blob: 427c451be1a78d64b6ed7ca4e710ce4fddee2192 [file] [log] [blame]
/*
* Copyright (c) 2003-2008 Chelsio, Inc. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "common.h"
#include "regs.h"
#include "sge_defs.h"
#include "firmware_exports.h"
/**
* t3_wait_op_done_val - wait until an operation is completed
* @adapter: the adapter performing the operation
* @reg: the register to check for completion
* @mask: a single-bit field within @reg that indicates completion
* @polarity: the value of the field when the operation is completed
* @attempts: number of check iterations
* @delay: delay in usecs between iterations
* @valp: where to store the value of the register at completion time
*
* Wait until an operation is completed by checking a bit in a register
* up to @attempts times. If @valp is not NULL the value of the register
* at the time it indicated completion is stored there. Returns 0 if the
* operation completes and -EAGAIN otherwise.
*/
int t3_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
int polarity, int attempts, int delay, u32 *valp)
{
while (1) {
u32 val = t3_read_reg(adapter, reg);
if (!!(val & mask) == polarity) {
if (valp)
*valp = val;
return 0;
}
if (--attempts == 0)
return -EAGAIN;
if (delay)
udelay(delay);
}
}
/**
* t3_write_regs - write a bunch of registers
* @adapter: the adapter to program
* @p: an array of register address/register value pairs
* @n: the number of address/value pairs
* @offset: register address offset
*
* Takes an array of register address/register value pairs and writes each
* value to the corresponding register. Register addresses are adjusted
* by the supplied offset.
*/
void t3_write_regs(struct adapter *adapter, const struct addr_val_pair *p,
int n, unsigned int offset)
{
while (n--) {
t3_write_reg(adapter, p->reg_addr + offset, p->val);
p++;
}
}
/**
* t3_set_reg_field - set a register field to a value
* @adapter: the adapter to program
* @addr: the register address
* @mask: specifies the portion of the register to modify
* @val: the new value for the register field
*
* Sets a register field specified by the supplied mask to the
* given value.
*/
void t3_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
u32 val)
{
u32 v = t3_read_reg(adapter, addr) & ~mask;
t3_write_reg(adapter, addr, v | val);
t3_read_reg(adapter, addr); /* flush */
}
/**
* t3_read_indirect - read indirectly addressed registers
* @adap: the adapter
* @addr_reg: register holding the indirect address
* @data_reg: register holding the value of the indirect register
* @vals: where the read register values are stored
* @start_idx: index of first indirect register to read
* @nregs: how many indirect registers to read
*
* Reads registers that are accessed indirectly through an address/data
* register pair.
*/
static void t3_read_indirect(struct adapter *adap, unsigned int addr_reg,
unsigned int data_reg, u32 *vals,
unsigned int nregs, unsigned int start_idx)
{
while (nregs--) {
t3_write_reg(adap, addr_reg, start_idx);
*vals++ = t3_read_reg(adap, data_reg);
start_idx++;
}
}
/**
* t3_mc7_bd_read - read from MC7 through backdoor accesses
* @mc7: identifies MC7 to read from
* @start: index of first 64-bit word to read
* @n: number of 64-bit words to read
* @buf: where to store the read result
*
* Read n 64-bit words from MC7 starting at word start, using backdoor
* accesses.
*/
int t3_mc7_bd_read(struct mc7 *mc7, unsigned int start, unsigned int n,
u64 *buf)
{
static const int shift[] = { 0, 0, 16, 24 };
static const int step[] = { 0, 32, 16, 8 };
unsigned int size64 = mc7->size / 8; /* # of 64-bit words */
struct adapter *adap = mc7->adapter;
if (start >= size64 || start + n > size64)
return -EINVAL;
start *= (8 << mc7->width);
while (n--) {
int i;
u64 val64 = 0;
for (i = (1 << mc7->width) - 1; i >= 0; --i) {
int attempts = 10;
u32 val;
t3_write_reg(adap, mc7->offset + A_MC7_BD_ADDR, start);
t3_write_reg(adap, mc7->offset + A_MC7_BD_OP, 0);
val = t3_read_reg(adap, mc7->offset + A_MC7_BD_OP);
while ((val & F_BUSY) && attempts--)
val = t3_read_reg(adap,
mc7->offset + A_MC7_BD_OP);
if (val & F_BUSY)
return -EIO;
val = t3_read_reg(adap, mc7->offset + A_MC7_BD_DATA1);
if (mc7->width == 0) {
val64 = t3_read_reg(adap,
mc7->offset +
A_MC7_BD_DATA0);
val64 |= (u64) val << 32;
} else {
if (mc7->width > 1)
val >>= shift[mc7->width];
val64 |= (u64) val << (step[mc7->width] * i);
}
start += 8;
}
*buf++ = val64;
}
return 0;
}
/*
* Initialize MI1.
*/
static void mi1_init(struct adapter *adap, const struct adapter_info *ai)
{
u32 clkdiv = adap->params.vpd.cclk / (2 * adap->params.vpd.mdc) - 1;
u32 val = F_PREEN | V_CLKDIV(clkdiv);
t3_write_reg(adap, A_MI1_CFG, val);
}
#define MDIO_ATTEMPTS 20
/*
* MI1 read/write operations for clause 22 PHYs.
*/
static int t3_mi1_read(struct net_device *dev, int phy_addr, int mmd_addr,
u16 reg_addr)
{
struct port_info *pi = netdev_priv(dev);
struct adapter *adapter = pi->adapter;
int ret;
u32 addr = V_REGADDR(reg_addr) | V_PHYADDR(phy_addr);
mutex_lock(&adapter->mdio_lock);
t3_set_reg_field(adapter, A_MI1_CFG, V_ST(M_ST), V_ST(1));
t3_write_reg(adapter, A_MI1_ADDR, addr);
t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(2));
ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 10);
if (!ret)
ret = t3_read_reg(adapter, A_MI1_DATA);
mutex_unlock(&adapter->mdio_lock);
return ret;
}
static int t3_mi1_write(struct net_device *dev, int phy_addr, int mmd_addr,
u16 reg_addr, u16 val)
{
struct port_info *pi = netdev_priv(dev);
struct adapter *adapter = pi->adapter;
int ret;
u32 addr = V_REGADDR(reg_addr) | V_PHYADDR(phy_addr);
mutex_lock(&adapter->mdio_lock);
t3_set_reg_field(adapter, A_MI1_CFG, V_ST(M_ST), V_ST(1));
t3_write_reg(adapter, A_MI1_ADDR, addr);
t3_write_reg(adapter, A_MI1_DATA, val);
t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(1));
ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 10);
mutex_unlock(&adapter->mdio_lock);
return ret;
}
static const struct mdio_ops mi1_mdio_ops = {
.read = t3_mi1_read,
.write = t3_mi1_write,
.mode_support = MDIO_SUPPORTS_C22
};
/*
* Performs the address cycle for clause 45 PHYs.
* Must be called with the MDIO_LOCK held.
*/
static int mi1_wr_addr(struct adapter *adapter, int phy_addr, int mmd_addr,
int reg_addr)
{
u32 addr = V_REGADDR(mmd_addr) | V_PHYADDR(phy_addr);
t3_set_reg_field(adapter, A_MI1_CFG, V_ST(M_ST), 0);
t3_write_reg(adapter, A_MI1_ADDR, addr);
t3_write_reg(adapter, A_MI1_DATA, reg_addr);
t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(0));
return t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0,
MDIO_ATTEMPTS, 10);
}
/*
* MI1 read/write operations for indirect-addressed PHYs.
*/
static int mi1_ext_read(struct net_device *dev, int phy_addr, int mmd_addr,
u16 reg_addr)
{
struct port_info *pi = netdev_priv(dev);
struct adapter *adapter = pi->adapter;
int ret;
mutex_lock(&adapter->mdio_lock);
ret = mi1_wr_addr(adapter, phy_addr, mmd_addr, reg_addr);
if (!ret) {
t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(3));
ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0,
MDIO_ATTEMPTS, 10);
if (!ret)
ret = t3_read_reg(adapter, A_MI1_DATA);
}
mutex_unlock(&adapter->mdio_lock);
return ret;
}
static int mi1_ext_write(struct net_device *dev, int phy_addr, int mmd_addr,
u16 reg_addr, u16 val)
{
struct port_info *pi = netdev_priv(dev);
struct adapter *adapter = pi->adapter;
int ret;
mutex_lock(&adapter->mdio_lock);
ret = mi1_wr_addr(adapter, phy_addr, mmd_addr, reg_addr);
if (!ret) {
t3_write_reg(adapter, A_MI1_DATA, val);
t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(1));
ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0,
MDIO_ATTEMPTS, 10);
}
mutex_unlock(&adapter->mdio_lock);
return ret;
}
static const struct mdio_ops mi1_mdio_ext_ops = {
.read = mi1_ext_read,
.write = mi1_ext_write,
.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22
};
/**
* t3_mdio_change_bits - modify the value of a PHY register
* @phy: the PHY to operate on
* @mmd: the device address
* @reg: the register address
* @clear: what part of the register value to mask off
* @set: what part of the register value to set
*
* Changes the value of a PHY register by applying a mask to its current
* value and ORing the result with a new value.
*/
int t3_mdio_change_bits(struct cphy *phy, int mmd, int reg, unsigned int clear,
unsigned int set)
{
int ret;
unsigned int val;
ret = t3_mdio_read(phy, mmd, reg, &val);
if (!ret) {
val &= ~clear;
ret = t3_mdio_write(phy, mmd, reg, val | set);
}
return ret;
}
/**
* t3_phy_reset - reset a PHY block
* @phy: the PHY to operate on
* @mmd: the device address of the PHY block to reset
* @wait: how long to wait for the reset to complete in 1ms increments
*
* Resets a PHY block and optionally waits for the reset to complete.
* @mmd should be 0 for 10/100/1000 PHYs and the device address to reset
* for 10G PHYs.
*/
int t3_phy_reset(struct cphy *phy, int mmd, int wait)
{
int err;
unsigned int ctl;
err = t3_mdio_change_bits(phy, mmd, MDIO_CTRL1, MDIO_CTRL1_LPOWER,
MDIO_CTRL1_RESET);
if (err || !wait)
return err;
do {
err = t3_mdio_read(phy, mmd, MDIO_CTRL1, &ctl);
if (err)
return err;
ctl &= MDIO_CTRL1_RESET;
if (ctl)
msleep(1);
} while (ctl && --wait);
return ctl ? -1 : 0;
}
/**
* t3_phy_advertise - set the PHY advertisement registers for autoneg
* @phy: the PHY to operate on
* @advert: bitmap of capabilities the PHY should advertise
*
* Sets a 10/100/1000 PHY's advertisement registers to advertise the
* requested capabilities.
*/
int t3_phy_advertise(struct cphy *phy, unsigned int advert)
{
int err;
unsigned int val = 0;
err = t3_mdio_read(phy, MDIO_DEVAD_NONE, MII_CTRL1000, &val);
if (err)
return err;
val &= ~(ADVERTISE_1000HALF | ADVERTISE_1000FULL);
if (advert & ADVERTISED_1000baseT_Half)
val |= ADVERTISE_1000HALF;
if (advert & ADVERTISED_1000baseT_Full)
val |= ADVERTISE_1000FULL;
err = t3_mdio_write(phy, MDIO_DEVAD_NONE, MII_CTRL1000, val);
if (err)
return err;
val = 1;
if (advert & ADVERTISED_10baseT_Half)
val |= ADVERTISE_10HALF;
if (advert & ADVERTISED_10baseT_Full)
val |= ADVERTISE_10FULL;
if (advert & ADVERTISED_100baseT_Half)
val |= ADVERTISE_100HALF;
if (advert & ADVERTISED_100baseT_Full)
val |= ADVERTISE_100FULL;
if (advert & ADVERTISED_Pause)
val |= ADVERTISE_PAUSE_CAP;
if (advert & ADVERTISED_Asym_Pause)
val |= ADVERTISE_PAUSE_ASYM;
return t3_mdio_write(phy, MDIO_DEVAD_NONE, MII_ADVERTISE, val);
}
/**
* t3_phy_advertise_fiber - set fiber PHY advertisement register
* @phy: the PHY to operate on
* @advert: bitmap of capabilities the PHY should advertise
*
* Sets a fiber PHY's advertisement register to advertise the
* requested capabilities.
*/
int t3_phy_advertise_fiber(struct cphy *phy, unsigned int advert)
{
unsigned int val = 0;
if (advert & ADVERTISED_1000baseT_Half)
val |= ADVERTISE_1000XHALF;
if (advert & ADVERTISED_1000baseT_Full)
val |= ADVERTISE_1000XFULL;
if (advert & ADVERTISED_Pause)
val |= ADVERTISE_1000XPAUSE;
if (advert & ADVERTISED_Asym_Pause)
val |= ADVERTISE_1000XPSE_ASYM;
return t3_mdio_write(phy, MDIO_DEVAD_NONE, MII_ADVERTISE, val);
}
/**
* t3_set_phy_speed_duplex - force PHY speed and duplex
* @phy: the PHY to operate on
* @speed: requested PHY speed
* @duplex: requested PHY duplex
*
* Force a 10/100/1000 PHY's speed and duplex. This also disables
* auto-negotiation except for GigE, where auto-negotiation is mandatory.
*/
int t3_set_phy_speed_duplex(struct cphy *phy, int speed, int duplex)
{
int err;
unsigned int ctl;
err = t3_mdio_read(phy, MDIO_DEVAD_NONE, MII_BMCR, &ctl);
if (err)
return err;
if (speed >= 0) {
ctl &= ~(BMCR_SPEED100 | BMCR_SPEED1000 | BMCR_ANENABLE);
if (speed == SPEED_100)
ctl |= BMCR_SPEED100;
else if (speed == SPEED_1000)
ctl |= BMCR_SPEED1000;
}
if (duplex >= 0) {
ctl &= ~(BMCR_FULLDPLX | BMCR_ANENABLE);
if (duplex == DUPLEX_FULL)
ctl |= BMCR_FULLDPLX;
}
if (ctl & BMCR_SPEED1000) /* auto-negotiation required for GigE */
ctl |= BMCR_ANENABLE;
return t3_mdio_write(phy, MDIO_DEVAD_NONE, MII_BMCR, ctl);
}
int t3_phy_lasi_intr_enable(struct cphy *phy)
{
return t3_mdio_write(phy, MDIO_MMD_PMAPMD, MDIO_PMA_LASI_CTRL,
MDIO_PMA_LASI_LSALARM);
}
int t3_phy_lasi_intr_disable(struct cphy *phy)
{
return t3_mdio_write(phy, MDIO_MMD_PMAPMD, MDIO_PMA_LASI_CTRL, 0);
}
int t3_phy_lasi_intr_clear(struct cphy *phy)
{
u32 val;
return t3_mdio_read(phy, MDIO_MMD_PMAPMD, MDIO_PMA_LASI_STAT, &val);
}
int t3_phy_lasi_intr_handler(struct cphy *phy)
{
unsigned int status;
int err = t3_mdio_read(phy, MDIO_MMD_PMAPMD, MDIO_PMA_LASI_STAT,
&status);
if (err)
return err;
return (status & MDIO_PMA_LASI_LSALARM) ? cphy_cause_link_change : 0;
}
static const struct adapter_info t3_adap_info[] = {
{1, 1, 0,
F_GPIO2_OEN | F_GPIO4_OEN |
F_GPIO2_OUT_VAL | F_GPIO4_OUT_VAL, { S_GPIO3, S_GPIO5 }, 0,
&mi1_mdio_ops, "Chelsio PE9000"},
{1, 1, 0,
F_GPIO2_OEN | F_GPIO4_OEN |
F_GPIO2_OUT_VAL | F_GPIO4_OUT_VAL, { S_GPIO3, S_GPIO5 }, 0,
&mi1_mdio_ops, "Chelsio T302"},
{1, 0, 0,
F_GPIO1_OEN | F_GPIO6_OEN | F_GPIO7_OEN | F_GPIO10_OEN |
F_GPIO11_OEN | F_GPIO1_OUT_VAL | F_GPIO6_OUT_VAL | F_GPIO10_OUT_VAL,
{ 0 }, SUPPORTED_10000baseT_Full | SUPPORTED_AUI,
&mi1_mdio_ext_ops, "Chelsio T310"},
{1, 1, 0,
F_GPIO1_OEN | F_GPIO2_OEN | F_GPIO4_OEN | F_GPIO5_OEN | F_GPIO6_OEN |
F_GPIO7_OEN | F_GPIO10_OEN | F_GPIO11_OEN | F_GPIO1_OUT_VAL |
F_GPIO5_OUT_VAL | F_GPIO6_OUT_VAL | F_GPIO10_OUT_VAL,
{ S_GPIO9, S_GPIO3 }, SUPPORTED_10000baseT_Full | SUPPORTED_AUI,
&mi1_mdio_ext_ops, "Chelsio T320"},
{},
{},
{1, 0, 0,
F_GPIO1_OEN | F_GPIO2_OEN | F_GPIO4_OEN | F_GPIO6_OEN | F_GPIO7_OEN |
F_GPIO10_OEN | F_GPIO1_OUT_VAL | F_GPIO6_OUT_VAL | F_GPIO10_OUT_VAL,
{ S_GPIO9 }, SUPPORTED_10000baseT_Full | SUPPORTED_AUI,
&mi1_mdio_ext_ops, "Chelsio T310" },
{1, 0, 0,
F_GPIO1_OEN | F_GPIO6_OEN | F_GPIO7_OEN |
F_GPIO1_OUT_VAL | F_GPIO6_OUT_VAL,
{ S_GPIO9 }, SUPPORTED_10000baseT_Full | SUPPORTED_AUI,
&mi1_mdio_ext_ops, "Chelsio N320E-G2" },
};
/*
* Return the adapter_info structure with a given index. Out-of-range indices
* return NULL.
*/
const struct adapter_info *t3_get_adapter_info(unsigned int id)
{
return id < ARRAY_SIZE(t3_adap_info) ? &t3_adap_info[id] : NULL;
}
struct port_type_info {
int (*phy_prep)(struct cphy *phy, struct adapter *adapter,
int phy_addr, const struct mdio_ops *ops);
};
static const struct port_type_info port_types[] = {
{ NULL },
{ t3_ael1002_phy_prep },
{ t3_vsc8211_phy_prep },
{ NULL},
{ t3_xaui_direct_phy_prep },
{ t3_ael2005_phy_prep },
{ t3_qt2045_phy_prep },
{ t3_ael1006_phy_prep },
{ NULL },
{ t3_aq100x_phy_prep },
{ t3_ael2020_phy_prep },
};
#define VPD_ENTRY(name, len) \
u8 name##_kword[2]; u8 name##_len; u8 name##_data[len]
/*
* Partial EEPROM Vital Product Data structure. Includes only the ID and
* VPD-R sections.
