|  | // SPDX-License-Identifier: GPL-2.0-or-later | 
|  |  | 
|  | /* | 
|  | * VMA-specific functions. | 
|  | */ | 
|  |  | 
|  | #include "vma_internal.h" | 
|  | #include "vma.h" | 
|  |  | 
|  | struct mmap_state { | 
|  | struct mm_struct *mm; | 
|  | struct vma_iterator *vmi; | 
|  |  | 
|  | unsigned long addr; | 
|  | unsigned long end; | 
|  | pgoff_t pgoff; | 
|  | unsigned long pglen; | 
|  | unsigned long flags; | 
|  | struct file *file; | 
|  |  | 
|  | unsigned long charged; | 
|  | bool retry_merge; | 
|  |  | 
|  | struct vm_area_struct *prev; | 
|  | struct vm_area_struct *next; | 
|  |  | 
|  | /* Unmapping state. */ | 
|  | struct vma_munmap_struct vms; | 
|  | struct ma_state mas_detach; | 
|  | struct maple_tree mt_detach; | 
|  | }; | 
|  |  | 
|  | #define MMAP_STATE(name, mm_, vmi_, addr_, len_, pgoff_, flags_, file_) \ | 
|  | struct mmap_state name = {					\ | 
|  | .mm = mm_,						\ | 
|  | .vmi = vmi_,						\ | 
|  | .addr = addr_,						\ | 
|  | .end = (addr_) + (len_),				\ | 
|  | .pgoff = pgoff_,					\ | 
|  | .pglen = PHYS_PFN(len_),				\ | 
|  | .flags = flags_,					\ | 
|  | .file = file_,						\ | 
|  | } | 
|  |  | 
|  | #define VMG_MMAP_STATE(name, map_, vma_)				\ | 
|  | struct vma_merge_struct name = {				\ | 
|  | .mm = (map_)->mm,					\ | 
|  | .vmi = (map_)->vmi,					\ | 
|  | .start = (map_)->addr,					\ | 
|  | .end = (map_)->end,					\ | 
|  | .flags = (map_)->flags,					\ | 
|  | .pgoff = (map_)->pgoff,					\ | 
|  | .file = (map_)->file,					\ | 
|  | .prev = (map_)->prev,					\ | 
|  | .middle = vma_,						\ | 
|  | .next = (vma_) ? NULL : (map_)->next,			\ | 
|  | .state = VMA_MERGE_START,				\ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If, at any point, the VMA had unCoW'd mappings from parents, it will maintain | 
|  | * more than one anon_vma_chain connecting it to more than one anon_vma. A merge | 
|  | * would mean a wider range of folios sharing the root anon_vma lock, and thus | 
|  | * potential lock contention, we do not wish to encourage merging such that this | 
|  | * scales to a problem. | 
|  | */ | 
|  | static bool vma_had_uncowed_parents(struct vm_area_struct *vma) | 
|  | { | 
|  | /* | 
|  | * The list_is_singular() test is to avoid merging VMA cloned from | 
|  | * parents. This can improve scalability caused by anon_vma lock. | 
|  | */ | 
|  | return vma && vma->anon_vma && !list_is_singular(&vma->anon_vma_chain); | 
|  | } | 
|  |  | 
|  | static inline bool is_mergeable_vma(struct vma_merge_struct *vmg, bool merge_next) | 
|  | { | 
|  | struct vm_area_struct *vma = merge_next ? vmg->next : vmg->prev; | 
|  |  | 
|  | if (!mpol_equal(vmg->policy, vma_policy(vma))) | 
|  | return false; | 
|  | /* | 
|  | * VM_SOFTDIRTY should not prevent from VMA merging, if we | 
|  | * match the flags but dirty bit -- the caller should mark | 
|  | * merged VMA as dirty. If dirty bit won't be excluded from | 
|  | * comparison, we increase pressure on the memory system forcing | 
|  | * the kernel to generate new VMAs when old one could be | 
|  | * extended instead. | 
|  | */ | 
|  | if ((vma->vm_flags ^ vmg->flags) & ~VM_SOFTDIRTY) | 
|  | return false; | 
|  | if (vma->vm_file != vmg->file) | 
|  | return false; | 
|  | if (!is_mergeable_vm_userfaultfd_ctx(vma, vmg->uffd_ctx)) | 
|  | return false; | 
|  | if (!anon_vma_name_eq(anon_vma_name(vma), vmg->anon_name)) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool is_mergeable_anon_vma(struct vma_merge_struct *vmg, bool merge_next) | 
|  | { | 
|  | struct vm_area_struct *tgt = merge_next ? vmg->next : vmg->prev; | 
|  | struct vm_area_struct *src = vmg->middle; /* exisitng merge case. */ | 
|  | struct anon_vma *tgt_anon = tgt->anon_vma; | 
|  | struct anon_vma *src_anon = vmg->anon_vma; | 
|  |  | 
|  | /* | 
|  | * We _can_ have !src, vmg->anon_vma via copy_vma(). In this instance we | 
|  | * will remove the existing VMA's anon_vma's so there's no scalability | 
|  | * concerns. | 
|  | */ | 
|  | VM_WARN_ON(src && src_anon != src->anon_vma); | 
|  |  | 
|  | /* Case 1 - we will dup_anon_vma() from src into tgt. */ | 
|  | if (!tgt_anon && src_anon) | 
|  | return !vma_had_uncowed_parents(src); | 
|  | /* Case 2 - we will simply use tgt's anon_vma. */ | 
|  | if (tgt_anon && !src_anon) | 
|  | return !vma_had_uncowed_parents(tgt); | 
|  | /* Case 3 - the anon_vma's are already shared. */ | 
|  | return src_anon == tgt_anon; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * init_multi_vma_prep() - Initializer for struct vma_prepare | 
|  | * @vp: The vma_prepare struct | 
|  | * @vma: The vma that will be altered once locked | 
|  | * @vmg: The merge state that will be used to determine adjustment and VMA | 
|  | *       removal. | 
|  | */ | 
|  | static void init_multi_vma_prep(struct vma_prepare *vp, | 
|  | struct vm_area_struct *vma, | 
|  | struct vma_merge_struct *vmg) | 
|  | { | 
|  | struct vm_area_struct *adjust; | 
|  | struct vm_area_struct **remove = &vp->remove; | 
|  |  | 
|  | memset(vp, 0, sizeof(struct vma_prepare)); | 
|  | vp->vma = vma; | 
|  | vp->anon_vma = vma->anon_vma; | 
|  |  | 
|  | if (vmg && vmg->__remove_middle) { | 
|  | *remove = vmg->middle; | 
|  | remove = &vp->remove2; | 
|  | } | 
|  | if (vmg && vmg->__remove_next) | 
|  | *remove = vmg->next; | 
|  |  | 
|  | if (vmg && vmg->__adjust_middle_start) | 
|  | adjust = vmg->middle; | 
|  | else if (vmg && vmg->__adjust_next_start) | 
|  | adjust = vmg->next; | 
|  | else | 
|  | adjust = NULL; | 
|  |  | 
|  | vp->adj_next = adjust; | 
|  | if (!vp->anon_vma && adjust) | 
|  | vp->anon_vma = adjust->anon_vma; | 
|  |  | 
|  | VM_WARN_ON(vp->anon_vma && adjust && adjust->anon_vma && | 
|  | vp->anon_vma != adjust->anon_vma); | 
|  |  | 
|  | vp->file = vma->vm_file; | 
|  | if (vp->file) | 
|  | vp->mapping = vma->vm_file->f_mapping; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) | 
|  | * in front of (at a lower virtual address and file offset than) the vma. | 
|  | * | 
|  | * We cannot merge two vmas if they have differently assigned (non-NULL) | 
|  | * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. | 
|  | * | 
|  | * We don't check here for the merged mmap wrapping around the end of pagecache | 
|  | * indices (16TB on ia32) because do_mmap() does not permit mmap's which | 
|  | * wrap, nor mmaps which cover the final page at index -1UL. | 
|  | * | 
|  | * We assume the vma may be removed as part of the merge. | 
|  | */ | 
|  | static bool can_vma_merge_before(struct vma_merge_struct *vmg) | 
|  | { | 
|  | pgoff_t pglen = PHYS_PFN(vmg->end - vmg->start); | 
|  |  | 
|  | if (is_mergeable_vma(vmg, /* merge_next = */ true) && | 
|  | is_mergeable_anon_vma(vmg, /* merge_next = */ true)) { | 
|  | if (vmg->next->vm_pgoff == vmg->pgoff + pglen) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) | 
|  | * beyond (at a higher virtual address and file offset than) the vma. | 
|  | * | 
|  | * We cannot merge two vmas if they have differently assigned (non-NULL) | 
|  | * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. | 
|  | * | 
|  | * We assume that vma is not removed as part of the merge. | 
|  | */ | 
|  | static bool can_vma_merge_after(struct vma_merge_struct *vmg) | 
|  | { | 
|  | if (is_mergeable_vma(vmg, /* merge_next = */ false) && | 
|  | is_mergeable_anon_vma(vmg, /* merge_next = */ false)) { | 
|  | if (vmg->prev->vm_pgoff + vma_pages(vmg->prev) == vmg->pgoff) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static void __vma_link_file(struct vm_area_struct *vma, | 
|  | struct address_space *mapping) | 
|  | { | 
|  | if (vma_is_shared_maywrite(vma)) | 
|  | mapping_allow_writable(mapping); | 
|  |  | 
|  | flush_dcache_mmap_lock(mapping); | 
|  | vma_interval_tree_insert(vma, &mapping->i_mmap); | 
|  | flush_dcache_mmap_unlock(mapping); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Requires inode->i_mapping->i_mmap_rwsem | 
|  | */ | 
|  | static void __remove_shared_vm_struct(struct vm_area_struct *vma, | 
|  | struct address_space *mapping) | 
|  | { | 
|  | if (vma_is_shared_maywrite(vma)) | 
|  | mapping_unmap_writable(mapping); | 
|  |  | 
|  | flush_dcache_mmap_lock(mapping); | 
|  | vma_interval_tree_remove(vma, &mapping->i_mmap); | 
|  | flush_dcache_mmap_unlock(mapping); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * vma has some anon_vma assigned, and is already inserted on that | 
|  | * anon_vma's interval trees. | 
|  | * | 
|  | * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the | 
|  | * vma must be removed from the anon_vma's interval trees using | 
|  | * anon_vma_interval_tree_pre_update_vma(). | 
|  | * | 
|  | * After the update, the vma will be reinserted using | 
|  | * anon_vma_interval_tree_post_update_vma(). | 
|  | * | 
|  | * The entire update must be protected by exclusive mmap_lock and by | 
|  | * the root anon_vma's mutex. | 
|  | */ | 
|  | static void | 
|  | anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma) | 
|  | { | 
|  | struct anon_vma_chain *avc; | 
|  |  | 
|  | list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) | 
|  | anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root); | 
|  | } | 
|  |  | 
|  | static void | 
|  | anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma) | 
|  | { | 
|  | struct anon_vma_chain *avc; | 
|  |  | 
|  | list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) | 
|  | anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * vma_prepare() - Helper function for handling locking VMAs prior to altering | 
|  | * @vp: The initialized vma_prepare struct | 
|  | */ | 
|  | static void vma_prepare(struct vma_prepare *vp) | 
|  | { | 
|  | if (vp->file) { | 
|  | uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end); | 
|  |  | 
|  | if (vp->adj_next) | 
|  | uprobe_munmap(vp->adj_next, vp->adj_next->vm_start, | 
|  | vp->adj_next->vm_end); | 
|  |  | 
|  | i_mmap_lock_write(vp->mapping); | 
|  | if (vp->insert && vp->insert->vm_file) { | 
|  | /* | 
|  | * Put into interval tree now, so instantiated pages | 
|  | * are visible to arm/parisc __flush_dcache_page | 
|  | * throughout; but we cannot insert into address | 
|  | * space until vma start or end is updated. | 
|  | */ | 
|  | __vma_link_file(vp->insert, | 
|  | vp->insert->vm_file->f_mapping); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (vp->anon_vma) { | 
|  | anon_vma_lock_write(vp->anon_vma); | 
|  | anon_vma_interval_tree_pre_update_vma(vp->vma); | 
|  | if (vp->adj_next) | 
|  | anon_vma_interval_tree_pre_update_vma(vp->adj_next); | 
|  | } | 
|  |  | 
|  | if (vp->file) { | 
|  | flush_dcache_mmap_lock(vp->mapping); | 
|  | vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap); | 
|  | if (vp->adj_next) | 
|  | vma_interval_tree_remove(vp->adj_next, | 
|  | &vp->mapping->i_mmap); | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | * vma_complete- Helper function for handling the unlocking after altering VMAs, | 
|  | * or for inserting a VMA. | 
|  | * | 
|  | * @vp: The vma_prepare struct | 
|  | * @vmi: The vma iterator | 
|  | * @mm: The mm_struct | 
|  | */ | 
|  | static void vma_complete(struct vma_prepare *vp, struct vma_iterator *vmi, | 
|  | struct mm_struct *mm) | 
|  | { | 
|  | if (vp->file) { | 
|  | if (vp->adj_next) | 
|  | vma_interval_tree_insert(vp->adj_next, | 
|  | &vp->mapping->i_mmap); | 
|  | vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap); | 
|  | flush_dcache_mmap_unlock(vp->mapping); | 
|  | } | 
|  |  | 
|  | if (vp->remove && vp->file) { | 
|  | __remove_shared_vm_struct(vp->remove, vp->mapping); | 
|  | if (vp->remove2) | 
|  | __remove_shared_vm_struct(vp->remove2, vp->mapping); | 
|  | } else if (vp->insert) { | 
|  | /* | 
|  | * split_vma has split insert from vma, and needs | 
|  | * us to insert it before dropping the locks | 
|  | * (it may either follow vma or precede it). | 
|  | */ | 
|  | vma_iter_store_new(vmi, vp->insert); | 
|  | mm->map_count++; | 
|  | } | 
|  |  | 
|  | if (vp->anon_vma) { | 
|  | anon_vma_interval_tree_post_update_vma(vp->vma); | 
|  | if (vp->adj_next) | 
|  | anon_vma_interval_tree_post_update_vma(vp->adj_next); | 
|  | anon_vma_unlock_write(vp->anon_vma); | 
|  | } | 
|  |  | 
|  | if (vp->file) { | 
|  | i_mmap_unlock_write(vp->mapping); | 
|  | uprobe_mmap(vp->vma); | 
|  |  | 
|  | if (vp->adj_next) | 
|  | uprobe_mmap(vp->adj_next); | 
|  | } | 
|  |  | 
|  | if (vp->remove) { | 
|  | again: | 
|  | vma_mark_detached(vp->remove); | 
|  | if (vp->file) { | 
|  | uprobe_munmap(vp->remove, vp->remove->vm_start, | 
|  | vp->remove->vm_end); | 
|  | fput(vp->file); | 
|  | } | 
|  | if (vp->remove->anon_vma) | 
|  | anon_vma_merge(vp->vma, vp->remove); | 
|  | mm->map_count--; | 
|  | mpol_put(vma_policy(vp->remove)); | 
|  | if (!vp->remove2) | 
|  | WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end); | 
|  | vm_area_free(vp->remove); | 
|  |  | 
|  | /* | 
|  | * In mprotect's case 6 (see comments on vma_merge), | 
|  | * we are removing both mid and next vmas | 
|  | */ | 
|  | if (vp->remove2) { | 
|  | vp->remove = vp->remove2; | 
|  | vp->remove2 = NULL; | 
|  | goto again; | 
|  | } | 
|  | } | 
|  | if (vp->insert && vp->file) | 
