|  | /* | 
|  | *  arch/s390/mm/vmem.c | 
|  | * | 
|  | *    Copyright IBM Corp. 2006 | 
|  | *    Author(s): Heiko Carstens <heiko.carstens@de.ibm.com> | 
|  | */ | 
|  |  | 
|  | #include <linux/bootmem.h> | 
|  | #include <linux/pfn.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/list.h> | 
|  | #include <linux/hugetlb.h> | 
|  | #include <linux/slab.h> | 
|  | #include <asm/pgalloc.h> | 
|  | #include <asm/pgtable.h> | 
|  | #include <asm/setup.h> | 
|  | #include <asm/tlbflush.h> | 
|  | #include <asm/sections.h> | 
|  |  | 
|  | static DEFINE_MUTEX(vmem_mutex); | 
|  |  | 
|  | struct memory_segment { | 
|  | struct list_head list; | 
|  | unsigned long start; | 
|  | unsigned long size; | 
|  | }; | 
|  |  | 
|  | static LIST_HEAD(mem_segs); | 
|  |  | 
|  | static void __ref *vmem_alloc_pages(unsigned int order) | 
|  | { | 
|  | if (slab_is_available()) | 
|  | return (void *)__get_free_pages(GFP_KERNEL, order); | 
|  | return alloc_bootmem_pages((1 << order) * PAGE_SIZE); | 
|  | } | 
|  |  | 
|  | static inline pud_t *vmem_pud_alloc(void) | 
|  | { | 
|  | pud_t *pud = NULL; | 
|  |  | 
|  | #ifdef CONFIG_64BIT | 
|  | pud = vmem_alloc_pages(2); | 
|  | if (!pud) | 
|  | return NULL; | 
|  | clear_table((unsigned long *) pud, _REGION3_ENTRY_EMPTY, PAGE_SIZE * 4); | 
|  | #endif | 
|  | return pud; | 
|  | } | 
|  |  | 
|  | static inline pmd_t *vmem_pmd_alloc(void) | 
|  | { | 
|  | pmd_t *pmd = NULL; | 
|  |  | 
|  | #ifdef CONFIG_64BIT | 
|  | pmd = vmem_alloc_pages(2); | 
|  | if (!pmd) | 
|  | return NULL; | 
|  | clear_table((unsigned long *) pmd, _SEGMENT_ENTRY_EMPTY, PAGE_SIZE * 4); | 
|  | #endif | 
|  | return pmd; | 
|  | } | 
|  |  | 
|  | static pte_t __ref *vmem_pte_alloc(unsigned long address) | 
|  | { | 
|  | pte_t *pte; | 
|  |  | 
|  | if (slab_is_available()) | 
|  | pte = (pte_t *) page_table_alloc(&init_mm, address); | 
|  | else | 
|  | pte = alloc_bootmem(PTRS_PER_PTE * sizeof(pte_t)); | 
|  | if (!pte) | 
|  | return NULL; | 
|  | clear_table((unsigned long *) pte, _PAGE_TYPE_EMPTY, | 
|  | PTRS_PER_PTE * sizeof(pte_t)); | 
|  | return pte; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Add a physical memory range to the 1:1 mapping. | 
|  | */ | 
|  | static int vmem_add_mem(unsigned long start, unsigned long size, int ro) | 
|  | { | 
|  | unsigned long address; | 
|  | pgd_t *pg_dir; | 
|  | pud_t *pu_dir; | 
|  | pmd_t *pm_dir; | 
|  | pte_t *pt_dir; | 
|  | pte_t  pte; | 
|  | int ret = -ENOMEM; | 
|  |  | 
|  | for (address = start; address < start + size; address += PAGE_SIZE) { | 
|  | pg_dir = pgd_offset_k(address); | 
|  | if (pgd_none(*pg_dir)) { | 
|  | pu_dir = vmem_pud_alloc(); | 
|  | if (!pu_dir) | 
|  | goto out; | 
|  | pgd_populate(&init_mm, pg_dir, pu_dir); | 
|  | } | 
|  |  | 
|  | pu_dir = pud_offset(pg_dir, address); | 