*/
struct t3_vpd {
u8 id_tag;
u8 id_len[2];
u8 id_data[16];
u8 vpdr_tag;
u8 vpdr_len[2];
VPD_ENTRY(pn, 16); /* part number */
VPD_ENTRY(ec, 16); /* EC level */
VPD_ENTRY(sn, SERNUM_LEN); /* serial number */
VPD_ENTRY(na, 12); /* MAC address base */
VPD_ENTRY(cclk, 6); /* core clock */
VPD_ENTRY(mclk, 6); /* mem clock */
VPD_ENTRY(uclk, 6); /* uP clk */
VPD_ENTRY(mdc, 6); /* MDIO clk */
VPD_ENTRY(mt, 2); /* mem timing */
VPD_ENTRY(xaui0cfg, 6); /* XAUI0 config */
VPD_ENTRY(xaui1cfg, 6); /* XAUI1 config */
VPD_ENTRY(port0, 2); /* PHY0 complex */
VPD_ENTRY(port1, 2); /* PHY1 complex */
VPD_ENTRY(port2, 2); /* PHY2 complex */
VPD_ENTRY(port3, 2); /* PHY3 complex */
VPD_ENTRY(rv, 1); /* csum */
u32 pad; /* for multiple-of-4 sizing and alignment */
};
#define EEPROM_MAX_POLL 40
#define EEPROM_STAT_ADDR 0x4000
#define VPD_BASE 0xc00
/**
* t3_seeprom_read - read a VPD EEPROM location
* @adapter: adapter to read
* @addr: EEPROM address
* @data: where to store the read data
*
* Read a 32-bit word from a location in VPD EEPROM using the card's PCI
* VPD ROM capability. A zero is written to the flag bit when the
* addres is written to the control register. The hardware device will
* set the flag to 1 when 4 bytes have been read into the data register.
*/
int t3_seeprom_read(struct adapter *adapter, u32 addr, __le32 *data)
{
u16 val;
int attempts = EEPROM_MAX_POLL;
u32 v;
unsigned int base = adapter->params.pci.vpd_cap_addr;
if ((addr >= EEPROMSIZE && addr != EEPROM_STAT_ADDR) || (addr & 3))
return -EINVAL;
pci_write_config_word(adapter->pdev, base + PCI_VPD_ADDR, addr);
do {
udelay(10);
pci_read_config_word(adapter->pdev, base + PCI_VPD_ADDR, &val);
} while (!(val & PCI_VPD_ADDR_F) && --attempts);
if (!(val & PCI_VPD_ADDR_F)) {
CH_ERR(adapter, "reading EEPROM address 0x%x failed\n", addr);
return -EIO;
}
pci_read_config_dword(adapter->pdev, base + PCI_VPD_DATA, &v);
*data = cpu_to_le32(v);
return 0;
}
/**
* t3_seeprom_write - write a VPD EEPROM location
* @adapter: adapter to write
* @addr: EEPROM address
* @data: value to write
*
* Write a 32-bit word to a location in VPD EEPROM using the card's PCI
* VPD ROM capability.
*/
int t3_seeprom_write(struct adapter *adapter, u32 addr, __le32 data)
{
u16 val;
int attempts = EEPROM_MAX_POLL;
unsigned int base = adapter->params.pci.vpd_cap_addr;
if ((addr >= EEPROMSIZE && addr != EEPROM_STAT_ADDR) || (addr & 3))
return -EINVAL;
pci_write_config_dword(adapter->pdev, base + PCI_VPD_DATA,
le32_to_cpu(data));
pci_write_config_word(adapter->pdev,base + PCI_VPD_ADDR,
addr | PCI_VPD_ADDR_F);
do {
msleep(1);
pci_read_config_word(adapter->pdev, base + PCI_VPD_ADDR, &val);
} while ((val & PCI_VPD_ADDR_F) && --attempts);
if (val & PCI_VPD_ADDR_F) {
CH_ERR(adapter, "write to EEPROM address 0x%x failed\n", addr);
return -EIO;
}
return 0;
}
/**
* t3_seeprom_wp - enable/disable EEPROM write protection
* @adapter: the adapter
* @enable: 1 to enable write protection, 0 to disable it
*
* Enables or disables write protection on the serial EEPROM.
*/
int t3_seeprom_wp(struct adapter *adapter, int enable)
{
return t3_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
}
/**
* get_vpd_params - read VPD parameters from VPD EEPROM
* @adapter: adapter to read
* @p: where to store the parameters
*
* Reads card parameters stored in VPD EEPROM.
*/
static int get_vpd_params(struct adapter *adapter, struct vpd_params *p)
{
int i, addr, ret;
struct t3_vpd vpd;
/*
* Card information is normally at VPD_BASE but some early cards had
* it at 0.
*/
ret = t3_seeprom_read(adapter, VPD_BASE, (__le32 *)&vpd);
if (ret)
return ret;
addr = vpd.id_tag == 0x82 ? VPD_BASE : 0;
for (i = 0; i < sizeof(vpd); i += 4) {
ret = t3_seeprom_read(adapter, addr + i,
(__le32 *)((u8 *)&vpd + i));
if (ret)
return ret;
}
p->cclk = simple_strtoul(vpd.cclk_data, NULL, 10);
p->mclk = simple_strtoul(vpd.mclk_data, NULL, 10);
p->uclk = simple_strtoul(vpd.uclk_data, NULL, 10);
p->mdc = simple_strtoul(vpd.mdc_data, NULL, 10);
p->mem_timing = simple_strtoul(vpd.mt_data, NULL, 10);
memcpy(p->sn, vpd.sn_data, SERNUM_LEN);
/* Old eeproms didn't have port information */
if (adapter->params.rev == 0 && !vpd.port0_data[0]) {
p->port_type[0] = uses_xaui(adapter) ? 1 : 2;
p->port_type[1] = uses_xaui(adapter) ? 6 : 2;
} else {
p->port_type[0] = hex_to_bin(vpd.port0_data[0]);
p->port_type[1] = hex_to_bin(vpd.port1_data[0]);
p->xauicfg[0] = simple_strtoul(vpd.xaui0cfg_data, NULL, 16);
p->xauicfg[1] = simple_strtoul(vpd.xaui1cfg_data, NULL, 16);
}
for (i = 0; i < 6; i++)
p->eth_base[i] = hex_to_bin(vpd.na_data[2 * i]) * 16 +
hex_to_bin(vpd.na_data[2 * i + 1]);
return 0;
}
/* serial flash and firmware constants */
enum {
SF_ATTEMPTS = 5, /* max retries for SF1 operations */
SF_SEC_SIZE = 64 * 1024, /* serial flash sector size */
SF_SIZE = SF_SEC_SIZE * 8, /* serial flash size */
/* flash command opcodes */
SF_PROG_PAGE = 2, /* program page */
SF_WR_DISABLE = 4, /* disable writes */
SF_RD_STATUS = 5, /* read status register */
SF_WR_ENABLE = 6, /* enable writes */
SF_RD_DATA_FAST = 0xb, /* read flash */
SF_ERASE_SECTOR = 0xd8, /* erase sector */
FW_FLASH_BOOT_ADDR = 0x70000, /* start address of FW in flash */
FW_VERS_ADDR = 0x7fffc, /* flash address holding FW version */
FW_MIN_SIZE = 8 /* at least version and csum */
};
/**
* sf1_read - read data from the serial flash
* @adapter: the adapter
* @byte_cnt: number of bytes to read
* @cont: whether another operation will be chained
* @valp: where to store the read data
*
* Reads up to 4 bytes of data from the serial flash. The location of
* the read needs to be specified prior to calling this by issuing the
* appropriate commands to the serial flash.
*/
static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
u32 *valp)
{
int ret;
if (!byte_cnt || byte_cnt > 4)
return -EINVAL;
if (t3_read_reg(adapter, A_SF_OP) & F_BUSY)
return -EBUSY;
t3_write_reg(adapter, A_SF_OP, V_CONT(cont) | V_BYTECNT(byte_cnt - 1));
ret = t3_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 10);
if (!ret)
*valp = t3_read_reg(adapter, A_SF_DATA);
return ret;
}
/**
* sf1_write - write data to the serial flash
* @adapter: the adapter
* @byte_cnt: number of bytes to write
* @cont: whether another operation will be chained
* @val: value to write
*
* Writes up to 4 bytes of data to the serial flash. The location of
* the write needs to be specified prior to calling this by issuing the
* appropriate commands to the serial flash.
*/
static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
u32 val)
{
if (!byte_cnt || byte_cnt > 4)
return -EINVAL;
if (t3_read_reg(adapter, A_SF_OP) & F_BUSY)
return -EBUSY;
t3_write_reg(adapter, A_SF_DATA, val);
t3_write_reg(adapter, A_SF_OP,
V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
return t3_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 10);
}
/**
* flash_wait_op - wait for a flash operation to complete
* @adapter: the adapter
* @attempts: max number of polls of the status register
* @delay: delay between polls in ms
*
* Wait for a flash operation to complete by polling the status register.
*/
static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
{
int ret;
u32 status;
while (1) {
if ((ret = sf1_write(adapter, 1, 1, SF_RD_STATUS)) != 0 ||
(ret = sf1_read(adapter, 1, 0, &status)) != 0)
return ret;
if (!(status & 1))
return 0;
if (--attempts == 0)
return -EAGAIN;
if (delay)
msleep(delay);
}
}
/**
* t3_read_flash - read words from serial flash
* @adapter: the adapter
* @addr: the start address for the read
* @nwords: how many 32-bit words to read
* @data: where to store the read data
* @byte_oriented: whether to store data as bytes or as words
*
* Read the specified number of 32-bit words from the serial flash.
* If @byte_oriented is set the read data is stored as a byte array
* (i.e., big-endian), otherwise as 32-bit words in the platform's
* natural endianess.
*/
int t3_read_flash(struct adapter *adapter, unsigned int addr,
unsigned int nwords, u32 *data, int byte_oriented)
{
int ret;
if (addr + nwords * sizeof(u32) > SF_SIZE || (addr & 3))
return -EINVAL;
addr = swab32(addr) | SF_RD_DATA_FAST;
if ((ret = sf1_write(adapter, 4, 1, addr)) != 0 ||
(ret = sf1_read(adapter, 1, 1, data)) != 0)
return ret;
for (; nwords; nwords--, data++) {
ret = sf1_read(adapter, 4, nwords > 1, data);
if (ret)
return ret;
if (byte_oriented)
*data = htonl(*data);
}
return 0;
}
/**
* t3_write_flash - write up to a page of data to the serial flash
* @adapter: the adapter
* @addr: the start address to write
* @n: length of data to write
* @data: the data to write
*
* Writes up to a page of data (256 bytes) to the serial flash starting
* at the given address.
*/
static int t3_write_flash(struct adapter *adapter, unsigned int addr,
unsigned int n, const u8 *data)
{
int ret;
u32 buf[64];
unsigned int i, c, left, val, offset = addr & 0xff;
if (addr + n > SF_SIZE || offset + n > 256)
return -EINVAL;
val = swab32(addr) | SF_PROG_PAGE;
if ((ret = sf1_write(adapter, 1, 0, SF_WR_ENABLE)) != 0 ||
(ret = sf1_write(adapter, 4, 1, val)) != 0)
return ret;
for (left = n; left; left -= c) {
c = min(left, 4U);
for (val = 0, i = 0; i < c; ++i)
val = (val << 8) + *data++;
ret = sf1_write(adapter, c, c != left, val);
if (ret)
return ret;
}
if ((ret = flash_wait_op(adapter, 5, 1)) != 0)
return ret;
/* Read the page to verify the write succeeded */
ret = t3_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
if (ret)
return ret;
if (memcmp(data - n, (u8 *) buf + offset, n))
return -EIO;
return 0;
}
/**
* t3_get_tp_version - read the tp sram version
* @adapter: the adapter
* @vers: where to place the version
*
* Reads the protocol sram version from sram.
*/
int t3_get_tp_version(struct adapter *adapter, u32 *vers)
{
int ret;
/* Get version loaded in SRAM */
t3_write_reg(adapter, A_TP_EMBED_OP_FIELD0, 0);
ret = t3_wait_op_done(adapter, A_TP_EMBED_OP_FIELD0,
1, 1, 5, 1);
if (ret)
return ret;
*vers = t3_read_reg(adapter, A_TP_EMBED_OP_FIELD1);
return 0;
}
/**
* t3_check_tpsram_version - read the tp sram version
* @adapter: the adapter
*
* Reads the protocol sram version from flash.
*/
int t3_check_tpsram_version(struct adapter *adapter)
{
int ret;
u32 vers;
unsigned int major, minor;
if (adapter->params.rev == T3_REV_A)
return 0;
ret = t3_get_tp_version(adapter, &vers);
if (ret)
return ret;
major = G_TP_VERSION_MAJOR(vers);
minor = G_TP_VERSION_MINOR(vers);
if (major == TP_VERSION_MAJOR && minor == TP_VERSION_MINOR)
return 0;
else {
CH_ERR(adapter, "found wrong TP version (%u.%u), "
"driver compiled for version %d.%d\n", major, minor,
TP_VERSION_MAJOR, TP_VERSION_MINOR);
}
return -EINVAL;
}
/**
* t3_check_tpsram - check if provided protocol SRAM
* is compatible with this driver
* @adapter: the adapter
* @tp_sram: the firmware image to write
* @size: image size
*
* Checks if an adapter's tp sram is compatible with the driver.
* Returns 0 if the versions are compatible, a negative error otherwise.
*/
int t3_check_tpsram(struct adapter *adapter, const u8 *tp_sram,
unsigned int size)
{
u32 csum;
unsigned int i;
const __be32 *p = (const __be32 *)tp_sram;
/* Verify checksum */
for (csum = 0, i = 0; i < size / sizeof(csum); i++)
csum += ntohl(p[i]);
if (csum != 0xffffffff) {
CH_ERR(adapter, "corrupted protocol SRAM image, checksum %u\n",
csum);
return -EINVAL;
}
return 0;
}
enum fw_version_type {
FW_VERSION_N3,
FW_VERSION_T3
};
/**
* t3_get_fw_version - read the firmware version
* @adapter: the adapter
* @vers: where to place the version
*
* Reads the FW version from flash.
*/
int t3_get_fw_version(struct adapter *adapter, u32 *vers)
{
return t3_read_flash(adapter, FW_VERS_ADDR, 1, vers, 0);
}
/**
* t3_check_fw_version - check if the FW is compatible with this driver
* @adapter: the adapter
*
* Checks if an adapter's FW is compatible with the driver. Returns 0
* if the versions are compatible, a negative error otherwise.
*/
int t3_check_fw_version(struct adapter *adapter)
{
int ret;
u32 vers;
unsigned int type, major, minor;
ret = t3_get_fw_version(adapter, &vers);
if (ret)
return ret;
type = G_FW_VERSION_TYPE(vers);
major = G_FW_VERSION_MAJOR(vers);
minor = G_FW_VERSION_MINOR(vers);
if (type == FW_VERSION_T3 && major == FW_VERSION_MAJOR &&
minor == FW_VERSION_MINOR)
return 0;
else if (major != FW_VERSION_MAJOR || minor < FW_VERSION_MINOR)
CH_WARN(adapter, "found old FW minor version(%u.%u), "
"driver compiled for version %u.%u\n", major, minor,
FW_VERSION_MAJOR, FW_VERSION_MINOR);
else {
CH_WARN(adapter, "found newer FW version(%u.%u), "
"driver compiled for version %u.%u\n", major, minor,
FW_VERSION_MAJOR, FW_VERSION_MINOR);
return 0;
}
return -EINVAL;
}
/**
* t3_flash_erase_sectors - erase a range of flash sectors
* @adapter: the adapter
* @start: the first sector to erase
* @end: the last sector to erase
*
* Erases the sectors in the given range.
*/
static int t3_flash_erase_sectors(struct adapter *adapter, int start, int end)
{
while (start <= end) {
int ret;
if ((ret = sf1_write(adapter, 1, 0, SF_WR_ENABLE)) != 0 ||
(ret = sf1_write(adapter, 4, 0,
SF_ERASE_SECTOR | (start << 8))) != 0 ||
(ret = flash_wait_op(adapter, 5, 500)) != 0)
return ret;
start++;
}
return 0;
}
/*
* t3_load_fw - download firmware
* @adapter: the adapter
* @fw_data: the firmware image to write
* @size: image size
*
* Write the supplied firmware image to the card's serial flash.
* The FW image has the following sections: @size - 8 bytes of code and
* data, followed by 4 bytes of FW version, followed by the 32-bit
* 1's complement checksum of the whole image.
*/
int t3_load_fw(struct adapter *adapter, const u8 *fw_data, unsigned int size)
{
u32 csum;
unsigned int i;
const __be32 *p = (const __be32 *)fw_data;
int ret, addr, fw_sector = FW_FLASH_BOOT_ADDR >> 16;
if ((size & 3) || size < FW_MIN_SIZE)
return -EINVAL;
if (size > FW_VERS_ADDR + 8 - FW_FLASH_BOOT_ADDR)
return -EFBIG;
for (csum = 0, i = 0; i < size / sizeof(csum); i++)
csum += ntohl(p[i]);
if (csum != 0xffffffff) {
CH_ERR(adapter, "corrupted firmware image, checksum %u\n",
csum);
return -EINVAL;
}
ret = t3_flash_erase_sectors(adapter, fw_sector, fw_sector);
if (ret)
goto out;
size -= 8; /* trim off version and checksum */
for (addr = FW_FLASH_BOOT_ADDR; size;) {
unsigned int chunk_size = min(size, 256U);
ret = t3_write_flash(adapter, addr, chunk_size, fw_data);
if (ret)
goto out;
addr += chunk_size;
fw_data += chunk_size;
size -= chunk_size;
}
ret = t3_write_flash(adapter, FW_VERS_ADDR, 4, fw_data);
out:
if (ret)
CH_ERR(adapter, "firmware download failed, error %d\n", ret);
return ret;
}
#define CIM_CTL_BASE 0x2000
/**
* t3_cim_ctl_blk_read - read a block from CIM control region
*
* @adap: the adapter
* @addr: the start address within the CIM control region
* @n: number of words to read
* @valp: where to store the result
*
* Reads a block of 4-byte words from the CIM control region.