|  | uprobe_mmap(vp->insert); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * init_vma_prep() - Initializer wrapper for vma_prepare struct | 
|  | * @vp: The vma_prepare struct | 
|  | * @vma: The vma that will be altered once locked | 
|  | */ | 
|  | static void init_vma_prep(struct vma_prepare *vp, struct vm_area_struct *vma) | 
|  | { | 
|  | init_multi_vma_prep(vp, vma, NULL); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Can the proposed VMA be merged with the left (previous) VMA taking into | 
|  | * account the start position of the proposed range. | 
|  | */ | 
|  | static bool can_vma_merge_left(struct vma_merge_struct *vmg) | 
|  |  | 
|  | { | 
|  | return vmg->prev && vmg->prev->vm_end == vmg->start && | 
|  | can_vma_merge_after(vmg); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Can the proposed VMA be merged with the right (next) VMA taking into | 
|  | * account the end position of the proposed range. | 
|  | * | 
|  | * In addition, if we can merge with the left VMA, ensure that left and right | 
|  | * anon_vma's are also compatible. | 
|  | */ | 
|  | static bool can_vma_merge_right(struct vma_merge_struct *vmg, | 
|  | bool can_merge_left) | 
|  | { | 
|  | struct vm_area_struct *next = vmg->next; | 
|  | struct vm_area_struct *prev; | 
|  |  | 
|  | if (!next || vmg->end != next->vm_start || !can_vma_merge_before(vmg)) | 
|  | return false; | 
|  |  | 
|  | if (!can_merge_left) | 
|  | return true; | 
|  |  | 
|  | /* | 
|  | * If we can merge with prev (left) and next (right), indicating that | 
|  | * each VMA's anon_vma is compatible with the proposed anon_vma, this | 
|  | * does not mean prev and next are compatible with EACH OTHER. | 
|  | * | 
|  | * We therefore check this in addition to mergeability to either side. | 
|  | */ | 
|  | prev = vmg->prev; | 
|  | return !prev->anon_vma || !next->anon_vma || | 
|  | prev->anon_vma == next->anon_vma; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Close a vm structure and free it. | 
|  | */ | 
|  | void remove_vma(struct vm_area_struct *vma) | 
|  | { | 
|  | might_sleep(); | 
|  | vma_close(vma); | 
|  | if (vma->vm_file) | 
|  | fput(vma->vm_file); | 
|  | mpol_put(vma_policy(vma)); | 
|  | vm_area_free(vma); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get rid of page table information in the indicated region. | 
|  | * | 
|  | * Called with the mm semaphore held. | 
|  | */ | 
|  | void unmap_region(struct ma_state *mas, struct vm_area_struct *vma, | 
|  | struct vm_area_struct *prev, struct vm_area_struct *next) | 
|  | { | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | struct mmu_gather tlb; | 
|  |  | 
|  | tlb_gather_mmu(&tlb, mm); | 
|  | update_hiwater_rss(mm); | 
|  | unmap_vmas(&tlb, mas, vma, vma->vm_start, vma->vm_end, vma->vm_end, | 
|  | /* mm_wr_locked = */ true); | 
|  | mas_set(mas, vma->vm_end); | 
|  | free_pgtables(&tlb, mas, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS, | 
|  | next ? next->vm_start : USER_PGTABLES_CEILING, | 
|  | /* mm_wr_locked = */ true); | 
|  | tlb_finish_mmu(&tlb); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it | 
|  | * has already been checked or doesn't make sense to fail. | 
|  | * VMA Iterator will point to the original VMA. | 
|  | */ | 
|  | static __must_check int | 
|  | __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma, | 
|  | unsigned long addr, int new_below) | 
|  | { | 
|  | struct vma_prepare vp; | 
|  | struct vm_area_struct *new; | 
|  | int err; | 
|  |  | 
|  | WARN_ON(vma->vm_start >= addr); | 
|  | WARN_ON(vma->vm_end <= addr); | 
|  |  | 
|  | if (vma->vm_ops && vma->vm_ops->may_split) { | 
|  | err = vma->vm_ops->may_split(vma, addr); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  |  | 
|  | new = vm_area_dup(vma); | 
|  | if (!new) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (new_below) { | 
|  | new->vm_end = addr; | 
|  | } else { | 
|  | new->vm_start = addr; | 
|  | new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); | 
|  | } | 
|  |  | 
|  | err = -ENOMEM; | 
|  | vma_iter_config(vmi, new->vm_start, new->vm_end); | 
|  | if (vma_iter_prealloc(vmi, new)) | 
|  | goto out_free_vma; | 
|  |  | 
|  | err = vma_dup_policy(vma, new); | 
|  | if (err) | 
|  | goto out_free_vmi; | 
|  |  | 
|  | err = anon_vma_clone(new, vma); | 
|  | if (err) | 
|  | goto out_free_mpol; | 
|  |  | 
|  | if (new->vm_file) | 
|  | get_file(new->vm_file); | 
|  |  | 
|  | if (new->vm_ops && new->vm_ops->open) | 
|  | new->vm_ops->open(new); | 
|  |  | 
|  | vma_start_write(vma); | 
|  | vma_start_write(new); | 
|  |  | 
|  | init_vma_prep(&vp, vma); | 
|  | vp.insert = new; | 
|  | vma_prepare(&vp); | 
|  | vma_adjust_trans_huge(vma, vma->vm_start, addr, NULL); | 
|  |  | 
|  | if (new_below) { | 
|  | vma->vm_start = addr; | 
|  | vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT; | 
|  | } else { | 
|  | vma->vm_end = addr; | 
|  | } | 
|  |  | 
|  | /* vma_complete stores the new vma */ | 
|  | vma_complete(&vp, vmi, vma->vm_mm); | 
|  | validate_mm(vma->vm_mm); | 
|  |  | 
|  | /* Success. */ | 
|  | if (new_below) | 
|  | vma_next(vmi); | 
|  | else | 
|  | vma_prev(vmi); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_free_mpol: | 
|  | mpol_put(vma_policy(new)); | 
|  | out_free_vmi: | 
|  | vma_iter_free(vmi); | 
|  | out_free_vma: | 
|  | vm_area_free(new); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Split a vma into two pieces at address 'addr', a new vma is allocated | 
|  | * either for the first part or the tail. | 
|  | */ | 
|  | static int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma, | 
|  | unsigned long addr, int new_below) | 
|  | { | 
|  | if (vma->vm_mm->map_count >= sysctl_max_map_count) | 
|  | return -ENOMEM; | 
|  |  | 
|  | return __split_vma(vmi, vma, addr, new_below); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * dup_anon_vma() - Helper function to duplicate anon_vma on VMA merge in the | 
|  | * instance that the destination VMA has no anon_vma but the source does. | 
|  | * | 
|  | * @dst: The destination VMA | 
|  | * @src: The source VMA | 
|  | * @dup: Pointer to the destination VMA when successful. | 
|  | * | 
|  | * Returns: 0 on success. | 
|  | */ | 
|  | static int dup_anon_vma(struct vm_area_struct *dst, | 
|  | struct vm_area_struct *src, struct vm_area_struct **dup) | 
|  | { | 
|  | /* | 
|  | * There are three cases to consider for correctly propagating | 
|  | * anon_vma's on merge. | 
|  | * | 
|  | * The first is trivial - neither VMA has anon_vma, we need not do | 
|  | * anything. | 
|  | * | 
|  | * The second where both have anon_vma is also a no-op, as they must | 
|  | * then be the same, so there is simply nothing to copy. | 
|  | * | 
|  | * Here we cover the third - if the destination VMA has no anon_vma, | 
|  | * that is it is unfaulted, we need to ensure that the newly merged | 
|  | * range is referenced by the anon_vma's of the source. | 
|  | */ | 
|  | if (src->anon_vma && !dst->anon_vma) { | 
|  | int ret; | 
|  |  | 
|  | vma_assert_write_locked(dst); | 
|  | dst->anon_vma = src->anon_vma; | 
|  | ret = anon_vma_clone(dst, src); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | *dup = dst; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_VM_MAPLE_TREE | 
|  | void validate_mm(struct mm_struct *mm) | 
|  | { | 
|  | int bug = 0; | 
|  | int i = 0; | 
|  | struct vm_area_struct *vma; | 
|  | VMA_ITERATOR(vmi, mm, 0); | 
|  |  | 
|  | mt_validate(&mm->mm_mt); | 
|  | for_each_vma(vmi, vma) { | 
|  | #ifdef CONFIG_DEBUG_VM_RB | 
|  | struct anon_vma *anon_vma = vma->anon_vma; | 
|  | struct anon_vma_chain *avc; | 
|  | #endif | 
|  | unsigned long vmi_start, vmi_end; | 
|  | bool warn = 0; | 
|  |  | 
|  | vmi_start = vma_iter_addr(&vmi); | 
|  | vmi_end = vma_iter_end(&vmi); | 
|  | if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm)) | 
|  | warn = 1; | 
|  |  | 
|  | if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm)) | 
|  | warn = 1; | 
|  |  | 
|  | if (warn) { | 
|  | pr_emerg("issue in %s\n", current->comm); | 
|  | dump_stack(); | 
|  | dump_vma(vma); | 
|  | pr_emerg("tree range: %px start %lx end %lx\n", vma, | 
|  | vmi_start, vmi_end - 1); | 
|  | vma_iter_dump_tree(&vmi); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_VM_RB | 
|  | if (anon_vma) { | 
|  | anon_vma_lock_read(anon_vma); | 
|  | list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) | 
|  | anon_vma_interval_tree_verify(avc); | 
|  | anon_vma_unlock_read(anon_vma); | 
|  | } | 
|  | #endif | 
|  | /* Check for a infinite loop */ | 
|  | if (++i > mm->map_count + 10) { | 
|  | i = -1; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (i != mm->map_count) { | 
|  | pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i); | 
|  | bug = 1; | 
|  | } | 
|  | VM_BUG_ON_MM(bug, mm); | 
|  | } | 
|  | #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */ | 
|  |  | 
|  | /* | 
|  | * Based on the vmg flag indicating whether we need to adjust the vm_start field | 
|  | * for the middle or next VMA, we calculate what the range of the newly adjusted | 
|  | * VMA ought to be, and set the VMA's range accordingly. | 
|  | */ | 
|  | static void vmg_adjust_set_range(struct vma_merge_struct *vmg) | 
|  | { | 
|  | struct vm_area_struct *adjust; | 
|  | pgoff_t pgoff; | 
|  |  | 
|  | if (vmg->__adjust_middle_start) { | 
|  | adjust = vmg->middle; | 
|  | pgoff = adjust->vm_pgoff + PHYS_PFN(vmg->end - adjust->vm_start); | 
|  | } else if (vmg->__adjust_next_start) { | 
|  | adjust = vmg->next; | 
|  | pgoff = adjust->vm_pgoff - PHYS_PFN(adjust->vm_start - vmg->end); | 
|  | } else { | 
|  | return; | 
|  | } | 
|  |  | 
|  | vma_set_range(adjust, vmg->end, adjust->vm_end, pgoff); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Actually perform the VMA merge operation. | 
|  | * | 
|  | * IMPORTANT: We guarantee that, should vmg->give_up_on_oom is set, to not | 
|  | * modify any VMAs or cause inconsistent state should an OOM condition arise. | 
|  | * | 
|  | * Returns 0 on success, or an error value on failure. | 
|  | */ | 
|  | static int commit_merge(struct vma_merge_struct *vmg) | 
|  | { | 
|  | struct vm_area_struct *vma; | 
|  | struct vma_prepare vp; | 
|  |  | 
|  | if (vmg->__adjust_next_start) { | 
|  | /* We manipulate middle and adjust next, which is the target. */ | 
|  | vma = vmg->middle; | 
|  | vma_iter_config(vmg->vmi, vmg->end, vmg->next->vm_end); | 
|  | } else { | 
|  | vma = vmg->target; | 
|  | /* Note: vma iterator must be pointing to 'start'. */ | 
|  | vma_iter_config(vmg->vmi, vmg->start, vmg->end); | 
|  | } | 
|  |  | 
|  | init_multi_vma_prep(&vp, vma, vmg); | 
|  |  | 
|  | /* | 
|  | * If vmg->give_up_on_oom is set, we're safe, because we don't actually | 
|  | * manipulate any VMAs until we succeed at preallocation. | 
|  | * | 
|  | * Past this point, we will not return an error. | 
|  | */ | 
|  | if (vma_iter_prealloc(vmg->vmi, vma)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | vma_prepare(&vp); | 
|  | /* | 
|  | * THP pages may need to do additional splits if we increase | 
|  | * middle->vm_start. | 
|  | */ | 
|  | vma_adjust_trans_huge(vma, vmg->start, vmg->end, | 
|  | vmg->__adjust_middle_start ? vmg->middle : NULL); | 
|  | vma_set_range(vma, vmg->start, vmg->end, vmg->pgoff); | 
|  | vmg_adjust_set_range(vmg); | 
|  | vma_iter_store_overwrite(vmg->vmi, vmg->target); | 
|  |  | 
|  | vma_complete(&vp, vmg->vmi, vma->vm_mm); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* We can only remove VMAs when merging if they do not have a close hook. */ | 
|  | static bool can_merge_remove_vma(struct vm_area_struct *vma) | 
|  | { | 
|  | return !vma->vm_ops || !vma->vm_ops->close; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * vma_merge_existing_range - Attempt to merge VMAs based on a VMA having its | 
|  | * attributes modified. | 
|  | * | 
|  | * @vmg: Describes the modifications being made to a VMA and associated | 
|  | *       metadata. | 
|  | * | 
|  | * When the attributes of a range within a VMA change, then it might be possible | 
|  | * for immediately adjacent VMAs to be merged into that VMA due to having | 
|  | * identical properties. | 
|  | * | 
|  | * This function checks for the existence of any such mergeable VMAs and updates | 
|  | * the maple tree describing the @vmg->middle->vm_mm address space to account | 
|  | * for this, as well as any VMAs shrunk/expanded/deleted as a result of this | 
|  | * merge. | 
|  | * | 
|  | * As part of this operation, if a merge occurs, the @vmg object will have its | 
|  | * vma, start, end, and pgoff fields modified to execute the merge. Subsequent | 
|  | * calls to this function should reset these fields. | 
|  | * | 
|  | * Returns: The merged VMA if merge succeeds, or NULL otherwise. | 
|  | * | 
|  | * ASSUMPTIONS: | 
|  | * - The caller must assign the VMA to be modifed to @vmg->middle. | 
|  | * - The caller must have set @vmg->prev to the previous VMA, if there is one. | 
|  | * - The caller must not set @vmg->next, as we determine this. | 
|  | * - The caller must hold a WRITE lock on the mm_struct->mmap_lock. | 
|  | * - vmi must be positioned within [@vmg->middle->vm_start, @vmg->middle->vm_end). | 
|  | */ | 
|  | static __must_check struct vm_area_struct *vma_merge_existing_range( | 
