|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | #include <linux/anon_inodes.h> | 
|  | #include <linux/exportfs.h> | 
|  | #include <linux/file.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/cgroup.h> | 
|  | #include <linux/magic.h> | 
|  | #include <linux/mount.h> | 
|  | #include <linux/pid.h> | 
|  | #include <linux/pidfs.h> | 
|  | #include <linux/pid_namespace.h> | 
|  | #include <linux/poll.h> | 
|  | #include <linux/proc_fs.h> | 
|  | #include <linux/proc_ns.h> | 
|  | #include <linux/pseudo_fs.h> | 
|  | #include <linux/ptrace.h> | 
|  | #include <linux/seq_file.h> | 
|  | #include <uapi/linux/pidfd.h> | 
|  | #include <linux/ipc_namespace.h> | 
|  | #include <linux/time_namespace.h> | 
|  | #include <linux/utsname.h> | 
|  | #include <net/net_namespace.h> | 
|  | #include <linux/coredump.h> | 
|  | #include <linux/xattr.h> | 
|  |  | 
|  | #include "internal.h" | 
|  | #include "mount.h" | 
|  |  | 
|  | #define PIDFS_PID_DEAD ERR_PTR(-ESRCH) | 
|  |  | 
|  | static struct kmem_cache *pidfs_attr_cachep __ro_after_init; | 
|  | static struct kmem_cache *pidfs_xattr_cachep __ro_after_init; | 
|  |  | 
|  | static struct path pidfs_root_path = {}; | 
|  |  | 
|  | void pidfs_get_root(struct path *path) | 
|  | { | 
|  | *path = pidfs_root_path; | 
|  | path_get(path); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Stashes information that userspace needs to access even after the | 
|  | * process has been reaped. | 
|  | */ | 
|  | struct pidfs_exit_info { | 
|  | __u64 cgroupid; | 
|  | __s32 exit_code; | 
|  | __u32 coredump_mask; | 
|  | }; | 
|  |  | 
|  | struct pidfs_attr { | 
|  | struct simple_xattrs *xattrs; | 
|  | struct pidfs_exit_info __pei; | 
|  | struct pidfs_exit_info *exit_info; | 
|  | }; | 
|  |  | 
|  | static struct rb_root pidfs_ino_tree = RB_ROOT; | 
|  |  | 
|  | #if BITS_PER_LONG == 32 | 
|  | static inline unsigned long pidfs_ino(u64 ino) | 
|  | { | 
|  | return lower_32_bits(ino); | 
|  | } | 
|  |  | 
|  | /* On 32 bit the generation number are the upper 32 bits. */ | 
|  | static inline u32 pidfs_gen(u64 ino) | 
|  | { | 
|  | return upper_32_bits(ino); | 
|  | } | 
|  |  | 
|  | #else | 
|  |  | 
|  | /* On 64 bit simply return ino. */ | 
|  | static inline unsigned long pidfs_ino(u64 ino) | 
|  | { | 
|  | return ino; | 
|  | } | 
|  |  | 
|  | /* On 64 bit the generation number is 0. */ | 
|  | static inline u32 pidfs_gen(u64 ino) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static int pidfs_ino_cmp(struct rb_node *a, const struct rb_node *b) | 
|  | { | 
|  | struct pid *pid_a = rb_entry(a, struct pid, pidfs_node); | 
|  | struct pid *pid_b = rb_entry(b, struct pid, pidfs_node); | 
|  | u64 pid_ino_a = pid_a->ino; | 
|  | u64 pid_ino_b = pid_b->ino; | 
|  |  | 
|  | if (pid_ino_a < pid_ino_b) | 
|  | return -1; | 
|  | if (pid_ino_a > pid_ino_b) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void pidfs_add_pid(struct pid *pid) | 
|  | { | 
|  | static u64 pidfs_ino_nr = 2; | 
|  |  | 
|  | /* | 
|  | * On 64 bit nothing special happens. The 64bit number assigned | 
|  | * to struct pid is the inode number. | 
|  | * | 
|  | * On 32 bit the 64 bit number assigned to struct pid is split | 
|  | * into two 32 bit numbers. The lower 32 bits are used as the | 
|  | * inode number and the upper 32 bits are used as the inode | 
|  | * generation number. | 
|  | * | 
|  | * On 32 bit pidfs_ino() will return the lower 32 bit. When | 
|  | * pidfs_ino() returns zero a wrap around happened. When a | 
|  | * wraparound happens the 64 bit number will be incremented by 2 | 
|  | * so inode numbering starts at 2 again. | 
|  | * | 
|  | * On 64 bit comparing two pidfds is as simple as comparing | 
|  | * inode numbers. | 
|  | * | 
|  | * When a wraparound happens on 32 bit multiple pidfds with the | 
|  | * same inode number are likely to exist (This isn't a problem | 
|  | * since before pidfs pidfds used the anonymous inode meaning | 
|  | * all pidfds had the same inode number.). Userspace can | 
|  | * reconstruct the 64 bit identifier by retrieving both the | 
|  | * inode number and the inode generation number to compare or | 
|  | * use file handles. | 
|  | */ | 
|  | if (pidfs_ino(pidfs_ino_nr) == 0) | 
|  | pidfs_ino_nr += 2; | 
|  |  | 
|  | pid->ino = pidfs_ino_nr; | 
|  | pid->stashed = NULL; | 
|  | pid->attr = NULL; | 
|  | pidfs_ino_nr++; | 
|  |  | 
|  | write_seqcount_begin(&pidmap_lock_seq); | 
|  | rb_find_add_rcu(&pid->pidfs_node, &pidfs_ino_tree, pidfs_ino_cmp); | 