*/
int t3_cim_ctl_blk_read(struct adapter *adap, unsigned int addr,
unsigned int n, unsigned int *valp)
{
int ret = 0;
if (t3_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
return -EBUSY;
for ( ; !ret && n--; addr += 4) {
t3_write_reg(adap, A_CIM_HOST_ACC_CTRL, CIM_CTL_BASE + addr);
ret = t3_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
0, 5, 2);
if (!ret)
*valp++ = t3_read_reg(adap, A_CIM_HOST_ACC_DATA);
}
return ret;
}
static void t3_gate_rx_traffic(struct cmac *mac, u32 *rx_cfg,
u32 *rx_hash_high, u32 *rx_hash_low)
{
/* stop Rx unicast traffic */
t3_mac_disable_exact_filters(mac);
/* stop broadcast, multicast, promiscuous mode traffic */
*rx_cfg = t3_read_reg(mac->adapter, A_XGM_RX_CFG);
t3_set_reg_field(mac->adapter, A_XGM_RX_CFG,
F_ENHASHMCAST | F_DISBCAST | F_COPYALLFRAMES,
F_DISBCAST);
*rx_hash_high = t3_read_reg(mac->adapter, A_XGM_RX_HASH_HIGH);
t3_write_reg(mac->adapter, A_XGM_RX_HASH_HIGH, 0);
*rx_hash_low = t3_read_reg(mac->adapter, A_XGM_RX_HASH_LOW);
t3_write_reg(mac->adapter, A_XGM_RX_HASH_LOW, 0);
/* Leave time to drain max RX fifo */
msleep(1);
}
static void t3_open_rx_traffic(struct cmac *mac, u32 rx_cfg,
u32 rx_hash_high, u32 rx_hash_low)
{
t3_mac_enable_exact_filters(mac);
t3_set_reg_field(mac->adapter, A_XGM_RX_CFG,
F_ENHASHMCAST | F_DISBCAST | F_COPYALLFRAMES,
rx_cfg);
t3_write_reg(mac->adapter, A_XGM_RX_HASH_HIGH, rx_hash_high);
t3_write_reg(mac->adapter, A_XGM_RX_HASH_LOW, rx_hash_low);
}
/**
* t3_link_changed - handle interface link changes
* @adapter: the adapter
* @port_id: the port index that changed link state
*
* Called when a port's link settings change to propagate the new values
* to the associated PHY and MAC. After performing the common tasks it
* invokes an OS-specific handler.
*/
void t3_link_changed(struct adapter *adapter, int port_id)
{
int link_ok, speed, duplex, fc;
struct port_info *pi = adap2pinfo(adapter, port_id);
struct cphy *phy = &pi->phy;
struct cmac *mac = &pi->mac;
struct link_config *lc = &pi->link_config;
phy->ops->get_link_status(phy, &link_ok, &speed, &duplex, &fc);
if (!lc->link_ok && link_ok) {
u32 rx_cfg, rx_hash_high, rx_hash_low;
u32 status;
t3_xgm_intr_enable(adapter, port_id);
t3_gate_rx_traffic(mac, &rx_cfg, &rx_hash_high, &rx_hash_low);
t3_write_reg(adapter, A_XGM_RX_CTRL + mac->offset, 0);
t3_mac_enable(mac, MAC_DIRECTION_RX);
status = t3_read_reg(adapter, A_XGM_INT_STATUS + mac->offset);
if (status & F_LINKFAULTCHANGE) {
mac->stats.link_faults++;
pi->link_fault = 1;
}
t3_open_rx_traffic(mac, rx_cfg, rx_hash_high, rx_hash_low);
}
if (lc->requested_fc & PAUSE_AUTONEG)
fc &= lc->requested_fc;
else
fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
if (link_ok == lc->link_ok && speed == lc->speed &&
duplex == lc->duplex && fc == lc->fc)
return; /* nothing changed */
if (link_ok != lc->link_ok && adapter->params.rev > 0 &&
uses_xaui(adapter)) {
if (link_ok)
t3b_pcs_reset(mac);
t3_write_reg(adapter, A_XGM_XAUI_ACT_CTRL + mac->offset,
link_ok ? F_TXACTENABLE | F_RXEN : 0);
}
lc->link_ok = link_ok;
lc->speed = speed < 0 ? SPEED_INVALID : speed;
lc->duplex = duplex < 0 ? DUPLEX_INVALID : duplex;
if (link_ok && speed >= 0 && lc->autoneg == AUTONEG_ENABLE) {
/* Set MAC speed, duplex, and flow control to match PHY. */
t3_mac_set_speed_duplex_fc(mac, speed, duplex, fc);
lc->fc = fc;
}
t3_os_link_changed(adapter, port_id, link_ok && !pi->link_fault,
speed, duplex, fc);
}
void t3_link_fault(struct adapter *adapter, int port_id)
{
struct port_info *pi = adap2pinfo(adapter, port_id);
struct cmac *mac = &pi->mac;
struct cphy *phy = &pi->phy;
struct link_config *lc = &pi->link_config;
int link_ok, speed, duplex, fc, link_fault;
u32 rx_cfg, rx_hash_high, rx_hash_low;
t3_gate_rx_traffic(mac, &rx_cfg, &rx_hash_high, &rx_hash_low);
if (adapter->params.rev > 0 && uses_xaui(adapter))
t3_write_reg(adapter, A_XGM_XAUI_ACT_CTRL + mac->offset, 0);
t3_write_reg(adapter, A_XGM_RX_CTRL + mac->offset, 0);
t3_mac_enable(mac, MAC_DIRECTION_RX);
t3_open_rx_traffic(mac, rx_cfg, rx_hash_high, rx_hash_low);
link_fault = t3_read_reg(adapter,
A_XGM_INT_STATUS + mac->offset);
link_fault &= F_LINKFAULTCHANGE;
link_ok = lc->link_ok;
speed = lc->speed;
duplex = lc->duplex;
fc = lc->fc;
phy->ops->get_link_status(phy, &link_ok, &speed, &duplex, &fc);
if (link_fault) {
lc->link_ok = 0;
lc->speed = SPEED_INVALID;
lc->duplex = DUPLEX_INVALID;
t3_os_link_fault(adapter, port_id, 0);
/* Account link faults only when the phy reports a link up */
if (link_ok)
mac->stats.link_faults++;
} else {
if (link_ok)
t3_write_reg(adapter, A_XGM_XAUI_ACT_CTRL + mac->offset,
F_TXACTENABLE | F_RXEN);
pi->link_fault = 0;
lc->link_ok = (unsigned char)link_ok;
lc->speed = speed < 0 ? SPEED_INVALID : speed;
lc->duplex = duplex < 0 ? DUPLEX_INVALID : duplex;
t3_os_link_fault(adapter, port_id, link_ok);
}
}
/**
* t3_link_start - apply link configuration to MAC/PHY
* @phy: the PHY to setup
* @mac: the MAC to setup
* @lc: the requested link configuration
*
* Set up a port's MAC and PHY according to a desired link configuration.
* - If the PHY can auto-negotiate first decide what to advertise, then
* enable/disable auto-negotiation as desired, and reset.
* - If the PHY does not auto-negotiate just reset it.
* - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
* otherwise do it later based on the outcome of auto-negotiation.
*/
int t3_link_start(struct cphy *phy, struct cmac *mac, struct link_config *lc)
{
unsigned int fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
lc->link_ok = 0;
if (lc->supported & SUPPORTED_Autoneg) {
lc->advertising &= ~(ADVERTISED_Asym_Pause | ADVERTISED_Pause);
if (fc) {
lc->advertising |= ADVERTISED_Asym_Pause;
if (fc & PAUSE_RX)
lc->advertising |= ADVERTISED_Pause;
}
phy->ops->advertise(phy, lc->advertising);
if (lc->autoneg == AUTONEG_DISABLE) {
lc->speed = lc->requested_speed;
lc->duplex = lc->requested_duplex;
lc->fc = (unsigned char)fc;
t3_mac_set_speed_duplex_fc(mac, lc->speed, lc->duplex,
fc);
/* Also disables autoneg */
phy->ops->set_speed_duplex(phy, lc->speed, lc->duplex);
} else
phy->ops->autoneg_enable(phy);
} else {
t3_mac_set_speed_duplex_fc(mac, -1, -1, fc);
lc->fc = (unsigned char)fc;
phy->ops->reset(phy, 0);
}
return 0;
}
/**
* t3_set_vlan_accel - control HW VLAN extraction
* @adapter: the adapter
* @ports: bitmap of adapter ports to operate on
* @on: enable (1) or disable (0) HW VLAN extraction
*
* Enables or disables HW extraction of VLAN tags for the given port.
*/
void t3_set_vlan_accel(struct adapter *adapter, unsigned int ports, int on)
{
t3_set_reg_field(adapter, A_TP_OUT_CONFIG,
ports << S_VLANEXTRACTIONENABLE,
on ? (ports << S_VLANEXTRACTIONENABLE) : 0);
}
struct intr_info {
unsigned int mask; /* bits to check in interrupt status */
const char *msg; /* message to print or NULL */
short stat_idx; /* stat counter to increment or -1 */
unsigned short fatal; /* whether the condition reported is fatal */
};
/**
* t3_handle_intr_status - table driven interrupt handler
* @adapter: the adapter that generated the interrupt
* @reg: the interrupt status register to process
* @mask: a mask to apply to the interrupt status
* @acts: table of interrupt actions
* @stats: statistics counters tracking interrupt occurences
*
* A table driven interrupt handler that applies a set of masks to an
* interrupt status word and performs the corresponding actions if the
* interrupts described by the mask have occured. The actions include
* optionally printing a warning or alert message, and optionally
* incrementing a stat counter. The table is terminated by an entry
* specifying mask 0. Returns the number of fatal interrupt conditions.
*/
static int t3_handle_intr_status(struct adapter *adapter, unsigned int reg,
unsigned int mask,
const struct intr_info *acts,
unsigned long *stats)
{
int fatal = 0;
unsigned int status = t3_read_reg(adapter, reg) & mask;
for (; acts->mask; ++acts) {
if (!(status & acts->mask))
continue;
if (acts->fatal) {
fatal++;
CH_ALERT(adapter, "%s (0x%x)\n",
acts->msg, status & acts->mask);
} else if (acts->msg)
CH_WARN(adapter, "%s (0x%x)\n",
acts->msg, status & acts->mask);
if (acts->stat_idx >= 0)
stats[acts->stat_idx]++;
}
if (status) /* clear processed interrupts */
t3_write_reg(adapter, reg, status);
return fatal;
}
#define SGE_INTR_MASK (F_RSPQDISABLED | \
F_UC_REQ_FRAMINGERROR | F_R_REQ_FRAMINGERROR | \
F_CPPARITYERROR | F_OCPARITYERROR | F_RCPARITYERROR | \
F_IRPARITYERROR | V_ITPARITYERROR(M_ITPARITYERROR) | \
V_FLPARITYERROR(M_FLPARITYERROR) | F_LODRBPARITYERROR | \
F_HIDRBPARITYERROR | F_LORCQPARITYERROR | \
F_HIRCQPARITYERROR | F_LOPRIORITYDBFULL | \
F_HIPRIORITYDBFULL | F_LOPRIORITYDBEMPTY | \
F_HIPRIORITYDBEMPTY | F_HIPIODRBDROPERR | \
F_LOPIODRBDROPERR)
#define MC5_INTR_MASK (F_PARITYERR | F_ACTRGNFULL | F_UNKNOWNCMD | \
F_REQQPARERR | F_DISPQPARERR | F_DELACTEMPTY | \
F_NFASRCHFAIL)
#define MC7_INTR_MASK (F_AE | F_UE | F_CE | V_PE(M_PE))
#define XGM_INTR_MASK (V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR) | \
V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR) | \
F_TXFIFO_UNDERRUN)
#define PCIX_INTR_MASK (F_MSTDETPARERR | F_SIGTARABT | F_RCVTARABT | \
F_RCVMSTABT | F_SIGSYSERR | F_DETPARERR | \
F_SPLCMPDIS | F_UNXSPLCMP | F_RCVSPLCMPERR | \
F_DETCORECCERR | F_DETUNCECCERR | F_PIOPARERR | \
V_WFPARERR(M_WFPARERR) | V_RFPARERR(M_RFPARERR) | \
V_CFPARERR(M_CFPARERR) /* | V_MSIXPARERR(M_MSIXPARERR) */)
#define PCIE_INTR_MASK (F_UNXSPLCPLERRR | F_UNXSPLCPLERRC | F_PCIE_PIOPARERR |\
F_PCIE_WFPARERR | F_PCIE_RFPARERR | F_PCIE_CFPARERR | \
/* V_PCIE_MSIXPARERR(M_PCIE_MSIXPARERR) | */ \
F_RETRYBUFPARERR | F_RETRYLUTPARERR | F_RXPARERR | \
F_TXPARERR | V_BISTERR(M_BISTERR))
#define ULPRX_INTR_MASK (F_PARERRDATA | F_PARERRPCMD | F_ARBPF1PERR | \
F_ARBPF0PERR | F_ARBFPERR | F_PCMDMUXPERR | \
F_DATASELFRAMEERR1 | F_DATASELFRAMEERR0)
#define ULPTX_INTR_MASK 0xfc
#define CPLSW_INTR_MASK (F_CIM_OP_MAP_PERR | F_TP_FRAMING_ERROR | \
F_SGE_FRAMING_ERROR | F_CIM_FRAMING_ERROR | \
F_ZERO_SWITCH_ERROR)
#define CIM_INTR_MASK (F_BLKWRPLINT | F_BLKRDPLINT | F_BLKWRCTLINT | \
F_BLKRDCTLINT | F_BLKWRFLASHINT | F_BLKRDFLASHINT | \
F_SGLWRFLASHINT | F_WRBLKFLASHINT | F_BLKWRBOOTINT | \
F_FLASHRANGEINT | F_SDRAMRANGEINT | F_RSVDSPACEINT | \
F_DRAMPARERR | F_ICACHEPARERR | F_DCACHEPARERR | \
F_OBQSGEPARERR | F_OBQULPHIPARERR | F_OBQULPLOPARERR | \
F_IBQSGELOPARERR | F_IBQSGEHIPARERR | F_IBQULPPARERR | \
F_IBQTPPARERR | F_ITAGPARERR | F_DTAGPARERR)
#define PMTX_INTR_MASK (F_ZERO_C_CMD_ERROR | ICSPI_FRM_ERR | OESPI_FRM_ERR | \
V_ICSPI_PAR_ERROR(M_ICSPI_PAR_ERROR) | \
V_OESPI_PAR_ERROR(M_OESPI_PAR_ERROR))
#define PMRX_INTR_MASK (F_ZERO_E_CMD_ERROR | IESPI_FRM_ERR | OCSPI_FRM_ERR | \
V_IESPI_PAR_ERROR(M_IESPI_PAR_ERROR) | \
V_OCSPI_PAR_ERROR(M_OCSPI_PAR_ERROR))
#define MPS_INTR_MASK (V_TX0TPPARERRENB(M_TX0TPPARERRENB) | \
V_TX1TPPARERRENB(M_TX1TPPARERRENB) | \
V_RXTPPARERRENB(M_RXTPPARERRENB) | \
V_MCAPARERRENB(M_MCAPARERRENB))
#define XGM_EXTRA_INTR_MASK (F_LINKFAULTCHANGE)
#define PL_INTR_MASK (F_T3DBG | F_XGMAC0_0 | F_XGMAC0_1 | F_MC5A | F_PM1_TX | \
F_PM1_RX | F_ULP2_TX | F_ULP2_RX | F_TP1 | F_CIM | \
F_MC7_CM | F_MC7_PMTX | F_MC7_PMRX | F_SGE3 | F_PCIM0 | \
F_MPS0 | F_CPL_SWITCH)
/*
* Interrupt handler for the PCIX1 module.
*/
static void pci_intr_handler(struct adapter *adapter)
{
static const struct intr_info pcix1_intr_info[] = {
{F_MSTDETPARERR, "PCI master detected parity error", -1, 1},
{F_SIGTARABT, "PCI signaled target abort", -1, 1},
{F_RCVTARABT, "PCI received target abort", -1, 1},
{F_RCVMSTABT, "PCI received master abort", -1, 1},
{F_SIGSYSERR, "PCI signaled system error", -1, 1},
{F_DETPARERR, "PCI detected parity error", -1, 1},
{F_SPLCMPDIS, "PCI split completion discarded", -1, 1},
{F_UNXSPLCMP, "PCI unexpected split completion error", -1, 1},
{F_RCVSPLCMPERR, "PCI received split completion error", -1,
1},
{F_DETCORECCERR, "PCI correctable ECC error",
STAT_PCI_CORR_ECC, 0},
{F_DETUNCECCERR, "PCI uncorrectable ECC error", -1, 1},
{F_PIOPARERR, "PCI PIO FIFO parity error", -1, 1},
{V_WFPARERR(M_WFPARERR), "PCI write FIFO parity error", -1,
1},
{V_RFPARERR(M_RFPARERR), "PCI read FIFO parity error", -1,
1},
{V_CFPARERR(M_CFPARERR), "PCI command FIFO parity error", -1,
1},
{V_MSIXPARERR(M_MSIXPARERR), "PCI MSI-X table/PBA parity "
"error", -1, 1},
{0}
};
if (t3_handle_intr_status(adapter, A_PCIX_INT_CAUSE, PCIX_INTR_MASK,
pcix1_intr_info, adapter->irq_stats))
t3_fatal_err(adapter);
}
/*
* Interrupt handler for the PCIE module.
*/
static void pcie_intr_handler(struct adapter *adapter)
{
static const struct intr_info pcie_intr_info[] = {
{F_PEXERR, "PCI PEX error", -1, 1},
{F_UNXSPLCPLERRR,
"PCI unexpected split completion DMA read error", -1, 1},
{F_UNXSPLCPLERRC,
"PCI unexpected split completion DMA command error", -1, 1},
{F_PCIE_PIOPARERR, "PCI PIO FIFO parity error", -1, 1},
{F_PCIE_WFPARERR, "PCI write FIFO parity error", -1, 1},
{F_PCIE_RFPARERR, "PCI read FIFO parity error", -1, 1},
{F_PCIE_CFPARERR, "PCI command FIFO parity error", -1, 1},
{V_PCIE_MSIXPARERR(M_PCIE_MSIXPARERR),
"PCI MSI-X table/PBA parity error", -1, 1},
{F_RETRYBUFPARERR, "PCI retry buffer parity error", -1, 1},
{F_RETRYLUTPARERR, "PCI retry LUT parity error", -1, 1},
{F_RXPARERR, "PCI Rx parity error", -1, 1},
{F_TXPARERR, "PCI Tx parity error", -1, 1},
{V_BISTERR(M_BISTERR), "PCI BIST error", -1, 1},
{0}
};
if (t3_read_reg(adapter, A_PCIE_INT_CAUSE) & F_PEXERR)
CH_ALERT(adapter, "PEX error code 0x%x\n",
t3_read_reg(adapter, A_PCIE_PEX_ERR));
if (t3_handle_intr_status(adapter, A_PCIE_INT_CAUSE, PCIE_INTR_MASK,
pcie_intr_info, adapter->irq_stats))
t3_fatal_err(adapter);
}
/*
* TP interrupt handler.