|  | struct vma_merge_struct *vmg) | 
|  | { | 
|  | struct vm_area_struct *middle = vmg->middle; | 
|  | struct vm_area_struct *prev = vmg->prev; | 
|  | struct vm_area_struct *next; | 
|  | struct vm_area_struct *anon_dup = NULL; | 
|  | unsigned long start = vmg->start; | 
|  | unsigned long end = vmg->end; | 
|  | bool left_side = middle && start == middle->vm_start; | 
|  | bool right_side = middle && end == middle->vm_end; | 
|  | int err = 0; | 
|  | bool merge_left, merge_right, merge_both; | 
|  |  | 
|  | mmap_assert_write_locked(vmg->mm); | 
|  | VM_WARN_ON_VMG(!middle, vmg); /* We are modifying a VMA, so caller must specify. */ | 
|  | VM_WARN_ON_VMG(vmg->next, vmg); /* We set this. */ | 
|  | VM_WARN_ON_VMG(prev && start <= prev->vm_start, vmg); | 
|  | VM_WARN_ON_VMG(start >= end, vmg); | 
|  |  | 
|  | /* | 
|  | * If middle == prev, then we are offset into a VMA. Otherwise, if we are | 
|  | * not, we must span a portion of the VMA. | 
|  | */ | 
|  | VM_WARN_ON_VMG(middle && | 
|  | ((middle != prev && vmg->start != middle->vm_start) || | 
|  | vmg->end > middle->vm_end), vmg); | 
|  | /* The vmi must be positioned within vmg->middle. */ | 
|  | VM_WARN_ON_VMG(middle && | 
|  | !(vma_iter_addr(vmg->vmi) >= middle->vm_start && | 
|  | vma_iter_addr(vmg->vmi) < middle->vm_end), vmg); | 
|  |  | 
|  | vmg->state = VMA_MERGE_NOMERGE; | 
|  |  | 
|  | /* | 
|  | * If a special mapping or if the range being modified is neither at the | 
|  | * furthermost left or right side of the VMA, then we have no chance of | 
|  | * merging and should abort. | 
|  | */ | 
|  | if (vmg->flags & VM_SPECIAL || (!left_side && !right_side)) | 
|  | return NULL; | 
|  |  | 
|  | if (left_side) | 
|  | merge_left = can_vma_merge_left(vmg); | 
|  | else | 
|  | merge_left = false; | 
|  |  | 
|  | if (right_side) { | 
|  | next = vmg->next = vma_iter_next_range(vmg->vmi); | 
|  | vma_iter_prev_range(vmg->vmi); | 
|  |  | 
|  | merge_right = can_vma_merge_right(vmg, merge_left); | 
|  | } else { | 
|  | merge_right = false; | 
|  | next = NULL; | 
|  | } | 
|  |  | 
|  | if (merge_left)		/* If merging prev, position iterator there. */ | 
|  | vma_prev(vmg->vmi); | 
|  | else if (!merge_right)	/* If we have nothing to merge, abort. */ | 
|  | return NULL; | 
|  |  | 
|  | merge_both = merge_left && merge_right; | 
|  | /* If we span the entire VMA, a merge implies it will be deleted. */ | 
|  | vmg->__remove_middle = left_side && right_side; | 
|  |  | 
|  | /* | 
|  | * If we need to remove middle in its entirety but are unable to do so, | 
|  | * we have no sensible recourse but to abort the merge. | 
|  | */ | 
|  | if (vmg->__remove_middle && !can_merge_remove_vma(middle)) | 
|  | return NULL; | 
|  |  | 
|  | /* | 
|  | * If we merge both VMAs, then next is also deleted. This implies | 
|  | * merge_will_delete_vma also. | 
|  | */ | 
|  | vmg->__remove_next = merge_both; | 
|  |  | 
|  | /* | 
|  | * If we cannot delete next, then we can reduce the operation to merging | 
|  | * prev and middle (thereby deleting middle). | 
|  | */ | 
|  | if (vmg->__remove_next && !can_merge_remove_vma(next)) { | 
|  | vmg->__remove_next = false; | 
|  | merge_right = false; | 
|  | merge_both = false; | 
|  | } | 
|  |  | 
|  | /* No matter what happens, we will be adjusting middle. */ | 
|  | vma_start_write(middle); | 
|  |  | 
|  | if (merge_right) { | 
|  | vma_start_write(next); | 
|  | vmg->target = next; | 
|  | } | 
|  |  | 
|  | if (merge_left) { | 
|  | vma_start_write(prev); | 
|  | vmg->target = prev; | 
|  | } | 
|  |  | 
|  | if (merge_both) { | 
|  | /* | 
|  | * |<-------------------->| | 
|  | * |-------********-------| | 
|  | *   prev   middle   next | 
|  | *  extend  delete  delete | 
|  | */ | 
|  |  | 
|  | vmg->start = prev->vm_start; | 
|  | vmg->end = next->vm_end; | 
|  | vmg->pgoff = prev->vm_pgoff; | 
|  |  | 
|  | /* | 
|  | * We already ensured anon_vma compatibility above, so now it's | 
|  | * simply a case of, if prev has no anon_vma object, which of | 
|  | * next or middle contains the anon_vma we must duplicate. | 
|  | */ | 
|  | err = dup_anon_vma(prev, next->anon_vma ? next : middle, | 
|  | &anon_dup); | 
|  | } else if (merge_left) { | 
|  | /* | 
|  | * |<------------>|      OR | 
|  | * |<----------------->| | 
|  | * |-------************* | 
|  | *   prev     middle | 
|  | *  extend shrink/delete | 
|  | */ | 
|  |  | 
|  | vmg->start = prev->vm_start; | 
|  | vmg->pgoff = prev->vm_pgoff; | 
|  |  | 
|  | if (!vmg->__remove_middle) | 
|  | vmg->__adjust_middle_start = true; | 
|  |  | 
|  | err = dup_anon_vma(prev, middle, &anon_dup); | 
|  | } else { /* merge_right */ | 
|  | /* | 
|  | *     |<------------->| OR | 
|  | * |<----------------->| | 
|  | * *************-------| | 
|  | *    middle     next | 
|  | * shrink/delete extend | 
|  | */ | 
|  |  | 
|  | pgoff_t pglen = PHYS_PFN(vmg->end - vmg->start); | 
|  |  | 
|  | VM_WARN_ON_VMG(!merge_right, vmg); | 
|  | /* If we are offset into a VMA, then prev must be middle. */ | 
|  | VM_WARN_ON_VMG(vmg->start > middle->vm_start && prev && middle != prev, vmg); | 
|  |  | 
|  | if (vmg->__remove_middle) { | 
|  | vmg->end = next->vm_end; | 
|  | vmg->pgoff = next->vm_pgoff - pglen; | 
|  | } else { | 
|  | /* We shrink middle and expand next. */ | 
|  | vmg->__adjust_next_start = true; | 
|  | vmg->start = middle->vm_start; | 
|  | vmg->end = start; | 
|  | vmg->pgoff = middle->vm_pgoff; | 
|  | } | 
|  |  | 
|  | err = dup_anon_vma(next, middle, &anon_dup); | 
|  | } | 
|  |  | 
|  | if (err) | 
|  | goto abort; | 
|  |  | 
|  | err = commit_merge(vmg); | 
|  | if (err) { | 
|  | VM_WARN_ON(err != -ENOMEM); | 
|  |  | 
|  | if (anon_dup) | 
|  | unlink_anon_vmas(anon_dup); | 
|  |  | 
|  | /* | 
|  | * We've cleaned up any cloned anon_vma's, no VMAs have been | 
|  | * modified, no harm no foul if the user requests that we not | 
|  | * report this and just give up, leaving the VMAs unmerged. | 
|  | */ | 
|  | if (!vmg->give_up_on_oom) | 
|  | vmg->state = VMA_MERGE_ERROR_NOMEM; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | khugepaged_enter_vma(vmg->target, vmg->flags); | 
|  | vmg->state = VMA_MERGE_SUCCESS; | 
|  | return vmg->target; | 
|  |  | 
|  | abort: | 
|  | vma_iter_set(vmg->vmi, start); | 
|  | vma_iter_load(vmg->vmi); | 
|  |  | 
|  | /* | 
|  | * This means we have failed to clone anon_vma's correctly, but no | 
|  | * actual changes to VMAs have occurred, so no harm no foul - if the | 
|  | * user doesn't want this reported and instead just wants to give up on | 
|  | * the merge, allow it. | 
|  | */ | 
|  | if (!vmg->give_up_on_oom) | 
|  | vmg->state = VMA_MERGE_ERROR_NOMEM; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * vma_merge_new_range - Attempt to merge a new VMA into address space | 
|  | * | 
|  | * @vmg: Describes the VMA we are adding, in the range @vmg->start to @vmg->end | 
|  | *       (exclusive), which we try to merge with any adjacent VMAs if possible. | 
|  | * | 
|  | * We are about to add a VMA to the address space starting at @vmg->start and | 
|  | * ending at @vmg->end. There are three different possible scenarios: | 
|  | * | 
|  | * 1. There is a VMA with identical properties immediately adjacent to the | 
|  | *    proposed new VMA [@vmg->start, @vmg->end) either before or after it - | 
|  | *    EXPAND that VMA: | 
|  | * | 
|  | * Proposed:       |-----|  or  |-----| | 
|  | * Existing:  |----|                  |----| | 
|  | * | 
|  | * 2. There are VMAs with identical properties immediately adjacent to the | 
|  | *    proposed new VMA [@vmg->start, @vmg->end) both before AND after it - | 
|  | *    EXPAND the former and REMOVE the latter: | 
|  | * | 
|  | * Proposed:       |-----| | 
|  | * Existing:  |----|     |----| | 
|  | * | 
|  | * 3. There are no VMAs immediately adjacent to the proposed new VMA or those | 
|  | *    VMAs do not have identical attributes - NO MERGE POSSIBLE. | 
|  | * | 
|  | * In instances where we can merge, this function returns the expanded VMA which | 
|  | * will have its range adjusted accordingly and the underlying maple tree also | 
|  | * adjusted. | 
|  | * | 
|  | * Returns: In instances where no merge was possible, NULL. Otherwise, a pointer | 
|  | *          to the VMA we expanded. | 
|  | * | 
|  | * This function adjusts @vmg to provide @vmg->next if not already specified, | 
|  | * and adjusts [@vmg->start, @vmg->end) to span the expanded range. | 
|  | * | 
|  | * ASSUMPTIONS: | 
|  | * - The caller must hold a WRITE lock on the mm_struct->mmap_lock. | 
|  | * - The caller must have determined that [@vmg->start, @vmg->end) is empty, | 
|  | other than VMAs that will be unmapped should the operation succeed. | 
|  | * - The caller must have specified the previous vma in @vmg->prev. | 
|  | * - The caller must have specified the next vma in @vmg->next. | 
|  | * - The caller must have positioned the vmi at or before the gap. | 
|  | */ | 
|  | struct vm_area_struct *vma_merge_new_range(struct vma_merge_struct *vmg) | 
|  | { | 
|  | struct vm_area_struct *prev = vmg->prev; | 
|  | struct vm_area_struct *next = vmg->next; | 
|  | unsigned long end = vmg->end; | 
|  | bool can_merge_left, can_merge_right; | 
|  |  | 
|  | mmap_assert_write_locked(vmg->mm); | 
|  | VM_WARN_ON_VMG(vmg->middle, vmg); | 
|  | /* vmi must point at or before the gap. */ | 
|  | VM_WARN_ON_VMG(vma_iter_addr(vmg->vmi) > end, vmg); | 
|  |  | 
|  | vmg->state = VMA_MERGE_NOMERGE; | 
|  |  | 
|  | /* Special VMAs are unmergeable, also if no prev/next. */ | 
|  | if ((vmg->flags & VM_SPECIAL) || (!prev && !next)) | 
|  | return NULL; | 
|  |  | 
|  | can_merge_left = can_vma_merge_left(vmg); | 
|  | can_merge_right = !vmg->just_expand && can_vma_merge_right(vmg, can_merge_left); | 
|  |  | 
|  | /* If we can merge with the next VMA, adjust vmg accordingly. */ | 
|  | if (can_merge_right) { | 
|  | vmg->end = next->vm_end; | 
|  | vmg->middle = next; | 
|  | } | 
|  |  | 
|  | /* If we can merge with the previous VMA, adjust vmg accordingly. */ | 
|  | if (can_merge_left) { | 
|  | vmg->start = prev->vm_start; | 
|  | vmg->middle = prev; | 
|  | vmg->pgoff = prev->vm_pgoff; | 
|  |  | 
|  | /* | 
|  | * If this merge would result in removal of the next VMA but we | 
|  | * are not permitted to do so, reduce the operation to merging | 
|  | * prev and vma. | 
|  | */ | 
|  | if (can_merge_right && !can_merge_remove_vma(next)) | 
|  | vmg->end = end; | 
|  |  | 
|  | /* In expand-only case we are already positioned at prev. */ | 
|  | if (!vmg->just_expand) { | 
|  | /* Equivalent to going to the previous range. */ | 
|  | vma_prev(vmg->vmi); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now try to expand adjacent VMA(s). This takes care of removing the | 
|  | * following VMA if we have VMAs on both sides. | 
|  | */ | 
|  | if (vmg->middle && !vma_expand(vmg)) { | 
|  | khugepaged_enter_vma(vmg->middle, vmg->flags); | 
|  | vmg->state = VMA_MERGE_SUCCESS; | 
|  | return vmg->middle; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * vma_expand - Expand an existing VMA | 
|  | * | 
|  | * @vmg: Describes a VMA expansion operation. | 
|  | * | 
|  | * Expand @vma to vmg->start and vmg->end.  Can expand off the start and end. | 
|  | * Will expand over vmg->next if it's different from vmg->middle and vmg->end == | 
|  | * vmg->next->vm_end.  Checking if the vmg->middle can expand and merge with | 
|  | * vmg->next needs to be handled by the caller. | 
|  | * | 
|  | * Returns: 0 on success. | 
|  | * | 
|  | * ASSUMPTIONS: | 
|  | * - The caller must hold a WRITE lock on vmg->middle->mm->mmap_lock. | 
|  | * - The caller must have set @vmg->middle and @vmg->next. | 
|  | */ | 
|  | int vma_expand(struct vma_merge_struct *vmg) | 
|  | { | 
|  | struct vm_area_struct *anon_dup = NULL; | 
|  | bool remove_next = false; | 
|  | struct vm_area_struct *middle = vmg->middle; | 
|  | struct vm_area_struct *next = vmg->next; | 
|  |  | 
|  | mmap_assert_write_locked(vmg->mm); | 
|  |  | 
|  | vma_start_write(middle); | 
|  | if (next && (middle != next) && (vmg->end == next->vm_end)) { | 
|  | int ret; | 
|  |  | 
|  | remove_next = true; | 
|  | /* This should already have been checked by this point. */ | 
|  | VM_WARN_ON_VMG(!can_merge_remove_vma(next), vmg); | 
|  | vma_start_write(next); | 
|  | /* | 
|  | * In this case we don't report OOM, so vmg->give_up_on_mm is | 
|  | * safe. | 
|  | */ | 
|  | ret = dup_anon_vma(middle, next, &anon_dup); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Not merging but overwriting any part of next is not handled. */ | 
|  | VM_WARN_ON_VMG(next && !remove_next && | 
|  | next != middle && vmg->end > next->vm_start, vmg); | 
|  | /* Only handles expanding */ | 
|  | VM_WARN_ON_VMG(middle->vm_start < vmg->start || | 
|  | middle->vm_end > vmg->end, vmg); | 
|  |  | 
|  | vmg->target = middle; | 
|  | if (remove_next) | 
|  | vmg->__remove_next = true; | 
|  |  | 
|  | if (commit_merge(vmg)) | 
|  | goto nomem; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | nomem: | 
|  | if (anon_dup) | 
|  | unlink_anon_vmas(anon_dup); | 
|  | /* | 
|  | * If the user requests that we just give upon OOM, we are safe to do so | 