|  | write_seqcount_end(&pidmap_lock_seq); | 
|  | } | 
|  |  | 
|  | void pidfs_remove_pid(struct pid *pid) | 
|  | { | 
|  | write_seqcount_begin(&pidmap_lock_seq); | 
|  | rb_erase(&pid->pidfs_node, &pidfs_ino_tree); | 
|  | write_seqcount_end(&pidmap_lock_seq); | 
|  | } | 
|  |  | 
|  | void pidfs_free_pid(struct pid *pid) | 
|  | { | 
|  | struct pidfs_attr *attr __free(kfree) = no_free_ptr(pid->attr); | 
|  | struct simple_xattrs *xattrs __free(kfree) = NULL; | 
|  |  | 
|  | /* | 
|  | * Any dentry must've been wiped from the pid by now. | 
|  | * Otherwise there's a reference count bug. | 
|  | */ | 
|  | VFS_WARN_ON_ONCE(pid->stashed); | 
|  |  | 
|  | /* | 
|  | * This if an error occurred during e.g., task creation that | 
|  | * causes us to never go through the exit path. | 
|  | */ | 
|  | if (unlikely(!attr)) | 
|  | return; | 
|  |  | 
|  | /* This never had a pidfd created. */ | 
|  | if (IS_ERR(attr)) | 
|  | return; | 
|  |  | 
|  | xattrs = no_free_ptr(attr->xattrs); | 
|  | if (xattrs) | 
|  | simple_xattrs_free(xattrs, NULL); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PROC_FS | 
|  | /** | 
|  | * pidfd_show_fdinfo - print information about a pidfd | 
|  | * @m: proc fdinfo file | 
|  | * @f: file referencing a pidfd | 
|  | * | 
|  | * Pid: | 
|  | * This function will print the pid that a given pidfd refers to in the | 
|  | * pid namespace of the procfs instance. | 
|  | * If the pid namespace of the process is not a descendant of the pid | 
|  | * namespace of the procfs instance 0 will be shown as its pid. This is | 
|  | * similar to calling getppid() on a process whose parent is outside of | 
|  | * its pid namespace. | 
|  | * | 
|  | * NSpid: | 
|  | * If pid namespaces are supported then this function will also print | 
|  | * the pid of a given pidfd refers to for all descendant pid namespaces | 
|  | * starting from the current pid namespace of the instance, i.e. the | 
|  | * Pid field and the first entry in the NSpid field will be identical. | 
|  | * If the pid namespace of the process is not a descendant of the pid | 
|  | * namespace of the procfs instance 0 will be shown as its first NSpid | 
|  | * entry and no others will be shown. | 
|  | * Note that this differs from the Pid and NSpid fields in | 
|  | * /proc/<pid>/status where Pid and NSpid are always shown relative to | 
|  | * the  pid namespace of the procfs instance. The difference becomes | 
|  | * obvious when sending around a pidfd between pid namespaces from a | 
|  | * different branch of the tree, i.e. where no ancestral relation is | 
|  | * present between the pid namespaces: | 
|  | * - create two new pid namespaces ns1 and ns2 in the initial pid | 
|  | *   namespace (also take care to create new mount namespaces in the | 
|  | *   new pid namespace and mount procfs) | 
|  | * - create a process with a pidfd in ns1 | 
|  | * - send pidfd from ns1 to ns2 | 
|  | * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid | 
|  | *   have exactly one entry, which is 0 | 
|  | */ | 
|  | static void pidfd_show_fdinfo(struct seq_file *m, struct file *f) | 
|  | { | 
|  | struct pid *pid = pidfd_pid(f); | 
|  | struct pid_namespace *ns; | 
|  | pid_t nr = -1; | 
|  |  | 
|  | if (likely(pid_has_task(pid, PIDTYPE_PID))) { | 
|  | ns = proc_pid_ns(file_inode(m->file)->i_sb); | 
|  | nr = pid_nr_ns(pid, ns); | 
|  | } | 
|  |  | 
|  | seq_put_decimal_ll(m, "Pid:\t", nr); | 
|  |  | 
|  | #ifdef CONFIG_PID_NS | 
|  | seq_put_decimal_ll(m, "\nNSpid:\t", nr); | 
|  | if (nr > 0) { | 
|  | int i; | 
|  |  | 
|  | /* If nr is non-zero it means that 'pid' is valid and that | 
|  | * ns, i.e. the pid namespace associated with the procfs | 
|  | * instance, is in the pid namespace hierarchy of pid. | 
|  | * Start at one below the already printed level. | 
|  | */ | 
|  | for (i = ns->level + 1; i <= pid->level; i++) | 
|  | seq_put_decimal_ll(m, "\t", pid->numbers[i].nr); | 
|  | } | 
|  | #endif | 
|  | seq_putc(m, '\n'); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Poll support for process exit notification. | 
|  | */ | 
|  | static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts) | 
|  | { | 
|  | struct pid *pid = pidfd_pid(file); | 
|  | struct task_struct *task; | 
|  | __poll_t poll_flags = 0; | 
|  |  | 
|  | poll_wait(file, &pid->wait_pidfd, pts); | 
|  | /* | 
|  | * Don't wake waiters if the thread-group leader exited | 
|  | * prematurely. They either get notified when the last subthread | 