*/
static void tp_intr_handler(struct adapter *adapter)
{
static const struct intr_info tp_intr_info[] = {
{0xffffff, "TP parity error", -1, 1},
{0x1000000, "TP out of Rx pages", -1, 1},
{0x2000000, "TP out of Tx pages", -1, 1},
{0}
};
static struct intr_info tp_intr_info_t3c[] = {
{0x1fffffff, "TP parity error", -1, 1},
{F_FLMRXFLSTEMPTY, "TP out of Rx pages", -1, 1},
{F_FLMTXFLSTEMPTY, "TP out of Tx pages", -1, 1},
{0}
};
if (t3_handle_intr_status(adapter, A_TP_INT_CAUSE, 0xffffffff,
adapter->params.rev < T3_REV_C ?
tp_intr_info : tp_intr_info_t3c, NULL))
t3_fatal_err(adapter);
}
/*
* CIM interrupt handler.
*/
static void cim_intr_handler(struct adapter *adapter)
{
static const struct intr_info cim_intr_info[] = {
{F_RSVDSPACEINT, "CIM reserved space write", -1, 1},
{F_SDRAMRANGEINT, "CIM SDRAM address out of range", -1, 1},
{F_FLASHRANGEINT, "CIM flash address out of range", -1, 1},
{F_BLKWRBOOTINT, "CIM block write to boot space", -1, 1},
{F_WRBLKFLASHINT, "CIM write to cached flash space", -1, 1},
{F_SGLWRFLASHINT, "CIM single write to flash space", -1, 1},
{F_BLKRDFLASHINT, "CIM block read from flash space", -1, 1},
{F_BLKWRFLASHINT, "CIM block write to flash space", -1, 1},
{F_BLKRDCTLINT, "CIM block read from CTL space", -1, 1},
{F_BLKWRCTLINT, "CIM block write to CTL space", -1, 1},
{F_BLKRDPLINT, "CIM block read from PL space", -1, 1},
{F_BLKWRPLINT, "CIM block write to PL space", -1, 1},
{F_DRAMPARERR, "CIM DRAM parity error", -1, 1},
{F_ICACHEPARERR, "CIM icache parity error", -1, 1},
{F_DCACHEPARERR, "CIM dcache parity error", -1, 1},
{F_OBQSGEPARERR, "CIM OBQ SGE parity error", -1, 1},
{F_OBQULPHIPARERR, "CIM OBQ ULPHI parity error", -1, 1},
{F_OBQULPLOPARERR, "CIM OBQ ULPLO parity error", -1, 1},
{F_IBQSGELOPARERR, "CIM IBQ SGELO parity error", -1, 1},
{F_IBQSGEHIPARERR, "CIM IBQ SGEHI parity error", -1, 1},
{F_IBQULPPARERR, "CIM IBQ ULP parity error", -1, 1},
{F_IBQTPPARERR, "CIM IBQ TP parity error", -1, 1},
{F_ITAGPARERR, "CIM itag parity error", -1, 1},
{F_DTAGPARERR, "CIM dtag parity error", -1, 1},
{0}
};
if (t3_handle_intr_status(adapter, A_CIM_HOST_INT_CAUSE, 0xffffffff,
cim_intr_info, NULL))
t3_fatal_err(adapter);
}
/*
* ULP RX interrupt handler.
*/
static void ulprx_intr_handler(struct adapter *adapter)
{
static const struct intr_info ulprx_intr_info[] = {
{F_PARERRDATA, "ULP RX data parity error", -1, 1},
{F_PARERRPCMD, "ULP RX command parity error", -1, 1},
{F_ARBPF1PERR, "ULP RX ArbPF1 parity error", -1, 1},
{F_ARBPF0PERR, "ULP RX ArbPF0 parity error", -1, 1},
{F_ARBFPERR, "ULP RX ArbF parity error", -1, 1},
{F_PCMDMUXPERR, "ULP RX PCMDMUX parity error", -1, 1},
{F_DATASELFRAMEERR1, "ULP RX frame error", -1, 1},
{F_DATASELFRAMEERR0, "ULP RX frame error", -1, 1},
{0}
};
if (t3_handle_intr_status(adapter, A_ULPRX_INT_CAUSE, 0xffffffff,
ulprx_intr_info, NULL))
t3_fatal_err(adapter);
}
/*
* ULP TX interrupt handler.
*/
static void ulptx_intr_handler(struct adapter *adapter)
{
static const struct intr_info ulptx_intr_info[] = {
{F_PBL_BOUND_ERR_CH0, "ULP TX channel 0 PBL out of bounds",
STAT_ULP_CH0_PBL_OOB, 0},
{F_PBL_BOUND_ERR_CH1, "ULP TX channel 1 PBL out of bounds",
STAT_ULP_CH1_PBL_OOB, 0},
{0xfc, "ULP TX parity error", -1, 1},
{0}
};
if (t3_handle_intr_status(adapter, A_ULPTX_INT_CAUSE, 0xffffffff,
ulptx_intr_info, adapter->irq_stats))
t3_fatal_err(adapter);
}
#define ICSPI_FRM_ERR (F_ICSPI0_FIFO2X_RX_FRAMING_ERROR | \
F_ICSPI1_FIFO2X_RX_FRAMING_ERROR | F_ICSPI0_RX_FRAMING_ERROR | \
F_ICSPI1_RX_FRAMING_ERROR | F_ICSPI0_TX_FRAMING_ERROR | \
F_ICSPI1_TX_FRAMING_ERROR)
#define OESPI_FRM_ERR (F_OESPI0_RX_FRAMING_ERROR | \
F_OESPI1_RX_FRAMING_ERROR | F_OESPI0_TX_FRAMING_ERROR | \
F_OESPI1_TX_FRAMING_ERROR | F_OESPI0_OFIFO2X_TX_FRAMING_ERROR | \
F_OESPI1_OFIFO2X_TX_FRAMING_ERROR)
/*
* PM TX interrupt handler.
*/
static void pmtx_intr_handler(struct adapter *adapter)
{
static const struct intr_info pmtx_intr_info[] = {
{F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1},
{ICSPI_FRM_ERR, "PMTX ispi framing error", -1, 1},
{OESPI_FRM_ERR, "PMTX ospi framing error", -1, 1},
{V_ICSPI_PAR_ERROR(M_ICSPI_PAR_ERROR),
"PMTX ispi parity error", -1, 1},
{V_OESPI_PAR_ERROR(M_OESPI_PAR_ERROR),
"PMTX ospi parity error", -1, 1},
{0}
};
if (t3_handle_intr_status(adapter, A_PM1_TX_INT_CAUSE, 0xffffffff,
pmtx_intr_info, NULL))
t3_fatal_err(adapter);
}
#define IESPI_FRM_ERR (F_IESPI0_FIFO2X_RX_FRAMING_ERROR | \
F_IESPI1_FIFO2X_RX_FRAMING_ERROR | F_IESPI0_RX_FRAMING_ERROR | \
F_IESPI1_RX_FRAMING_ERROR | F_IESPI0_TX_FRAMING_ERROR | \
F_IESPI1_TX_FRAMING_ERROR)
#define OCSPI_FRM_ERR (F_OCSPI0_RX_FRAMING_ERROR | \
F_OCSPI1_RX_FRAMING_ERROR | F_OCSPI0_TX_FRAMING_ERROR | \
F_OCSPI1_TX_FRAMING_ERROR | F_OCSPI0_OFIFO2X_TX_FRAMING_ERROR | \
F_OCSPI1_OFIFO2X_TX_FRAMING_ERROR)
/*
* PM RX interrupt handler.
*/
static void pmrx_intr_handler(struct adapter *adapter)
{
static const struct intr_info pmrx_intr_info[] = {
{F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1},
{IESPI_FRM_ERR, "PMRX ispi framing error", -1, 1},
{OCSPI_FRM_ERR, "PMRX ospi framing error", -1, 1},
{V_IESPI_PAR_ERROR(M_IESPI_PAR_ERROR),
"PMRX ispi parity error", -1, 1},
{V_OCSPI_PAR_ERROR(M_OCSPI_PAR_ERROR),
"PMRX ospi parity error", -1, 1},
{0}
};
if (t3_handle_intr_status(adapter, A_PM1_RX_INT_CAUSE, 0xffffffff,
pmrx_intr_info, NULL))
t3_fatal_err(adapter);
}
/*
* CPL switch interrupt handler.
*/
static void cplsw_intr_handler(struct adapter *adapter)
{
static const struct intr_info cplsw_intr_info[] = {
{F_CIM_OP_MAP_PERR, "CPL switch CIM parity error", -1, 1},
{F_CIM_OVFL_ERROR, "CPL switch CIM overflow", -1, 1},
{F_TP_FRAMING_ERROR, "CPL switch TP framing error", -1, 1},
{F_SGE_FRAMING_ERROR, "CPL switch SGE framing error", -1, 1},
{F_CIM_FRAMING_ERROR, "CPL switch CIM framing error", -1, 1},
{F_ZERO_SWITCH_ERROR, "CPL switch no-switch error", -1, 1},
{0}
};
if (t3_handle_intr_status(adapter, A_CPL_INTR_CAUSE, 0xffffffff,
cplsw_intr_info, NULL))
t3_fatal_err(adapter);
}
/*
* MPS interrupt handler.
*/
static void mps_intr_handler(struct adapter *adapter)
{
static const struct intr_info mps_intr_info[] = {
{0x1ff, "MPS parity error", -1, 1},
{0}
};
if (t3_handle_intr_status(adapter, A_MPS_INT_CAUSE, 0xffffffff,
mps_intr_info, NULL))
t3_fatal_err(adapter);
}
#define MC7_INTR_FATAL (F_UE | V_PE(M_PE) | F_AE)
/*
* MC7 interrupt handler.
*/
static void mc7_intr_handler(struct mc7 *mc7)
{
struct adapter *adapter = mc7->adapter;
u32 cause = t3_read_reg(adapter, mc7->offset + A_MC7_INT_CAUSE);
if (cause & F_CE) {
mc7->stats.corr_err++;
CH_WARN(adapter, "%s MC7 correctable error at addr 0x%x, "
"data 0x%x 0x%x 0x%x\n", mc7->name,
t3_read_reg(adapter, mc7->offset + A_MC7_CE_ADDR),
t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA0),
t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA1),
t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA2));
}
if (cause & F_UE) {
mc7->stats.uncorr_err++;
CH_ALERT(adapter, "%s MC7 uncorrectable error at addr 0x%x, "
"data 0x%x 0x%x 0x%x\n", mc7->name,
t3_read_reg(adapter, mc7->offset + A_MC7_UE_ADDR),
t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA0),
t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA1),
t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA2));
}
if (G_PE(cause)) {
mc7->stats.parity_err++;
CH_ALERT(adapter, "%s MC7 parity error 0x%x\n",
mc7->name, G_PE(cause));
}
if (cause & F_AE) {
u32 addr = 0;
if (adapter->params.rev > 0)
addr = t3_read_reg(adapter,
mc7->offset + A_MC7_ERR_ADDR);
mc7->stats.addr_err++;
CH_ALERT(adapter, "%s MC7 address error: 0x%x\n",
mc7->name, addr);
}
if (cause & MC7_INTR_FATAL)
t3_fatal_err(adapter);
t3_write_reg(adapter, mc7->offset + A_MC7_INT_CAUSE, cause);
}
#define XGM_INTR_FATAL (V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR) | \
V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR))
/*
* XGMAC interrupt handler.
*/
static int mac_intr_handler(struct adapter *adap, unsigned int idx)
{
struct cmac *mac = &adap2pinfo(adap, idx)->mac;
/*
* We mask out interrupt causes for which we're not taking interrupts.
* This allows us to use polling logic to monitor some of the other
* conditions when taking interrupts would impose too much load on the
* system.
*/
u32 cause = t3_read_reg(adap, A_XGM_INT_CAUSE + mac->offset) &
~F_RXFIFO_OVERFLOW;
if (cause & V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR)) {
mac->stats.tx_fifo_parity_err++;
CH_ALERT(adap, "port%d: MAC TX FIFO parity error\n", idx);
}
if (cause & V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR)) {
mac->stats.rx_fifo_parity_err++;
CH_ALERT(adap, "port%d: MAC RX FIFO parity error\n", idx);
}
if (cause & F_TXFIFO_UNDERRUN)
mac->stats.tx_fifo_urun++;
if (cause & F_RXFIFO_OVERFLOW)
mac->stats.rx_fifo_ovfl++;
if (cause & V_SERDES_LOS(M_SERDES_LOS))
mac->stats.serdes_signal_loss++;
if (cause & F_XAUIPCSCTCERR)
mac->stats.xaui_pcs_ctc_err++;
if (cause & F_XAUIPCSALIGNCHANGE)
mac->stats.xaui_pcs_align_change++;
if (cause & F_XGM_INT) {
t3_set_reg_field(adap,
A_XGM_INT_ENABLE + mac->offset,
F_XGM_INT, 0);
mac->stats.link_faults++;
t3_os_link_fault_handler(adap, idx);
}
t3_write_reg(adap, A_XGM_INT_CAUSE + mac->offset, cause);
if (cause & XGM_INTR_FATAL)
t3_fatal_err(adap);
return cause != 0;
}
/*
* Interrupt handler for PHY events.
*/
int t3_phy_intr_handler(struct adapter *adapter)
{
u32 i, cause = t3_read_reg(adapter, A_T3DBG_INT_CAUSE);
for_each_port(adapter, i) {
struct port_info *p = adap2pinfo(adapter, i);
if (!(p->phy.caps & SUPPORTED_IRQ))
continue;
if (cause & (1 << adapter_info(adapter)->gpio_intr[i])) {
int phy_cause = p->phy.ops->intr_handler(&p->phy);
if (phy_cause & cphy_cause_link_change)
t3_link_changed(adapter, i);
if (phy_cause & cphy_cause_fifo_error)
p->phy.fifo_errors++;
if (phy_cause & cphy_cause_module_change)
t3_os_phymod_changed(adapter, i);
}
}
t3_write_reg(adapter, A_T3DBG_INT_CAUSE, cause);
return 0;
}
/*
* T3 slow path (non-data) interrupt handler.
*/
int t3_slow_intr_handler(struct adapter *adapter)
{
u32 cause = t3_read_reg(adapter, A_PL_INT_CAUSE0);
cause &= adapter->slow_intr_mask;
if (!cause)
return 0;
if (cause & F_PCIM0) {
if (is_pcie(adapter))
pcie_intr_handler(adapter);
else
pci_intr_handler(adapter);
}
if (cause & F_SGE3)
t3_sge_err_intr_handler(adapter);
if (cause & F_MC7_PMRX)
mc7_intr_handler(&adapter->pmrx);
if (cause & F_MC7_PMTX)
mc7_intr_handler(&adapter->pmtx);
if (cause & F_MC7_CM)
mc7_intr_handler(&adapter->cm);
if (cause & F_CIM)
cim_intr_handler(adapter);
if (cause & F_TP1)
tp_intr_handler(adapter);
if (cause & F_ULP2_RX)
ulprx_intr_handler(adapter);
if (cause & F_ULP2_TX)
ulptx_intr_handler(adapter);
if (cause & F_PM1_RX)
pmrx_intr_handler(adapter);
if (cause & F_PM1_TX)
pmtx_intr_handler(adapter);
if (cause & F_CPL_SWITCH)
cplsw_intr_handler(adapter);
if (cause & F_MPS0)
mps_intr_handler(adapter);
if (cause & F_MC5A)
t3_mc5_intr_handler(&adapter->mc5);
if (cause & F_XGMAC0_0)
mac_intr_handler(adapter, 0);
if (cause & F_XGMAC0_1)
mac_intr_handler(adapter, 1);
if (cause & F_T3DBG)
t3_os_ext_intr_handler(adapter);
/* Clear the interrupts just processed. */
t3_write_reg(adapter, A_PL_INT_CAUSE0, cause);
t3_read_reg(adapter, A_PL_INT_CAUSE0); /* flush */
return 1;
}
static unsigned int calc_gpio_intr(struct adapter *adap)
{
unsigned int i, gpi_intr = 0;
for_each_port(adap, i)
if ((adap2pinfo(adap, i)->phy.caps & SUPPORTED_IRQ) &&
adapter_info(adap)->gpio_intr[i])
gpi_intr |= 1 << adapter_info(adap)->gpio_intr[i];
return gpi_intr;
}
/**
* t3_intr_enable - enable interrupts
* @adapter: the adapter whose interrupts should be enabled
*
* Enable interrupts by setting the interrupt enable registers of the
* various HW modules and then enabling the top-level interrupt
* concentrator.
*/
void t3_intr_enable(struct adapter *adapter)
{
static const struct addr_val_pair intr_en_avp[] = {
{A_SG_INT_ENABLE, SGE_INTR_MASK},
{A_MC7_INT_ENABLE, MC7_INTR_MASK},
{A_MC7_INT_ENABLE - MC7_PMRX_BASE_ADDR + MC7_PMTX_BASE_ADDR,
MC7_INTR_MASK},
{A_MC7_INT_ENABLE - MC7_PMRX_BASE_ADDR + MC7_CM_BASE_ADDR,
MC7_INTR_MASK},
{A_MC5_DB_INT_ENABLE, MC5_INTR_MASK},
{A_ULPRX_INT_ENABLE, ULPRX_INTR_MASK},
{A_PM1_TX_INT_ENABLE, PMTX_INTR_MASK},
{A_PM1_RX_INT_ENABLE, PMRX_INTR_MASK},
{A_CIM_HOST_INT_ENABLE, CIM_INTR_MASK},
{A_MPS_INT_ENABLE, MPS_INTR_MASK},
};
adapter->slow_intr_mask = PL_INTR_MASK;
t3_write_regs(adapter, intr_en_avp, ARRAY_SIZE(intr_en_avp), 0);
t3_write_reg(adapter, A_TP_INT_ENABLE,
adapter->params.rev >= T3_REV_C ? 0x2bfffff : 0x3bfffff);
if (adapter->params.rev > 0) {
t3_write_reg(adapter, A_CPL_INTR_ENABLE,
CPLSW_INTR_MASK | F_CIM_OVFL_ERROR);
t3_write_reg(adapter, A_ULPTX_INT_ENABLE,
ULPTX_INTR_MASK | F_PBL_BOUND_ERR_CH0 |
F_PBL_BOUND_ERR_CH1);
} else {
t3_write_reg(adapter, A_CPL_INTR_ENABLE, CPLSW_INTR_MASK);
t3_write_reg(adapter, A_ULPTX_INT_ENABLE, ULPTX_INTR_MASK);
}
t3_write_reg(adapter, A_T3DBG_INT_ENABLE, calc_gpio_intr(adapter));
if (is_pcie(adapter))
t3_write_reg(adapter, A_PCIE_INT_ENABLE, PCIE_INTR_MASK);
else
t3_write_reg(adapter, A_PCIX_INT_ENABLE, PCIX_INTR_MASK);
t3_write_reg(adapter, A_PL_INT_ENABLE0, adapter->slow_intr_mask);
t3_read_reg(adapter, A_PL_INT_ENABLE0); /* flush */
}
/**
* t3_intr_disable - disable a card's interrupts
* @adapter: the adapter whose interrupts should be disabled
*
* Disable interrupts. We only disable the top-level interrupt
* concentrator and the SGE data interrupts.
