| // SPDX-License-Identifier: GPL-2.0-only | 
 | /* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module | 
 |  * | 
 |  * This driver supports the memory controllers found on the Intel | 
 |  * processor family Sandy Bridge. | 
 |  * | 
 |  * Copyright (c) 2011 by: | 
 |  *	 Mauro Carvalho Chehab | 
 |  */ | 
 |  | 
 | #include <linux/module.h> | 
 | #include <linux/init.h> | 
 | #include <linux/pci.h> | 
 | #include <linux/pci_ids.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/edac.h> | 
 | #include <linux/mmzone.h> | 
 | #include <linux/smp.h> | 
 | #include <linux/bitmap.h> | 
 | #include <linux/math64.h> | 
 | #include <linux/mod_devicetable.h> | 
 | #include <asm/cpu_device_id.h> | 
 | #include <asm/intel-family.h> | 
 | #include <asm/processor.h> | 
 | #include <asm/mce.h> | 
 |  | 
 | #include "edac_module.h" | 
 |  | 
 | /* Static vars */ | 
 | static LIST_HEAD(sbridge_edac_list); | 
 |  | 
 | /* | 
 |  * Alter this version for the module when modifications are made | 
 |  */ | 
 | #define SBRIDGE_REVISION    " Ver: 1.1.2 " | 
 | #define EDAC_MOD_STR	    "sb_edac" | 
 |  | 
 | /* | 
 |  * Debug macros | 
 |  */ | 
 | #define sbridge_printk(level, fmt, arg...)			\ | 
 | 	edac_printk(level, "sbridge", fmt, ##arg) | 
 |  | 
 | #define sbridge_mc_printk(mci, level, fmt, arg...)		\ | 
 | 	edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg) | 
 |  | 
 | /* | 
 |  * Get a bit field at register value <v>, from bit <lo> to bit <hi> | 
 |  */ | 
 | #define GET_BITFIELD(v, lo, hi)	\ | 
 | 	(((v) & GENMASK_ULL(hi, lo)) >> (lo)) | 
 |  | 
 | /* Devices 12 Function 6, Offsets 0x80 to 0xcc */ | 
 | static const u32 sbridge_dram_rule[] = { | 
 | 	0x80, 0x88, 0x90, 0x98, 0xa0, | 
 | 	0xa8, 0xb0, 0xb8, 0xc0, 0xc8, | 
 | }; | 
 |  | 
 | static const u32 ibridge_dram_rule[] = { | 
 | 	0x60, 0x68, 0x70, 0x78, 0x80, | 
 | 	0x88, 0x90, 0x98, 0xa0,	0xa8, | 
 | 	0xb0, 0xb8, 0xc0, 0xc8, 0xd0, | 
 | 	0xd8, 0xe0, 0xe8, 0xf0, 0xf8, | 
 | }; | 
 |  | 
 | static const u32 knl_dram_rule[] = { | 
 | 	0x60, 0x68, 0x70, 0x78, 0x80, /* 0-4 */ | 
 | 	0x88, 0x90, 0x98, 0xa0, 0xa8, /* 5-9 */ | 
 | 	0xb0, 0xb8, 0xc0, 0xc8, 0xd0, /* 10-14 */ | 
 | 	0xd8, 0xe0, 0xe8, 0xf0, 0xf8, /* 15-19 */ | 
 | 	0x100, 0x108, 0x110, 0x118,   /* 20-23 */ | 
 | }; | 
 |  | 
 | #define DRAM_RULE_ENABLE(reg)	GET_BITFIELD(reg, 0,  0) | 
 | #define A7MODE(reg)		GET_BITFIELD(reg, 26, 26) | 
 |  | 
 | static char *show_dram_attr(u32 attr) | 
 | { | 
 | 	switch (attr) { | 
 | 		case 0: | 
 | 			return "DRAM"; | 
 | 		case 1: | 
 | 			return "MMCFG"; | 
 | 		case 2: | 
 | 			return "NXM"; | 
 | 		default: | 
 | 			return "unknown"; | 
 | 	} | 
 | } | 
 |  | 
 | static const u32 sbridge_interleave_list[] = { | 
 | 	0x84, 0x8c, 0x94, 0x9c, 0xa4, | 
 | 	0xac, 0xb4, 0xbc, 0xc4, 0xcc, | 
 | }; | 
 |  | 
 | static const u32 ibridge_interleave_list[] = { | 
 | 	0x64, 0x6c, 0x74, 0x7c, 0x84, | 
 | 	0x8c, 0x94, 0x9c, 0xa4, 0xac, | 
 | 	0xb4, 0xbc, 0xc4, 0xcc, 0xd4, | 
 | 	0xdc, 0xe4, 0xec, 0xf4, 0xfc, | 
 | }; | 
 |  | 
 | static const u32 knl_interleave_list[] = { | 
 | 	0x64, 0x6c, 0x74, 0x7c, 0x84, /* 0-4 */ | 
 | 	0x8c, 0x94, 0x9c, 0xa4, 0xac, /* 5-9 */ | 
 | 	0xb4, 0xbc, 0xc4, 0xcc, 0xd4, /* 10-14 */ | 
 | 	0xdc, 0xe4, 0xec, 0xf4, 0xfc, /* 15-19 */ | 
 | 	0x104, 0x10c, 0x114, 0x11c,   /* 20-23 */ | 
 | }; | 
 | #define MAX_INTERLEAVE							\ | 