|  | * exits or not at all if one of the remaining subthreads execs | 
|  | * and assumes the struct pid of the old thread-group leader. | 
|  | */ | 
|  | guard(rcu)(); | 
|  | task = pid_task(pid, PIDTYPE_PID); | 
|  | if (!task) | 
|  | poll_flags = EPOLLIN | EPOLLRDNORM | EPOLLHUP; | 
|  | else if (task->exit_state && !delay_group_leader(task)) | 
|  | poll_flags = EPOLLIN | EPOLLRDNORM; | 
|  |  | 
|  | return poll_flags; | 
|  | } | 
|  |  | 
|  | static inline bool pid_in_current_pidns(const struct pid *pid) | 
|  | { | 
|  | const struct pid_namespace *ns = task_active_pid_ns(current); | 
|  |  | 
|  | if (ns->level <= pid->level) | 
|  | return pid->numbers[ns->level].ns == ns; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static __u32 pidfs_coredump_mask(unsigned long mm_flags) | 
|  | { | 
|  | switch (__get_dumpable(mm_flags)) { | 
|  | case SUID_DUMP_USER: | 
|  | return PIDFD_COREDUMP_USER; | 
|  | case SUID_DUMP_ROOT: | 
|  | return PIDFD_COREDUMP_ROOT; | 
|  | case SUID_DUMP_DISABLE: | 
|  | return PIDFD_COREDUMP_SKIP; | 
|  | default: | 
|  | WARN_ON_ONCE(true); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static long pidfd_info(struct file *file, unsigned int cmd, unsigned long arg) | 
|  | { | 
|  | struct pidfd_info __user *uinfo = (struct pidfd_info __user *)arg; | 
|  | struct task_struct *task __free(put_task) = NULL; | 
|  | struct pid *pid = pidfd_pid(file); | 
|  | size_t usize = _IOC_SIZE(cmd); | 
|  | struct pidfd_info kinfo = {}; | 
|  | struct pidfs_exit_info *exit_info; | 
|  | struct user_namespace *user_ns; | 
|  | struct pidfs_attr *attr; | 
|  | const struct cred *c; | 
|  | __u64 mask; | 
|  |  | 
|  | if (!uinfo) | 
|  | return -EINVAL; | 
|  | if (usize < PIDFD_INFO_SIZE_VER0) | 
|  | return -EINVAL; /* First version, no smaller struct possible */ | 
|  |  | 
|  | if (copy_from_user(&mask, &uinfo->mask, sizeof(mask))) | 
|  | return -EFAULT; | 
|  |  | 
|  | /* | 
|  | * Restrict information retrieval to tasks within the caller's pid | 
|  | * namespace hierarchy. | 
|  | */ | 
|  | if (!pid_in_current_pidns(pid)) | 
|  | return -ESRCH; | 
|  |  | 
|  | attr = READ_ONCE(pid->attr); | 
|  | if (mask & PIDFD_INFO_EXIT) { | 
|  | exit_info = READ_ONCE(attr->exit_info); | 
|  | if (exit_info) { | 
|  | kinfo.mask |= PIDFD_INFO_EXIT; | 
|  | #ifdef CONFIG_CGROUPS | 
|  | kinfo.cgroupid = exit_info->cgroupid; | 
|  | kinfo.mask |= PIDFD_INFO_CGROUPID; | 
|  | #endif | 
|  | kinfo.exit_code = exit_info->exit_code; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (mask & PIDFD_INFO_COREDUMP) { | 
|  | kinfo.mask |= PIDFD_INFO_COREDUMP; | 
|  | kinfo.coredump_mask = READ_ONCE(attr->__pei.coredump_mask); | 
|  | } | 
|  |  | 
|  | task = get_pid_task(pid, PIDTYPE_PID); | 
|  | if (!task) { | 
|  | /* | 
|  | * If the task has already been reaped, only exit | 
|  | * information is available | 
|  | */ | 
|  | if (!(mask & PIDFD_INFO_EXIT)) | 
|  | return -ESRCH; | 
|  |  | 
|  | goto copy_out; | 
|  | } | 
|  |  | 
|  | c = get_task_cred(task); | 
|  | if (!c) | 
|  | return -ESRCH; | 
|  |  | 
|  | if ((kinfo.mask & PIDFD_INFO_COREDUMP) && !(kinfo.coredump_mask)) { | 
|  | task_lock(task); | 
|  | if (task->mm) | 
|  | kinfo.coredump_mask = pidfs_coredump_mask(task->mm->flags); | 
|  | task_unlock(task); | 
|  | } | 
|  |  | 
|  | /* Unconditionally return identifiers and credentials, the rest only on request */ | 
|  |  | 
|  | user_ns = current_user_ns(); | 
|  | kinfo.ruid = from_kuid_munged(user_ns, c->uid); | 
|  | kinfo.rgid = from_kgid_munged(user_ns, c->gid); | 
|  | kinfo.euid = from_kuid_munged(user_ns, c->euid); | 
|  | kinfo.egid = from_kgid_munged(user_ns, c->egid); | 
|  | kinfo.suid = from_kuid_munged(user_ns, c->suid); | 
|  | kinfo.sgid = from_kgid_munged(user_ns, c->sgid); | 
|  | kinfo.fsuid = from_kuid_munged(user_ns, c->fsuid); | 
|  | kinfo.fsgid = from_kgid_munged(user_ns, c->fsgid); | 
|  | kinfo.mask |= PIDFD_INFO_CREDS; | 
|  | put_cred(c); | 
|  |  | 
|  | #ifdef CONFIG_CGROUPS | 
|  | if (!kinfo.cgroupid) { | 
|  | struct cgroup *cgrp; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | cgrp = task_dfl_cgroup(task); | 
|  | kinfo.cgroupid = cgroup_id(cgrp); | 
|  | kinfo.mask |= PIDFD_INFO_CGROUPID; | 
|  | rcu_read_unlock(); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Copy pid/tgid last, to reduce the chances the information might be | 
|  | * stale. Note that it is not possible to ensure it will be valid as the | 