*/
void t3_intr_disable(struct adapter *adapter)
{
t3_write_reg(adapter, A_PL_INT_ENABLE0, 0);
t3_read_reg(adapter, A_PL_INT_ENABLE0); /* flush */
adapter->slow_intr_mask = 0;
}
/**
* t3_intr_clear - clear all interrupts
* @adapter: the adapter whose interrupts should be cleared
*
* Clears all interrupts.
*/
void t3_intr_clear(struct adapter *adapter)
{
static const unsigned int cause_reg_addr[] = {
A_SG_INT_CAUSE,
A_SG_RSPQ_FL_STATUS,
A_PCIX_INT_CAUSE,
A_MC7_INT_CAUSE,
A_MC7_INT_CAUSE - MC7_PMRX_BASE_ADDR + MC7_PMTX_BASE_ADDR,
A_MC7_INT_CAUSE - MC7_PMRX_BASE_ADDR + MC7_CM_BASE_ADDR,
A_CIM_HOST_INT_CAUSE,
A_TP_INT_CAUSE,
A_MC5_DB_INT_CAUSE,
A_ULPRX_INT_CAUSE,
A_ULPTX_INT_CAUSE,
A_CPL_INTR_CAUSE,
A_PM1_TX_INT_CAUSE,
A_PM1_RX_INT_CAUSE,
A_MPS_INT_CAUSE,
A_T3DBG_INT_CAUSE,
};
unsigned int i;
/* Clear PHY and MAC interrupts for each port. */
for_each_port(adapter, i)
t3_port_intr_clear(adapter, i);
for (i = 0; i < ARRAY_SIZE(cause_reg_addr); ++i)
t3_write_reg(adapter, cause_reg_addr[i], 0xffffffff);
if (is_pcie(adapter))
t3_write_reg(adapter, A_PCIE_PEX_ERR, 0xffffffff);
t3_write_reg(adapter, A_PL_INT_CAUSE0, 0xffffffff);
t3_read_reg(adapter, A_PL_INT_CAUSE0); /* flush */
}
void t3_xgm_intr_enable(struct adapter *adapter, int idx)
{
struct port_info *pi = adap2pinfo(adapter, idx);
t3_write_reg(adapter, A_XGM_XGM_INT_ENABLE + pi->mac.offset,
XGM_EXTRA_INTR_MASK);
}
void t3_xgm_intr_disable(struct adapter *adapter, int idx)
{
struct port_info *pi = adap2pinfo(adapter, idx);
t3_write_reg(adapter, A_XGM_XGM_INT_DISABLE + pi->mac.offset,
0x7ff);
}
/**
* t3_port_intr_enable - enable port-specific interrupts
* @adapter: associated adapter
* @idx: index of port whose interrupts should be enabled
*
* Enable port-specific (i.e., MAC and PHY) interrupts for the given
* adapter port.
*/
void t3_port_intr_enable(struct adapter *adapter, int idx)
{
struct cphy *phy = &adap2pinfo(adapter, idx)->phy;
t3_write_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx), XGM_INTR_MASK);
t3_read_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx)); /* flush */
phy->ops->intr_enable(phy);
}
/**
* t3_port_intr_disable - disable port-specific interrupts
* @adapter: associated adapter
* @idx: index of port whose interrupts should be disabled
*
* Disable port-specific (i.e., MAC and PHY) interrupts for the given
* adapter port.
*/
void t3_port_intr_disable(struct adapter *adapter, int idx)
{
struct cphy *phy = &adap2pinfo(adapter, idx)->phy;
t3_write_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx), 0);
t3_read_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx)); /* flush */
phy->ops->intr_disable(phy);
}
/**
* t3_port_intr_clear - clear port-specific interrupts
* @adapter: associated adapter
* @idx: index of port whose interrupts to clear
*
* Clear port-specific (i.e., MAC and PHY) interrupts for the given
* adapter port.
*/
void t3_port_intr_clear(struct adapter *adapter, int idx)
{
struct cphy *phy = &adap2pinfo(adapter, idx)->phy;
t3_write_reg(adapter, XGM_REG(A_XGM_INT_CAUSE, idx), 0xffffffff);
t3_read_reg(adapter, XGM_REG(A_XGM_INT_CAUSE, idx)); /* flush */
phy->ops->intr_clear(phy);
}
#define SG_CONTEXT_CMD_ATTEMPTS 100
/**
* t3_sge_write_context - write an SGE context
* @adapter: the adapter
* @id: the context id
* @type: the context type
*
* Program an SGE context with the values already loaded in the
* CONTEXT_DATA? registers.
*/
static int t3_sge_write_context(struct adapter *adapter, unsigned int id,
unsigned int type)
{
if (type == F_RESPONSEQ) {
/*
* Can't write the Response Queue Context bits for
* Interrupt Armed or the Reserve bits after the chip
* has been initialized out of reset. Writing to these
* bits can confuse the hardware.
*/
t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0xffffffff);
t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0xffffffff);
t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0x17ffffff);
t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0xffffffff);
} else {
t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0xffffffff);
t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0xffffffff);
t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0xffffffff);
t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0xffffffff);
}
t3_write_reg(adapter, A_SG_CONTEXT_CMD,
V_CONTEXT_CMD_OPCODE(1) | type | V_CONTEXT(id));
return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
0, SG_CONTEXT_CMD_ATTEMPTS, 1);
}
/**
* clear_sge_ctxt - completely clear an SGE context
* @adapter: the adapter
* @id: the context id
* @type: the context type
*
* Completely clear an SGE context. Used predominantly at post-reset
* initialization. Note in particular that we don't skip writing to any
* "sensitive bits" in the contexts the way that t3_sge_write_context()
* does ...
*/
static int clear_sge_ctxt(struct adapter *adap, unsigned int id,
unsigned int type)
{
t3_write_reg(adap, A_SG_CONTEXT_DATA0, 0);
t3_write_reg(adap, A_SG_CONTEXT_DATA1, 0);
t3_write_reg(adap, A_SG_CONTEXT_DATA2, 0);
t3_write_reg(adap, A_SG_CONTEXT_DATA3, 0);
t3_write_reg(adap, A_SG_CONTEXT_MASK0, 0xffffffff);
t3_write_reg(adap, A_SG_CONTEXT_MASK1, 0xffffffff);
t3_write_reg(adap, A_SG_CONTEXT_MASK2, 0xffffffff);
t3_write_reg(adap, A_SG_CONTEXT_MASK3, 0xffffffff);
t3_write_reg(adap, A_SG_CONTEXT_CMD,
V_CONTEXT_CMD_OPCODE(1) | type | V_CONTEXT(id));
return t3_wait_op_done(adap, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
0, SG_CONTEXT_CMD_ATTEMPTS, 1);
}
/**
* t3_sge_init_ecntxt - initialize an SGE egress context
* @adapter: the adapter to configure
* @id: the context id
* @gts_enable: whether to enable GTS for the context
* @type: the egress context type
* @respq: associated response queue
* @base_addr: base address of queue
* @size: number of queue entries
* @token: uP token
* @gen: initial generation value for the context
* @cidx: consumer pointer
*
* Initialize an SGE egress context and make it ready for use. If the
* platform allows concurrent context operations, the caller is
* responsible for appropriate locking.
*/
int t3_sge_init_ecntxt(struct adapter *adapter, unsigned int id, int gts_enable,
enum sge_context_type type, int respq, u64 base_addr,
unsigned int size, unsigned int token, int gen,
unsigned int cidx)
{
unsigned int credits = type == SGE_CNTXT_OFLD ? 0 : FW_WR_NUM;
if (base_addr & 0xfff) /* must be 4K aligned */
return -EINVAL;
if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
return -EBUSY;
base_addr >>= 12;
t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_EC_INDEX(cidx) |
V_EC_CREDITS(credits) | V_EC_GTS(gts_enable));
t3_write_reg(adapter, A_SG_CONTEXT_DATA1, V_EC_SIZE(size) |
V_EC_BASE_LO(base_addr & 0xffff));
base_addr >>= 16;
t3_write_reg(adapter, A_SG_CONTEXT_DATA2, base_addr);
base_addr >>= 32;
t3_write_reg(adapter, A_SG_CONTEXT_DATA3,
V_EC_BASE_HI(base_addr & 0xf) | V_EC_RESPQ(respq) |
V_EC_TYPE(type) | V_EC_GEN(gen) | V_EC_UP_TOKEN(token) |
F_EC_VALID);
return t3_sge_write_context(adapter, id, F_EGRESS);
}
/**
* t3_sge_init_flcntxt - initialize an SGE free-buffer list context
* @adapter: the adapter to configure
* @id: the context id
* @gts_enable: whether to enable GTS for the context
* @base_addr: base address of queue
* @size: number of queue entries
* @bsize: size of each buffer for this queue
* @cong_thres: threshold to signal congestion to upstream producers
* @gen: initial generation value for the context
* @cidx: consumer pointer
*
* Initialize an SGE free list context and make it ready for use. The
* caller is responsible for ensuring only one context operation occurs
* at a time.
*/
int t3_sge_init_flcntxt(struct adapter *adapter, unsigned int id,
int gts_enable, u64 base_addr, unsigned int size,
unsigned int bsize, unsigned int cong_thres, int gen,
unsigned int cidx)
{
if (base_addr & 0xfff) /* must be 4K aligned */
return -EINVAL;
if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
return -EBUSY;
base_addr >>= 12;
t3_write_reg(adapter, A_SG_CONTEXT_DATA0, base_addr);
base_addr >>= 32;
t3_write_reg(adapter, A_SG_CONTEXT_DATA1,
V_FL_BASE_HI((u32) base_addr) |
V_FL_INDEX_LO(cidx & M_FL_INDEX_LO));
t3_write_reg(adapter, A_SG_CONTEXT_DATA2, V_FL_SIZE(size) |
V_FL_GEN(gen) | V_FL_INDEX_HI(cidx >> 12) |
V_FL_ENTRY_SIZE_LO(bsize & M_FL_ENTRY_SIZE_LO));
t3_write_reg(adapter, A_SG_CONTEXT_DATA3,
V_FL_ENTRY_SIZE_HI(bsize >> (32 - S_FL_ENTRY_SIZE_LO)) |
V_FL_CONG_THRES(cong_thres) | V_FL_GTS(gts_enable));
return t3_sge_write_context(adapter, id, F_FREELIST);
}
/**
* t3_sge_init_rspcntxt - initialize an SGE response queue context
* @adapter: the adapter to configure
* @id: the context id
* @irq_vec_idx: MSI-X interrupt vector index, 0 if no MSI-X, -1 if no IRQ
* @base_addr: base address of queue
* @size: number of queue entries
* @fl_thres: threshold for selecting the normal or jumbo free list
* @gen: initial generation value for the context
* @cidx: consumer pointer
*
* Initialize an SGE response queue context and make it ready for use.
* The caller is responsible for ensuring only one context operation
* occurs at a time.
*/
int t3_sge_init_rspcntxt(struct adapter *adapter, unsigned int id,
int irq_vec_idx, u64 base_addr, unsigned int size,
unsigned int fl_thres, int gen, unsigned int cidx)
{
unsigned int intr = 0;
if (base_addr & 0xfff) /* must be 4K aligned */
return -EINVAL;
if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
return -EBUSY;
base_addr >>= 12;
t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_CQ_SIZE(size) |
V_CQ_INDEX(cidx));
t3_write_reg(adapter, A_SG_CONTEXT_DATA1, base_addr);
base_addr >>= 32;
if (irq_vec_idx >= 0)
intr = V_RQ_MSI_VEC(irq_vec_idx) | F_RQ_INTR_EN;
t3_write_reg(adapter, A_SG_CONTEXT_DATA2,
V_CQ_BASE_HI((u32) base_addr) | intr | V_RQ_GEN(gen));
t3_write_reg(adapter, A_SG_CONTEXT_DATA3, fl_thres);
return t3_sge_write_context(adapter, id, F_RESPONSEQ);
}
/**
* t3_sge_init_cqcntxt - initialize an SGE completion queue context
* @adapter: the adapter to configure
* @id: the context id
* @base_addr: base address of queue
* @size: number of queue entries
* @rspq: response queue for async notifications
* @ovfl_mode: CQ overflow mode
* @credits: completion queue credits
* @credit_thres: the credit threshold
*
* Initialize an SGE completion queue context and make it ready for use.
* The caller is responsible for ensuring only one context operation
* occurs at a time.
*/
int t3_sge_init_cqcntxt(struct adapter *adapter, unsigned int id, u64 base_addr,
unsigned int size, int rspq, int ovfl_mode,
unsigned int credits, unsigned int credit_thres)
{
if (base_addr & 0xfff) /* must be 4K aligned */
return -EINVAL;
if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
return -EBUSY;
base_addr >>= 12;
t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_CQ_SIZE(size));
t3_write_reg(adapter, A_SG_CONTEXT_DATA1, base_addr);
base_addr >>= 32;
t3_write_reg(adapter, A_SG_CONTEXT_DATA2,
V_CQ_BASE_HI((u32) base_addr) | V_CQ_RSPQ(rspq) |
V_CQ_GEN(1) | V_CQ_OVERFLOW_MODE(ovfl_mode) |
V_CQ_ERR(ovfl_mode));
t3_write_reg(adapter, A_SG_CONTEXT_DATA3, V_CQ_CREDITS(credits) |
V_CQ_CREDIT_THRES(credit_thres));
return t3_sge_write_context(adapter, id, F_CQ);
}
/**
* t3_sge_enable_ecntxt - enable/disable an SGE egress context
* @adapter: the adapter
* @id: the egress context id
* @enable: enable (1) or disable (0) the context
*
* Enable or disable an SGE egress context. The caller is responsible for
* ensuring only one context operation occurs at a time.
*/
int t3_sge_enable_ecntxt(struct adapter *adapter, unsigned int id, int enable)
{
if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
return -EBUSY;
t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0);
t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0);
t3_write_reg(adapter, A_SG_CONTEXT_MASK3, F_EC_VALID);
t3_write_reg(adapter, A_SG_CONTEXT_DATA3, V_EC_VALID(enable));
t3_write_reg(adapter, A_SG_CONTEXT_CMD,
V_CONTEXT_CMD_OPCODE(1) | F_EGRESS | V_CONTEXT(id));
return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
0, SG_CONTEXT_CMD_ATTEMPTS, 1);
}
/**
* t3_sge_disable_fl - disable an SGE free-buffer list
* @adapter: the adapter
* @id: the free list context id
*
* Disable an SGE free-buffer list. The caller is responsible for
* ensuring only one context operation occurs at a time.
*/
int t3_sge_disable_fl(struct adapter *adapter, unsigned int id)
{
if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
return -EBUSY;
t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0);
t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
t3_write_reg(adapter, A_SG_CONTEXT_MASK2, V_FL_SIZE(M_FL_SIZE));
t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0);
t3_write_reg(adapter, A_SG_CONTEXT_DATA2, 0);
t3_write_reg(adapter, A_SG_CONTEXT_CMD,
V_CONTEXT_CMD_OPCODE(1) | F_FREELIST | V_CONTEXT(id));
return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
0, SG_CONTEXT_CMD_ATTEMPTS, 1);
}
/**
* t3_sge_disable_rspcntxt - disable an SGE response queue
* @adapter: the adapter
* @id: the response queue context id
*
* Disable an SGE response queue. The caller is responsible for
* ensuring only one context operation occurs at a time.
*/
int t3_sge_disable_rspcntxt(struct adapter *adapter, unsigned int id)
{
if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
return -EBUSY;
t3_write_reg(adapter, A_SG_CONTEXT_MASK0, V_CQ_SIZE(M_CQ_SIZE));
t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0);
t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0);
t3_write_reg(adapter, A_SG_CONTEXT_DATA0, 0);
t3_write_reg(adapter, A_SG_CONTEXT_CMD,
V_CONTEXT_CMD_OPCODE(1) | F_RESPONSEQ | V_CONTEXT(id));
return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
0, SG_CONTEXT_CMD_ATTEMPTS, 1);
}
/**
* t3_sge_disable_cqcntxt - disable an SGE completion queue
* @adapter: the adapter
* @id: the completion queue context id
*
* Disable an SGE completion queue. The caller is responsible for
* ensuring only one context operation occurs at a time.
*/
int t3_sge_disable_cqcntxt(struct adapter *adapter, unsigned int id)
{
if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
return -EBUSY;
t3_write_reg(adapter, A_SG_CONTEXT_MASK0, V_CQ_SIZE(M_CQ_SIZE));
t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0);
t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0);
t3_write_reg(adapter, A_SG_CONTEXT_DATA0, 0);
t3_write_reg(adapter, A_SG_CONTEXT_CMD,
V_CONTEXT_CMD_OPCODE(1) | F_CQ | V_CONTEXT(id));
return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
0, SG_CONTEXT_CMD_ATTEMPTS, 1);
}
/**
* t3_sge_cqcntxt_op - perform an operation on a completion queue context
* @adapter: the adapter
* @id: the context id
* @op: the operation to perform
*
* Perform the selected operation on an SGE completion queue context.
* The caller is responsible for ensuring only one context operation
* occurs at a time.
*/
int t3_sge_cqcntxt_op(struct adapter *adapter, unsigned int id, unsigned int op,
unsigned int credits)
{
u32 val;
if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
return -EBUSY;
t3_write_reg(adapter, A_SG_CONTEXT_DATA0, credits << 16);
t3_write_reg(adapter, A_SG_CONTEXT_CMD, V_CONTEXT_CMD_OPCODE(op) |
V_CONTEXT(id) | F_CQ);
if (t3_wait_op_done_val(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
0, SG_CONTEXT_CMD_ATTEMPTS, 1, &val))
return -EIO;
if (op >= 2 && op < 7) {
if (adapter->params.rev > 0)
return G_CQ_INDEX(val);
t3_write_reg(adapter, A_SG_CONTEXT_CMD,
V_CONTEXT_CMD_OPCODE(0) | F_CQ | V_CONTEXT(id));
if (t3_wait_op_done(adapter, A_SG_CONTEXT_CMD,
F_CONTEXT_CMD_BUSY, 0,
SG_CONTEXT_CMD_ATTEMPTS, 1))
return -EIO;
return G_CQ_INDEX(t3_read_reg(adapter, A_SG_CONTEXT_DATA0));
}
return 0;
}
/**
* t3_sge_read_context - read an SGE context
* @type: the context type
* @adapter: the adapter
* @id: the context id
* @data: holds the retrieved context
*
* Read an SGE egress context. The caller is responsible for ensuring
* only one context operation occurs at a time.