 | 	(max_t(unsigned int, ARRAY_SIZE(sbridge_interleave_list),	\ | 
 | 	       max_t(unsigned int, ARRAY_SIZE(ibridge_interleave_list),	\ | 
 | 		     ARRAY_SIZE(knl_interleave_list)))) | 
 |  | 
 | struct interleave_pkg { | 
 | 	unsigned char start; | 
 | 	unsigned char end; | 
 | }; | 
 |  | 
 | static const struct interleave_pkg sbridge_interleave_pkg[] = { | 
 | 	{ 0, 2 }, | 
 | 	{ 3, 5 }, | 
 | 	{ 8, 10 }, | 
 | 	{ 11, 13 }, | 
 | 	{ 16, 18 }, | 
 | 	{ 19, 21 }, | 
 | 	{ 24, 26 }, | 
 | 	{ 27, 29 }, | 
 | }; | 
 |  | 
 | static const struct interleave_pkg ibridge_interleave_pkg[] = { | 
 | 	{ 0, 3 }, | 
 | 	{ 4, 7 }, | 
 | 	{ 8, 11 }, | 
 | 	{ 12, 15 }, | 
 | 	{ 16, 19 }, | 
 | 	{ 20, 23 }, | 
 | 	{ 24, 27 }, | 
 | 	{ 28, 31 }, | 
 | }; | 
 |  | 
 | static inline int sad_pkg(const struct interleave_pkg *table, u32 reg, | 
 | 			  int interleave) | 
 | { | 
 | 	return GET_BITFIELD(reg, table[interleave].start, | 
 | 			    table[interleave].end); | 
 | } | 
 |  | 
 | /* Devices 12 Function 7 */ | 
 |  | 
 | #define TOLM		0x80 | 
 | #define TOHM		0x84 | 
 | #define HASWELL_TOLM	0xd0 | 
 | #define HASWELL_TOHM_0	0xd4 | 
 | #define HASWELL_TOHM_1	0xd8 | 
 | #define KNL_TOLM	0xd0 | 
 | #define KNL_TOHM_0	0xd4 | 
 | #define KNL_TOHM_1	0xd8 | 
 |  | 
 | #define GET_TOLM(reg)		((GET_BITFIELD(reg, 0,  3) << 28) | 0x3ffffff) | 
 | #define GET_TOHM(reg)		((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff) | 
 |  | 
 | /* Device 13 Function 6 */ | 
 |  | 
 | #define SAD_TARGET	0xf0 | 
 |  | 
 | #define SOURCE_ID(reg)		GET_BITFIELD(reg, 9, 11) | 
 |  | 
 | #define SOURCE_ID_KNL(reg)	GET_BITFIELD(reg, 12, 14) | 
 |  | 
 | #define SAD_CONTROL	0xf4 | 
 |  | 
 | /* Device 14 function 0 */ | 
 |  | 
 | static const u32 tad_dram_rule[] = { | 
 | 	0x40, 0x44, 0x48, 0x4c, | 
 | 	0x50, 0x54, 0x58, 0x5c, | 
 | 	0x60, 0x64, 0x68, 0x6c, | 
 | }; | 
 | #define MAX_TAD	ARRAY_SIZE(tad_dram_rule) | 
 |  | 
 | #define TAD_LIMIT(reg)		((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff) | 
 | #define TAD_SOCK(reg)		GET_BITFIELD(reg, 10, 11) | 
 | #define TAD_CH(reg)		GET_BITFIELD(reg,  8,  9) | 
 | #define TAD_TGT3(reg)		GET_BITFIELD(reg,  6,  7) | 
 | #define TAD_TGT2(reg)		GET_BITFIELD(reg,  4,  5) | 
 | #define TAD_TGT1(reg)		GET_BITFIELD(reg,  2,  3) | 
 | #define TAD_TGT0(reg)		GET_BITFIELD(reg,  0,  1) | 
 |  | 
 | /* Device 15, function 0 */ | 
 |  | 
 | #define MCMTR			0x7c | 
 | #define KNL_MCMTR		0x624 | 
 |  | 
 | #define IS_ECC_ENABLED(mcmtr)		GET_BITFIELD(mcmtr, 2, 2) | 
 | #define IS_LOCKSTEP_ENABLED(mcmtr)	GET_BITFIELD(mcmtr, 1, 1) | 
 | #define IS_CLOSE_PG(mcmtr)		GET_BITFIELD(mcmtr, 0, 0) | 
 |  | 
 | /* Device 15, function 1 */ | 
 |  | 
 | #define RASENABLES		0xac | 
 | #define IS_MIRROR_ENABLED(reg)		GET_BITFIELD(reg, 0, 0) | 
 |  | 
 | /* Device 15, functions 2-5 */ | 
 |  | 
 | static const int mtr_regs[] = { | 
 | 	0x80, 0x84, 0x88, | 
 | }; | 
 |  | 
 | static const int knl_mtr_reg = 0xb60; | 
 |  | 
 | #define RANK_DISABLE(mtr)		GET_BITFIELD(mtr, 16, 19) | 
 | #define IS_DIMM_PRESENT(mtr)		GET_BITFIELD(mtr, 14, 14) | 
 | #define RANK_CNT_BITS(mtr)		GET_BITFIELD(mtr, 12, 13) | 
 | #define RANK_WIDTH_BITS(mtr)		GET_BITFIELD(mtr, 2, 4) | 
 | #define COL_WIDTH_BITS(mtr)		GET_BITFIELD(mtr, 0, 1) | 
 |  | 
 | static const u32 tad_ch_nilv_offset[] = { | 
 | 	0x90, 0x94, 0x98, 0x9c, | 