|  | * here, as commit merge provides this contract to us. Nothing has been | 
|  | * changed - no harm no foul, just don't report it. | 
|  | */ | 
|  | if (!vmg->give_up_on_oom) | 
|  | vmg->state = VMA_MERGE_ERROR_NOMEM; | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * vma_shrink() - Reduce an existing VMAs memory area | 
|  | * @vmi: The vma iterator | 
|  | * @vma: The VMA to modify | 
|  | * @start: The new start | 
|  | * @end: The new end | 
|  | * | 
|  | * Returns: 0 on success, -ENOMEM otherwise | 
|  | */ | 
|  | int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma, | 
|  | unsigned long start, unsigned long end, pgoff_t pgoff) | 
|  | { | 
|  | struct vma_prepare vp; | 
|  |  | 
|  | WARN_ON((vma->vm_start != start) && (vma->vm_end != end)); | 
|  |  | 
|  | if (vma->vm_start < start) | 
|  | vma_iter_config(vmi, vma->vm_start, start); | 
|  | else | 
|  | vma_iter_config(vmi, end, vma->vm_end); | 
|  |  | 
|  | if (vma_iter_prealloc(vmi, NULL)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | vma_start_write(vma); | 
|  |  | 
|  | init_vma_prep(&vp, vma); | 
|  | vma_prepare(&vp); | 
|  | vma_adjust_trans_huge(vma, start, end, NULL); | 
|  |  | 
|  | vma_iter_clear(vmi); | 
|  | vma_set_range(vma, start, end, pgoff); | 
|  | vma_complete(&vp, vmi, vma->vm_mm); | 
|  | validate_mm(vma->vm_mm); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline void vms_clear_ptes(struct vma_munmap_struct *vms, | 
|  | struct ma_state *mas_detach, bool mm_wr_locked) | 
|  | { | 
|  | struct mmu_gather tlb; | 
|  |  | 
|  | if (!vms->clear_ptes) /* Nothing to do */ | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * We can free page tables without write-locking mmap_lock because VMAs | 
|  | * were isolated before we downgraded mmap_lock. | 
|  | */ | 
|  | mas_set(mas_detach, 1); | 
|  | tlb_gather_mmu(&tlb, vms->vma->vm_mm); | 
|  | update_hiwater_rss(vms->vma->vm_mm); | 
|  | unmap_vmas(&tlb, mas_detach, vms->vma, vms->start, vms->end, | 
|  | vms->vma_count, mm_wr_locked); | 
|  |  | 
|  | mas_set(mas_detach, 1); | 
|  | /* start and end may be different if there is no prev or next vma. */ | 
|  | free_pgtables(&tlb, mas_detach, vms->vma, vms->unmap_start, | 
|  | vms->unmap_end, mm_wr_locked); | 
|  | tlb_finish_mmu(&tlb); | 
|  | vms->clear_ptes = false; | 
|  | } | 
|  |  | 
|  | static void vms_clean_up_area(struct vma_munmap_struct *vms, | 
|  | struct ma_state *mas_detach) | 
|  | { | 
|  | struct vm_area_struct *vma; | 
|  |  | 
|  | if (!vms->nr_pages) | 
|  | return; | 
|  |  | 
|  | vms_clear_ptes(vms, mas_detach, true); | 
|  | mas_set(mas_detach, 0); | 
|  | mas_for_each(mas_detach, vma, ULONG_MAX) | 
|  | vma_close(vma); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * vms_complete_munmap_vmas() - Finish the munmap() operation | 
|  | * @vms: The vma munmap struct | 
|  | * @mas_detach: The maple state of the detached vmas | 
|  | * | 
|  | * This updates the mm_struct, unmaps the region, frees the resources | 
|  | * used for the munmap() and may downgrade the lock - if requested.  Everything | 
|  | * needed to be done once the vma maple tree is updated. | 
|  | */ | 
|  | static void vms_complete_munmap_vmas(struct vma_munmap_struct *vms, | 
|  | struct ma_state *mas_detach) | 
|  | { | 
|  | struct vm_area_struct *vma; | 
|  | struct mm_struct *mm; | 
|  |  | 
|  | mm = current->mm; | 
|  | mm->map_count -= vms->vma_count; | 
|  | mm->locked_vm -= vms->locked_vm; | 
|  | if (vms->unlock) | 
|  | mmap_write_downgrade(mm); | 
|  |  | 
|  | if (!vms->nr_pages) | 
|  | return; | 
|  |  | 
|  | vms_clear_ptes(vms, mas_detach, !vms->unlock); | 
|  | /* Update high watermark before we lower total_vm */ | 
|  | update_hiwater_vm(mm); | 
|  | /* Stat accounting */ | 
|  | WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm) - vms->nr_pages); | 
|  | /* Paranoid bookkeeping */ | 
|  | VM_WARN_ON(vms->exec_vm > mm->exec_vm); | 
|  | VM_WARN_ON(vms->stack_vm > mm->stack_vm); | 
|  | VM_WARN_ON(vms->data_vm > mm->data_vm); | 
|  | mm->exec_vm -= vms->exec_vm; | 
|  | mm->stack_vm -= vms->stack_vm; | 
|  | mm->data_vm -= vms->data_vm; | 
|  |  | 
|  | /* Remove and clean up vmas */ | 
|  | mas_set(mas_detach, 0); | 
|  | mas_for_each(mas_detach, vma, ULONG_MAX) | 
|  | remove_vma(vma); | 
|  |  | 
|  | vm_unacct_memory(vms->nr_accounted); | 
|  | validate_mm(mm); | 
|  | if (vms->unlock) | 
|  | mmap_read_unlock(mm); | 
|  |  | 
|  | __mt_destroy(mas_detach->tree); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * reattach_vmas() - Undo any munmap work and free resources | 
|  | * @mas_detach: The maple state with the detached maple tree | 
|  | * | 
|  | * Reattach any detached vmas and free up the maple tree used to track the vmas. | 
|  | */ | 
|  | static void reattach_vmas(struct ma_state *mas_detach) | 
|  | { | 
|  | struct vm_area_struct *vma; | 
|  |  | 
|  | mas_set(mas_detach, 0); | 
|  | mas_for_each(mas_detach, vma, ULONG_MAX) | 
|  | vma_mark_attached(vma); | 
|  |  | 
|  | __mt_destroy(mas_detach->tree); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * vms_gather_munmap_vmas() - Put all VMAs within a range into a maple tree | 
|  | * for removal at a later date.  Handles splitting first and last if necessary | 
|  | * and marking the vmas as isolated. | 
|  | * | 
|  | * @vms: The vma munmap struct | 
|  | * @mas_detach: The maple state tracking the detached tree | 
|  | * | 
|  | * Return: 0 on success, error otherwise | 
|  | */ | 
|  | static int vms_gather_munmap_vmas(struct vma_munmap_struct *vms, | 
|  | struct ma_state *mas_detach) | 
|  | { | 
|  | struct vm_area_struct *next = NULL; | 
|  | int error; | 
|  |  | 
|  | /* | 
|  | * If we need to split any vma, do it now to save pain later. | 
|  | * Does it split the first one? | 
|  | */ | 
|  | if (vms->start > vms->vma->vm_start) { | 
|  |  | 
|  | /* | 
|  | * Make sure that map_count on return from munmap() will | 
|  | * not exceed its limit; but let map_count go just above | 
|  | * its limit temporarily, to help free resources as expected. | 
|  | */ | 
|  | if (vms->end < vms->vma->vm_end && | 
|  | vms->vma->vm_mm->map_count >= sysctl_max_map_count) { | 
|  | error = -ENOMEM; | 
|  | goto map_count_exceeded; | 
|  | } | 
|  |  | 
|  | /* Don't bother splitting the VMA if we can't unmap it anyway */ | 
|  | if (!can_modify_vma(vms->vma)) { | 
|  | error = -EPERM; | 
|  | goto start_split_failed; | 
|  | } | 
|  |  | 
|  | error = __split_vma(vms->vmi, vms->vma, vms->start, 1); | 
|  | if (error) | 
|  | goto start_split_failed; | 
|  | } | 
|  | vms->prev = vma_prev(vms->vmi); | 
|  | if (vms->prev) | 
|  | vms->unmap_start = vms->prev->vm_end; | 
|  |  | 
|  | /* | 
|  | * Detach a range of VMAs from the mm. Using next as a temp variable as | 
|  | * it is always overwritten. | 
|  | */ | 
|  | for_each_vma_range(*(vms->vmi), next, vms->end) { | 
|  | long nrpages; | 
|  |  | 
|  | if (!can_modify_vma(next)) { | 
|  | error = -EPERM; | 
|  | goto modify_vma_failed; | 
|  | } | 
|  | /* Does it split the end? */ | 
|  | if (next->vm_end > vms->end) { | 
|  | error = __split_vma(vms->vmi, next, vms->end, 0); | 
|  | if (error) | 
|  | goto end_split_failed; | 
|  | } | 
|  | vma_start_write(next); | 
|  | mas_set(mas_detach, vms->vma_count++); | 
|  | error = mas_store_gfp(mas_detach, next, GFP_KERNEL); | 
|  | if (error) | 
|  | goto munmap_gather_failed; | 
|  |  | 
|  | vma_mark_detached(next); | 
|  | nrpages = vma_pages(next); | 
|  |  | 
|  | vms->nr_pages += nrpages; | 
|  | if (next->vm_flags & VM_LOCKED) | 
|  | vms->locked_vm += nrpages; | 
|  |  | 
|  | if (next->vm_flags & VM_ACCOUNT) | 
|  | vms->nr_accounted += nrpages; | 
|  |  | 
|  | if (is_exec_mapping(next->vm_flags)) | 
|  | vms->exec_vm += nrpages; | 
|  | else if (is_stack_mapping(next->vm_flags)) | 
|  | vms->stack_vm += nrpages; | 
|  | else if (is_data_mapping(next->vm_flags)) | 
|  | vms->data_vm += nrpages; | 
|  |  | 
|  | if (vms->uf) { | 
|  | /* | 
|  | * If userfaultfd_unmap_prep returns an error the vmas | 
|  | * will remain split, but userland will get a | 
|  | * highly unexpected error anyway. This is no | 
|  | * different than the case where the first of the two | 
|  | * __split_vma fails, but we don't undo the first | 
|  | * split, despite we could. This is unlikely enough | 
|  | * failure that it's not worth optimizing it for. | 
|  | */ | 
|  | error = userfaultfd_unmap_prep(next, vms->start, | 
|  | vms->end, vms->uf); | 
|  | if (error) | 
|  | goto userfaultfd_error; | 
|  | } | 
|  | #ifdef CONFIG_DEBUG_VM_MAPLE_TREE | 
|  | BUG_ON(next->vm_start < vms->start); | 
|  | BUG_ON(next->vm_start > vms->end); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | vms->next = vma_next(vms->vmi); | 
|  | if (vms->next) | 
|  | vms->unmap_end = vms->next->vm_start; | 
|  |  | 
|  | #if defined(CONFIG_DEBUG_VM_MAPLE_TREE) | 
|  | /* Make sure no VMAs are about to be lost. */ | 
|  | { | 
|  | MA_STATE(test, mas_detach->tree, 0, 0); | 
|  | struct vm_area_struct *vma_mas, *vma_test; | 
|  | int test_count = 0; | 
|  |  | 
|  | vma_iter_set(vms->vmi, vms->start); | 
|  | rcu_read_lock(); | 
|  | vma_test = mas_find(&test, vms->vma_count - 1); | 
|  | for_each_vma_range(*(vms->vmi), vma_mas, vms->end) { | 
|  | BUG_ON(vma_mas != vma_test); | 
|  | test_count++; | 
|  | vma_test = mas_next(&test, vms->vma_count - 1); | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | BUG_ON(vms->vma_count != test_count); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | while (vma_iter_addr(vms->vmi) > vms->start) | 
|  | vma_iter_prev_range(vms->vmi); | 
|  |  | 
|  | vms->clear_ptes = true; | 
|  | return 0; | 
|  |  | 
|  | userfaultfd_error: | 
|  | munmap_gather_failed: | 
|  | end_split_failed: | 
|  | modify_vma_failed: | 
|  | reattach_vmas(mas_detach); | 
|  | start_split_failed: | 
|  | map_count_exceeded: | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * init_vma_munmap() - Initializer wrapper for vma_munmap_struct | 
|  | * @vms: The vma munmap struct | 
|  | * @vmi: The vma iterator | 
|  | * @vma: The first vm_area_struct to munmap | 
|  | * @start: The aligned start address to munmap | 
|  | * @end: The aligned end address to munmap | 
|  | * @uf: The userfaultfd list_head | 
|  | * @unlock: Unlock after the operation.  Only unlocked on success | 
|  | */ | 
|  | static void init_vma_munmap(struct vma_munmap_struct *vms, | 
|  | struct vma_iterator *vmi, struct vm_area_struct *vma, | 
|  | unsigned long start, unsigned long end, struct list_head *uf, | 
|  | bool unlock) | 
|  | { | 
|  | vms->vmi = vmi; | 
|  | vms->vma = vma; | 
|  | if (vma) { | 
|  | vms->start = start; | 
|  | vms->end = end; | 
|  | } else { | 
|  | vms->start = vms->end = 0; | 
|  | } | 
|  | vms->unlock = unlock; | 
|  | vms->uf = uf; | 
|  | vms->vma_count = 0; | 
|  | vms->nr_pages = vms->locked_vm = vms->nr_accounted = 0; | 
|  | vms->exec_vm = vms->stack_vm = vms->data_vm = 0; | 
|  | vms->unmap_start = FIRST_USER_ADDRESS; | 
|  | vms->unmap_end = USER_PGTABLES_CEILING; | 
|  | vms->clear_ptes = false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * do_vmi_align_munmap() - munmap the aligned region from @start to @end. | 
|  | * @vmi: The vma iterator | 
|  | * @vma: The starting vm_area_struct | 
|  | * @mm: The mm_struct | 
|  | * @start: The aligned start address to munmap. | 
|  | * @end: The aligned end address to munmap. | 
|  | * @uf: The userfaultfd list_head | 
|  | * @unlock: Set to true to drop the mmap_lock.  unlocking only happens on | 
|  | * success. | 
|  | * | 
|  | * Return: 0 on success and drops the lock if so directed, error and leaves the | 
|  | * lock held otherwise. | 
|  | */ | 
|  | int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, | 
|  | struct mm_struct *mm, unsigned long start, unsigned long end, | 
|  | struct list_head *uf, bool unlock) | 
|  | { | 
|  | struct maple_tree mt_detach; | 
|  | MA_STATE(mas_detach, &mt_detach, 0, 0); | 
|  | mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK); | 
|  | mt_on_stack(mt_detach); | 
|  | struct vma_munmap_struct vms; | 
|  | int error; | 
|  |  | 
|  | init_vma_munmap(&vms, vmi, vma, start, end, uf, unlock); | 
|  | error = vms_gather_munmap_vmas(&vms, &mas_detach); | 
|  | if (error) | 
|  | goto gather_failed; | 
|  |  | 
|  | error = vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL); | 
|  | if (error) | 
|  | goto clear_tree_failed; | 
|  |  | 
|  | /* Point of no return */ | 
|  | vms_complete_munmap_vmas(&vms, &mas_detach); | 
|  | return 0; | 
|  |  | 
|  | clear_tree_failed: | 
|  | reattach_vmas(&mas_detach); | 
|  | gather_failed: | 
|  | validate_mm(mm); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * do_vmi_munmap() - munmap a given range. | 
|  | * @vmi: The vma iterator | 
|  | * @mm: The mm_struct | 
|  | * @start: The start address to munmap | 
|  | * @len: The length of the range to munmap | 
|  | * @uf: The userfaultfd list_head | 
|  | * @unlock: set to true if the user wants to drop the mmap_lock on success | 
|  | * | 
|  | * This function takes a @mas that is either pointing to the previous VMA or set | 
|  | * to MA_START and sets it up to remove the mapping(s).  The @len will be | 
|  | * aligned. | 
|  | * | 