|  | * task might return as soon as the copy_to_user finishes, but that's ok | 
|  | * and userspace expects that might happen and can act accordingly, so | 
|  | * this is just best-effort. What we can do however is checking that all | 
|  | * the fields are set correctly, or return ESRCH to avoid providing | 
|  | * incomplete information. */ | 
|  |  | 
|  | kinfo.ppid = task_ppid_nr_ns(task, NULL); | 
|  | kinfo.tgid = task_tgid_vnr(task); | 
|  | kinfo.pid = task_pid_vnr(task); | 
|  | kinfo.mask |= PIDFD_INFO_PID; | 
|  |  | 
|  | if (kinfo.pid == 0 || kinfo.tgid == 0) | 
|  | return -ESRCH; | 
|  |  | 
|  | copy_out: | 
|  | /* | 
|  | * If userspace and the kernel have the same struct size it can just | 
|  | * be copied. If userspace provides an older struct, only the bits that | 
|  | * userspace knows about will be copied. If userspace provides a new | 
|  | * struct, only the bits that the kernel knows about will be copied. | 
|  | */ | 
|  | return copy_struct_to_user(uinfo, usize, &kinfo, sizeof(kinfo), NULL); | 
|  | } | 
|  |  | 
|  | static bool pidfs_ioctl_valid(unsigned int cmd) | 
|  | { | 
|  | switch (cmd) { | 
|  | case FS_IOC_GETVERSION: | 
|  | case PIDFD_GET_CGROUP_NAMESPACE: | 
|  | case PIDFD_GET_IPC_NAMESPACE: | 
|  | case PIDFD_GET_MNT_NAMESPACE: | 
|  | case PIDFD_GET_NET_NAMESPACE: | 
|  | case PIDFD_GET_PID_FOR_CHILDREN_NAMESPACE: | 
|  | case PIDFD_GET_TIME_NAMESPACE: | 
|  | case PIDFD_GET_TIME_FOR_CHILDREN_NAMESPACE: | 
|  | case PIDFD_GET_UTS_NAMESPACE: | 
|  | case PIDFD_GET_USER_NAMESPACE: | 
|  | case PIDFD_GET_PID_NAMESPACE: | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Extensible ioctls require some more careful checks. */ | 
|  | switch (_IOC_NR(cmd)) { | 
|  | case _IOC_NR(PIDFD_GET_INFO): | 
|  | /* | 
|  | * Try to prevent performing a pidfd ioctl when someone | 
|  | * erronously mistook the file descriptor for a pidfd. | 
|  | * This is not perfect but will catch most cases. | 
|  | */ | 
|  | return (_IOC_TYPE(cmd) == _IOC_TYPE(PIDFD_GET_INFO)); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static long pidfd_ioctl(struct file *file, unsigned int cmd, unsigned long arg) | 
|  | { | 
|  | struct task_struct *task __free(put_task) = NULL; | 
|  | struct nsproxy *nsp __free(put_nsproxy) = NULL; | 
|  | struct ns_common *ns_common = NULL; | 
|  | struct pid_namespace *pid_ns; | 
|  |  | 
|  | if (!pidfs_ioctl_valid(cmd)) | 
|  | return -ENOIOCTLCMD; | 
|  |  | 
|  | if (cmd == FS_IOC_GETVERSION) { | 
|  | if (!arg) | 
|  | return -EINVAL; | 
|  |  | 
|  | __u32 __user *argp = (__u32 __user *)arg; | 
|  | return put_user(file_inode(file)->i_generation, argp); | 
|  | } | 
|  |  | 
|  | /* Extensible IOCTL that does not open namespace FDs, take a shortcut */ | 
|  | if (_IOC_NR(cmd) == _IOC_NR(PIDFD_GET_INFO)) | 
|  | return pidfd_info(file, cmd, arg); | 
|  |  | 
|  | task = get_pid_task(pidfd_pid(file), PIDTYPE_PID); | 
|  | if (!task) | 
|  | return -ESRCH; | 
|  |  | 
|  | if (arg) | 
|  | return -EINVAL; | 
|  |  | 
|  | scoped_guard(task_lock, task) { | 
|  | nsp = task->nsproxy; | 
|  | if (nsp) | 
|  | get_nsproxy(nsp); | 
|  | } | 
|  | if (!nsp) | 
|  | return -ESRCH; /* just pretend it didn't exist */ | 
|  |  | 
|  | /* | 
|  | * We're trying to open a file descriptor to the namespace so perform a | 
|  | * filesystem cred ptrace check. Also, we mirror nsfs behavior. | 
|  | */ | 
|  | if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) | 
|  | return -EACCES; | 
|  |  | 
|  | switch (cmd) { | 
|  | /* Namespaces that hang of nsproxy. */ | 
|  | case PIDFD_GET_CGROUP_NAMESPACE: | 
|  | if (IS_ENABLED(CONFIG_CGROUPS)) { | 
|  | get_cgroup_ns(nsp->cgroup_ns); | 
|  | ns_common = to_ns_common(nsp->cgroup_ns); | 
|  | } | 
|  | break; | 
|  | case PIDFD_GET_IPC_NAMESPACE: | 
|  | if (IS_ENABLED(CONFIG_IPC_NS)) { | 
|  | get_ipc_ns(nsp->ipc_ns); | 
|  | ns_common = to_ns_common(nsp->ipc_ns); | 
|  | } | 
|  | break; | 
|  | case PIDFD_GET_MNT_NAMESPACE: | 
|  | get_mnt_ns(nsp->mnt_ns); | 
|  | ns_common = to_ns_common(nsp->mnt_ns); | 
|  | break; | 
|  | case PIDFD_GET_NET_NAMESPACE: | 
|  | if (IS_ENABLED(CONFIG_NET_NS)) { | 
|  | ns_common = to_ns_common(nsp->net_ns); | 
|  | get_net_ns(ns_common); | 
|  | } | 
|  | break; | 
|  | case PIDFD_GET_PID_FOR_CHILDREN_NAMESPACE: | 
|  | if (IS_ENABLED(CONFIG_PID_NS)) { | 
|  | get_pid_ns(nsp->pid_ns_for_children); | 
|  | ns_common = to_ns_common(nsp->pid_ns_for_children); | 
|  | } | 
|  | break; | 
|  | case PIDFD_GET_TIME_NAMESPACE: | 