 | 	0xa0, 0xa4, 0xa8, 0xac, | 
 | 	0xb0, 0xb4, 0xb8, 0xbc, | 
 | }; | 
 | #define CHN_IDX_OFFSET(reg)		GET_BITFIELD(reg, 28, 29) | 
 | #define TAD_OFFSET(reg)			(GET_BITFIELD(reg,  6, 25) << 26) | 
 |  | 
 | static const u32 rir_way_limit[] = { | 
 | 	0x108, 0x10c, 0x110, 0x114, 0x118, | 
 | }; | 
 | #define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit) | 
 |  | 
 | #define IS_RIR_VALID(reg)	GET_BITFIELD(reg, 31, 31) | 
 | #define RIR_WAY(reg)		GET_BITFIELD(reg, 28, 29) | 
 |  | 
 | #define MAX_RIR_WAY	8 | 
 |  | 
 | static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = { | 
 | 	{ 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c }, | 
 | 	{ 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c }, | 
 | 	{ 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c }, | 
 | 	{ 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c }, | 
 | 	{ 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc }, | 
 | }; | 
 |  | 
 | #define RIR_RNK_TGT(type, reg) (((type) == BROADWELL) ? \ | 
 | 	GET_BITFIELD(reg, 20, 23) : GET_BITFIELD(reg, 16, 19)) | 
 |  | 
 | #define RIR_OFFSET(type, reg) (((type) == HASWELL || (type) == BROADWELL) ? \ | 
 | 	GET_BITFIELD(reg,  2, 15) : GET_BITFIELD(reg,  2, 14)) | 
 |  | 
 | /* Device 16, functions 2-7 */ | 
 |  | 
 | /* | 
 |  * FIXME: Implement the error count reads directly | 
 |  */ | 
 |  | 
 | #define RANK_ODD_OV(reg)		GET_BITFIELD(reg, 31, 31) | 
 | #define RANK_ODD_ERR_CNT(reg)		GET_BITFIELD(reg, 16, 30) | 
 | #define RANK_EVEN_OV(reg)		GET_BITFIELD(reg, 15, 15) | 
 | #define RANK_EVEN_ERR_CNT(reg)		GET_BITFIELD(reg,  0, 14) | 
 |  | 
 | #if 0 /* Currently unused*/ | 
 | static const u32 correrrcnt[] = { | 
 | 	0x104, 0x108, 0x10c, 0x110, | 
 | }; | 
 |  | 
 | static const u32 correrrthrsld[] = { | 
 | 	0x11c, 0x120, 0x124, 0x128, | 
 | }; | 
 | #endif | 
 |  | 
 | #define RANK_ODD_ERR_THRSLD(reg)	GET_BITFIELD(reg, 16, 30) | 
 | #define RANK_EVEN_ERR_THRSLD(reg)	GET_BITFIELD(reg,  0, 14) | 
 |  | 
 |  | 
 | /* Device 17, function 0 */ | 
 |  | 
 | #define SB_RANK_CFG_A		0x0328 | 
 |  | 
 | #define IB_RANK_CFG_A		0x0320 | 
 |  | 
 | /* | 
 |  * sbridge structs | 
 |  */ | 
 |  | 
 | #define NUM_CHANNELS		6	/* Max channels per MC */ | 
 | #define MAX_DIMMS		3	/* Max DIMMS per channel */ | 
 | #define KNL_MAX_CHAS		38	/* KNL max num. of Cache Home Agents */ | 
 | #define KNL_MAX_CHANNELS	6	/* KNL max num. of PCI channels */ | 
 | #define KNL_MAX_EDCS		8	/* Embedded DRAM controllers */ | 
 | #define CHANNEL_UNSPECIFIED	0xf	/* Intel IA32 SDM 15-14 */ | 
 |  | 
 | enum type { | 
 | 	SANDY_BRIDGE, | 
 | 	IVY_BRIDGE, | 
 | 	HASWELL, | 
 | 	BROADWELL, | 
 | 	KNIGHTS_LANDING, | 
 | }; | 
 |  | 
 | enum domain { | 
 | 	IMC0 = 0, | 
 | 	IMC1, | 
 | 	SOCK, | 
 | }; | 
 |  | 
 | enum mirroring_mode { | 
 | 	NON_MIRRORING, | 
 | 	ADDR_RANGE_MIRRORING, | 
 | 	FULL_MIRRORING, | 
 | }; | 
 |  | 
 | struct sbridge_pvt; | 
 | struct sbridge_info { | 
 | 	enum type	type; | 
 | 	u32		mcmtr; | 
 | 	u32		rankcfgr; | 
 | 	u64		(*get_tolm)(struct sbridge_pvt *pvt); | 
 | 	u64		(*get_tohm)(struct sbridge_pvt *pvt); | 
 | 	u64		(*rir_limit)(u32 reg); | 
 | 	u64		(*sad_limit)(u32 reg); | 
 | 	u32		(*interleave_mode)(u32 reg); | 
 | 	u32		(*dram_attr)(u32 reg); | 
 | 	const u32	*dram_rule; | 
 | 	const u32	*interleave_list; | 
 | 	const struct interleave_pkg *interleave_pkg; | 