|  | * Return: 0 on success and drops the lock if so directed, error and leaves the | 
|  | * lock held otherwise. | 
|  | */ | 
|  | int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm, | 
|  | unsigned long start, size_t len, struct list_head *uf, | 
|  | bool unlock) | 
|  | { | 
|  | unsigned long end; | 
|  | struct vm_area_struct *vma; | 
|  |  | 
|  | if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start) | 
|  | return -EINVAL; | 
|  |  | 
|  | end = start + PAGE_ALIGN(len); | 
|  | if (end == start) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* Find the first overlapping VMA */ | 
|  | vma = vma_find(vmi, end); | 
|  | if (!vma) { | 
|  | if (unlock) | 
|  | mmap_write_unlock(mm); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We are about to modify one or multiple of a VMA's flags, policy, userfaultfd | 
|  | * context and anonymous VMA name within the range [start, end). | 
|  | * | 
|  | * As a result, we might be able to merge the newly modified VMA range with an | 
|  | * adjacent VMA with identical properties. | 
|  | * | 
|  | * If no merge is possible and the range does not span the entirety of the VMA, | 
|  | * we then need to split the VMA to accommodate the change. | 
|  | * | 
|  | * The function returns either the merged VMA, the original VMA if a split was | 
|  | * required instead, or an error if the split failed. | 
|  | */ | 
|  | static struct vm_area_struct *vma_modify(struct vma_merge_struct *vmg) | 
|  | { | 
|  | struct vm_area_struct *vma = vmg->middle; | 
|  | unsigned long start = vmg->start; | 
|  | unsigned long end = vmg->end; | 
|  | struct vm_area_struct *merged; | 
|  |  | 
|  | /* First, try to merge. */ | 
|  | merged = vma_merge_existing_range(vmg); | 
|  | if (merged) | 
|  | return merged; | 
|  | if (vmg_nomem(vmg)) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | /* | 
|  | * Split can fail for reasons other than OOM, so if the user requests | 
|  | * this it's probably a mistake. | 
|  | */ | 
|  | VM_WARN_ON(vmg->give_up_on_oom && | 
|  | (vma->vm_start != start || vma->vm_end != end)); | 
|  |  | 
|  | /* Split any preceding portion of the VMA. */ | 
|  | if (vma->vm_start < start) { | 
|  | int err = split_vma(vmg->vmi, vma, start, 1); | 
|  |  | 
|  | if (err) | 
|  | return ERR_PTR(err); | 
|  | } | 
|  |  | 
|  | /* Split any trailing portion of the VMA. */ | 
|  | if (vma->vm_end > end) { | 
|  | int err = split_vma(vmg->vmi, vma, end, 0); | 
|  |  | 
|  | if (err) | 
|  | return ERR_PTR(err); | 
|  | } | 
|  |  | 
|  | return vma; | 
|  | } | 
|  |  | 
|  | struct vm_area_struct *vma_modify_flags( | 
|  | struct vma_iterator *vmi, struct vm_area_struct *prev, | 
|  | struct vm_area_struct *vma, unsigned long start, unsigned long end, | 
|  | unsigned long new_flags) | 
|  | { | 
|  | VMG_VMA_STATE(vmg, vmi, prev, vma, start, end); | 
|  |  | 
|  | vmg.flags = new_flags; | 
|  |  | 
|  | return vma_modify(&vmg); | 
|  | } | 
|  |  | 
|  | struct vm_area_struct | 
|  | *vma_modify_flags_name(struct vma_iterator *vmi, | 
|  | struct vm_area_struct *prev, | 
|  | struct vm_area_struct *vma, | 
|  | unsigned long start, | 
|  | unsigned long end, | 
|  | unsigned long new_flags, | 
|  | struct anon_vma_name *new_name) | 
|  | { | 
|  | VMG_VMA_STATE(vmg, vmi, prev, vma, start, end); | 
|  |  | 
|  | vmg.flags = new_flags; | 
|  | vmg.anon_name = new_name; | 
|  |  | 
|  | return vma_modify(&vmg); | 
|  | } | 
|  |  | 
|  | struct vm_area_struct | 
|  | *vma_modify_policy(struct vma_iterator *vmi, | 
|  | struct vm_area_struct *prev, | 
|  | struct vm_area_struct *vma, | 
|  | unsigned long start, unsigned long end, | 
|  | struct mempolicy *new_pol) | 
|  | { | 
|  | VMG_VMA_STATE(vmg, vmi, prev, vma, start, end); | 
|  |  | 
|  | vmg.policy = new_pol; | 
|  |  | 
|  | return vma_modify(&vmg); | 
|  | } | 
|  |  | 
|  | struct vm_area_struct | 
|  | *vma_modify_flags_uffd(struct vma_iterator *vmi, | 
|  | struct vm_area_struct *prev, | 
|  | struct vm_area_struct *vma, | 
|  | unsigned long start, unsigned long end, | 
|  | unsigned long new_flags, | 
|  | struct vm_userfaultfd_ctx new_ctx, | 
|  | bool give_up_on_oom) | 
|  | { | 
|  | VMG_VMA_STATE(vmg, vmi, prev, vma, start, end); | 
|  |  | 
|  | vmg.flags = new_flags; | 
|  | vmg.uffd_ctx = new_ctx; | 
|  | if (give_up_on_oom) | 
|  | vmg.give_up_on_oom = true; | 
|  |  | 
|  | return vma_modify(&vmg); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Expand vma by delta bytes, potentially merging with an immediately adjacent | 
|  | * VMA with identical properties. | 
|  | */ | 
|  | struct vm_area_struct *vma_merge_extend(struct vma_iterator *vmi, | 
|  | struct vm_area_struct *vma, | 
|  | unsigned long delta) | 
|  | { | 
|  | VMG_VMA_STATE(vmg, vmi, vma, vma, vma->vm_end, vma->vm_end + delta); | 
|  |  | 
|  | vmg.next = vma_iter_next_rewind(vmi, NULL); | 
|  | vmg.middle = NULL; /* We use the VMA to populate VMG fields only. */ | 
|  |  | 
|  | return vma_merge_new_range(&vmg); | 
|  | } | 
|  |  | 
|  | void unlink_file_vma_batch_init(struct unlink_vma_file_batch *vb) | 
|  | { | 
|  | vb->count = 0; | 
|  | } | 
|  |  | 
|  | static void unlink_file_vma_batch_process(struct unlink_vma_file_batch *vb) | 
|  | { | 
|  | struct address_space *mapping; | 
|  | int i; | 
|  |  | 
|  | mapping = vb->vmas[0]->vm_file->f_mapping; | 
|  | i_mmap_lock_write(mapping); | 
|  | for (i = 0; i < vb->count; i++) { | 
|  | VM_WARN_ON_ONCE(vb->vmas[i]->vm_file->f_mapping != mapping); | 
|  | __remove_shared_vm_struct(vb->vmas[i], mapping); | 
|  | } | 
|  | i_mmap_unlock_write(mapping); | 
|  |  | 
|  | unlink_file_vma_batch_init(vb); | 
|  | } | 
|  |  | 
|  | void unlink_file_vma_batch_add(struct unlink_vma_file_batch *vb, | 
|  | struct vm_area_struct *vma) | 
|  | { | 
|  | if (vma->vm_file == NULL) | 
|  | return; | 
|  |  | 
|  | if ((vb->count > 0 && vb->vmas[0]->vm_file != vma->vm_file) || | 
|  | vb->count == ARRAY_SIZE(vb->vmas)) | 
|  | unlink_file_vma_batch_process(vb); | 
|  |  | 
|  | vb->vmas[vb->count] = vma; | 
|  | vb->count++; | 
|  | } | 
|  |  | 
|  | void unlink_file_vma_batch_final(struct unlink_vma_file_batch *vb) | 
|  | { | 
|  | if (vb->count > 0) | 
|  | unlink_file_vma_batch_process(vb); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Unlink a file-based vm structure from its interval tree, to hide | 
|  | * vma from rmap and vmtruncate before freeing its page tables. | 
|  | */ | 
|  | void unlink_file_vma(struct vm_area_struct *vma) | 
|  | { | 
|  | struct file *file = vma->vm_file; | 
|  |  | 
|  | if (file) { | 
|  | struct address_space *mapping = file->f_mapping; | 
|  |  | 
|  | i_mmap_lock_write(mapping); | 
|  | __remove_shared_vm_struct(vma, mapping); | 
|  | i_mmap_unlock_write(mapping); | 
|  | } | 
|  | } | 
|  |  | 
|  | void vma_link_file(struct vm_area_struct *vma) | 
|  | { | 
|  | struct file *file = vma->vm_file; | 
|  | struct address_space *mapping; | 
|  |  | 
|  | if (file) { | 
|  | mapping = file->f_mapping; | 
|  | i_mmap_lock_write(mapping); | 
|  | __vma_link_file(vma, mapping); | 
|  | i_mmap_unlock_write(mapping); | 
|  | } | 
|  | } | 
|  |  | 
|  | int vma_link(struct mm_struct *mm, struct vm_area_struct *vma) | 
|  | { | 
|  | VMA_ITERATOR(vmi, mm, 0); | 
|  |  | 
|  | vma_iter_config(&vmi, vma->vm_start, vma->vm_end); | 
|  | if (vma_iter_prealloc(&vmi, vma)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | vma_start_write(vma); | 
|  | vma_iter_store_new(&vmi, vma); | 
|  | vma_link_file(vma); | 
|  | mm->map_count++; | 
|  | validate_mm(mm); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Copy the vma structure to a new location in the same mm, | 
|  | * prior to moving page table entries, to effect an mremap move. | 
|  | */ | 
|  | struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, | 
|  | unsigned long addr, unsigned long len, pgoff_t pgoff, | 
|  | bool *need_rmap_locks) | 
|  | { | 
|  | struct vm_area_struct *vma = *vmap; | 
|  | unsigned long vma_start = vma->vm_start; | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | struct vm_area_struct *new_vma; | 
|  | bool faulted_in_anon_vma = true; | 
|  | VMA_ITERATOR(vmi, mm, addr); | 
|  | VMG_VMA_STATE(vmg, &vmi, NULL, vma, addr, addr + len); | 
|  |  | 
|  | /* | 
|  | * If anonymous vma has not yet been faulted, update new pgoff | 
|  | * to match new location, to increase its chance of merging. | 
|  | */ | 
|  | if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) { | 
|  | pgoff = addr >> PAGE_SHIFT; | 
|  | faulted_in_anon_vma = false; | 
|  | } | 
|  |  | 
|  | new_vma = find_vma_prev(mm, addr, &vmg.prev); | 
|  | if (new_vma && new_vma->vm_start < addr + len) | 
|  | return NULL;	/* should never get here */ | 
|  |  | 
|  | vmg.middle = NULL; /* New VMA range. */ | 
|  | vmg.pgoff = pgoff; | 
|  | vmg.next = vma_iter_next_rewind(&vmi, NULL); | 
|  | new_vma = vma_merge_new_range(&vmg); | 
|  |  | 
|  | if (new_vma) { | 
|  | /* | 
|  | * Source vma may have been merged into new_vma | 
|  | */ | 
|  | if (unlikely(vma_start >= new_vma->vm_start && | 
|  | vma_start < new_vma->vm_end)) { | 
|  | /* | 
|  | * The only way we can get a vma_merge with | 
|  | * self during an mremap is if the vma hasn't | 
|  | * been faulted in yet and we were allowed to | 
|  | * reset the dst vma->vm_pgoff to the | 
|  | * destination address of the mremap to allow | 
|  | * the merge to happen. mremap must change the | 
|  | * vm_pgoff linearity between src and dst vmas | 
|  | * (in turn preventing a vma_merge) to be | 
|  | * safe. It is only safe to keep the vm_pgoff | 
|  | * linear if there are no pages mapped yet. | 
|  | */ | 
|  | VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma); | 
|  | *vmap = vma = new_vma; | 
|  | } | 
|  | *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff); | 
|  | } else { | 
|  | new_vma = vm_area_dup(vma); | 
|  | if (!new_vma) | 
|  | goto out; | 
|  | vma_set_range(new_vma, addr, addr + len, pgoff); | 
|  | if (vma_dup_policy(vma, new_vma)) | 
|  | goto out_free_vma; | 
|  | if (anon_vma_clone(new_vma, vma)) | 
|  | goto out_free_mempol; | 
|  | if (new_vma->vm_file) | 
|  | get_file(new_vma->vm_file); | 
|  | if (new_vma->vm_ops && new_vma->vm_ops->open) | 
|  | new_vma->vm_ops->open(new_vma); | 
|  | if (vma_link(mm, new_vma)) | 
|  | goto out_vma_link; | 
|  | *need_rmap_locks = false; | 
|  | } | 
|  | return new_vma; | 
|  |  | 
|  | out_vma_link: | 
|  | vma_close(new_vma); | 
|  |  | 
|  | if (new_vma->vm_file) | 
|  | fput(new_vma->vm_file); | 
|  |  | 
|  | unlink_anon_vmas(new_vma); | 
|  | out_free_mempol: | 
|  | mpol_put(vma_policy(new_vma)); | 
|  | out_free_vma: | 
|  | vm_area_free(new_vma); | 
|  | out: | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Rough compatibility check to quickly see if it's even worth looking | 
|  | * at sharing an anon_vma. | 
|  | * | 
|  | * They need to have the same vm_file, and the flags can only differ | 
|  | * in things that mprotect may change. | 
|  | * | 
|  | * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that | 
|  | * we can merge the two vma's. For example, we refuse to merge a vma if | 
|  | * there is a vm_ops->close() function, because that indicates that the | 
|  | * driver is doing some kind of reference counting. But that doesn't | 
|  | * really matter for the anon_vma sharing case. | 
|  | */ | 
|  | static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) | 
|  | { | 
|  | return a->vm_end == b->vm_start && | 
|  | mpol_equal(vma_policy(a), vma_policy(b)) && | 
|  | a->vm_file == b->vm_file && | 
|  | !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) && | 
|  | b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Do some basic sanity checking to see if we can re-use the anon_vma | 
|  | * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be | 
|  | * the same as 'old', the other will be the new one that is trying | 
|  | * to share the anon_vma. | 
|  | * | 
|  | * NOTE! This runs with mmap_lock held for reading, so it is possible that | 
|  | * the anon_vma of 'old' is concurrently in the process of being set up | 
|  | * by another page fault trying to merge _that_. But that's ok: if it | 
|  | * is being set up, that automatically means that it will be a singleton | 
|  | * acceptable for merging, so we can do all of this optimistically. But | 
|  | * we do that READ_ONCE() to make sure that we never re-load the pointer. | 
|  | * | 
|  | * IOW: that the "list_is_singular()" test on the anon_vma_chain only | 
|  | * matters for the 'stable anon_vma' case (ie the thing we want to avoid | 
|  | * is to return an anon_vma that is "complex" due to having gone through | 
|  | * a fork). | 
|  | * | 
|  | * We also make sure that the two vma's are compatible (adjacent, | 
|  | * and with the same memory policies). That's all stable, even with just | 
|  | * a read lock on the mmap_lock. | 
|  | */ | 
|  | static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, | 
|  | struct vm_area_struct *a, | 
|  | struct vm_area_struct *b) | 
|  | { | 
|  | if (anon_vma_compatible(a, b)) { | 
|  | struct anon_vma *anon_vma = READ_ONCE(old->anon_vma); | 
|  |  | 
|  | if (anon_vma && list_is_singular(&old->anon_vma_chain)) | 
