  | * Note that this pairs with the "finish_wait()" in the | 
|  | * waiter, and has to be the absolute last thing we do. | 
|  | * After this list_del_init(&wait->entry) the wait entry | 
|  | * might be de-allocated and the process might even have | 
|  | * exited. | 
|  | */ | 
|  | list_del_init_careful(&wait->entry); | 
|  | return (flags & WQ_FLAG_EXCLUSIVE) != 0; | 
|  | } | 
|  |  | 
|  | static void folio_wake_bit(struct folio *folio, int bit_nr) | 
|  | { | 
|  | wait_queue_head_t *q = folio_waitqueue(folio); | 
|  | struct wait_page_key key; | 
|  | unsigned long flags; | 
|  | wait_queue_entry_t bookmark; | 
|  |  | 
|  | key.folio = folio; | 
|  | key.bit_nr = bit_nr; | 
|  | key.page_match = 0; | 
|  |  | 
|  | bookmark.flags = 0; | 
|  | bookmark.private = NULL; | 
|  | bookmark.func = NULL; | 
|  | INIT_LIST_HEAD(&bookmark.entry); | 
|  |  | 
|  | spin_lock_irqsave(&q->lock, flags); | 
|  | __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); | 
|  |  | 
|  | while (bookmark.flags & WQ_FLAG_BOOKMARK) { | 
|  | /* | 
|  | * Take a breather from holding the lock, | 
|  | * allow pages that finish wake up asynchronously | 
|  | * to acquire the lock and remove themselves | 
|  | * from wait queue | 
|  | */ | 
|  | spin_unlock_irqrestore(&q->lock, flags); | 
|  | cpu_relax(); | 
|  | spin_lock_irqsave(&q->lock, flags); | 
|  | __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * It is possible for other pages to have collided on the waitqueue | 
|  | * hash, so in that case check for a page match. That prevents a long- | 
|  | * term waiter | 
|  | * | 
|  | * It is still possible to miss a case here, when we woke page waiters | 
|  | * and removed them from the waitqueue, but there are still other | 
|  | * page waiters. | 
|  | */ | 
|  | if (!waitqueue_active(q) || !key.page_match) { | 
|  | folio_clear_waiters(folio); | 
|  | /* | 
|  | * It's possible to miss clearing Waiters here, when we woke | 
|  | * our page waiters, but the hashed waitqueue has waiters for | 
|  | * other pages on it. | 
|  | * | 
|  | * That's okay, it's a rare case. The next waker will clear it. | 
|  | */ | 
|  | } | 
|  | spin_unlock_irqrestore(&q->lock, flags); | 
|  | } | 
|  |  | 
|  | static void folio_wake(struct folio *folio, int bit) | 
|  | { | 
|  | if (!folio_test_waiters(folio)) | 
|  | return; | 
|  | folio_wake_bit(folio, bit); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * A choice of three behaviors for folio_wait_bit_common(): | 
|  | */ | 
|  | enum behavior { | 
|  | EXCLUSIVE,	/* Hold ref to page and take the bit when woken, like | 
|  | * __folio_lock() waiting on then setting PG_locked. | 
|  | */ | 
|  | SHARED,		/* Hold ref to page and check the bit when woken, like | 
|  | * wait_on_page_writeback() waiting on PG_writeback. | 
|  | */ | 
|  | DROP,		/* Drop ref to page before wait, no check when woken, | 
|  | * like put_and_wait_on_page_locked() on PG_locked. | 
|  | */ | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Attempt to check (or get) the folio flag, and mark us done | 
|  | * if successful. | 
|  | */ | 
|  | static inline bool folio_trylock_flag(struct folio *folio, int bit_nr, | 
|  | struct wait_queue_entry *wait) | 
|  | { | 
|  | if (wait->flags & WQ_FLAG_EXCLUSIVE) { | 
|  | if (test_and_set_bit(bit_nr, &folio->flags)) | 
|  | return false; | 
|  | } else if (test_bit(bit_nr, &folio->flags)) | 
|  | return false; | 
|  |  | 
|  | wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* How many times do we accept lock stealing from under a waiter? */ | 
|  | int sysctl_page_lock_unfairness = 5; | 
|  |  | 
|  | static inline int folio_wait_bit_common(struct folio *folio, int bit_nr, | 
|  | int state, enum behavior behavior) | 
|  | { | 
|  | wait_queue_head_t *q = folio_waitqueue(folio); | 
|  | int unfairness = sysctl_page_lock_unfairness; | 
|  | struct wait_page_queue wait_page; | 
|  | wait_queue_entry_t *wait = &wait_page.wait; | 
|  | bool thrashing = false; | 
|  | bool delayacct = false; | 
|  | unsigned long pflags; | 
|  |  | 
|  | if (bit_nr == PG_locked && | 
|  | !folio_test_uptodate(folio) && folio_test_workingset(folio)) { | 
|  | if (!folio_test_swapbacked(folio)) { | 
|  | delayacct_thrashing_start(); | 
|  | delayacct = true; | 
|  | } | 
|  | psi_memstall_enter(&pflags); | 
|  | thrashing = true; | 
|  | } | 
|  |  | 
|  | init_wait(wait); | 
|  | wait->func = wake_page_function; | 
|  | wait_page.folio = folio; | 
|  | wait_page.bit_nr = bit_nr; | 
|  |  | 
|  | repeat: | 
|  | wait->flags = 0; | 
|  | if (behavior == EXCLUSIVE) { | 
|  | wait->flags = WQ_FLAG_EXCLUSIVE; | 
|  | if (--unfairness < 0) | 
|  | wait->flags |= WQ_FLAG_CUSTOM; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Do one last check whether we can get the | 
|  | * page bit synchronously. | 
|  | * | 
|  | * Do the folio_set_waiters() marking before that | 
|  | * to let any waker we _just_ missed know they | 
|  | * need to wake us up (otherwise they'll never | 
|  | * even go to the slow case that looks at the | 
|  | * page queue), and add ourselves to the wait | 
|  | * queue if we need to sleep. | 
|  | * | 
|  | * This part needs to be done under the queue | 
|  | * lock to avoid races. | 
|  | */ | 
|  | spin_lock_irq(&q->lock); | 
|  | folio_set_waiters(folio); | 
|  | if (!folio_trylock_flag(folio, bit_nr, wait)) | 
|  | __add_wait_queue_entry_tail(q, wait); | 
|  | spin_unlock_irq(&q->lock); | 
|  |  | 
|  | /* | 
|  | * From now on, all the logic will be based on | 
|  | * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to | 
|  | * see whether the page bit testing has already | 
|  | * been done by the wake function. | 
|  | * | 
|  | * We can drop our reference to the folio. | 
|  | */ | 
|  | if (behavior == DROP) | 
|  | folio_put(folio); | 
|  |  | 
|  | /* | 
|  | * Note that until the "finish_wait()", or until | 
|  | * we see the WQ_FLAG_WOKEN flag, we need to | 
|  | * be very careful with the 'wait->flags', because | 
|  | * we may race with a waker that sets them. | 
|  | */ | 
|  | for (;;) { | 
|  | unsigned int flags; | 
|  |  | 
|  | set_current_state(state); | 
|  |  | 
|  | /* Loop until we've been woken or interrupted */ | 
|  | flags = smp_load_acquire(&wait->flags); | 
|  | if (!(flags & WQ_FLAG_WOKEN)) { | 
|  | if (signal_pending_state(state, current)) | 
|  | break; | 
|  |  | 
|  | io_schedule(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* If we were non-exclusive, we're done */ | 
|  | if (behavior != EXCLUSIVE) | 
|  | break; | 
|  |  | 
|  | /* If the waker got the lock for us, we're done */ | 
|  | if (flags & WQ_FLAG_DONE) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * Otherwise, if we're getting the lock, we need to | 
|  | * try to get it ourselves. | 
|  | * | 
|  | * And if that fails, we'll have to retry this all. | 
|  | */ | 
|  | if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0)))) | 
|  | goto repeat; | 
|  |  | 
|  | wait->flags |= WQ_FLAG_DONE; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If a signal happened, this 'finish_wait()' may remove the last | 
|  | * waiter from the wait-queues, but the folio waiters bit will remain | 
|  | * set. That's ok. The next wakeup will take care of it, and trying | 
|  | * to do it here would be difficult and prone to races. | 
|  | */ | 
|  | finish_wait(q, wait); | 
|  |  | 
|  | if (thrashing) { | 
|  | if (delayacct) | 
|  | delayacct_thrashing_end(); | 
|  | psi_memstall_leave(&pflags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * NOTE! The wait->flags weren't stable until we've done the | 
|  | * 'finish_wait()', and we could have exited the loop above due | 
|  | * to a signal, and had a wakeup event happen after the signal | 
|  | * test but before the 'finish_wait()'. | 
|  | * | 
|  | * So only after the finish_wait() can we reliably determine | 
|  | * if we got woken up or not, so we can now figure out the final | 
|  | * return value based on that state without races. | 
|  | * | 
|  | * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive | 
|  | * waiter, but an exclusive one requires WQ_FLAG_DONE. | 
|  | */ | 
|  | if (behavior == EXCLUSIVE) | 
|  | return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR; | 
|  |  | 
|  | return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR; | 
|  | } | 
|  |  | 
|  | void folio_wait_bit(struct folio *folio, int bit_nr) | 
|  | { | 
|  | folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED); | 
|  | } | 
|  | EXPORT_SYMBOL(folio_wait_bit); | 
|  |  | 
|  | int folio_wait_bit_killable(struct folio *folio, int bit_nr) | 
|  | { | 
|  | return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED); | 
|  | } | 
|  | EXPORT_SYMBOL(folio_wait_bit_killable); | 
|  |  | 
|  | /** | 
|  | * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked | 
|  | * @page: The page to wait for. | 
|  | * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc). | 
|  | * | 
|  | * The caller should hold a reference on @page.  They expect the page to | 
|  | * become unlocked relatively soon, but do not wish to hold up migration | 
|  | * (for example) by holding the reference while waiting for the page to | 
|  | * come unlocked.  After this function returns, the caller should not | 
|  | * dereference @page. | 
|  | * | 
|  | * Return: 0 if the page was unlocked or -EINTR if interrupted by a signal. | 
|  | */ | 
|  | int put_and_wait_on_page_locked(struct page *page, int state) | 
|  | { | 
|  | return folio_wait_bit_common(page_folio(page), PG_locked, state, | 
|  | DROP); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue | 
|  | * @folio: Folio defining the wait queue of interest | 
|  | * @waiter: Waiter to add to the queue | 
|  | * | 
|  | * Add an arbitrary @waiter to the wait queue for the nominated @folio. | 
|  | */ | 
|  | void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter) | 
|  | { | 
|  | wait_queue_head_t *q = folio_waitqueue(folio); | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&q->lock, flags); | 
|  | __add_wait_queue_entry_tail(q, waiter); | 
|  | folio_set_waiters(folio); | 
|  | spin_unlock_irqrestore(&q->lock, flags); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(folio_add_wait_queue); | 
|  |  | 
|  | #ifndef clear_bit_unlock_is_negative_byte | 
|  |  | 
|  | /* | 
|  | * PG_waiters is the high bit in the same byte as PG_lock. | 
|  | * | 
|  | * On x86 (and on many other architectures), we can clear PG_lock and | 
|  | * test the sign bit at the same time. But if the architecture does | 
|  | * not support that special operation, we just do this all by hand | 
|  | * instead. | 
|  | * | 
|  | * The read of PG_waiters has to be after (or concurrently with) PG_locked | 
|  | * being cleared, but a memory barrier should be unnecessary since it is | 
|  | * in the same byte as PG_locked. | 
|  | */ | 
|  | static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem) | 
|  | { | 
|  | clear_bit_unlock(nr, mem); | 
|  | /* smp_mb__after_atomic(); */ | 
|  | return test_bit(PG_waiters, mem); | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | /** | 
|  | * folio_unlock - Unlock a locked folio. | 
|  | * @folio: The folio. | 
|  | * | 
|  | * Unlocks the folio and wakes up any thread sleeping on the page lock. | 
|  | * | 
|  | * Context: May be called from interrupt or process context.  May not be | 
|  | * called from NMI context. | 
|  | */ | 
|  | void folio_unlock(struct folio *folio) | 
|  | { | 
|  | /* Bit 7 allows x86 to check the byte's sign bit */ | 
|  | BUILD_BUG_ON(PG_waiters != 7); | 
|  | BUILD_BUG_ON(PG_locked > 7); | 
|  | VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); | 
|  | if (clear_bit_unlock_is_negative_byte(PG_locked, folio_flags(folio, 0))) | 
|  | folio_wake_bit(folio, PG_locked); | 
|  | } | 
|  | EXPORT_SYMBOL(folio_unlock); | 
|  |  | 
|  | /** | 
|  | * folio_end_private_2 - Clear PG_private_2 and wake any waiters. | 
|  | * @folio: The folio. | 
|  | * | 