 | 	u8		max_sad; | 
 | 	u8		(*get_node_id)(struct sbridge_pvt *pvt); | 
 | 	u8		(*get_ha)(u8 bank); | 
 | 	enum mem_type	(*get_memory_type)(struct sbridge_pvt *pvt); | 
 | 	enum dev_type	(*get_width)(struct sbridge_pvt *pvt, u32 mtr); | 
 | 	struct pci_dev	*pci_vtd; | 
 | }; | 
 |  | 
 | struct sbridge_channel { | 
 | 	u32		ranks; | 
 | 	u32		dimms; | 
 | 	struct dimm { | 
 | 		u32 rowbits; | 
 | 		u32 colbits; | 
 | 		u32 bank_xor_enable; | 
 | 		u32 amap_fine; | 
 | 	} dimm[MAX_DIMMS]; | 
 | }; | 
 |  | 
 | struct pci_id_descr { | 
 | 	int			dev_id; | 
 | 	int			optional; | 
 | 	enum domain		dom; | 
 | }; | 
 |  | 
 | struct pci_id_table { | 
 | 	const struct pci_id_descr	*descr; | 
 | 	int				n_devs_per_imc; | 
 | 	int				n_devs_per_sock; | 
 | 	int				n_imcs_per_sock; | 
 | 	enum type			type; | 
 | }; | 
 |  | 
 | struct sbridge_dev { | 
 | 	struct list_head	list; | 
 | 	int			seg; | 
 | 	u8			bus, mc; | 
 | 	u8			node_id, source_id; | 
 | 	struct pci_dev		**pdev; | 
 | 	enum domain		dom; | 
 | 	int			n_devs; | 
 | 	int			i_devs; | 
 | 	struct mem_ctl_info	*mci; | 
 | }; | 
 |  | 
 | struct knl_pvt { | 
 | 	struct pci_dev          *pci_cha[KNL_MAX_CHAS]; | 
 | 	struct pci_dev          *pci_channel[KNL_MAX_CHANNELS]; | 
 | 	struct pci_dev          *pci_mc0; | 
 | 	struct pci_dev          *pci_mc1; | 
 | 	struct pci_dev          *pci_mc0_misc; | 
 | 	struct pci_dev          *pci_mc1_misc; | 
 | 	struct pci_dev          *pci_mc_info; /* tolm, tohm */ | 
 | }; | 
 |  | 
 | struct sbridge_pvt { | 
 | 	/* Devices per socket */ | 
 | 	struct pci_dev		*pci_ddrio; | 
 | 	struct pci_dev		*pci_sad0, *pci_sad1; | 
 | 	struct pci_dev		*pci_br0, *pci_br1; | 
 | 	/* Devices per memory controller */ | 
 | 	struct pci_dev		*pci_ha, *pci_ta, *pci_ras; | 
 | 	struct pci_dev		*pci_tad[NUM_CHANNELS]; | 
 |  | 
 | 	struct sbridge_dev	*sbridge_dev; | 
 |  | 
 | 	struct sbridge_info	info; | 
 | 	struct sbridge_channel	channel[NUM_CHANNELS]; | 
 |  | 
 | 	/* Memory type detection */ | 
 | 	bool			is_cur_addr_mirrored, is_lockstep, is_close_pg; | 
 | 	bool			is_chan_hash; | 
 | 	enum mirroring_mode	mirror_mode; | 
 |  | 
 | 	/* Memory description */ | 
 | 	u64			tolm, tohm; | 
 | 	struct knl_pvt knl; | 
 | }; | 
 |  | 
 | #define PCI_DESCR(device_id, opt, domain)	\ | 
 | 	.dev_id = (device_id),		\ | 
 | 	.optional = opt,	\ | 
 | 	.dom = domain | 
 |  | 
 | static const struct pci_id_descr pci_dev_descr_sbridge[] = { | 
 | 		/* Processor Home Agent */ | 
 | 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0,   0, IMC0) }, | 
 |  | 
 | 		/* Memory controller */ | 
 | 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA,    0, IMC0) }, | 
 | 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS,   0, IMC0) }, | 
 | 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0,  0, IMC0) }, | 
 | 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1,  0, IMC0) }, | 
 | 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2,  0, IMC0) }, | 
 | 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3,  0, IMC0) }, | 
 | 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO, 1, SOCK) }, | 
 |  | 
 | 		/* System Address Decoder */ | 
 | 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0,      0, SOCK) }, | 
 | 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1,      0, SOCK) }, | 
 |  | 
 | 		/* Broadcast Registers */ | 
