|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * Memory Migration functionality - linux/mm/migrate.c | 
|  | * | 
|  | * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter | 
|  | * | 
|  | * Page migration was first developed in the context of the memory hotplug | 
|  | * project. The main authors of the migration code are: | 
|  | * | 
|  | * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> | 
|  | * Hirokazu Takahashi <taka@valinux.co.jp> | 
|  | * Dave Hansen <haveblue@us.ibm.com> | 
|  | * Christoph Lameter | 
|  | */ | 
|  |  | 
|  | #include <linux/migrate.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/swapops.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/buffer_head.h> | 
|  | #include <linux/mm_inline.h> | 
|  | #include <linux/nsproxy.h> | 
|  | #include <linux/pagevec.h> | 
|  | #include <linux/ksm.h> | 
|  | #include <linux/rmap.h> | 
|  | #include <linux/topology.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/cpuset.h> | 
|  | #include <linux/writeback.h> | 
|  | #include <linux/mempolicy.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <linux/security.h> | 
|  | #include <linux/backing-dev.h> | 
|  | #include <linux/compaction.h> | 
|  | #include <linux/syscalls.h> | 
|  | #include <linux/compat.h> | 
|  | #include <linux/hugetlb.h> | 
|  | #include <linux/hugetlb_cgroup.h> | 
|  | #include <linux/gfp.h> | 
|  | #include <linux/pagewalk.h> | 
|  | #include <linux/pfn_t.h> | 
|  | #include <linux/memremap.h> | 
|  | #include <linux/userfaultfd_k.h> | 
|  | #include <linux/balloon_compaction.h> | 
|  | #include <linux/mmu_notifier.h> | 
|  | #include <linux/page_idle.h> | 
|  | #include <linux/page_owner.h> | 
|  | #include <linux/sched/mm.h> | 
|  | #include <linux/ptrace.h> | 
|  | #include <linux/oom.h> | 
|  | #include <linux/memory.h> | 
|  |  | 
|  | #include <asm/tlbflush.h> | 
|  |  | 
|  | #define CREATE_TRACE_POINTS | 
|  | #include <trace/events/migrate.h> | 
|  |  | 
|  | #include "internal.h" | 
|  |  | 
|  | int isolate_movable_page(struct page *page, isolate_mode_t mode) | 
|  | { | 
|  | struct address_space *mapping; | 
|  |  | 
|  | /* | 
|  | * Avoid burning cycles with pages that are yet under __free_pages(), | 
|  | * or just got freed under us. | 
|  | * | 
|  | * In case we 'win' a race for a movable page being freed under us and | 
|  | * raise its refcount preventing __free_pages() from doing its job | 
|  | * the put_page() at the end of this block will take care of | 
|  | * release this page, thus avoiding a nasty leakage. | 
|  | */ | 
|  | if (unlikely(!get_page_unless_zero(page))) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * Check PageMovable before holding a PG_lock because page's owner | 
|  | * assumes anybody doesn't touch PG_lock of newly allocated page | 
|  | * so unconditionally grabbing the lock ruins page's owner side. | 
|  | */ | 
|  | if (unlikely(!__PageMovable(page))) | 
|  | goto out_putpage; | 
|  | /* | 
|  | * As movable pages are not isolated from LRU lists, concurrent | 
|  | * compaction threads can race against page migration functions | 
|  | * as well as race against the releasing a page. | 
|  | * | 
|  | * In order to avoid having an already isolated movable page | 
|  | * being (wrongly) re-isolated while it is under migration, | 
|  | * or to avoid attempting to isolate pages being released, | 
|  | * lets be sure we have the page lock | 
|  | * before proceeding with the movable page isolation steps. | 
|  | */ | 
|  | if (unlikely(!trylock_page(page))) | 
|  | goto out_putpage; | 
|  |  | 
|  | if (!PageMovable(page) || PageIsolated(page)) | 
|  | goto out_no_isolated; | 
|  |  | 
|  | mapping = page_mapping(page); | 
|  | VM_BUG_ON_PAGE(!mapping, page); | 
|  |  | 
|  | if (!mapping->a_ops->isolate_page(page, mode)) | 
|  | goto out_no_isolated; | 
|  |  | 
|  | /* Driver shouldn't use PG_isolated bit of page->flags */ | 
|  | WARN_ON_ONCE(PageIsolated(page)); | 
|  | __SetPageIsolated(page); | 
|  | unlock_page(page); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_no_isolated: | 
|  | unlock_page(page); | 
|  | out_putpage: | 
|  | put_page(page); | 
|  | out: | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | static void putback_movable_page(struct page *page) | 
|  | { | 
|  | struct address_space *mapping; | 
|  |  | 
|  | mapping = page_mapping(page); | 
|  | mapping->a_ops->putback_page(page); | 
|  | __ClearPageIsolated(page); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Put previously isolated pages back onto the appropriate lists | 
|  | * from where they were once taken off for compaction/migration. | 
|  | * | 
|  | * This function shall be used whenever the isolated pageset has been | 
|  | * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range() | 
|  | * and isolate_huge_page(). | 
|  | */ | 
|  | void putback_movable_pages(struct list_head *l) | 
|  | { | 
|  | struct page *page; | 
|  | struct page *page2; | 
|  |  | 
|  | list_for_each_entry_safe(page, page2, l, lru) { | 
|  | if (unlikely(PageHuge(page))) { | 
|  | putback_active_hugepage(page); | 
|  | continue; | 
|  | } | 
|  | list_del(&page->lru); | 
|  | /* | 
|  | * We isolated non-lru movable page so here we can use | 
|  | * __PageMovable because LRU page's mapping cannot have | 
|  | * PAGE_MAPPING_MOVABLE. | 
|  | */ | 
|  | if (unlikely(__PageMovable(page))) { | 
|  | VM_BUG_ON_PAGE(!PageIsolated(page), page); | 
|  | lock_page(page); | 
|  | if (PageMovable(page)) | 
|  | putback_movable_page(page); | 
|  | else | 
|  | __ClearPageIsolated(page); | 
|  | unlock_page(page); | 
|  | put_page(page); | 
|  | } else { | 
|  | mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + | 
|  | page_is_file_lru(page), -thp_nr_pages(page)); | 
|  | putback_lru_page(page); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Restore a potential migration pte to a working pte entry | 
|  | */ | 
|  | static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma, | 
|  | unsigned long addr, void *old) | 
|  | { | 
|  | struct page_vma_mapped_walk pvmw = { | 
|  | .page = old, | 
|  | .vma = vma, | 
|  | .address = addr, | 
|  | .flags = PVMW_SYNC | PVMW_MIGRATION, | 
|  | }; | 
|  | struct page *new; | 
|  | pte_t pte; | 
|  | swp_entry_t entry; | 
|  |  | 
|  | VM_BUG_ON_PAGE(PageTail(page), page); | 
|  | while (page_vma_mapped_walk(&pvmw)) { | 
|  | if (PageKsm(page)) | 
|  | new = page; | 
|  | else | 
|  | new = page - pvmw.page->index + | 
|  | linear_page_index(vma, pvmw.address); | 
|  |  | 
|  | #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION | 
|  | /* PMD-mapped THP migration entry */ | 
|  | if (!pvmw.pte) { | 
|  | VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page); | 
|  | remove_migration_pmd(&pvmw, new); | 
|  | continue; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | get_page(new); | 
|  | pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot))); | 
|  | if (pte_swp_soft_dirty(*pvmw.pte)) | 
|  | pte = pte_mksoft_dirty(pte); | 
|  |  | 
|  | /* | 
|  | * Recheck VMA as permissions can change since migration started | 
|  | */ | 
|  | entry = pte_to_swp_entry(*pvmw.pte); | 
|  | if (is_writable_migration_entry(entry)) | 
|  | pte = maybe_mkwrite(pte, vma); | 
|  | else if (pte_swp_uffd_wp(*pvmw.pte)) | 
|  | pte = pte_mkuffd_wp(pte); | 
|  |  | 
|  | if (unlikely(is_device_private_page(new))) { | 
|  | if (pte_write(pte)) | 
|  | entry = make_writable_device_private_entry( | 
|  | page_to_pfn(new)); | 
|  | else | 
|  | entry = make_readable_device_private_entry( | 
|  | page_to_pfn(new)); | 
|  | pte = swp_entry_to_pte(entry); | 
|  | if (pte_swp_soft_dirty(*pvmw.pte)) | 
|  | pte = pte_swp_mksoft_dirty(pte); | 
|  | if (pte_swp_uffd_wp(*pvmw.pte)) | 
|  | pte = pte_swp_mkuffd_wp(pte); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_HUGETLB_PAGE | 
|  | if (PageHuge(new)) { | 
|  | unsigned int shift = huge_page_shift(hstate_vma(vma)); | 
|  |  | 
|  | pte = pte_mkhuge(pte); | 
|  | pte = arch_make_huge_pte(pte, shift, vma->vm_flags); | 
|  | set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); | 
|  | if (PageAnon(new)) | 
|  | hugepage_add_anon_rmap(new, vma, pvmw.address); | 
|  | else | 
|  | page_dup_rmap(new, true); | 
|  | } else | 
|  | #endif | 
|  | { | 
|  | set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); | 
|  |  | 
|  | if (PageAnon(new)) | 
|  | page_add_anon_rmap(new, vma, pvmw.address, false); | 
|  | else | 
|  | page_add_file_rmap(new, false); | 
|  | } | 
|  | if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new)) | 
|  | mlock_vma_page(new); | 
|  |  | 
|  | if (PageTransHuge(page) && PageMlocked(page)) | 
|  | clear_page_mlock(page); | 
|  |  | 
|  | /* No need to invalidate - it was non-present before */ | 
|  | update_mmu_cache(vma, pvmw.address, pvmw.pte); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get rid of all migration entries and replace them by | 
|  | * references to the indicated page. | 
|  | */ | 
|  | void remove_migration_ptes(struct page *old, struct page *new, bool locked) | 
|  | { | 
|  | struct rmap_walk_control rwc = { | 
|  | .rmap_one = remove_migration_pte, | 
|  | .arg = old, | 
|  | }; | 
|  |  | 
|  | if (locked) | 
|  | rmap_walk_locked(new, &rwc); | 
|  | else | 
|  | rmap_walk(new, &rwc); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Something used the pte of a page under migration. We need to | 
|  | * get to the page and wait until migration is finished. | 
|  | * When we return from this function the fault will be retried. | 
|  | */ | 
|  | void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep, | 
|  | spinlock_t *ptl) | 
|  | { | 
|  | pte_t pte; | 
|  | swp_entry_t entry; | 
|  | struct page *page; | 
|  |  | 
|  | spin_lock(ptl); | 
|  | pte = *ptep; | 
|  | if (!is_swap_pte(pte)) | 
|  | goto out; | 
|  |  | 
|  | entry = pte_to_swp_entry(pte); | 
|  | if (!is_migration_entry(entry)) | 
|  | goto out; | 
|  |  | 
|  | page = pfn_swap_entry_to_page(entry); | 
|  | page = compound_head(page); | 
|  |  | 
|  | /* | 
|  | * Once page cache replacement of page migration started, page_count | 
|  | * is zero; but we must not call put_and_wait_on_page_locked() without | 
|  | * a ref. Use get_page_unless_zero(), and just fault again if it fails. | 
|  | */ | 
|  | if (!get_page_unless_zero(page)) | 
|  | goto out; | 
|  | pte_unmap_unlock(ptep, ptl); | 
|  | put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE); | 
|  | return; | 
|  | out: | 
|  | pte_unmap_unlock(ptep, ptl); | 
|  | } | 
|  |  | 
|  | void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, | 
|  | unsigned long address) | 
|  | { | 
|  | spinlock_t *ptl = pte_lockptr(mm, pmd); | 
|  | pte_t *ptep = pte_offset_map(pmd, address); | 
|  | __migration_entry_wait(mm, ptep, ptl); | 
|  | } | 
|  |  | 
|  | void migration_entry_wait_huge(struct vm_area_struct *vma, | 
|  | struct mm_struct *mm, pte_t *pte) | 
|  | { | 
|  | spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte); | 
|  | __migration_entry_wait(mm, pte, ptl); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION | 
|  | void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd) | 
|  | { | 
|  | spinlock_t *ptl; | 
|  | struct page *page; | 
|  |  | 
|  | ptl = pmd_lock(mm, pmd); | 
|  | if (!is_pmd_migration_entry(*pmd)) | 
|  | goto unlock; | 
|  | page = pfn_swap_entry_to_page(pmd_to_swp_entry(*pmd)); | 
|  | if (!get_page_unless_zero(page)) | 
|  | goto unlock; | 
|  | spin_unlock(ptl); | 
|  | put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE); | 
|  | return; | 
|  | unlock: | 
|  | spin_unlock(ptl); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static int expected_page_refs(struct address_space *mapping, struct page *page) | 
|  | { | 
|  | int expected_count = 1; | 
|  |  | 
|  | /* | 
|  | * Device private pages have an extra refcount as they are | 
|  | * ZONE_DEVICE pages. | 
|  | */ | 
|  | expected_count += is_device_private_page(page); | 
|  | if (mapping) | 
|  | expected_count += compound_nr(page) + page_has_private(page); | 
|  |  | 
|  | return expected_count; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Replace the page in the mapping. | 
|  | * | 
|  | * The number of remaining references must be: | 
|  | * 1 for anonymous pages without a mapping | 
|  | * 2 for pages with a mapping | 
|  | * 3 for pages with a mapping and PagePrivate/PagePrivate2 set. | 
|  | */ | 
|  | int folio_migrate_mapping(struct address_space *mapping, | 
|  | struct folio *newfolio, struct folio *folio, int extra_count) | 
|  | { | 
|  | XA_STATE(xas, &mapping->i_pages, folio_index(folio)); | 
|  | struct zone *oldzone, *newzone; | 
|  | int dirty; | 
|  | int expected_count = expected_page_refs(mapping, &folio->page) + extra_count; | 
|  | long nr = folio_nr_pages(folio); | 
|  |  | 
|  | if (!mapping) { | 
|  | /* Anonymous page without mapping */ | 
|  | if (folio_ref_count(folio) != expected_count) | 
|  | return -EAGAIN; | 
|  |  | 
|  | /* No turning back from here */ | 
|  | newfolio->index = folio->index; | 
|  | newfolio->mapping = folio->mapping; | 
|  | if (folio_test_swapbacked(folio)) | 
|  | __folio_set_swapbacked(newfolio); | 
|  |  | 
|  | return MIGRATEPAGE_SUCCESS; | 
|  | } | 
|  |  | 
|  | oldzone = folio_zone(folio); | 
|  | newzone = folio_zone(newfolio); | 
|  |  | 
|  | xas_lock_irq(&xas); | 
|  | if (!folio_ref_freeze(folio, expected_count)) { | 