|  | return anon_vma; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * find_mergeable_anon_vma is used by anon_vma_prepare, to check | 
|  | * neighbouring vmas for a suitable anon_vma, before it goes off | 
|  | * to allocate a new anon_vma.  It checks because a repetitive | 
|  | * sequence of mprotects and faults may otherwise lead to distinct | 
|  | * anon_vmas being allocated, preventing vma merge in subsequent | 
|  | * mprotect. | 
|  | */ | 
|  | struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) | 
|  | { | 
|  | struct anon_vma *anon_vma = NULL; | 
|  | struct vm_area_struct *prev, *next; | 
|  | VMA_ITERATOR(vmi, vma->vm_mm, vma->vm_end); | 
|  |  | 
|  | /* Try next first. */ | 
|  | next = vma_iter_load(&vmi); | 
|  | if (next) { | 
|  | anon_vma = reusable_anon_vma(next, vma, next); | 
|  | if (anon_vma) | 
|  | return anon_vma; | 
|  | } | 
|  |  | 
|  | prev = vma_prev(&vmi); | 
|  | VM_BUG_ON_VMA(prev != vma, vma); | 
|  | prev = vma_prev(&vmi); | 
|  | /* Try prev next. */ | 
|  | if (prev) | 
|  | anon_vma = reusable_anon_vma(prev, prev, vma); | 
|  |  | 
|  | /* | 
|  | * We might reach here with anon_vma == NULL if we can't find | 
|  | * any reusable anon_vma. | 
|  | * There's no absolute need to look only at touching neighbours: | 
|  | * we could search further afield for "compatible" anon_vmas. | 
|  | * But it would probably just be a waste of time searching, | 
|  | * or lead to too many vmas hanging off the same anon_vma. | 
|  | * We're trying to allow mprotect remerging later on, | 
|  | * not trying to minimize memory used for anon_vmas. | 
|  | */ | 
|  | return anon_vma; | 
|  | } | 
|  |  | 
|  | static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops) | 
|  | { | 
|  | return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite); | 
|  | } | 
|  |  | 
|  | static bool vma_is_shared_writable(struct vm_area_struct *vma) | 
|  | { | 
|  | return (vma->vm_flags & (VM_WRITE | VM_SHARED)) == | 
|  | (VM_WRITE | VM_SHARED); | 
|  | } | 
|  |  | 
|  | static bool vma_fs_can_writeback(struct vm_area_struct *vma) | 
|  | { | 
|  | /* No managed pages to writeback. */ | 
|  | if (vma->vm_flags & VM_PFNMAP) | 
|  | return false; | 
|  |  | 
|  | return vma->vm_file && vma->vm_file->f_mapping && | 
|  | mapping_can_writeback(vma->vm_file->f_mapping); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Does this VMA require the underlying folios to have their dirty state | 
|  | * tracked? | 
|  | */ | 
|  | bool vma_needs_dirty_tracking(struct vm_area_struct *vma) | 
|  | { | 
|  | /* Only shared, writable VMAs require dirty tracking. */ | 
|  | if (!vma_is_shared_writable(vma)) | 
|  | return false; | 
|  |  | 
|  | /* Does the filesystem need to be notified? */ | 
|  | if (vm_ops_needs_writenotify(vma->vm_ops)) | 
|  | return true; | 
|  |  | 
|  | /* | 
|  | * Even if the filesystem doesn't indicate a need for writenotify, if it | 
|  | * can writeback, dirty tracking is still required. | 
|  | */ | 
|  | return vma_fs_can_writeback(vma); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Some shared mappings will want the pages marked read-only | 
|  | * to track write events. If so, we'll downgrade vm_page_prot | 
|  | * to the private version (using protection_map[] without the | 
|  | * VM_SHARED bit). | 
|  | */ | 
|  | bool vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot) | 
|  | { | 
|  | /* If it was private or non-writable, the write bit is already clear */ | 
|  | if (!vma_is_shared_writable(vma)) | 
|  | return false; | 
|  |  | 
|  | /* The backer wishes to know when pages are first written to? */ | 
|  | if (vm_ops_needs_writenotify(vma->vm_ops)) | 
|  | return true; | 
|  |  | 
|  | /* The open routine did something to the protections that pgprot_modify | 
|  | * won't preserve? */ | 
|  | if (pgprot_val(vm_page_prot) != | 
|  | pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags))) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * Do we need to track softdirty? hugetlb does not support softdirty | 
|  | * tracking yet. | 
|  | */ | 
|  | if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma)) | 
|  | return true; | 
|  |  | 
|  | /* Do we need write faults for uffd-wp tracking? */ | 
|  | if (userfaultfd_wp(vma)) | 
|  | return true; | 
|  |  | 
|  | /* Can the mapping track the dirty pages? */ | 
|  | return vma_fs_can_writeback(vma); | 
|  | } | 
|  |  | 
|  | static DEFINE_MUTEX(mm_all_locks_mutex); | 
|  |  | 
|  | static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) | 
|  | { | 
|  | if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { | 
|  | /* | 
|  | * The LSB of head.next can't change from under us | 
|  | * because we hold the mm_all_locks_mutex. | 
|  | */ | 
|  | down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock); | 
|  | /* | 
|  | * We can safely modify head.next after taking the | 
|  | * anon_vma->root->rwsem. If some other vma in this mm shares | 
|  | * the same anon_vma we won't take it again. | 
|  | * | 
|  | * No need of atomic instructions here, head.next | 
|  | * can't change from under us thanks to the | 
|  | * anon_vma->root->rwsem. | 
|  | */ | 
|  | if (__test_and_set_bit(0, (unsigned long *) | 
|  | &anon_vma->root->rb_root.rb_root.rb_node)) | 
|  | BUG(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) | 
|  | { | 
|  | if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { | 
|  | /* | 
|  | * AS_MM_ALL_LOCKS can't change from under us because | 
|  | * we hold the mm_all_locks_mutex. | 
|  | * | 
|  | * Operations on ->flags have to be atomic because | 
|  | * even if AS_MM_ALL_LOCKS is stable thanks to the | 
|  | * mm_all_locks_mutex, there may be other cpus | 
|  | * changing other bitflags in parallel to us. | 
|  | */ | 
|  | if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) | 
|  | BUG(); | 
|  | down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This operation locks against the VM for all pte/vma/mm related | 
|  | * operations that could ever happen on a certain mm. This includes | 
|  | * vmtruncate, try_to_unmap, and all page faults. | 
|  | * | 
|  | * The caller must take the mmap_lock in write mode before calling | 
|  | * mm_take_all_locks(). The caller isn't allowed to release the | 
|  | * mmap_lock until mm_drop_all_locks() returns. | 
|  | * | 
|  | * mmap_lock in write mode is required in order to block all operations | 
|  | * that could modify pagetables and free pages without need of | 
|  | * altering the vma layout. It's also needed in write mode to avoid new | 
|  | * anon_vmas to be associated with existing vmas. | 
|  | * | 
|  | * A single task can't take more than one mm_take_all_locks() in a row | 
|  | * or it would deadlock. | 
|  | * | 
|  | * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in | 
|  | * mapping->flags avoid to take the same lock twice, if more than one | 
|  | * vma in this mm is backed by the same anon_vma or address_space. | 
|  | * | 
|  | * We take locks in following order, accordingly to comment at beginning | 
|  | * of mm/rmap.c: | 
|  | *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for | 
|  | *     hugetlb mapping); | 
|  | *   - all vmas marked locked | 
|  | *   - all i_mmap_rwsem locks; | 
|  | *   - all anon_vma->rwseml | 
|  | * | 
|  | * We can take all locks within these types randomly because the VM code | 
|  | * doesn't nest them and we protected from parallel mm_take_all_locks() by | 
|  | * mm_all_locks_mutex. | 
|  | * | 
|  | * mm_take_all_locks() and mm_drop_all_locks are expensive operations | 
|  | * that may have to take thousand of locks. | 
|  | * | 
|  | * mm_take_all_locks() can fail if it's interrupted by signals. | 
|  | */ | 
|  | int mm_take_all_locks(struct mm_struct *mm) | 
|  | { | 
|  | struct vm_area_struct *vma; | 
|  | struct anon_vma_chain *avc; | 
|  | VMA_ITERATOR(vmi, mm, 0); | 
|  |  | 
|  | mmap_assert_write_locked(mm); | 
|  |  | 
|  | mutex_lock(&mm_all_locks_mutex); | 
|  |  | 
|  | /* | 
|  | * vma_start_write() does not have a complement in mm_drop_all_locks() | 
|  | * because vma_start_write() is always asymmetrical; it marks a VMA as | 
|  | * being written to until mmap_write_unlock() or mmap_write_downgrade() | 
|  | * is reached. | 
|  | */ | 
|  | for_each_vma(vmi, vma) { | 
|  | if (signal_pending(current)) | 
|  | goto out_unlock; | 
|  | vma_start_write(vma); | 
|  | } | 
|  |  | 
|  | vma_iter_init(&vmi, mm, 0); | 
|  | for_each_vma(vmi, vma) { | 
|  | if (signal_pending(current)) | 
|  | goto out_unlock; | 
|  | if (vma->vm_file && vma->vm_file->f_mapping && | 
|  | is_vm_hugetlb_page(vma)) | 
|  | vm_lock_mapping(mm, vma->vm_file->f_mapping); | 
|  | } | 
|  |  | 
|  | vma_iter_init(&vmi, mm, 0); | 
|  | for_each_vma(vmi, vma) { | 
|  | if (signal_pending(current)) | 
|  | goto out_unlock; | 
|  | if (vma->vm_file && vma->vm_file->f_mapping && | 
|  | !is_vm_hugetlb_page(vma)) | 
|  | vm_lock_mapping(mm, vma->vm_file->f_mapping); | 
|  | } | 
|  |  | 
|  | vma_iter_init(&vmi, mm, 0); | 
|  | for_each_vma(vmi, vma) { | 
|  | if (signal_pending(current)) | 
|  | goto out_unlock; | 
|  | if (vma->anon_vma) | 
|  | list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) | 
|  | vm_lock_anon_vma(mm, avc->anon_vma); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_unlock: | 
|  | mm_drop_all_locks(mm); | 
|  | return -EINTR; | 
|  | } | 
|  |  | 
|  | static void vm_unlock_anon_vma(struct anon_vma *anon_vma) | 
|  | { | 
|  | if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { | 
|  | /* | 
|  | * The LSB of head.next can't change to 0 from under | 
|  | * us because we hold the mm_all_locks_mutex. | 
|  | * | 
|  | * We must however clear the bitflag before unlocking | 
|  | * the vma so the users using the anon_vma->rb_root will | 
|  | * never see our bitflag. | 
|  | * | 
|  | * No need of atomic instructions here, head.next | 
|  | * can't change from under us until we release the | 
|  | * anon_vma->root->rwsem. | 
|  | */ | 
|  | if (!__test_and_clear_bit(0, (unsigned long *) | 
|  | &anon_vma->root->rb_root.rb_root.rb_node)) | 
|  | BUG(); | 
|  | anon_vma_unlock_write(anon_vma); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void vm_unlock_mapping(struct address_space *mapping) | 
|  | { | 
|  | if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { | 
|  | /* | 
|  | * AS_MM_ALL_LOCKS can't change to 0 from under us | 
|  | * because we hold the mm_all_locks_mutex. | 
|  | */ | 
|  | i_mmap_unlock_write(mapping); | 
|  | if (!test_and_clear_bit(AS_MM_ALL_LOCKS, | 
|  | &mapping->flags)) | 
|  | BUG(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The mmap_lock cannot be released by the caller until | 
|  | * mm_drop_all_locks() returns. | 
|  | */ | 
|  | void mm_drop_all_locks(struct mm_struct *mm) | 
|  | { | 
|  | struct vm_area_struct *vma; | 
|  | struct anon_vma_chain *avc; | 
|  | VMA_ITERATOR(vmi, mm, 0); | 
|  |  | 
|  | mmap_assert_write_locked(mm); | 
|  | BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); | 
|  |  | 
|  | for_each_vma(vmi, vma) { | 
|  | if (vma->anon_vma) | 
|  | list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) | 
|  | vm_unlock_anon_vma(avc->anon_vma); | 
|  | if (vma->vm_file && vma->vm_file->f_mapping) | 
|  | vm_unlock_mapping(vma->vm_file->f_mapping); | 
|  | } | 
|  |  | 
|  | mutex_unlock(&mm_all_locks_mutex); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We account for memory if it's a private writeable mapping, | 
|  | * not hugepages and VM_NORESERVE wasn't set. | 
|  | */ | 
|  | static bool accountable_mapping(struct file *file, vm_flags_t vm_flags) | 
|  | { | 
|  | /* | 
|  | * hugetlb has its own accounting separate from the core VM | 
|  | * VM_HUGETLB may not be set yet so we cannot check for that flag. | 
|  | */ | 
|  | if (file && is_file_hugepages(file)) | 
|  | return false; | 
|  |  | 
|  | return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * vms_abort_munmap_vmas() - Undo as much as possible from an aborted munmap() | 
|  | * operation. | 
|  | * @vms: The vma unmap structure | 
|  | * @mas_detach: The maple state with the detached maple tree | 
|  | * | 
|  | * Reattach any detached vmas, free up the maple tree used to track the vmas. | 
|  | * If that's not possible because the ptes are cleared (and vm_ops->closed() may | 
|  | * have been called), then a NULL is written over the vmas and the vmas are | 
|  | * removed (munmap() completed). | 
|  | */ | 
|  | static void vms_abort_munmap_vmas(struct vma_munmap_struct *vms, | 
|  | struct ma_state *mas_detach) | 
|  | { | 
|  | struct ma_state *mas = &vms->vmi->mas; | 
|  |  | 
|  | if (!vms->nr_pages) | 
|  | return; | 
|  |  | 
|  | if (vms->clear_ptes) | 
|  | return reattach_vmas(mas_detach); | 
|  |  | 
|  | /* | 
|  | * Aborting cannot just call the vm_ops open() because they are often | 
|  | * not symmetrical and state data has been lost.  Resort to the old | 
|  | * failure method of leaving a gap where the MAP_FIXED mapping failed. | 
|  | */ | 
|  | mas_set_range(mas, vms->start, vms->end - 1); | 
|  | mas_store_gfp(mas, NULL, GFP_KERNEL|__GFP_NOFAIL); | 
|  | /* Clean up the insertion of the unfortunate gap */ | 
|  | vms_complete_munmap_vmas(vms, mas_detach); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * __mmap_prepare() - Prepare to gather any overlapping VMAs that need to be | 