*/
static int t3_sge_read_context(unsigned int type, struct adapter *adapter,
unsigned int id, u32 data[4])
{
if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
return -EBUSY;
t3_write_reg(adapter, A_SG_CONTEXT_CMD,
V_CONTEXT_CMD_OPCODE(0) | type | V_CONTEXT(id));
if (t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY, 0,
SG_CONTEXT_CMD_ATTEMPTS, 1))
return -EIO;
data[0] = t3_read_reg(adapter, A_SG_CONTEXT_DATA0);
data[1] = t3_read_reg(adapter, A_SG_CONTEXT_DATA1);
data[2] = t3_read_reg(adapter, A_SG_CONTEXT_DATA2);
data[3] = t3_read_reg(adapter, A_SG_CONTEXT_DATA3);
return 0;
}
/**
* t3_sge_read_ecntxt - read an SGE egress context
* @adapter: the adapter
* @id: the context id
* @data: holds the retrieved context
*
* Read an SGE egress context. The caller is responsible for ensuring
* only one context operation occurs at a time.
*/
int t3_sge_read_ecntxt(struct adapter *adapter, unsigned int id, u32 data[4])
{
if (id >= 65536)
return -EINVAL;
return t3_sge_read_context(F_EGRESS, adapter, id, data);
}
/**
* t3_sge_read_cq - read an SGE CQ context
* @adapter: the adapter
* @id: the context id
* @data: holds the retrieved context
*
* Read an SGE CQ context. The caller is responsible for ensuring
* only one context operation occurs at a time.
*/
int t3_sge_read_cq(struct adapter *adapter, unsigned int id, u32 data[4])
{
if (id >= 65536)
return -EINVAL;
return t3_sge_read_context(F_CQ, adapter, id, data);
}
/**
* t3_sge_read_fl - read an SGE free-list context
* @adapter: the adapter
* @id: the context id
* @data: holds the retrieved context
*
* Read an SGE free-list context. The caller is responsible for ensuring
* only one context operation occurs at a time.
*/
int t3_sge_read_fl(struct adapter *adapter, unsigned int id, u32 data[4])
{
if (id >= SGE_QSETS * 2)
return -EINVAL;
return t3_sge_read_context(F_FREELIST, adapter, id, data);
}
/**
* t3_sge_read_rspq - read an SGE response queue context
* @adapter: the adapter
* @id: the context id
* @data: holds the retrieved context
*
* Read an SGE response queue context. The caller is responsible for
* ensuring only one context operation occurs at a time.
*/
int t3_sge_read_rspq(struct adapter *adapter, unsigned int id, u32 data[4])
{
if (id >= SGE_QSETS)
return -EINVAL;
return t3_sge_read_context(F_RESPONSEQ, adapter, id, data);
}
/**
* t3_config_rss - configure Rx packet steering
* @adapter: the adapter
* @rss_config: RSS settings (written to TP_RSS_CONFIG)
* @cpus: values for the CPU lookup table (0xff terminated)
* @rspq: values for the response queue lookup table (0xffff terminated)
*
* Programs the receive packet steering logic. @cpus and @rspq provide
* the values for the CPU and response queue lookup tables. If they
* provide fewer values than the size of the tables the supplied values
* are used repeatedly until the tables are fully populated.
*/
void t3_config_rss(struct adapter *adapter, unsigned int rss_config,
const u8 * cpus, const u16 *rspq)
{
int i, j, cpu_idx = 0, q_idx = 0;
if (cpus)
for (i = 0; i < RSS_TABLE_SIZE; ++i) {
u32 val = i << 16;
for (j = 0; j < 2; ++j) {
val |= (cpus[cpu_idx++] & 0x3f) << (8 * j);
if (cpus[cpu_idx] == 0xff)
cpu_idx = 0;
}
t3_write_reg(adapter, A_TP_RSS_LKP_TABLE, val);
}
if (rspq)
for (i = 0; i < RSS_TABLE_SIZE; ++i) {
t3_write_reg(adapter, A_TP_RSS_MAP_TABLE,
(i << 16) | rspq[q_idx++]);
if (rspq[q_idx] == 0xffff)
q_idx = 0;
}
t3_write_reg(adapter, A_TP_RSS_CONFIG, rss_config);
}
/**
* t3_read_rss - read the contents of the RSS tables
* @adapter: the adapter
* @lkup: holds the contents of the RSS lookup table
* @map: holds the contents of the RSS map table
*
* Reads the contents of the receive packet steering tables.
*/
int t3_read_rss(struct adapter *adapter, u8 * lkup, u16 *map)
{
int i;
u32 val;
if (lkup)
for (i = 0; i < RSS_TABLE_SIZE; ++i) {
t3_write_reg(adapter, A_TP_RSS_LKP_TABLE,
0xffff0000 | i);
val = t3_read_reg(adapter, A_TP_RSS_LKP_TABLE);
if (!(val & 0x80000000))
return -EAGAIN;
*lkup++ = val;
*lkup++ = (val >> 8);
}
if (map)
for (i = 0; i < RSS_TABLE_SIZE; ++i) {
t3_write_reg(adapter, A_TP_RSS_MAP_TABLE,
0xffff0000 | i);
val = t3_read_reg(adapter, A_TP_RSS_MAP_TABLE);
if (!(val & 0x80000000))
return -EAGAIN;
*map++ = val;
}
return 0;
}
/**
* t3_tp_set_offload_mode - put TP in NIC/offload mode
* @adap: the adapter
* @enable: 1 to select offload mode, 0 for regular NIC
*
* Switches TP to NIC/offload mode.
*/
void t3_tp_set_offload_mode(struct adapter *adap, int enable)
{
if (is_offload(adap) || !enable)
t3_set_reg_field(adap, A_TP_IN_CONFIG, F_NICMODE,
V_NICMODE(!enable));
}
/**
* pm_num_pages - calculate the number of pages of the payload memory
* @mem_size: the size of the payload memory
* @pg_size: the size of each payload memory page
*
* Calculate the number of pages, each of the given size, that fit in a
* memory of the specified size, respecting the HW requirement that the
* number of pages must be a multiple of 24.
*/
static inline unsigned int pm_num_pages(unsigned int mem_size,
unsigned int pg_size)
{
unsigned int n = mem_size / pg_size;
return n - n % 24;
}
#define mem_region(adap, start, size, reg) \
t3_write_reg((adap), A_ ## reg, (start)); \
start += size
/**
* partition_mem - partition memory and configure TP memory settings
* @adap: the adapter
* @p: the TP parameters
*
* Partitions context and payload memory and configures TP's memory
* registers.
*/
static void partition_mem(struct adapter *adap, const struct tp_params *p)
{
unsigned int m, pstructs, tids = t3_mc5_size(&adap->mc5);
unsigned int timers = 0, timers_shift = 22;
if (adap->params.rev > 0) {
if (tids <= 16 * 1024) {
timers = 1;
timers_shift = 16;
} else if (tids <= 64 * 1024) {
timers = 2;
timers_shift = 18;
} else if (tids <= 256 * 1024) {
timers = 3;
timers_shift = 20;
}
}
t3_write_reg(adap, A_TP_PMM_SIZE,
p->chan_rx_size | (p->chan_tx_size >> 16));
t3_write_reg(adap, A_TP_PMM_TX_BASE, 0);
t3_write_reg(adap, A_TP_PMM_TX_PAGE_SIZE, p->tx_pg_size);
t3_write_reg(adap, A_TP_PMM_TX_MAX_PAGE, p->tx_num_pgs);
t3_set_reg_field(adap, A_TP_PARA_REG3, V_TXDATAACKIDX(M_TXDATAACKIDX),
V_TXDATAACKIDX(fls(p->tx_pg_size) - 12));
t3_write_reg(adap, A_TP_PMM_RX_BASE, 0);
t3_write_reg(adap, A_TP_PMM_RX_PAGE_SIZE, p->rx_pg_size);
t3_write_reg(adap, A_TP_PMM_RX_MAX_PAGE, p->rx_num_pgs);
pstructs = p->rx_num_pgs + p->tx_num_pgs;
/* Add a bit of headroom and make multiple of 24 */
pstructs += 48;
pstructs -= pstructs % 24;
t3_write_reg(adap, A_TP_CMM_MM_MAX_PSTRUCT, pstructs);
m = tids * TCB_SIZE;
mem_region(adap, m, (64 << 10) * 64, SG_EGR_CNTX_BADDR);
mem_region(adap, m, (64 << 10) * 64, SG_CQ_CONTEXT_BADDR);
t3_write_reg(adap, A_TP_CMM_TIMER_BASE, V_CMTIMERMAXNUM(timers) | m);
m += ((p->ntimer_qs - 1) << timers_shift) + (1 << 22);
mem_region(adap, m, pstructs * 64, TP_CMM_MM_BASE);
mem_region(adap, m, 64 * (pstructs / 24), TP_CMM_MM_PS_FLST_BASE);
mem_region(adap, m, 64 * (p->rx_num_pgs / 24), TP_CMM_MM_RX_FLST_BASE);
mem_region(adap, m, 64 * (p->tx_num_pgs / 24), TP_CMM_MM_TX_FLST_BASE);
m = (m + 4095) & ~0xfff;
t3_write_reg(adap, A_CIM_SDRAM_BASE_ADDR, m);
t3_write_reg(adap, A_CIM_SDRAM_ADDR_SIZE, p->cm_size - m);
tids = (p->cm_size - m - (3 << 20)) / 3072 - 32;
m = t3_mc5_size(&adap->mc5) - adap->params.mc5.nservers -
adap->params.mc5.nfilters - adap->params.mc5.nroutes;
if (tids < m)
adap->params.mc5.nservers += m - tids;
}
static inline void tp_wr_indirect(struct adapter *adap, unsigned int addr,
u32 val)
{
t3_write_reg(adap, A_TP_PIO_ADDR, addr);
t3_write_reg(adap, A_TP_PIO_DATA, val);
}
static void tp_config(struct adapter *adap, const struct tp_params *p)
{
t3_write_reg(adap, A_TP_GLOBAL_CONFIG, F_TXPACINGENABLE | F_PATHMTU |
F_IPCHECKSUMOFFLOAD | F_UDPCHECKSUMOFFLOAD |
F_TCPCHECKSUMOFFLOAD | V_IPTTL(64));
t3_write_reg(adap, A_TP_TCP_OPTIONS, V_MTUDEFAULT(576) |
F_MTUENABLE | V_WINDOWSCALEMODE(1) |
V_TIMESTAMPSMODE(1) | V_SACKMODE(1) | V_SACKRX(1));
t3_write_reg(adap, A_TP_DACK_CONFIG, V_AUTOSTATE3(1) |
V_AUTOSTATE2(1) | V_AUTOSTATE1(0) |
V_BYTETHRESHOLD(26880) | V_MSSTHRESHOLD(2) |
F_AUTOCAREFUL | F_AUTOENABLE | V_DACK_MODE(1));
t3_set_reg_field(adap, A_TP_IN_CONFIG, F_RXFBARBPRIO | F_TXFBARBPRIO,
F_IPV6ENABLE | F_NICMODE);
t3_write_reg(adap, A_TP_TX_RESOURCE_LIMIT, 0x18141814);
t3_write_reg(adap, A_TP_PARA_REG4, 0x5050105);
t3_set_reg_field(adap, A_TP_PARA_REG6, 0,
adap->params.rev > 0 ? F_ENABLEESND :
F_T3A_ENABLEESND);
t3_set_reg_field(adap, A_TP_PC_CONFIG,
F_ENABLEEPCMDAFULL,
F_ENABLEOCSPIFULL |F_TXDEFERENABLE | F_HEARBEATDACK |
F_TXCONGESTIONMODE | F_RXCONGESTIONMODE);
t3_set_reg_field(adap, A_TP_PC_CONFIG2, F_CHDRAFULL,
F_ENABLEIPV6RSS | F_ENABLENONOFDTNLSYN |
F_ENABLEARPMISS | F_DISBLEDAPARBIT0);
t3_write_reg(adap, A_TP_PROXY_FLOW_CNTL, 1080);
t3_write_reg(adap, A_TP_PROXY_FLOW_CNTL, 1000);
if (adap->params.rev > 0) {
tp_wr_indirect(adap, A_TP_EGRESS_CONFIG, F_REWRITEFORCETOSIZE);
t3_set_reg_field(adap, A_TP_PARA_REG3, F_TXPACEAUTO,
F_TXPACEAUTO);
t3_set_reg_field(adap, A_TP_PC_CONFIG, F_LOCKTID, F_LOCKTID);
t3_set_reg_field(adap, A_TP_PARA_REG3, 0, F_TXPACEAUTOSTRICT);
} else
t3_set_reg_field(adap, A_TP_PARA_REG3, 0, F_TXPACEFIXED);
if (adap->params.rev == T3_REV_C)
t3_set_reg_field(adap, A_TP_PC_CONFIG,
V_TABLELATENCYDELTA(M_TABLELATENCYDELTA),
V_TABLELATENCYDELTA(4));
t3_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT1, 0);
t3_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT0, 0);
t3_write_reg(adap, A_TP_MOD_CHANNEL_WEIGHT, 0);
t3_write_reg(adap, A_TP_MOD_RATE_LIMIT, 0xf2200000);
}
/* Desired TP timer resolution in usec */
#define TP_TMR_RES 50
/* TCP timer values in ms */
#define TP_DACK_TIMER 50
#define TP_RTO_MIN 250
/**
* tp_set_timers - set TP timing parameters
* @adap: the adapter to set
* @core_clk: the core clock frequency in Hz
*
* Set TP's timing parameters, such as the various timer resolutions and
* the TCP timer values.
*/
static void tp_set_timers(struct adapter *adap, unsigned int core_clk)
{
unsigned int tre = fls(core_clk / (1000000 / TP_TMR_RES)) - 1;
unsigned int dack_re = fls(core_clk / 5000) - 1; /* 200us */
unsigned int tstamp_re = fls(core_clk / 1000); /* 1ms, at least */
unsigned int tps = core_clk >> tre;
t3_write_reg(adap, A_TP_TIMER_RESOLUTION, V_TIMERRESOLUTION(tre) |
V_DELAYEDACKRESOLUTION(dack_re) |
V_TIMESTAMPRESOLUTION(tstamp_re));
t3_write_reg(adap, A_TP_DACK_TIMER,
(core_clk >> dack_re) / (1000 / TP_DACK_TIMER));
t3_write_reg(adap, A_TP_TCP_BACKOFF_REG0, 0x3020100);
t3_write_reg(adap, A_TP_TCP_BACKOFF_REG1, 0x7060504);
t3_write_reg(adap, A_TP_TCP_BACKOFF_REG2, 0xb0a0908);
t3_write_reg(adap, A_TP_TCP_BACKOFF_REG3, 0xf0e0d0c);
t3_write_reg(adap, A_TP_SHIFT_CNT, V_SYNSHIFTMAX(6) |
V_RXTSHIFTMAXR1(4) | V_RXTSHIFTMAXR2(15) |
V_PERSHIFTBACKOFFMAX(8) | V_PERSHIFTMAX(8) |
V_KEEPALIVEMAX(9));
#define SECONDS * tps
t3_write_reg(adap, A_TP_MSL, adap->params.rev > 0 ? 0 : 2 SECONDS);
t3_write_reg(adap, A_TP_RXT_MIN, tps / (1000 / TP_RTO_MIN));
t3_write_reg(adap, A_TP_RXT_MAX, 64 SECONDS);
t3_write_reg(adap, A_TP_PERS_MIN, 5 SECONDS);
t3_write_reg(adap, A_TP_PERS_MAX, 64 SECONDS);
t3_write_reg(adap, A_TP_KEEP_IDLE, 7200 SECONDS);
t3_write_reg(adap, A_TP_KEEP_INTVL, 75 SECONDS);
t3_write_reg(adap, A_TP_INIT_SRTT, 3 SECONDS);
t3_write_reg(adap, A_TP_FINWAIT2_TIMER, 600 SECONDS);
#undef SECONDS
}
/**
* t3_tp_set_coalescing_size - set receive coalescing size
* @adap: the adapter
* @size: the receive coalescing size
* @psh: whether a set PSH bit should deliver coalesced data
*
* Set the receive coalescing size and PSH bit handling.
*/
int t3_tp_set_coalescing_size(struct adapter *adap, unsigned int size, int psh)
{
u32 val;
if (size > MAX_RX_COALESCING_LEN)
return -EINVAL;
val = t3_read_reg(adap, A_TP_PARA_REG3);
val &= ~(F_RXCOALESCEENABLE | F_RXCOALESCEPSHEN);
if (size) {
val |= F_RXCOALESCEENABLE;
if (psh)
val |= F_RXCOALESCEPSHEN;
size = min(MAX_RX_COALESCING_LEN, size);
t3_write_reg(adap, A_TP_PARA_REG2, V_RXCOALESCESIZE(size) |
V_MAXRXDATA(MAX_RX_COALESCING_LEN));
}
t3_write_reg(adap, A_TP_PARA_REG3, val);
return 0;
}
/**
* t3_tp_set_max_rxsize - set the max receive size
* @adap: the adapter
* @size: the max receive size
*
* Set TP's max receive size. This is the limit that applies when
* receive coalescing is disabled.
*/
void t3_tp_set_max_rxsize(struct adapter *adap, unsigned int size)
{
t3_write_reg(adap, A_TP_PARA_REG7,
V_PMMAXXFERLEN0(size) | V_PMMAXXFERLEN1(size));
}
static void init_mtus(unsigned short mtus[])
{
/*
* See draft-mathis-plpmtud-00.txt for the values. The min is 88 so
* it can accomodate max size TCP/IP headers when SACK and timestamps
* are enabled and still have at least 8 bytes of payload.
*/
mtus[0] = 88;
mtus[1] = 88;
mtus[2] = 256;
mtus[3] = 512;
mtus[4] = 576;
mtus[5] = 1024;
mtus[6] = 1280;
mtus[7] = 1492;
mtus[8] = 1500;
mtus[9] = 2002;
mtus[10] = 2048;
mtus[11] = 4096;
mtus[12] = 4352;
mtus[13] = 8192;
mtus[14] = 9000;
mtus[15] = 9600;
}
/*
* Initial congestion control parameters.
*/
static void init_cong_ctrl(unsigned short *a, unsigned short *b)
{
a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
a[9] = 2;
a[10] = 3;
a[11] = 4;
a[12] = 5;
a[13] = 6;
a[14] = 7;
a[15] = 8;
a[16] = 9;
a[17] = 10;
a[18] = 14;
a[19] = 17;
a[20] = 21;
a[21] = 25;
a[22] = 30;
a[23] = 35;
a[24] = 45;
a[25] = 60;
a[26] = 80;
a[27] = 100;
a[28] = 200;
a[29] = 300;
a[30] = 400;
a[31] = 500;
b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
b[9] = b[10] = 1;
b[11] = b[12] = 2;
b[13] = b[14] = b[15] = b[16] = 3;
b[17] = b[18] = b[19] = b[20] = b[21] = 4;
b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
b[28] = b[29] = 6;
b[30] = b[31] = 7;
}
/* The minimum additive increment value for the congestion control table */
#define CC_MIN_INCR 2U
/**
* t3_load_mtus - write the MTU and congestion control HW tables
* @adap: the adapter
* @mtus: the unrestricted values for the MTU table
* @alphs: the values for the congestion control alpha parameter
* @beta: the values for the congestion control beta parameter
* @mtu_cap: the maximum permitted effective MTU
*
* Write the MTU table with the supplied MTUs capping each at &mtu_cap.