|  | xas_unlock_irq(&xas); | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now we know that no one else is looking at the folio: | 
|  | * no turning back from here. | 
|  | */ | 
|  | newfolio->index = folio->index; | 
|  | newfolio->mapping = folio->mapping; | 
|  | folio_ref_add(newfolio, nr); /* add cache reference */ | 
|  | if (folio_test_swapbacked(folio)) { | 
|  | __folio_set_swapbacked(newfolio); | 
|  | if (folio_test_swapcache(folio)) { | 
|  | folio_set_swapcache(newfolio); | 
|  | newfolio->private = folio_get_private(folio); | 
|  | } | 
|  | } else { | 
|  | VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio); | 
|  | } | 
|  |  | 
|  | /* Move dirty while page refs frozen and newpage not yet exposed */ | 
|  | dirty = folio_test_dirty(folio); | 
|  | if (dirty) { | 
|  | folio_clear_dirty(folio); | 
|  | folio_set_dirty(newfolio); | 
|  | } | 
|  |  | 
|  | xas_store(&xas, newfolio); | 
|  | if (nr > 1) { | 
|  | int i; | 
|  |  | 
|  | for (i = 1; i < nr; i++) { | 
|  | xas_next(&xas); | 
|  | xas_store(&xas, newfolio); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Drop cache reference from old page by unfreezing | 
|  | * to one less reference. | 
|  | * We know this isn't the last reference. | 
|  | */ | 
|  | folio_ref_unfreeze(folio, expected_count - nr); | 
|  |  | 
|  | xas_unlock(&xas); | 
|  | /* Leave irq disabled to prevent preemption while updating stats */ | 
|  |  | 
|  | /* | 
|  | * If moved to a different zone then also account | 
|  | * the page for that zone. Other VM counters will be | 
|  | * taken care of when we establish references to the | 
|  | * new page and drop references to the old page. | 
|  | * | 
|  | * Note that anonymous pages are accounted for | 
|  | * via NR_FILE_PAGES and NR_ANON_MAPPED if they | 
|  | * are mapped to swap space. | 
|  | */ | 
|  | if (newzone != oldzone) { | 
|  | struct lruvec *old_lruvec, *new_lruvec; | 
|  | struct mem_cgroup *memcg; | 
|  |  | 
|  | memcg = folio_memcg(folio); | 
|  | old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat); | 
|  | new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat); | 
|  |  | 
|  | __mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr); | 
|  | __mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr); | 
|  | if (folio_test_swapbacked(folio) && !folio_test_swapcache(folio)) { | 
|  | __mod_lruvec_state(old_lruvec, NR_SHMEM, -nr); | 
|  | __mod_lruvec_state(new_lruvec, NR_SHMEM, nr); | 
|  | } | 
|  | #ifdef CONFIG_SWAP | 
|  | if (folio_test_swapcache(folio)) { | 
|  | __mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr); | 
|  | __mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr); | 
|  | } | 
|  | #endif | 
|  | if (dirty && mapping_can_writeback(mapping)) { | 
|  | __mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr); | 
|  | __mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr); | 
|  | __mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr); | 
|  | __mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr); | 
|  | } | 
|  | } | 
|  | local_irq_enable(); | 
|  |  | 
|  | return MIGRATEPAGE_SUCCESS; | 
|  | } | 
|  | EXPORT_SYMBOL(folio_migrate_mapping); | 
|  |  | 
|  | /* | 
|  | * The expected number of remaining references is the same as that | 
|  | * of folio_migrate_mapping(). | 
|  | */ | 
|  | int migrate_huge_page_move_mapping(struct address_space *mapping, | 
|  | struct page *newpage, struct page *page) | 
|  | { | 
|  | XA_STATE(xas, &mapping->i_pages, page_index(page)); | 
|  | int expected_count; | 
|  |  | 
|  | xas_lock_irq(&xas); | 
|  | expected_count = 2 + page_has_private(page); | 
|  | if (page_count(page) != expected_count || xas_load(&xas) != page) { | 
|  | xas_unlock_irq(&xas); | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | if (!page_ref_freeze(page, expected_count)) { | 
|  | xas_unlock_irq(&xas); | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | newpage->index = page->index; | 
|  | newpage->mapping = page->mapping; | 
|  |  | 
|  | get_page(newpage); | 
|  |  | 
|  | xas_store(&xas, newpage); | 
|  |  | 
|  | page_ref_unfreeze(page, expected_count - 1); | 
|  |  | 
|  | xas_unlock_irq(&xas); | 
|  |  | 
|  | return MIGRATEPAGE_SUCCESS; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Copy the flags and some other ancillary information | 
|  | */ | 
|  | void folio_migrate_flags(struct folio *newfolio, struct folio *folio) | 
|  | { | 
|  | int cpupid; | 
|  |  | 
|  | if (folio_test_error(folio)) | 
|  | folio_set_error(newfolio); | 
|  | if (folio_test_referenced(folio)) | 
|  | folio_set_referenced(newfolio); | 
|  | if (folio_test_uptodate(folio)) | 
|  | folio_mark_uptodate(newfolio); | 
|  | if (folio_test_clear_active(folio)) { | 
|  | VM_BUG_ON_FOLIO(folio_test_unevictable(folio), folio); | 
|  | folio_set_active(newfolio); | 
|  | } else if (folio_test_clear_unevictable(folio)) | 
|  | folio_set_unevictable(newfolio); | 
|  | if (folio_test_workingset(folio)) | 
|  | folio_set_workingset(newfolio); | 
|  | if (folio_test_checked(folio)) | 
|  | folio_set_checked(newfolio); | 
|  | if (folio_test_mappedtodisk(folio)) | 
|  | folio_set_mappedtodisk(newfolio); | 
|  |  | 
|  | /* Move dirty on pages not done by folio_migrate_mapping() */ | 
|  | if (folio_test_dirty(folio)) | 
|  | folio_set_dirty(newfolio); | 
|  |  | 
|  | if (folio_test_young(folio)) | 
|  | folio_set_young(newfolio); | 
|  | if (folio_test_idle(folio)) | 
|  | folio_set_idle(newfolio); | 
|  |  | 
|  | /* | 
|  | * Copy NUMA information to the new page, to prevent over-eager | 
|  | * future migrations of this same page. | 
|  | */ | 
|  | cpupid = page_cpupid_xchg_last(&folio->page, -1); | 
|  | page_cpupid_xchg_last(&newfolio->page, cpupid); | 
|  |  | 
|  | folio_migrate_ksm(newfolio, folio); | 
|  | /* | 
|  | * Please do not reorder this without considering how mm/ksm.c's | 
|  | * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache(). | 
|  | */ | 
|  | if (folio_test_swapcache(folio)) | 
|  | folio_clear_swapcache(folio); | 
|  | folio_clear_private(folio); | 
|  |  | 
|  | /* page->private contains hugetlb specific flags */ | 
|  | if (!folio_test_hugetlb(folio)) | 
|  | folio->private = NULL; | 
|  |  | 
|  | /* | 
|  | * If any waiters have accumulated on the new page then | 
|  | * wake them up. | 
|  | */ | 
|  | if (folio_test_writeback(newfolio)) | 
|  | folio_end_writeback(newfolio); | 
|  |  | 
|  | /* | 
|  | * PG_readahead shares the same bit with PG_reclaim.  The above | 
|  | * end_page_writeback() may clear PG_readahead mistakenly, so set the | 
|  | * bit after that. | 
|  | */ | 
|  | if (folio_test_readahead(folio)) | 
|  | folio_set_readahead(newfolio); | 
|  |  | 
|  | folio_copy_owner(newfolio, folio); | 
|  |  | 
|  | if (!folio_test_hugetlb(folio)) | 
|  | mem_cgroup_migrate(folio, newfolio); | 
|  | } | 
|  | EXPORT_SYMBOL(folio_migrate_flags); | 
|  |  | 
|  | void folio_migrate_copy(struct folio *newfolio, struct folio *folio) | 
|  | { | 
|  | folio_copy(newfolio, folio); | 
|  | folio_migrate_flags(newfolio, folio); | 
|  | } | 
|  | EXPORT_SYMBOL(folio_migrate_copy); | 
|  |  | 
|  | /************************************************************ | 
|  | *                    Migration functions | 
|  | ***********************************************************/ | 
|  |  | 
|  | /* | 
|  | * Common logic to directly migrate a single LRU page suitable for | 
|  | * pages that do not use PagePrivate/PagePrivate2. | 
|  | * | 
|  | * Pages are locked upon entry and exit. | 
|  | */ | 
|  | int migrate_page(struct address_space *mapping, | 
|  | struct page *newpage, struct page *page, | 
|  | enum migrate_mode mode) | 
|  | { | 
|  | struct folio *newfolio = page_folio(newpage); | 
|  | struct folio *folio = page_folio(page); | 
|  | int rc; | 
|  |  | 
|  | BUG_ON(folio_test_writeback(folio));	/* Writeback must be complete */ | 
|  |  | 
|  | rc = folio_migrate_mapping(mapping, newfolio, folio, 0); | 
|  |  | 
|  | if (rc != MIGRATEPAGE_SUCCESS) | 
|  | return rc; | 
|  |  | 
|  | if (mode != MIGRATE_SYNC_NO_COPY) | 
|  | folio_migrate_copy(newfolio, folio); | 
|  | else | 
|  | folio_migrate_flags(newfolio, folio); | 
|  | return MIGRATEPAGE_SUCCESS; | 
|  | } | 
|  | EXPORT_SYMBOL(migrate_page); | 
|  |  | 
|  | #ifdef CONFIG_BLOCK | 
|  | /* Returns true if all buffers are successfully locked */ | 
|  | static bool buffer_migrate_lock_buffers(struct buffer_head *head, | 
|  | enum migrate_mode mode) | 
|  | { | 
|  | struct buffer_head *bh = head; | 
|  |  | 
|  | /* Simple case, sync compaction */ | 
|  | if (mode != MIGRATE_ASYNC) { | 
|  | do { | 
|  | lock_buffer(bh); | 
|  | bh = bh->b_this_page; | 
|  |  | 
|  | } while (bh != head); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* async case, we cannot block on lock_buffer so use trylock_buffer */ | 
|  | do { | 
|  | if (!trylock_buffer(bh)) { | 
|  | /* | 
|  | * We failed to lock the buffer and cannot stall in | 
|  | * async migration. Release the taken locks | 
|  | */ | 
|  | struct buffer_head *failed_bh = bh; | 
|  | bh = head; | 
|  | while (bh != failed_bh) { | 
|  | unlock_buffer(bh); | 
|  | bh = bh->b_this_page; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bh = bh->b_this_page; | 
|  | } while (bh != head); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static int __buffer_migrate_page(struct address_space *mapping, | 
|  | struct page *newpage, struct page *page, enum migrate_mode mode, | 
|  | bool check_refs) | 
|  | { | 
|  | struct buffer_head *bh, *head; | 
|  | int rc; | 
|  | int expected_count; | 
|  |  | 
|  | if (!page_has_buffers(page)) | 
|  | return migrate_page(mapping, newpage, page, mode); | 
|  |  | 
|  | /* Check whether page does not have extra refs before we do more work */ | 
|  | expected_count = expected_page_refs(mapping, page); | 
|  | if (page_count(page) != expected_count) | 
|  | return -EAGAIN; | 
|  |  | 
|  | head = page_buffers(page); | 
|  | if (!buffer_migrate_lock_buffers(head, mode)) | 
|  | return -EAGAIN; | 
|  |  | 
|  | if (check_refs) { | 
|  | bool busy; | 
|  | bool invalidated = false; | 
|  |  | 
|  | recheck_buffers: | 
|  | busy = false; | 
|  | spin_lock(&mapping->private_lock); | 
|  | bh = head; | 
|  | do { | 
|  | if (atomic_read(&bh->b_count)) { | 
|  | busy = true; | 
|  | break; | 
|  | } | 
|  | bh = bh->b_this_page; | 
|  | } while (bh != head); | 
|  | if (busy) { | 
|  | if (invalidated) { | 
|  | rc = -EAGAIN; | 
|  | goto unlock_buffers; | 
|  | } | 
|  | spin_unlock(&mapping->private_lock); | 
|  | invalidate_bh_lrus(); | 
|  | invalidated = true; | 
|  | goto recheck_buffers; | 
|  | } | 
|  | } | 
|  |  | 
|  | rc = migrate_page_move_mapping(mapping, newpage, page, 0); | 
|  | if (rc != MIGRATEPAGE_SUCCESS) | 
|  | goto unlock_buffers; | 
|  |  | 
|  | attach_page_private(newpage, detach_page_private(page)); | 
|  |  | 
|  | bh = head; | 
|  | do { | 
|  | set_bh_page(bh, newpage, bh_offset(bh)); | 
|  | bh = bh->b_this_page; | 
|  |  | 
|  | } while (bh != head); | 
|  |  | 
|  | if (mode != MIGRATE_SYNC_NO_COPY) | 
|  | migrate_page_copy(newpage, page); | 
|  | else | 
|  | migrate_page_states(newpage, page); | 
|  |  | 
|  | rc = MIGRATEPAGE_SUCCESS; | 
|  | unlock_buffers: | 
|  | if (check_refs) | 
|  | spin_unlock(&mapping->private_lock); | 
|  | bh = head; | 
|  | do { | 
|  | unlock_buffer(bh); | 
|  | bh = bh->b_this_page; | 
|  |  | 
|  | } while (bh != head); | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Migration function for pages with buffers. This function can only be used | 
|  | * if the underlying filesystem guarantees that no other references to "page" | 
|  | * exist. For example attached buffer heads are accessed only under page lock. | 
|  | */ | 
|  | int buffer_migrate_page(struct address_space *mapping, | 
|  | struct page *newpage, struct page *page, enum migrate_mode mode) | 
|  | { | 
|  | return __buffer_migrate_page(mapping, newpage, page, mode, false); | 
|  | } | 
|  | EXPORT_SYMBOL(buffer_migrate_page); | 
|  |  | 
|  | /* | 
|  | * Same as above except that this variant is more careful and checks that there | 
|  | * are also no buffer head references. This function is the right one for | 
|  | * mappings where buffer heads are directly looked up and referenced (such as | 
|  | * block device mappings). | 
|  | */ | 
|  | int buffer_migrate_page_norefs(struct address_space *mapping, | 
|  | struct page *newpage, struct page *page, enum migrate_mode mode) | 
|  | { | 
|  | return __buffer_migrate_page(mapping, newpage, page, mode, true); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Writeback a page to clean the dirty state | 
|  | */ | 
|  | static int writeout(struct address_space *mapping, struct page *page) | 
|  | { | 
|  | struct writeback_control wbc = { | 
|  | .sync_mode = WB_SYNC_NONE, | 
|  | .nr_to_write = 1, | 
|  | .range_start = 0, | 
|  | .range_end = LLONG_MAX, | 
|  | .for_reclaim = 1 | 
|  | }; | 
|  | int rc; | 
|  |  | 
|  | if (!mapping->a_ops->writepage) | 
|  | /* No write method for the address space */ | 
|  | return -EINVAL; | 
|  |  | 
|  | if (!clear_page_dirty_for_io(page)) | 
|  | /* Someone else already triggered a write */ | 
|  | return -EAGAIN; | 
|  |  | 
|  | /* | 
|  | * A dirty page may imply that the underlying filesystem has | 
|  | * the page on some queue. So the page must be clean for | 
|  | * migration. Writeout may mean we loose the lock and the | 
|  | * page state is no longer what we checked for earlier. | 