|  | * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for | 
|  | * it.  The folio reference held for PG_private_2 being set is released. | 
|  | * | 
|  | * This is, for example, used when a netfs folio is being written to a local | 
|  | * disk cache, thereby allowing writes to the cache for the same folio to be | 
|  | * serialised. | 
|  | */ | 
|  | void folio_end_private_2(struct folio *folio) | 
|  | { | 
|  | VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio); | 
|  | clear_bit_unlock(PG_private_2, folio_flags(folio, 0)); | 
|  | folio_wake_bit(folio, PG_private_2); | 
|  | folio_put(folio); | 
|  | } | 
|  | EXPORT_SYMBOL(folio_end_private_2); | 
|  |  | 
|  | /** | 
|  | * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio. | 
|  | * @folio: The folio to wait on. | 
|  | * | 
|  | * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio. | 
|  | */ | 
|  | void folio_wait_private_2(struct folio *folio) | 
|  | { | 
|  | while (folio_test_private_2(folio)) | 
|  | folio_wait_bit(folio, PG_private_2); | 
|  | } | 
|  | EXPORT_SYMBOL(folio_wait_private_2); | 
|  |  | 
|  | /** | 
|  | * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio. | 
|  | * @folio: The folio to wait on. | 
|  | * | 
|  | * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio or until a | 
|  | * fatal signal is received by the calling task. | 
|  | * | 
|  | * Return: | 
|  | * - 0 if successful. | 
|  | * - -EINTR if a fatal signal was encountered. | 
|  | */ | 
|  | int folio_wait_private_2_killable(struct folio *folio) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | while (folio_test_private_2(folio)) { | 
|  | ret = folio_wait_bit_killable(folio, PG_private_2); | 
|  | if (ret < 0) | 
|  | break; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(folio_wait_private_2_killable); | 
|  |  | 
|  | /** | 
|  | * folio_end_writeback - End writeback against a folio. | 
|  | * @folio: The folio. | 
|  | */ | 
|  | void folio_end_writeback(struct folio *folio) | 
|  | { | 
|  | /* | 
|  | * folio_test_clear_reclaim() could be used here but it is an | 
|  | * atomic operation and overkill in this particular case. Failing | 
|  | * to shuffle a folio marked for immediate reclaim is too mild | 
|  | * a gain to justify taking an atomic operation penalty at the | 
|  | * end of every folio writeback. | 
|  | */ | 
|  | if (folio_test_reclaim(folio)) { | 
|  | folio_clear_reclaim(folio); | 
|  | folio_rotate_reclaimable(folio); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Writeback does not hold a folio reference of its own, relying | 
|  | * on truncation to wait for the clearing of PG_writeback. | 
|  | * But here we must make sure that the folio is not freed and | 
|  | * reused before the folio_wake(). | 
|  | */ | 
|  | folio_get(folio); | 
|  | if (!__folio_end_writeback(folio)) | 
|  | BUG(); | 
|  |  | 
|  | smp_mb__after_atomic(); | 
|  | folio_wake(folio, PG_writeback); | 
|  | acct_reclaim_writeback(folio); | 
|  | folio_put(folio); | 
|  | } | 
|  | EXPORT_SYMBOL(folio_end_writeback); | 
|  |  | 
|  | /* | 
|  | * After completing I/O on a page, call this routine to update the page | 
|  | * flags appropriately | 
|  | */ | 
|  | void page_endio(struct page *page, bool is_write, int err) | 
|  | { | 
|  | if (!is_write) { | 
|  | if (!err) { | 
|  | SetPageUptodate(page); | 
|  | } else { | 
|  | ClearPageUptodate(page); | 
|  | SetPageError(page); | 
|  | } | 
|  | unlock_page(page); | 
|  | } else { | 
|  | if (err) { | 
|  | struct address_space *mapping; | 
|  |  | 
|  | SetPageError(page); | 
|  | mapping = page_mapping(page); | 
|  | if (mapping) | 
|  | mapping_set_error(mapping, err); | 
|  | } | 
|  | end_page_writeback(page); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(page_endio); | 
|  |  | 
|  | /** | 
|  | * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it. | 
|  | * @folio: The folio to lock | 
|  | */ | 
|  | void __folio_lock(struct folio *folio) | 
|  | { | 
|  | folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE, | 
|  | EXCLUSIVE); | 
|  | } | 
|  | EXPORT_SYMBOL(__folio_lock); | 
|  |  | 
|  | int __folio_lock_killable(struct folio *folio) | 
|  | { | 
|  | return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE, | 
|  | EXCLUSIVE); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(__folio_lock_killable); | 
|  |  | 
|  | static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait) | 
|  | { | 
|  | struct wait_queue_head *q = folio_waitqueue(folio); | 
|  | int ret = 0; | 
|  |  | 
|  | wait->folio = folio; | 
|  | wait->bit_nr = PG_locked; | 
|  |  | 
|  | spin_lock_irq(&q->lock); | 
|  | __add_wait_queue_entry_tail(q, &wait->wait); | 
|  | folio_set_waiters(folio); | 
|  | ret = !folio_trylock(folio); | 
|  | /* | 
|  | * If we were successful now, we know we're still on the | 
|  | * waitqueue as we're still under the lock. This means it's | 
|  | * safe to remove and return success, we know the callback | 
|  | * isn't going to trigger. | 
|  | */ | 
|  | if (!ret) | 
|  | __remove_wait_queue(q, &wait->wait); | 
|  | else | 
|  | ret = -EIOCBQUEUED; | 
|  | spin_unlock_irq(&q->lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return values: | 
|  | * true - folio is locked; mmap_lock is still held. | 
|  | * false - folio is not locked. | 
|  | *     mmap_lock has been released (mmap_read_unlock(), unless flags had both | 
|  | *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in | 
|  | *     which case mmap_lock is still held. | 
|  | * | 
|  | * If neither ALLOW_RETRY nor KILLABLE are set, will always return true | 
|  | * with the folio locked and the mmap_lock unperturbed. | 
|  | */ | 
|  | bool __folio_lock_or_retry(struct folio *folio, struct mm_struct *mm, | 
|  | unsigned int flags) | 
|  | { | 
|  | if (fault_flag_allow_retry_first(flags)) { | 
|  | /* | 
|  | * CAUTION! In this case, mmap_lock is not released | 
|  | * even though return 0. | 
|  | */ | 
|  | if (flags & FAULT_FLAG_RETRY_NOWAIT) | 
|  | return false; | 
|  |  | 
|  | mmap_read_unlock(mm); | 
|  | if (flags & FAULT_FLAG_KILLABLE) | 
|  | folio_wait_locked_killable(folio); | 
|  | else | 
|  | folio_wait_locked(folio); | 
|  | return false; | 
|  | } | 
|  | if (flags & FAULT_FLAG_KILLABLE) { | 
|  | bool ret; | 
|  |  | 
|  | ret = __folio_lock_killable(folio); | 
|  | if (ret) { | 
|  | mmap_read_unlock(mm); | 
|  | return false; | 
|  | } | 
|  | } else { | 
|  | __folio_lock(folio); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * page_cache_next_miss() - Find the next gap in the page cache. | 
|  | * @mapping: Mapping. | 
|  | * @index: Index. | 
|  | * @max_scan: Maximum range to search. | 
|  | * | 
|  | * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the | 
|  | * gap with the lowest index. | 
|  | * | 
|  | * This function may be called under the rcu_read_lock.  However, this will | 
|  | * not atomically search a snapshot of the cache at a single point in time. | 
|  | * For example, if a gap is created at index 5, then subsequently a gap is | 
|  | * created at index 10, page_cache_next_miss covering both indices may | 
|  | * return 10 if called under the rcu_read_lock. | 
|  | * | 
|  | * Return: The index of the gap if found, otherwise an index outside the | 
|  | * range specified (in which case 'return - index >= max_scan' will be true). | 
|  | * In the rare case of index wrap-around, 0 will be returned. | 
|  | */ | 
|  | pgoff_t page_cache_next_miss(struct address_space *mapping, | 
|  | pgoff_t index, unsigned long max_scan) | 
|  | { | 
|  | XA_STATE(xas, &mapping->i_pages, index); | 
|  |  | 
|  | while (max_scan--) { | 
|  | void *entry = xas_next(&xas); | 
|  | if (!entry || xa_is_value(entry)) | 
|  | break; | 
|  | if (xas.xa_index == 0) | 
|  | break; | 
|  | } | 
|  |  | 
|  | return xas.xa_index; | 
|  | } | 
|  | EXPORT_SYMBOL(page_cache_next_miss); | 
|  |  | 
|  | /** | 
|  | * page_cache_prev_miss() - Find the previous gap in the page cache. | 
|  | * @mapping: Mapping. | 
|  | * @index: Index. | 
|  | * @max_scan: Maximum range to search. | 
|  | * | 
|  | * Search the range [max(index - max_scan + 1, 0), index] for the | 
|  | * gap with the highest index. | 
|  | * | 
|  | * This function may be called under the rcu_read_lock.  However, this will | 
|  | * not atomically search a snapshot of the cache at a single point in time. | 
|  | * For example, if a gap is created at index 10, then subsequently a gap is | 
|  | * created at index 5, page_cache_prev_miss() covering both indices may | 
|  | * return 5 if called under the rcu_read_lock. | 
|  | * | 
|  | * Return: The index of the gap if found, otherwise an index outside the | 
|  | * range specified (in which case 'index - return >= max_scan' will be true). | 
|  | * In the rare case of wrap-around, ULONG_MAX will be returned. | 
|  | */ | 
|  | pgoff_t page_cache_prev_miss(struct address_space *mapping, | 
|  | pgoff_t index, unsigned long max_scan) | 
|  | { | 
|  | XA_STATE(xas, &mapping->i_pages, index); | 
|  |  | 
|  | while (max_scan--) { | 
|  | void *entry = xas_prev(&xas); | 
|  | if (!entry || xa_is_value(entry)) | 
|  | break; | 
|  | if (xas.xa_index == ULONG_MAX) | 
|  | break; | 
|  | } | 
|  |  | 
|  | return xas.xa_index; | 
|  | } | 
|  | EXPORT_SYMBOL(page_cache_prev_miss); | 
|  |  | 
|  | /* | 
|  | * Lockless page cache protocol: | 
|  | * On the lookup side: | 
|  | * 1. Load the folio from i_pages | 
|  | * 2. Increment the refcount if it's not zero | 
|  | * 3. If the folio is not found by xas_reload(), put the refcount and retry | 
|  | * | 
|  | * On the removal side: | 
|  | * A. Freeze the page (by zeroing the refcount if nobody else has a reference) | 
|  | * B. Remove the page from i_pages | 
|  | * C. Return the page to the page allocator | 
|  | * | 
|  | * This means that any page may have its reference count temporarily | 
|  | * increased by a speculative page cache (or fast GUP) lookup as it can | 
|  | * be allocated by another user before the RCU grace period expires. | 
|  | * Because the refcount temporarily acquired here may end up being the | 
|  | * last refcount on the page, any page allocation must be freeable by | 
|  | * folio_put(). | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * mapping_get_entry - Get a page cache entry. | 
|  | * @mapping: the address_space to search | 
|  | * @index: The page cache index. | 
|  | * | 
|  | * Looks up the page cache entry at @mapping & @index.  If it is a folio, | 
|  | * it is returned with an increased refcount.  If it is a shadow entry | 
|  | * of a previously evicted folio, or a swap entry from shmem/tmpfs, | 
|  | * it is returned without further action. | 
|  | * | 
|  | * Return: The folio, swap or shadow entry, %NULL if nothing is found. | 
|  | */ | 
|  | static void *mapping_get_entry(struct address_space *mapping, pgoff_t index) | 
|  | { | 
|  | XA_STATE(xas, &mapping->i_pages, index); | 
|  | struct folio *folio; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | repeat: | 
|  | xas_reset(&xas); | 
|  | folio = xas_load(&xas); | 
|  | if (xas_retry(&xas, folio)) | 
|  | goto repeat; | 
|  | /* | 
|  | * A shadow entry of a recently evicted page, or a swap entry from | 
|  | * shmem/tmpfs.  Return it without attempting to raise page count. | 
|  | */ | 
|  | if (!folio || xa_is_value(folio)) | 
|  | goto out; | 
|  |  | 
|  | if (!folio_try_get_rcu(folio)) | 
|  | goto repeat; | 
|  |  | 
|  | if (unlikely(folio != xas_reload(&xas))) { | 
|  | folio_put(folio); | 
|  | goto repeat; | 
|  | } | 
|  | out: | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return folio; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __filemap_get_folio - Find and get a reference to a folio. | 
|  | * @mapping: The address_space to search. | 
|  | * @index: The page index. | 
|  | * @fgp_flags: %FGP flags modify how the folio is returned. | 
|  | * @gfp: Memory allocation flags to use if %FGP_CREAT is specified. | 