|  | if (IS_ENABLED(CONFIG_TIME_NS)) { | 
|  | get_time_ns(nsp->time_ns); | 
|  | ns_common = to_ns_common(nsp->time_ns); | 
|  | } | 
|  | break; | 
|  | case PIDFD_GET_TIME_FOR_CHILDREN_NAMESPACE: | 
|  | if (IS_ENABLED(CONFIG_TIME_NS)) { | 
|  | get_time_ns(nsp->time_ns_for_children); | 
|  | ns_common = to_ns_common(nsp->time_ns_for_children); | 
|  | } | 
|  | break; | 
|  | case PIDFD_GET_UTS_NAMESPACE: | 
|  | if (IS_ENABLED(CONFIG_UTS_NS)) { | 
|  | get_uts_ns(nsp->uts_ns); | 
|  | ns_common = to_ns_common(nsp->uts_ns); | 
|  | } | 
|  | break; | 
|  | /* Namespaces that don't hang of nsproxy. */ | 
|  | case PIDFD_GET_USER_NAMESPACE: | 
|  | if (IS_ENABLED(CONFIG_USER_NS)) { | 
|  | rcu_read_lock(); | 
|  | ns_common = to_ns_common(get_user_ns(task_cred_xxx(task, user_ns))); | 
|  | rcu_read_unlock(); | 
|  | } | 
|  | break; | 
|  | case PIDFD_GET_PID_NAMESPACE: | 
|  | if (IS_ENABLED(CONFIG_PID_NS)) { | 
|  | rcu_read_lock(); | 
|  | pid_ns = task_active_pid_ns(task); | 
|  | if (pid_ns) | 
|  | ns_common = to_ns_common(get_pid_ns(pid_ns)); | 
|  | rcu_read_unlock(); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | return -ENOIOCTLCMD; | 
|  | } | 
|  |  | 
|  | if (!ns_common) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | /* open_namespace() unconditionally consumes the reference */ | 
|  | return open_namespace(ns_common); | 
|  | } | 
|  |  | 
|  | static const struct file_operations pidfs_file_operations = { | 
|  | .poll		= pidfd_poll, | 
|  | #ifdef CONFIG_PROC_FS | 
|  | .show_fdinfo	= pidfd_show_fdinfo, | 
|  | #endif | 
|  | .unlocked_ioctl	= pidfd_ioctl, | 
|  | .compat_ioctl   = compat_ptr_ioctl, | 
|  | }; | 
|  |  | 
|  | struct pid *pidfd_pid(const struct file *file) | 
|  | { | 
|  | if (file->f_op != &pidfs_file_operations) | 
|  | return ERR_PTR(-EBADF); | 
|  | return file_inode(file)->i_private; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We're called from release_task(). We know there's at least one | 
|  | * reference to struct pid being held that won't be released until the | 
|  | * task has been reaped which cannot happen until we're out of | 
|  | * release_task(). | 
|  | * | 
|  | * If this struct pid has at least once been referred to by a pidfd then | 
|  | * pid->attr will be allocated. If not we mark the struct pid as dead so | 
|  | * anyone who is trying to register it with pidfs will fail to do so. | 
|  | * Otherwise we would hand out pidfs for reaped tasks without having | 
|  | * exit information available. | 
|  | * | 
|  | * Worst case is that we've filled in the info and the pid gets freed | 
|  | * right away in free_pid() when no one holds a pidfd anymore. Since | 
|  | * pidfs_exit() currently is placed after exit_task_work() we know that | 
|  | * it cannot be us aka the exiting task holding a pidfd to itself. | 
|  | */ | 
|  | void pidfs_exit(struct task_struct *tsk) | 
|  | { | 
|  | struct pid *pid = task_pid(tsk); | 
|  | struct pidfs_attr *attr; | 
|  | struct pidfs_exit_info *exit_info; | 
|  | #ifdef CONFIG_CGROUPS | 
|  | struct cgroup *cgrp; | 
|  | #endif | 
|  |  | 
|  | might_sleep(); | 
|  |  | 
|  | guard(spinlock_irq)(&pid->wait_pidfd.lock); | 
|  | attr = pid->attr; | 
|  | if (!attr) { | 
|  | /* | 
|  | * No one ever held a pidfd for this struct pid. | 
|  | * Mark it as dead so no one can add a pidfs | 
|  | * entry anymore. We're about to be reaped and | 
|  | * so no exit information would be available. | 
|  | */ | 
|  | pid->attr = PIDFS_PID_DEAD; | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If @pid->attr is set someone might still legitimately hold a | 
|  | * pidfd to @pid or someone might concurrently still be getting | 
|  | * a reference to an already stashed dentry from @pid->stashed. | 
|  | * So defer cleaning @pid->attr until the last reference to @pid | 
|  | * is put | 
|  | */ | 
|  |  | 
|  | exit_info = &attr->__pei; | 
|  |  | 
|  | #ifdef CONFIG_CGROUPS | 
|  | rcu_read_lock(); | 
|  | cgrp = task_dfl_cgroup(tsk); | 
|  | exit_info->cgroupid = cgroup_id(cgrp); | 
|  | rcu_read_unlock(); | 
|  | #endif | 
|  | exit_info->exit_code = tsk->exit_code; | 
|  |  | 
|  | /* Ensure that PIDFD_GET_INFO sees either all or nothing. */ | 
|  | smp_store_release(&attr->exit_info, &attr->__pei); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_COREDUMP | 
|  | void pidfs_coredump(const struct coredump_params *cprm) | 
|  | { | 
|  | struct pid *pid = cprm->pid; | 
|  | struct pidfs_exit_info *exit_info; | 