|  | * At this point we know that the migration attempt cannot | 
|  | * be successful. | 
|  | */ | 
|  | remove_migration_ptes(page, page, false); | 
|  |  | 
|  | rc = mapping->a_ops->writepage(page, &wbc); | 
|  |  | 
|  | if (rc != AOP_WRITEPAGE_ACTIVATE) | 
|  | /* unlocked. Relock */ | 
|  | lock_page(page); | 
|  |  | 
|  | return (rc < 0) ? -EIO : -EAGAIN; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Default handling if a filesystem does not provide a migration function. | 
|  | */ | 
|  | static int fallback_migrate_page(struct address_space *mapping, | 
|  | struct page *newpage, struct page *page, enum migrate_mode mode) | 
|  | { | 
|  | if (PageDirty(page)) { | 
|  | /* Only writeback pages in full synchronous migration */ | 
|  | switch (mode) { | 
|  | case MIGRATE_SYNC: | 
|  | case MIGRATE_SYNC_NO_COPY: | 
|  | break; | 
|  | default: | 
|  | return -EBUSY; | 
|  | } | 
|  | return writeout(mapping, page); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Buffers may be managed in a filesystem specific way. | 
|  | * We must have no buffers or drop them. | 
|  | */ | 
|  | if (page_has_private(page) && | 
|  | !try_to_release_page(page, GFP_KERNEL)) | 
|  | return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY; | 
|  |  | 
|  | return migrate_page(mapping, newpage, page, mode); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Move a page to a newly allocated page | 
|  | * The page is locked and all ptes have been successfully removed. | 
|  | * | 
|  | * The new page will have replaced the old page if this function | 
|  | * is successful. | 
|  | * | 
|  | * Return value: | 
|  | *   < 0 - error code | 
|  | *  MIGRATEPAGE_SUCCESS - success | 
|  | */ | 
|  | static int move_to_new_page(struct page *newpage, struct page *page, | 
|  | enum migrate_mode mode) | 
|  | { | 
|  | struct address_space *mapping; | 
|  | int rc = -EAGAIN; | 
|  | bool is_lru = !__PageMovable(page); | 
|  |  | 
|  | VM_BUG_ON_PAGE(!PageLocked(page), page); | 
|  | VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); | 
|  |  | 
|  | mapping = page_mapping(page); | 
|  |  | 
|  | if (likely(is_lru)) { | 
|  | if (!mapping) | 
|  | rc = migrate_page(mapping, newpage, page, mode); | 
|  | else if (mapping->a_ops->migratepage) | 
|  | /* | 
|  | * Most pages have a mapping and most filesystems | 
|  | * provide a migratepage callback. Anonymous pages | 
|  | * are part of swap space which also has its own | 
|  | * migratepage callback. This is the most common path | 
|  | * for page migration. | 
|  | */ | 
|  | rc = mapping->a_ops->migratepage(mapping, newpage, | 
|  | page, mode); | 
|  | else | 
|  | rc = fallback_migrate_page(mapping, newpage, | 
|  | page, mode); | 
|  | } else { | 
|  | /* | 
|  | * In case of non-lru page, it could be released after | 
|  | * isolation step. In that case, we shouldn't try migration. | 
|  | */ | 
|  | VM_BUG_ON_PAGE(!PageIsolated(page), page); | 
|  | if (!PageMovable(page)) { | 
|  | rc = MIGRATEPAGE_SUCCESS; | 
|  | __ClearPageIsolated(page); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | rc = mapping->a_ops->migratepage(mapping, newpage, | 
|  | page, mode); | 
|  | WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS && | 
|  | !PageIsolated(page)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When successful, old pagecache page->mapping must be cleared before | 
|  | * page is freed; but stats require that PageAnon be left as PageAnon. | 
|  | */ | 
|  | if (rc == MIGRATEPAGE_SUCCESS) { | 
|  | if (__PageMovable(page)) { | 
|  | VM_BUG_ON_PAGE(!PageIsolated(page), page); | 
|  |  | 
|  | /* | 
|  | * We clear PG_movable under page_lock so any compactor | 
|  | * cannot try to migrate this page. | 
|  | */ | 
|  | __ClearPageIsolated(page); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Anonymous and movable page->mapping will be cleared by | 
|  | * free_pages_prepare so don't reset it here for keeping | 
|  | * the type to work PageAnon, for example. | 
|  | */ | 
|  | if (!PageMappingFlags(page)) | 
|  | page->mapping = NULL; | 
|  |  | 
|  | if (likely(!is_zone_device_page(newpage))) | 
|  | flush_dcache_page(newpage); | 
|  |  | 
|  | } | 
|  | out: | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static int __unmap_and_move(struct page *page, struct page *newpage, | 
|  | int force, enum migrate_mode mode) | 
|  | { | 
|  | int rc = -EAGAIN; | 
|  | bool page_was_mapped = false; | 
|  | struct anon_vma *anon_vma = NULL; | 
|  | bool is_lru = !__PageMovable(page); | 
|  |  | 
|  | if (!trylock_page(page)) { | 
|  | if (!force || mode == MIGRATE_ASYNC) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * It's not safe for direct compaction to call lock_page. | 
|  | * For example, during page readahead pages are added locked | 
|  | * to the LRU. Later, when the IO completes the pages are | 
|  | * marked uptodate and unlocked. However, the queueing | 
|  | * could be merging multiple pages for one bio (e.g. | 
|  | * mpage_readahead). If an allocation happens for the | 
|  | * second or third page, the process can end up locking | 
|  | * the same page twice and deadlocking. Rather than | 
|  | * trying to be clever about what pages can be locked, | 
|  | * avoid the use of lock_page for direct compaction | 
|  | * altogether. | 
|  | */ | 
|  | if (current->flags & PF_MEMALLOC) | 
|  | goto out; | 
|  |  | 
|  | lock_page(page); | 
|  | } | 
|  |  | 
|  | if (PageWriteback(page)) { | 
|  | /* | 
|  | * Only in the case of a full synchronous migration is it | 
|  | * necessary to wait for PageWriteback. In the async case, | 
|  | * the retry loop is too short and in the sync-light case, | 
|  | * the overhead of stalling is too much | 
|  | */ | 
|  | switch (mode) { | 
|  | case MIGRATE_SYNC: | 
|  | case MIGRATE_SYNC_NO_COPY: | 
|  | break; | 
|  | default: | 
|  | rc = -EBUSY; | 
|  | goto out_unlock; | 
|  | } | 
|  | if (!force) | 
|  | goto out_unlock; | 
|  | wait_on_page_writeback(page); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * By try_to_migrate(), page->mapcount goes down to 0 here. In this case, | 
|  | * we cannot notice that anon_vma is freed while we migrates a page. | 
|  | * This get_anon_vma() delays freeing anon_vma pointer until the end | 
|  | * of migration. File cache pages are no problem because of page_lock() | 
|  | * File Caches may use write_page() or lock_page() in migration, then, | 
|  | * just care Anon page here. | 
|  | * | 
|  | * Only page_get_anon_vma() understands the subtleties of | 
|  | * getting a hold on an anon_vma from outside one of its mms. | 
|  | * But if we cannot get anon_vma, then we won't need it anyway, | 
|  | * because that implies that the anon page is no longer mapped | 
|  | * (and cannot be remapped so long as we hold the page lock). | 
|  | */ | 
|  | if (PageAnon(page) && !PageKsm(page)) | 
|  | anon_vma = page_get_anon_vma(page); | 
|  |  | 
|  | /* | 
|  | * Block others from accessing the new page when we get around to | 
|  | * establishing additional references. We are usually the only one | 
|  | * holding a reference to newpage at this point. We used to have a BUG | 
|  | * here if trylock_page(newpage) fails, but would like to allow for | 
|  | * cases where there might be a race with the previous use of newpage. | 
|  | * This is much like races on refcount of oldpage: just don't BUG(). | 
|  | */ | 
|  | if (unlikely(!trylock_page(newpage))) | 
|  | goto out_unlock; | 
|  |  | 
|  | if (unlikely(!is_lru)) { | 
|  | rc = move_to_new_page(newpage, page, mode); | 
|  | goto out_unlock_both; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Corner case handling: | 
|  | * 1. When a new swap-cache page is read into, it is added to the LRU | 
|  | * and treated as swapcache but it has no rmap yet. | 
|  | * Calling try_to_unmap() against a page->mapping==NULL page will | 
|  | * trigger a BUG.  So handle it here. | 
|  | * 2. An orphaned page (see truncate_cleanup_page) might have | 
|  | * fs-private metadata. The page can be picked up due to memory | 
|  | * offlining.  Everywhere else except page reclaim, the page is | 
|  | * invisible to the vm, so the page can not be migrated.  So try to | 
|  | * free the metadata, so the page can be freed. | 
|  | */ | 
|  | if (!page->mapping) { | 
|  | VM_BUG_ON_PAGE(PageAnon(page), page); | 
|  | if (page_has_private(page)) { | 
|  | try_to_free_buffers(page); | 
|  | goto out_unlock_both; | 
|  | } | 
|  | } else if (page_mapped(page)) { | 
|  | /* Establish migration ptes */ | 
|  | VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma, | 
|  | page); | 
|  | try_to_migrate(page, 0); | 
|  | page_was_mapped = true; | 
|  | } | 
|  |  | 
|  | if (!page_mapped(page)) | 
|  | rc = move_to_new_page(newpage, page, mode); | 
|  |  | 
|  | if (page_was_mapped) | 
|  | remove_migration_ptes(page, | 
|  | rc == MIGRATEPAGE_SUCCESS ? newpage : page, false); | 
|  |  | 
|  | out_unlock_both: | 
|  | unlock_page(newpage); | 
|  | out_unlock: | 
|  | /* Drop an anon_vma reference if we took one */ | 
|  | if (anon_vma) | 
|  | put_anon_vma(anon_vma); | 
|  | unlock_page(page); | 
|  | out: | 
|  | /* | 
|  | * If migration is successful, decrease refcount of the newpage | 
|  | * which will not free the page because new page owner increased | 
|  | * refcounter. As well, if it is LRU page, add the page to LRU | 
|  | * list in here. Use the old state of the isolated source page to | 
|  | * determine if we migrated a LRU page. newpage was already unlocked | 
|  | * and possibly modified by its owner - don't rely on the page | 
|  | * state. | 
|  | */ | 
|  | if (rc == MIGRATEPAGE_SUCCESS) { | 
|  | if (unlikely(!is_lru)) | 
|  | put_page(newpage); | 
|  | else | 
|  | putback_lru_page(newpage); | 
|  | } | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * node_demotion[] example: | 
|  | * | 
|  | * Consider a system with two sockets.  Each socket has | 
|  | * three classes of memory attached: fast, medium and slow. | 
|  | * Each memory class is placed in its own NUMA node.  The | 
|  | * CPUs are placed in the node with the "fast" memory.  The | 
|  | * 6 NUMA nodes (0-5) might be split among the sockets like | 
|  | * this: | 
|  | * | 
|  | *	Socket A: 0, 1, 2 | 
|  | *	Socket B: 3, 4, 5 | 
|  | * | 
|  | * When Node 0 fills up, its memory should be migrated to | 
|  | * Node 1.  When Node 1 fills up, it should be migrated to | 
|  | * Node 2.  The migration path start on the nodes with the | 
|  | * processors (since allocations default to this node) and | 
|  | * fast memory, progress through medium and end with the | 
|  | * slow memory: | 
|  | * | 
|  | *	0 -> 1 -> 2 -> stop | 
|  | *	3 -> 4 -> 5 -> stop | 
|  | * | 
|  | * This is represented in the node_demotion[] like this: | 
|  | * | 
|  | *	{  1, // Node 0 migrates to 1 | 
|  | *	   2, // Node 1 migrates to 2 | 
|  | *	  -1, // Node 2 does not migrate | 
|  | *	   4, // Node 3 migrates to 4 | 
|  | *	   5, // Node 4 migrates to 5 | 
|  | *	  -1} // Node 5 does not migrate | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Writes to this array occur without locking.  Cycles are | 
|  | * not allowed: Node X demotes to Y which demotes to X... | 
|  | * | 
|  | * If multiple reads are performed, a single rcu_read_lock() | 
|  | * must be held over all reads to ensure that no cycles are | 
|  | * observed. | 
|  | */ | 
|  | static int node_demotion[MAX_NUMNODES] __read_mostly = | 
|  | {[0 ...  MAX_NUMNODES - 1] = NUMA_NO_NODE}; | 
|  |  | 
|  | /** | 
|  | * next_demotion_node() - Get the next node in the demotion path | 
|  | * @node: The starting node to lookup the next node | 
|  | * | 
|  | * Return: node id for next memory node in the demotion path hierarchy | 
|  | * from @node; NUMA_NO_NODE if @node is terminal.  This does not keep | 
|  | * @node online or guarantee that it *continues* to be the next demotion | 
|  | * target. | 
|  | */ | 
|  | int next_demotion_node(int node) | 
|  | { | 
|  | int target; | 
|  |  | 
|  | /* | 
|  | * node_demotion[] is updated without excluding this | 
|  | * function from running.  RCU doesn't provide any | 
|  | * compiler barriers, so the READ_ONCE() is required | 
|  | * to avoid compiler reordering or read merging. | 
|  | * | 
|  | * Make sure to use RCU over entire code blocks if | 
|  | * node_demotion[] reads need to be consistent. | 
|  | */ | 
|  | rcu_read_lock(); | 
|  | target = READ_ONCE(node_demotion[node]); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return target; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Obtain the lock on page, remove all ptes and migrate the page | 
|  | * to the newly allocated page in newpage. | 
|  | */ | 
|  | static int unmap_and_move(new_page_t get_new_page, | 
|  | free_page_t put_new_page, | 
|  | unsigned long private, struct page *page, | 
|  | int force, enum migrate_mode mode, | 
|  | enum migrate_reason reason, | 
|  | struct list_head *ret) | 
|  | { | 
|  | int rc = MIGRATEPAGE_SUCCESS; | 
|  | struct page *newpage = NULL; | 
|  |  | 
|  | if (!thp_migration_supported() && PageTransHuge(page)) | 
|  | return -ENOSYS; | 
|  |  | 
|  | if (page_count(page) == 1) { | 
|  | /* page was freed from under us. So we are done. */ | 
|  | ClearPageActive(page); | 
|  | ClearPageUnevictable(page); | 
|  | if (unlikely(__PageMovable(page))) { | 
|  | lock_page(page); | 
|  | if (!PageMovable(page)) | 
|  | __ClearPageIsolated(page); | 
|  | unlock_page(page); | 