|  | * | 
|  | * Looks up the page cache entry at @mapping & @index. | 
|  | * | 
|  | * @fgp_flags can be zero or more of these flags: | 
|  | * | 
|  | * * %FGP_ACCESSED - The folio will be marked accessed. | 
|  | * * %FGP_LOCK - The folio is returned locked. | 
|  | * * %FGP_ENTRY - If there is a shadow / swap / DAX entry, return it | 
|  | *   instead of allocating a new folio to replace it. | 
|  | * * %FGP_CREAT - If no page is present then a new page is allocated using | 
|  | *   @gfp and added to the page cache and the VM's LRU list. | 
|  | *   The page is returned locked and with an increased refcount. | 
|  | * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the | 
|  | *   page is already in cache.  If the page was allocated, unlock it before | 
|  | *   returning so the caller can do the same dance. | 
|  | * * %FGP_WRITE - The page will be written to by the caller. | 
|  | * * %FGP_NOFS - __GFP_FS will get cleared in gfp. | 
|  | * * %FGP_NOWAIT - Don't get blocked by page lock. | 
|  | * * %FGP_STABLE - Wait for the folio to be stable (finished writeback) | 
|  | * | 
|  | * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even | 
|  | * if the %GFP flags specified for %FGP_CREAT are atomic. | 
|  | * | 
|  | * If there is a page cache page, it is returned with an increased refcount. | 
|  | * | 
|  | * Return: The found folio or %NULL otherwise. | 
|  | */ | 
|  | struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index, | 
|  | int fgp_flags, gfp_t gfp) | 
|  | { | 
|  | struct folio *folio; | 
|  |  | 
|  | repeat: | 
|  | folio = mapping_get_entry(mapping, index); | 
|  | if (xa_is_value(folio)) { | 
|  | if (fgp_flags & FGP_ENTRY) | 
|  | return folio; | 
|  | folio = NULL; | 
|  | } | 
|  | if (!folio) | 
|  | goto no_page; | 
|  |  | 
|  | if (fgp_flags & FGP_LOCK) { | 
|  | if (fgp_flags & FGP_NOWAIT) { | 
|  | if (!folio_trylock(folio)) { | 
|  | folio_put(folio); | 
|  | return NULL; | 
|  | } | 
|  | } else { | 
|  | folio_lock(folio); | 
|  | } | 
|  |  | 
|  | /* Has the page been truncated? */ | 
|  | if (unlikely(folio->mapping != mapping)) { | 
|  | folio_unlock(folio); | 
|  | folio_put(folio); | 
|  | goto repeat; | 
|  | } | 
|  | VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio); | 
|  | } | 
|  |  | 
|  | if (fgp_flags & FGP_ACCESSED) | 
|  | folio_mark_accessed(folio); | 
|  | else if (fgp_flags & FGP_WRITE) { | 
|  | /* Clear idle flag for buffer write */ | 
|  | if (folio_test_idle(folio)) | 
|  | folio_clear_idle(folio); | 
|  | } | 
|  |  | 
|  | if (fgp_flags & FGP_STABLE) | 
|  | folio_wait_stable(folio); | 
|  | no_page: | 
|  | if (!folio && (fgp_flags & FGP_CREAT)) { | 
|  | int err; | 
|  | if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping)) | 
|  | gfp |= __GFP_WRITE; | 
|  | if (fgp_flags & FGP_NOFS) | 
|  | gfp &= ~__GFP_FS; | 
|  |  | 
|  | folio = filemap_alloc_folio(gfp, 0); | 
|  | if (!folio) | 
|  | return NULL; | 
|  |  | 
|  | if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP)))) | 
|  | fgp_flags |= FGP_LOCK; | 
|  |  | 
|  | /* Init accessed so avoid atomic mark_page_accessed later */ | 
|  | if (fgp_flags & FGP_ACCESSED) | 
|  | __folio_set_referenced(folio); | 
|  |  | 
|  | err = filemap_add_folio(mapping, folio, index, gfp); | 
|  | if (unlikely(err)) { | 
|  | folio_put(folio); | 
|  | folio = NULL; | 
|  | if (err == -EEXIST) | 
|  | goto repeat; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * filemap_add_folio locks the page, and for mmap | 
|  | * we expect an unlocked page. | 
|  | */ | 
|  | if (folio && (fgp_flags & FGP_FOR_MMAP)) | 
|  | folio_unlock(folio); | 
|  | } | 
|  |  | 
|  | return folio; | 
|  | } | 
|  | EXPORT_SYMBOL(__filemap_get_folio); | 
|  |  | 
|  | static inline struct page *find_get_entry(struct xa_state *xas, pgoff_t max, | 
|  | xa_mark_t mark) | 
|  | { | 
|  | struct page *page; | 
|  |  | 
|  | retry: | 
|  | if (mark == XA_PRESENT) | 
|  | page = xas_find(xas, max); | 
|  | else | 
|  | page = xas_find_marked(xas, max, mark); | 
|  |  | 
|  | if (xas_retry(xas, page)) | 
|  | goto retry; | 
|  | /* | 
|  | * A shadow entry of a recently evicted page, a swap | 
|  | * entry from shmem/tmpfs or a DAX entry.  Return it | 
|  | * without attempting to raise page count. | 
|  | */ | 
|  | if (!page || xa_is_value(page)) | 
|  | return page; | 
|  |  | 
|  | if (!page_cache_get_speculative(page)) | 
|  | goto reset; | 
|  |  | 
|  | /* Has the page moved or been split? */ | 
|  | if (unlikely(page != xas_reload(xas))) { | 
|  | put_page(page); | 
|  | goto reset; | 
|  | } | 
|  |  | 
|  | return page; | 
|  | reset: | 
|  | xas_reset(xas); | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * find_get_entries - gang pagecache lookup | 
|  | * @mapping:	The address_space to search | 
|  | * @start:	The starting page cache index | 
|  | * @end:	The final page index (inclusive). | 
|  | * @pvec:	Where the resulting entries are placed. | 
|  | * @indices:	The cache indices corresponding to the entries in @entries | 
|  | * | 
|  | * find_get_entries() will search for and return a batch of entries in | 
|  | * the mapping.  The entries are placed in @pvec.  find_get_entries() | 
|  | * takes a reference on any actual pages it returns. | 
|  | * | 
|  | * The search returns a group of mapping-contiguous page cache entries | 
|  | * with ascending indexes.  There may be holes in the indices due to | 
|  | * not-present pages. | 
|  | * | 
|  | * Any shadow entries of evicted pages, or swap entries from | 
|  | * shmem/tmpfs, are included in the returned array. | 
|  | * | 
|  | * If it finds a Transparent Huge Page, head or tail, find_get_entries() | 
|  | * stops at that page: the caller is likely to have a better way to handle | 
|  | * the compound page as a whole, and then skip its extent, than repeatedly | 
|  | * calling find_get_entries() to return all its tails. | 
|  | * | 
|  | * Return: the number of pages and shadow entries which were found. | 
|  | */ | 
|  | unsigned find_get_entries(struct address_space *mapping, pgoff_t start, | 
|  | pgoff_t end, struct pagevec *pvec, pgoff_t *indices) | 
|  | { | 
|  | XA_STATE(xas, &mapping->i_pages, start); | 
|  | struct page *page; | 
|  | unsigned int ret = 0; | 
|  | unsigned nr_entries = PAGEVEC_SIZE; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | while ((page = find_get_entry(&xas, end, XA_PRESENT))) { | 
|  | /* | 
|  | * Terminate early on finding a THP, to allow the caller to | 
|  | * handle it all at once; but continue if this is hugetlbfs. | 
|  | */ | 
|  | if (!xa_is_value(page) && PageTransHuge(page) && | 
|  | !PageHuge(page)) { | 
|  | page = find_subpage(page, xas.xa_index); | 
|  | nr_entries = ret + 1; | 
|  | } | 
|  |  | 
|  | indices[ret] = xas.xa_index; | 
|  | pvec->pages[ret] = page; | 
|  | if (++ret == nr_entries) | 
|  | break; | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | pvec->nr = ret; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * find_lock_entries - Find a batch of pagecache entries. | 
|  | * @mapping:	The address_space to search. | 
|  | * @start:	The starting page cache index. | 
|  | * @end:	The final page index (inclusive). | 
|  | * @pvec:	Where the resulting entries are placed. | 
|  | * @indices:	The cache indices of the entries in @pvec. | 
|  | * | 
|  | * find_lock_entries() will return a batch of entries from @mapping. | 
|  | * Swap, shadow and DAX entries are included.  Pages are returned | 
|  | * locked and with an incremented refcount.  Pages which are locked by | 
|  | * somebody else or under writeback are skipped.  Only the head page of | 
|  | * a THP is returned.  Pages which are partially outside the range are | 
|  | * not returned. | 
|  | * | 
|  | * The entries have ascending indexes.  The indices may not be consecutive | 
|  | * due to not-present entries, THP pages, pages which could not be locked | 
|  | * or pages under writeback. | 
|  | * | 
|  | * Return: The number of entries which were found. | 
|  | */ | 
|  | unsigned find_lock_entries(struct address_space *mapping, pgoff_t start, | 
|  | pgoff_t end, struct pagevec *pvec, pgoff_t *indices) | 
|  | { | 
|  | XA_STATE(xas, &mapping->i_pages, start); | 
|  | struct page *page; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | while ((page = find_get_entry(&xas, end, XA_PRESENT))) { | 
|  | if (!xa_is_value(page)) { | 
|  | if (page->index < start) | 
|  | goto put; | 
|  | if (page->index + thp_nr_pages(page) - 1 > end) | 
|  | goto put; | 
|  | if (!trylock_page(page)) | 
|  | goto put; | 
|  | if (page->mapping != mapping || PageWriteback(page)) | 
|  | goto unlock; | 
|  | VM_BUG_ON_PAGE(!thp_contains(page, xas.xa_index), | 
|  | page); | 
|  | } | 
|  | indices[pvec->nr] = xas.xa_index; | 
|  | if (!pagevec_add(pvec, page)) | 
|  | break; | 
|  | goto next; | 
|  | unlock: | 
|  | unlock_page(page); | 
|  | put: | 
|  | put_page(page); | 
|  | next: | 
|  | if (!xa_is_value(page) && PageTransHuge(page)) { | 
|  | unsigned int nr_pages = thp_nr_pages(page); | 
|  |  | 
|  | /* Final THP may cross MAX_LFS_FILESIZE on 32-bit */ | 
|  | xas_set(&xas, page->index + nr_pages); | 
|  | if (xas.xa_index < nr_pages) | 
|  | break; | 
|  | } | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return pagevec_count(pvec); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * find_get_pages_range - gang pagecache lookup | 
|  | * @mapping:	The address_space to search | 
|  | * @start:	The starting page index | 
|  | * @end:	The final page index (inclusive) | 
|  | * @nr_pages:	The maximum number of pages | 
|  | * @pages:	Where the resulting pages are placed | 
|  | * | 
|  | * find_get_pages_range() will search for and return a group of up to @nr_pages | 
|  | * pages in the mapping starting at index @start and up to index @end | 
|  | * (inclusive).  The pages are placed at @pages.  find_get_pages_range() takes | 
|  | * a reference against the returned pages. | 
|  | * | 
|  | * The search returns a group of mapping-contiguous pages with ascending | 
|  | * indexes.  There may be holes in the indices due to not-present pages. | 
|  | * We also update @start to index the next page for the traversal. | 
|  | * | 
|  | * Return: the number of pages which were found. If this number is | 
|  | * smaller than @nr_pages, the end of specified range has been | 
|  | * reached. | 
|  | */ | 
|  | unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start, | 
|  | pgoff_t end, unsigned int nr_pages, | 
|  | struct page **pages) | 
|  | { | 
|  | XA_STATE(xas, &mapping->i_pages, *start); | 
|  | struct page *page; | 
|  | unsigned ret = 0; | 
|  |  | 
|  | if (unlikely(!nr_pages)) | 
|  | return 0; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | while ((page = find_get_entry(&xas, end, XA_PRESENT))) { | 
|  | /* Skip over shadow, swap and DAX entries */ | 
|  | if (xa_is_value(page)) | 
|  | continue; | 
|  |  | 
|  | pages[ret] = find_subpage(page, xas.xa_index); | 
|  | if (++ret == nr_pages) { | 
|  | *start = xas.xa_index + 1; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We come here when there is no page beyond @end. We take care to not | 
|  | * overflow the index @start as it confuses some of the callers. This | 
|  | * breaks the iteration when there is a page at index -1 but that is | 
|  | * already broken anyway. | 
|  | */ | 
|  | if (end == (pgoff_t)-1) | 
|  | *start = (pgoff_t)-1; | 
|  | else | 
|  | *start = end + 1; | 
|  | out: | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * find_get_pages_contig - gang contiguous pagecache lookup | 
|  | * @mapping:	The address_space to search | 
|  | * @index:	The starting page index | 
|  | * @nr_pages:	The maximum number of pages | 
|  | * @pages:	Where the resulting pages are placed | 
|  | * | 
|  | * find_get_pages_contig() works exactly like find_get_pages(), except | 
|  | * that the returned number of pages are guaranteed to be contiguous. | 
|  | * | 
|  | * Return: the number of pages which were found. | 