|  | * unmapped once the map operation is completed, check limits, account mapping | 
|  | * and clean up any pre-existing VMAs. | 
|  | * | 
|  | * @map: Mapping state. | 
|  | * @uf:  Userfaultfd context list. | 
|  | * | 
|  | * Returns: 0 on success, error code otherwise. | 
|  | */ | 
|  | static int __mmap_prepare(struct mmap_state *map, struct list_head *uf) | 
|  | { | 
|  | int error; | 
|  | struct vma_iterator *vmi = map->vmi; | 
|  | struct vma_munmap_struct *vms = &map->vms; | 
|  |  | 
|  | /* Find the first overlapping VMA and initialise unmap state. */ | 
|  | vms->vma = vma_find(vmi, map->end); | 
|  | init_vma_munmap(vms, vmi, vms->vma, map->addr, map->end, uf, | 
|  | /* unlock = */ false); | 
|  |  | 
|  | /* OK, we have overlapping VMAs - prepare to unmap them. */ | 
|  | if (vms->vma) { | 
|  | mt_init_flags(&map->mt_detach, | 
|  | vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK); | 
|  | mt_on_stack(map->mt_detach); | 
|  | mas_init(&map->mas_detach, &map->mt_detach, /* addr = */ 0); | 
|  | /* Prepare to unmap any existing mapping in the area */ | 
|  | error = vms_gather_munmap_vmas(vms, &map->mas_detach); | 
|  | if (error) { | 
|  | /* On error VMAs will already have been reattached. */ | 
|  | vms->nr_pages = 0; | 
|  | return error; | 
|  | } | 
|  |  | 
|  | map->next = vms->next; | 
|  | map->prev = vms->prev; | 
|  | } else { | 
|  | map->next = vma_iter_next_rewind(vmi, &map->prev); | 
|  | } | 
|  |  | 
|  | /* Check against address space limit. */ | 
|  | if (!may_expand_vm(map->mm, map->flags, map->pglen - vms->nr_pages)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* Private writable mapping: check memory availability. */ | 
|  | if (accountable_mapping(map->file, map->flags)) { | 
|  | map->charged = map->pglen; | 
|  | map->charged -= vms->nr_accounted; | 
|  | if (map->charged) { | 
|  | error = security_vm_enough_memory_mm(map->mm, map->charged); | 
|  | if (error) | 
|  | return error; | 
|  | } | 
|  |  | 
|  | vms->nr_accounted = 0; | 
|  | map->flags |= VM_ACCOUNT; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Clear PTEs while the vma is still in the tree so that rmap | 
|  | * cannot race with the freeing later in the truncate scenario. | 
|  | * This is also needed for mmap_file(), which is why vm_ops | 
|  | * close function is called. | 
|  | */ | 
|  | vms_clean_up_area(vms, &map->mas_detach); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | static int __mmap_new_file_vma(struct mmap_state *map, | 
|  | struct vm_area_struct *vma) | 
|  | { | 
|  | struct vma_iterator *vmi = map->vmi; | 
|  | int error; | 
|  |  | 
|  | vma->vm_file = get_file(map->file); | 
|  | error = mmap_file(vma->vm_file, vma); | 
|  | if (error) { | 
|  | fput(vma->vm_file); | 
|  | vma->vm_file = NULL; | 
|  |  | 
|  | vma_iter_set(vmi, vma->vm_end); | 
|  | /* Undo any partial mapping done by a device driver. */ | 
|  | unmap_region(&vmi->mas, vma, map->prev, map->next); | 
|  |  | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* Drivers cannot alter the address of the VMA. */ | 
|  | WARN_ON_ONCE(map->addr != vma->vm_start); | 
|  | /* | 
|  | * Drivers should not permit writability when previously it was | 
|  | * disallowed. | 
|  | */ | 
|  | VM_WARN_ON_ONCE(map->flags != vma->vm_flags && | 
|  | !(map->flags & VM_MAYWRITE) && | 
|  | (vma->vm_flags & VM_MAYWRITE)); | 
|  |  | 
|  | /* If the flags change (and are mergeable), let's retry later. */ | 
|  | map->retry_merge = vma->vm_flags != map->flags && !(vma->vm_flags & VM_SPECIAL); | 
|  | map->flags = vma->vm_flags; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * __mmap_new_vma() - Allocate a new VMA for the region, as merging was not | 
|  | * possible. | 
|  | * | 
|  | * @map:  Mapping state. | 
|  | * @vmap: Output pointer for the new VMA. | 
|  | * | 
|  | * Returns: Zero on success, or an error. | 
|  | */ | 
|  | static int __mmap_new_vma(struct mmap_state *map, struct vm_area_struct **vmap) | 
|  | { | 
|  | struct vma_iterator *vmi = map->vmi; | 
|  | int error = 0; | 
|  | struct vm_area_struct *vma; | 
|  |  | 
|  | /* | 
|  | * Determine the object being mapped and call the appropriate | 
|  | * specific mapper. the address has already been validated, but | 
|  | * not unmapped, but the maps are removed from the list. | 
|  | */ | 
|  | vma = vm_area_alloc(map->mm); | 
|  | if (!vma) | 
|  | return -ENOMEM; | 
|  |  | 
|  | vma_iter_config(vmi, map->addr, map->end); | 
|  | vma_set_range(vma, map->addr, map->end, map->pgoff); | 
|  | vm_flags_init(vma, map->flags); | 
|  | vma->vm_page_prot = vm_get_page_prot(map->flags); | 
|  |  | 
|  | if (vma_iter_prealloc(vmi, vma)) { | 
|  | error = -ENOMEM; | 
|  | goto free_vma; | 
|  | } | 
|  |  | 
|  | if (map->file) | 
|  | error = __mmap_new_file_vma(map, vma); | 
|  | else if (map->flags & VM_SHARED) | 
|  | error = shmem_zero_setup(vma); | 
|  | else | 
|  | vma_set_anonymous(vma); | 
|  |  | 
|  | if (error) | 
|  | goto free_iter_vma; | 
|  |  | 
|  | #ifdef CONFIG_SPARC64 | 
|  | /* TODO: Fix SPARC ADI! */ | 
|  | WARN_ON_ONCE(!arch_validate_flags(map->flags)); | 
|  | #endif | 
|  |  | 
|  | /* Lock the VMA since it is modified after insertion into VMA tree */ | 
|  | vma_start_write(vma); | 
|  | vma_iter_store_new(vmi, vma); | 
|  | map->mm->map_count++; | 
|  | vma_link_file(vma); | 
|  |  | 
|  | /* | 
|  | * vma_merge_new_range() calls khugepaged_enter_vma() too, the below | 
|  | * call covers the non-merge case. | 
|  | */ | 
|  | if (!vma_is_anonymous(vma)) | 
|  | khugepaged_enter_vma(vma, map->flags); | 
|  | ksm_add_vma(vma); | 
|  | *vmap = vma; | 
|  | return 0; | 
|  |  | 
|  | free_iter_vma: | 
|  | vma_iter_free(vmi); | 
|  | free_vma: | 
|  | vm_area_free(vma); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * __mmap_complete() - Unmap any VMAs we overlap, account memory mapping | 
|  | *                     statistics, handle locking and finalise the VMA. | 
|  | * | 
|  | * @map: Mapping state. | 
|  | * @vma: Merged or newly allocated VMA for the mmap()'d region. | 
|  | */ | 
|  | static void __mmap_complete(struct mmap_state *map, struct vm_area_struct *vma) | 
|  | { | 
|  | struct mm_struct *mm = map->mm; | 
|  | unsigned long vm_flags = vma->vm_flags; | 
|  |  | 
|  | perf_event_mmap(vma); | 
|  |  | 
|  | /* Unmap any existing mapping in the area. */ | 
|  | vms_complete_munmap_vmas(&map->vms, &map->mas_detach); | 
|  |  | 
|  | vm_stat_account(mm, vma->vm_flags, map->pglen); | 
|  | if (vm_flags & VM_LOCKED) { | 
|  | if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) || | 
|  | is_vm_hugetlb_page(vma) || | 
|  | vma == get_gate_vma(mm)) | 
|  | vm_flags_clear(vma, VM_LOCKED_MASK); | 
|  | else | 
|  | mm->locked_vm += map->pglen; | 
|  | } | 
|  |  | 
|  | if (vma->vm_file) | 
|  | uprobe_mmap(vma); | 
|  |  | 
|  | /* | 
|  | * New (or expanded) vma always get soft dirty status. | 
|  | * Otherwise user-space soft-dirty page tracker won't | 
|  | * be able to distinguish situation when vma area unmapped, | 
|  | * then new mapped in-place (which must be aimed as | 
|  | * a completely new data area). | 
|  | */ | 
|  | vm_flags_set(vma, VM_SOFTDIRTY); | 
|  |  | 
|  | vma_set_page_prot(vma); | 
|  | } | 
|  |  | 
|  | static unsigned long __mmap_region(struct file *file, unsigned long addr, | 
|  | unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, | 
|  | struct list_head *uf) | 
|  | { | 
|  | struct mm_struct *mm = current->mm; | 
|  | struct vm_area_struct *vma = NULL; | 
|  | int error; | 
|  | VMA_ITERATOR(vmi, mm, addr); | 
|  | MMAP_STATE(map, mm, &vmi, addr, len, pgoff, vm_flags, file); | 
|  |  | 
|  | error = __mmap_prepare(&map, uf); | 
|  | if (error) | 
|  | goto abort_munmap; | 
|  |  | 
|  | /* Attempt to merge with adjacent VMAs... */ | 
|  | if (map.prev || map.next) { | 
|  | VMG_MMAP_STATE(vmg, &map, /* vma = */ NULL); | 
|  |  | 
|  | vma = vma_merge_new_range(&vmg); | 
|  | } | 
|  |  | 
|  | /* ...but if we can't, allocate a new VMA. */ | 
|  | if (!vma) { | 
|  | error = __mmap_new_vma(&map, &vma); | 
|  | if (error) | 
|  | goto unacct_error; | 
|  | } | 
|  |  | 
|  | /* If flags changed, we might be able to merge, so try again. */ | 
|  | if (map.retry_merge) { | 
|  | struct vm_area_struct *merged; | 
|  | VMG_MMAP_STATE(vmg, &map, vma); | 
|  |  | 
|  | vma_iter_config(map.vmi, map.addr, map.end); | 
|  | merged = vma_merge_existing_range(&vmg); | 
|  | if (merged) | 
|  | vma = merged; | 
|  | } | 
|  |  | 
|  | __mmap_complete(&map, vma); | 
|  |  | 
|  | return addr; | 
|  |  | 
|  | /* Accounting was done by __mmap_prepare(). */ | 
|  | unacct_error: | 
|  | if (map.charged) | 
|  | vm_unacct_memory(map.charged); | 
|  | abort_munmap: | 
|  | vms_abort_munmap_vmas(&map.vms, &map.mas_detach); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mmap_region() - Actually perform the userland mapping of a VMA into | 
|  | * current->mm with known, aligned and overflow-checked @addr and @len, and | 
|  | * correctly determined VMA flags @vm_flags and page offset @pgoff. | 
|  | * | 
|  | * This is an internal memory management function, and should not be used | 
|  | * directly. | 
|  | * | 
|  | * The caller must write-lock current->mm->mmap_lock. | 
|  | * | 
|  | * @file: If a file-backed mapping, a pointer to the struct file describing the | 
|  | * file to be mapped, otherwise NULL. | 
|  | * @addr: The page-aligned address at which to perform the mapping. | 
|  | * @len: The page-aligned, non-zero, length of the mapping. | 
|  | * @vm_flags: The VMA flags which should be applied to the mapping. | 
|  | * @pgoff: If @file is specified, the page offset into the file, if not then | 
|  | * the virtual page offset in memory of the anonymous mapping. | 
|  | * @uf: Optionally, a pointer to a list head used for tracking userfaultfd unmap | 
|  | * events. | 
|  | * | 
|  | * Returns: Either an error, or the address at which the requested mapping has | 
|  | * been performed. | 
|  | */ | 
|  | unsigned long mmap_region(struct file *file, unsigned long addr, | 
|  | unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, | 
|  | struct list_head *uf) | 
|  | { | 
|  | unsigned long ret; | 
|  | bool writable_file_mapping = false; | 
|  |  | 
|  | mmap_assert_write_locked(current->mm); | 
|  |  | 
|  | /* Check to see if MDWE is applicable. */ | 
|  | if (map_deny_write_exec(vm_flags, vm_flags)) | 
|  | return -EACCES; | 
|  |  | 
|  | /* Allow architectures to sanity-check the vm_flags. */ | 
|  | if (!arch_validate_flags(vm_flags)) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* Map writable and ensure this isn't a sealed memfd. */ | 
|  | if (file && is_shared_maywrite(vm_flags)) { | 
|  | int error = mapping_map_writable(file->f_mapping); | 
|  |  | 
|  | if (error) | 
|  | return error; | 
|  | writable_file_mapping = true; | 
|  | } | 
|  |  | 
|  | ret = __mmap_region(file, addr, len, vm_flags, pgoff, uf); | 
|  |  | 
|  | /* Clear our write mapping regardless of error. */ | 
|  | if (writable_file_mapping) | 
|  | mapping_unmap_writable(file->f_mapping); | 
|  |  | 
|  | validate_mm(current->mm); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * do_brk_flags() - Increase the brk vma if the flags match. | 
|  | * @vmi: The vma iterator | 
|  | * @addr: The start address | 
|  | * @len: The length of the increase | 
|  | * @vma: The vma, | 
|  | * @flags: The VMA Flags | 
|  | * | 
|  | * Extend the brk VMA from addr to addr + len.  If the VMA is NULL or the flags | 
|  | * do not match then create a new anonymous VMA.  Eventually we may be able to | 
|  | * do some brk-specific accounting here. | 
|  | */ | 
|  | int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma, | 
|  | unsigned long addr, unsigned long len, unsigned long flags) | 
|  | { | 
|  | struct mm_struct *mm = current->mm; | 
|  |  | 
|  | /* | 
|  | * Check against address space limits by the changed size | 
|  | * Note: This happens *after* clearing old mappings in some code paths. | 
|  | */ | 
|  | flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; | 
|  | if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (mm->map_count > sysctl_max_map_count) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* | 
|  | * Expand the existing vma if possible; Note that singular lists do not | 
|  | * occur after forking, so the expand will only happen on new VMAs. | 
|  | */ | 
|  | if (vma && vma->vm_end == addr) { | 
|  | VMG_STATE(vmg, mm, vmi, addr, addr + len, flags, PHYS_PFN(addr)); | 
|  |  | 
|  | vmg.prev = vma; | 
|  | /* vmi is positioned at prev, which this mode expects. */ | 
|  | vmg.just_expand = true; | 
|  |  | 
|  | if (vma_merge_new_range(&vmg)) | 
|  | goto out; | 
|  | else if (vmg_nomem(&vmg)) | 
|  | goto unacct_fail; | 
|  | } | 
|  |  | 
|  | if (vma) | 
|  | vma_iter_next_range(vmi); | 
|  | /* create a vma struct for an anonymous mapping */ | 
|  | vma = vm_area_alloc(mm); | 
|  | if (!vma) | 
|  | goto unacct_fail; | 
|  |  | 
|  | vma_set_anonymous(vma); | 
|  | vma_set_range(vma, addr, addr + len, addr >> PAGE_SHIFT); | 
|  | vm_flags_init(vma, flags); | 
|  | vma->vm_page_prot = vm_get_page_prot(flags); | 
|  | vma_start_write(vma); | 