|  | } | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | newpage = get_new_page(page, private); | 
|  | if (!newpage) | 
|  | return -ENOMEM; | 
|  |  | 
|  | rc = __unmap_and_move(page, newpage, force, mode); | 
|  | if (rc == MIGRATEPAGE_SUCCESS) | 
|  | set_page_owner_migrate_reason(newpage, reason); | 
|  |  | 
|  | out: | 
|  | if (rc != -EAGAIN) { | 
|  | /* | 
|  | * A page that has been migrated has all references | 
|  | * removed and will be freed. A page that has not been | 
|  | * migrated will have kept its references and be restored. | 
|  | */ | 
|  | list_del(&page->lru); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If migration is successful, releases reference grabbed during | 
|  | * isolation. Otherwise, restore the page to right list unless | 
|  | * we want to retry. | 
|  | */ | 
|  | if (rc == MIGRATEPAGE_SUCCESS) { | 
|  | /* | 
|  | * Compaction can migrate also non-LRU pages which are | 
|  | * not accounted to NR_ISOLATED_*. They can be recognized | 
|  | * as __PageMovable | 
|  | */ | 
|  | if (likely(!__PageMovable(page))) | 
|  | mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + | 
|  | page_is_file_lru(page), -thp_nr_pages(page)); | 
|  |  | 
|  | if (reason != MR_MEMORY_FAILURE) | 
|  | /* | 
|  | * We release the page in page_handle_poison. | 
|  | */ | 
|  | put_page(page); | 
|  | } else { | 
|  | if (rc != -EAGAIN) | 
|  | list_add_tail(&page->lru, ret); | 
|  |  | 
|  | if (put_new_page) | 
|  | put_new_page(newpage, private); | 
|  | else | 
|  | put_page(newpage); | 
|  | } | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Counterpart of unmap_and_move_page() for hugepage migration. | 
|  | * | 
|  | * This function doesn't wait the completion of hugepage I/O | 
|  | * because there is no race between I/O and migration for hugepage. | 
|  | * Note that currently hugepage I/O occurs only in direct I/O | 
|  | * where no lock is held and PG_writeback is irrelevant, | 
|  | * and writeback status of all subpages are counted in the reference | 
|  | * count of the head page (i.e. if all subpages of a 2MB hugepage are | 
|  | * under direct I/O, the reference of the head page is 512 and a bit more.) | 
|  | * This means that when we try to migrate hugepage whose subpages are | 
|  | * doing direct I/O, some references remain after try_to_unmap() and | 
|  | * hugepage migration fails without data corruption. | 
|  | * | 
|  | * There is also no race when direct I/O is issued on the page under migration, | 
|  | * because then pte is replaced with migration swap entry and direct I/O code | 
|  | * will wait in the page fault for migration to complete. | 
|  | */ | 
|  | static int unmap_and_move_huge_page(new_page_t get_new_page, | 
|  | free_page_t put_new_page, unsigned long private, | 
|  | struct page *hpage, int force, | 
|  | enum migrate_mode mode, int reason, | 
|  | struct list_head *ret) | 
|  | { | 
|  | int rc = -EAGAIN; | 
|  | int page_was_mapped = 0; | 
|  | struct page *new_hpage; | 
|  | struct anon_vma *anon_vma = NULL; | 
|  | struct address_space *mapping = NULL; | 
|  |  | 
|  | /* | 
|  | * Migratability of hugepages depends on architectures and their size. | 
|  | * This check is necessary because some callers of hugepage migration | 
|  | * like soft offline and memory hotremove don't walk through page | 
|  | * tables or check whether the hugepage is pmd-based or not before | 
|  | * kicking migration. | 
|  | */ | 
|  | if (!hugepage_migration_supported(page_hstate(hpage))) { | 
|  | list_move_tail(&hpage->lru, ret); | 
|  | return -ENOSYS; | 
|  | } | 
|  |  | 
|  | if (page_count(hpage) == 1) { | 
|  | /* page was freed from under us. So we are done. */ | 
|  | putback_active_hugepage(hpage); | 
|  | return MIGRATEPAGE_SUCCESS; | 
|  | } | 
|  |  | 
|  | new_hpage = get_new_page(hpage, private); | 
|  | if (!new_hpage) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (!trylock_page(hpage)) { | 
|  | if (!force) | 
|  | goto out; | 
|  | switch (mode) { | 
|  | case MIGRATE_SYNC: | 
|  | case MIGRATE_SYNC_NO_COPY: | 
|  | break; | 
|  | default: | 
|  | goto out; | 
|  | } | 
|  | lock_page(hpage); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check for pages which are in the process of being freed.  Without | 
|  | * page_mapping() set, hugetlbfs specific move page routine will not | 
|  | * be called and we could leak usage counts for subpools. | 
|  | */ | 
|  | if (hugetlb_page_subpool(hpage) && !page_mapping(hpage)) { | 
|  | rc = -EBUSY; | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | if (PageAnon(hpage)) | 
|  | anon_vma = page_get_anon_vma(hpage); | 
|  |  | 
|  | if (unlikely(!trylock_page(new_hpage))) | 
|  | goto put_anon; | 
|  |  | 
|  | if (page_mapped(hpage)) { | 
|  | bool mapping_locked = false; | 
|  | enum ttu_flags ttu = 0; | 
|  |  | 
|  | if (!PageAnon(hpage)) { | 
|  | /* | 
|  | * In shared mappings, try_to_unmap could potentially | 
|  | * call huge_pmd_unshare.  Because of this, take | 
|  | * semaphore in write mode here and set TTU_RMAP_LOCKED | 
|  | * to let lower levels know we have taken the lock. | 
|  | */ | 
|  | mapping = hugetlb_page_mapping_lock_write(hpage); | 
|  | if (unlikely(!mapping)) | 
|  | goto unlock_put_anon; | 
|  |  | 
|  | mapping_locked = true; | 
|  | ttu |= TTU_RMAP_LOCKED; | 
|  | } | 
|  |  | 
|  | try_to_migrate(hpage, ttu); | 
|  | page_was_mapped = 1; | 
|  |  | 
|  | if (mapping_locked) | 
|  | i_mmap_unlock_write(mapping); | 
|  | } | 
|  |  | 
|  | if (!page_mapped(hpage)) | 
|  | rc = move_to_new_page(new_hpage, hpage, mode); | 
|  |  | 
|  | if (page_was_mapped) | 
|  | remove_migration_ptes(hpage, | 
|  | rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false); | 
|  |  | 
|  | unlock_put_anon: | 
|  | unlock_page(new_hpage); | 
|  |  | 
|  | put_anon: | 
|  | if (anon_vma) | 
|  | put_anon_vma(anon_vma); | 
|  |  | 
|  | if (rc == MIGRATEPAGE_SUCCESS) { | 
|  | move_hugetlb_state(hpage, new_hpage, reason); | 
|  | put_new_page = NULL; | 
|  | } | 
|  |  | 
|  | out_unlock: | 
|  | unlock_page(hpage); | 
|  | out: | 
|  | if (rc == MIGRATEPAGE_SUCCESS) | 
|  | putback_active_hugepage(hpage); | 
|  | else if (rc != -EAGAIN) | 
|  | list_move_tail(&hpage->lru, ret); | 
|  |  | 
|  | /* | 
|  | * If migration was not successful and there's a freeing callback, use | 
|  | * it.  Otherwise, put_page() will drop the reference grabbed during | 
|  | * isolation. | 
|  | */ | 
|  | if (put_new_page) | 
|  | put_new_page(new_hpage, private); | 
|  | else | 
|  | putback_active_hugepage(new_hpage); | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static inline int try_split_thp(struct page *page, struct page **page2, | 
|  | struct list_head *from) | 
|  | { | 
|  | int rc = 0; | 
|  |  | 
|  | lock_page(page); | 
|  | rc = split_huge_page_to_list(page, from); | 
|  | unlock_page(page); | 
|  | if (!rc) | 
|  | list_safe_reset_next(page, *page2, lru); | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * migrate_pages - migrate the pages specified in a list, to the free pages | 
|  | *		   supplied as the target for the page migration | 
|  | * | 
|  | * @from:		The list of pages to be migrated. | 
|  | * @get_new_page:	The function used to allocate free pages to be used | 
|  | *			as the target of the page migration. | 
|  | * @put_new_page:	The function used to free target pages if migration | 
|  | *			fails, or NULL if no special handling is necessary. | 
|  | * @private:		Private data to be passed on to get_new_page() | 
|  | * @mode:		The migration mode that specifies the constraints for | 
|  | *			page migration, if any. | 
|  | * @reason:		The reason for page migration. | 
|  | * @ret_succeeded:	Set to the number of pages migrated successfully if | 
|  | *			the caller passes a non-NULL pointer. | 
|  | * | 
|  | * The function returns after 10 attempts or if no pages are movable any more | 
|  | * because the list has become empty or no retryable pages exist any more. | 
|  | * It is caller's responsibility to call putback_movable_pages() to return pages | 
|  | * to the LRU or free list only if ret != 0. | 
|  | * | 
|  | * Returns the number of pages that were not migrated, or an error code. | 
|  | */ | 
|  | int migrate_pages(struct list_head *from, new_page_t get_new_page, | 
|  | free_page_t put_new_page, unsigned long private, | 
|  | enum migrate_mode mode, int reason, unsigned int *ret_succeeded) | 
|  | { | 
|  | int retry = 1; | 
|  | int thp_retry = 1; | 
|  | int nr_failed = 0; | 
|  | int nr_succeeded = 0; | 
|  | int nr_thp_succeeded = 0; | 
|  | int nr_thp_failed = 0; | 
|  | int nr_thp_split = 0; | 
|  | int pass = 0; | 
|  | bool is_thp = false; | 
|  | struct page *page; | 
|  | struct page *page2; | 
|  | int swapwrite = current->flags & PF_SWAPWRITE; | 
|  | int rc, nr_subpages; | 
|  | LIST_HEAD(ret_pages); | 
|  | bool nosplit = (reason == MR_NUMA_MISPLACED); | 
|  |  | 
|  | trace_mm_migrate_pages_start(mode, reason); | 
|  |  | 
|  | if (!swapwrite) | 
|  | current->flags |= PF_SWAPWRITE; | 
|  |  | 
|  | for (pass = 0; pass < 10 && (retry || thp_retry); pass++) { | 
|  | retry = 0; | 
|  | thp_retry = 0; | 
|  |  | 
|  | list_for_each_entry_safe(page, page2, from, lru) { | 
|  | retry: | 
|  | /* | 
|  | * THP statistics is based on the source huge page. | 
|  | * Capture required information that might get lost | 
|  | * during migration. | 
|  | */ | 
|  | is_thp = PageTransHuge(page) && !PageHuge(page); | 
|  | nr_subpages = thp_nr_pages(page); | 
|  | cond_resched(); | 
|  |  | 
|  | if (PageHuge(page)) | 
|  | rc = unmap_and_move_huge_page(get_new_page, | 
|  | put_new_page, private, page, | 
|  | pass > 2, mode, reason, | 
|  | &ret_pages); | 
|  | else | 
|  | rc = unmap_and_move(get_new_page, put_new_page, | 
|  | private, page, pass > 2, mode, | 
|  | reason, &ret_pages); | 
|  | /* | 
|  | * The rules are: | 
|  | *	Success: non hugetlb page will be freed, hugetlb | 
|  | *		 page will be put back | 
|  | *	-EAGAIN: stay on the from list | 
|  | *	-ENOMEM: stay on the from list | 
|  | *	Other errno: put on ret_pages list then splice to | 
|  | *		     from list | 
|  | */ | 
|  | switch(rc) { | 
|  | /* | 
|  | * THP migration might be unsupported or the | 
|  | * allocation could've failed so we should | 
|  | * retry on the same page with the THP split | 
|  | * to base pages. | 
|  | * | 
|  | * Head page is retried immediately and tail | 
|  | * pages are added to the tail of the list so | 
|  | * we encounter them after the rest of the list | 
|  | * is processed. | 
|  | */ | 
|  | case -ENOSYS: | 
|  | /* THP migration is unsupported */ | 
|  | if (is_thp) { | 
|  | if (!try_split_thp(page, &page2, from)) { | 
|  | nr_thp_split++; | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | nr_thp_failed++; | 
|  | nr_failed += nr_subpages; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Hugetlb migration is unsupported */ | 
|  | nr_failed++; | 
|  | break; | 
|  | case -ENOMEM: | 
|  | /* | 
|  | * When memory is low, don't bother to try to migrate | 
|  | * other pages, just exit. | 
|  | * THP NUMA faulting doesn't split THP to retry. | 
|  | */ | 
|  | if (is_thp && !nosplit) { | 
|  | if (!try_split_thp(page, &page2, from)) { | 
|  | nr_thp_split++; | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | nr_thp_failed++; | 
|  | nr_failed += nr_subpages; | 
|  | goto out; | 
|  | } | 
|  | nr_failed++; | 
|  | goto out; | 
|  | case -EAGAIN: | 
|  | if (is_thp) { | 
|  | thp_retry++; | 
|  | break; | 
|  | } | 
|  | retry++; | 
|  | break; | 
|  | case MIGRATEPAGE_SUCCESS: | 
|  | if (is_thp) { | 
|  | nr_thp_succeeded++; | 
|  | nr_succeeded += nr_subpages; | 
|  | break; | 
|  | } | 
|  | nr_succeeded++; | 
|  | break; | 
|  | default: | 
|  | /* | 
|  | * Permanent failure (-EBUSY, etc.): | 
|  | * unlike -EAGAIN case, the failed page is | 
|  | * removed from migration page list and not | 
|  | * retried in the next outer loop. | 
|  | */ | 
|  | if (is_thp) { | 
|  | nr_thp_failed++; | 
|  | nr_failed += nr_subpages; | 
|  | break; | 
|  | } | 
|  | nr_failed++; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | nr_failed += retry + thp_retry; | 
|  | nr_thp_failed += thp_retry; | 
|  | rc = nr_failed; | 
|  | out: | 
|  | /* | 
|  | * Put the permanent failure page back to migration list, they | 
|  | * will be put back to the right list by the caller. | 
|  | */ | 
|  | list_splice(&ret_pages, from); | 
|  |  | 
|  | count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded); | 
|  | count_vm_events(PGMIGRATE_FAIL, nr_failed); | 
|  | count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded); | 
|  | count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed); | 
|  | count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split); | 
|  | trace_mm_migrate_pages(nr_succeeded, nr_failed, nr_thp_succeeded, | 
|  | nr_thp_failed, nr_thp_split, mode, reason); | 
|  |  | 
|  | if (!swapwrite) | 
|  | current->flags &= ~PF_SWAPWRITE; | 
|  |  | 
|  | if (ret_succeeded) | 
|  | *ret_succeeded = nr_succeeded; | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | struct page *alloc_migration_target(struct page *page, unsigned long private) | 
|  | { | 
|  | struct migration_target_control *mtc; | 
|  | gfp_t gfp_mask; | 
|  | unsigned int order = 0; | 
|  | struct page *new_page = NULL; | 
|  | int nid; | 
|  | int zidx; | 
|  |  | 
|  | mtc = (struct migration_target_control *)private; | 
|  | gfp_mask = mtc->gfp_mask; | 