|  | */ | 
|  | unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, | 
|  | unsigned int nr_pages, struct page **pages) | 
|  | { | 
|  | XA_STATE(xas, &mapping->i_pages, index); | 
|  | struct page *page; | 
|  | unsigned int ret = 0; | 
|  |  | 
|  | if (unlikely(!nr_pages)) | 
|  | return 0; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | for (page = xas_load(&xas); page; page = xas_next(&xas)) { | 
|  | if (xas_retry(&xas, page)) | 
|  | continue; | 
|  | /* | 
|  | * If the entry has been swapped out, we can stop looking. | 
|  | * No current caller is looking for DAX entries. | 
|  | */ | 
|  | if (xa_is_value(page)) | 
|  | break; | 
|  |  | 
|  | if (!page_cache_get_speculative(page)) | 
|  | goto retry; | 
|  |  | 
|  | /* Has the page moved or been split? */ | 
|  | if (unlikely(page != xas_reload(&xas))) | 
|  | goto put_page; | 
|  |  | 
|  | pages[ret] = find_subpage(page, xas.xa_index); | 
|  | if (++ret == nr_pages) | 
|  | break; | 
|  | continue; | 
|  | put_page: | 
|  | put_page(page); | 
|  | retry: | 
|  | xas_reset(&xas); | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(find_get_pages_contig); | 
|  |  | 
|  | /** | 
|  | * find_get_pages_range_tag - Find and return head pages matching @tag. | 
|  | * @mapping:	the address_space to search | 
|  | * @index:	the starting page index | 
|  | * @end:	The final page index (inclusive) | 
|  | * @tag:	the tag index | 
|  | * @nr_pages:	the maximum number of pages | 
|  | * @pages:	where the resulting pages are placed | 
|  | * | 
|  | * Like find_get_pages(), except we only return head pages which are tagged | 
|  | * with @tag.  @index is updated to the index immediately after the last | 
|  | * page we return, ready for the next iteration. | 
|  | * | 
|  | * Return: the number of pages which were found. | 
|  | */ | 
|  | unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index, | 
|  | pgoff_t end, xa_mark_t tag, unsigned int nr_pages, | 
|  | struct page **pages) | 
|  | { | 
|  | XA_STATE(xas, &mapping->i_pages, *index); | 
|  | struct page *page; | 
|  | unsigned ret = 0; | 
|  |  | 
|  | if (unlikely(!nr_pages)) | 
|  | return 0; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | while ((page = find_get_entry(&xas, end, tag))) { | 
|  | /* | 
|  | * Shadow entries should never be tagged, but this iteration | 
|  | * is lockless so there is a window for page reclaim to evict | 
|  | * a page we saw tagged.  Skip over it. | 
|  | */ | 
|  | if (xa_is_value(page)) | 
|  | continue; | 
|  |  | 
|  | pages[ret] = page; | 
|  | if (++ret == nr_pages) { | 
|  | *index = page->index + thp_nr_pages(page); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We come here when we got to @end. We take care to not overflow the | 
|  | * index @index as it confuses some of the callers. This breaks the | 
|  | * iteration when there is a page at index -1 but that is already | 
|  | * broken anyway. | 
|  | */ | 
|  | if (end == (pgoff_t)-1) | 
|  | *index = (pgoff_t)-1; | 
|  | else | 
|  | *index = end + 1; | 
|  | out: | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(find_get_pages_range_tag); | 
|  |  | 
|  | /* | 
|  | * CD/DVDs are error prone. When a medium error occurs, the driver may fail | 
|  | * a _large_ part of the i/o request. Imagine the worst scenario: | 
|  | * | 
|  | *      ---R__________________________________________B__________ | 
|  | *         ^ reading here                             ^ bad block(assume 4k) | 
|  | * | 
|  | * read(R) => miss => readahead(R...B) => media error => frustrating retries | 
|  | * => failing the whole request => read(R) => read(R+1) => | 
|  | * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => | 
|  | * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => | 
|  | * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... | 
|  | * | 
|  | * It is going insane. Fix it by quickly scaling down the readahead size. | 
|  | */ | 
|  | static void shrink_readahead_size_eio(struct file_ra_state *ra) | 
|  | { | 
|  | ra->ra_pages /= 4; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * filemap_get_read_batch - Get a batch of pages for read | 
|  | * | 
|  | * Get a batch of pages which represent a contiguous range of bytes | 
|  | * in the file.  No tail pages will be returned.  If @index is in the | 
|  | * middle of a THP, the entire THP will be returned.  The last page in | 
|  | * the batch may have Readahead set or be not Uptodate so that the | 
|  | * caller can take the appropriate action. | 
|  | */ | 
|  | static void filemap_get_read_batch(struct address_space *mapping, | 
|  | pgoff_t index, pgoff_t max, struct pagevec *pvec) | 
|  | { | 
|  | XA_STATE(xas, &mapping->i_pages, index); | 
|  | struct page *head; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | for (head = xas_load(&xas); head; head = xas_next(&xas)) { | 
|  | if (xas_retry(&xas, head)) | 
|  | continue; | 
|  | if (xas.xa_index > max || xa_is_value(head)) | 
|  | break; | 
|  | if (!page_cache_get_speculative(head)) | 
|  | goto retry; | 
|  |  | 
|  | /* Has the page moved or been split? */ | 
|  | if (unlikely(head != xas_reload(&xas))) | 
|  | goto put_page; | 
|  |  | 
|  | if (!pagevec_add(pvec, head)) | 
|  | break; | 
|  | if (!PageUptodate(head)) | 
|  | break; | 
|  | if (PageReadahead(head)) | 
|  | break; | 
|  | xas.xa_index = head->index + thp_nr_pages(head) - 1; | 
|  | xas.xa_offset = (xas.xa_index >> xas.xa_shift) & XA_CHUNK_MASK; | 
|  | continue; | 
|  | put_page: | 
|  | put_page(head); | 
|  | retry: | 
|  | xas_reset(&xas); | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | static int filemap_read_page(struct file *file, struct address_space *mapping, | 
|  | struct page *page) | 
|  | { | 
|  | int error; | 
|  |  | 
|  | /* | 
|  | * A previous I/O error may have been due to temporary failures, | 
|  | * eg. multipath errors.  PG_error will be set again if readpage | 
|  | * fails. | 
|  | */ | 
|  | ClearPageError(page); | 
|  | /* Start the actual read. The read will unlock the page. */ | 
|  | error = mapping->a_ops->readpage(file, page); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | error = wait_on_page_locked_killable(page); | 
|  | if (error) | 
|  | return error; | 
|  | if (PageUptodate(page)) | 
|  | return 0; | 
|  | shrink_readahead_size_eio(&file->f_ra); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | static bool filemap_range_uptodate(struct address_space *mapping, | 
|  | loff_t pos, struct iov_iter *iter, struct page *page) | 
|  | { | 
|  | int count; | 
|  |  | 
|  | if (PageUptodate(page)) | 
|  | return true; | 
|  | /* pipes can't handle partially uptodate pages */ | 
|  | if (iov_iter_is_pipe(iter)) | 
|  | return false; | 
|  | if (!mapping->a_ops->is_partially_uptodate) | 
|  | return false; | 
|  | if (mapping->host->i_blkbits >= (PAGE_SHIFT + thp_order(page))) | 
|  | return false; | 
|  |  | 
|  | count = iter->count; | 
|  | if (page_offset(page) > pos) { | 
|  | count -= page_offset(page) - pos; | 
|  | pos = 0; | 
|  | } else { | 
|  | pos -= page_offset(page); | 
|  | } | 
|  |  | 
|  | return mapping->a_ops->is_partially_uptodate(page, pos, count); | 
|  | } | 
|  |  | 
|  | static int filemap_update_page(struct kiocb *iocb, | 
|  | struct address_space *mapping, struct iov_iter *iter, | 
|  | struct page *page) | 
|  | { | 
|  | struct folio *folio = page_folio(page); | 
|  | int error; | 
|  |  | 
|  | if (iocb->ki_flags & IOCB_NOWAIT) { | 
|  | if (!filemap_invalidate_trylock_shared(mapping)) | 
|  | return -EAGAIN; | 
|  | } else { | 
|  | filemap_invalidate_lock_shared(mapping); | 
|  | } | 
|  |  | 
|  | if (!folio_trylock(folio)) { | 
|  | error = -EAGAIN; | 
|  | if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO)) | 
|  | goto unlock_mapping; | 
|  | if (!(iocb->ki_flags & IOCB_WAITQ)) { | 
|  | filemap_invalidate_unlock_shared(mapping); | 
|  | put_and_wait_on_page_locked(&folio->page, TASK_KILLABLE); | 
|  | return AOP_TRUNCATED_PAGE; | 
|  | } | 
|  | error = __folio_lock_async(folio, iocb->ki_waitq); | 
|  | if (error) | 
|  | goto unlock_mapping; | 
|  | } | 
|  |  | 
|  | error = AOP_TRUNCATED_PAGE; | 
|  | if (!folio->mapping) | 
|  | goto unlock; | 
|  |  | 
|  | error = 0; | 
|  | if (filemap_range_uptodate(mapping, iocb->ki_pos, iter, &folio->page)) | 
|  | goto unlock; | 
|  |  | 
|  | error = -EAGAIN; | 
|  | if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ)) | 
|  | goto unlock; | 
|  |  | 
|  | error = filemap_read_page(iocb->ki_filp, mapping, &folio->page); | 
|  | goto unlock_mapping; | 
|  | unlock: | 
|  | folio_unlock(folio); | 
|  | unlock_mapping: | 
|  | filemap_invalidate_unlock_shared(mapping); | 
|  | if (error == AOP_TRUNCATED_PAGE) | 
|  | folio_put(folio); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | static int filemap_create_page(struct file *file, | 
|  | struct address_space *mapping, pgoff_t index, | 
|  | struct pagevec *pvec) | 
|  | { | 
|  | struct page *page; | 
|  | int error; | 
|  |  | 
|  | page = page_cache_alloc(mapping); | 
|  | if (!page) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* | 
|  | * Protect against truncate / hole punch. Grabbing invalidate_lock here | 
|  | * assures we cannot instantiate and bring uptodate new pagecache pages | 
|  | * after evicting page cache during truncate and before actually | 
|  | * freeing blocks.  Note that we could release invalidate_lock after | 
|  | * inserting the page into page cache as the locked page would then be | 
|  | * enough to synchronize with hole punching. But there are code paths | 
|  | * such as filemap_update_page() filling in partially uptodate pages or | 
|  | * ->readpages() that need to hold invalidate_lock while mapping blocks | 
|  | * for IO so let's hold the lock here as well to keep locking rules | 
|  | * simple. | 
|  | */ | 
|  | filemap_invalidate_lock_shared(mapping); | 
|  | error = add_to_page_cache_lru(page, mapping, index, | 
|  | mapping_gfp_constraint(mapping, GFP_KERNEL)); | 
|  | if (error == -EEXIST) | 
|  | error = AOP_TRUNCATED_PAGE; | 
|  | if (error) | 
|  | goto error; | 
|  |  | 
|  | error = filemap_read_page(file, mapping, page); | 
|  | if (error) | 
|  | goto error; | 
|  |  | 
|  | filemap_invalidate_unlock_shared(mapping); | 
|  | pagevec_add(pvec, page); | 
|  | return 0; | 
|  | error: | 
|  | filemap_invalidate_unlock_shared(mapping); | 
|  | put_page(page); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | static int filemap_readahead(struct kiocb *iocb, struct file *file, | 
|  | struct address_space *mapping, struct page *page, | 
|  | pgoff_t last_index) | 
|  | { | 
|  | if (iocb->ki_flags & IOCB_NOIO) | 
|  | return -EAGAIN; | 
|  | page_cache_async_readahead(mapping, &file->f_ra, file, page, | 
|  | page->index, last_index - page->index); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int filemap_get_pages(struct kiocb *iocb, struct iov_iter *iter, | 
|  | struct pagevec *pvec) | 
|  | { | 
|  | struct file *filp = iocb->ki_filp; | 
|  | struct address_space *mapping = filp->f_mapping; | 
|  | struct file_ra_state *ra = &filp->f_ra; | 
|  | pgoff_t index = iocb->ki_pos >> PAGE_SHIFT; | 
|  | pgoff_t last_index; | 
|  | struct page *page; | 
|  | int err = 0; | 
|  |  | 
|  | last_index = DIV_ROUND_UP(iocb->ki_pos + iter->count, PAGE_SIZE); | 
|  | retry: | 
|  | if (fatal_signal_pending(current)) | 
|  | return -EINTR; | 
|  |  | 
|  | filemap_get_read_batch(mapping, index, last_index, pvec); | 
|  | if (!pagevec_count(pvec)) { | 
|  | if (iocb->ki_flags & IOCB_NOIO) | 
|  | return -EAGAIN; | 
|  | page_cache_sync_readahead(mapping, ra, filp, index, | 
|  | last_index - index); | 
|  | filemap_get_read_batch(mapping, index, last_index, pvec); | 
|  | } | 
|  | if (!pagevec_count(pvec)) { | 
|  | if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ)) | 
|  | return -EAGAIN; | 
|  | err = filemap_create_page(filp, mapping, | 
|  | iocb->ki_pos >> PAGE_SHIFT, pvec); | 