|  | if (pud_none(*pu_dir)) { | 
|  | pm_dir = vmem_pmd_alloc(); | 
|  | if (!pm_dir) | 
|  | goto out; | 
|  | pud_populate(&init_mm, pu_dir, pm_dir); | 
|  | } | 
|  |  | 
|  | pte = mk_pte_phys(address, __pgprot(ro ? _PAGE_RO : 0)); | 
|  | pm_dir = pmd_offset(pu_dir, address); | 
|  |  | 
|  | #ifdef __s390x__ | 
|  | if (MACHINE_HAS_HPAGE && !(address & ~HPAGE_MASK) && | 
|  | (address + HPAGE_SIZE <= start + size) && | 
|  | (address >= HPAGE_SIZE)) { | 
|  | pte_val(pte) |= _SEGMENT_ENTRY_LARGE; | 
|  | pmd_val(*pm_dir) = pte_val(pte); | 
|  | address += HPAGE_SIZE - PAGE_SIZE; | 
|  | continue; | 
|  | } | 
|  | #endif | 
|  | if (pmd_none(*pm_dir)) { | 
|  | pt_dir = vmem_pte_alloc(address); | 
|  | if (!pt_dir) | 
|  | goto out; | 
|  | pmd_populate(&init_mm, pm_dir, pt_dir); | 
|  | } | 
|  |  | 
|  | pt_dir = pte_offset_kernel(pm_dir, address); | 
|  | *pt_dir = pte; | 
|  | } | 
|  | ret = 0; | 
|  | out: | 
|  | flush_tlb_kernel_range(start, start + size); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Remove a physical memory range from the 1:1 mapping. | 
|  | * Currently only invalidates page table entries. | 
|  | */ | 
|  | static void vmem_remove_range(unsigned long start, unsigned long size) | 
|  | { | 
|  | unsigned long address; | 
|  | pgd_t *pg_dir; | 
|  | pud_t *pu_dir; | 
|  | pmd_t *pm_dir; | 
|  | pte_t *pt_dir; | 
|  | pte_t  pte; | 
|  |  | 
|  | pte_val(pte) = _PAGE_TYPE_EMPTY; | 
|  | for (address = start; address < start + size; address += PAGE_SIZE) { | 
|  | pg_dir = pgd_offset_k(address); | 
|  | pu_dir = pud_offset(pg_dir, address); | 
|  | if (pud_none(*pu_dir)) | 
|  | continue; | 
|  | pm_dir = pmd_offset(pu_dir, address); | 
|  | if (pmd_none(*pm_dir)) | 
|  | continue; | 
|  |  | 
|  | if (pmd_huge(*pm_dir)) { | 
|  | pmd_clear(pm_dir); | 
|  | address += HPAGE_SIZE - PAGE_SIZE; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | pt_dir = pte_offset_kernel(pm_dir, address); | 
|  | *pt_dir = pte; | 
|  | } | 
|  | flush_tlb_kernel_range(start, start + size); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Add a backed mem_map array to the virtual mem_map array. | 
|  | */ | 
|  | int __meminit vmemmap_populate(struct page *start, unsigned long nr, int node) | 
|  | { | 
|  | unsigned long address, start_addr, end_addr; | 
|  | pgd_t *pg_dir; | 
|  | pud_t *pu_dir; | 
|  | pmd_t *pm_dir; | 
|  | pte_t *pt_dir; | 
|  | pte_t  pte; | 
|  | int ret = -ENOMEM; | 
|  |  | 
|  | start_addr = (unsigned long) start; | 
|  | end_addr = (unsigned long) (start + nr); | 
|  |  | 
|  | for (address = start_addr; address < end_addr; address += PAGE_SIZE) { | 
|  | pg_dir = pgd_offset_k(address); | 
|  | if (pgd_none(*pg_dir)) { | 
|  | pu_dir = vmem_pud_alloc(); | 
|  | if (!pu_dir) | 
|  | goto out; | 
|  | pgd_populate(&init_mm, pg_dir, pu_dir); | 