 | 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_BR,        0, SOCK) }, | 
 | }; | 
 |  | 
 | #define PCI_ID_TABLE_ENTRY(A, N, M, T) {	\ | 
 | 	.descr = A,			\ | 
 | 	.n_devs_per_imc = N,	\ | 
 | 	.n_devs_per_sock = ARRAY_SIZE(A),	\ | 
 | 	.n_imcs_per_sock = M,	\ | 
 | 	.type = T			\ | 
 | } | 
 |  | 
 | static const struct pci_id_table pci_dev_descr_sbridge_table[] = { | 
 | 	PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge, ARRAY_SIZE(pci_dev_descr_sbridge), 1, SANDY_BRIDGE), | 
 | 	{0,}			/* 0 terminated list. */ | 
 | }; | 
 |  | 
 | /* This changes depending if 1HA or 2HA: | 
 |  * 1HA: | 
 |  *	0x0eb8 (17.0) is DDRIO0 | 
 |  * 2HA: | 
 |  *	0x0ebc (17.4) is DDRIO0 | 
 |  */ | 
 | #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0	0x0eb8 | 
 | #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0	0x0ebc | 
 |  | 
 | /* pci ids */ | 
 | #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0		0x0ea0 | 
 | #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA		0x0ea8 | 
 | #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS		0x0e71 | 
 | #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0	0x0eaa | 
 | #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1	0x0eab | 
 | #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2	0x0eac | 
 | #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3	0x0ead | 
 | #define PCI_DEVICE_ID_INTEL_IBRIDGE_SAD			0x0ec8 | 
 | #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR0			0x0ec9 | 
 | #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR1			0x0eca | 
 | #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1		0x0e60 | 
 | #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA		0x0e68 | 
 | #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS		0x0e79 | 
 | #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0	0x0e6a | 
 | #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1	0x0e6b | 
 | #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2	0x0e6c | 
 | #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3	0x0e6d | 
 |  | 
 | static const struct pci_id_descr pci_dev_descr_ibridge[] = { | 
 | 		/* Processor Home Agent */ | 
 | 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0,        0, IMC0) }, | 
 | 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1,        1, IMC1) }, | 
 |  | 
 | 		/* Memory controller */ | 
 | 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA,     0, IMC0) }, | 
 | 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS,    0, IMC0) }, | 
 | 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0,   0, IMC0) }, | 
 | 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1,   0, IMC0) }, | 
 | 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2,   0, IMC0) }, | 
 | 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3,   0, IMC0) }, | 
 |  | 
 | 		/* Optional, mode 2HA */ | 
 | 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA,     1, IMC1) }, | 
 | 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS,    1, IMC1) }, | 
 | 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0,   1, IMC1) }, | 
 | 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1,   1, IMC1) }, | 
 | 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2,   1, IMC1) }, | 
 | 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3,   1, IMC1) }, | 
 |  | 