|  | if (err == AOP_TRUNCATED_PAGE) | 
|  | goto retry; | 
|  | return err; | 
|  | } | 
|  |  | 
|  | page = pvec->pages[pagevec_count(pvec) - 1]; | 
|  | if (PageReadahead(page)) { | 
|  | err = filemap_readahead(iocb, filp, mapping, page, last_index); | 
|  | if (err) | 
|  | goto err; | 
|  | } | 
|  | if (!PageUptodate(page)) { | 
|  | if ((iocb->ki_flags & IOCB_WAITQ) && pagevec_count(pvec) > 1) | 
|  | iocb->ki_flags |= IOCB_NOWAIT; | 
|  | err = filemap_update_page(iocb, mapping, iter, page); | 
|  | if (err) | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | err: | 
|  | if (err < 0) | 
|  | put_page(page); | 
|  | if (likely(--pvec->nr)) | 
|  | return 0; | 
|  | if (err == AOP_TRUNCATED_PAGE) | 
|  | goto retry; | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * filemap_read - Read data from the page cache. | 
|  | * @iocb: The iocb to read. | 
|  | * @iter: Destination for the data. | 
|  | * @already_read: Number of bytes already read by the caller. | 
|  | * | 
|  | * Copies data from the page cache.  If the data is not currently present, | 
|  | * uses the readahead and readpage address_space operations to fetch it. | 
|  | * | 
|  | * Return: Total number of bytes copied, including those already read by | 
|  | * the caller.  If an error happens before any bytes are copied, returns | 
|  | * a negative error number. | 
|  | */ | 
|  | ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter, | 
|  | ssize_t already_read) | 
|  | { | 
|  | struct file *filp = iocb->ki_filp; | 
|  | struct file_ra_state *ra = &filp->f_ra; | 
|  | struct address_space *mapping = filp->f_mapping; | 
|  | struct inode *inode = mapping->host; | 
|  | struct pagevec pvec; | 
|  | int i, error = 0; | 
|  | bool writably_mapped; | 
|  | loff_t isize, end_offset; | 
|  |  | 
|  | if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes)) | 
|  | return 0; | 
|  | if (unlikely(!iov_iter_count(iter))) | 
|  | return 0; | 
|  |  | 
|  | iov_iter_truncate(iter, inode->i_sb->s_maxbytes); | 
|  | pagevec_init(&pvec); | 
|  |  | 
|  | do { | 
|  | cond_resched(); | 
|  |  | 
|  | /* | 
|  | * If we've already successfully copied some data, then we | 
|  | * can no longer safely return -EIOCBQUEUED. Hence mark | 
|  | * an async read NOWAIT at that point. | 
|  | */ | 
|  | if ((iocb->ki_flags & IOCB_WAITQ) && already_read) | 
|  | iocb->ki_flags |= IOCB_NOWAIT; | 
|  |  | 
|  | if (unlikely(iocb->ki_pos >= i_size_read(inode))) | 
|  | break; | 
|  |  | 
|  | error = filemap_get_pages(iocb, iter, &pvec); | 
|  | if (error < 0) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * i_size must be checked after we know the pages are Uptodate. | 
|  | * | 
|  | * Checking i_size after the check allows us to calculate | 
|  | * the correct value for "nr", which means the zero-filled | 
|  | * part of the page is not copied back to userspace (unless | 
|  | * another truncate extends the file - this is desired though). | 
|  | */ | 
|  | isize = i_size_read(inode); | 
|  | if (unlikely(iocb->ki_pos >= isize)) | 
|  | goto put_pages; | 
|  | end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count); | 
|  |  | 
|  | /* | 
|  | * Once we start copying data, we don't want to be touching any | 
|  | * cachelines that might be contended: | 
|  | */ | 
|  | writably_mapped = mapping_writably_mapped(mapping); | 
|  |  | 
|  | /* | 
|  | * When a sequential read accesses a page several times, only | 
|  | * mark it as accessed the first time. | 
|  | */ | 
|  | if (iocb->ki_pos >> PAGE_SHIFT != | 
|  | ra->prev_pos >> PAGE_SHIFT) | 
|  | mark_page_accessed(pvec.pages[0]); | 
|  |  | 
|  | for (i = 0; i < pagevec_count(&pvec); i++) { | 
|  | struct page *page = pvec.pages[i]; | 
|  | size_t page_size = thp_size(page); | 
|  | size_t offset = iocb->ki_pos & (page_size - 1); | 
|  | size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos, | 
|  | page_size - offset); | 
|  | size_t copied; | 
|  |  | 
|  | if (end_offset < page_offset(page)) | 
|  | break; | 
|  | if (i > 0) | 
|  | mark_page_accessed(page); | 
|  | /* | 
|  | * If users can be writing to this page using arbitrary | 
|  | * virtual addresses, take care about potential aliasing | 
|  | * before reading the page on the kernel side. | 
|  | */ | 
|  | if (writably_mapped) { | 
|  | int j; | 
|  |  | 
|  | for (j = 0; j < thp_nr_pages(page); j++) | 
|  | flush_dcache_page(page + j); | 
|  | } | 
|  |  | 
|  | copied = copy_page_to_iter(page, offset, bytes, iter); | 
|  |  | 
|  | already_read += copied; | 
|  | iocb->ki_pos += copied; | 
|  | ra->prev_pos = iocb->ki_pos; | 
|  |  | 
|  | if (copied < bytes) { | 
|  | error = -EFAULT; | 
|  | break; | 
|  | } | 
|  | } | 
|  | put_pages: | 
|  | for (i = 0; i < pagevec_count(&pvec); i++) | 
|  | put_page(pvec.pages[i]); | 
|  | pagevec_reinit(&pvec); | 
|  | } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error); | 
|  |  | 
|  | file_accessed(filp); | 
|  |  | 
|  | return already_read ? already_read : error; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(filemap_read); | 
|  |  | 
|  | /** | 
|  | * generic_file_read_iter - generic filesystem read routine | 
|  | * @iocb:	kernel I/O control block | 
|  | * @iter:	destination for the data read | 
|  | * | 
|  | * This is the "read_iter()" routine for all filesystems | 
|  | * that can use the page cache directly. | 
|  | * | 
|  | * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall | 
|  | * be returned when no data can be read without waiting for I/O requests | 
|  | * to complete; it doesn't prevent readahead. | 
|  | * | 
|  | * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O | 
|  | * requests shall be made for the read or for readahead.  When no data | 
|  | * can be read, -EAGAIN shall be returned.  When readahead would be | 
|  | * triggered, a partial, possibly empty read shall be returned. | 
|  | * | 
|  | * Return: | 
|  | * * number of bytes copied, even for partial reads | 
|  | * * negative error code (or 0 if IOCB_NOIO) if nothing was read | 
|  | */ | 
|  | ssize_t | 
|  | generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) | 
|  | { | 
|  | size_t count = iov_iter_count(iter); | 
|  | ssize_t retval = 0; | 
|  |  | 
|  | if (!count) | 
|  | return 0; /* skip atime */ | 
|  |  | 
|  | if (iocb->ki_flags & IOCB_DIRECT) { | 
|  | struct file *file = iocb->ki_filp; | 
|  | struct address_space *mapping = file->f_mapping; | 
|  | struct inode *inode = mapping->host; | 
|  |  | 
|  | if (iocb->ki_flags & IOCB_NOWAIT) { | 
|  | if (filemap_range_needs_writeback(mapping, iocb->ki_pos, | 
|  | iocb->ki_pos + count - 1)) | 
|  | return -EAGAIN; | 
|  | } else { | 
|  | retval = filemap_write_and_wait_range(mapping, | 
|  | iocb->ki_pos, | 
|  | iocb->ki_pos + count - 1); | 
|  | if (retval < 0) | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | file_accessed(file); | 
|  |  | 
|  | retval = mapping->a_ops->direct_IO(iocb, iter); | 
|  | if (retval >= 0) { | 
|  | iocb->ki_pos += retval; | 
|  | count -= retval; | 
|  | } | 
|  | if (retval != -EIOCBQUEUED) | 
|  | iov_iter_revert(iter, count - iov_iter_count(iter)); | 
|  |  | 
|  | /* | 
|  | * Btrfs can have a short DIO read if we encounter | 
|  | * compressed extents, so if there was an error, or if | 
|  | * we've already read everything we wanted to, or if | 
|  | * there was a short read because we hit EOF, go ahead | 
|  | * and return.  Otherwise fallthrough to buffered io for | 
|  | * the rest of the read.  Buffered reads will not work for | 
|  | * DAX files, so don't bother trying. | 
|  | */ | 
|  | if (retval < 0 || !count || IS_DAX(inode)) | 
|  | return retval; | 
|  | if (iocb->ki_pos >= i_size_read(inode)) | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | return filemap_read(iocb, iter, retval); | 
|  | } | 
|  | EXPORT_SYMBOL(generic_file_read_iter); | 
|  |  | 
|  | static inline loff_t page_seek_hole_data(struct xa_state *xas, | 
|  | struct address_space *mapping, struct page *page, | 
|  | loff_t start, loff_t end, bool seek_data) | 
|  | { | 
|  | const struct address_space_operations *ops = mapping->a_ops; | 
|  | size_t offset, bsz = i_blocksize(mapping->host); | 
|  |  | 
|  | if (xa_is_value(page) || PageUptodate(page)) | 
|  | return seek_data ? start : end; | 
|  | if (!ops->is_partially_uptodate) | 
|  | return seek_data ? end : start; | 
|  |  | 
|  | xas_pause(xas); | 
|  | rcu_read_unlock(); | 
|  | lock_page(page); | 
|  | if (unlikely(page->mapping != mapping)) | 
|  | goto unlock; | 
|  |  | 
|  | offset = offset_in_thp(page, start) & ~(bsz - 1); | 
|  |  | 
|  | do { | 
|  | if (ops->is_partially_uptodate(page, offset, bsz) == seek_data) | 
|  | break; | 
|  | start = (start + bsz) & ~(bsz - 1); | 
|  | offset += bsz; | 
|  | } while (offset < thp_size(page)); | 
|  | unlock: | 
|  | unlock_page(page); | 
|  | rcu_read_lock(); | 
|  | return start; | 
|  | } | 
|  |  | 
|  | static inline | 
|  | unsigned int seek_page_size(struct xa_state *xas, struct page *page) | 
|  | { | 
|  | if (xa_is_value(page)) | 
|  | return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index); | 
|  | return thp_size(page); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache. | 
|  | * @mapping: Address space to search. | 
|  | * @start: First byte to consider. | 
|  | * @end: Limit of search (exclusive). | 
|  | * @whence: Either SEEK_HOLE or SEEK_DATA. | 
|  | * | 
|  | * If the page cache knows which blocks contain holes and which blocks | 
|  | * contain data, your filesystem can use this function to implement | 
|  | * SEEK_HOLE and SEEK_DATA.  This is useful for filesystems which are | 
|  | * entirely memory-based such as tmpfs, and filesystems which support | 
|  | * unwritten extents. | 
|  | * | 
|  | * Return: The requested offset on success, or -ENXIO if @whence specifies | 
|  | * SEEK_DATA and there is no data after @start.  There is an implicit hole | 
|  | * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start | 
|  | * and @end contain data. | 
|  | */ | 
|  | loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start, | 
|  | loff_t end, int whence) | 
|  | { | 
|  | XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT); | 
|  | pgoff_t max = (end - 1) >> PAGE_SHIFT; | 
|  | bool seek_data = (whence == SEEK_DATA); | 
|  | struct page *page; | 
|  |  | 
|  | if (end <= start) | 
|  | return -ENXIO; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | while ((page = find_get_entry(&xas, max, XA_PRESENT))) { | 
|  | loff_t pos = (u64)xas.xa_index << PAGE_SHIFT; | 
|  | unsigned int seek_size; | 
|  |  | 
|  | if (start < pos) { | 
|  | if (!seek_data) | 
|  | goto unlock; | 
|  | start = pos; | 
|  | } | 
|  |  | 
|  | seek_size = seek_page_size(&xas, page); | 
|  | pos = round_up(pos + 1, seek_size); | 
|  | start = page_seek_hole_data(&xas, mapping, page, start, pos, | 
|  | seek_data); | 
|  | if (start < pos) | 
|  | goto unlock; | 
|  | if (start >= end) | 
|  | break; | 
|  | if (seek_size > PAGE_SIZE) | 
|  | xas_set(&xas, pos >> PAGE_SHIFT); | 
|  | if (!xa_is_value(page)) | 
|  | put_page(page); | 
|  | } | 
|  | if (seek_data) | 
|  | start = -ENXIO; | 
|  | unlock: | 
|  | rcu_read_unlock(); | 
|  | if (page && !xa_is_value(page)) | 
|  | put_page(page); | 
|  | if (start > end) | 
|  | return end; | 
|  | return start; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MMU | 
|  | #define MMAP_LOTSAMISS  (100) | 
|  | /* | 
|  | * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock | 
|  | * @vmf - the vm_fault for this fault. | 
|  | * @page - the page to lock. | 
|  | * @fpin - the pointer to the file we may pin (or is already pinned). | 
|  | * | 
|  | * This works similar to lock_page_or_retry in that it can drop the mmap_lock. | 
|  | * It differs in that it actually returns the page locked if it returns 1 and 0 | 
|  | * if it couldn't lock the page.  If we did have to drop the mmap_lock then fpin | 
|  | * will point to the pinned file and needs to be fput()'ed at a later point. | 