* Update the high-speed congestion control table with the supplied alpha,
* beta, and MTUs.
*/
void t3_load_mtus(struct adapter *adap, unsigned short mtus[NMTUS],
unsigned short alpha[NCCTRL_WIN],
unsigned short beta[NCCTRL_WIN], unsigned short mtu_cap)
{
static const unsigned int avg_pkts[NCCTRL_WIN] = {
2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
28672, 40960, 57344, 81920, 114688, 163840, 229376
};
unsigned int i, w;
for (i = 0; i < NMTUS; ++i) {
unsigned int mtu = min(mtus[i], mtu_cap);
unsigned int log2 = fls(mtu);
if (!(mtu & ((1 << log2) >> 2))) /* round */
log2--;
t3_write_reg(adap, A_TP_MTU_TABLE,
(i << 24) | (log2 << 16) | mtu);
for (w = 0; w < NCCTRL_WIN; ++w) {
unsigned int inc;
inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
CC_MIN_INCR);
t3_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
(w << 16) | (beta[w] << 13) | inc);
}
}
}
/**
* t3_read_hw_mtus - returns the values in the HW MTU table
* @adap: the adapter
* @mtus: where to store the HW MTU values
*
* Reads the HW MTU table.
*/
void t3_read_hw_mtus(struct adapter *adap, unsigned short mtus[NMTUS])
{
int i;
for (i = 0; i < NMTUS; ++i) {
unsigned int val;
t3_write_reg(adap, A_TP_MTU_TABLE, 0xff000000 | i);
val = t3_read_reg(adap, A_TP_MTU_TABLE);
mtus[i] = val & 0x3fff;
}
}
/**
* t3_get_cong_cntl_tab - reads the congestion control table
* @adap: the adapter
* @incr: where to store the alpha values
*
* Reads the additive increments programmed into the HW congestion
* control table.
*/
void t3_get_cong_cntl_tab(struct adapter *adap,
unsigned short incr[NMTUS][NCCTRL_WIN])
{
unsigned int mtu, w;
for (mtu = 0; mtu < NMTUS; ++mtu)
for (w = 0; w < NCCTRL_WIN; ++w) {
t3_write_reg(adap, A_TP_CCTRL_TABLE,
0xffff0000 | (mtu << 5) | w);
incr[mtu][w] = t3_read_reg(adap, A_TP_CCTRL_TABLE) &
0x1fff;
}
}
/**
* t3_tp_get_mib_stats - read TP's MIB counters
* @adap: the adapter
* @tps: holds the returned counter values
*
* Returns the values of TP's MIB counters.
*/
void t3_tp_get_mib_stats(struct adapter *adap, struct tp_mib_stats *tps)
{
t3_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_RDATA, (u32 *) tps,
sizeof(*tps) / sizeof(u32), 0);
}
#define ulp_region(adap, name, start, len) \
t3_write_reg((adap), A_ULPRX_ ## name ## _LLIMIT, (start)); \
t3_write_reg((adap), A_ULPRX_ ## name ## _ULIMIT, \
(start) + (len) - 1); \
start += len
#define ulptx_region(adap, name, start, len) \
t3_write_reg((adap), A_ULPTX_ ## name ## _LLIMIT, (start)); \
t3_write_reg((adap), A_ULPTX_ ## name ## _ULIMIT, \
(start) + (len) - 1)
static void ulp_config(struct adapter *adap, const struct tp_params *p)
{
unsigned int m = p->chan_rx_size;
ulp_region(adap, ISCSI, m, p->chan_rx_size / 8);
ulp_region(adap, TDDP, m, p->chan_rx_size / 8);
ulptx_region(adap, TPT, m, p->chan_rx_size / 4);
ulp_region(adap, STAG, m, p->chan_rx_size / 4);
ulp_region(adap, RQ, m, p->chan_rx_size / 4);
ulptx_region(adap, PBL, m, p->chan_rx_size / 4);
ulp_region(adap, PBL, m, p->chan_rx_size / 4);
t3_write_reg(adap, A_ULPRX_TDDP_TAGMASK, 0xffffffff);
}
/**
* t3_set_proto_sram - set the contents of the protocol sram
* @adapter: the adapter
* @data: the protocol image
*
* Write the contents of the protocol SRAM.
*/
int t3_set_proto_sram(struct adapter *adap, const u8 *data)
{
int i;
const __be32 *buf = (const __be32 *)data;
for (i = 0; i < PROTO_SRAM_LINES; i++) {
t3_write_reg(adap, A_TP_EMBED_OP_FIELD5, be32_to_cpu(*buf++));
t3_write_reg(adap, A_TP_EMBED_OP_FIELD4, be32_to_cpu(*buf++));
t3_write_reg(adap, A_TP_EMBED_OP_FIELD3, be32_to_cpu(*buf++));
t3_write_reg(adap, A_TP_EMBED_OP_FIELD2, be32_to_cpu(*buf++));
t3_write_reg(adap, A_TP_EMBED_OP_FIELD1, be32_to_cpu(*buf++));
t3_write_reg(adap, A_TP_EMBED_OP_FIELD0, i << 1 | 1 << 31);
if (t3_wait_op_done(adap, A_TP_EMBED_OP_FIELD0, 1, 1, 5, 1))
return -EIO;
}
t3_write_reg(adap, A_TP_EMBED_OP_FIELD0, 0);
return 0;
}
void t3_config_trace_filter(struct adapter *adapter,
const struct trace_params *tp, int filter_index,
int invert, int enable)
{
u32 addr, key[4], mask[4];
key[0] = tp->sport | (tp->sip << 16);
key[1] = (tp->sip >> 16) | (tp->dport << 16);
key[2] = tp->dip;
key[3] = tp->proto | (tp->vlan << 8) | (tp->intf << 20);
mask[0] = tp->sport_mask | (tp->sip_mask << 16);
mask[1] = (tp->sip_mask >> 16) | (tp->dport_mask << 16);
mask[2] = tp->dip_mask;
mask[3] = tp->proto_mask | (tp->vlan_mask << 8) | (tp->intf_mask << 20);
if (invert)
key[3] |= (1 << 29);
if (enable)
key[3] |= (1 << 28);
addr = filter_index ? A_TP_RX_TRC_KEY0 : A_TP_TX_TRC_KEY0;
tp_wr_indirect(adapter, addr++, key[0]);
tp_wr_indirect(adapter, addr++, mask[0]);
tp_wr_indirect(adapter, addr++, key[1]);
tp_wr_indirect(adapter, addr++, mask[1]);
tp_wr_indirect(adapter, addr++, key[2]);
tp_wr_indirect(adapter, addr++, mask[2]);
tp_wr_indirect(adapter, addr++, key[3]);
tp_wr_indirect(adapter, addr, mask[3]);
t3_read_reg(adapter, A_TP_PIO_DATA);
}
/**
* t3_config_sched - configure a HW traffic scheduler
* @adap: the adapter
* @kbps: target rate in Kbps
* @sched: the scheduler index
*
* Configure a HW scheduler for the target rate
*/
int t3_config_sched(struct adapter *adap, unsigned int kbps, int sched)
{
unsigned int v, tps, cpt, bpt, delta, mindelta = ~0;
unsigned int clk = adap->params.vpd.cclk * 1000;
unsigned int selected_cpt = 0, selected_bpt = 0;
if (kbps > 0) {
kbps *= 125; /* -> bytes */
for (cpt = 1; cpt <= 255; cpt++) {
tps = clk / cpt;
bpt = (kbps + tps / 2) / tps;
if (bpt > 0 && bpt <= 255) {
v = bpt * tps;
delta = v >= kbps ? v - kbps : kbps - v;
if (delta <= mindelta) {
mindelta = delta;
selected_cpt = cpt;
selected_bpt = bpt;
}
} else if (selected_cpt)
break;
}
if (!selected_cpt)
return -EINVAL;
}
t3_write_reg(adap, A_TP_TM_PIO_ADDR,
A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2);
v = t3_read_reg(adap, A_TP_TM_PIO_DATA);
if (sched & 1)
v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24);
else
v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8);
t3_write_reg(adap, A_TP_TM_PIO_DATA, v);
return 0;
}
static int tp_init(struct adapter *adap, const struct tp_params *p)
{
int busy = 0;
tp_config(adap, p);
t3_set_vlan_accel(adap, 3, 0);
if (is_offload(adap)) {
tp_set_timers(adap, adap->params.vpd.cclk * 1000);
t3_write_reg(adap, A_TP_RESET, F_FLSTINITENABLE);
busy = t3_wait_op_done(adap, A_TP_RESET, F_FLSTINITENABLE,
0, 1000, 5);
if (busy)
CH_ERR(adap, "TP initialization timed out\n");
}
if (!busy)
t3_write_reg(adap, A_TP_RESET, F_TPRESET);
return busy;
}
int t3_mps_set_active_ports(struct adapter *adap, unsigned int port_mask)
{
if (port_mask & ~((1 << adap->params.nports) - 1))
return -EINVAL;
t3_set_reg_field(adap, A_MPS_CFG, F_PORT1ACTIVE | F_PORT0ACTIVE,
port_mask << S_PORT0ACTIVE);
return 0;
}
/*
* Perform the bits of HW initialization that are dependent on the Tx
* channels being used.
*/
static void chan_init_hw(struct adapter *adap, unsigned int chan_map)
{
int i;
if (chan_map != 3) { /* one channel */
t3_set_reg_field(adap, A_ULPRX_CTL, F_ROUND_ROBIN, 0);
t3_set_reg_field(adap, A_ULPTX_CONFIG, F_CFG_RR_ARB, 0);
t3_write_reg(adap, A_MPS_CFG, F_TPRXPORTEN | F_ENFORCEPKT |
(chan_map == 1 ? F_TPTXPORT0EN | F_PORT0ACTIVE :
F_TPTXPORT1EN | F_PORT1ACTIVE));
t3_write_reg(adap, A_PM1_TX_CFG,
chan_map == 1 ? 0xffffffff : 0);
} else { /* two channels */
t3_set_reg_field(adap, A_ULPRX_CTL, 0, F_ROUND_ROBIN);
t3_set_reg_field(adap, A_ULPTX_CONFIG, 0, F_CFG_RR_ARB);
t3_write_reg(adap, A_ULPTX_DMA_WEIGHT,
V_D1_WEIGHT(16) | V_D0_WEIGHT(16));
t3_write_reg(adap, A_MPS_CFG, F_TPTXPORT0EN | F_TPTXPORT1EN |
F_TPRXPORTEN | F_PORT0ACTIVE | F_PORT1ACTIVE |
F_ENFORCEPKT);
t3_write_reg(adap, A_PM1_TX_CFG, 0x80008000);
t3_set_reg_field(adap, A_TP_PC_CONFIG, 0, F_TXTOSQUEUEMAPMODE);
t3_write_reg(adap, A_TP_TX_MOD_QUEUE_REQ_MAP,
V_TX_MOD_QUEUE_REQ_MAP(0xaa));
for (i = 0; i < 16; i++)
t3_write_reg(adap, A_TP_TX_MOD_QUE_TABLE,
(i << 16) | 0x1010);
}
}
static int calibrate_xgm(struct adapter *adapter)
{
if (uses_xaui(adapter)) {
unsigned int v, i;
for (i = 0; i < 5; ++i) {
t3_write_reg(adapter, A_XGM_XAUI_IMP, 0);
t3_read_reg(adapter, A_XGM_XAUI_IMP);
msleep(1);
v = t3_read_reg(adapter, A_XGM_XAUI_IMP);
if (!(v & (F_XGM_CALFAULT | F_CALBUSY))) {
t3_write_reg(adapter, A_XGM_XAUI_IMP,
V_XAUIIMP(G_CALIMP(v) >> 2));
return 0;
}
}
CH_ERR(adapter, "MAC calibration failed\n");
return -1;
} else {
t3_write_reg(adapter, A_XGM_RGMII_IMP,
V_RGMIIIMPPD(2) | V_RGMIIIMPPU(3));
t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_XGM_IMPSETUPDATE,
F_XGM_IMPSETUPDATE);
}
return 0;
}
static void calibrate_xgm_t3b(struct adapter *adapter)
{
if (!uses_xaui(adapter)) {
t3_write_reg(adapter, A_XGM_RGMII_IMP, F_CALRESET |
F_CALUPDATE | V_RGMIIIMPPD(2) | V_RGMIIIMPPU(3));
t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_CALRESET, 0);
t3_set_reg_field(adapter, A_XGM_RGMII_IMP, 0,
F_XGM_IMPSETUPDATE);
t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_XGM_IMPSETUPDATE,
0);
t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_CALUPDATE, 0);
t3_set_reg_field(adapter, A_XGM_RGMII_IMP, 0, F_CALUPDATE);
}
}
struct mc7_timing_params {
unsigned char ActToPreDly;
unsigned char ActToRdWrDly;
unsigned char PreCyc;
unsigned char RefCyc[5];
unsigned char BkCyc;
unsigned char WrToRdDly;
unsigned char RdToWrDly;
};
/*
* Write a value to a register and check that the write completed. These
* writes normally complete in a cycle or two, so one read should suffice.
* The very first read exists to flush the posted write to the device.
*/
static int wrreg_wait(struct adapter *adapter, unsigned int addr, u32 val)
{
t3_write_reg(adapter, addr, val);
t3_read_reg(adapter, addr); /* flush */
if (!(t3_read_reg(adapter, addr) & F_BUSY))
return 0;
CH_ERR(adapter, "write to MC7 register 0x%x timed out\n", addr);
return -EIO;
}
static int mc7_init(struct mc7 *mc7, unsigned int mc7_clock, int mem_type)
{
static const unsigned int mc7_mode[] = {
0x632, 0x642, 0x652, 0x432, 0x442
};
static const struct mc7_timing_params mc7_timings[] = {
{12, 3, 4, {20, 28, 34, 52, 0}, 15, 6, 4},
{12, 4, 5, {20, 28, 34, 52, 0}, 16, 7, 4},
{12, 5, 6, {20, 28, 34, 52, 0}, 17, 8, 4},
{9, 3, 4, {15, 21, 26, 39, 0}, 12, 6, 4},
{9, 4, 5, {15, 21, 26, 39, 0}, 13, 7, 4}
};
u32 val;
unsigned int width, density, slow, attempts;
struct adapter *adapter = mc7->adapter;
const struct mc7_timing_params *p = &mc7_timings[mem_type];
if (!mc7->size)
return 0;
val = t3_read_reg(adapter, mc7->offset + A_MC7_CFG);
slow = val & F_SLOW;
width = G_WIDTH(val);
density = G_DEN(val);
t3_write_reg(adapter, mc7->offset + A_MC7_CFG, val | F_IFEN);
val = t3_read_reg(adapter, mc7->offset + A_MC7_CFG); /* flush */
msleep(1);
if (!slow) {
t3_write_reg(adapter, mc7->offset + A_MC7_CAL, F_SGL_CAL_EN);
t3_read_reg(adapter, mc7->offset + A_MC7_CAL);
msleep(1);
if (t3_read_reg(adapter, mc7->offset + A_MC7_CAL) &
(F_BUSY | F_SGL_CAL_EN | F_CAL_FAULT)) {
CH_ERR(adapter, "%s MC7 calibration timed out\n",
mc7->name);
goto out_fail;
}
}
t3_write_reg(adapter, mc7->offset + A_MC7_PARM,
V_ACTTOPREDLY(p->ActToPreDly) |
V_ACTTORDWRDLY(p->ActToRdWrDly) | V_PRECYC(p->PreCyc) |
V_REFCYC(p->RefCyc[density]) | V_BKCYC(p->BkCyc) |
V_WRTORDDLY(p->WrToRdDly) | V_RDTOWRDLY(p->RdToWrDly));
t3_write_reg(adapter, mc7->offset + A_MC7_CFG,
val | F_CLKEN | F_TERM150);
t3_read_reg(adapter, mc7->offset + A_MC7_CFG); /* flush */
if (!slow)
t3_set_reg_field(adapter, mc7->offset + A_MC7_DLL, F_DLLENB,
F_DLLENB);
udelay(1);
val = slow ? 3 : 6;
if (wrreg_wait(adapter, mc7->offset + A_MC7_PRE, 0) ||
wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE2, 0) ||
wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE3, 0) ||
wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val))
goto out_fail;
if (!slow) {
t3_write_reg(adapter, mc7->offset + A_MC7_MODE, 0x100);
t3_set_reg_field(adapter, mc7->offset + A_MC7_DLL, F_DLLRST, 0);
udelay(5);
}
if (wrreg_wait(adapter, mc7->offset + A_MC7_PRE, 0) ||
wrreg_wait(adapter, mc7->offset + A_MC7_REF, 0) ||
wrreg_wait(adapter, mc7->offset + A_MC7_REF, 0) ||
wrreg_wait(adapter, mc7->offset + A_MC7_MODE,
mc7_mode[mem_type]) ||
wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val | 0x380) ||
wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val))
goto out_fail;
/* clock value is in KHz */
mc7_clock = mc7_clock * 7812 + mc7_clock / 2; /* ns */
mc7_clock /= 1000000; /* KHz->MHz, ns->us */
t3_write_reg(adapter, mc7->offset + A_MC7_REF,
F_PERREFEN | V_PREREFDIV(mc7_clock));
t3_read_reg(adapter, mc7->offset + A_MC7_REF); /* flush */
t3_write_reg(adapter, mc7->offset + A_MC7_ECC, F_ECCGENEN | F_ECCCHKEN);
t3_write_reg(adapter, mc7->offset + A_MC7_BIST_DATA, 0);
t3_write_reg(adapter, mc7->offset + A_MC7_BIST_ADDR_BEG, 0);
t3_write_reg(adapter, mc7->offset + A_MC7_BIST_ADDR_END,
(mc7->size << width) - 1);
t3_write_reg(adapter, mc7->offset + A_MC7_BIST_OP, V_OP(1));
t3_read_reg(adapter, mc7->offset + A_MC7_BIST_OP); /* flush */
attempts = 50;
do {
msleep(250);
val = t3_read_reg(adapter, mc7->offset + A_MC7_BIST_OP);
} while ((val & F_BUSY) && --attempts);
if (val & F_BUSY) {
CH_ERR(adapter, "%s MC7 BIST timed out\n", mc7->name);
goto out_fail;
}
/* Enable normal memory accesses. */
t3_set_reg_field(adapter, mc7->offset + A_MC7_CFG, 0, F_RDY);
return 0;
out_fail:
return -1;
}
static void config_pcie(struct adapter *adap)
{
static const u16 ack_lat[4][6] = {
{237, 416, 559, 1071, 2095, 4143},
{128, 217, 289, 545, 1057, 2081},
{73, 118, 154, 282, 538, 1050},
{67, 107, 86, 150, 278, 534}
};
static const u16 rpl_tmr[4][6] = {
{711, 1248, 1677, 3213, 6285, 12429},
{384, 651, 867, 1635, 3171, 6243},
{219, 354, 462, 846, 1614, 3150},
{201, 321, 258, 450, 834, 1602}
};
u16 val, devid;
unsigned int log2_width, pldsize;
unsigned int fst_trn_rx, fst_trn_tx, acklat, rpllmt;
pci_read_config_word(adap->pdev,
adap->params.pci.pcie_cap_addr + PCI_EXP_DEVCTL,
&val);
pldsize = (val & PCI_EXP_DEVCTL_PAYLOAD) >> 5;
pci_read_config_word(adap->pdev, 0x2, &devid);
if (devid == 0x37) {
pci_write_config_word(adap->pdev,
adap->params.pci.pcie_cap_addr +
PCI_EXP_DEVCTL,
val & ~PCI_EXP_DEVCTL_READRQ &
~PCI_EXP_DEVCTL_PAYLOAD);
pldsize = 0;
}
pci_read_config_word(adap->pdev,
adap->params.pci.pcie_cap_addr + PCI_EXP_LNKCTL,
&val);
fst_trn_tx = G_NUMFSTTRNSEQ(t3_read_reg(adap, A_PCIE_PEX_CTRL0));
fst_trn_rx = adap->params.rev == 0 ? fst_trn_tx :
G_NUMFSTTRNSEQRX(t3_read_reg(adap, A_PCIE_MODE));
log2_width = fls(adap->params.pci.width) - 1;
acklat = ack_lat[log2_width][pldsize];
if (val & 1) /* check LOsEnable */
acklat += fst_trn_tx * 4;
rpllmt = rpl_tmr[log2_width][pldsize] + fst_trn_rx * 4;
if (adap->params.rev == 0)
t3_set_reg_field(adap, A_PCIE_PEX_CTRL1,
V_T3A_ACKLAT(M_T3A_ACKLAT),
V_T3A_ACKLAT(acklat));
else
t3_set_reg_field(adap, A_PCIE_PEX_CTRL1, V_ACKLAT(M_ACKLAT),
V_ACKLAT(acklat));
t3_set_reg_field(adap, A_PCIE_PEX_CTRL0, V_REPLAYLMT(M_REPLAYLMT),
V_REPLAYLMT(rpllmt));
t3_write_reg(adap, A_PCIE_PEX_ERR, 0xffffffff);
t3_set_reg_field(adap, A_PCIE_CFG, 0,
F_ENABLELINKDWNDRST | F_ENABLELINKDOWNRST |
F_PCIE_DMASTOPEN | F_PCIE_CLIDECEN);
}
/*
* Initialize and configure T3 HW modules. This performs the
* initialization steps that need to be done once after a card is reset.