 | 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0, 1, SOCK) }, | 
 | 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0, 1, SOCK) }, | 
 |  | 
 | 		/* System Address Decoder */ | 
 | 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_SAD,            0, SOCK) }, | 
 |  | 
 | 		/* Broadcast Registers */ | 
 | 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR0,            1, SOCK) }, | 
 | 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR1,            0, SOCK) }, | 
 |  | 
 | }; | 
 |  | 
 | static const struct pci_id_table pci_dev_descr_ibridge_table[] = { | 
 | 	PCI_ID_TABLE_ENTRY(pci_dev_descr_ibridge, 12, 2, IVY_BRIDGE), | 
 | 	{0,}			/* 0 terminated list. */ | 
 | }; | 
 |  | 
 | /* Haswell support */ | 
 | /* EN processor: | 
 |  *	- 1 IMC | 
 |  *	- 3 DDR3 channels, 2 DPC per channel | 
 |  * EP processor: | 
 |  *	- 1 or 2 IMC | 
 |  *	- 4 DDR4 channels, 3 DPC per channel | 
 |  * EP 4S processor: | 
 |  *	- 2 IMC | 
 |  *	- 4 DDR4 channels, 3 DPC per channel | 
 |  * EX processor: | 
 |  *	- 2 IMC | 
 |  *	- each IMC interfaces with a SMI 2 channel | 
 |  *	- each SMI channel interfaces with a scalable memory buffer | 
 |  *	- each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC | 
 |  */ | 
 | #define HASWELL_DDRCRCLKCONTROLS 0xa10 /* Ditto on Broadwell */ | 
 | #define HASWELL_HASYSDEFEATURE2 0x84 | 
 | #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC 0x2f28 | 
 | #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0	0x2fa0 | 
 | #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1	0x2f60 | 
 | #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA	0x2fa8 | 
 | #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM	0x2f71 | 
 | #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA	0x2f68 | 
 | #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM	0x2f79 | 
 | #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0 0x2ffc | 
 | #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1 0x2ffd | 
 | #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0 0x2faa | 
 | #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1 0x2fab | 
 | #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2 0x2fac | 
 | #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3 0x2fad | 
 | #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 0x2f6a | 
 | #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1 0x2f6b | 
 | #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2 0x2f6c | 
 | #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3 0x2f6d | 
 | #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0 0x2fbd | 
 | #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1 0x2fbf | 
 | #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2 0x2fb9 | 
 | #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3 0x2fbb | 
 | static const struct pci_id_descr pci_dev_descr_haswell[] = { | 
 | 	/* first item must be the HA */ | 
 | 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0,      0, IMC0) }, | 
 | 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1,      1, IMC1) }, | 
 |  | 
 | 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA,   0, IMC0) }, | 
 | 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM,   0, IMC0) }, | 
 | 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0, 0, IMC0) }, | 
 | 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1, 0, IMC0) }, | 