|  | */ | 
|  | static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page, | 
|  | struct file **fpin) | 
|  | { | 
|  | struct folio *folio = page_folio(page); | 
|  |  | 
|  | if (folio_trylock(folio)) | 
|  | return 1; | 
|  |  | 
|  | /* | 
|  | * NOTE! This will make us return with VM_FAULT_RETRY, but with | 
|  | * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT | 
|  | * is supposed to work. We have way too many special cases.. | 
|  | */ | 
|  | if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) | 
|  | return 0; | 
|  |  | 
|  | *fpin = maybe_unlock_mmap_for_io(vmf, *fpin); | 
|  | if (vmf->flags & FAULT_FLAG_KILLABLE) { | 
|  | if (__folio_lock_killable(folio)) { | 
|  | /* | 
|  | * We didn't have the right flags to drop the mmap_lock, | 
|  | * but all fault_handlers only check for fatal signals | 
|  | * if we return VM_FAULT_RETRY, so we need to drop the | 
|  | * mmap_lock here and return 0 if we don't have a fpin. | 
|  | */ | 
|  | if (*fpin == NULL) | 
|  | mmap_read_unlock(vmf->vma->vm_mm); | 
|  | return 0; | 
|  | } | 
|  | } else | 
|  | __folio_lock(folio); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Synchronous readahead happens when we don't even find a page in the page | 
|  | * cache at all.  We don't want to perform IO under the mmap sem, so if we have | 
|  | * to drop the mmap sem we return the file that was pinned in order for us to do | 
|  | * that.  If we didn't pin a file then we return NULL.  The file that is | 
|  | * returned needs to be fput()'ed when we're done with it. | 
|  | */ | 
|  | static struct file *do_sync_mmap_readahead(struct vm_fault *vmf) | 
|  | { | 
|  | struct file *file = vmf->vma->vm_file; | 
|  | struct file_ra_state *ra = &file->f_ra; | 
|  | struct address_space *mapping = file->f_mapping; | 
|  | DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff); | 
|  | struct file *fpin = NULL; | 
|  | unsigned int mmap_miss; | 
|  |  | 
|  | /* If we don't want any read-ahead, don't bother */ | 
|  | if (vmf->vma->vm_flags & VM_RAND_READ) | 
|  | return fpin; | 
|  | if (!ra->ra_pages) | 
|  | return fpin; | 
|  |  | 
|  | if (vmf->vma->vm_flags & VM_SEQ_READ) { | 
|  | fpin = maybe_unlock_mmap_for_io(vmf, fpin); | 
|  | page_cache_sync_ra(&ractl, ra->ra_pages); | 
|  | return fpin; | 
|  | } | 
|  |  | 
|  | /* Avoid banging the cache line if not needed */ | 
|  | mmap_miss = READ_ONCE(ra->mmap_miss); | 
|  | if (mmap_miss < MMAP_LOTSAMISS * 10) | 
|  | WRITE_ONCE(ra->mmap_miss, ++mmap_miss); | 
|  |  | 
|  | /* | 
|  | * Do we miss much more than hit in this file? If so, | 
|  | * stop bothering with read-ahead. It will only hurt. | 
|  | */ | 
|  | if (mmap_miss > MMAP_LOTSAMISS) | 
|  | return fpin; | 
|  |  | 
|  | /* | 
|  | * mmap read-around | 
|  | */ | 
|  | fpin = maybe_unlock_mmap_for_io(vmf, fpin); | 
|  | ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2); | 
|  | ra->size = ra->ra_pages; | 
|  | ra->async_size = ra->ra_pages / 4; | 
|  | ractl._index = ra->start; | 
|  | do_page_cache_ra(&ractl, ra->size, ra->async_size); | 
|  | return fpin; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Asynchronous readahead happens when we find the page and PG_readahead, | 
|  | * so we want to possibly extend the readahead further.  We return the file that | 
|  | * was pinned if we have to drop the mmap_lock in order to do IO. | 
|  | */ | 
|  | static struct file *do_async_mmap_readahead(struct vm_fault *vmf, | 
|  | struct page *page) | 
|  | { | 
|  | struct file *file = vmf->vma->vm_file; | 
|  | struct file_ra_state *ra = &file->f_ra; | 
|  | struct address_space *mapping = file->f_mapping; | 
|  | struct file *fpin = NULL; | 
|  | unsigned int mmap_miss; | 
|  | pgoff_t offset = vmf->pgoff; | 
|  |  | 
|  | /* If we don't want any read-ahead, don't bother */ | 
|  | if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages) | 
|  | return fpin; | 
|  | mmap_miss = READ_ONCE(ra->mmap_miss); | 
|  | if (mmap_miss) | 
|  | WRITE_ONCE(ra->mmap_miss, --mmap_miss); | 
|  | if (PageReadahead(page)) { | 
|  | fpin = maybe_unlock_mmap_for_io(vmf, fpin); | 
|  | page_cache_async_readahead(mapping, ra, file, | 
|  | page, offset, ra->ra_pages); | 
|  | } | 
|  | return fpin; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * filemap_fault - read in file data for page fault handling | 
|  | * @vmf:	struct vm_fault containing details of the fault | 
|  | * | 
|  | * filemap_fault() is invoked via the vma operations vector for a | 
|  | * mapped memory region to read in file data during a page fault. | 
|  | * | 
|  | * The goto's are kind of ugly, but this streamlines the normal case of having | 
|  | * it in the page cache, and handles the special cases reasonably without | 
|  | * having a lot of duplicated code. | 
|  | * | 
|  | * vma->vm_mm->mmap_lock must be held on entry. | 
|  | * | 
|  | * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock | 
|  | * may be dropped before doing I/O or by lock_page_maybe_drop_mmap(). | 
|  | * | 
|  | * If our return value does not have VM_FAULT_RETRY set, the mmap_lock | 
|  | * has not been released. | 
|  | * | 
|  | * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set. | 
|  | * | 
|  | * Return: bitwise-OR of %VM_FAULT_ codes. | 
|  | */ | 
|  | vm_fault_t filemap_fault(struct vm_fault *vmf) | 
|  | { | 
|  | int error; | 
|  | struct file *file = vmf->vma->vm_file; | 
|  | struct file *fpin = NULL; | 
|  | struct address_space *mapping = file->f_mapping; | 
|  | struct inode *inode = mapping->host; | 
|  | pgoff_t offset = vmf->pgoff; | 
|  | pgoff_t max_off; | 
|  | struct page *page; | 
|  | vm_fault_t ret = 0; | 
|  | bool mapping_locked = false; | 
|  |  | 
|  | max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); | 
|  | if (unlikely(offset >= max_off)) | 
|  | return VM_FAULT_SIGBUS; | 
|  |  | 
|  | /* | 
|  | * Do we have something in the page cache already? | 
|  | */ | 
|  | page = find_get_page(mapping, offset); | 
|  | if (likely(page)) { | 
|  | /* | 
|  | * We found the page, so try async readahead before waiting for | 
|  | * the lock. | 
|  | */ | 
|  | if (!(vmf->flags & FAULT_FLAG_TRIED)) | 
|  | fpin = do_async_mmap_readahead(vmf, page); | 
|  | if (unlikely(!PageUptodate(page))) { | 
|  | filemap_invalidate_lock_shared(mapping); | 
|  | mapping_locked = true; | 
|  | } | 
|  | } else { | 
|  | /* No page in the page cache at all */ | 
|  | count_vm_event(PGMAJFAULT); | 
|  | count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT); | 
|  | ret = VM_FAULT_MAJOR; | 
|  | fpin = do_sync_mmap_readahead(vmf); | 
|  | retry_find: | 
|  | /* | 
|  | * See comment in filemap_create_page() why we need | 
|  | * invalidate_lock | 
|  | */ | 
|  | if (!mapping_locked) { | 
|  | filemap_invalidate_lock_shared(mapping); | 
|  | mapping_locked = true; | 
|  | } | 
|  | page = pagecache_get_page(mapping, offset, | 
|  | FGP_CREAT|FGP_FOR_MMAP, | 
|  | vmf->gfp_mask); | 
|  | if (!page) { | 
|  | if (fpin) | 
|  | goto out_retry; | 
|  | filemap_invalidate_unlock_shared(mapping); | 
|  | return VM_FAULT_OOM; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!lock_page_maybe_drop_mmap(vmf, page, &fpin)) | 
|  | goto out_retry; | 
|  |  | 
|  | /* Did it get truncated? */ | 
|  | if (unlikely(compound_head(page)->mapping != mapping)) { | 
|  | unlock_page(page); | 
|  | put_page(page); | 
|  | goto retry_find; | 
|  | } | 
|  | VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page); | 
|  |  | 
|  | /* | 
|  | * We have a locked page in the page cache, now we need to check | 
|  | * that it's up-to-date. If not, it is going to be due to an error. | 
|  | */ | 
|  | if (unlikely(!PageUptodate(page))) { | 
|  | /* | 
|  | * The page was in cache and uptodate and now it is not. | 
|  | * Strange but possible since we didn't hold the page lock all | 
|  | * the time. Let's drop everything get the invalidate lock and | 
|  | * try again. | 
|  | */ | 
|  | if (!mapping_locked) { | 
|  | unlock_page(page); | 
|  | put_page(page); | 
|  | goto retry_find; | 
|  | } | 
|  | goto page_not_uptodate; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We've made it this far and we had to drop our mmap_lock, now is the | 
|  | * time to return to the upper layer and have it re-find the vma and | 
|  | * redo the fault. | 
|  | */ | 
|  | if (fpin) { | 
|  | unlock_page(page); | 
|  | goto out_retry; | 
|  | } | 
|  | if (mapping_locked) | 
|  | filemap_invalidate_unlock_shared(mapping); | 
|  |  | 
|  | /* | 
|  | * Found the page and have a reference on it. | 
|  | * We must recheck i_size under page lock. | 
|  | */ | 
|  | max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); | 
|  | if (unlikely(offset >= max_off)) { | 
|  | unlock_page(page); | 
|  | put_page(page); | 
|  | return VM_FAULT_SIGBUS; | 
|  | } | 
|  |  | 
|  | vmf->page = page; | 
|  | return ret | VM_FAULT_LOCKED; | 
|  |  | 
|  | page_not_uptodate: | 
|  | /* | 
|  | * Umm, take care of errors if the page isn't up-to-date. | 
|  | * Try to re-read it _once_. We do this synchronously, | 
|  | * because there really aren't any performance issues here | 
|  | * and we need to check for errors. | 
|  | */ | 
|  | fpin = maybe_unlock_mmap_for_io(vmf, fpin); | 
|  | error = filemap_read_page(file, mapping, page); | 
|  | if (fpin) | 
|  | goto out_retry; | 
|  | put_page(page); | 
|  |  | 
|  | if (!error || error == AOP_TRUNCATED_PAGE) | 
|  | goto retry_find; | 
|  | filemap_invalidate_unlock_shared(mapping); | 
|  |  | 
|  | return VM_FAULT_SIGBUS; | 
|  |  | 
|  | out_retry: | 
|  | /* | 
|  | * We dropped the mmap_lock, we need to return to the fault handler to | 
|  | * re-find the vma and come back and find our hopefully still populated | 
|  | * page. | 
|  | */ | 
|  | if (page) | 
|  | put_page(page); | 
|  | if (mapping_locked) | 
|  | filemap_invalidate_unlock_shared(mapping); | 
|  | if (fpin) | 
|  | fput(fpin); | 
|  | return ret | VM_FAULT_RETRY; | 
|  | } | 
|  | EXPORT_SYMBOL(filemap_fault); | 
|  |  | 
|  | static bool filemap_map_pmd(struct vm_fault *vmf, struct page *page) | 
|  | { | 
|  | struct mm_struct *mm = vmf->vma->vm_mm; | 
|  |  | 
|  | /* Huge page is mapped? No need to proceed. */ | 
|  | if (pmd_trans_huge(*vmf->pmd)) { | 
|  | unlock_page(page); | 
|  | put_page(page); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (pmd_none(*vmf->pmd) && PageTransHuge(page)) { | 
|  | vm_fault_t ret = do_set_pmd(vmf, page); | 
|  | if (!ret) { | 
|  | /* The page is mapped successfully, reference consumed. */ | 
|  | unlock_page(page); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (pmd_none(*vmf->pmd)) | 
|  | pmd_install(mm, vmf->pmd, &vmf->prealloc_pte); | 
|  |  | 
|  | /* See comment in handle_pte_fault() */ | 
|  | if (pmd_devmap_trans_unstable(vmf->pmd)) { | 
|  | unlock_page(page); | 
|  | put_page(page); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static struct page *next_uptodate_page(struct page *page, | 
|  | struct address_space *mapping, | 
|  | struct xa_state *xas, pgoff_t end_pgoff) | 
|  | { | 
|  | unsigned long max_idx; | 
|  |  | 
|  | do { | 
|  | if (!page) | 
|  | return NULL; | 
|  | if (xas_retry(xas, page)) | 
|  | continue; | 
|  | if (xa_is_value(page)) | 
|  | continue; | 
|  | if (PageLocked(page)) | 
|  | continue; | 
|  | if (!page_cache_get_speculative(page)) | 
|  | continue; | 
|  | /* Has the page moved or been split? */ | 
|  | if (unlikely(page != xas_reload(xas))) | 
|  | goto skip; | 
|  | if (!PageUptodate(page) || PageReadahead(page)) | 
|  | goto skip; | 
|  | if (!trylock_page(page)) | 
|  | goto skip; | 
|  | if (page->mapping != mapping) | 
|  | goto unlock; | 
|  | if (!PageUptodate(page)) | 
|  | goto unlock; | 
|  | max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); | 
|  | if (xas->xa_index >= max_idx) | 
|  | goto unlock; | 
|  | return page; | 
|  | unlock: | 
|  | unlock_page(page); | 
|  | skip: | 
|  | put_page(page); | 
|  | } while ((page = xas_next_entry(xas, end_pgoff)) != NULL); | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static inline struct page *first_map_page(struct address_space *mapping, | 
|  | struct xa_state *xas, | 
|  | pgoff_t end_pgoff) | 
|  | { | 
|  | return next_uptodate_page(xas_find(xas, end_pgoff), | 
|  | mapping, xas, end_pgoff); | 
|  | } | 
|  |  | 
|  | static inline struct page *next_map_page(struct address_space *mapping, | 
|  | struct xa_state *xas, | 
|  | pgoff_t end_pgoff) | 
|  | { | 
|  | return next_uptodate_page(xas_next_entry(xas, end_pgoff), | 
|  | mapping, xas, end_pgoff); | 
|  | } | 
|  |  | 
|  | vm_fault_t filemap_map_pages(struct vm_fault *vmf, | 
|  | pgoff_t start_pgoff, pgoff_t end_pgoff) | 
|  | { | 
|  | struct vm_area_struct *vma = vmf->vma; | 
|  | struct file *file = vma->vm_file; | 
|  | struct address_space *mapping = file->f_mapping; | 
|  | pgoff_t last_pgoff = start_pgoff; | 
|  | unsigned long addr; | 
|  | XA_STATE(xas, &mapping->i_pages, start_pgoff); | 
|  | struct page *head, *page; | 
|  | unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss); | 
|  | vm_fault_t ret = 0; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | head = first_map_page(mapping, &xas, end_pgoff); | 
|  | if (!head) | 
|  | goto out; | 
|  |  | 
|  | if (filemap_map_pmd(vmf, head)) { | 
|  | ret = VM_FAULT_NOPAGE; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT); | 
|  | vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl); | 
|  | do { | 
|  | page = find_subpage(head, xas.xa_index); | 
|  | if (PageHWPoison(page)) | 
|  | goto unlock; | 
|  |  | 
|  | if (mmap_miss > 0) | 
|  | mmap_miss--; | 
|  |  | 
|  | addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT; | 
|  | vmf->pte += xas.xa_index - last_pgoff; | 
|  | last_pgoff = xas.xa_index; | 
|  |  | 
|  | if (!pte_none(*vmf->pte)) | 
|  | goto unlock; | 
|  |  | 
|  | /* We're about to handle the fault */ | 
|  | if (vmf->address == addr) | 
|  | ret = VM_FAULT_NOPAGE; | 
|  |  | 
|  | do_set_pte(vmf, page, addr); | 
|  | /* no need to invalidate: a not-present page won't be cached */ | 
|  | update_mmu_cache(vma, addr, vmf->pte); | 
|  | unlock_page(head); | 
|  | continue; | 
|  | unlock: | 
|  | unlock_page(head); | 
|  | put_page(head); | 
|  | } while ((head = next_map_page(mapping, &xas, end_pgoff)) != NULL); | 
|  | pte_unmap_unlock(vmf->pte, vmf->ptl); | 
|  | out: | 
|  | rcu_read_unlock(); | 
|  | WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(filemap_map_pages); | 
|  |  | 
|  | vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) | 
|  | { | 
|  | struct address_space *mapping = vmf->vma->vm_file->f_mapping; | 
|  | struct page *page = vmf->page; | 
|  | vm_fault_t ret = VM_FAULT_LOCKED; | 
|  |  | 
|  | sb_start_pagefault(mapping->host->i_sb); | 
|  | file_update_time(vmf->vma->vm_file); | 
|  | lock_page(page); | 
|  | if (page->mapping != mapping) { | 
|  | unlock_page(page); | 
|  | ret = VM_FAULT_NOPAGE; | 
|  | goto out; | 
|  | } | 
|  | /* | 
|  | * We mark the page dirty already here so that when freeze is in | 
|  | * progress, we are guaranteed that writeback during freezing will | 
|  | * see the dirty page and writeprotect it again. | 
|  | */ | 
|  | set_page_dirty(page); | 
|  | wait_for_stable_page(page); | 
|  | out: | 
|  | sb_end_pagefault(mapping->host->i_sb); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | const struct vm_operations_struct generic_file_vm_ops = { | 
|  | .fault		= filemap_fault, | 
|  | .map_pages	= filemap_map_pages, | 
|  | .page_mkwrite	= filemap_page_mkwrite, | 
|  | }; | 
|  |  | 
|  | /* This is used for a general mmap of a disk file */ | 
|  |  | 
|  | int generic_file_mmap(struct file *file, struct vm_area_struct *vma) | 
|  | { | 
|  | struct address_space *mapping = file->f_mapping; | 
|  |  | 
|  | if (!mapping->a_ops->readpage) | 
|  | return -ENOEXEC; | 
|  | file_accessed(file); | 
|  | vma->vm_ops = &generic_file_vm_ops; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is for filesystems which do not implement ->writepage. | 
|  | */ | 
|  | int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) | 
|  | { | 
|  | if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) | 
|  | return -EINVAL; | 
|  | return generic_file_mmap(file, vma); | 
|  | } | 
|  | #else | 
|  | vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) | 
|  | { | 
|  | return VM_FAULT_SIGBUS; | 
|  | } | 
|  | int generic_file_mmap(struct file *file, struct vm_area_struct *vma) | 
|  | { | 
|  | return -ENOSYS; | 
|  | } | 
|  | int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) | 
|  | { | 
|  | return -ENOSYS; | 
|  | } | 
|  | #endif /* CONFIG_MMU */ | 
|  |  | 
|  | EXPORT_SYMBOL(filemap_page_mkwrite); | 
|  | EXPORT_SYMBOL(generic_file_mmap); | 
|  | EXPORT_SYMBOL(generic_file_readonly_mmap); | 
|  |  | 
|  | static struct page *wait_on_page_read(struct page *page) | 
|  | { | 
|  | if (!IS_ERR(page)) { | 
|  | wait_on_page_locked(page); | 
|  | if (!PageUptodate(page)) { | 
|  | put_page(page); | 
|  | page = ERR_PTR(-EIO); | 
|  | } | 
|  | } | 
|  | return page; | 
|  | } | 
|  |  | 
|  | static struct page *do_read_cache_page(struct address_space *mapping, | 
|  | pgoff_t index, | 
|  | int (*filler)(void *, struct page *), | 
|  | void *data, | 
|  | gfp_t gfp) | 
|  | { | 
|  | struct page *page; | 
|  | int err; | 
|  | repeat: | 
|  | page = find_get_page(mapping, index); | 
|  | if (!page) { | 
|  | page = __page_cache_alloc(gfp); | 
|  | if (!page) | 
|  | return ERR_PTR(-ENOMEM); | 
|  | err = add_to_page_cache_lru(page, mapping, index, gfp); | 
|  | if (unlikely(err)) { | 
|  | put_page(page); | 
|  | if (err == -EEXIST) | 
|  | goto repeat; | 
|  | /* Presumably ENOMEM for xarray node */ | 
|  | return ERR_PTR(err); | 
|  | } | 
|  |  | 
|  | filler: | 
|  | if (filler) | 
|  | err = filler(data, page); | 
|  | else | 
|  | err = mapping->a_ops->readpage(data, page); | 
|  |  | 
|  | if (err < 0) { | 
|  | put_page(page); | 
|  | return ERR_PTR(err); | 
|  | } | 
|  |  | 
|  | page = wait_on_page_read(page); | 
|  | if (IS_ERR(page)) | 
|  | return page; | 
|  | goto out; | 
|  | } | 
|  | if (PageUptodate(page)) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * Page is not up to date and may be locked due to one of the following | 
|  | * case a: Page is being filled and the page lock is held | 
|  | * case b: Read/write error clearing the page uptodate status | 
|  | * case c: Truncation in progress (page locked) | 
|  | * case d: Reclaim in progress | 
|  | * | 
|  | * Case a, the page will be up to date when the page is unlocked. | 
|  | *    There is no need to serialise on the page lock here as the page | 
|  | *    is pinned so the lock gives no additional protection. Even if the | 
|  | *    page is truncated, the data is still valid if PageUptodate as | 
|  | *    it's a race vs truncate race. | 
|  | * Case b, the page will not be up to date | 
|  | * Case c, the page may be truncated but in itself, the data may still | 
|  | *    be valid after IO completes as it's a read vs truncate race. The | 
|  | *    operation must restart if the page is not uptodate on unlock but | 
|  | *    otherwise serialising on page lock to stabilise the mapping gives | 
|  | *    no additional guarantees to the caller as the page lock is | 
|  | *    released before return. | 
|  | * Case d, similar to truncation. If reclaim holds the page lock, it | 
|  | *    will be a race with remove_mapping that determines if the mapping | 
|  | *    is valid on unlock but otherwise the data is valid and there is | 
|  | *    no need to serialise with page lock. | 
|  | * | 
|  | * As the page lock gives no additional guarantee, we optimistically | 
|  | * wait on the page to be unlocked and check if it's up to date and | 
|  | * use the page if it is. Otherwise, the page lock is required to | 
|  | * distinguish between the different cases. The motivation is that we | 
|  | * avoid spurious serialisations and wakeups when multiple processes | 
|  | * wait on the same page for IO to complete. | 
|  | */ | 
|  | wait_on_page_locked(page); | 
|  | if (PageUptodate(page)) | 
|  | goto out; | 
|  |  | 
|  | /* Distinguish between all the cases under the safety of the lock */ | 
|  | lock_page(page); | 
|  |  | 
|  | /* Case c or d, restart the operation */ | 
|  | if (!page->mapping) { | 
|  | unlock_page(page); | 
|  | put_page(page); | 
|  | goto repeat; | 
|  | } | 
|  |  | 
|  | /* Someone else locked and filled the page in a very small window */ | 
|  | if (PageUptodate(page)) { | 
|  | unlock_page(page); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * A previous I/O error may have been due to temporary | 
|  | * failures. | 
|  | * Clear page error before actual read, PG_error will be | 
|  | * set again if read page fails. | 
|  | */ | 
|  | ClearPageError(page); | 
|  | goto filler; | 
|  |  | 
|  | out: | 
|  | mark_page_accessed(page); | 
|  | return page; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * read_cache_page - read into page cache, fill it if needed | 
|  | * @mapping:	the page's address_space | 
|  | * @index:	the page index | 
|  | * @filler:	function to perform the read | 
|  | * @data:	first arg to filler(data, page) function, often left as NULL | 
|  | * | 
|  | * Read into the page cache. If a page already exists, and PageUptodate() is | 
|  | * not set, try to fill the page and wait for it to become unlocked. | 
|  | * | 
|  | * If the page does not get brought uptodate, return -EIO. | 
|  | * | 
|  | * The function expects mapping->invalidate_lock to be already held. | 
|  | * | 
|  | * Return: up to date page on success, ERR_PTR() on failure. | 
|  | */ | 
|  | struct page *read_cache_page(struct address_space *mapping, | 
|  | pgoff_t index, | 
|  | int (*filler)(void *, struct page *), | 
|  | void *data) | 
|  | { | 
|  | return do_read_cache_page(mapping, index, filler, data, | 
|  | mapping_gfp_mask(mapping)); | 
|  | } | 
|  | EXPORT_SYMBOL(read_cache_page); | 
|  |  | 
|  | /** | 
|  | * read_cache_page_gfp - read into page cache, using specified page allocation flags. | 
|  | * @mapping:	the page's address_space | 
|  | * @index:	the page index | 
|  | * @gfp:	the page allocator flags to use if allocating | 
|  | * | 
|  | * This is the same as "read_mapping_page(mapping, index, NULL)", but with | 
|  | * any new page allocations done using the specified allocation flags. | 
|  | * | 
|  | * If the page does not get brought uptodate, return -EIO. | 
|  | * | 
|  | * The function expects mapping->invalidate_lock to be already held. | 
|  | * | 
|  | * Return: up to date page on success, ERR_PTR() on failure. | 
|  | */ | 
|  | struct page *read_cache_page_gfp(struct address_space *mapping, | 
|  | pgoff_t index, | 
|  | gfp_t gfp) | 
|  | { | 
|  | return do_read_cache_page(mapping, index, NULL, NULL, gfp); | 
|  | } | 
|  | EXPORT_SYMBOL(read_cache_page_gfp); | 
|  |  | 
|  | int pagecache_write_begin(struct file *file, struct address_space *mapping, | 
|  | loff_t pos, unsigned len, unsigned flags, | 
|  | struct page **pagep, void **fsdata) | 
|  | { | 
|  | const struct address_space_operations *aops = mapping->a_ops; | 
|  |  | 
|  | return aops->write_begin(file, mapping, pos, len, flags, | 
|  | pagep, fsdata); | 
|  | } | 
|  | EXPORT_SYMBOL(pagecache_write_begin); | 
|  |  | 
|  | int pagecache_write_end(struct file *file, struct address_space *mapping, | 
|  | loff_t pos, unsigned len, unsigned copied, | 
|  | struct page *page, void *fsdata) | 
|  | { | 
|  | const struct address_space_operations *aops = mapping->a_ops; | 
|  |  | 
|  | return aops->write_end(file, mapping, pos, len, copied, page, fsdata); | 
|  | } | 
|  | EXPORT_SYMBOL(pagecache_write_end); | 
|  |  | 
|  | /* | 
|  | * Warn about a page cache invalidation failure during a direct I/O write. | 
|  | */ | 
|  | void dio_warn_stale_pagecache(struct file *filp) | 
|  | { | 
|  | static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST); | 
|  | char pathname[128]; | 
|  | char *path; | 
|  |  | 
|  | errseq_set(&filp->f_mapping->wb_err, -EIO); | 
|  | if (__ratelimit(&_rs)) { | 
|  | path = file_path(filp, pathname, sizeof(pathname)); | 
|  | if (IS_ERR(path)) | 
|  | path = "(unknown)"; | 
|  | pr_crit("Page cache invalidation failure on direct I/O.  Possible data corruption due to collision with buffered I/O!\n"); | 
|  | pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid, | 
|  | current->comm); | 
|  | } | 
|  | } | 
|  |  | 
|  | ssize_t | 
|  | generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from) | 
|  | { | 
|  | struct file	*file = iocb->ki_filp; | 
|  | struct address_space *mapping = file->f_mapping; | 
|  | struct inode	*inode = mapping->host; | 
|  | loff_t		pos = iocb->ki_pos; | 
|  | ssize_t		written; | 
|  | size_t		write_len; | 
|  | pgoff_t		end; | 
|  |  | 
|  | write_len = iov_iter_count(from); | 
|  | end = (pos + write_len - 1) >> PAGE_SHIFT; | 
|  |  | 
|  | if (iocb->ki_flags & IOCB_NOWAIT) { | 
|  | /* If there are pages to writeback, return */ | 
|  | if (filemap_range_has_page(file->f_mapping, pos, | 
|  | pos + write_len - 1)) | 
|  | return -EAGAIN; | 
|  | } else { | 
|  | written = filemap_write_and_wait_range(mapping, pos, | 
|  | pos + write_len - 1); | 
|  | if (written) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * After a write we want buffered reads to be sure to go to disk to get | 
|  | * the new data.  We invalidate clean cached page from the region we're | 
|  | * about to write.  We do this *before* the write so that we can return | 
|  | * without clobbering -EIOCBQUEUED from ->direct_IO(). | 
|  | */ | 
|  | written = invalidate_inode_pages2_range(mapping, | 
|  | pos >> PAGE_SHIFT, end); | 
|  | /* | 
|  | * If a page can not be invalidated, return 0 to fall back | 
|  | * to buffered write. | 
|  | */ | 
|  | if (written) { | 
|  | if (written == -EBUSY) | 
|  | return 0; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | written = mapping->a_ops->direct_IO(iocb, from); | 
|  |  | 
|  | /* | 
|  | * Finally, try again to invalidate clean pages which might have been | 
|  | * cached by non-direct readahead, or faulted in by get_user_pages() | 
|  | * if the source of the write was an mmap'ed region of the file | 
|  | * we're writing.  Either one is a pretty crazy thing to do, | 
|  | * so we don't support it 100%.  If this invalidation | 
|  | * fails, tough, the write still worked... | 
|  | * | 
|  | * Most of the time we do not need this since dio_complete() will do | 
|  | * the invalidation for us. However there are some file systems that | 
|  | * do not end up with dio_complete() being called, so let's not break | 
|  | * them by removing it completely. | 
|  | * | 
|  | * Noticeable example is a blkdev_direct_IO(). | 
|  | * | 
|  | * Skip invalidation for async writes or if mapping has no pages. | 
|  | */ | 
|  | if (written > 0 && mapping->nrpages && | 
|  | invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end)) | 
|  | dio_warn_stale_pagecache(file); | 
|  |  | 
|  | if (written > 0) { | 
|  | pos += written; | 
|  | write_len -= written; | 
|  | if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { | 
|  | i_size_write(inode, pos); | 
|  | mark_inode_dirty(inode); | 
|  | } | 
|  | iocb->ki_pos = pos; | 
|  | } | 
|  | if (written != -EIOCBQUEUED) | 
|  | iov_iter_revert(from, write_len - iov_iter_count(from)); | 
|  | out: | 
|  | return written; | 
|  | } | 
|  | EXPORT_SYMBOL(generic_file_direct_write); | 
|  |  | 
|  | ssize_t generic_perform_write(struct file *file, | 
|  | struct iov_iter *i, loff_t pos) | 
|  | { | 
|  | struct address_space *mapping = file->f_mapping; | 
|  | const struct address_space_operations *a_ops = mapping->a_ops; | 
|  | long status = 0; | 
|  | ssize_t written = 0; | 
|  | unsigned int flags = 0; | 
|  |  | 
|  | do { | 
|  | struct page *page; | 
|  | unsigned long offset;	/* Offset into pagecache page */ | 
|  | unsigned long bytes;	/* Bytes to write to page */ | 
|  | size_t copied;		/* Bytes copied from user */ | 
|  | void *fsdata; | 
|  |  | 
|  | offset = (pos & (PAGE_SIZE - 1)); | 
|  | bytes = min_t(unsigned long, PAGE_SIZE - offset, | 
|  | iov_iter_count(i)); | 
|  |  | 
|  | again: | 
|  | /* | 
|  | * Bring in the user page that we will copy from _first_. | 
|  | * Otherwise there's a nasty deadlock on copying from the | 
|  | * same page as we're writing to, without it being marked | 
|  | * up-to-date. | 
|  | */ | 
|  | if (unlikely(fault_in_iov_iter_readable(i, bytes))) { | 
|  | status = -EFAULT; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (fatal_signal_pending(current)) { | 
|  | status = -EINTR; | 
|  | break; | 
|  | } | 
|  |  | 
|  | status = a_ops->write_begin(file, mapping, pos, bytes, flags, | 
|  | &page, &fsdata); | 
|  | if (unlikely(status < 0)) | 
|  | break; | 
|  |  | 
|  | if (mapping_writably_mapped(mapping)) | 
|  | flush_dcache_page(page); | 
|  |  | 
|  | copied = copy_page_from_iter_atomic(page, offset, bytes, i); | 
|  | flush_dcache_page(page); | 
|  |  | 
|  | status = a_ops->write_end(file, mapping, pos, bytes, copied, | 
|  | page, fsdata); | 
|  | if (unlikely(status != copied)) { | 
|  | iov_iter_revert(i, copied - max(status, 0L)); | 
|  | if (unlikely(status < 0)) | 
|  | break; | 
|  | } | 
|  | cond_resched(); | 
|  |  | 
|  | if (unlikely(status == 0)) { | 
|  | /* | 
|  | * A short copy made ->write_end() reject the | 
|  | * thing entirely.  Might be memory poisoning | 
|  | * halfway through, might be a race with munmap, | 
|  | * might be severe memory pressure. | 
|  | */ | 
|  | if (copied) | 
|  | bytes = copied; | 
|  | goto again; | 
|  | } | 
|  | pos += status; | 
|  | written += status; | 
|  |  | 
|  | balance_dirty_pages_ratelimited(mapping); | 
|  | } while (iov_iter_count(i)); | 
|  |  | 
|  | return written ? written : status; | 
|  | } | 
|  | EXPORT_SYMBOL(generic_perform_write); | 
|  |  | 
|  | /** | 
|  | * __generic_file_write_iter - write data to a file | 
|  | * @iocb:	IO state structure (file, offset, etc.) | 
|  | * @from:	iov_iter with data to write | 
|  | * | 
|  | * This function does all the work needed for actually writing data to a | 
|  | * file. It does all basic checks, removes SUID from the file, updates | 
|  | * modification times and calls proper subroutines depending on whether we | 
|  | * do direct IO or a standard buffered write. | 
|  | * | 
|  | * It expects i_rwsem to be grabbed unless we work on a block device or similar | 
|  | * object which does not need locking at all. | 
|  | * | 
|  | * This function does *not* take care of syncing data in case of O_SYNC write. | 
|  | * A caller has to handle it. This is mainly due to the fact that we want to | 
|  | * avoid syncing under i_rwsem. | 
|  | * | 
|  | * Return: | 
|  | * * number of bytes written, even for truncated writes | 
|  | * * negative error code if no data has been written at all | 
|  | */ | 
|  | ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) | 
|  | { | 
|  | struct file *file = iocb->ki_filp; | 
|  | struct address_space *mapping = file->f_mapping; | 
|  | struct inode 	*inode = mapping->host; | 
|  | ssize_t		written = 0; | 
|  | ssize_t		err; | 
|  | ssize_t		status; | 
|  |  | 
|  | /* We can write back this queue in page reclaim */ | 
|  | current->backing_dev_info = inode_to_bdi(inode); | 
|  | err = file_remove_privs(file); | 
|  | if (err) | 
|  | goto out; | 
|  |  | 
|  | err = file_update_time(file); | 
|  | if (err) | 
|  | goto out; | 
|  |  | 
|  | if (iocb->ki_flags & IOCB_DIRECT) { | 
|  | loff_t pos, endbyte; | 
|  |  | 
|  | written = generic_file_direct_write(iocb, from); | 
|  | /* | 
|  | * If the write stopped short of completing, fall back to | 
|  | * buffered writes.  Some filesystems do this for writes to | 
|  | * holes, for example.  For DAX files, a buffered write will | 
|  | * not succeed (even if it did, DAX does not handle dirty | 
|  | * page-cache pages correctly). | 
|  | */ | 
|  | if (written < 0 || !iov_iter_count(from) || IS_DAX(inode)) | 
|  | goto out; | 
|  |  | 
|  | status = generic_perform_write(file, from, pos = iocb->ki_pos); | 
|  | /* | 
|  | * If generic_perform_write() returned a synchronous error | 
|  | * then we want to return the number of bytes which were | 
|  | * direct-written, or the error code if that was zero.  Note | 
|  | * that this differs from normal direct-io semantics, which | 
|  | * will return -EFOO even if some bytes were written. | 
|  | */ | 
|  | if (unlikely(status < 0)) { | 
|  | err = status; | 
|  | goto out; | 
|  | } | 
|  | /* | 
|  | * We need to ensure that the page cache pages are written to | 
|  | * disk and invalidated to preserve the expected O_DIRECT | 
|  | * semantics. | 
|  | */ | 
|  | endbyte = pos + status - 1; | 
|  | err = filemap_write_and_wait_range(mapping, pos, endbyte); | 
|  | if (err == 0) { | 
|  | iocb->ki_pos = endbyte + 1; | 
|  | written += status; | 
|  | invalidate_mapping_pages(mapping, | 
|  | pos >> PAGE_SHIFT, | 
|  | endbyte >> PAGE_SHIFT); | 
|  | } else { | 
|  | /* | 
|  | * We don't know how much we wrote, so just return | 
|  | * the number of bytes which were direct-written | 
|  | */ | 
|  | } | 
|  | } else { | 
|  | written = generic_perform_write(file, from, iocb->ki_pos); | 
|  | if (likely(written > 0)) | 
|  | iocb->ki_pos += written; | 
|  | } | 
|  | out: | 
|  | current->backing_dev_info = NULL; | 
|  | return written ? written : err; | 
|  | } | 
|  | EXPORT_SYMBOL(__generic_file_write_iter); | 
|  |  | 
|  | /** | 
|  | * generic_file_write_iter - write data to a file | 
|  | * @iocb:	IO state structure | 
|  | * @from:	iov_iter with data to write | 
|  | * | 
|  | * This is a wrapper around __generic_file_write_iter() to be used by most | 
|  | * filesystems. It takes care of syncing the file in case of O_SYNC file | 
|  | * and acquires i_rwsem as needed. | 
|  | * Return: | 
|  | * * negative error code if no data has been written at all of | 
|  | *   vfs_fsync_range() failed for a synchronous write | 
|  | * * number of bytes written, even for truncated writes | 
|  | */ | 
|  | ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) | 
|  | { | 
|  | struct file *file = iocb->ki_filp; | 
|  | struct inode *inode = file->f_mapping->host; | 
|  | ssize_t ret; | 
|  |  | 
|  | inode_lock(inode); | 
|  | ret = generic_write_checks(iocb, from); | 
|  | if (ret > 0) | 
|  | ret = __generic_file_write_iter(iocb, from); | 
|  | inode_unlock(inode); | 
|  |  | 
|  | if (ret > 0) | 
|  | ret = generic_write_sync(iocb, ret); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(generic_file_write_iter); | 
|  |  | 
|  | /** | 
|  | * try_to_release_page() - release old fs-specific metadata on a page | 
|  | * | 
|  | * @page: the page which the kernel is trying to free | 
|  | * @gfp_mask: memory allocation flags (and I/O mode) | 
|  | * | 
|  | * The address_space is to try to release any data against the page | 
|  | * (presumably at page->private). | 
|  | * | 
|  | * This may also be called if PG_fscache is set on a page, indicating that the | 
|  | * page is known to the local caching routines. | 
|  | * | 
|  | * The @gfp_mask argument specifies whether I/O may be performed to release | 
|  | * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS). | 
|  | * | 
|  | * Return: %1 if the release was successful, otherwise return zero. | 
|  | */ | 
|  | int try_to_release_page(struct page *page, gfp_t gfp_mask) | 
|  | { | 
|  | struct address_space * const mapping = page->mapping; | 
|  |  | 
|  | BUG_ON(!PageLocked(page)); | 
|  | if (PageWriteback(page)) | 
|  | return 0; | 
|  |  | 
|  | if (mapping && mapping->a_ops->releasepage) | 
|  | return mapping->a_ops->releasepage(page, gfp_mask); | 
|  | return try_to_free_buffers(page); | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(try_to_release_page); |