* MAC and PHY initialization is handled separarely whenever a port is enabled.
*
* fw_params are passed to FW and their value is platform dependent. Only the
* top 8 bits are available for use, the rest must be 0.
*/
int t3_init_hw(struct adapter *adapter, u32 fw_params)
{
int err = -EIO, attempts, i;
const struct vpd_params *vpd = &adapter->params.vpd;
if (adapter->params.rev > 0)
calibrate_xgm_t3b(adapter);
else if (calibrate_xgm(adapter))
goto out_err;
if (vpd->mclk) {
partition_mem(adapter, &adapter->params.tp);
if (mc7_init(&adapter->pmrx, vpd->mclk, vpd->mem_timing) ||
mc7_init(&adapter->pmtx, vpd->mclk, vpd->mem_timing) ||
mc7_init(&adapter->cm, vpd->mclk, vpd->mem_timing) ||
t3_mc5_init(&adapter->mc5, adapter->params.mc5.nservers,
adapter->params.mc5.nfilters,
adapter->params.mc5.nroutes))
goto out_err;
for (i = 0; i < 32; i++)
if (clear_sge_ctxt(adapter, i, F_CQ))
goto out_err;
}
if (tp_init(adapter, &adapter->params.tp))
goto out_err;
t3_tp_set_coalescing_size(adapter,
min(adapter->params.sge.max_pkt_size,
MAX_RX_COALESCING_LEN), 1);
t3_tp_set_max_rxsize(adapter,
min(adapter->params.sge.max_pkt_size, 16384U));
ulp_config(adapter, &adapter->params.tp);
if (is_pcie(adapter))
config_pcie(adapter);
else
t3_set_reg_field(adapter, A_PCIX_CFG, 0,
F_DMASTOPEN | F_CLIDECEN);
if (adapter->params.rev == T3_REV_C)
t3_set_reg_field(adapter, A_ULPTX_CONFIG, 0,
F_CFG_CQE_SOP_MASK);
t3_write_reg(adapter, A_PM1_RX_CFG, 0xffffffff);
t3_write_reg(adapter, A_PM1_RX_MODE, 0);
t3_write_reg(adapter, A_PM1_TX_MODE, 0);
chan_init_hw(adapter, adapter->params.chan_map);
t3_sge_init(adapter, &adapter->params.sge);
t3_write_reg(adapter, A_T3DBG_GPIO_ACT_LOW, calc_gpio_intr(adapter));
t3_write_reg(adapter, A_CIM_HOST_ACC_DATA, vpd->uclk | fw_params);
t3_write_reg(adapter, A_CIM_BOOT_CFG,
V_BOOTADDR(FW_FLASH_BOOT_ADDR >> 2));
t3_read_reg(adapter, A_CIM_BOOT_CFG); /* flush */
attempts = 100;
do { /* wait for uP to initialize */
msleep(20);
} while (t3_read_reg(adapter, A_CIM_HOST_ACC_DATA) && --attempts);
if (!attempts) {
CH_ERR(adapter, "uP initialization timed out\n");
goto out_err;
}
err = 0;
out_err:
return err;
}
/**
* get_pci_mode - determine a card's PCI mode
* @adapter: the adapter
* @p: where to store the PCI settings
*
* Determines a card's PCI mode and associated parameters, such as speed
* and width.
*/
static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
{
static unsigned short speed_map[] = { 33, 66, 100, 133 };
u32 pci_mode, pcie_cap;
pcie_cap = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
if (pcie_cap) {
u16 val;
p->variant = PCI_VARIANT_PCIE;
p->pcie_cap_addr = pcie_cap;
pci_read_config_word(adapter->pdev, pcie_cap + PCI_EXP_LNKSTA,
&val);
p->width = (val >> 4) & 0x3f;
return;
}
pci_mode = t3_read_reg(adapter, A_PCIX_MODE);
p->speed = speed_map[G_PCLKRANGE(pci_mode)];
p->width = (pci_mode & F_64BIT) ? 64 : 32;
pci_mode = G_PCIXINITPAT(pci_mode);
if (pci_mode == 0)
p->variant = PCI_VARIANT_PCI;
else if (pci_mode < 4)
p->variant = PCI_VARIANT_PCIX_MODE1_PARITY;
else if (pci_mode < 8)
p->variant = PCI_VARIANT_PCIX_MODE1_ECC;
else
p->variant = PCI_VARIANT_PCIX_266_MODE2;
}
/**
* init_link_config - initialize a link's SW state
* @lc: structure holding the link state
* @ai: information about the current card
*
* Initializes the SW state maintained for each link, including the link's
* capabilities and default speed/duplex/flow-control/autonegotiation
* settings.
*/
static void init_link_config(struct link_config *lc, unsigned int caps)
{
lc->supported = caps;
lc->requested_speed = lc->speed = SPEED_INVALID;
lc->requested_duplex = lc->duplex = DUPLEX_INVALID;
lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
if (lc->supported & SUPPORTED_Autoneg) {
lc->advertising = lc->supported;
lc->autoneg = AUTONEG_ENABLE;
lc->requested_fc |= PAUSE_AUTONEG;
} else {
lc->advertising = 0;
lc->autoneg = AUTONEG_DISABLE;
}
}
/**
* mc7_calc_size - calculate MC7 memory size
* @cfg: the MC7 configuration
*
* Calculates the size of an MC7 memory in bytes from the value of its
* configuration register.
*/
static unsigned int mc7_calc_size(u32 cfg)
{
unsigned int width = G_WIDTH(cfg);
unsigned int banks = !!(cfg & F_BKS) + 1;
unsigned int org = !!(cfg & F_ORG) + 1;
unsigned int density = G_DEN(cfg);
unsigned int MBs = ((256 << density) * banks) / (org << width);
return MBs << 20;
}
static void mc7_prep(struct adapter *adapter, struct mc7 *mc7,
unsigned int base_addr, const char *name)
{
u32 cfg;
mc7->adapter = adapter;
mc7->name = name;
mc7->offset = base_addr - MC7_PMRX_BASE_ADDR;
cfg = t3_read_reg(adapter, mc7->offset + A_MC7_CFG);
mc7->size = mc7->size = G_DEN(cfg) == M_DEN ? 0 : mc7_calc_size(cfg);
mc7->width = G_WIDTH(cfg);
}
void mac_prep(struct cmac *mac, struct adapter *adapter, int index)
{
u16 devid;
mac->adapter = adapter;
pci_read_config_word(adapter->pdev, 0x2, &devid);
if (devid == 0x37 && !adapter->params.vpd.xauicfg[1])
index = 0;
mac->offset = (XGMAC0_1_BASE_ADDR - XGMAC0_0_BASE_ADDR) * index;
mac->nucast = 1;
if (adapter->params.rev == 0 && uses_xaui(adapter)) {
t3_write_reg(adapter, A_XGM_SERDES_CTRL + mac->offset,
is_10G(adapter) ? 0x2901c04 : 0x2301c04);
t3_set_reg_field(adapter, A_XGM_PORT_CFG + mac->offset,
F_ENRGMII, 0);
}
}
void early_hw_init(struct adapter *adapter, const struct adapter_info *ai)
{
u32 val = V_PORTSPEED(is_10G(adapter) ? 3 : 2);
mi1_init(adapter, ai);
t3_write_reg(adapter, A_I2C_CFG, /* set for 80KHz */
V_I2C_CLKDIV(adapter->params.vpd.cclk / 80 - 1));
t3_write_reg(adapter, A_T3DBG_GPIO_EN,
ai->gpio_out | F_GPIO0_OEN | F_GPIO0_OUT_VAL);
t3_write_reg(adapter, A_MC5_DB_SERVER_INDEX, 0);
t3_write_reg(adapter, A_SG_OCO_BASE, V_BASE1(0xfff));
if (adapter->params.rev == 0 || !uses_xaui(adapter))
val |= F_ENRGMII;
/* Enable MAC clocks so we can access the registers */
t3_write_reg(adapter, A_XGM_PORT_CFG, val);
t3_read_reg(adapter, A_XGM_PORT_CFG);
val |= F_CLKDIVRESET_;
t3_write_reg(adapter, A_XGM_PORT_CFG, val);
t3_read_reg(adapter, A_XGM_PORT_CFG);
t3_write_reg(adapter, XGM_REG(A_XGM_PORT_CFG, 1), val);
t3_read_reg(adapter, A_XGM_PORT_CFG);
}
/*
* Reset the adapter.
* Older PCIe cards lose their config space during reset, PCI-X
* ones don't.
*/
int t3_reset_adapter(struct adapter *adapter)
{
int i, save_and_restore_pcie =
adapter->params.rev < T3_REV_B2 && is_pcie(adapter);
uint16_t devid = 0;
if (save_and_restore_pcie)
pci_save_state(adapter->pdev);
t3_write_reg(adapter, A_PL_RST, F_CRSTWRM | F_CRSTWRMMODE);
/*
* Delay. Give Some time to device to reset fully.
* XXX The delay time should be modified.
*/
for (i = 0; i < 10; i++) {
msleep(50);
pci_read_config_word(adapter->pdev, 0x00, &devid);
if (devid == 0x1425)
break;
}
if (devid != 0x1425)
return -1;
if (save_and_restore_pcie)
pci_restore_state(adapter->pdev);
return 0;
}
static int init_parity(struct adapter *adap)
{
int i, err, addr;
if (t3_read_reg(adap, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
return -EBUSY;
for (err = i = 0; !err && i < 16; i++)
err = clear_sge_ctxt(adap, i, F_EGRESS);
for (i = 0xfff0; !err && i <= 0xffff; i++)
err = clear_sge_ctxt(adap, i, F_EGRESS);
for (i = 0; !err && i < SGE_QSETS; i++)
err = clear_sge_ctxt(adap, i, F_RESPONSEQ);
if (err)
return err;
t3_write_reg(adap, A_CIM_IBQ_DBG_DATA, 0);
for (i = 0; i < 4; i++)
for (addr = 0; addr <= M_IBQDBGADDR; addr++) {
t3_write_reg(adap, A_CIM_IBQ_DBG_CFG, F_IBQDBGEN |
F_IBQDBGWR | V_IBQDBGQID(i) |
V_IBQDBGADDR(addr));
err = t3_wait_op_done(adap, A_CIM_IBQ_DBG_CFG,
F_IBQDBGBUSY, 0, 2, 1);
if (err)
return err;
}
return 0;
}
/*
* Initialize adapter SW state for the various HW modules, set initial values
* for some adapter tunables, take PHYs out of reset, and initialize the MDIO
* interface.
*/
int t3_prep_adapter(struct adapter *adapter, const struct adapter_info *ai,
int reset)
{
int ret;
unsigned int i, j = -1;
get_pci_mode(adapter, &adapter->params.pci);
adapter->params.info = ai;
adapter->params.nports = ai->nports0 + ai->nports1;
adapter->params.chan_map = (!!ai->nports0) | (!!ai->nports1 << 1);
adapter->params.rev = t3_read_reg(adapter, A_PL_REV);
/*
* We used to only run the "adapter check task" once a second if
* we had PHYs which didn't support interrupts (we would check
* their link status once a second). Now we check other conditions
* in that routine which could potentially impose a very high
* interrupt load on the system. As such, we now always scan the
* adapter state once a second ...
*/
adapter->params.linkpoll_period = 10;
adapter->params.stats_update_period = is_10G(adapter) ?
MAC_STATS_ACCUM_SECS : (MAC_STATS_ACCUM_SECS * 10);
adapter->params.pci.vpd_cap_addr =
pci_find_capability(adapter->pdev, PCI_CAP_ID_VPD);
ret = get_vpd_params(adapter, &adapter->params.vpd);
if (ret < 0)
return ret;
if (reset && t3_reset_adapter(adapter))
return -1;
t3_sge_prep(adapter, &adapter->params.sge);
if (adapter->params.vpd.mclk) {
struct tp_params *p = &adapter->params.tp;
mc7_prep(adapter, &adapter->pmrx, MC7_PMRX_BASE_ADDR, "PMRX");
mc7_prep(adapter, &adapter->pmtx, MC7_PMTX_BASE_ADDR, "PMTX");
mc7_prep(adapter, &adapter->cm, MC7_CM_BASE_ADDR, "CM");
p->nchan = adapter->params.chan_map == 3 ? 2 : 1;
p->pmrx_size = t3_mc7_size(&adapter->pmrx);
p->pmtx_size = t3_mc7_size(&adapter->pmtx);
p->cm_size = t3_mc7_size(&adapter->cm);
p->chan_rx_size = p->pmrx_size / 2; /* only 1 Rx channel */
p->chan_tx_size = p->pmtx_size / p->nchan;
p->rx_pg_size = 64 * 1024;
p->tx_pg_size = is_10G(adapter) ? 64 * 1024 : 16 * 1024;
p->rx_num_pgs = pm_num_pages(p->chan_rx_size, p->rx_pg_size);
p->tx_num_pgs = pm_num_pages(p->chan_tx_size, p->tx_pg_size);
p->ntimer_qs = p->cm_size >= (128 << 20) ||
adapter->params.rev > 0 ? 12 : 6;
}
adapter->params.offload = t3_mc7_size(&adapter->pmrx) &&
t3_mc7_size(&adapter->pmtx) &&
t3_mc7_size(&adapter->cm);
if (is_offload(adapter)) {
adapter->params.mc5.nservers = DEFAULT_NSERVERS;
adapter->params.mc5.nfilters = adapter->params.rev > 0 ?
DEFAULT_NFILTERS : 0;
adapter->params.mc5.nroutes = 0;
t3_mc5_prep(adapter, &adapter->mc5, MC5_MODE_144_BIT);
init_mtus(adapter->params.mtus);
init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
}
early_hw_init(adapter, ai);
ret = init_parity(adapter);
if (ret)
return ret;
for_each_port(adapter, i) {
u8 hw_addr[6];
const struct port_type_info *pti;
struct port_info *p = adap2pinfo(adapter, i);
while (!adapter->params.vpd.port_type[++j])
;
pti = &port_types[adapter->params.vpd.port_type[j]];
if (!pti->phy_prep) {
CH_ALERT(adapter, "Invalid port type index %d\n",
adapter->params.vpd.port_type[j]);
return -EINVAL;
}
p->phy.mdio.dev = adapter->port[i];
ret = pti->phy_prep(&p->phy, adapter, ai->phy_base_addr + j,
ai->mdio_ops);
if (ret)
return ret;
mac_prep(&p->mac, adapter, j);
/*
* The VPD EEPROM stores the base Ethernet address for the
* card. A port's address is derived from the base by adding
* the port's index to the base's low octet.
*/
memcpy(hw_addr, adapter->params.vpd.eth_base, 5);
hw_addr[5] = adapter->params.vpd.eth_base[5] + i;
memcpy(adapter->port[i]->dev_addr, hw_addr,
ETH_ALEN);
memcpy(adapter->port[i]->perm_addr, hw_addr,
ETH_ALEN);
init_link_config(&p->link_config, p->phy.caps);
p->phy.ops->power_down(&p->phy, 1);
/*
* If the PHY doesn't support interrupts for link status
* changes, schedule a scan of the adapter links at least
* once a second.
*/
if (!(p->phy.caps & SUPPORTED_IRQ) &&
adapter->params.linkpoll_period > 10)
adapter->params.linkpoll_period = 10;
}
return 0;
}
void t3_led_ready(struct adapter *adapter)
{
t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL,
F_GPIO0_OUT_VAL);
}
int t3_replay_prep_adapter(struct adapter *adapter)
{
const struct adapter_info *ai = adapter->params.info;
unsigned int i, j = -1;
int ret;
early_hw_init(adapter, ai);
ret = init_parity(adapter);
if (ret)
return ret;
for_each_port(adapter, i) {
const struct port_type_info *pti;
struct port_info *p = adap2pinfo(adapter, i);
while (!adapter->params.vpd.port_type[++j])
;
pti = &port_types[adapter->params.vpd.port_type[j]];
ret = pti->phy_prep(&p->phy, adapter, p->phy.mdio.prtad, NULL);
if (ret)
return ret;
p->phy.ops->power_down(&p->phy, 1);
}
return 0;
}