|  | nid = mtc->nid; | 
|  | if (nid == NUMA_NO_NODE) | 
|  | nid = page_to_nid(page); | 
|  |  | 
|  | if (PageHuge(page)) { | 
|  | struct hstate *h = page_hstate(compound_head(page)); | 
|  |  | 
|  | gfp_mask = htlb_modify_alloc_mask(h, gfp_mask); | 
|  | return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask); | 
|  | } | 
|  |  | 
|  | if (PageTransHuge(page)) { | 
|  | /* | 
|  | * clear __GFP_RECLAIM to make the migration callback | 
|  | * consistent with regular THP allocations. | 
|  | */ | 
|  | gfp_mask &= ~__GFP_RECLAIM; | 
|  | gfp_mask |= GFP_TRANSHUGE; | 
|  | order = HPAGE_PMD_ORDER; | 
|  | } | 
|  | zidx = zone_idx(page_zone(page)); | 
|  | if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE) | 
|  | gfp_mask |= __GFP_HIGHMEM; | 
|  |  | 
|  | new_page = __alloc_pages(gfp_mask, order, nid, mtc->nmask); | 
|  |  | 
|  | if (new_page && PageTransHuge(new_page)) | 
|  | prep_transhuge_page(new_page); | 
|  |  | 
|  | return new_page; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  |  | 
|  | static int store_status(int __user *status, int start, int value, int nr) | 
|  | { | 
|  | while (nr-- > 0) { | 
|  | if (put_user(value, status + start)) | 
|  | return -EFAULT; | 
|  | start++; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int do_move_pages_to_node(struct mm_struct *mm, | 
|  | struct list_head *pagelist, int node) | 
|  | { | 
|  | int err; | 
|  | struct migration_target_control mtc = { | 
|  | .nid = node, | 
|  | .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, | 
|  | }; | 
|  |  | 
|  | err = migrate_pages(pagelist, alloc_migration_target, NULL, | 
|  | (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL); | 
|  | if (err) | 
|  | putback_movable_pages(pagelist); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Resolves the given address to a struct page, isolates it from the LRU and | 
|  | * puts it to the given pagelist. | 
|  | * Returns: | 
|  | *     errno - if the page cannot be found/isolated | 
|  | *     0 - when it doesn't have to be migrated because it is already on the | 
|  | *         target node | 
|  | *     1 - when it has been queued | 
|  | */ | 
|  | static int add_page_for_migration(struct mm_struct *mm, unsigned long addr, | 
|  | int node, struct list_head *pagelist, bool migrate_all) | 
|  | { | 
|  | struct vm_area_struct *vma; | 
|  | struct page *page; | 
|  | unsigned int follflags; | 
|  | int err; | 
|  |  | 
|  | mmap_read_lock(mm); | 
|  | err = -EFAULT; | 
|  | vma = find_vma(mm, addr); | 
|  | if (!vma || addr < vma->vm_start || !vma_migratable(vma)) | 
|  | goto out; | 
|  |  | 
|  | /* FOLL_DUMP to ignore special (like zero) pages */ | 
|  | follflags = FOLL_GET | FOLL_DUMP; | 
|  | page = follow_page(vma, addr, follflags); | 
|  |  | 
|  | err = PTR_ERR(page); | 
|  | if (IS_ERR(page)) | 
|  | goto out; | 
|  |  | 
|  | err = -ENOENT; | 
|  | if (!page) | 
|  | goto out; | 
|  |  | 
|  | err = 0; | 
|  | if (page_to_nid(page) == node) | 
|  | goto out_putpage; | 
|  |  | 
|  | err = -EACCES; | 
|  | if (page_mapcount(page) > 1 && !migrate_all) | 
|  | goto out_putpage; | 
|  |  | 
|  | if (PageHuge(page)) { | 
|  | if (PageHead(page)) { | 
|  | isolate_huge_page(page, pagelist); | 
|  | err = 1; | 
|  | } | 
|  | } else { | 
|  | struct page *head; | 
|  |  | 
|  | head = compound_head(page); | 
|  | err = isolate_lru_page(head); | 
|  | if (err) | 
|  | goto out_putpage; | 
|  |  | 
|  | err = 1; | 
|  | list_add_tail(&head->lru, pagelist); | 
|  | mod_node_page_state(page_pgdat(head), | 
|  | NR_ISOLATED_ANON + page_is_file_lru(head), | 
|  | thp_nr_pages(head)); | 
|  | } | 
|  | out_putpage: | 
|  | /* | 
|  | * Either remove the duplicate refcount from | 
|  | * isolate_lru_page() or drop the page ref if it was | 
|  | * not isolated. | 
|  | */ | 
|  | put_page(page); | 
|  | out: | 
|  | mmap_read_unlock(mm); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int move_pages_and_store_status(struct mm_struct *mm, int node, | 
|  | struct list_head *pagelist, int __user *status, | 
|  | int start, int i, unsigned long nr_pages) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | if (list_empty(pagelist)) | 
|  | return 0; | 
|  |  | 
|  | err = do_move_pages_to_node(mm, pagelist, node); | 
|  | if (err) { | 
|  | /* | 
|  | * Positive err means the number of failed | 
|  | * pages to migrate.  Since we are going to | 
|  | * abort and return the number of non-migrated | 
|  | * pages, so need to include the rest of the | 
|  | * nr_pages that have not been attempted as | 
|  | * well. | 
|  | */ | 
|  | if (err > 0) | 
|  | err += nr_pages - i - 1; | 
|  | return err; | 
|  | } | 
|  | return store_status(status, start, node, i - start); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Migrate an array of page address onto an array of nodes and fill | 
|  | * the corresponding array of status. | 
|  | */ | 
|  | static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes, | 
|  | unsigned long nr_pages, | 
|  | const void __user * __user *pages, | 
|  | const int __user *nodes, | 
|  | int __user *status, int flags) | 
|  | { | 
|  | int current_node = NUMA_NO_NODE; | 
|  | LIST_HEAD(pagelist); | 
|  | int start, i; | 
|  | int err = 0, err1; | 
|  |  | 
|  | lru_cache_disable(); | 
|  |  | 
|  | for (i = start = 0; i < nr_pages; i++) { | 
|  | const void __user *p; | 
|  | unsigned long addr; | 
|  | int node; | 
|  |  | 
|  | err = -EFAULT; | 
|  | if (get_user(p, pages + i)) | 
|  | goto out_flush; | 
|  | if (get_user(node, nodes + i)) | 
|  | goto out_flush; | 
|  | addr = (unsigned long)untagged_addr(p); | 
|  |  | 
|  | err = -ENODEV; | 
|  | if (node < 0 || node >= MAX_NUMNODES) | 
|  | goto out_flush; | 
|  | if (!node_state(node, N_MEMORY)) | 
|  | goto out_flush; | 
|  |  | 
|  | err = -EACCES; | 
|  | if (!node_isset(node, task_nodes)) | 
|  | goto out_flush; | 
|  |  | 
|  | if (current_node == NUMA_NO_NODE) { | 
|  | current_node = node; | 
|  | start = i; | 
|  | } else if (node != current_node) { | 
|  | err = move_pages_and_store_status(mm, current_node, | 
|  | &pagelist, status, start, i, nr_pages); | 
|  | if (err) | 
|  | goto out; | 
|  | start = i; | 
|  | current_node = node; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Errors in the page lookup or isolation are not fatal and we simply | 
|  | * report them via status | 
|  | */ | 
|  | err = add_page_for_migration(mm, addr, current_node, | 
|  | &pagelist, flags & MPOL_MF_MOVE_ALL); | 
|  |  | 
|  | if (err > 0) { | 
|  | /* The page is successfully queued for migration */ | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the page is already on the target node (!err), store the | 
|  | * node, otherwise, store the err. | 
|  | */ | 
|  | err = store_status(status, i, err ? : current_node, 1); | 
|  | if (err) | 
|  | goto out_flush; | 
|  |  | 
|  | err = move_pages_and_store_status(mm, current_node, &pagelist, | 
|  | status, start, i, nr_pages); | 
|  | if (err) | 
|  | goto out; | 
|  | current_node = NUMA_NO_NODE; | 
|  | } | 
|  | out_flush: | 
|  | /* Make sure we do not overwrite the existing error */ | 
|  | err1 = move_pages_and_store_status(mm, current_node, &pagelist, | 
|  | status, start, i, nr_pages); | 
|  | if (err >= 0) | 
|  | err = err1; | 
|  | out: | 
|  | lru_cache_enable(); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Determine the nodes of an array of pages and store it in an array of status. | 
|  | */ | 
|  | static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, | 
|  | const void __user **pages, int *status) | 
|  | { | 
|  | unsigned long i; | 
|  |  | 
|  | mmap_read_lock(mm); | 
|  |  | 
|  | for (i = 0; i < nr_pages; i++) { | 
|  | unsigned long addr = (unsigned long)(*pages); | 
|  | struct vm_area_struct *vma; | 
|  | struct page *page; | 
|  | int err = -EFAULT; | 
|  |  | 
|  | vma = vma_lookup(mm, addr); | 
|  | if (!vma) | 
|  | goto set_status; | 
|  |  | 
|  | /* FOLL_DUMP to ignore special (like zero) pages */ | 
|  | page = follow_page(vma, addr, FOLL_DUMP); | 
|  |  | 
|  | err = PTR_ERR(page); | 
|  | if (IS_ERR(page)) | 
|  | goto set_status; | 
|  |  | 
|  | err = page ? page_to_nid(page) : -ENOENT; | 
|  | set_status: | 
|  | *status = err; | 
|  |  | 
|  | pages++; | 
|  | status++; | 
|  | } | 
|  |  | 
|  | mmap_read_unlock(mm); | 
|  | } | 
|  |  | 
|  | static int get_compat_pages_array(const void __user *chunk_pages[], | 
|  | const void __user * __user *pages, | 
|  | unsigned long chunk_nr) | 
|  | { | 
|  | compat_uptr_t __user *pages32 = (compat_uptr_t __user *)pages; | 
|  | compat_uptr_t p; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < chunk_nr; i++) { | 
|  | if (get_user(p, pages32 + i)) | 
|  | return -EFAULT; | 
|  | chunk_pages[i] = compat_ptr(p); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Determine the nodes of a user array of pages and store it in | 
|  | * a user array of status. | 
|  | */ | 
|  | static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, | 
|  | const void __user * __user *pages, | 
|  | int __user *status) | 
|  | { | 
|  | #define DO_PAGES_STAT_CHUNK_NR 16 | 
|  | const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; | 
|  | int chunk_status[DO_PAGES_STAT_CHUNK_NR]; | 
|  |  | 
|  | while (nr_pages) { | 
|  | unsigned long chunk_nr; | 
|  |  | 
|  | chunk_nr = nr_pages; | 
|  | if (chunk_nr > DO_PAGES_STAT_CHUNK_NR) | 
|  | chunk_nr = DO_PAGES_STAT_CHUNK_NR; | 
|  |  | 
|  | if (in_compat_syscall()) { | 
|  | if (get_compat_pages_array(chunk_pages, pages, | 
|  | chunk_nr)) | 
|  | break; | 
|  | } else { | 
|  | if (copy_from_user(chunk_pages, pages, | 
|  | chunk_nr * sizeof(*chunk_pages))) | 
|  | break; | 
|  | } | 
|  |  | 
|  | do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); | 
|  |  | 
|  | if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status))) | 
|  | break; | 
|  |  | 
|  | pages += chunk_nr; | 
|  | status += chunk_nr; | 
|  | nr_pages -= chunk_nr; | 
|  | } | 
|  | return nr_pages ? -EFAULT : 0; | 
|  | } | 
|  |  | 
|  | static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes) | 
|  | { | 
|  | struct task_struct *task; | 
|  | struct mm_struct *mm; | 
|  |  | 
|  | /* | 
|  | * There is no need to check if current process has the right to modify | 
|  | * the specified process when they are same. | 
|  | */ | 
|  | if (!pid) { | 
|  | mmget(current->mm); | 
|  | *mem_nodes = cpuset_mems_allowed(current); | 
|  | return current->mm; | 
|  | } | 
|  |  | 
|  | /* Find the mm_struct */ | 
|  | rcu_read_lock(); | 
|  | task = find_task_by_vpid(pid); | 
|  | if (!task) { | 
|  | rcu_read_unlock(); | 
|  | return ERR_PTR(-ESRCH); | 
|  | } | 
|  | get_task_struct(task); | 
|  |  | 
|  | /* | 
|  | * Check if this process has the right to modify the specified | 
|  | * process. Use the regular "ptrace_may_access()" checks. | 
|  | */ | 
|  | if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { | 
|  | rcu_read_unlock(); | 
|  | mm = ERR_PTR(-EPERM); | 
|  | goto out; | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | mm = ERR_PTR(security_task_movememory(task)); | 
|  | if (IS_ERR(mm)) | 
|  | goto out; | 
|  | *mem_nodes = cpuset_mems_allowed(task); | 
|  | mm = get_task_mm(task); | 
|  | out: | 
|  | put_task_struct(task); | 
|  | if (!mm) | 
|  | mm = ERR_PTR(-EINVAL); | 
|  | return mm; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Move a list of pages in the address space of the currently executing | 
|  | * process. | 
|  | */ | 
|  | static int kernel_move_pages(pid_t pid, unsigned long nr_pages, | 
|  | const void __user * __user *pages, | 
|  | const int __user *nodes, | 
|  | int __user *status, int flags) | 
|  | { | 
|  | struct mm_struct *mm; | 
|  | int err; | 
|  | nodemask_t task_nodes; | 
|  |  | 
|  | /* Check flags */ | 
|  | if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) | 
|  | return -EPERM; | 
|  |  | 
|  | mm = find_mm_struct(pid, &task_nodes); | 
|  | if (IS_ERR(mm)) | 
|  | return PTR_ERR(mm); | 
|  |  | 
|  | if (nodes) | 
|  | err = do_pages_move(mm, task_nodes, nr_pages, pages, | 
|  | nodes, status, flags); | 
|  | else | 
|  | err = do_pages_stat(mm, nr_pages, pages, status); | 
|  |  | 
|  | mmput(mm); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, | 
|  | const void __user * __user *, pages, | 
|  | const int __user *, nodes, | 
|  | int __user *, status, int, flags) | 
|  | { | 
|  | return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NUMA_BALANCING | 
|  | /* | 
|  | * Returns true if this is a safe migration target node for misplaced NUMA | 
|  | * pages. Currently it only checks the watermarks which crude | 
|  | */ | 
|  | static bool migrate_balanced_pgdat(struct pglist_data *pgdat, | 
|  | unsigned long nr_migrate_pages) | 
|  | { | 
|  | int z; | 
|  |  | 
|  | for (z = pgdat->nr_zones - 1; z >= 0; z--) { | 
|  | struct zone *zone = pgdat->node_zones + z; | 
|  |  | 
|  | if (!populated_zone(zone)) | 
|  | continue; | 
|  |  | 
|  | /* Avoid waking kswapd by allocating pages_to_migrate pages. */ | 
|  | if (!zone_watermark_ok(zone, 0, | 
|  | high_wmark_pages(zone) + | 
|  | nr_migrate_pages, | 
|  | ZONE_MOVABLE, 0)) | 
|  | continue; | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static struct page *alloc_misplaced_dst_page(struct page *page, | 
|  | unsigned long data) | 
|  | { | 
|  | int nid = (int) data; | 
|  | struct page *newpage; | 
|  |  | 
|  | newpage = __alloc_pages_node(nid, | 
|  | (GFP_HIGHUSER_MOVABLE | | 