|  | if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL)) | 
|  | goto mas_store_fail; | 
|  |  | 
|  | mm->map_count++; | 
|  | validate_mm(mm); | 
|  | ksm_add_vma(vma); | 
|  | out: | 
|  | perf_event_mmap(vma); | 
|  | mm->total_vm += len >> PAGE_SHIFT; | 
|  | mm->data_vm += len >> PAGE_SHIFT; | 
|  | if (flags & VM_LOCKED) | 
|  | mm->locked_vm += (len >> PAGE_SHIFT); | 
|  | vm_flags_set(vma, VM_SOFTDIRTY); | 
|  | return 0; | 
|  |  | 
|  | mas_store_fail: | 
|  | vm_area_free(vma); | 
|  | unacct_fail: | 
|  | vm_unacct_memory(len >> PAGE_SHIFT); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * unmapped_area() - Find an area between the low_limit and the high_limit with | 
|  | * the correct alignment and offset, all from @info. Note: current->mm is used | 
|  | * for the search. | 
|  | * | 
|  | * @info: The unmapped area information including the range [low_limit - | 
|  | * high_limit), the alignment offset and mask. | 
|  | * | 
|  | * Return: A memory address or -ENOMEM. | 
|  | */ | 
|  | unsigned long unmapped_area(struct vm_unmapped_area_info *info) | 
|  | { | 
|  | unsigned long length, gap; | 
|  | unsigned long low_limit, high_limit; | 
|  | struct vm_area_struct *tmp; | 
|  | VMA_ITERATOR(vmi, current->mm, 0); | 
|  |  | 
|  | /* Adjust search length to account for worst case alignment overhead */ | 
|  | length = info->length + info->align_mask + info->start_gap; | 
|  | if (length < info->length) | 
|  | return -ENOMEM; | 
|  |  | 
|  | low_limit = info->low_limit; | 
|  | if (low_limit < mmap_min_addr) | 
|  | low_limit = mmap_min_addr; | 
|  | high_limit = info->high_limit; | 
|  | retry: | 
|  | if (vma_iter_area_lowest(&vmi, low_limit, high_limit, length)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* | 
|  | * Adjust for the gap first so it doesn't interfere with the | 
|  | * later alignment. The first step is the minimum needed to | 
|  | * fulill the start gap, the next steps is the minimum to align | 
|  | * that. It is the minimum needed to fulill both. | 
|  | */ | 
|  | gap = vma_iter_addr(&vmi) + info->start_gap; | 
|  | gap += (info->align_offset - gap) & info->align_mask; | 
|  | tmp = vma_next(&vmi); | 
|  | if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */ | 
|  | if (vm_start_gap(tmp) < gap + length - 1) { | 
|  | low_limit = tmp->vm_end; | 
|  | vma_iter_reset(&vmi); | 
|  | goto retry; | 
|  | } | 
|  | } else { | 
|  | tmp = vma_prev(&vmi); | 
|  | if (tmp && vm_end_gap(tmp) > gap) { | 
|  | low_limit = vm_end_gap(tmp); | 
|  | vma_iter_reset(&vmi); | 
|  | goto retry; | 
|  | } | 
|  | } | 
|  |  | 
|  | return gap; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * unmapped_area_topdown() - Find an area between the low_limit and the | 
|  | * high_limit with the correct alignment and offset at the highest available | 
|  | * address, all from @info. Note: current->mm is used for the search. | 
|  | * | 
|  | * @info: The unmapped area information including the range [low_limit - | 
|  | * high_limit), the alignment offset and mask. | 
|  | * | 
|  | * Return: A memory address or -ENOMEM. | 
|  | */ | 
|  | unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info) | 
|  | { | 
|  | unsigned long length, gap, gap_end; | 
|  | unsigned long low_limit, high_limit; | 
|  | struct vm_area_struct *tmp; | 
|  | VMA_ITERATOR(vmi, current->mm, 0); | 
|  |  | 
|  | /* Adjust search length to account for worst case alignment overhead */ | 
|  | length = info->length + info->align_mask + info->start_gap; | 
|  | if (length < info->length) | 
|  | return -ENOMEM; | 
|  |  | 
|  | low_limit = info->low_limit; | 
|  | if (low_limit < mmap_min_addr) | 
|  | low_limit = mmap_min_addr; | 
|  | high_limit = info->high_limit; | 
|  | retry: | 
|  | if (vma_iter_area_highest(&vmi, low_limit, high_limit, length)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | gap = vma_iter_end(&vmi) - info->length; | 
|  | gap -= (gap - info->align_offset) & info->align_mask; | 
|  | gap_end = vma_iter_end(&vmi); | 
|  | tmp = vma_next(&vmi); | 
|  | if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */ | 
|  | if (vm_start_gap(tmp) < gap_end) { | 
|  | high_limit = vm_start_gap(tmp); | 
|  | vma_iter_reset(&vmi); | 
|  | goto retry; | 
|  | } | 
|  | } else { | 
|  | tmp = vma_prev(&vmi); | 
|  | if (tmp && vm_end_gap(tmp) > gap) { | 
|  | high_limit = tmp->vm_start; | 
|  | vma_iter_reset(&vmi); | 
|  | goto retry; | 
|  | } | 
|  | } | 
|  |  | 
|  | return gap; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Verify that the stack growth is acceptable and | 
|  | * update accounting. This is shared with both the | 
|  | * grow-up and grow-down cases. | 
|  | */ | 
|  | static int acct_stack_growth(struct vm_area_struct *vma, | 
|  | unsigned long size, unsigned long grow) | 
|  | { | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | unsigned long new_start; | 
|  |  | 
|  | /* address space limit tests */ | 
|  | if (!may_expand_vm(mm, vma->vm_flags, grow)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* Stack limit test */ | 
|  | if (size > rlimit(RLIMIT_STACK)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* mlock limit tests */ | 
|  | if (!mlock_future_ok(mm, vma->vm_flags, grow << PAGE_SHIFT)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* Check to ensure the stack will not grow into a hugetlb-only region */ | 
|  | new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : | 
|  | vma->vm_end - size; | 
|  | if (is_hugepage_only_range(vma->vm_mm, new_start, size)) | 
|  | return -EFAULT; | 
|  |  | 
|  | /* | 
|  | * Overcommit..  This must be the final test, as it will | 
|  | * update security statistics. | 
|  | */ | 
|  | if (security_vm_enough_memory_mm(mm, grow)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #if defined(CONFIG_STACK_GROWSUP) | 
|  | /* | 
|  | * PA-RISC uses this for its stack. | 
|  | * vma is the last one with address > vma->vm_end.  Have to extend vma. | 
|  | */ | 
|  | int expand_upwards(struct vm_area_struct *vma, unsigned long address) | 
|  | { | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | struct vm_area_struct *next; | 
|  | unsigned long gap_addr; | 
|  | int error = 0; | 
|  | VMA_ITERATOR(vmi, mm, vma->vm_start); | 
|  |  | 
|  | if (!(vma->vm_flags & VM_GROWSUP)) | 
|  | return -EFAULT; | 
|  |  | 
|  | mmap_assert_write_locked(mm); | 
|  |  | 
|  | /* Guard against exceeding limits of the address space. */ | 
|  | address &= PAGE_MASK; | 
|  | if (address >= (TASK_SIZE & PAGE_MASK)) | 
|  | return -ENOMEM; | 
|  | address += PAGE_SIZE; | 
|  |  | 
|  | /* Enforce stack_guard_gap */ | 
|  | gap_addr = address + stack_guard_gap; | 
|  |  | 
|  | /* Guard against overflow */ | 
|  | if (gap_addr < address || gap_addr > TASK_SIZE) | 
|  | gap_addr = TASK_SIZE; | 
|  |  | 
|  | next = find_vma_intersection(mm, vma->vm_end, gap_addr); | 
|  | if (next && vma_is_accessible(next)) { | 
|  | if (!(next->vm_flags & VM_GROWSUP)) | 
|  | return -ENOMEM; | 
|  | /* Check that both stack segments have the same anon_vma? */ | 
|  | } | 
|  |  | 
|  | if (next) | 
|  | vma_iter_prev_range_limit(&vmi, address); | 
|  |  | 
|  | vma_iter_config(&vmi, vma->vm_start, address); | 
|  | if (vma_iter_prealloc(&vmi, vma)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* We must make sure the anon_vma is allocated. */ | 
|  | if (unlikely(anon_vma_prepare(vma))) { | 
|  | vma_iter_free(&vmi); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* Lock the VMA before expanding to prevent concurrent page faults */ | 
|  | vma_start_write(vma); | 
|  | /* We update the anon VMA tree. */ | 
|  | anon_vma_lock_write(vma->anon_vma); | 
|  |  | 
|  | /* Somebody else might have raced and expanded it already */ | 
|  | if (address > vma->vm_end) { | 
|  | unsigned long size, grow; | 
|  |  | 
|  | size = address - vma->vm_start; | 
|  | grow = (address - vma->vm_end) >> PAGE_SHIFT; | 
|  |  | 
|  | error = -ENOMEM; | 
|  | if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) { | 
|  | error = acct_stack_growth(vma, size, grow); | 
|  | if (!error) { | 
|  | if (vma->vm_flags & VM_LOCKED) | 
|  | mm->locked_vm += grow; | 
|  | vm_stat_account(mm, vma->vm_flags, grow); | 
|  | anon_vma_interval_tree_pre_update_vma(vma); | 
|  | vma->vm_end = address; | 
|  | /* Overwrite old entry in mtree. */ | 
|  | vma_iter_store_overwrite(&vmi, vma); | 
|  | anon_vma_interval_tree_post_update_vma(vma); | 
|  |  | 
|  | perf_event_mmap(vma); | 
|  | } | 
|  | } | 
|  | } | 
|  | anon_vma_unlock_write(vma->anon_vma); | 
|  | vma_iter_free(&vmi); | 
|  | validate_mm(mm); | 
|  | return error; | 
|  | } | 
|  | #endif /* CONFIG_STACK_GROWSUP */ | 
|  |  | 
|  | /* | 
|  | * vma is the first one with address < vma->vm_start.  Have to extend vma. | 
|  | * mmap_lock held for writing. | 
|  | */ | 
|  | int expand_downwards(struct vm_area_struct *vma, unsigned long address) | 
|  | { | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | struct vm_area_struct *prev; | 
|  | int error = 0; | 
|  | VMA_ITERATOR(vmi, mm, vma->vm_start); | 
|  |  | 
|  | if (!(vma->vm_flags & VM_GROWSDOWN)) | 
|  | return -EFAULT; | 
|  |  | 
|  | mmap_assert_write_locked(mm); | 
|  |  | 
|  | address &= PAGE_MASK; | 
|  | if (address < mmap_min_addr || address < FIRST_USER_ADDRESS) | 
|  | return -EPERM; | 
|  |  | 
|  | /* Enforce stack_guard_gap */ | 
|  | prev = vma_prev(&vmi); | 
|  | /* Check that both stack segments have the same anon_vma? */ | 
|  | if (prev) { | 
|  | if (!(prev->vm_flags & VM_GROWSDOWN) && | 
|  | vma_is_accessible(prev) && | 
|  | (address - prev->vm_end < stack_guard_gap)) | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | if (prev) | 
|  | vma_iter_next_range_limit(&vmi, vma->vm_start); | 
|  |  | 
|  | vma_iter_config(&vmi, address, vma->vm_end); | 
|  | if (vma_iter_prealloc(&vmi, vma)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* We must make sure the anon_vma is allocated. */ | 
|  | if (unlikely(anon_vma_prepare(vma))) { | 
|  | vma_iter_free(&vmi); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* Lock the VMA before expanding to prevent concurrent page faults */ | 
|  | vma_start_write(vma); | 
|  | /* We update the anon VMA tree. */ | 
|  | anon_vma_lock_write(vma->anon_vma); | 
|  |  | 
|  | /* Somebody else might have raced and expanded it already */ | 
|  | if (address < vma->vm_start) { | 
|  | unsigned long size, grow; | 
|  |  | 
|  | size = vma->vm_end - address; | 
|  | grow = (vma->vm_start - address) >> PAGE_SHIFT; | 
|  |  | 
|  | error = -ENOMEM; | 
|  | if (grow <= vma->vm_pgoff) { | 
|  | error = acct_stack_growth(vma, size, grow); | 
|  | if (!error) { | 
|  | if (vma->vm_flags & VM_LOCKED) | 
|  | mm->locked_vm += grow; | 
|  | vm_stat_account(mm, vma->vm_flags, grow); | 
|  | anon_vma_interval_tree_pre_update_vma(vma); | 
|  | vma->vm_start = address; | 
|  | vma->vm_pgoff -= grow; | 
|  | /* Overwrite old entry in mtree. */ | 
|  | vma_iter_store_overwrite(&vmi, vma); | 
|  | anon_vma_interval_tree_post_update_vma(vma); | 
|  |  | 
|  | perf_event_mmap(vma); | 
|  | } | 
|  | } | 
|  | } | 
|  | anon_vma_unlock_write(vma->anon_vma); | 
|  | vma_iter_free(&vmi); | 
|  | validate_mm(mm); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | int __vm_munmap(unsigned long start, size_t len, bool unlock) | 
|  | { | 
|  | int ret; | 
|  | struct mm_struct *mm = current->mm; | 
|  | LIST_HEAD(uf); | 
|  | VMA_ITERATOR(vmi, mm, start); | 
|  |  | 
|  | if (mmap_write_lock_killable(mm)) | 
|  | return -EINTR; | 
|  |  | 
|  | ret = do_vmi_munmap(&vmi, mm, start, len, &uf, unlock); | 
|  | if (ret || !unlock) | 
|  | mmap_write_unlock(mm); | 
|  |  | 
|  | userfaultfd_unmap_complete(mm, &uf); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Insert vm structure into process list sorted by address | 
|  | * and into the inode's i_mmap tree.  If vm_file is non-NULL | 
|  | * then i_mmap_rwsem is taken here. | 
|  | */ | 
|  | int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) | 
|  | { | 
|  | unsigned long charged = vma_pages(vma); | 
|  |  | 
|  |  | 
|  | if (find_vma_intersection(mm, vma->vm_start, vma->vm_end)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if ((vma->vm_flags & VM_ACCOUNT) && | 
|  | security_vm_enough_memory_mm(mm, charged)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* | 
|  | * The vm_pgoff of a purely anonymous vma should be irrelevant | 
|  | * until its first write fault, when page's anon_vma and index | 
|  | * are set.  But now set the vm_pgoff it will almost certainly | 
|  | * end up with (unless mremap moves it elsewhere before that | 
|  | * first wfault), so /proc/pid/maps tells a consistent story. | 
|  | * | 
|  | * By setting it to reflect the virtual start address of the | 
|  | * vma, merges and splits can happen in a seamless way, just | 
|  | * using the existing file pgoff checks and manipulations. | 
|  | * Similarly in do_mmap and in do_brk_flags. | 
|  | */ | 
|  | if (vma_is_anonymous(vma)) { | 
|  | BUG_ON(vma->anon_vma); | 
|  | vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; | 
|  | } | 
|  |  | 
|  | if (vma_link(mm, vma)) { | 
|  | if (vma->vm_flags & VM_ACCOUNT) | 
|  | vm_unacct_memory(charged); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } |