|  | /* | 
|  | * This file is subject to the terms and conditions of the GNU General Public | 
|  | * License.  See the file "COPYING" in the main directory of this archive | 
|  | * for more details. | 
|  | * | 
|  | * KVM/MIPS: Instruction/Exception emulation | 
|  | * | 
|  | * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved. | 
|  | * Authors: Sanjay Lal <sanjayl@kymasys.com> | 
|  | */ | 
|  |  | 
|  | #include <linux/errno.h> | 
|  | #include <linux/err.h> | 
|  | #include <linux/ktime.h> | 
|  | #include <linux/kvm_host.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/bootmem.h> | 
|  | #include <linux/random.h> | 
|  | #include <asm/page.h> | 
|  | #include <asm/cacheflush.h> | 
|  | #include <asm/cacheops.h> | 
|  | #include <asm/cpu-info.h> | 
|  | #include <asm/mmu_context.h> | 
|  | #include <asm/tlbflush.h> | 
|  | #include <asm/inst.h> | 
|  |  | 
|  | #undef CONFIG_MIPS_MT | 
|  | #include <asm/r4kcache.h> | 
|  | #define CONFIG_MIPS_MT | 
|  |  | 
|  | #include "interrupt.h" | 
|  | #include "commpage.h" | 
|  |  | 
|  | #include "trace.h" | 
|  |  | 
|  | /* | 
|  | * Compute the return address and do emulate branch simulation, if required. | 
|  | * This function should be called only in branch delay slot active. | 
|  | */ | 
|  | unsigned long kvm_compute_return_epc(struct kvm_vcpu *vcpu, | 
|  | unsigned long instpc) | 
|  | { | 
|  | unsigned int dspcontrol; | 
|  | union mips_instruction insn; | 
|  | struct kvm_vcpu_arch *arch = &vcpu->arch; | 
|  | long epc = instpc; | 
|  | long nextpc = KVM_INVALID_INST; | 
|  |  | 
|  | if (epc & 3) | 
|  | goto unaligned; | 
|  |  | 
|  | /* Read the instruction */ | 
|  | insn.word = kvm_get_inst((uint32_t *) epc, vcpu); | 
|  |  | 
|  | if (insn.word == KVM_INVALID_INST) | 
|  | return KVM_INVALID_INST; | 
|  |  | 
|  | switch (insn.i_format.opcode) { | 
|  | /* jr and jalr are in r_format format. */ | 
|  | case spec_op: | 
|  | switch (insn.r_format.func) { | 
|  | case jalr_op: | 
|  | arch->gprs[insn.r_format.rd] = epc + 8; | 
|  | /* Fall through */ | 
|  | case jr_op: | 
|  | nextpc = arch->gprs[insn.r_format.rs]; | 
|  | break; | 
|  | } | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * This group contains: | 
|  | * bltz_op, bgez_op, bltzl_op, bgezl_op, | 
|  | * bltzal_op, bgezal_op, bltzall_op, bgezall_op. | 
|  | */ | 
|  | case bcond_op: | 
|  | switch (insn.i_format.rt) { | 
|  | case bltz_op: | 
|  | case bltzl_op: | 
|  | if ((long)arch->gprs[insn.i_format.rs] < 0) | 
|  | epc = epc + 4 + (insn.i_format.simmediate << 2); | 
|  | else | 
|  | epc += 8; | 
|  | nextpc = epc; | 
|  | break; | 
|  |  | 
|  | case bgez_op: | 
|  | case bgezl_op: | 
|  | if ((long)arch->gprs[insn.i_format.rs] >= 0) | 
|  | epc = epc + 4 + (insn.i_format.simmediate << 2); | 
|  | else | 
|  | epc += 8; | 
|  | nextpc = epc; | 
|  | break; | 
|  |  | 
|  | case bltzal_op: | 
|  | case bltzall_op: | 
|  | arch->gprs[31] = epc + 8; | 
|  | if ((long)arch->gprs[insn.i_format.rs] < 0) | 
|  | epc = epc + 4 + (insn.i_format.simmediate << 2); | 
|  | else | 
|  | epc += 8; | 
|  | nextpc = epc; | 
|  | break; | 
|  |  | 
|  | case bgezal_op: | 
|  | case bgezall_op: | 
|  | arch->gprs[31] = epc + 8; | 
|  | if ((long)arch->gprs[insn.i_format.rs] >= 0) | 
|  | epc = epc + 4 + (insn.i_format.simmediate << 2); | 
|  | else | 
|  | epc += 8; | 
|  | nextpc = epc; | 
|  | break; | 
|  | case bposge32_op: | 
|  | if (!cpu_has_dsp) | 
|  | goto sigill; | 
|  |  | 
|  | dspcontrol = rddsp(0x01); | 
|  |  | 
|  | if (dspcontrol >= 32) | 
|  | epc = epc + 4 + (insn.i_format.simmediate << 2); | 
|  | else | 
|  | epc += 8; | 
|  | nextpc = epc; | 
|  | break; | 
|  | } | 
|  | break; | 
|  |  | 
|  | /* These are unconditional and in j_format. */ | 
|  | case jal_op: | 
|  | arch->gprs[31] = instpc + 8; | 
|  | case j_op: | 
|  | epc += 4; | 
|  | epc >>= 28; | 
|  | epc <<= 28; | 
|  | epc |= (insn.j_format.target << 2); | 
|  | nextpc = epc; | 
|  | break; | 
|  |  | 
|  | /* These are conditional and in i_format. */ | 
|  | case beq_op: | 
|  | case beql_op: | 
|  | if (arch->gprs[insn.i_format.rs] == | 
|  | arch->gprs[insn.i_format.rt]) | 
|  | epc = epc + 4 + (insn.i_format.simmediate << 2); | 
|  | else | 
|  | epc += 8; | 
|  | nextpc = epc; | 
|  | break; | 
|  |  | 
|  | case bne_op: | 
|  | case bnel_op: | 
|  | if (arch->gprs[insn.i_format.rs] != | 
|  | arch->gprs[insn.i_format.rt]) | 
|  | epc = epc + 4 + (insn.i_format.simmediate << 2); | 
|  | else | 
|  | epc += 8; | 
|  | nextpc = epc; | 
|  | break; | 
|  |  | 
|  | case blez_op:		/* not really i_format */ | 
|  | case blezl_op: | 
|  | /* rt field assumed to be zero */ | 
|  | if ((long)arch->gprs[insn.i_format.rs] <= 0) | 
|  | epc = epc + 4 + (insn.i_format.simmediate << 2); | 
|  | else | 
|  | epc += 8; | 
|  | nextpc = epc; | 
|  | break; | 
|  |  | 
|  | case bgtz_op: | 
|  | case bgtzl_op: | 
|  | /* rt field assumed to be zero */ | 
|  | if ((long)arch->gprs[insn.i_format.rs] > 0) | 
|  | epc = epc + 4 + (insn.i_format.simmediate << 2); | 
|  | else | 
|  | epc += 8; | 
|  | nextpc = epc; | 
|  | break; | 
|  |  | 
|  | /* And now the FPA/cp1 branch instructions. */ | 
|  | case cop1_op: | 
|  | kvm_err("%s: unsupported cop1_op\n", __func__); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return nextpc; | 
|  |  | 
|  | unaligned: | 
|  | kvm_err("%s: unaligned epc\n", __func__); | 
|  | return nextpc; | 
|  |  | 
|  | sigill: | 
|  | kvm_err("%s: DSP branch but not DSP ASE\n", __func__); | 
|  | return nextpc; | 
|  | } | 
|  |  | 
|  | enum emulation_result update_pc(struct kvm_vcpu *vcpu, uint32_t cause) | 
|  | { | 
|  | unsigned long branch_pc; | 
|  | enum emulation_result er = EMULATE_DONE; | 
|  |  | 
|  | if (cause & CAUSEF_BD) { | 
|  | branch_pc = kvm_compute_return_epc(vcpu, vcpu->arch.pc); | 
|  | if (branch_pc == KVM_INVALID_INST) { | 
|  | er = EMULATE_FAIL; | 
|  | } else { | 
|  | vcpu->arch.pc = branch_pc; | 
|  | kvm_debug("BD update_pc(): New PC: %#lx\n", | 
|  | vcpu->arch.pc); | 
|  | } | 
|  | } else | 
|  | vcpu->arch.pc += 4; | 
|  |  | 
|  | kvm_debug("update_pc(): New PC: %#lx\n", vcpu->arch.pc); | 
|  |  | 
|  | return er; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * kvm_mips_count_disabled() - Find whether the CP0_Count timer is disabled. | 
|  | * @vcpu:	Virtual CPU. | 
|  | * | 
|  | * Returns:	1 if the CP0_Count timer is disabled by either the guest | 
|  | *		CP0_Cause.DC bit or the count_ctl.DC bit. | 
|  | *		0 otherwise (in which case CP0_Count timer is running). | 
|  | */ | 
|  | static inline int kvm_mips_count_disabled(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct mips_coproc *cop0 = vcpu->arch.cop0; | 
|  |  | 
|  | return	(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) || | 
|  | (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * kvm_mips_ktime_to_count() - Scale ktime_t to a 32-bit count. | 
|  | * | 
|  | * Caches the dynamic nanosecond bias in vcpu->arch.count_dyn_bias. | 
|  | * | 
|  | * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running). | 
|  | */ | 
|  | static uint32_t kvm_mips_ktime_to_count(struct kvm_vcpu *vcpu, ktime_t now) | 
|  | { | 
|  | s64 now_ns, periods; | 
|  | u64 delta; | 
|  |  | 
|  | now_ns = ktime_to_ns(now); | 
|  | delta = now_ns + vcpu->arch.count_dyn_bias; | 
|  |  | 
|  | if (delta >= vcpu->arch.count_period) { | 
|  | /* If delta is out of safe range the bias needs adjusting */ | 
|  | periods = div64_s64(now_ns, vcpu->arch.count_period); | 
|  | vcpu->arch.count_dyn_bias = -periods * vcpu->arch.count_period; | 
|  | /* Recalculate delta with new bias */ | 
|  | delta = now_ns + vcpu->arch.count_dyn_bias; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We've ensured that: | 
|  | *   delta < count_period | 
|  | * | 
|  | * Therefore the intermediate delta*count_hz will never overflow since | 
|  | * at the boundary condition: | 
|  | *   delta = count_period | 
|  | *   delta = NSEC_PER_SEC * 2^32 / count_hz | 
|  | *   delta * count_hz = NSEC_PER_SEC * 2^32 | 
|  | */ | 
|  | return div_u64(delta * vcpu->arch.count_hz, NSEC_PER_SEC); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * kvm_mips_count_time() - Get effective current time. | 
|  | * @vcpu:	Virtual CPU. | 
|  | * | 
|  | * Get effective monotonic ktime. This is usually a straightforward ktime_get(), | 
|  | * except when the master disable bit is set in count_ctl, in which case it is | 
|  | * count_resume, i.e. the time that the count was disabled. | 
|  | * | 
|  | * Returns:	Effective monotonic ktime for CP0_Count. | 
|  | */ | 
|  | static inline ktime_t kvm_mips_count_time(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | if (unlikely(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC)) | 
|  | return vcpu->arch.count_resume; | 
|  |  | 
|  | return ktime_get(); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * kvm_mips_read_count_running() - Read the current count value as if running. | 
|  | * @vcpu:	Virtual CPU. | 
|  | * @now:	Kernel time to read CP0_Count at. | 
|  | * | 
|  | * Returns the current guest CP0_Count register at time @now and handles if the | 
|  | * timer interrupt is pending and hasn't been handled yet. | 
|  | * | 
|  | * Returns:	The current value of the guest CP0_Count register. | 
|  | */ | 
|  | static uint32_t kvm_mips_read_count_running(struct kvm_vcpu *vcpu, ktime_t now) | 
|  | { | 
|  | ktime_t expires; | 
|  | int running; | 
|  |  | 
|  | /* Is the hrtimer pending? */ | 
|  | expires = hrtimer_get_expires(&vcpu->arch.comparecount_timer); | 
|  | if (ktime_compare(now, expires) >= 0) { | 
|  | /* | 
|  | * Cancel it while we handle it so there's no chance of | 
|  | * interference with the timeout handler. | 
|  | */ | 
|  | running = hrtimer_cancel(&vcpu->arch.comparecount_timer); | 
|  |  | 
|  | /* Nothing should be waiting on the timeout */ | 
|  | kvm_mips_callbacks->queue_timer_int(vcpu); | 
|  |  | 
|  | /* | 
|  | * Restart the timer if it was running based on the expiry time | 
|  | * we read, so that we don't push it back 2 periods. | 
|  | */ | 
|  | if (running) { | 
|  | expires = ktime_add_ns(expires, | 
|  | vcpu->arch.count_period); | 
|  | hrtimer_start(&vcpu->arch.comparecount_timer, expires, | 
|  | HRTIMER_MODE_ABS); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Return the biased and scaled guest CP0_Count */ | 
|  | return vcpu->arch.count_bias + kvm_mips_ktime_to_count(vcpu, now); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * kvm_mips_read_count() - Read the current count value. | 
|  | * @vcpu:	Virtual CPU. | 
|  | * | 
|  | * Read the current guest CP0_Count value, taking into account whether the timer | 
|  | * is stopped. | 
|  | * | 
|  | * Returns:	The current guest CP0_Count value. | 
|  | */ | 
|  | uint32_t kvm_mips_read_count(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct mips_coproc *cop0 = vcpu->arch.cop0; | 
|  |  | 
|  | /* If count disabled just read static copy of count */ | 
|  | if (kvm_mips_count_disabled(vcpu)) | 
|  | return kvm_read_c0_guest_count(cop0); | 
|  |  | 
|  | return kvm_mips_read_count_running(vcpu, ktime_get()); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * kvm_mips_freeze_hrtimer() - Safely stop the hrtimer. | 
|  | * @vcpu:	Virtual CPU. | 
|  | * @count:	Output pointer for CP0_Count value at point of freeze. | 
|  | * | 
|  | * Freeze the hrtimer safely and return both the ktime and the CP0_Count value | 
|  | * at the point it was frozen. It is guaranteed that any pending interrupts at | 
|  | * the point it was frozen are handled, and none after that point. | 
|  | * | 
|  | * This is useful where the time/CP0_Count is needed in the calculation of the | 
|  | * new parameters. | 
|  | * | 
|  | * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running). | 
|  | * | 
|  | * Returns:	The ktime at the point of freeze. | 
|  | */ | 
|  | static ktime_t kvm_mips_freeze_hrtimer(struct kvm_vcpu *vcpu, | 
|  | uint32_t *count) | 
|  | { | 
|  | ktime_t now; | 
|  |  | 
|  | /* stop hrtimer before finding time */ | 
|  | hrtimer_cancel(&vcpu->arch.comparecount_timer); | 
|  | now = ktime_get(); | 
|  |  | 
|  | /* find count at this point and handle pending hrtimer */ | 
|  | *count = kvm_mips_read_count_running(vcpu, now); | 
|  |  | 
|  | return now; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * kvm_mips_resume_hrtimer() - Resume hrtimer, updating expiry. | 
|  | * @vcpu:	Virtual CPU. | 
|  | * @now:	ktime at point of resume. | 
|  | * @count:	CP0_Count at point of resume. | 
|  | * | 
|  | * Resumes the timer and updates the timer expiry based on @now and @count. | 
|  | * This can be used in conjunction with kvm_mips_freeze_timer() when timer | 
|  | * parameters need to be changed. | 
|  | * | 
|  | * It is guaranteed that a timer interrupt immediately after resume will be | 
|  | * handled, but not if CP_Compare is exactly at @count. That case is already | 
|  | * handled by kvm_mips_freeze_timer(). | 
|  | * | 
|  | * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running). | 
|  | */ | 
|  | static void kvm_mips_resume_hrtimer(struct kvm_vcpu *vcpu, | 
|  | ktime_t now, uint32_t count) | 
|  | { | 
|  | struct mips_coproc *cop0 = vcpu->arch.cop0; | 
|  | uint32_t compare; | 
|  | u64 delta; | 
|  | ktime_t expire; | 
|  |  | 
|  | /* Calculate timeout (wrap 0 to 2^32) */ | 
|  | compare = kvm_read_c0_guest_compare(cop0); | 
|  | delta = (u64)(uint32_t)(compare - count - 1) + 1; | 
|  | delta = div_u64(delta * NSEC_PER_SEC, vcpu->arch.count_hz); | 
|  | expire = ktime_add_ns(now, delta); | 
|  |  | 
|  | /* Update hrtimer to use new timeout */ | 
|  | hrtimer_cancel(&vcpu->arch.comparecount_timer); | 
|  | hrtimer_start(&vcpu->arch.comparecount_timer, expire, HRTIMER_MODE_ABS); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * kvm_mips_update_hrtimer() - Update next expiry time of hrtimer. | 
|  | * @vcpu:	Virtual CPU. | 
|  | * | 
|  | * Recalculates and updates the expiry time of the hrtimer. This can be used | 
|  | * after timer parameters have been altered which do not depend on the time that | 
|  | * the change occurs (in those cases kvm_mips_freeze_hrtimer() and | 
|  | * kvm_mips_resume_hrtimer() are used directly). | 
|  | * | 
|  | * It is guaranteed that no timer interrupts will be lost in the process. | 
|  | * | 
|  | * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running). | 
|  | */ | 
|  | static void kvm_mips_update_hrtimer(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | ktime_t now; | 
|  | uint32_t count; | 
|  |  | 
|  | /* | 
|  | * freeze_hrtimer takes care of a timer interrupts <= count, and | 
|  | * resume_hrtimer the hrtimer takes care of a timer interrupts > count. | 
|  | */ | 
|  | now = kvm_mips_freeze_hrtimer(vcpu, &count); | 
|  | kvm_mips_resume_hrtimer(vcpu, now, count); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * kvm_mips_write_count() - Modify the count and update timer. | 
|  | * @vcpu:	Virtual CPU. | 
|  | * @count:	Guest CP0_Count value to set. | 
|  | * | 
|  | * Sets the CP0_Count value and updates the timer accordingly. | 
|  | */ | 
|  | void kvm_mips_write_count(struct kvm_vcpu *vcpu, uint32_t count) | 
|  | { | 
|  | struct mips_coproc *cop0 = vcpu->arch.cop0; | 
|  | ktime_t now; | 
|  |  | 
|  | /* Calculate bias */ | 
|  | now = kvm_mips_count_time(vcpu); | 
|  | vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now); | 
|  |  | 
|  | if (kvm_mips_count_disabled(vcpu)) | 
|  | /* The timer's disabled, adjust the static count */ | 
|  | kvm_write_c0_guest_count(cop0, count); | 
|  | else | 
|  | /* Update timeout */ | 
|  | kvm_mips_resume_hrtimer(vcpu, now, count); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * kvm_mips_init_count() - Initialise timer. | 
|  | * @vcpu:	Virtual CPU. | 
|  | * | 
|  | * Initialise the timer to a sensible frequency, namely 100MHz, zero it, and set | 
|  | * it going if it's enabled. | 
|  | */ | 
|  | void kvm_mips_init_count(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | /* 100 MHz */ | 
|  | vcpu->arch.count_hz = 100*1000*1000; | 
|  | vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32, | 
|  | vcpu->arch.count_hz); | 
|  | vcpu->arch.count_dyn_bias = 0; | 
|  |  | 
|  | /* Starting at 0 */ | 
|  | kvm_mips_write_count(vcpu, 0); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * kvm_mips_set_count_hz() - Update the frequency of the timer. | 
|  | * @vcpu:	Virtual CPU. | 
|  | * @count_hz:	Frequency of CP0_Count timer in Hz. | 
|  | * | 
|  | * Change the frequency of the CP0_Count timer. This is done atomically so that | 
|  | * CP0_Count is continuous and no timer interrupt is lost. | 
|  | * | 
|  | * Returns:	-EINVAL if @count_hz is out of range. | 
|  | *		0 on success. | 
|  | */ | 
|  | int kvm_mips_set_count_hz(struct kvm_vcpu *vcpu, s64 count_hz) | 
|  | { | 
|  | struct mips_coproc *cop0 = vcpu->arch.cop0; | 
|  | int dc; | 
|  | ktime_t now; | 
|  | u32 count; | 
|  |  | 
|  | /* ensure the frequency is in a sensible range... */ | 
|  | if (count_hz <= 0 || count_hz > NSEC_PER_SEC) | 
|  | return -EINVAL; | 
|  | /* ... and has actually changed */ | 
|  | if (vcpu->arch.count_hz == count_hz) | 
|  | return 0; | 
|  |  | 
|  | /* Safely freeze timer so we can keep it continuous */ | 
|  | dc = kvm_mips_count_disabled(vcpu); | 
|  | if (dc) { | 
|  | now = kvm_mips_count_time(vcpu); | 
|  | count = kvm_read_c0_guest_count(cop0); | 
|  | } else { | 
|  | now = kvm_mips_freeze_hrtimer(vcpu, &count); | 
|  | } | 
|  |  | 
|  | /* Update the frequency */ | 
|  | vcpu->arch.count_hz = count_hz; | 
|  | vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32, count_hz); | 
|  | vcpu->arch.count_dyn_bias = 0; | 
|  |  | 
|  | /* Calculate adjusted bias so dynamic count is unchanged */ | 
|  | vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now); | 
|  |  | 
|  | /* Update and resume hrtimer */ | 
|  | if (!dc) | 
|  | kvm_mips_resume_hrtimer(vcpu, now, count); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * kvm_mips_write_compare() - Modify compare and update timer. | 
|  | * @vcpu:	Virtual CPU. | 
|  | * @compare:	New CP0_Compare value. | 
|  | * | 
|  | * Update CP0_Compare to a new value and update the timeout. | 
|  | */ | 
|  | void kvm_mips_write_compare(struct kvm_vcpu *vcpu, uint32_t compare) | 
|  | { | 
|  | struct mips_coproc *cop0 = vcpu->arch.cop0; | 
|  |  | 
|  | /* if unchanged, must just be an ack */ | 
|  | if (kvm_read_c0_guest_compare(cop0) == compare) | 
|  | return; | 
|  |  | 
|  | /* Update compare */ | 
|  | kvm_write_c0_guest_compare(cop0, compare); | 
|  |  | 
|  | /* Update timeout if count enabled */ | 
|  | if (!kvm_mips_count_disabled(vcpu)) | 
|  | kvm_mips_update_hrtimer(vcpu); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * kvm_mips_count_disable() - Disable count. | 
|  | * @vcpu:	Virtual CPU. | 
|  | * | 
|  | * Disable the CP0_Count timer. A timer interrupt on or before the final stop | 
|  | * time will be handled but not after. | 
|  | * | 
|  | * Assumes CP0_Count was previously enabled but now Guest.CP0_Cause.DC or | 
|  | * count_ctl.DC has been set (count disabled). | 
|  | * | 
|  | * Returns:	The time that the timer was stopped. | 
|  | */ | 
|  | static ktime_t kvm_mips_count_disable(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct mips_coproc *cop0 = vcpu->arch.cop0; | 
|  | uint32_t count; | 
|  | ktime_t now; | 
|  |  | 
|  | /* Stop hrtimer */ | 
|  | hrtimer_cancel(&vcpu->arch.comparecount_timer); | 
|  |  | 
|  | /* Set the static count from the dynamic count, handling pending TI */ | 
|  | now = ktime_get(); | 
|  | count = kvm_mips_read_count_running(vcpu, now); | 
|  | kvm_write_c0_guest_count(cop0, count); | 
|  |  | 
|  | return now; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * kvm_mips_count_disable_cause() - Disable count using CP0_Cause.DC. | 
|  | * @vcpu:	Virtual CPU. | 
|  | * | 
|  | * Disable the CP0_Count timer and set CP0_Cause.DC. A timer interrupt on or | 
|  | * before the final stop time will be handled if the timer isn't disabled by | 
|  | * count_ctl.DC, but not after. | 
|  | * | 
|  | * Assumes CP0_Cause.DC is clear (count enabled). | 
|  | */ | 
|  | void kvm_mips_count_disable_cause(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct mips_coproc *cop0 = vcpu->arch.cop0; | 
|  |  | 
|  | kvm_set_c0_guest_cause(cop0, CAUSEF_DC); | 
|  | if (!(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC)) | 
|  | kvm_mips_count_disable(vcpu); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * kvm_mips_count_enable_cause() - Enable count using CP0_Cause.DC. | 
|  | * @vcpu:	Virtual CPU. | 
|  | * | 
|  | * Enable the CP0_Count timer and clear CP0_Cause.DC. A timer interrupt after | 
|  | * the start time will be handled if the timer isn't disabled by count_ctl.DC, | 
|  | * potentially before even returning, so the caller should be careful with | 
|  | * ordering of CP0_Cause modifications so as not to lose it. | 
|  | * | 
|  | * Assumes CP0_Cause.DC is set (count disabled). | 
|  | */ | 
|  | void kvm_mips_count_enable_cause(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct mips_coproc *cop0 = vcpu->arch.cop0; | 
|  | uint32_t count; | 
|  |  | 
|  | kvm_clear_c0_guest_cause(cop0, CAUSEF_DC); | 
|  |  | 
|  | /* | 
|  | * Set the dynamic count to match the static count. | 
|  | * This starts the hrtimer if count_ctl.DC allows it. | 
|  | * Otherwise it conveniently updates the biases. | 
|  | */ | 
|  | count = kvm_read_c0_guest_count(cop0); | 
|  | kvm_mips_write_count(vcpu, count); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * kvm_mips_set_count_ctl() - Update the count control KVM register. | 
|  | * @vcpu:	Virtual CPU. | 
|  | * @count_ctl:	Count control register new value. | 
|  | * | 
|  | * Set the count control KVM register. The timer is updated accordingly. | 
|  | * | 
|  | * Returns:	-EINVAL if reserved bits are set. | 
|  | *		0 on success. | 
|  | */ | 
|  | int kvm_mips_set_count_ctl(struct kvm_vcpu *vcpu, s64 count_ctl) | 
|  | { | 
|  | struct mips_coproc *cop0 = vcpu->arch.cop0; | 
|  | s64 changed = count_ctl ^ vcpu->arch.count_ctl; | 
|  | s64 delta; | 
|  | ktime_t expire, now; | 
|  | uint32_t count, compare; | 
|  |  | 
|  | /* Only allow defined bits to be changed */ | 
|  | if (changed & ~(s64)(KVM_REG_MIPS_COUNT_CTL_DC)) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* Apply new value */ | 
|  | vcpu->arch.count_ctl = count_ctl; | 
|  |  | 
|  | /* Master CP0_Count disable */ | 
|  | if (changed & KVM_REG_MIPS_COUNT_CTL_DC) { | 
|  | /* Is CP0_Cause.DC already disabling CP0_Count? */ | 
|  | if (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC) { | 
|  | if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) | 
|  | /* Just record the current time */ | 
|  | vcpu->arch.count_resume = ktime_get(); | 
|  | } else if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) { | 
|  | /* disable timer and record current time */ | 
|  | vcpu->arch.count_resume = kvm_mips_count_disable(vcpu); | 
|  | } else { | 
|  | /* | 
|  | * Calculate timeout relative to static count at resume | 
|  | * time (wrap 0 to 2^32). | 
|  | */ | 
|  | count = kvm_read_c0_guest_count(cop0); | 
|  | compare = kvm_read_c0_guest_compare(cop0); | 
|  | delta = (u64)(uint32_t)(compare - count - 1) + 1; | 
|  | delta = div_u64(delta * NSEC_PER_SEC, | 
|  | vcpu->arch.count_hz); | 
|  | expire = ktime_add_ns(vcpu->arch.count_resume, delta); | 
|  |  | 
|  | /* Handle pending interrupt */ | 
|  | now = ktime_get(); | 
|  | if (ktime_compare(now, expire) >= 0) | 
|  | /* Nothing should be waiting on the timeout */ | 
|  | kvm_mips_callbacks->queue_timer_int(vcpu); | 
|  |  | 
|  | /* Resume hrtimer without changing bias */ | 
|  | count = kvm_mips_read_count_running(vcpu, now); | 
|  | kvm_mips_resume_hrtimer(vcpu, now, count); | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * kvm_mips_set_count_resume() - Update the count resume KVM register. | 
|  | * @vcpu:		Virtual CPU. | 
|  | * @count_resume:	Count resume register new value. | 
|  | * | 
|  | * Set the count resume KVM register. | 
|  | * | 
|  | * Returns:	-EINVAL if out of valid range (0..now). | 
|  | *		0 on success. | 
|  | */ | 
|  | int kvm_mips_set_count_resume(struct kvm_vcpu *vcpu, s64 count_resume) | 
|  | { | 
|  | /* | 
|  | * It doesn't make sense for the resume time to be in the future, as it | 
|  | * would be possible for the next interrupt to be more than a full | 
|  | * period in the future. | 
|  | */ | 
|  | if (count_resume < 0 || count_resume > ktime_to_ns(ktime_get())) | 
|  | return -EINVAL; | 
|  |  | 
|  | vcpu->arch.count_resume = ns_to_ktime(count_resume); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * kvm_mips_count_timeout() - Push timer forward on timeout. | 
|  | * @vcpu:	Virtual CPU. | 
|  | * | 
|  | * Handle an hrtimer event by push the hrtimer forward a period. | 
|  | * | 
|  | * Returns:	The hrtimer_restart value to return to the hrtimer subsystem. | 
|  | */ | 
|  | enum hrtimer_restart kvm_mips_count_timeout(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | /* Add the Count period to the current expiry time */ | 
|  | hrtimer_add_expires_ns(&vcpu->arch.comparecount_timer, | 
|  | vcpu->arch.count_period); | 
|  | return HRTIMER_RESTART; | 
|  | } | 
|  |  | 
|  | enum emulation_result kvm_mips_emul_eret(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct mips_coproc *cop0 = vcpu->arch.cop0; | 
|  | enum emulation_result er = EMULATE_DONE; | 
|  |  | 
|  | if (kvm_read_c0_guest_status(cop0) & ST0_EXL) { | 
|  | kvm_debug("[%#lx] ERET to %#lx\n", vcpu->arch.pc, | 
|  | kvm_read_c0_guest_epc(cop0)); | 
|  | kvm_clear_c0_guest_status(cop0, ST0_EXL); | 
|  | vcpu->arch.pc = kvm_read_c0_guest_epc(cop0); | 
|  |  | 
|  | } else if (kvm_read_c0_guest_status(cop0) & ST0_ERL) { | 
|  | kvm_clear_c0_guest_status(cop0, ST0_ERL); | 
|  | vcpu->arch.pc = kvm_read_c0_guest_errorepc(cop0); | 
|  | } else { | 
|  | kvm_err("[%#lx] ERET when MIPS_SR_EXL|MIPS_SR_ERL == 0\n", | 
|  | vcpu->arch.pc); | 
|  | er = EMULATE_FAIL; | 
|  | } | 
|  |  | 
|  | return er; | 
|  | } | 
|  |  | 
|  | enum emulation_result kvm_mips_emul_wait(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | kvm_debug("[%#lx] !!!WAIT!!! (%#lx)\n", vcpu->arch.pc, | 
|  | vcpu->arch.pending_exceptions); | 
|  |  | 
|  | ++vcpu->stat.wait_exits; | 
|  | trace_kvm_exit(vcpu, WAIT_EXITS); | 
|  | if (!vcpu->arch.pending_exceptions) { | 
|  | vcpu->arch.wait = 1; | 
|  | kvm_vcpu_block(vcpu); | 
|  |  | 
|  | /* | 
|  | * We we are runnable, then definitely go off to user space to | 
|  | * check if any I/O interrupts are pending. | 
|  | */ | 
|  | if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) { | 
|  | clear_bit(KVM_REQ_UNHALT, &vcpu->requests); | 
|  | vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; | 
|  | } | 
|  | } | 
|  |  | 
|  | return EMULATE_DONE; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * XXXKYMA: Linux doesn't seem to use TLBR, return EMULATE_FAIL for now so that | 
|  | * we can catch this, if things ever change | 
|  | */ | 
|  | enum emulation_result kvm_mips_emul_tlbr(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct mips_coproc *cop0 = vcpu->arch.cop0; | 
|  | uint32_t pc = vcpu->arch.pc; | 
|  |  | 
|  | kvm_err("[%#x] COP0_TLBR [%ld]\n", pc, kvm_read_c0_guest_index(cop0)); | 
|  | return EMULATE_FAIL; | 
|  | } | 
|  |  | 
|  | /* Write Guest TLB Entry @ Index */ | 
|  | enum emulation_result kvm_mips_emul_tlbwi(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct mips_coproc *cop0 = vcpu->arch.cop0; | 
|  | int index = kvm_read_c0_guest_index(cop0); | 
|  | struct kvm_mips_tlb *tlb = NULL; | 
|  | uint32_t pc = vcpu->arch.pc; | 
|  |  | 
|  | if (index < 0 || index >= KVM_MIPS_GUEST_TLB_SIZE) { | 
|  | kvm_debug("%s: illegal index: %d\n", __func__, index); | 
|  | kvm_debug("[%#x] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n", | 
|  | pc, index, kvm_read_c0_guest_entryhi(cop0), | 
|  | kvm_read_c0_guest_entrylo0(cop0), | 
|  | kvm_read_c0_guest_entrylo1(cop0), | 
|  | kvm_read_c0_guest_pagemask(cop0)); | 
|  | index = (index & ~0x80000000) % KVM_MIPS_GUEST_TLB_SIZE; | 
|  | } | 
|  |  | 
|  | tlb = &vcpu->arch.guest_tlb[index]; | 
|  | /* | 
|  | * Probe the shadow host TLB for the entry being overwritten, if one | 
|  | * matches, invalidate it | 
|  | */ | 
|  | kvm_mips_host_tlb_inv(vcpu, tlb->tlb_hi); | 
|  |  | 
|  | tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0); | 
|  | tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0); | 
|  | tlb->tlb_lo0 = kvm_read_c0_guest_entrylo0(cop0); | 
|  | tlb->tlb_lo1 = kvm_read_c0_guest_entrylo1(cop0); | 
|  |  | 
|  | kvm_debug("[%#x] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n", | 
|  | pc, index, kvm_read_c0_guest_entryhi(cop0), | 
|  | kvm_read_c0_guest_entrylo0(cop0), | 
|  | kvm_read_c0_guest_entrylo1(cop0), | 
|  | kvm_read_c0_guest_pagemask(cop0)); | 
|  |  | 
|  | return EMULATE_DONE; | 
|  | } | 
|  |  | 
|  | /* Write Guest TLB Entry @ Random Index */ | 
|  | enum emulation_result kvm_mips_emul_tlbwr(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct mips_coproc *cop0 = vcpu->arch.cop0; | 
|  | struct kvm_mips_tlb *tlb = NULL; | 
|  | uint32_t pc = vcpu->arch.pc; | 
|  | int index; | 
|  |  | 
|  | get_random_bytes(&index, sizeof(index)); | 
|  | index &= (KVM_MIPS_GUEST_TLB_SIZE - 1); | 
|  |  | 
|  | tlb = &vcpu->arch.guest_tlb[index]; | 
|  |  | 
|  | /* | 
|  | * Probe the shadow host TLB for the entry being overwritten, if one | 
|  | * matches, invalidate it | 
|  | */ | 
|  | kvm_mips_host_tlb_inv(vcpu, tlb->tlb_hi); | 
|  |  | 
|  | tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0); | 
|  | tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0); | 
|  | tlb->tlb_lo0 = kvm_read_c0_guest_entrylo0(cop0); | 
|  | tlb->tlb_lo1 = kvm_read_c0_guest_entrylo1(cop0); | 
|  |  | 
|  | kvm_debug("[%#x] COP0_TLBWR[%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx)\n", | 
|  | pc, index, kvm_read_c0_guest_entryhi(cop0), | 
|  | kvm_read_c0_guest_entrylo0(cop0), | 
|  | kvm_read_c0_guest_entrylo1(cop0)); | 
|  |  | 
|  | return EMULATE_DONE; | 
|  | } | 
|  |  | 
|  | enum emulation_result kvm_mips_emul_tlbp(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct mips_coproc *cop0 = vcpu->arch.cop0; | 
|  | long entryhi = kvm_read_c0_guest_entryhi(cop0); | 
|  | uint32_t pc = vcpu->arch.pc; | 
|  | int index = -1; | 
|  |  | 
|  | index = kvm_mips_guest_tlb_lookup(vcpu, entryhi); | 
|  |  | 
|  | kvm_write_c0_guest_index(cop0, index); | 
|  |  | 
|  | kvm_debug("[%#x] COP0_TLBP (entryhi: %#lx), index: %d\n", pc, entryhi, | 
|  | index); | 
|  |  | 
|  | return EMULATE_DONE; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * kvm_mips_config1_wrmask() - Find mask of writable bits in guest Config1 | 
|  | * @vcpu:	Virtual CPU. | 
|  | * | 
|  | * Finds the mask of bits which are writable in the guest's Config1 CP0 | 
|  | * register, by userland (currently read-only to the guest). | 
|  | */ | 
|  | unsigned int kvm_mips_config1_wrmask(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | unsigned int mask = 0; | 
|  |  | 
|  | /* Permit FPU to be present if FPU is supported */ | 
|  | if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) | 
|  | mask |= MIPS_CONF1_FP; | 
|  |  | 
|  | return mask; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * kvm_mips_config3_wrmask() - Find mask of writable bits in guest Config3 | 
|  | * @vcpu:	Virtual CPU. | 
|  | * | 
|  | * Finds the mask of bits which are writable in the guest's Config3 CP0 | 
|  | * register, by userland (currently read-only to the guest). | 
|  | */ | 
|  | unsigned int kvm_mips_config3_wrmask(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | /* Config4 is optional */ | 
|  | unsigned int mask = MIPS_CONF_M; | 
|  |  | 
|  | /* Permit MSA to be present if MSA is supported */ | 
|  | if (kvm_mips_guest_can_have_msa(&vcpu->arch)) | 
|  | mask |= MIPS_CONF3_MSA; | 
|  |  | 
|  | return mask; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * kvm_mips_config4_wrmask() - Find mask of writable bits in guest Config4 | 
|  | * @vcpu:	Virtual CPU. | 
|  | * | 
|  | * Finds the mask of bits which are writable in the guest's Config4 CP0 | 
|  | * register, by userland (currently read-only to the guest). | 
|  | */ | 
|  | unsigned int kvm_mips_config4_wrmask(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | /* Config5 is optional */ | 
|  | return MIPS_CONF_M; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * kvm_mips_config5_wrmask() - Find mask of writable bits in guest Config5 | 
|  | * @vcpu:	Virtual CPU. | 
|  | * | 
|  | * Finds the mask of bits which are writable in the guest's Config5 CP0 | 
|  | * register, by the guest itself. | 
|  | */ | 
|  | unsigned int kvm_mips_config5_wrmask(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | unsigned int mask = 0; | 
|  |  | 
|  | /* Permit MSAEn changes if MSA supported and enabled */ | 
|  | if (kvm_mips_guest_has_msa(&vcpu->arch)) | 
|  | mask |= MIPS_CONF5_MSAEN; | 
|  |  | 
|  | /* | 
|  | * Permit guest FPU mode changes if FPU is enabled and the relevant | 
|  | * feature exists according to FIR register. | 
|  | */ | 
|  | if (kvm_mips_guest_has_fpu(&vcpu->arch)) { | 
|  | if (cpu_has_fre) | 
|  | mask |= MIPS_CONF5_FRE; | 
|  | /* We don't support UFR or UFE */ | 
|  | } | 
|  |  | 
|  | return mask; | 
|  | } | 
|  |  | 
|  | enum emulation_result kvm_mips_emulate_CP0(uint32_t inst, uint32_t *opc, | 
|  | uint32_t cause, struct kvm_run *run, | 
|  | struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct mips_coproc *cop0 = vcpu->arch.cop0; | 
|  | enum emulation_result er = EMULATE_DONE; | 
|  | int32_t rt, rd, copz, sel, co_bit, op; | 
|  | uint32_t pc = vcpu->arch.pc; | 
|  | unsigned long curr_pc; | 
|  |  | 
|  | /* | 
|  | * Update PC and hold onto current PC in case there is | 
|  | * an error and we want to rollback the PC | 
|  | */ | 
|  | curr_pc = vcpu->arch.pc; | 
|  | er = update_pc(vcpu, cause); | 
|  | if (er == EMULATE_FAIL) | 
|  | return er; | 
|  |  | 
|  | copz = (inst >> 21) & 0x1f; | 
|  | rt = (inst >> 16) & 0x1f; | 
|  | rd = (inst >> 11) & 0x1f; | 
|  | sel = inst & 0x7; | 
|  | co_bit = (inst >> 25) & 1; | 
|  |  | 
|  | if (co_bit) { | 
|  | op = (inst) & 0xff; | 
|  |  | 
|  | switch (op) { | 
|  | case tlbr_op:	/*  Read indexed TLB entry  */ | 
|  | er = kvm_mips_emul_tlbr(vcpu); | 
|  | break; | 
|  | case tlbwi_op:	/*  Write indexed  */ | 
|  | er = kvm_mips_emul_tlbwi(vcpu); | 
|  | break; | 
|  | case tlbwr_op:	/*  Write random  */ | 
|  | er = kvm_mips_emul_tlbwr(vcpu); | 
|  | break; | 
|  | case tlbp_op:	/* TLB Probe */ | 
|  | er = kvm_mips_emul_tlbp(vcpu); | 
|  | break; | 
|  | case rfe_op: | 
|  | kvm_err("!!!COP0_RFE!!!\n"); | 
|  | break; | 
|  | case eret_op: | 
|  | er = kvm_mips_emul_eret(vcpu); | 
|  | goto dont_update_pc; | 
|  | break; | 
|  | case wait_op: | 
|  | er = kvm_mips_emul_wait(vcpu); | 
|  | break; | 
|  | } | 
|  | } else { | 
|  | switch (copz) { | 
|  | case mfc_op: | 
|  | #ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS | 
|  | cop0->stat[rd][sel]++; | 
|  | #endif | 
|  | /* Get reg */ | 
|  | if ((rd == MIPS_CP0_COUNT) && (sel == 0)) { | 
|  | vcpu->arch.gprs[rt] = kvm_mips_read_count(vcpu); | 
|  | } else if ((rd == MIPS_CP0_ERRCTL) && (sel == 0)) { | 
|  | vcpu->arch.gprs[rt] = 0x0; | 
|  | #ifdef CONFIG_KVM_MIPS_DYN_TRANS | 
|  | kvm_mips_trans_mfc0(inst, opc, vcpu); | 
|  | #endif | 
|  | } else { | 
|  | vcpu->arch.gprs[rt] = cop0->reg[rd][sel]; | 
|  |  | 
|  | #ifdef CONFIG_KVM_MIPS_DYN_TRANS | 
|  | kvm_mips_trans_mfc0(inst, opc, vcpu); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | kvm_debug | 
|  | ("[%#x] MFCz[%d][%d], vcpu->arch.gprs[%d]: %#lx\n", | 
|  | pc, rd, sel, rt, vcpu->arch.gprs[rt]); | 
|  |  | 
|  | break; | 
|  |  | 
|  | case dmfc_op: | 
|  | vcpu->arch.gprs[rt] = cop0->reg[rd][sel]; | 
|  | break; | 
|  |  | 
|  | case mtc_op: | 
|  | #ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS | 
|  | cop0->stat[rd][sel]++; | 
|  | #endif | 
|  | if ((rd == MIPS_CP0_TLB_INDEX) | 
|  | && (vcpu->arch.gprs[rt] >= | 
|  | KVM_MIPS_GUEST_TLB_SIZE)) { | 
|  | kvm_err("Invalid TLB Index: %ld", | 
|  | vcpu->arch.gprs[rt]); | 
|  | er = EMULATE_FAIL; | 
|  | break; | 
|  | } | 
|  | #define C0_EBASE_CORE_MASK 0xff | 
|  | if ((rd == MIPS_CP0_PRID) && (sel == 1)) { | 
|  | /* Preserve CORE number */ | 
|  | kvm_change_c0_guest_ebase(cop0, | 
|  | ~(C0_EBASE_CORE_MASK), | 
|  | vcpu->arch.gprs[rt]); | 
|  | kvm_err("MTCz, cop0->reg[EBASE]: %#lx\n", | 
|  | kvm_read_c0_guest_ebase(cop0)); | 
|  | } else if (rd == MIPS_CP0_TLB_HI && sel == 0) { | 
|  | uint32_t nasid = | 
|  | vcpu->arch.gprs[rt] & ASID_MASK; | 
|  | if ((KSEGX(vcpu->arch.gprs[rt]) != CKSEG0) && | 
|  | ((kvm_read_c0_guest_entryhi(cop0) & | 
|  | ASID_MASK) != nasid)) { | 
|  | kvm_debug("MTCz, change ASID from %#lx to %#lx\n", | 
|  | kvm_read_c0_guest_entryhi(cop0) | 
|  | & ASID_MASK, | 
|  | vcpu->arch.gprs[rt] | 
|  | & ASID_MASK); | 
|  |  | 
|  | /* Blow away the shadow host TLBs */ | 
|  | kvm_mips_flush_host_tlb(1); | 
|  | } | 
|  | kvm_write_c0_guest_entryhi(cop0, | 
|  | vcpu->arch.gprs[rt]); | 
|  | } | 
|  | /* Are we writing to COUNT */ | 
|  | else if ((rd == MIPS_CP0_COUNT) && (sel == 0)) { | 
|  | kvm_mips_write_count(vcpu, vcpu->arch.gprs[rt]); | 
|  | goto done; | 
|  | } else if ((rd == MIPS_CP0_COMPARE) && (sel == 0)) { | 
|  | kvm_debug("[%#x] MTCz, COMPARE %#lx <- %#lx\n", | 
|  | pc, kvm_read_c0_guest_compare(cop0), | 
|  | vcpu->arch.gprs[rt]); | 
|  |  | 
|  | /* If we are writing to COMPARE */ | 
|  | /* Clear pending timer interrupt, if any */ | 
|  | kvm_mips_callbacks->dequeue_timer_int(vcpu); | 
|  | kvm_mips_write_compare(vcpu, | 
|  | vcpu->arch.gprs[rt]); | 
|  | } else if ((rd == MIPS_CP0_STATUS) && (sel == 0)) { | 
|  | unsigned int old_val, val, change; | 
|  |  | 
|  | old_val = kvm_read_c0_guest_status(cop0); | 
|  | val = vcpu->arch.gprs[rt]; | 
|  | change = val ^ old_val; | 
|  |  | 
|  | /* Make sure that the NMI bit is never set */ | 
|  | val &= ~ST0_NMI; | 
|  |  | 
|  | /* | 
|  | * Don't allow CU1 or FR to be set unless FPU | 
|  | * capability enabled and exists in guest | 
|  | * configuration. | 
|  | */ | 
|  | if (!kvm_mips_guest_has_fpu(&vcpu->arch)) | 
|  | val &= ~(ST0_CU1 | ST0_FR); | 
|  |  | 
|  | /* | 
|  | * Also don't allow FR to be set if host doesn't | 
|  | * support it. | 
|  | */ | 
|  | if (!(current_cpu_data.fpu_id & MIPS_FPIR_F64)) | 
|  | val &= ~ST0_FR; | 
|  |  | 
|  |  | 
|  | /* Handle changes in FPU mode */ | 
|  | preempt_disable(); | 
|  |  | 
|  | /* | 
|  | * FPU and Vector register state is made | 
|  | * UNPREDICTABLE by a change of FR, so don't | 
|  | * even bother saving it. | 
|  | */ | 
|  | if (change & ST0_FR) | 
|  | kvm_drop_fpu(vcpu); | 
|  |  | 
|  | /* | 
|  | * If MSA state is already live, it is undefined | 
|  | * how it interacts with FR=0 FPU state, and we | 
|  | * don't want to hit reserved instruction | 
|  | * exceptions trying to save the MSA state later | 
|  | * when CU=1 && FR=1, so play it safe and save | 
|  | * it first. | 
|  | */ | 
|  | if (change & ST0_CU1 && !(val & ST0_FR) && | 
|  | vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA) | 
|  | kvm_lose_fpu(vcpu); | 
|  |  | 
|  | /* | 
|  | * Propagate CU1 (FPU enable) changes | 
|  | * immediately if the FPU context is already | 
|  | * loaded. When disabling we leave the context | 
|  | * loaded so it can be quickly enabled again in | 
|  | * the near future. | 
|  | */ | 
|  | if (change & ST0_CU1 && | 
|  | vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU) | 
|  | change_c0_status(ST0_CU1, val); | 
|  |  | 
|  | preempt_enable(); | 
|  |  | 
|  | kvm_write_c0_guest_status(cop0, val); | 
|  |  | 
|  | #ifdef CONFIG_KVM_MIPS_DYN_TRANS | 
|  | /* | 
|  | * If FPU present, we need CU1/FR bits to take | 
|  | * effect fairly soon. | 
|  | */ | 
|  | if (!kvm_mips_guest_has_fpu(&vcpu->arch)) | 
|  | kvm_mips_trans_mtc0(inst, opc, vcpu); | 
|  | #endif | 
|  | } else if ((rd == MIPS_CP0_CONFIG) && (sel == 5)) { | 
|  | unsigned int old_val, val, change, wrmask; | 
|  |  | 
|  | old_val = kvm_read_c0_guest_config5(cop0); | 
|  | val = vcpu->arch.gprs[rt]; | 
|  |  | 
|  | /* Only a few bits are writable in Config5 */ | 
|  | wrmask = kvm_mips_config5_wrmask(vcpu); | 
|  | change = (val ^ old_val) & wrmask; | 
|  | val = old_val ^ change; | 
|  |  | 
|  |  | 
|  | /* Handle changes in FPU/MSA modes */ | 
|  | preempt_disable(); | 
|  |  | 
|  | /* | 
|  | * Propagate FRE changes immediately if the FPU | 
|  | * context is already loaded. | 
|  | */ | 
|  | if (change & MIPS_CONF5_FRE && | 
|  | vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU) | 
|  | change_c0_config5(MIPS_CONF5_FRE, val); | 
|  |  | 
|  | /* | 
|  | * Propagate MSAEn changes immediately if the | 
|  | * MSA context is already loaded. When disabling | 
|  | * we leave the context loaded so it can be | 
|  | * quickly enabled again in the near future. | 
|  | */ | 
|  | if (change & MIPS_CONF5_MSAEN && | 
|  | vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA) | 
|  | change_c0_config5(MIPS_CONF5_MSAEN, | 
|  | val); | 
|  |  | 
|  | preempt_enable(); | 
|  |  | 
|  | kvm_write_c0_guest_config5(cop0, val); | 
|  | } else if ((rd == MIPS_CP0_CAUSE) && (sel == 0)) { | 
|  | uint32_t old_cause, new_cause; | 
|  |  | 
|  | old_cause = kvm_read_c0_guest_cause(cop0); | 
|  | new_cause = vcpu->arch.gprs[rt]; | 
|  | /* Update R/W bits */ | 
|  | kvm_change_c0_guest_cause(cop0, 0x08800300, | 
|  | new_cause); | 
|  | /* DC bit enabling/disabling timer? */ | 
|  | if ((old_cause ^ new_cause) & CAUSEF_DC) { | 
|  | if (new_cause & CAUSEF_DC) | 
|  | kvm_mips_count_disable_cause(vcpu); | 
|  | else | 
|  | kvm_mips_count_enable_cause(vcpu); | 
|  | } | 
|  | } else { | 
|  | cop0->reg[rd][sel] = vcpu->arch.gprs[rt]; | 
|  | #ifdef CONFIG_KVM_MIPS_DYN_TRANS | 
|  | kvm_mips_trans_mtc0(inst, opc, vcpu); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | kvm_debug("[%#x] MTCz, cop0->reg[%d][%d]: %#lx\n", pc, | 
|  | rd, sel, cop0->reg[rd][sel]); | 
|  | break; | 
|  |  | 
|  | case dmtc_op: | 
|  | kvm_err("!!!!!!![%#lx]dmtc_op: rt: %d, rd: %d, sel: %d!!!!!!\n", | 
|  | vcpu->arch.pc, rt, rd, sel); | 
|  | er = EMULATE_FAIL; | 
|  | break; | 
|  |  | 
|  | case mfmc0_op: | 
|  | #ifdef KVM_MIPS_DEBUG_COP0_COUNTERS | 
|  | cop0->stat[MIPS_CP0_STATUS][0]++; | 
|  | #endif | 
|  | if (rt != 0) | 
|  | vcpu->arch.gprs[rt] = | 
|  | kvm_read_c0_guest_status(cop0); | 
|  | /* EI */ | 
|  | if (inst & 0x20) { | 
|  | kvm_debug("[%#lx] mfmc0_op: EI\n", | 
|  | vcpu->arch.pc); | 
|  | kvm_set_c0_guest_status(cop0, ST0_IE); | 
|  | } else { | 
|  | kvm_debug("[%#lx] mfmc0_op: DI\n", | 
|  | vcpu->arch.pc); | 
|  | kvm_clear_c0_guest_status(cop0, ST0_IE); | 
|  | } | 
|  |  | 
|  | break; | 
|  |  | 
|  | case wrpgpr_op: | 
|  | { | 
|  | uint32_t css = | 
|  | cop0->reg[MIPS_CP0_STATUS][2] & 0xf; | 
|  | uint32_t pss = | 
|  | (cop0->reg[MIPS_CP0_STATUS][2] >> 6) & 0xf; | 
|  | /* | 
|  | * We don't support any shadow register sets, so | 
|  | * SRSCtl[PSS] == SRSCtl[CSS] = 0 | 
|  | */ | 
|  | if (css || pss) { | 
|  | er = EMULATE_FAIL; | 
|  | break; | 
|  | } | 
|  | kvm_debug("WRPGPR[%d][%d] = %#lx\n", pss, rd, | 
|  | vcpu->arch.gprs[rt]); | 
|  | vcpu->arch.gprs[rd] = vcpu->arch.gprs[rt]; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | kvm_err("[%#lx]MachEmulateCP0: unsupported COP0, copz: 0x%x\n", | 
|  | vcpu->arch.pc, copz); | 
|  | er = EMULATE_FAIL; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | done: | 
|  | /* Rollback PC only if emulation was unsuccessful */ | 
|  | if (er == EMULATE_FAIL) | 
|  | vcpu->arch.pc = curr_pc; | 
|  |  | 
|  | dont_update_pc: | 
|  | /* | 
|  | * This is for special instructions whose emulation | 
|  | * updates the PC, so do not overwrite the PC under | 
|  | * any circumstances | 
|  | */ | 
|  |  | 
|  | return er; | 
|  | } | 
|  |  | 
|  | enum emulation_result kvm_mips_emulate_store(uint32_t inst, uint32_t cause, | 
|  | struct kvm_run *run, | 
|  | struct kvm_vcpu *vcpu) | 
|  | { | 
|  | enum emulation_result er = EMULATE_DO_MMIO; | 
|  | int32_t op, base, rt, offset; | 
|  | uint32_t bytes; | 
|  | void *data = run->mmio.data; | 
|  | unsigned long curr_pc; | 
|  |  | 
|  | /* | 
|  | * Update PC and hold onto current PC in case there is | 
|  | * an error and we want to rollback the PC | 
|  | */ | 
|  | curr_pc = vcpu->arch.pc; | 
|  | er = update_pc(vcpu, cause); | 
|  | if (er == EMULATE_FAIL) | 
|  | return er; | 
|  |  | 
|  | rt = (inst >> 16) & 0x1f; | 
|  | base = (inst >> 21) & 0x1f; | 
|  | offset = inst & 0xffff; | 
|  | op = (inst >> 26) & 0x3f; | 
|  |  | 
|  | switch (op) { | 
|  | case sb_op: | 
|  | bytes = 1; | 
|  | if (bytes > sizeof(run->mmio.data)) { | 
|  | kvm_err("%s: bad MMIO length: %d\n", __func__, | 
|  | run->mmio.len); | 
|  | } | 
|  | run->mmio.phys_addr = | 
|  | kvm_mips_callbacks->gva_to_gpa(vcpu->arch. | 
|  | host_cp0_badvaddr); | 
|  | if (run->mmio.phys_addr == KVM_INVALID_ADDR) { | 
|  | er = EMULATE_FAIL; | 
|  | break; | 
|  | } | 
|  | run->mmio.len = bytes; | 
|  | run->mmio.is_write = 1; | 
|  | vcpu->mmio_needed = 1; | 
|  | vcpu->mmio_is_write = 1; | 
|  | *(u8 *) data = vcpu->arch.gprs[rt]; | 
|  | kvm_debug("OP_SB: eaddr: %#lx, gpr: %#lx, data: %#x\n", | 
|  | vcpu->arch.host_cp0_badvaddr, vcpu->arch.gprs[rt], | 
|  | *(uint8_t *) data); | 
|  |  | 
|  | break; | 
|  |  | 
|  | case sw_op: | 
|  | bytes = 4; | 
|  | if (bytes > sizeof(run->mmio.data)) { | 
|  | kvm_err("%s: bad MMIO length: %d\n", __func__, | 
|  | run->mmio.len); | 
|  | } | 
|  | run->mmio.phys_addr = | 
|  | kvm_mips_callbacks->gva_to_gpa(vcpu->arch. | 
|  | host_cp0_badvaddr); | 
|  | if (run->mmio.phys_addr == KVM_INVALID_ADDR) { | 
|  | er = EMULATE_FAIL; | 
|  | break; | 
|  | } | 
|  |  | 
|  | run->mmio.len = bytes; | 
|  | run->mmio.is_write = 1; | 
|  | vcpu->mmio_needed = 1; | 
|  | vcpu->mmio_is_write = 1; | 
|  | *(uint32_t *) data = vcpu->arch.gprs[rt]; | 
|  |  | 
|  | kvm_debug("[%#lx] OP_SW: eaddr: %#lx, gpr: %#lx, data: %#x\n", | 
|  | vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr, | 
|  | vcpu->arch.gprs[rt], *(uint32_t *) data); | 
|  | break; | 
|  |  | 
|  | case sh_op: | 
|  | bytes = 2; | 
|  | if (bytes > sizeof(run->mmio.data)) { | 
|  | kvm_err("%s: bad MMIO length: %d\n", __func__, | 
|  | run->mmio.len); | 
|  | } | 
|  | run->mmio.phys_addr = | 
|  | kvm_mips_callbacks->gva_to_gpa(vcpu->arch. | 
|  | host_cp0_badvaddr); | 
|  | if (run->mmio.phys_addr == KVM_INVALID_ADDR) { | 
|  | er = EMULATE_FAIL; | 
|  | break; | 
|  | } | 
|  |  | 
|  | run->mmio.len = bytes; | 
|  | run->mmio.is_write = 1; | 
|  | vcpu->mmio_needed = 1; | 
|  | vcpu->mmio_is_write = 1; | 
|  | *(uint16_t *) data = vcpu->arch.gprs[rt]; | 
|  |  | 
|  | kvm_debug("[%#lx] OP_SH: eaddr: %#lx, gpr: %#lx, data: %#x\n", | 
|  | vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr, | 
|  | vcpu->arch.gprs[rt], *(uint32_t *) data); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | kvm_err("Store not yet supported"); | 
|  | er = EMULATE_FAIL; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Rollback PC if emulation was unsuccessful */ | 
|  | if (er == EMULATE_FAIL) | 
|  | vcpu->arch.pc = curr_pc; | 
|  |  | 
|  | return er; | 
|  | } | 
|  |  | 
|  | enum emulation_result kvm_mips_emulate_load(uint32_t inst, uint32_t cause, | 
|  | struct kvm_run *run, | 
|  | struct kvm_vcpu *vcpu) | 
|  | { | 
|  | enum emulation_result er = EMULATE_DO_MMIO; | 
|  | int32_t op, base, rt, offset; | 
|  | uint32_t bytes; | 
|  |  | 
|  | rt = (inst >> 16) & 0x1f; | 
|  | base = (inst >> 21) & 0x1f; | 
|  | offset = inst & 0xffff; | 
|  | op = (inst >> 26) & 0x3f; | 
|  |  | 
|  | vcpu->arch.pending_load_cause = cause; | 
|  | vcpu->arch.io_gpr = rt; | 
|  |  | 
|  | switch (op) { | 
|  | case lw_op: | 
|  | bytes = 4; | 
|  | if (bytes > sizeof(run->mmio.data)) { | 
|  | kvm_err("%s: bad MMIO length: %d\n", __func__, | 
|  | run->mmio.len); | 
|  | er = EMULATE_FAIL; | 
|  | break; | 
|  | } | 
|  | run->mmio.phys_addr = | 
|  | kvm_mips_callbacks->gva_to_gpa(vcpu->arch. | 
|  | host_cp0_badvaddr); | 
|  | if (run->mmio.phys_addr == KVM_INVALID_ADDR) { | 
|  | er = EMULATE_FAIL; | 
|  | break; | 
|  | } | 
|  |  | 
|  | run->mmio.len = bytes; | 
|  | run->mmio.is_write = 0; | 
|  | vcpu->mmio_needed = 1; | 
|  | vcpu->mmio_is_write = 0; | 
|  | break; | 
|  |  | 
|  | case lh_op: | 
|  | case lhu_op: | 
|  | bytes = 2; | 
|  | if (bytes > sizeof(run->mmio.data)) { | 
|  | kvm_err("%s: bad MMIO length: %d\n", __func__, | 
|  | run->mmio.len); | 
|  | er = EMULATE_FAIL; | 
|  | break; | 
|  | } | 
|  | run->mmio.phys_addr = | 
|  | kvm_mips_callbacks->gva_to_gpa(vcpu->arch. | 
|  | host_cp0_badvaddr); | 
|  | if (run->mmio.phys_addr == KVM_INVALID_ADDR) { | 
|  | er = EMULATE_FAIL; | 
|  | break; | 
|  | } | 
|  |  | 
|  | run->mmio.len = bytes; | 
|  | run->mmio.is_write = 0; | 
|  | vcpu->mmio_needed = 1; | 
|  | vcpu->mmio_is_write = 0; | 
|  |  | 
|  | if (op == lh_op) | 
|  | vcpu->mmio_needed = 2; | 
|  | else | 
|  | vcpu->mmio_needed = 1; | 
|  |  | 
|  | break; | 
|  |  | 
|  | case lbu_op: | 
|  | case lb_op: | 
|  | bytes = 1; | 
|  | if (bytes > sizeof(run->mmio.data)) { | 
|  | kvm_err("%s: bad MMIO length: %d\n", __func__, | 
|  | run->mmio.len); | 
|  | er = EMULATE_FAIL; | 
|  | break; | 
|  | } | 
|  | run->mmio.phys_addr = | 
|  | kvm_mips_callbacks->gva_to_gpa(vcpu->arch. | 
|  | host_cp0_badvaddr); | 
|  | if (run->mmio.phys_addr == KVM_INVALID_ADDR) { | 
|  | er = EMULATE_FAIL; | 
|  | break; | 
|  | } | 
|  |  | 
|  | run->mmio.len = bytes; | 
|  | run->mmio.is_write = 0; | 
|  | vcpu->mmio_is_write = 0; | 
|  |  | 
|  | if (op == lb_op) | 
|  | vcpu->mmio_needed = 2; | 
|  | else | 
|  | vcpu->mmio_needed = 1; | 
|  |  | 
|  | break; | 
|  |  | 
|  | default: | 
|  | kvm_err("Load not yet supported"); | 
|  | er = EMULATE_FAIL; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return er; | 
|  | } | 
|  |  | 
|  | int kvm_mips_sync_icache(unsigned long va, struct kvm_vcpu *vcpu) | 
|  | { | 
|  | unsigned long offset = (va & ~PAGE_MASK); | 
|  | struct kvm *kvm = vcpu->kvm; | 
|  | unsigned long pa; | 
|  | gfn_t gfn; | 
|  | kvm_pfn_t pfn; | 
|  |  | 
|  | gfn = va >> PAGE_SHIFT; | 
|  |  | 
|  | if (gfn >= kvm->arch.guest_pmap_npages) { | 
|  | kvm_err("%s: Invalid gfn: %#llx\n", __func__, gfn); | 
|  | kvm_mips_dump_host_tlbs(); | 
|  | kvm_arch_vcpu_dump_regs(vcpu); | 
|  | return -1; | 
|  | } | 
|  | pfn = kvm->arch.guest_pmap[gfn]; | 
|  | pa = (pfn << PAGE_SHIFT) | offset; | 
|  |  | 
|  | kvm_debug("%s: va: %#lx, unmapped: %#x\n", __func__, va, | 
|  | CKSEG0ADDR(pa)); | 
|  |  | 
|  | local_flush_icache_range(CKSEG0ADDR(pa), 32); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | enum emulation_result kvm_mips_emulate_cache(uint32_t inst, uint32_t *opc, | 
|  | uint32_t cause, | 
|  | struct kvm_run *run, | 
|  | struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct mips_coproc *cop0 = vcpu->arch.cop0; | 
|  | enum emulation_result er = EMULATE_DONE; | 
|  | int32_t offset, cache, op_inst, op, base; | 
|  | struct kvm_vcpu_arch *arch = &vcpu->arch; | 
|  | unsigned long va; | 
|  | unsigned long curr_pc; | 
|  |  | 
|  | /* | 
|  | * Update PC and hold onto current PC in case there is | 
|  | * an error and we want to rollback the PC | 
|  | */ | 
|  | curr_pc = vcpu->arch.pc; | 
|  | er = update_pc(vcpu, cause); | 
|  | if (er == EMULATE_FAIL) | 
|  | return er; | 
|  |  | 
|  | base = (inst >> 21) & 0x1f; | 
|  | op_inst = (inst >> 16) & 0x1f; | 
|  | offset = (int16_t)inst; | 
|  | cache = op_inst & CacheOp_Cache; | 
|  | op = op_inst & CacheOp_Op; | 
|  |  | 
|  | va = arch->gprs[base] + offset; | 
|  |  | 
|  | kvm_debug("CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n", | 
|  | cache, op, base, arch->gprs[base], offset); | 
|  |  | 
|  | /* | 
|  | * Treat INDEX_INV as a nop, basically issued by Linux on startup to | 
|  | * invalidate the caches entirely by stepping through all the | 
|  | * ways/indexes | 
|  | */ | 
|  | if (op == Index_Writeback_Inv) { | 
|  | kvm_debug("@ %#lx/%#lx CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n", | 
|  | vcpu->arch.pc, vcpu->arch.gprs[31], cache, op, base, | 
|  | arch->gprs[base], offset); | 
|  |  | 
|  | if (cache == Cache_D) | 
|  | r4k_blast_dcache(); | 
|  | else if (cache == Cache_I) | 
|  | r4k_blast_icache(); | 
|  | else { | 
|  | kvm_err("%s: unsupported CACHE INDEX operation\n", | 
|  | __func__); | 
|  | return EMULATE_FAIL; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_KVM_MIPS_DYN_TRANS | 
|  | kvm_mips_trans_cache_index(inst, opc, vcpu); | 
|  | #endif | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | preempt_disable(); | 
|  | if (KVM_GUEST_KSEGX(va) == KVM_GUEST_KSEG0) { | 
|  | if (kvm_mips_host_tlb_lookup(vcpu, va) < 0) | 
|  | kvm_mips_handle_kseg0_tlb_fault(va, vcpu); | 
|  | } else if ((KVM_GUEST_KSEGX(va) < KVM_GUEST_KSEG0) || | 
|  | KVM_GUEST_KSEGX(va) == KVM_GUEST_KSEG23) { | 
|  | int index; | 
|  |  | 
|  | /* If an entry already exists then skip */ | 
|  | if (kvm_mips_host_tlb_lookup(vcpu, va) >= 0) | 
|  | goto skip_fault; | 
|  |  | 
|  | /* | 
|  | * If address not in the guest TLB, then give the guest a fault, | 
|  | * the resulting handler will do the right thing | 
|  | */ | 
|  | index = kvm_mips_guest_tlb_lookup(vcpu, (va & VPN2_MASK) | | 
|  | (kvm_read_c0_guest_entryhi | 
|  | (cop0) & ASID_MASK)); | 
|  |  | 
|  | if (index < 0) { | 
|  | vcpu->arch.host_cp0_entryhi = (va & VPN2_MASK); | 
|  | vcpu->arch.host_cp0_badvaddr = va; | 
|  | er = kvm_mips_emulate_tlbmiss_ld(cause, NULL, run, | 
|  | vcpu); | 
|  | preempt_enable(); | 
|  | goto dont_update_pc; | 
|  | } else { | 
|  | struct kvm_mips_tlb *tlb = &vcpu->arch.guest_tlb[index]; | 
|  | /* | 
|  | * Check if the entry is valid, if not then setup a TLB | 
|  | * invalid exception to the guest | 
|  | */ | 
|  | if (!TLB_IS_VALID(*tlb, va)) { | 
|  | er = kvm_mips_emulate_tlbinv_ld(cause, NULL, | 
|  | run, vcpu); | 
|  | preempt_enable(); | 
|  | goto dont_update_pc; | 
|  | } else { | 
|  | /* | 
|  | * We fault an entry from the guest tlb to the | 
|  | * shadow host TLB | 
|  | */ | 
|  | kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb, | 
|  | NULL, | 
|  | NULL); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | kvm_err("INVALID CACHE INDEX/ADDRESS (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n", | 
|  | cache, op, base, arch->gprs[base], offset); | 
|  | er = EMULATE_FAIL; | 
|  | preempt_enable(); | 
|  | goto dont_update_pc; | 
|  |  | 
|  | } | 
|  |  | 
|  | skip_fault: | 
|  | /* XXXKYMA: Only a subset of cache ops are supported, used by Linux */ | 
|  | if (op_inst == Hit_Writeback_Inv_D || op_inst == Hit_Invalidate_D) { | 
|  | flush_dcache_line(va); | 
|  |  | 
|  | #ifdef CONFIG_KVM_MIPS_DYN_TRANS | 
|  | /* | 
|  | * Replace the CACHE instruction, with a SYNCI, not the same, | 
|  | * but avoids a trap | 
|  | */ | 
|  | kvm_mips_trans_cache_va(inst, opc, vcpu); | 
|  | #endif | 
|  | } else if (op_inst == Hit_Invalidate_I) { | 
|  | flush_dcache_line(va); | 
|  | flush_icache_line(va); | 
|  |  | 
|  | #ifdef CONFIG_KVM_MIPS_DYN_TRANS | 
|  | /* Replace the CACHE instruction, with a SYNCI */ | 
|  | kvm_mips_trans_cache_va(inst, opc, vcpu); | 
|  | #endif | 
|  | } else { | 
|  | kvm_err("NO-OP CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n", | 
|  | cache, op, base, arch->gprs[base], offset); | 
|  | er = EMULATE_FAIL; | 
|  | preempt_enable(); | 
|  | goto dont_update_pc; | 
|  | } | 
|  |  | 
|  | preempt_enable(); | 
|  |  | 
|  | dont_update_pc: | 
|  | /* Rollback PC */ | 
|  | vcpu->arch.pc = curr_pc; | 
|  | done: | 
|  | return er; | 
|  | } | 
|  |  | 
|  | enum emulation_result kvm_mips_emulate_inst(unsigned long cause, uint32_t *opc, | 
|  | struct kvm_run *run, | 
|  | struct kvm_vcpu *vcpu) | 
|  | { | 
|  | enum emulation_result er = EMULATE_DONE; | 
|  | uint32_t inst; | 
|  |  | 
|  | /* Fetch the instruction. */ | 
|  | if (cause & CAUSEF_BD) | 
|  | opc += 1; | 
|  |  | 
|  | inst = kvm_get_inst(opc, vcpu); | 
|  |  | 
|  | switch (((union mips_instruction)inst).r_format.opcode) { | 
|  | case cop0_op: | 
|  | er = kvm_mips_emulate_CP0(inst, opc, cause, run, vcpu); | 
|  | break; | 
|  | case sb_op: | 
|  | case sh_op: | 
|  | case sw_op: | 
|  | er = kvm_mips_emulate_store(inst, cause, run, vcpu); | 
|  | break; | 
|  | case lb_op: | 
|  | case lbu_op: | 
|  | case lhu_op: | 
|  | case lh_op: | 
|  | case lw_op: | 
|  | er = kvm_mips_emulate_load(inst, cause, run, vcpu); | 
|  | break; | 
|  |  | 
|  | case cache_op: | 
|  | ++vcpu->stat.cache_exits; | 
|  | trace_kvm_exit(vcpu, CACHE_EXITS); | 
|  | er = kvm_mips_emulate_cache(inst, opc, cause, run, vcpu); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | kvm_err("Instruction emulation not supported (%p/%#x)\n", opc, | 
|  | inst); | 
|  | kvm_arch_vcpu_dump_regs(vcpu); | 
|  | er = EMULATE_FAIL; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return er; | 
|  | } | 
|  |  | 
|  | enum emulation_result kvm_mips_emulate_syscall(unsigned long cause, | 
|  | uint32_t *opc, | 
|  | struct kvm_run *run, | 
|  | struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct mips_coproc *cop0 = vcpu->arch.cop0; | 
|  | struct kvm_vcpu_arch *arch = &vcpu->arch; | 
|  | enum emulation_result er = EMULATE_DONE; | 
|  |  | 
|  | if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) { | 
|  | /* save old pc */ | 
|  | kvm_write_c0_guest_epc(cop0, arch->pc); | 
|  | kvm_set_c0_guest_status(cop0, ST0_EXL); | 
|  |  | 
|  | if (cause & CAUSEF_BD) | 
|  | kvm_set_c0_guest_cause(cop0, CAUSEF_BD); | 
|  | else | 
|  | kvm_clear_c0_guest_cause(cop0, CAUSEF_BD); | 
|  |  | 
|  | kvm_debug("Delivering SYSCALL @ pc %#lx\n", arch->pc); | 
|  |  | 
|  | kvm_change_c0_guest_cause(cop0, (0xff), | 
|  | (EXCCODE_SYS << CAUSEB_EXCCODE)); | 
|  |  | 
|  | /* Set PC to the exception entry point */ | 
|  | arch->pc = KVM_GUEST_KSEG0 + 0x180; | 
|  |  | 
|  | } else { | 
|  | kvm_err("Trying to deliver SYSCALL when EXL is already set\n"); | 
|  | er = EMULATE_FAIL; | 
|  | } | 
|  |  | 
|  | return er; | 
|  | } | 
|  |  | 
|  | enum emulation_result kvm_mips_emulate_tlbmiss_ld(unsigned long cause, | 
|  | uint32_t *opc, | 
|  | struct kvm_run *run, | 
|  | struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct mips_coproc *cop0 = vcpu->arch.cop0; | 
|  | struct kvm_vcpu_arch *arch = &vcpu->arch; | 
|  | unsigned long entryhi = (vcpu->arch.  host_cp0_badvaddr & VPN2_MASK) | | 
|  | (kvm_read_c0_guest_entryhi(cop0) & ASID_MASK); | 
|  |  | 
|  | if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) { | 
|  | /* save old pc */ | 
|  | kvm_write_c0_guest_epc(cop0, arch->pc); | 
|  | kvm_set_c0_guest_status(cop0, ST0_EXL); | 
|  |  | 
|  | if (cause & CAUSEF_BD) | 
|  | kvm_set_c0_guest_cause(cop0, CAUSEF_BD); | 
|  | else | 
|  | kvm_clear_c0_guest_cause(cop0, CAUSEF_BD); | 
|  |  | 
|  | kvm_debug("[EXL == 0] delivering TLB MISS @ pc %#lx\n", | 
|  | arch->pc); | 
|  |  | 
|  | /* set pc to the exception entry point */ | 
|  | arch->pc = KVM_GUEST_KSEG0 + 0x0; | 
|  |  | 
|  | } else { | 
|  | kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n", | 
|  | arch->pc); | 
|  |  | 
|  | arch->pc = KVM_GUEST_KSEG0 + 0x180; | 
|  | } | 
|  |  | 
|  | kvm_change_c0_guest_cause(cop0, (0xff), | 
|  | (EXCCODE_TLBL << CAUSEB_EXCCODE)); | 
|  |  | 
|  | /* setup badvaddr, context and entryhi registers for the guest */ | 
|  | kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr); | 
|  | /* XXXKYMA: is the context register used by linux??? */ | 
|  | kvm_write_c0_guest_entryhi(cop0, entryhi); | 
|  | /* Blow away the shadow host TLBs */ | 
|  | kvm_mips_flush_host_tlb(1); | 
|  |  | 
|  | return EMULATE_DONE; | 
|  | } | 
|  |  | 
|  | enum emulation_result kvm_mips_emulate_tlbinv_ld(unsigned long cause, | 
|  | uint32_t *opc, | 
|  | struct kvm_run *run, | 
|  | struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct mips_coproc *cop0 = vcpu->arch.cop0; | 
|  | struct kvm_vcpu_arch *arch = &vcpu->arch; | 
|  | unsigned long entryhi = | 
|  | (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) | | 
|  | (kvm_read_c0_guest_entryhi(cop0) & ASID_MASK); | 
|  |  | 
|  | if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) { | 
|  | /* save old pc */ | 
|  | kvm_write_c0_guest_epc(cop0, arch->pc); | 
|  | kvm_set_c0_guest_status(cop0, ST0_EXL); | 
|  |  | 
|  | if (cause & CAUSEF_BD) | 
|  | kvm_set_c0_guest_cause(cop0, CAUSEF_BD); | 
|  | else | 
|  | kvm_clear_c0_guest_cause(cop0, CAUSEF_BD); | 
|  |  | 
|  | kvm_debug("[EXL == 0] delivering TLB INV @ pc %#lx\n", | 
|  | arch->pc); | 
|  |  | 
|  | /* set pc to the exception entry point */ | 
|  | arch->pc = KVM_GUEST_KSEG0 + 0x180; | 
|  |  | 
|  | } else { | 
|  | kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n", | 
|  | arch->pc); | 
|  | arch->pc = KVM_GUEST_KSEG0 + 0x180; | 
|  | } | 
|  |  | 
|  | kvm_change_c0_guest_cause(cop0, (0xff), | 
|  | (EXCCODE_TLBL << CAUSEB_EXCCODE)); | 
|  |  | 
|  | /* setup badvaddr, context and entryhi registers for the guest */ | 
|  | kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr); | 
|  | /* XXXKYMA: is the context register used by linux??? */ | 
|  | kvm_write_c0_guest_entryhi(cop0, entryhi); | 
|  | /* Blow away the shadow host TLBs */ | 
|  | kvm_mips_flush_host_tlb(1); | 
|  |  | 
|  | return EMULATE_DONE; | 
|  | } | 
|  |  | 
|  | enum emulation_result kvm_mips_emulate_tlbmiss_st(unsigned long cause, | 
|  | uint32_t *opc, | 
|  | struct kvm_run *run, | 
|  | struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct mips_coproc *cop0 = vcpu->arch.cop0; | 
|  | struct kvm_vcpu_arch *arch = &vcpu->arch; | 
|  | unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) | | 
|  | (kvm_read_c0_guest_entryhi(cop0) & ASID_MASK); | 
|  |  | 
|  | if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) { | 
|  | /* save old pc */ | 
|  | kvm_write_c0_guest_epc(cop0, arch->pc); | 
|  | kvm_set_c0_guest_status(cop0, ST0_EXL); | 
|  |  | 
|  | if (cause & CAUSEF_BD) | 
|  | kvm_set_c0_guest_cause(cop0, CAUSEF_BD); | 
|  | else | 
|  | kvm_clear_c0_guest_cause(cop0, CAUSEF_BD); | 
|  |  | 
|  | kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n", | 
|  | arch->pc); | 
|  |  | 
|  | /* Set PC to the exception entry point */ | 
|  | arch->pc = KVM_GUEST_KSEG0 + 0x0; | 
|  | } else { | 
|  | kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n", | 
|  | arch->pc); | 
|  | arch->pc = KVM_GUEST_KSEG0 + 0x180; | 
|  | } | 
|  |  | 
|  | kvm_change_c0_guest_cause(cop0, (0xff), | 
|  | (EXCCODE_TLBS << CAUSEB_EXCCODE)); | 
|  |  | 
|  | /* setup badvaddr, context and entryhi registers for the guest */ | 
|  | kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr); | 
|  | /* XXXKYMA: is the context register used by linux??? */ | 
|  | kvm_write_c0_guest_entryhi(cop0, entryhi); | 
|  | /* Blow away the shadow host TLBs */ | 
|  | kvm_mips_flush_host_tlb(1); | 
|  |  | 
|  | return EMULATE_DONE; | 
|  | } | 
|  |  | 
|  | enum emulation_result kvm_mips_emulate_tlbinv_st(unsigned long cause, | 
|  | uint32_t *opc, | 
|  | struct kvm_run *run, | 
|  | struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct mips_coproc *cop0 = vcpu->arch.cop0; | 
|  | struct kvm_vcpu_arch *arch = &vcpu->arch; | 
|  | unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) | | 
|  | (kvm_read_c0_guest_entryhi(cop0) & ASID_MASK); | 
|  |  | 
|  | if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) { | 
|  | /* save old pc */ | 
|  | kvm_write_c0_guest_epc(cop0, arch->pc); | 
|  | kvm_set_c0_guest_status(cop0, ST0_EXL); | 
|  |  | 
|  | if (cause & CAUSEF_BD) | 
|  | kvm_set_c0_guest_cause(cop0, CAUSEF_BD); | 
|  | else | 
|  | kvm_clear_c0_guest_cause(cop0, CAUSEF_BD); | 
|  |  | 
|  | kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n", | 
|  | arch->pc); | 
|  |  | 
|  | /* Set PC to the exception entry point */ | 
|  | arch->pc = KVM_GUEST_KSEG0 + 0x180; | 
|  | } else { | 
|  | kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n", | 
|  | arch->pc); | 
|  | arch->pc = KVM_GUEST_KSEG0 + 0x180; | 
|  | } | 
|  |  | 
|  | kvm_change_c0_guest_cause(cop0, (0xff), | 
|  | (EXCCODE_TLBS << CAUSEB_EXCCODE)); | 
|  |  | 
|  | /* setup badvaddr, context and entryhi registers for the guest */ | 
|  | kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr); | 
|  | /* XXXKYMA: is the context register used by linux??? */ | 
|  | kvm_write_c0_guest_entryhi(cop0, entryhi); | 
|  | /* Blow away the shadow host TLBs */ | 
|  | kvm_mips_flush_host_tlb(1); | 
|  |  | 
|  | return EMULATE_DONE; | 
|  | } | 
|  |  | 
|  | /* TLBMOD: store into address matching TLB with Dirty bit off */ | 
|  | enum emulation_result kvm_mips_handle_tlbmod(unsigned long cause, uint32_t *opc, | 
|  | struct kvm_run *run, | 
|  | struct kvm_vcpu *vcpu) | 
|  | { | 
|  | enum emulation_result er = EMULATE_DONE; | 
|  | #ifdef DEBUG | 
|  | struct mips_coproc *cop0 = vcpu->arch.cop0; | 
|  | unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) | | 
|  | (kvm_read_c0_guest_entryhi(cop0) & ASID_MASK); | 
|  | int index; | 
|  |  | 
|  | /* If address not in the guest TLB, then we are in trouble */ | 
|  | index = kvm_mips_guest_tlb_lookup(vcpu, entryhi); | 
|  | if (index < 0) { | 
|  | /* XXXKYMA Invalidate and retry */ | 
|  | kvm_mips_host_tlb_inv(vcpu, vcpu->arch.host_cp0_badvaddr); | 
|  | kvm_err("%s: host got TLBMOD for %#lx but entry not present in Guest TLB\n", | 
|  | __func__, entryhi); | 
|  | kvm_mips_dump_guest_tlbs(vcpu); | 
|  | kvm_mips_dump_host_tlbs(); | 
|  | return EMULATE_FAIL; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | er = kvm_mips_emulate_tlbmod(cause, opc, run, vcpu); | 
|  | return er; | 
|  | } | 
|  |  | 
|  | enum emulation_result kvm_mips_emulate_tlbmod(unsigned long cause, | 
|  | uint32_t *opc, | 
|  | struct kvm_run *run, | 
|  | struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct mips_coproc *cop0 = vcpu->arch.cop0; | 
|  | unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) | | 
|  | (kvm_read_c0_guest_entryhi(cop0) & ASID_MASK); | 
|  | struct kvm_vcpu_arch *arch = &vcpu->arch; | 
|  |  | 
|  | if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) { | 
|  | /* save old pc */ | 
|  | kvm_write_c0_guest_epc(cop0, arch->pc); | 
|  | kvm_set_c0_guest_status(cop0, ST0_EXL); | 
|  |  | 
|  | if (cause & CAUSEF_BD) | 
|  | kvm_set_c0_guest_cause(cop0, CAUSEF_BD); | 
|  | else | 
|  | kvm_clear_c0_guest_cause(cop0, CAUSEF_BD); | 
|  |  | 
|  | kvm_debug("[EXL == 0] Delivering TLB MOD @ pc %#lx\n", | 
|  | arch->pc); | 
|  |  | 
|  | arch->pc = KVM_GUEST_KSEG0 + 0x180; | 
|  | } else { | 
|  | kvm_debug("[EXL == 1] Delivering TLB MOD @ pc %#lx\n", | 
|  | arch->pc); | 
|  | arch->pc = KVM_GUEST_KSEG0 + 0x180; | 
|  | } | 
|  |  | 
|  | kvm_change_c0_guest_cause(cop0, (0xff), | 
|  | (EXCCODE_MOD << CAUSEB_EXCCODE)); | 
|  |  | 
|  | /* setup badvaddr, context and entryhi registers for the guest */ | 
|  | kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr); | 
|  | /* XXXKYMA: is the context register used by linux??? */ | 
|  | kvm_write_c0_guest_entryhi(cop0, entryhi); | 
|  | /* Blow away the shadow host TLBs */ | 
|  | kvm_mips_flush_host_tlb(1); | 
|  |  | 
|  | return EMULATE_DONE; | 
|  | } | 
|  |  | 
|  | enum emulation_result kvm_mips_emulate_fpu_exc(unsigned long cause, | 
|  | uint32_t *opc, | 
|  | struct kvm_run *run, | 
|  | struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct mips_coproc *cop0 = vcpu->arch.cop0; | 
|  | struct kvm_vcpu_arch *arch = &vcpu->arch; | 
|  |  | 
|  | if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) { | 
|  | /* save old pc */ | 
|  | kvm_write_c0_guest_epc(cop0, arch->pc); | 
|  | kvm_set_c0_guest_status(cop0, ST0_EXL); | 
|  |  | 
|  | if (cause & CAUSEF_BD) | 
|  | kvm_set_c0_guest_cause(cop0, CAUSEF_BD); | 
|  | else | 
|  | kvm_clear_c0_guest_cause(cop0, CAUSEF_BD); | 
|  |  | 
|  | } | 
|  |  | 
|  | arch->pc = KVM_GUEST_KSEG0 + 0x180; | 
|  |  | 
|  | kvm_change_c0_guest_cause(cop0, (0xff), | 
|  | (EXCCODE_CPU << CAUSEB_EXCCODE)); | 
|  | kvm_change_c0_guest_cause(cop0, (CAUSEF_CE), (0x1 << CAUSEB_CE)); | 
|  |  | 
|  | return EMULATE_DONE; | 
|  | } | 
|  |  | 
|  | enum emulation_result kvm_mips_emulate_ri_exc(unsigned long cause, | 
|  | uint32_t *opc, | 
|  | struct kvm_run *run, | 
|  | struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct mips_coproc *cop0 = vcpu->arch.cop0; | 
|  | struct kvm_vcpu_arch *arch = &vcpu->arch; | 
|  | enum emulation_result er = EMULATE_DONE; | 
|  |  | 
|  | if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) { | 
|  | /* save old pc */ | 
|  | kvm_write_c0_guest_epc(cop0, arch->pc); | 
|  | kvm_set_c0_guest_status(cop0, ST0_EXL); | 
|  |  | 
|  | if (cause & CAUSEF_BD) | 
|  | kvm_set_c0_guest_cause(cop0, CAUSEF_BD); | 
|  | else | 
|  | kvm_clear_c0_guest_cause(cop0, CAUSEF_BD); | 
|  |  | 
|  | kvm_debug("Delivering RI @ pc %#lx\n", arch->pc); | 
|  |  | 
|  | kvm_change_c0_guest_cause(cop0, (0xff), | 
|  | (EXCCODE_RI << CAUSEB_EXCCODE)); | 
|  |  | 
|  | /* Set PC to the exception entry point */ | 
|  | arch->pc = KVM_GUEST_KSEG0 + 0x180; | 
|  |  | 
|  | } else { | 
|  | kvm_err("Trying to deliver RI when EXL is already set\n"); | 
|  | er = EMULATE_FAIL; | 
|  | } | 
|  |  | 
|  | return er; | 
|  | } | 
|  |  | 
|  | enum emulation_result kvm_mips_emulate_bp_exc(unsigned long cause, | 
|  | uint32_t *opc, | 
|  | struct kvm_run *run, | 
|  | struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct mips_coproc *cop0 = vcpu->arch.cop0; | 
|  | struct kvm_vcpu_arch *arch = &vcpu->arch; | 
|  | enum emulation_result er = EMULATE_DONE; | 
|  |  | 
|  | if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) { | 
|  | /* save old pc */ | 
|  | kvm_write_c0_guest_epc(cop0, arch->pc); | 
|  | kvm_set_c0_guest_status(cop0, ST0_EXL); | 
|  |  | 
|  | if (cause & CAUSEF_BD) | 
|  | kvm_set_c0_guest_cause(cop0, CAUSEF_BD); | 
|  | else | 
|  | kvm_clear_c0_guest_cause(cop0, CAUSEF_BD); | 
|  |  | 
|  | kvm_debug("Delivering BP @ pc %#lx\n", arch->pc); | 
|  |  | 
|  | kvm_change_c0_guest_cause(cop0, (0xff), | 
|  | (EXCCODE_BP << CAUSEB_EXCCODE)); | 
|  |  | 
|  | /* Set PC to the exception entry point */ | 
|  | arch->pc = KVM_GUEST_KSEG0 + 0x180; | 
|  |  | 
|  | } else { | 
|  | kvm_err("Trying to deliver BP when EXL is already set\n"); | 
|  | er = EMULATE_FAIL; | 
|  | } | 
|  |  | 
|  | return er; | 
|  | } | 
|  |  | 
|  | enum emulation_result kvm_mips_emulate_trap_exc(unsigned long cause, | 
|  | uint32_t *opc, | 
|  | struct kvm_run *run, | 
|  | struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct mips_coproc *cop0 = vcpu->arch.cop0; | 
|  | struct kvm_vcpu_arch *arch = &vcpu->arch; | 
|  | enum emulation_result er = EMULATE_DONE; | 
|  |  | 
|  | if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) { | 
|  | /* save old pc */ | 
|  | kvm_write_c0_guest_epc(cop0, arch->pc); | 
|  | kvm_set_c0_guest_status(cop0, ST0_EXL); | 
|  |  | 
|  | if (cause & CAUSEF_BD) | 
|  | kvm_set_c0_guest_cause(cop0, CAUSEF_BD); | 
|  | else | 
|  | kvm_clear_c0_guest_cause(cop0, CAUSEF_BD); | 
|  |  | 
|  | kvm_debug("Delivering TRAP @ pc %#lx\n", arch->pc); | 
|  |  | 
|  | kvm_change_c0_guest_cause(cop0, (0xff), | 
|  | (EXCCODE_TR << CAUSEB_EXCCODE)); | 
|  |  | 
|  | /* Set PC to the exception entry point */ | 
|  | arch->pc = KVM_GUEST_KSEG0 + 0x180; | 
|  |  | 
|  | } else { | 
|  | kvm_err("Trying to deliver TRAP when EXL is already set\n"); | 
|  | er = EMULATE_FAIL; | 
|  | } | 
|  |  | 
|  | return er; | 
|  | } | 
|  |  | 
|  | enum emulation_result kvm_mips_emulate_msafpe_exc(unsigned long cause, | 
|  | uint32_t *opc, | 
|  | struct kvm_run *run, | 
|  | struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct mips_coproc *cop0 = vcpu->arch.cop0; | 
|  | struct kvm_vcpu_arch *arch = &vcpu->arch; | 
|  | enum emulation_result er = EMULATE_DONE; | 
|  |  | 
|  | if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) { | 
|  | /* save old pc */ | 
|  | kvm_write_c0_guest_epc(cop0, arch->pc); | 
|  | kvm_set_c0_guest_status(cop0, ST0_EXL); | 
|  |  | 
|  | if (cause & CAUSEF_BD) | 
|  | kvm_set_c0_guest_cause(cop0, CAUSEF_BD); | 
|  | else | 
|  | kvm_clear_c0_guest_cause(cop0, CAUSEF_BD); | 
|  |  | 
|  | kvm_debug("Delivering MSAFPE @ pc %#lx\n", arch->pc); | 
|  |  | 
|  | kvm_change_c0_guest_cause(cop0, (0xff), | 
|  | (EXCCODE_MSAFPE << CAUSEB_EXCCODE)); | 
|  |  | 
|  | /* Set PC to the exception entry point */ | 
|  | arch->pc = KVM_GUEST_KSEG0 + 0x180; | 
|  |  | 
|  | } else { | 
|  | kvm_err("Trying to deliver MSAFPE when EXL is already set\n"); | 
|  | er = EMULATE_FAIL; | 
|  | } | 
|  |  | 
|  | return er; | 
|  | } | 
|  |  | 
|  | enum emulation_result kvm_mips_emulate_fpe_exc(unsigned long cause, | 
|  | uint32_t *opc, | 
|  | struct kvm_run *run, | 
|  | struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct mips_coproc *cop0 = vcpu->arch.cop0; | 
|  | struct kvm_vcpu_arch *arch = &vcpu->arch; | 
|  | enum emulation_result er = EMULATE_DONE; | 
|  |  | 
|  | if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) { | 
|  | /* save old pc */ | 
|  | kvm_write_c0_guest_epc(cop0, arch->pc); | 
|  | kvm_set_c0_guest_status(cop0, ST0_EXL); | 
|  |  | 
|  | if (cause & CAUSEF_BD) | 
|  | kvm_set_c0_guest_cause(cop0, CAUSEF_BD); | 
|  | else | 
|  | kvm_clear_c0_guest_cause(cop0, CAUSEF_BD); | 
|  |  | 
|  | kvm_debug("Delivering FPE @ pc %#lx\n", arch->pc); | 
|  |  | 
|  | kvm_change_c0_guest_cause(cop0, (0xff), | 
|  | (EXCCODE_FPE << CAUSEB_EXCCODE)); | 
|  |  | 
|  | /* Set PC to the exception entry point */ | 
|  | arch->pc = KVM_GUEST_KSEG0 + 0x180; | 
|  |  | 
|  | } else { | 
|  | kvm_err("Trying to deliver FPE when EXL is already set\n"); | 
|  | er = EMULATE_FAIL; | 
|  | } | 
|  |  | 
|  | return er; | 
|  | } | 
|  |  | 
|  | enum emulation_result kvm_mips_emulate_msadis_exc(unsigned long cause, | 
|  | uint32_t *opc, | 
|  | struct kvm_run *run, | 
|  | struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct mips_coproc *cop0 = vcpu->arch.cop0; | 
|  | struct kvm_vcpu_arch *arch = &vcpu->arch; | 
|  | enum emulation_result er = EMULATE_DONE; | 
|  |  | 
|  | if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) { | 
|  | /* save old pc */ | 
|  | kvm_write_c0_guest_epc(cop0, arch->pc); | 
|  | kvm_set_c0_guest_status(cop0, ST0_EXL); | 
|  |  | 
|  | if (cause & CAUSEF_BD) | 
|  | kvm_set_c0_guest_cause(cop0, CAUSEF_BD); | 
|  | else | 
|  | kvm_clear_c0_guest_cause(cop0, CAUSEF_BD); | 
|  |  | 
|  | kvm_debug("Delivering MSADIS @ pc %#lx\n", arch->pc); | 
|  |  | 
|  | kvm_change_c0_guest_cause(cop0, (0xff), | 
|  | (EXCCODE_MSADIS << CAUSEB_EXCCODE)); | 
|  |  | 
|  | /* Set PC to the exception entry point */ | 
|  | arch->pc = KVM_GUEST_KSEG0 + 0x180; | 
|  |  | 
|  | } else { | 
|  | kvm_err("Trying to deliver MSADIS when EXL is already set\n"); | 
|  | er = EMULATE_FAIL; | 
|  | } | 
|  |  | 
|  | return er; | 
|  | } | 
|  |  | 
|  | /* ll/sc, rdhwr, sync emulation */ | 
|  |  | 
|  | #define OPCODE 0xfc000000 | 
|  | #define BASE   0x03e00000 | 
|  | #define RT     0x001f0000 | 
|  | #define OFFSET 0x0000ffff | 
|  | #define LL     0xc0000000 | 
|  | #define SC     0xe0000000 | 
|  | #define SPEC0  0x00000000 | 
|  | #define SPEC3  0x7c000000 | 
|  | #define RD     0x0000f800 | 
|  | #define FUNC   0x0000003f | 
|  | #define SYNC   0x0000000f | 
|  | #define RDHWR  0x0000003b | 
|  |  | 
|  | enum emulation_result kvm_mips_handle_ri(unsigned long cause, uint32_t *opc, | 
|  | struct kvm_run *run, | 
|  | struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct mips_coproc *cop0 = vcpu->arch.cop0; | 
|  | struct kvm_vcpu_arch *arch = &vcpu->arch; | 
|  | enum emulation_result er = EMULATE_DONE; | 
|  | unsigned long curr_pc; | 
|  | uint32_t inst; | 
|  |  | 
|  | /* | 
|  | * Update PC and hold onto current PC in case there is | 
|  | * an error and we want to rollback the PC | 
|  | */ | 
|  | curr_pc = vcpu->arch.pc; | 
|  | er = update_pc(vcpu, cause); | 
|  | if (er == EMULATE_FAIL) | 
|  | return er; | 
|  |  | 
|  | /* Fetch the instruction. */ | 
|  | if (cause & CAUSEF_BD) | 
|  | opc += 1; | 
|  |  | 
|  | inst = kvm_get_inst(opc, vcpu); | 
|  |  | 
|  | if (inst == KVM_INVALID_INST) { | 
|  | kvm_err("%s: Cannot get inst @ %p\n", __func__, opc); | 
|  | return EMULATE_FAIL; | 
|  | } | 
|  |  | 
|  | if ((inst & OPCODE) == SPEC3 && (inst & FUNC) == RDHWR) { | 
|  | int usermode = !KVM_GUEST_KERNEL_MODE(vcpu); | 
|  | int rd = (inst & RD) >> 11; | 
|  | int rt = (inst & RT) >> 16; | 
|  | /* If usermode, check RDHWR rd is allowed by guest HWREna */ | 
|  | if (usermode && !(kvm_read_c0_guest_hwrena(cop0) & BIT(rd))) { | 
|  | kvm_debug("RDHWR %#x disallowed by HWREna @ %p\n", | 
|  | rd, opc); | 
|  | goto emulate_ri; | 
|  | } | 
|  | switch (rd) { | 
|  | case 0:	/* CPU number */ | 
|  | arch->gprs[rt] = 0; | 
|  | break; | 
|  | case 1:	/* SYNCI length */ | 
|  | arch->gprs[rt] = min(current_cpu_data.dcache.linesz, | 
|  | current_cpu_data.icache.linesz); | 
|  | break; | 
|  | case 2:	/* Read count register */ | 
|  | arch->gprs[rt] = kvm_mips_read_count(vcpu); | 
|  | break; | 
|  | case 3:	/* Count register resolution */ | 
|  | switch (current_cpu_data.cputype) { | 
|  | case CPU_20KC: | 
|  | case CPU_25KF: | 
|  | arch->gprs[rt] = 1; | 
|  | break; | 
|  | default: | 
|  | arch->gprs[rt] = 2; | 
|  | } | 
|  | break; | 
|  | case 29: | 
|  | arch->gprs[rt] = kvm_read_c0_guest_userlocal(cop0); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | kvm_debug("RDHWR %#x not supported @ %p\n", rd, opc); | 
|  | goto emulate_ri; | 
|  | } | 
|  | } else { | 
|  | kvm_debug("Emulate RI not supported @ %p: %#x\n", opc, inst); | 
|  | goto emulate_ri; | 
|  | } | 
|  |  | 
|  | return EMULATE_DONE; | 
|  |  | 
|  | emulate_ri: | 
|  | /* | 
|  | * Rollback PC (if in branch delay slot then the PC already points to | 
|  | * branch target), and pass the RI exception to the guest OS. | 
|  | */ | 
|  | vcpu->arch.pc = curr_pc; | 
|  | return kvm_mips_emulate_ri_exc(cause, opc, run, vcpu); | 
|  | } | 
|  |  | 
|  | enum emulation_result kvm_mips_complete_mmio_load(struct kvm_vcpu *vcpu, | 
|  | struct kvm_run *run) | 
|  | { | 
|  | unsigned long *gpr = &vcpu->arch.gprs[vcpu->arch.io_gpr]; | 
|  | enum emulation_result er = EMULATE_DONE; | 
|  |  | 
|  | if (run->mmio.len > sizeof(*gpr)) { | 
|  | kvm_err("Bad MMIO length: %d", run->mmio.len); | 
|  | er = EMULATE_FAIL; | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | er = update_pc(vcpu, vcpu->arch.pending_load_cause); | 
|  | if (er == EMULATE_FAIL) | 
|  | return er; | 
|  |  | 
|  | switch (run->mmio.len) { | 
|  | case 4: | 
|  | *gpr = *(int32_t *) run->mmio.data; | 
|  | break; | 
|  |  | 
|  | case 2: | 
|  | if (vcpu->mmio_needed == 2) | 
|  | *gpr = *(int16_t *) run->mmio.data; | 
|  | else | 
|  | *gpr = *(uint16_t *)run->mmio.data; | 
|  |  | 
|  | break; | 
|  | case 1: | 
|  | if (vcpu->mmio_needed == 2) | 
|  | *gpr = *(int8_t *) run->mmio.data; | 
|  | else | 
|  | *gpr = *(u8 *) run->mmio.data; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (vcpu->arch.pending_load_cause & CAUSEF_BD) | 
|  | kvm_debug("[%#lx] Completing %d byte BD Load to gpr %d (0x%08lx) type %d\n", | 
|  | vcpu->arch.pc, run->mmio.len, vcpu->arch.io_gpr, *gpr, | 
|  | vcpu->mmio_needed); | 
|  |  | 
|  | done: | 
|  | return er; | 
|  | } | 
|  |  | 
|  | static enum emulation_result kvm_mips_emulate_exc(unsigned long cause, | 
|  | uint32_t *opc, | 
|  | struct kvm_run *run, | 
|  | struct kvm_vcpu *vcpu) | 
|  | { | 
|  | uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f; | 
|  | struct mips_coproc *cop0 = vcpu->arch.cop0; | 
|  | struct kvm_vcpu_arch *arch = &vcpu->arch; | 
|  | enum emulation_result er = EMULATE_DONE; | 
|  |  | 
|  | if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) { | 
|  | /* save old pc */ | 
|  | kvm_write_c0_guest_epc(cop0, arch->pc); | 
|  | kvm_set_c0_guest_status(cop0, ST0_EXL); | 
|  |  | 
|  | if (cause & CAUSEF_BD) | 
|  | kvm_set_c0_guest_cause(cop0, CAUSEF_BD); | 
|  | else | 
|  | kvm_clear_c0_guest_cause(cop0, CAUSEF_BD); | 
|  |  | 
|  | kvm_change_c0_guest_cause(cop0, (0xff), | 
|  | (exccode << CAUSEB_EXCCODE)); | 
|  |  | 
|  | /* Set PC to the exception entry point */ | 
|  | arch->pc = KVM_GUEST_KSEG0 + 0x180; | 
|  | kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr); | 
|  |  | 
|  | kvm_debug("Delivering EXC %d @ pc %#lx, badVaddr: %#lx\n", | 
|  | exccode, kvm_read_c0_guest_epc(cop0), | 
|  | kvm_read_c0_guest_badvaddr(cop0)); | 
|  | } else { | 
|  | kvm_err("Trying to deliver EXC when EXL is already set\n"); | 
|  | er = EMULATE_FAIL; | 
|  | } | 
|  |  | 
|  | return er; | 
|  | } | 
|  |  | 
|  | enum emulation_result kvm_mips_check_privilege(unsigned long cause, | 
|  | uint32_t *opc, | 
|  | struct kvm_run *run, | 
|  | struct kvm_vcpu *vcpu) | 
|  | { | 
|  | enum emulation_result er = EMULATE_DONE; | 
|  | uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f; | 
|  | unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr; | 
|  |  | 
|  | int usermode = !KVM_GUEST_KERNEL_MODE(vcpu); | 
|  |  | 
|  | if (usermode) { | 
|  | switch (exccode) { | 
|  | case EXCCODE_INT: | 
|  | case EXCCODE_SYS: | 
|  | case EXCCODE_BP: | 
|  | case EXCCODE_RI: | 
|  | case EXCCODE_TR: | 
|  | case EXCCODE_MSAFPE: | 
|  | case EXCCODE_FPE: | 
|  | case EXCCODE_MSADIS: | 
|  | break; | 
|  |  | 
|  | case EXCCODE_CPU: | 
|  | if (((cause & CAUSEF_CE) >> CAUSEB_CE) == 0) | 
|  | er = EMULATE_PRIV_FAIL; | 
|  | break; | 
|  |  | 
|  | case EXCCODE_MOD: | 
|  | break; | 
|  |  | 
|  | case EXCCODE_TLBL: | 
|  | /* | 
|  | * We we are accessing Guest kernel space, then send an | 
|  | * address error exception to the guest | 
|  | */ | 
|  | if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) { | 
|  | kvm_debug("%s: LD MISS @ %#lx\n", __func__, | 
|  | badvaddr); | 
|  | cause &= ~0xff; | 
|  | cause |= (EXCCODE_ADEL << CAUSEB_EXCCODE); | 
|  | er = EMULATE_PRIV_FAIL; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case EXCCODE_TLBS: | 
|  | /* | 
|  | * We we are accessing Guest kernel space, then send an | 
|  | * address error exception to the guest | 
|  | */ | 
|  | if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) { | 
|  | kvm_debug("%s: ST MISS @ %#lx\n", __func__, | 
|  | badvaddr); | 
|  | cause &= ~0xff; | 
|  | cause |= (EXCCODE_ADES << CAUSEB_EXCCODE); | 
|  | er = EMULATE_PRIV_FAIL; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case EXCCODE_ADES: | 
|  | kvm_debug("%s: address error ST @ %#lx\n", __func__, | 
|  | badvaddr); | 
|  | if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) { | 
|  | cause &= ~0xff; | 
|  | cause |= (EXCCODE_TLBS << CAUSEB_EXCCODE); | 
|  | } | 
|  | er = EMULATE_PRIV_FAIL; | 
|  | break; | 
|  | case EXCCODE_ADEL: | 
|  | kvm_debug("%s: address error LD @ %#lx\n", __func__, | 
|  | badvaddr); | 
|  | if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) { | 
|  | cause &= ~0xff; | 
|  | cause |= (EXCCODE_TLBL << CAUSEB_EXCCODE); | 
|  | } | 
|  | er = EMULATE_PRIV_FAIL; | 
|  | break; | 
|  | default: | 
|  | er = EMULATE_PRIV_FAIL; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (er == EMULATE_PRIV_FAIL) | 
|  | kvm_mips_emulate_exc(cause, opc, run, vcpu); | 
|  |  | 
|  | return er; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * User Address (UA) fault, this could happen if | 
|  | * (1) TLB entry not present/valid in both Guest and shadow host TLBs, in this | 
|  | *     case we pass on the fault to the guest kernel and let it handle it. | 
|  | * (2) TLB entry is present in the Guest TLB but not in the shadow, in this | 
|  | *     case we inject the TLB from the Guest TLB into the shadow host TLB | 
|  | */ | 
|  | enum emulation_result kvm_mips_handle_tlbmiss(unsigned long cause, | 
|  | uint32_t *opc, | 
|  | struct kvm_run *run, | 
|  | struct kvm_vcpu *vcpu) | 
|  | { | 
|  | enum emulation_result er = EMULATE_DONE; | 
|  | uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f; | 
|  | unsigned long va = vcpu->arch.host_cp0_badvaddr; | 
|  | int index; | 
|  |  | 
|  | kvm_debug("kvm_mips_handle_tlbmiss: badvaddr: %#lx, entryhi: %#lx\n", | 
|  | vcpu->arch.host_cp0_badvaddr, vcpu->arch.host_cp0_entryhi); | 
|  |  | 
|  | /* | 
|  | * KVM would not have got the exception if this entry was valid in the | 
|  | * shadow host TLB. Check the Guest TLB, if the entry is not there then | 
|  | * send the guest an exception. The guest exc handler should then inject | 
|  | * an entry into the guest TLB. | 
|  | */ | 
|  | index = kvm_mips_guest_tlb_lookup(vcpu, | 
|  | (va & VPN2_MASK) | | 
|  | (kvm_read_c0_guest_entryhi(vcpu->arch.cop0) & ASID_MASK)); | 
|  | if (index < 0) { | 
|  | if (exccode == EXCCODE_TLBL) { | 
|  | er = kvm_mips_emulate_tlbmiss_ld(cause, opc, run, vcpu); | 
|  | } else if (exccode == EXCCODE_TLBS) { | 
|  | er = kvm_mips_emulate_tlbmiss_st(cause, opc, run, vcpu); | 
|  | } else { | 
|  | kvm_err("%s: invalid exc code: %d\n", __func__, | 
|  | exccode); | 
|  | er = EMULATE_FAIL; | 
|  | } | 
|  | } else { | 
|  | struct kvm_mips_tlb *tlb = &vcpu->arch.guest_tlb[index]; | 
|  |  | 
|  | /* | 
|  | * Check if the entry is valid, if not then setup a TLB invalid | 
|  | * exception to the guest | 
|  | */ | 
|  | if (!TLB_IS_VALID(*tlb, va)) { | 
|  | if (exccode == EXCCODE_TLBL) { | 
|  | er = kvm_mips_emulate_tlbinv_ld(cause, opc, run, | 
|  | vcpu); | 
|  | } else if (exccode == EXCCODE_TLBS) { | 
|  | er = kvm_mips_emulate_tlbinv_st(cause, opc, run, | 
|  | vcpu); | 
|  | } else { | 
|  | kvm_err("%s: invalid exc code: %d\n", __func__, | 
|  | exccode); | 
|  | er = EMULATE_FAIL; | 
|  | } | 
|  | } else { | 
|  | kvm_debug("Injecting hi: %#lx, lo0: %#lx, lo1: %#lx into shadow host TLB\n", | 
|  | tlb->tlb_hi, tlb->tlb_lo0, tlb->tlb_lo1); | 
|  | /* | 
|  | * OK we have a Guest TLB entry, now inject it into the | 
|  | * shadow host TLB | 
|  | */ | 
|  | kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb, NULL, | 
|  | NULL); | 
|  | } | 
|  | } | 
|  |  | 
|  | return er; | 
|  | } |