|  | __GFP_THISNODE | __GFP_NOMEMALLOC | | 
|  | __GFP_NORETRY | __GFP_NOWARN) & | 
|  | ~__GFP_RECLAIM, 0); | 
|  |  | 
|  | return newpage; | 
|  | } | 
|  |  | 
|  | static struct page *alloc_misplaced_dst_page_thp(struct page *page, | 
|  | unsigned long data) | 
|  | { | 
|  | int nid = (int) data; | 
|  | struct page *newpage; | 
|  |  | 
|  | newpage = alloc_pages_node(nid, (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE), | 
|  | HPAGE_PMD_ORDER); | 
|  | if (!newpage) | 
|  | goto out; | 
|  |  | 
|  | prep_transhuge_page(newpage); | 
|  |  | 
|  | out: | 
|  | return newpage; | 
|  | } | 
|  |  | 
|  | static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page) | 
|  | { | 
|  | int page_lru; | 
|  | int nr_pages = thp_nr_pages(page); | 
|  |  | 
|  | VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page); | 
|  |  | 
|  | /* Do not migrate THP mapped by multiple processes */ | 
|  | if (PageTransHuge(page) && total_mapcount(page) > 1) | 
|  | return 0; | 
|  |  | 
|  | /* Avoid migrating to a node that is nearly full */ | 
|  | if (!migrate_balanced_pgdat(pgdat, nr_pages)) | 
|  | return 0; | 
|  |  | 
|  | if (isolate_lru_page(page)) | 
|  | return 0; | 
|  |  | 
|  | page_lru = page_is_file_lru(page); | 
|  | mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru, | 
|  | nr_pages); | 
|  |  | 
|  | /* | 
|  | * Isolating the page has taken another reference, so the | 
|  | * caller's reference can be safely dropped without the page | 
|  | * disappearing underneath us during migration. | 
|  | */ | 
|  | put_page(page); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Attempt to migrate a misplaced page to the specified destination | 
|  | * node. Caller is expected to have an elevated reference count on | 
|  | * the page that will be dropped by this function before returning. | 
|  | */ | 
|  | int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma, | 
|  | int node) | 
|  | { | 
|  | pg_data_t *pgdat = NODE_DATA(node); | 
|  | int isolated; | 
|  | int nr_remaining; | 
|  | LIST_HEAD(migratepages); | 
|  | new_page_t *new; | 
|  | bool compound; | 
|  | int nr_pages = thp_nr_pages(page); | 
|  |  | 
|  | /* | 
|  | * PTE mapped THP or HugeTLB page can't reach here so the page could | 
|  | * be either base page or THP.  And it must be head page if it is | 
|  | * THP. | 
|  | */ | 
|  | compound = PageTransHuge(page); | 
|  |  | 
|  | if (compound) | 
|  | new = alloc_misplaced_dst_page_thp; | 
|  | else | 
|  | new = alloc_misplaced_dst_page; | 
|  |  | 
|  | /* | 
|  | * Don't migrate file pages that are mapped in multiple processes | 
|  | * with execute permissions as they are probably shared libraries. | 
|  | */ | 
|  | if (page_mapcount(page) != 1 && page_is_file_lru(page) && | 
|  | (vma->vm_flags & VM_EXEC)) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * Also do not migrate dirty pages as not all filesystems can move | 
|  | * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles. | 
|  | */ | 
|  | if (page_is_file_lru(page) && PageDirty(page)) | 
|  | goto out; | 
|  |  | 
|  | isolated = numamigrate_isolate_page(pgdat, page); | 
|  | if (!isolated) | 
|  | goto out; | 
|  |  | 
|  | list_add(&page->lru, &migratepages); | 
|  | nr_remaining = migrate_pages(&migratepages, *new, NULL, node, | 
|  | MIGRATE_ASYNC, MR_NUMA_MISPLACED, NULL); | 
|  | if (nr_remaining) { | 
|  | if (!list_empty(&migratepages)) { | 
|  | list_del(&page->lru); | 
|  | mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + | 
|  | page_is_file_lru(page), -nr_pages); | 
|  | putback_lru_page(page); | 
|  | } | 
|  | isolated = 0; | 
|  | } else | 
|  | count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_pages); | 
|  | BUG_ON(!list_empty(&migratepages)); | 
|  | return isolated; | 
|  |  | 
|  | out: | 
|  | put_page(page); | 
|  | return 0; | 
|  | } | 
|  | #endif /* CONFIG_NUMA_BALANCING */ | 
|  | #endif /* CONFIG_NUMA */ | 
|  |  | 
|  | #ifdef CONFIG_DEVICE_PRIVATE | 
|  | static int migrate_vma_collect_skip(unsigned long start, | 
|  | unsigned long end, | 
|  | struct mm_walk *walk) | 
|  | { | 
|  | struct migrate_vma *migrate = walk->private; | 
|  | unsigned long addr; | 
|  |  | 
|  | for (addr = start; addr < end; addr += PAGE_SIZE) { | 
|  | migrate->dst[migrate->npages] = 0; | 
|  | migrate->src[migrate->npages++] = 0; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int migrate_vma_collect_hole(unsigned long start, | 
|  | unsigned long end, | 
|  | __always_unused int depth, | 
|  | struct mm_walk *walk) | 
|  | { | 
|  | struct migrate_vma *migrate = walk->private; | 
|  | unsigned long addr; | 
|  |  | 
|  | /* Only allow populating anonymous memory. */ | 
|  | if (!vma_is_anonymous(walk->vma)) | 
|  | return migrate_vma_collect_skip(start, end, walk); | 
|  |  | 
|  | for (addr = start; addr < end; addr += PAGE_SIZE) { | 
|  | migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE; | 
|  | migrate->dst[migrate->npages] = 0; | 
|  | migrate->npages++; | 
|  | migrate->cpages++; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int migrate_vma_collect_pmd(pmd_t *pmdp, | 
|  | unsigned long start, | 
|  | unsigned long end, | 
|  | struct mm_walk *walk) | 
|  | { | 
|  | struct migrate_vma *migrate = walk->private; | 
|  | struct vm_area_struct *vma = walk->vma; | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | unsigned long addr = start, unmapped = 0; | 
|  | spinlock_t *ptl; | 
|  | pte_t *ptep; | 
|  |  | 
|  | again: | 
|  | if (pmd_none(*pmdp)) | 
|  | return migrate_vma_collect_hole(start, end, -1, walk); | 
|  |  | 
|  | if (pmd_trans_huge(*pmdp)) { | 
|  | struct page *page; | 
|  |  | 
|  | ptl = pmd_lock(mm, pmdp); | 
|  | if (unlikely(!pmd_trans_huge(*pmdp))) { | 
|  | spin_unlock(ptl); | 
|  | goto again; | 
|  | } | 
|  |  | 
|  | page = pmd_page(*pmdp); | 
|  | if (is_huge_zero_page(page)) { | 
|  | spin_unlock(ptl); | 
|  | split_huge_pmd(vma, pmdp, addr); | 
|  | if (pmd_trans_unstable(pmdp)) | 
|  | return migrate_vma_collect_skip(start, end, | 
|  | walk); | 
|  | } else { | 
|  | int ret; | 
|  |  | 
|  | get_page(page); | 
|  | spin_unlock(ptl); | 
|  | if (unlikely(!trylock_page(page))) | 
|  | return migrate_vma_collect_skip(start, end, | 
|  | walk); | 
|  | ret = split_huge_page(page); | 
|  | unlock_page(page); | 
|  | put_page(page); | 
|  | if (ret) | 
|  | return migrate_vma_collect_skip(start, end, | 
|  | walk); | 
|  | if (pmd_none(*pmdp)) | 
|  | return migrate_vma_collect_hole(start, end, -1, | 
|  | walk); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (unlikely(pmd_bad(*pmdp))) | 
|  | return migrate_vma_collect_skip(start, end, walk); | 
|  |  | 
|  | ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); | 
|  | arch_enter_lazy_mmu_mode(); | 
|  |  | 
|  | for (; addr < end; addr += PAGE_SIZE, ptep++) { | 
|  | unsigned long mpfn = 0, pfn; | 
|  | struct page *page; | 
|  | swp_entry_t entry; | 
|  | pte_t pte; | 
|  |  | 
|  | pte = *ptep; | 
|  |  | 
|  | if (pte_none(pte)) { | 
|  | if (vma_is_anonymous(vma)) { | 
|  | mpfn = MIGRATE_PFN_MIGRATE; | 
|  | migrate->cpages++; | 
|  | } | 
|  | goto next; | 
|  | } | 
|  |  | 
|  | if (!pte_present(pte)) { | 
|  | /* | 
|  | * Only care about unaddressable device page special | 
|  | * page table entry. Other special swap entries are not | 
|  | * migratable, and we ignore regular swapped page. | 
|  | */ | 
|  | entry = pte_to_swp_entry(pte); | 
|  | if (!is_device_private_entry(entry)) | 
|  | goto next; | 
|  |  | 
|  | page = pfn_swap_entry_to_page(entry); | 
|  | if (!(migrate->flags & | 
|  | MIGRATE_VMA_SELECT_DEVICE_PRIVATE) || | 
|  | page->pgmap->owner != migrate->pgmap_owner) | 
|  | goto next; | 
|  |  | 
|  | mpfn = migrate_pfn(page_to_pfn(page)) | | 
|  | MIGRATE_PFN_MIGRATE; | 
|  | if (is_writable_device_private_entry(entry)) | 
|  | mpfn |= MIGRATE_PFN_WRITE; | 
|  | } else { | 
|  | if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM)) | 
|  | goto next; | 
|  | pfn = pte_pfn(pte); | 
|  | if (is_zero_pfn(pfn)) { | 
|  | mpfn = MIGRATE_PFN_MIGRATE; | 
|  | migrate->cpages++; | 
|  | goto next; | 
|  | } | 
|  | page = vm_normal_page(migrate->vma, addr, pte); | 
|  | mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE; | 
|  | mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0; | 
|  | } | 
|  |  | 
|  | /* FIXME support THP */ | 
|  | if (!page || !page->mapping || PageTransCompound(page)) { | 
|  | mpfn = 0; | 
|  | goto next; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * By getting a reference on the page we pin it and that blocks | 
|  | * any kind of migration. Side effect is that it "freezes" the | 
|  | * pte. | 
|  | * | 
|  | * We drop this reference after isolating the page from the lru | 
|  | * for non device page (device page are not on the lru and thus | 
|  | * can't be dropped from it). | 
|  | */ | 
|  | get_page(page); | 
|  |  | 
|  | /* | 
|  | * Optimize for the common case where page is only mapped once | 
|  | * in one process. If we can lock the page, then we can safely | 
|  | * set up a special migration page table entry now. | 
|  | */ | 
|  | if (trylock_page(page)) { | 
|  | pte_t swp_pte; | 
|  |  | 
|  | migrate->cpages++; | 
|  | ptep_get_and_clear(mm, addr, ptep); | 
|  |  | 
|  | /* Setup special migration page table entry */ | 
|  | if (mpfn & MIGRATE_PFN_WRITE) | 
|  | entry = make_writable_migration_entry( | 
|  | page_to_pfn(page)); | 
|  | else | 
|  | entry = make_readable_migration_entry( | 
|  | page_to_pfn(page)); | 
|  | swp_pte = swp_entry_to_pte(entry); | 
|  | if (pte_present(pte)) { | 
|  | if (pte_soft_dirty(pte)) | 
|  | swp_pte = pte_swp_mksoft_dirty(swp_pte); | 
|  | if (pte_uffd_wp(pte)) | 
|  | swp_pte = pte_swp_mkuffd_wp(swp_pte); | 
|  | } else { | 
|  | if (pte_swp_soft_dirty(pte)) | 
|  | swp_pte = pte_swp_mksoft_dirty(swp_pte); | 
|  | if (pte_swp_uffd_wp(pte)) | 
|  | swp_pte = pte_swp_mkuffd_wp(swp_pte); | 
|  | } | 
|  | set_pte_at(mm, addr, ptep, swp_pte); | 
|  |  | 
|  | /* | 
|  | * This is like regular unmap: we remove the rmap and | 
|  | * drop page refcount. Page won't be freed, as we took | 
|  | * a reference just above. | 
|  | */ | 
|  | page_remove_rmap(page, false); | 
|  | put_page(page); | 
|  |  | 
|  | if (pte_present(pte)) | 
|  | unmapped++; | 
|  | } else { | 
|  | put_page(page); | 
|  | mpfn = 0; | 
|  | } | 
|  |  | 
|  | next: | 
|  | migrate->dst[migrate->npages] = 0; | 
|  | migrate->src[migrate->npages++] = mpfn; | 
|  | } | 
|  | arch_leave_lazy_mmu_mode(); | 
|  | pte_unmap_unlock(ptep - 1, ptl); | 
|  |  | 
|  | /* Only flush the TLB if we actually modified any entries */ | 
|  | if (unmapped) | 
|  | flush_tlb_range(walk->vma, start, end); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct mm_walk_ops migrate_vma_walk_ops = { | 
|  | .pmd_entry		= migrate_vma_collect_pmd, | 
|  | .pte_hole		= migrate_vma_collect_hole, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * migrate_vma_collect() - collect pages over a range of virtual addresses | 
|  | * @migrate: migrate struct containing all migration information | 
|  | * | 
|  | * This will walk the CPU page table. For each virtual address backed by a | 
|  | * valid page, it updates the src array and takes a reference on the page, in | 
|  | * order to pin the page until we lock it and unmap it. | 
|  | */ | 
|  | static void migrate_vma_collect(struct migrate_vma *migrate) | 
|  | { | 
|  | struct mmu_notifier_range range; | 
|  |  | 
|  | /* | 
|  | * Note that the pgmap_owner is passed to the mmu notifier callback so | 
|  | * that the registered device driver can skip invalidating device | 
|  | * private page mappings that won't be migrated. | 
|  | */ | 
|  | mmu_notifier_range_init_owner(&range, MMU_NOTIFY_MIGRATE, 0, | 
|  | migrate->vma, migrate->vma->vm_mm, migrate->start, migrate->end, | 
|  | migrate->pgmap_owner); | 
|  | mmu_notifier_invalidate_range_start(&range); | 
|  |  | 
|  | walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end, | 
|  | &migrate_vma_walk_ops, migrate); | 
|  |  | 
|  | mmu_notifier_invalidate_range_end(&range); | 
|  | migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * migrate_vma_check_page() - check if page is pinned or not | 
|  | * @page: struct page to check | 
|  | * | 
|  | * Pinned pages cannot be migrated. This is the same test as in | 
|  | * folio_migrate_mapping(), except that here we allow migration of a | 
|  | * ZONE_DEVICE page. | 
|  | */ | 
|  | static bool migrate_vma_check_page(struct page *page) | 
|  | { | 
|  | /* | 
|  | * One extra ref because caller holds an extra reference, either from | 
|  | * isolate_lru_page() for a regular page, or migrate_vma_collect() for | 
|  | * a device page. | 
|  | */ | 
|  | int extra = 1; | 
|  |  | 
|  | /* | 
|  | * FIXME support THP (transparent huge page), it is bit more complex to | 
|  | * check them than regular pages, because they can be mapped with a pmd | 
|  | * or with a pte (split pte mapping). | 
|  | */ | 
|  | if (PageCompound(page)) | 
|  | return false; | 
|  |  | 
|  | /* Page from ZONE_DEVICE have one extra reference */ | 
|  | if (is_zone_device_page(page)) { | 
|  | /* | 
|  | * Private page can never be pin as they have no valid pte and | 
|  | * GUP will fail for those. Yet if there is a pending migration | 
|  | * a thread might try to wait on the pte migration entry and | 
|  | * will bump the page reference count. Sadly there is no way to | 
|  | * differentiate a regular pin from migration wait. Hence to | 
|  | * avoid 2 racing thread trying to migrate back to CPU to enter | 
|  | * infinite loop (one stopping migration because the other is | 
|  | * waiting on pte migration entry). We always return true here. | 
|  | * | 
|  | * FIXME proper solution is to rework migration_entry_wait() so | 
|  | * it does not need to take a reference on page. | 
|  | */ | 
|  | return is_device_private_page(page); | 
|  | } | 
|  |  | 
|  | /* For file back page */ | 
|  | if (page_mapping(page)) | 
|  | extra += 1 + page_has_private(page); | 
|  |  | 
|  | if ((page_count(page) - extra) > page_mapcount(page)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * migrate_vma_unmap() - replace page mapping with special migration pte entry | 
|  | * @migrate: migrate struct containing all migration information | 
|  | * | 
|  | * Isolate pages from the LRU and replace mappings (CPU page table pte) with a | 
|  | * special migration pte entry and check if it has been pinned. Pinned pages are | 
|  | * restored because we cannot migrate them. | 
|  | * | 
|  | * This is the last step before we call the device driver callback to allocate | 
|  | * destination memory and copy contents of original page over to new page. | 
|  | */ | 
|  | static void migrate_vma_unmap(struct migrate_vma *migrate) | 
|  | { | 
|  | const unsigned long npages = migrate->npages; | 
|  | const unsigned long start = migrate->start; | 
|  | unsigned long addr, i, restore = 0; | 
|  | bool allow_drain = true; | 
|  |  | 
|  | lru_add_drain(); | 
|  |  | 
|  | for (i = 0; i < npages; i++) { | 
|  | struct page *page = migrate_pfn_to_page(migrate->src[i]); | 
|  |  | 
|  | if (!page) | 
|  | continue; | 
|  |  | 
|  | /* ZONE_DEVICE pages are not on LRU */ | 
|  | if (!is_zone_device_page(page)) { | 
|  | if (!PageLRU(page) && allow_drain) { | 
|  | /* Drain CPU's pagevec */ | 
|  | lru_add_drain_all(); | 
|  | allow_drain = false; | 
|  | } | 
|  |  | 
|  | if (isolate_lru_page(page)) { | 
|  | migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; | 
|  | migrate->cpages--; | 
|  | restore++; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* Drop the reference we took in collect */ | 
|  | put_page(page); | 
|  | } | 
|  |  | 
|  | if (page_mapped(page)) | 
|  | try_to_migrate(page, 0); | 
|  |  | 
|  | if (page_mapped(page) || !migrate_vma_check_page(page)) { | 
|  | if (!is_zone_device_page(page)) { | 
|  | get_page(page); | 
|  | putback_lru_page(page); | 
|  | } | 
|  |  | 
|  | migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; | 
|  | migrate->cpages--; | 
|  | restore++; | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) { | 
|  | struct page *page = migrate_pfn_to_page(migrate->src[i]); | 
|  |  | 
|  | if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE)) | 
|  | continue; | 
|  |  | 
|  | remove_migration_ptes(page, page, false); | 
|  |  | 
|  | migrate->src[i] = 0; | 
|  | unlock_page(page); | 
|  | put_page(page); | 
|  | restore--; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * migrate_vma_setup() - prepare to migrate a range of memory | 
|  | * @args: contains the vma, start, and pfns arrays for the migration | 
|  | * | 
|  | * Returns: negative errno on failures, 0 when 0 or more pages were migrated | 
|  | * without an error. | 
|  | * | 
|  | * Prepare to migrate a range of memory virtual address range by collecting all | 
|  | * the pages backing each virtual address in the range, saving them inside the | 
|  | * src array.  Then lock those pages and unmap them. Once the pages are locked | 
|  | * and unmapped, check whether each page is pinned or not.  Pages that aren't | 
|  | * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the | 
|  | * corresponding src array entry.  Then restores any pages that are pinned, by | 
|  | * remapping and unlocking those pages. | 
|  | * | 
|  | * The caller should then allocate destination memory and copy source memory to | 
|  | * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE | 
|  | * flag set).  Once these are allocated and copied, the caller must update each | 
|  | * corresponding entry in the dst array with the pfn value of the destination | 
|  | * page and with MIGRATE_PFN_VALID. Destination pages must be locked via | 
|  | * lock_page(). | 
|  | * | 
|  | * Note that the caller does not have to migrate all the pages that are marked | 
|  | * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from | 
|  | * device memory to system memory.  If the caller cannot migrate a device page | 
|  | * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe | 
|  | * consequences for the userspace process, so it must be avoided if at all | 
|  | * possible. | 
|  | * | 
|  | * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we | 
|  | * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus | 
|  | * allowing the caller to allocate device memory for those unbacked virtual | 
|  | * addresses.  For this the caller simply has to allocate device memory and | 
|  | * properly set the destination entry like for regular migration.  Note that | 
|  | * this can still fail, and thus inside the device driver you must check if the | 
|  | * migration was successful for those entries after calling migrate_vma_pages(), | 
|  | * just like for regular migration. | 
|  | * | 
|  | * After that, the callers must call migrate_vma_pages() to go over each entry | 
|  | * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag | 
|  | * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set, | 
|  | * then migrate_vma_pages() to migrate struct page information from the source | 
|  | * struct page to the destination struct page.  If it fails to migrate the | 
|  | * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the | 
|  | * src array. | 
|  | * | 
|  | * At this point all successfully migrated pages have an entry in the src | 
|  | * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst | 
|  | * array entry with MIGRATE_PFN_VALID flag set. | 
|  | * | 
|  | * Once migrate_vma_pages() returns the caller may inspect which pages were | 
|  | * successfully migrated, and which were not.  Successfully migrated pages will | 
|  | * have the MIGRATE_PFN_MIGRATE flag set for their src array entry. | 
|  | * | 
|  | * It is safe to update device page table after migrate_vma_pages() because | 
|  | * both destination and source page are still locked, and the mmap_lock is held | 
|  | * in read mode (hence no one can unmap the range being migrated). | 
|  | * | 
|  | * Once the caller is done cleaning up things and updating its page table (if it | 
|  | * chose to do so, this is not an obligation) it finally calls | 
|  | * migrate_vma_finalize() to update the CPU page table to point to new pages | 
|  | * for successfully migrated pages or otherwise restore the CPU page table to | 
|  | * point to the original source pages. | 
|  | */ | 
|  | int migrate_vma_setup(struct migrate_vma *args) | 
|  | { | 
|  | long nr_pages = (args->end - args->start) >> PAGE_SHIFT; | 
|  |  | 
|  | args->start &= PAGE_MASK; | 
|  | args->end &= PAGE_MASK; | 
|  | if (!args->vma || is_vm_hugetlb_page(args->vma) || | 
|  | (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma)) | 
|  | return -EINVAL; | 
|  | if (nr_pages <= 0) | 
|  | return -EINVAL; | 
|  | if (args->start < args->vma->vm_start || | 
|  | args->start >= args->vma->vm_end) | 
|  | return -EINVAL; | 
|  | if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end) | 
|  | return -EINVAL; | 
|  | if (!args->src || !args->dst) | 
|  | return -EINVAL; | 
|  |  | 
|  | memset(args->src, 0, sizeof(*args->src) * nr_pages); | 
|  | args->cpages = 0; | 
|  | args->npages = 0; | 
|  |  | 
|  | migrate_vma_collect(args); | 
|  |  | 
|  | if (args->cpages) | 
|  | migrate_vma_unmap(args); | 
|  |  | 
|  | /* | 
|  | * At this point pages are locked and unmapped, and thus they have | 
|  | * stable content and can safely be copied to destination memory that | 
|  | * is allocated by the drivers. | 
|  | */ | 
|  | return 0; | 
|  |  | 
|  | } | 
|  | EXPORT_SYMBOL(migrate_vma_setup); | 
|  |  | 
|  | /* | 
|  | * This code closely matches the code in: | 
|  | *   __handle_mm_fault() | 
|  | *     handle_pte_fault() | 
|  | *       do_anonymous_page() | 
|  | * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE | 
|  | * private page. | 
|  | */ | 
|  | static void migrate_vma_insert_page(struct migrate_vma *migrate, | 
|  | unsigned long addr, | 
|  | struct page *page, | 
|  | unsigned long *src) | 
|  | { | 
|  | struct vm_area_struct *vma = migrate->vma; | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | bool flush = false; | 
|  | spinlock_t *ptl; | 
|  | pte_t entry; | 
|  | pgd_t *pgdp; | 
|  | p4d_t *p4dp; | 
|  | pud_t *pudp; | 
|  | pmd_t *pmdp; | 
|  | pte_t *ptep; | 
|  |  | 
|  | /* Only allow populating anonymous memory */ | 
|  | if (!vma_is_anonymous(vma)) | 
|  | goto abort; | 
|  |  | 
|  | pgdp = pgd_offset(mm, addr); | 
|  | p4dp = p4d_alloc(mm, pgdp, addr); | 
|  | if (!p4dp) | 
|  | goto abort; | 
|  | pudp = pud_alloc(mm, p4dp, addr); | 
|  | if (!pudp) | 
|  | goto abort; | 
|  | pmdp = pmd_alloc(mm, pudp, addr); | 
|  | if (!pmdp) | 
|  | goto abort; | 
|  |  | 
|  | if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp)) | 
|  | goto abort; | 
|  |  | 
|  | /* | 
|  | * Use pte_alloc() instead of pte_alloc_map().  We can't run | 
|  | * pte_offset_map() on pmds where a huge pmd might be created | 
|  | * from a different thread. | 
|  | * | 
|  | * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when | 
|  | * parallel threads are excluded by other means. | 
|  | * | 
|  | * Here we only have mmap_read_lock(mm). | 
|  | */ | 
|  | if (pte_alloc(mm, pmdp)) | 
|  | goto abort; | 
|  |  | 
|  | /* See the comment in pte_alloc_one_map() */ | 
|  | if (unlikely(pmd_trans_unstable(pmdp))) | 
|  | goto abort; | 
|  |  | 
|  | if (unlikely(anon_vma_prepare(vma))) | 
|  | goto abort; | 
|  | if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL)) | 
|  | goto abort; | 
|  |  | 
|  | /* | 
|  | * The memory barrier inside __SetPageUptodate makes sure that | 
|  | * preceding stores to the page contents become visible before | 
|  | * the set_pte_at() write. | 
|  | */ | 
|  | __SetPageUptodate(page); | 
|  |  | 
|  | if (is_zone_device_page(page)) { | 
|  | if (is_device_private_page(page)) { | 
|  | swp_entry_t swp_entry; | 
|  |  | 
|  | if (vma->vm_flags & VM_WRITE) | 
|  | swp_entry = make_writable_device_private_entry( | 
|  | page_to_pfn(page)); | 
|  | else | 
|  | swp_entry = make_readable_device_private_entry( | 
|  | page_to_pfn(page)); | 
|  | entry = swp_entry_to_pte(swp_entry); | 
|  | } else { | 
|  | /* | 
|  | * For now we only support migrating to un-addressable | 
|  | * device memory. | 
|  | */ | 
|  | pr_warn_once("Unsupported ZONE_DEVICE page type.\n"); | 
|  | goto abort; | 
|  | } | 
|  | } else { | 
|  | entry = mk_pte(page, vma->vm_page_prot); | 
|  | if (vma->vm_flags & VM_WRITE) | 
|  | entry = pte_mkwrite(pte_mkdirty(entry)); | 
|  | } | 
|  |  | 
|  | ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); | 
|  |  | 
|  | if (check_stable_address_space(mm)) | 
|  | goto unlock_abort; | 
|  |  | 
|  | if (pte_present(*ptep)) { | 
|  | unsigned long pfn = pte_pfn(*ptep); | 
|  |  | 
|  | if (!is_zero_pfn(pfn)) | 
|  | goto unlock_abort; | 
|  | flush = true; | 
|  | } else if (!pte_none(*ptep)) | 
|  | goto unlock_abort; | 
|  |  | 
|  | /* | 
|  | * Check for userfaultfd but do not deliver the fault. Instead, | 
|  | * just back off. | 
|  | */ | 
|  | if (userfaultfd_missing(vma)) | 
|  | goto unlock_abort; | 
|  |  | 
|  | inc_mm_counter(mm, MM_ANONPAGES); | 
|  | page_add_new_anon_rmap(page, vma, addr, false); | 
|  | if (!is_zone_device_page(page)) | 
|  | lru_cache_add_inactive_or_unevictable(page, vma); | 
|  | get_page(page); | 
|  |  | 
|  | if (flush) { | 
|  | flush_cache_page(vma, addr, pte_pfn(*ptep)); | 
|  | ptep_clear_flush_notify(vma, addr, ptep); | 
|  | set_pte_at_notify(mm, addr, ptep, entry); | 
|  | update_mmu_cache(vma, addr, ptep); | 
|  | } else { | 
|  | /* No need to invalidate - it was non-present before */ | 
|  | set_pte_at(mm, addr, ptep, entry); | 
|  | update_mmu_cache(vma, addr, ptep); | 
|  | } | 
|  |  | 
|  | pte_unmap_unlock(ptep, ptl); | 
|  | *src = MIGRATE_PFN_MIGRATE; | 
|  | return; | 
|  |  | 
|  | unlock_abort: | 
|  | pte_unmap_unlock(ptep, ptl); | 
|  | abort: | 
|  | *src &= ~MIGRATE_PFN_MIGRATE; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * migrate_vma_pages() - migrate meta-data from src page to dst page | 
|  | * @migrate: migrate struct containing all migration information | 
|  | * | 
|  | * This migrates struct page meta-data from source struct page to destination | 
|  | * struct page. This effectively finishes the migration from source page to the | 
|  | * destination page. | 
|  | */ | 
|  | void migrate_vma_pages(struct migrate_vma *migrate) | 
|  | { | 
|  | const unsigned long npages = migrate->npages; | 
|  | const unsigned long start = migrate->start; | 
|  | struct mmu_notifier_range range; | 
|  | unsigned long addr, i; | 
|  | bool notified = false; | 
|  |  | 
|  | for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) { | 
|  | struct page *newpage = migrate_pfn_to_page(migrate->dst[i]); | 
|  | struct page *page = migrate_pfn_to_page(migrate->src[i]); | 
|  | struct address_space *mapping; | 