|  | struct pidfs_attr *attr; | 
|  | __u32 coredump_mask = 0; | 
|  |  | 
|  | attr = READ_ONCE(pid->attr); | 
|  |  | 
|  | VFS_WARN_ON_ONCE(!attr); | 
|  | VFS_WARN_ON_ONCE(attr == PIDFS_PID_DEAD); | 
|  |  | 
|  | exit_info = &attr->__pei; | 
|  | /* Note how we were coredumped. */ | 
|  | coredump_mask = pidfs_coredump_mask(cprm->mm_flags); | 
|  | /* Note that we actually did coredump. */ | 
|  | coredump_mask |= PIDFD_COREDUMPED; | 
|  | /* If coredumping is set to skip we should never end up here. */ | 
|  | VFS_WARN_ON_ONCE(coredump_mask & PIDFD_COREDUMP_SKIP); | 
|  | smp_store_release(&exit_info->coredump_mask, coredump_mask); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static struct vfsmount *pidfs_mnt __ro_after_init; | 
|  |  | 
|  | /* | 
|  | * The vfs falls back to simple_setattr() if i_op->setattr() isn't | 
|  | * implemented. Let's reject it completely until we have a clean | 
|  | * permission concept for pidfds. | 
|  | */ | 
|  | static int pidfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry, | 
|  | struct iattr *attr) | 
|  | { | 
|  | return anon_inode_setattr(idmap, dentry, attr); | 
|  | } | 
|  |  | 
|  | static int pidfs_getattr(struct mnt_idmap *idmap, const struct path *path, | 
|  | struct kstat *stat, u32 request_mask, | 
|  | unsigned int query_flags) | 
|  | { | 
|  | return anon_inode_getattr(idmap, path, stat, request_mask, query_flags); | 
|  | } | 
|  |  | 
|  | static ssize_t pidfs_listxattr(struct dentry *dentry, char *buf, size_t size) | 
|  | { | 
|  | struct inode *inode = d_inode(dentry); | 
|  | struct pid *pid = inode->i_private; | 
|  | struct pidfs_attr *attr = pid->attr; | 
|  | struct simple_xattrs *xattrs; | 
|  |  | 
|  | xattrs = READ_ONCE(attr->xattrs); | 
|  | if (!xattrs) | 
|  | return 0; | 
|  |  | 
|  | return simple_xattr_list(inode, xattrs, buf, size); | 
|  | } | 
|  |  | 
|  | static const struct inode_operations pidfs_inode_operations = { | 
|  | .getattr	= pidfs_getattr, | 
|  | .setattr	= pidfs_setattr, | 
|  | .listxattr	= pidfs_listxattr, | 
|  | }; | 
|  |  | 
|  | static void pidfs_evict_inode(struct inode *inode) | 
|  | { | 
|  | struct pid *pid = inode->i_private; | 
|  |  | 
|  | clear_inode(inode); | 
|  | put_pid(pid); | 
|  | } | 
|  |  | 
|  | static const struct super_operations pidfs_sops = { | 
|  | .drop_inode	= generic_delete_inode, | 
|  | .evict_inode	= pidfs_evict_inode, | 
|  | .statfs		= simple_statfs, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * 'lsof' has knowledge of out historical anon_inode use, and expects | 
|  | * the pidfs dentry name to start with 'anon_inode'. | 
|  | */ | 
|  | static char *pidfs_dname(struct dentry *dentry, char *buffer, int buflen) | 
|  | { | 
|  | return dynamic_dname(buffer, buflen, "anon_inode:[pidfd]"); | 
|  | } | 
|  |  | 
|  | const struct dentry_operations pidfs_dentry_operations = { | 
|  | .d_dname	= pidfs_dname, | 
|  | .d_prune	= stashed_dentry_prune, | 
|  | }; | 
|  |  | 
|  | static int pidfs_encode_fh(struct inode *inode, u32 *fh, int *max_len, | 
|  | struct inode *parent) | 
|  | { | 
|  | const struct pid *pid = inode->i_private; | 
|  |  | 
|  | if (*max_len < 2) { | 
|  | *max_len = 2; | 
|  | return FILEID_INVALID; | 
|  | } | 
|  |  | 
|  | *max_len = 2; | 
|  | *(u64 *)fh = pid->ino; | 
|  | return FILEID_KERNFS; | 
|  | } | 
|  |  | 
|  | static int pidfs_ino_find(const void *key, const struct rb_node *node) | 
|  | { | 
|  | const u64 pid_ino = *(u64 *)key; | 
|  | const struct pid *pid = rb_entry(node, struct pid, pidfs_node); | 
|  |  | 
|  | if (pid_ino < pid->ino) | 
|  | return -1; | 
|  | if (pid_ino > pid->ino) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Find a struct pid based on the inode number. */ | 
|  | static struct pid *pidfs_ino_get_pid(u64 ino) | 
|  | { | 
|  | struct pid *pid; | 
|  | struct rb_node *node; | 
|  | unsigned int seq; | 
|  |  | 
|  | guard(rcu)(); | 
|  | do { | 
|  | seq = read_seqcount_begin(&pidmap_lock_seq); | 
|  | node = rb_find_rcu(&ino, &pidfs_ino_tree, pidfs_ino_find); | 
|  | if (node) | 
|  | break; | 
|  | } while (read_seqcount_retry(&pidmap_lock_seq, seq)); | 
|  |  | 
|  | if (!node) | 
|  | return NULL; | 
|  |  | 
|  | pid = rb_entry(node, struct pid, pidfs_node); | 
|  |  | 
|  | /* Within our pid namespace hierarchy? */ | 
|  | if (pid_vnr(pid) == 0) | 
|  | return NULL; | 
|  |  | 
|  | return get_pid(pid); | 
|  | } | 
|  |  | 
|  | static struct dentry *pidfs_fh_to_dentry(struct super_block *sb, | 
|  | struct fid *fid, int fh_len, | 
|  | int fh_type) | 
|  | { | 
|  | int ret; | 
|  | u64 pid_ino; | 
|  | struct path path; | 
|  | struct pid *pid; | 
|  |  | 
|  | if (fh_len < 2) | 
|  | return NULL; | 
|  |  | 
|  | switch (fh_type) { | 
|  | case FILEID_KERNFS: | 
|  | pid_ino = *(u64 *)fid; | 
|  | break; | 
|  | default: | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | pid = pidfs_ino_get_pid(pid_ino); | 
|  | if (!pid) | 
|  | return NULL; | 
|  |  | 
|  | ret = path_from_stashed(&pid->stashed, pidfs_mnt, pid, &path); | 
|  | if (ret < 0) | 
|  | return ERR_PTR(ret); | 
|  |  | 
|  | VFS_WARN_ON_ONCE(!pid->attr); | 
|  |  | 
|  | mntput(path.mnt); | 
|  | return path.dentry; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Make sure that we reject any nonsensical flags that users pass via | 
|  | * open_by_handle_at(). Note that PIDFD_THREAD is defined as O_EXCL, and | 
|  | * PIDFD_NONBLOCK as O_NONBLOCK. | 
|  | */ | 
|  | #define VALID_FILE_HANDLE_OPEN_FLAGS \ | 
|  | (O_RDONLY | O_WRONLY | O_RDWR | O_NONBLOCK | O_CLOEXEC | O_EXCL) | 
|  |  | 
|  | static int pidfs_export_permission(struct handle_to_path_ctx *ctx, | 
|  | unsigned int oflags) | 
|  | { | 
|  | if (oflags & ~(VALID_FILE_HANDLE_OPEN_FLAGS | O_LARGEFILE)) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * pidfd_ino_get_pid() will verify that the struct pid is part | 
|  | * of the caller's pid namespace hierarchy. No further | 
|  | * permission checks are needed. | 
|  | */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct file *pidfs_export_open(struct path *path, unsigned int oflags) | 
|  | { | 
|  | /* | 
|  | * Clear O_LARGEFILE as open_by_handle_at() forces it and raise | 
|  | * O_RDWR as pidfds always are. | 
|  | */ | 
|  | oflags &= ~O_LARGEFILE; | 
|  | return dentry_open(path, oflags | O_RDWR, current_cred()); | 
|  | } | 
|  |  | 
|  | static const struct export_operations pidfs_export_operations = { | 
|  | .encode_fh	= pidfs_encode_fh, | 
|  | .fh_to_dentry	= pidfs_fh_to_dentry, | 
|  | .open		= pidfs_export_open, | 
|  | .permission	= pidfs_export_permission, | 
|  | }; | 
|  |  | 
|  | static int pidfs_init_inode(struct inode *inode, void *data) | 
|  | { | 
|  | const struct pid *pid = data; | 
|  |  | 
|  | inode->i_private = data; | 
|  | inode->i_flags |= S_PRIVATE | S_ANON_INODE; | 
|  | /* We allow to set xattrs. */ | 
|  | inode->i_flags &= ~S_IMMUTABLE; | 
|  | inode->i_mode |= S_IRWXU; | 
|  | inode->i_op = &pidfs_inode_operations; | 
|  | inode->i_fop = &pidfs_file_operations; | 
|  | inode->i_ino = pidfs_ino(pid->ino); | 
|  | inode->i_generation = pidfs_gen(pid->ino); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void pidfs_put_data(void *data) | 
|  | { | 
|  | struct pid *pid = data; | 
|  | put_pid(pid); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pidfs_register_pid - register a struct pid in pidfs | 
|  | * @pid: pid to pin | 
|  | * | 
|  | * Register a struct pid in pidfs. | 
|  | * | 
|  | * Return: On success zero, on error a negative error code is returned. | 
|  | */ | 
|  | int pidfs_register_pid(struct pid *pid) | 
|  | { | 
|  | struct pidfs_attr *new_attr __free(kfree) = NULL; | 
|  | struct pidfs_attr *attr; | 
|  |  | 
|  | might_sleep(); | 
|  |  | 
|  | if (!pid) | 
|  | return 0; | 
|  |  | 
|  | attr = READ_ONCE(pid->attr); | 
|  | if (unlikely(attr == PIDFS_PID_DEAD)) | 
|  | return PTR_ERR(PIDFS_PID_DEAD); | 
|  | if (attr) | 
|  | return 0; | 
|  |  | 
|  | new_attr = kmem_cache_zalloc(pidfs_attr_cachep, GFP_KERNEL); | 
|  | if (!new_attr) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* Synchronize with pidfs_exit(). */ | 
|  | guard(spinlock_irq)(&pid->wait_pidfd.lock); | 
|  |  | 
|  | attr = pid->attr; | 
|  | if (unlikely(attr == PIDFS_PID_DEAD)) | 
|  | return PTR_ERR(PIDFS_PID_DEAD); | 
|  | if (unlikely(attr)) | 
|  | return 0; | 
|  |  | 
|  | pid->attr = no_free_ptr(new_attr); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct dentry *pidfs_stash_dentry(struct dentry **stashed, | 
|  | struct dentry *dentry) | 
|  | { | 
|  | int ret; | 
|  | struct pid *pid = d_inode(dentry)->i_private; | 
|  |  | 
|  | VFS_WARN_ON_ONCE(stashed != &pid->stashed); | 
|  |  | 
|  | ret = pidfs_register_pid(pid); | 
|  | if (ret) | 
|  | return ERR_PTR(ret); | 
|  |  | 
|  | return stash_dentry(stashed, dentry); | 
|  | } | 
|  |  | 
|  | static const struct stashed_operations pidfs_stashed_ops = { | 
|  | .stash_dentry	= pidfs_stash_dentry, | 
|  | .init_inode	= pidfs_init_inode, | 