|  | } | 
|  |  | 
|  | pu_dir = pud_offset(pg_dir, address); | 
|  | if (pud_none(*pu_dir)) { | 
|  | pm_dir = vmem_pmd_alloc(); | 
|  | if (!pm_dir) | 
|  | goto out; | 
|  | pud_populate(&init_mm, pu_dir, pm_dir); | 
|  | } | 
|  |  | 
|  | pm_dir = pmd_offset(pu_dir, address); | 
|  | if (pmd_none(*pm_dir)) { | 
|  | pt_dir = vmem_pte_alloc(address); | 
|  | if (!pt_dir) | 
|  | goto out; | 
|  | pmd_populate(&init_mm, pm_dir, pt_dir); | 
|  | } | 
|  |  | 
|  | pt_dir = pte_offset_kernel(pm_dir, address); | 
|  | if (pte_none(*pt_dir)) { | 
|  | unsigned long new_page; | 
|  |  | 
|  | new_page =__pa(vmem_alloc_pages(0)); | 
|  | if (!new_page) | 
|  | goto out; | 
|  | pte = pfn_pte(new_page >> PAGE_SHIFT, PAGE_KERNEL); | 
|  | *pt_dir = pte; | 
|  | } | 
|  | } | 
|  | memset(start, 0, nr * sizeof(struct page)); | 
|  | ret = 0; | 
|  | out: | 
|  | flush_tlb_kernel_range(start_addr, end_addr); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Add memory segment to the segment list if it doesn't overlap with | 
|  | * an already present segment. | 
|  | */ | 
|  | static int insert_memory_segment(struct memory_segment *seg) | 
|  | { | 
|  | struct memory_segment *tmp; | 
|  |  | 
|  | if (seg->start + seg->size > VMEM_MAX_PHYS || | 
|  | seg->start + seg->size < seg->start) | 
|  | return -ERANGE; | 
|  |  | 
|  | list_for_each_entry(tmp, &mem_segs, list) { | 
|  | if (seg->start >= tmp->start + tmp->size) | 
|  | continue; | 
|  | if (seg->start + seg->size <= tmp->start) | 
|  | continue; | 
|  | return -ENOSPC; | 
|  | } | 
|  | list_add(&seg->list, &mem_segs); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Remove memory segment from the segment list. | 
|  | */ | 
|  | static void remove_memory_segment(struct memory_segment *seg) | 
|  | { | 
|  | list_del(&seg->list); | 
|  | } | 
|  |  | 
|  | static void __remove_shared_memory(struct memory_segment *seg) | 
|  | { | 
|  | remove_memory_segment(seg); | 
|  | vmem_remove_range(seg->start, seg->size); | 
|  | } | 
|  |  | 
|  | int vmem_remove_mapping(unsigned long start, unsigned long size) | 
|  | { | 
|  | struct memory_segment *seg; | 
|  | int ret; | 
|  |  | 
|  | mutex_lock(&vmem_mutex); | 
|  |  | 
|  | ret = -ENOENT; | 
|  | list_for_each_entry(seg, &mem_segs, list) { | 
|  | if (seg->start == start && seg->size == size) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (seg->start != start || seg->size != size) | 
|  | goto out; | 
|  |  | 
|  | ret = 0; | 
|  | __remove_shared_memory(seg); | 
|  | kfree(seg); | 
|  | out: | 
|  | mutex_unlock(&vmem_mutex); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int vmem_add_mapping(unsigned long start, unsigned long size) | 
|  | { | 
|  | struct memory_segment *seg; | 
|  | int ret; | 
|  |  | 
|  | mutex_lock(&vmem_mutex); | 
|  | ret = -ENOMEM; | 
|  | seg = kzalloc(sizeof(*seg), GFP_KERNEL); | 
|  | if (!seg) | 
|  | goto out; | 
|  | seg->start = start; | 
|  | seg->size = size; | 
|  |  | 
|  | ret = insert_memory_segment(seg); | 
|  | if (ret) | 
|  | goto out_free; | 
|  |  | 
|  | ret = vmem_add_mem(start, size, 0); | 
|  | if (ret) | 
|  | goto out_remove; | 
|  | goto out; | 
|  |  | 
|  | out_remove: | 
|  | __remove_shared_memory(seg); | 
|  | out_free: | 
|  | kfree(seg); | 
|  | out: | 
|  | mutex_unlock(&vmem_mutex); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * map whole physical memory to virtual memory (identity mapping) | 
|  | * we reserve enough space in the vmalloc area for vmemmap to hotplug | 
|  | * additional memory segments. | 
|  | */ | 
|  | void __init vmem_map_init(void) | 
|  | { | 
|  | unsigned long ro_start, ro_end; | 
|  | unsigned long start, end; | 
|  | int i; | 
|  |  | 
|  | ro_start = ((unsigned long)&_stext) & PAGE_MASK; | 
|  | ro_end = PFN_ALIGN((unsigned long)&_eshared); | 
|  | for (i = 0; i < MEMORY_CHUNKS && memory_chunk[i].size > 0; i++) { | 
|  | if (memory_chunk[i].type == CHUNK_CRASHK || | 
|  | memory_chunk[i].type == CHUNK_OLDMEM) | 
|  | continue; | 
|  | start = memory_chunk[i].addr; | 
|  | end = memory_chunk[i].addr + memory_chunk[i].size; | 
|  | if (start >= ro_end || end <= ro_start) | 
|  | vmem_add_mem(start, end - start, 0); | 
|  | else if (start >= ro_start && end <= ro_end) | 
|  | vmem_add_mem(start, end - start, 1); | 
|  | else if (start >= ro_start) { | 
|  | vmem_add_mem(start, ro_end - start, 1); | 
|  | vmem_add_mem(ro_end, end - ro_end, 0); | 
|  | } else if (end < ro_end) { | 
|  | vmem_add_mem(start, ro_start - start, 0); | 
|  | vmem_add_mem(ro_start, end - ro_start, 1); | 
|  | } else { | 
|  | vmem_add_mem(start, ro_start - start, 0); | 
|  | vmem_add_mem(ro_start, ro_end - ro_start, 1); | 
|  | vmem_add_mem(ro_end, end - ro_end, 0); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Convert memory chunk array to a memory segment list so there is a single | 
|  | * list that contains both r/w memory and shared memory segments. | 
|  | */ | 
|  | static int __init vmem_convert_memory_chunk(void) | 
|  | { | 
|  | struct memory_segment *seg; | 
|  | int i; | 
|  |  | 
|  | mutex_lock(&vmem_mutex); | 
|  | for (i = 0; i < MEMORY_CHUNKS; i++) { | 
|  | if (!memory_chunk[i].size) | 
|  | continue; | 
|  | if (memory_chunk[i].type == CHUNK_CRASHK || | 
|  | memory_chunk[i].type == CHUNK_OLDMEM) | 
|  | continue; | 
|  | seg = kzalloc(sizeof(*seg), GFP_KERNEL); | 
|  | if (!seg) | 
|  | panic("Out of memory...\n"); | 
|  | seg->start = memory_chunk[i].addr; | 
|  | seg->size = memory_chunk[i].size; | 
|  | insert_memory_segment(seg); | 
|  | } | 
|  | mutex_unlock(&vmem_mutex); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | core_initcall(vmem_convert_memory_chunk); |