|  | int r; | 
|  |  | 
|  | if (!newpage) { | 
|  | migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (!page) { | 
|  | if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) | 
|  | continue; | 
|  | if (!notified) { | 
|  | notified = true; | 
|  |  | 
|  | mmu_notifier_range_init_owner(&range, | 
|  | MMU_NOTIFY_MIGRATE, 0, migrate->vma, | 
|  | migrate->vma->vm_mm, addr, migrate->end, | 
|  | migrate->pgmap_owner); | 
|  | mmu_notifier_invalidate_range_start(&range); | 
|  | } | 
|  | migrate_vma_insert_page(migrate, addr, newpage, | 
|  | &migrate->src[i]); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | mapping = page_mapping(page); | 
|  |  | 
|  | if (is_zone_device_page(newpage)) { | 
|  | if (is_device_private_page(newpage)) { | 
|  | /* | 
|  | * For now only support private anonymous when | 
|  | * migrating to un-addressable device memory. | 
|  | */ | 
|  | if (mapping) { | 
|  | migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; | 
|  | continue; | 
|  | } | 
|  | } else { | 
|  | /* | 
|  | * Other types of ZONE_DEVICE page are not | 
|  | * supported. | 
|  | */ | 
|  | migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY); | 
|  | if (r != MIGRATEPAGE_SUCCESS) | 
|  | migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * No need to double call mmu_notifier->invalidate_range() callback as | 
|  | * the above ptep_clear_flush_notify() inside migrate_vma_insert_page() | 
|  | * did already call it. | 
|  | */ | 
|  | if (notified) | 
|  | mmu_notifier_invalidate_range_only_end(&range); | 
|  | } | 
|  | EXPORT_SYMBOL(migrate_vma_pages); | 
|  |  | 
|  | /** | 
|  | * migrate_vma_finalize() - restore CPU page table entry | 
|  | * @migrate: migrate struct containing all migration information | 
|  | * | 
|  | * This replaces the special migration pte entry with either a mapping to the | 
|  | * new page if migration was successful for that page, or to the original page | 
|  | * otherwise. | 
|  | * | 
|  | * This also unlocks the pages and puts them back on the lru, or drops the extra | 
|  | * refcount, for device pages. | 
|  | */ | 
|  | void migrate_vma_finalize(struct migrate_vma *migrate) | 
|  | { | 
|  | const unsigned long npages = migrate->npages; | 
|  | unsigned long i; | 
|  |  | 
|  | for (i = 0; i < npages; i++) { | 
|  | struct page *newpage = migrate_pfn_to_page(migrate->dst[i]); | 
|  | struct page *page = migrate_pfn_to_page(migrate->src[i]); | 
|  |  | 
|  | if (!page) { | 
|  | if (newpage) { | 
|  | unlock_page(newpage); | 
|  | put_page(newpage); | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) { | 
|  | if (newpage) { | 
|  | unlock_page(newpage); | 
|  | put_page(newpage); | 
|  | } | 
|  | newpage = page; | 
|  | } | 
|  |  | 
|  | remove_migration_ptes(page, newpage, false); | 
|  | unlock_page(page); | 
|  |  | 
|  | if (is_zone_device_page(page)) | 
|  | put_page(page); | 
|  | else | 
|  | putback_lru_page(page); | 
|  |  | 
|  | if (newpage != page) { | 
|  | unlock_page(newpage); | 
|  | if (is_zone_device_page(newpage)) | 
|  | put_page(newpage); | 
|  | else | 
|  | putback_lru_page(newpage); | 
|  | } | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(migrate_vma_finalize); | 
|  | #endif /* CONFIG_DEVICE_PRIVATE */ | 
|  |  | 
|  | #if defined(CONFIG_HOTPLUG_CPU) | 
|  | /* Disable reclaim-based migration. */ | 
|  | static void __disable_all_migrate_targets(void) | 
|  | { | 
|  | int node; | 
|  |  | 
|  | for_each_online_node(node) | 
|  | node_demotion[node] = NUMA_NO_NODE; | 
|  | } | 
|  |  | 
|  | static void disable_all_migrate_targets(void) | 
|  | { | 
|  | __disable_all_migrate_targets(); | 
|  |  | 
|  | /* | 
|  | * Ensure that the "disable" is visible across the system. | 
|  | * Readers will see either a combination of before+disable | 
|  | * state or disable+after.  They will never see before and | 
|  | * after state together. | 
|  | * | 
|  | * The before+after state together might have cycles and | 
|  | * could cause readers to do things like loop until this | 
|  | * function finishes.  This ensures they can only see a | 
|  | * single "bad" read and would, for instance, only loop | 
|  | * once. | 
|  | */ | 
|  | synchronize_rcu(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find an automatic demotion target for 'node'. | 
|  | * Failing here is OK.  It might just indicate | 
|  | * being at the end of a chain. | 
|  | */ | 
|  | static int establish_migrate_target(int node, nodemask_t *used) | 
|  | { | 
|  | int migration_target; | 
|  |  | 
|  | /* | 
|  | * Can not set a migration target on a | 
|  | * node with it already set. | 
|  | * | 
|  | * No need for READ_ONCE() here since this | 
|  | * in the write path for node_demotion[]. | 
|  | * This should be the only thread writing. | 
|  | */ | 
|  | if (node_demotion[node] != NUMA_NO_NODE) | 
|  | return NUMA_NO_NODE; | 
|  |  | 
|  | migration_target = find_next_best_node(node, used); | 
|  | if (migration_target == NUMA_NO_NODE) | 
|  | return NUMA_NO_NODE; | 
|  |  | 
|  | node_demotion[node] = migration_target; | 
|  |  | 
|  | return migration_target; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When memory fills up on a node, memory contents can be | 
|  | * automatically migrated to another node instead of | 
|  | * discarded at reclaim. | 
|  | * | 
|  | * Establish a "migration path" which will start at nodes | 
|  | * with CPUs and will follow the priorities used to build the | 
|  | * page allocator zonelists. | 
|  | * | 
|  | * The difference here is that cycles must be avoided.  If | 
|  | * node0 migrates to node1, then neither node1, nor anything | 
|  | * node1 migrates to can migrate to node0. | 
|  | * | 
|  | * This function can run simultaneously with readers of | 
|  | * node_demotion[].  However, it can not run simultaneously | 
|  | * with itself.  Exclusion is provided by memory hotplug events | 
|  | * being single-threaded. | 
|  | */ | 
|  | static void __set_migration_target_nodes(void) | 
|  | { | 
|  | nodemask_t next_pass	= NODE_MASK_NONE; | 
|  | nodemask_t this_pass	= NODE_MASK_NONE; | 
|  | nodemask_t used_targets = NODE_MASK_NONE; | 
|  | int node; | 
|  |  | 
|  | /* | 
|  | * Avoid any oddities like cycles that could occur | 
|  | * from changes in the topology.  This will leave | 
|  | * a momentary gap when migration is disabled. | 
|  | */ | 
|  | disable_all_migrate_targets(); | 
|  |  | 
|  | /* | 
|  | * Allocations go close to CPUs, first.  Assume that | 
|  | * the migration path starts at the nodes with CPUs. | 
|  | */ | 
|  | next_pass = node_states[N_CPU]; | 
|  | again: | 
|  | this_pass = next_pass; | 
|  | next_pass = NODE_MASK_NONE; | 
|  | /* | 
|  | * To avoid cycles in the migration "graph", ensure | 
|  | * that migration sources are not future targets by | 
|  | * setting them in 'used_targets'.  Do this only | 
|  | * once per pass so that multiple source nodes can | 
|  | * share a target node. | 
|  | * | 
|  | * 'used_targets' will become unavailable in future | 
|  | * passes.  This limits some opportunities for | 
|  | * multiple source nodes to share a destination. | 
|  | */ | 
|  | nodes_or(used_targets, used_targets, this_pass); | 
|  | for_each_node_mask(node, this_pass) { | 
|  | int target_node = establish_migrate_target(node, &used_targets); | 
|  |  | 
|  | if (target_node == NUMA_NO_NODE) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * Visit targets from this pass in the next pass. | 
|  | * Eventually, every node will have been part of | 
|  | * a pass, and will become set in 'used_targets'. | 
|  | */ | 
|  | node_set(target_node, next_pass); | 
|  | } | 
|  | /* | 
|  | * 'next_pass' contains nodes which became migration | 
|  | * targets in this pass.  Make additional passes until | 
|  | * no more migrations targets are available. | 
|  | */ | 
|  | if (!nodes_empty(next_pass)) | 
|  | goto again; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For callers that do not hold get_online_mems() already. | 
|  | */ | 
|  | static void set_migration_target_nodes(void) | 
|  | { | 
|  | get_online_mems(); | 
|  | __set_migration_target_nodes(); | 
|  | put_online_mems(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This leaves migrate-on-reclaim transiently disabled between | 
|  | * the MEM_GOING_OFFLINE and MEM_OFFLINE events.  This runs | 
|  | * whether reclaim-based migration is enabled or not, which | 
|  | * ensures that the user can turn reclaim-based migration at | 
|  | * any time without needing to recalculate migration targets. | 
|  | * | 
|  | * These callbacks already hold get_online_mems().  That is why | 
|  | * __set_migration_target_nodes() can be used as opposed to | 
|  | * set_migration_target_nodes(). | 
|  | */ | 
|  | static int __meminit migrate_on_reclaim_callback(struct notifier_block *self, | 
|  | unsigned long action, void *_arg) | 
|  | { | 
|  | struct memory_notify *arg = _arg; | 
|  |  | 
|  | /* | 
|  | * Only update the node migration order when a node is | 
|  | * changing status, like online->offline.  This avoids | 
|  | * the overhead of synchronize_rcu() in most cases. | 
|  | */ | 
|  | if (arg->status_change_nid < 0) | 
|  | return notifier_from_errno(0); | 
|  |  | 
|  | switch (action) { | 
|  | case MEM_GOING_OFFLINE: | 
|  | /* | 
|  | * Make sure there are not transient states where | 
|  | * an offline node is a migration target.  This | 
|  | * will leave migration disabled until the offline | 
|  | * completes and the MEM_OFFLINE case below runs. | 
|  | */ | 
|  | disable_all_migrate_targets(); | 
|  | break; | 
|  | case MEM_OFFLINE: | 
|  | case MEM_ONLINE: | 
|  | /* | 
|  | * Recalculate the target nodes once the node | 
|  | * reaches its final state (online or offline). | 
|  | */ | 
|  | __set_migration_target_nodes(); | 
|  | break; | 
|  | case MEM_CANCEL_OFFLINE: | 
|  | /* | 
|  | * MEM_GOING_OFFLINE disabled all the migration | 
|  | * targets.  Reenable them. | 
|  | */ | 
|  | __set_migration_target_nodes(); | 
|  | break; | 
|  | case MEM_GOING_ONLINE: | 
|  | case MEM_CANCEL_ONLINE: | 
|  | break; | 
|  | } | 
|  |  | 
|  | return notifier_from_errno(0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * React to hotplug events that might affect the migration targets | 
|  | * like events that online or offline NUMA nodes. | 
|  | * | 
|  | * The ordering is also currently dependent on which nodes have | 
|  | * CPUs.  That means we need CPU on/offline notification too. | 
|  | */ | 
|  | static int migration_online_cpu(unsigned int cpu) | 
|  | { | 
|  | set_migration_target_nodes(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int migration_offline_cpu(unsigned int cpu) | 
|  | { | 
|  | set_migration_target_nodes(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __init migrate_on_reclaim_init(void) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = cpuhp_setup_state_nocalls(CPUHP_MM_DEMOTION_DEAD, "mm/demotion:offline", | 
|  | NULL, migration_offline_cpu); | 
|  | /* | 
|  | * In the unlikely case that this fails, the automatic | 
|  | * migration targets may become suboptimal for nodes | 
|  | * where N_CPU changes.  With such a small impact in a | 
|  | * rare case, do not bother trying to do anything special. | 
|  | */ | 
|  | WARN_ON(ret < 0); | 
|  | ret = cpuhp_setup_state(CPUHP_AP_MM_DEMOTION_ONLINE, "mm/demotion:online", | 
|  | migration_online_cpu, NULL); | 
|  | WARN_ON(ret < 0); | 
|  |  | 
|  | hotplug_memory_notifier(migrate_on_reclaim_callback, 100); | 
|  | return 0; | 
|  | } | 
|  | late_initcall(migrate_on_reclaim_init); | 
|  | #endif /* CONFIG_HOTPLUG_CPU */ | 
|  |  | 
|  | bool numa_demotion_enabled = false; | 
|  |  | 
|  | #ifdef CONFIG_SYSFS | 
|  | static ssize_t numa_demotion_enabled_show(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, char *buf) | 
|  | { | 
|  | return sysfs_emit(buf, "%s\n", | 
|  | numa_demotion_enabled ? "true" : "false"); | 
|  | } | 
|  |  | 
|  | static ssize_t numa_demotion_enabled_store(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, | 
|  | const char *buf, size_t count) | 
|  | { | 
|  | if (!strncmp(buf, "true", 4) || !strncmp(buf, "1", 1)) | 
|  | numa_demotion_enabled = true; | 
|  | else if (!strncmp(buf, "false", 5) || !strncmp(buf, "0", 1)) | 
|  | numa_demotion_enabled = false; | 
|  | else | 
|  | return -EINVAL; | 
|  |  | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static struct kobj_attribute numa_demotion_enabled_attr = | 
|  | __ATTR(demotion_enabled, 0644, numa_demotion_enabled_show, | 
|  | numa_demotion_enabled_store); | 
|  |  | 
|  | static struct attribute *numa_attrs[] = { | 
|  | &numa_demotion_enabled_attr.attr, | 
|  | NULL, | 
|  | }; | 
|  |  | 
|  | static const struct attribute_group numa_attr_group = { | 
|  | .attrs = numa_attrs, | 
|  | }; | 
|  |  | 
|  | static int __init numa_init_sysfs(void) | 
|  | { | 
|  | int err; | 
|  | struct kobject *numa_kobj; | 
|  |  | 
|  | numa_kobj = kobject_create_and_add("numa", mm_kobj); | 
|  | if (!numa_kobj) { | 
|  | pr_err("failed to create numa kobject\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  | err = sysfs_create_group(numa_kobj, &numa_attr_group); | 
|  | if (err) { | 
|  | pr_err("failed to register numa group\n"); | 
|  | goto delete_obj; | 
|  | } | 
|  | return 0; | 
|  |  | 
|  | delete_obj: | 
|  | kobject_put(numa_kobj); | 
|  | return err; | 
|  | } | 
|  | subsys_initcall(numa_init_sysfs); | 
|  | #endif |