|  | .put_data	= pidfs_put_data, | 
|  | }; | 
|  |  | 
|  | static int pidfs_xattr_get(const struct xattr_handler *handler, | 
|  | struct dentry *unused, struct inode *inode, | 
|  | const char *suffix, void *value, size_t size) | 
|  | { | 
|  | struct pid *pid = inode->i_private; | 
|  | struct pidfs_attr *attr = pid->attr; | 
|  | const char *name; | 
|  | struct simple_xattrs *xattrs; | 
|  |  | 
|  | xattrs = READ_ONCE(attr->xattrs); | 
|  | if (!xattrs) | 
|  | return 0; | 
|  |  | 
|  | name = xattr_full_name(handler, suffix); | 
|  | return simple_xattr_get(xattrs, name, value, size); | 
|  | } | 
|  |  | 
|  | static int pidfs_xattr_set(const struct xattr_handler *handler, | 
|  | struct mnt_idmap *idmap, struct dentry *unused, | 
|  | struct inode *inode, const char *suffix, | 
|  | const void *value, size_t size, int flags) | 
|  | { | 
|  | struct pid *pid = inode->i_private; | 
|  | struct pidfs_attr *attr = pid->attr; | 
|  | const char *name; | 
|  | struct simple_xattrs *xattrs; | 
|  | struct simple_xattr *old_xattr; | 
|  |  | 
|  | /* Ensure we're the only one to set @attr->xattrs. */ | 
|  | WARN_ON_ONCE(!inode_is_locked(inode)); | 
|  |  | 
|  | xattrs = READ_ONCE(attr->xattrs); | 
|  | if (!xattrs) { | 
|  | xattrs = kmem_cache_zalloc(pidfs_xattr_cachep, GFP_KERNEL); | 
|  | if (!xattrs) | 
|  | return -ENOMEM; | 
|  |  | 
|  | simple_xattrs_init(xattrs); | 
|  | smp_store_release(&pid->attr->xattrs, xattrs); | 
|  | } | 
|  |  | 
|  | name = xattr_full_name(handler, suffix); | 
|  | old_xattr = simple_xattr_set(xattrs, name, value, size, flags); | 
|  | if (IS_ERR(old_xattr)) | 
|  | return PTR_ERR(old_xattr); | 
|  |  | 
|  | simple_xattr_free(old_xattr); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct xattr_handler pidfs_trusted_xattr_handler = { | 
|  | .prefix = XATTR_TRUSTED_PREFIX, | 
|  | .get	= pidfs_xattr_get, | 
|  | .set	= pidfs_xattr_set, | 
|  | }; | 
|  |  | 
|  | static const struct xattr_handler *const pidfs_xattr_handlers[] = { | 
|  | &pidfs_trusted_xattr_handler, | 
|  | NULL | 
|  | }; | 
|  |  | 
|  | static int pidfs_init_fs_context(struct fs_context *fc) | 
|  | { | 
|  | struct pseudo_fs_context *ctx; | 
|  |  | 
|  | ctx = init_pseudo(fc, PID_FS_MAGIC); | 
|  | if (!ctx) | 
|  | return -ENOMEM; | 
|  |  | 
|  | fc->s_iflags |= SB_I_NOEXEC; | 
|  | fc->s_iflags |= SB_I_NODEV; | 
|  | ctx->ops = &pidfs_sops; | 
|  | ctx->eops = &pidfs_export_operations; | 
|  | ctx->dops = &pidfs_dentry_operations; | 
|  | ctx->xattr = pidfs_xattr_handlers; | 
|  | fc->s_fs_info = (void *)&pidfs_stashed_ops; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct file_system_type pidfs_type = { | 
|  | .name			= "pidfs", | 
|  | .init_fs_context	= pidfs_init_fs_context, | 
|  | .kill_sb		= kill_anon_super, | 
|  | }; | 
|  |  | 
|  | struct file *pidfs_alloc_file(struct pid *pid, unsigned int flags) | 
|  | { | 
|  | struct file *pidfd_file; | 
|  | struct path path __free(path_put) = {}; | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * Ensure that PIDFD_STALE can be passed as a flag without | 
|  | * overloading other uapi pidfd flags. | 
|  | */ | 
|  | BUILD_BUG_ON(PIDFD_STALE == PIDFD_THREAD); | 
|  | BUILD_BUG_ON(PIDFD_STALE == PIDFD_NONBLOCK); | 
|  |  | 
|  | ret = path_from_stashed(&pid->stashed, pidfs_mnt, get_pid(pid), &path); | 
|  | if (ret < 0) | 
|  | return ERR_PTR(ret); | 
|  |  | 
|  | VFS_WARN_ON_ONCE(!pid->attr); | 
|  |  | 
|  | flags &= ~PIDFD_STALE; | 
|  | flags |= O_RDWR; | 
|  | pidfd_file = dentry_open(&path, flags, current_cred()); | 
|  | /* Raise PIDFD_THREAD explicitly as do_dentry_open() strips it. */ | 
|  | if (!IS_ERR(pidfd_file)) | 
|  | pidfd_file->f_flags |= (flags & PIDFD_THREAD); | 
|  |  | 
|  | return pidfd_file; | 
|  | } | 
|  |  | 
|  | void __init pidfs_init(void) | 
|  | { | 
|  | pidfs_attr_cachep = kmem_cache_create("pidfs_attr_cache", sizeof(struct pidfs_attr), 0, | 
|  | (SLAB_HWCACHE_ALIGN | SLAB_RECLAIM_ACCOUNT | | 
|  | SLAB_ACCOUNT | SLAB_PANIC), NULL); | 
|  |  | 
|  | pidfs_xattr_cachep = kmem_cache_create("pidfs_xattr_cache", | 
|  | sizeof(struct simple_xattrs), 0, | 
|  | (SLAB_HWCACHE_ALIGN | SLAB_RECLAIM_ACCOUNT | | 
|  | SLAB_ACCOUNT | SLAB_PANIC), NULL); | 
|  |  | 
|  | pidfs_mnt = kern_mount(&pidfs_type); | 
|  | if (IS_ERR(pidfs_mnt)) | 
|  | panic("Failed to mount pidfs pseudo filesystem"); | 
|  |  | 
|  | pidfs_root_path.mnt = pidfs_mnt; | 
|  | pidfs_root_path.dentry = pidfs_mnt->mnt_root; | 
|  | } |