 | 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2, 1, IMC0) }, | 
 | 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3, 1, IMC0) }, | 
 |  | 
 | 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA,   1, IMC1) }, | 
 | 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM,   1, IMC1) }, | 
 | 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0, 1, IMC1) }, | 
 | 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1, 1, IMC1) }, | 
 | 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2, 1, IMC1) }, | 
 | 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3, 1, IMC1) }, | 
 |  | 
 | 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0, 0, SOCK) }, | 
 | 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1, 0, SOCK) }, | 
 | 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0,   1, SOCK) }, | 
 | 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1,   1, SOCK) }, | 
 | 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2,   1, SOCK) }, | 
 | 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3,   1, SOCK) }, | 
 | }; | 
 |  | 
 | static const struct pci_id_table pci_dev_descr_haswell_table[] = { | 
 | 	PCI_ID_TABLE_ENTRY(pci_dev_descr_haswell, 13, 2, HASWELL), | 
 | 	{0,}			/* 0 terminated list. */ | 
 | }; | 
 |  | 
 | /* Knight's Landing Support */ | 
 | /* | 
 |  * KNL's memory channels are swizzled between memory controllers. | 
 |  * MC0 is mapped to CH3,4,5 and MC1 is mapped to CH0,1,2 | 
 |  */ | 
 | #define knl_channel_remap(mc, chan) ((mc) ? (chan) : (chan) + 3) | 
 |  | 
 | /* Memory controller, TAD tables, error injection - 2-8-0, 2-9-0 (2 of these) */ | 
 | #define PCI_DEVICE_ID_INTEL_KNL_IMC_MC       0x7840 | 
 | /* DRAM channel stuff; bank addrs, dimmmtr, etc.. 2-8-2 - 2-9-4 (6 of these) */ | 
 | #define PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN     0x7843 | 
 | /* kdrwdbu TAD limits/offsets, MCMTR - 2-10-1, 2-11-1 (2 of these) */ | 
 | #define PCI_DEVICE_ID_INTEL_KNL_IMC_TA       0x7844 | 
 | /* CHA broadcast registers, dram rules - 1-29-0 (1 of these) */ | 
 | #define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0     0x782a | 
 | /* SAD target - 1-29-1 (1 of these) */ | 
 | #define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1     0x782b | 
 | /* Caching / Home Agent */ | 
 | #define PCI_DEVICE_ID_INTEL_KNL_IMC_CHA      0x782c | 
 | /* Device with TOLM and TOHM, 0-5-0 (1 of these) */ | 
 | #define PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM    0x7810 | 
 |  | 
 | /* | 
 |  * KNL differs from SB, IB, and Haswell in that it has multiple | 
 |  * instances of the same device with the same device ID, so we handle that | 
 |  * by creating as many copies in the table as we expect to find. | 
 |  * (Like device ID must be grouped together.) | 
 |  */ | 
 |  | 
 | static const struct pci_id_descr pci_dev_descr_knl[] = { | 
 | 	[0 ... 1]   = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_MC,    0, IMC0)}, | 
 | 	[2 ... 7]   = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN,  0, IMC0) }, | 
 | 	[8]	    = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TA,    0, IMC0) }, | 
 | 	[9]	    = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM, 0, IMC0) }, | 
 | 	[10]	    = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0,  0, SOCK) }, | 
 | 	[11]	    = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1,  0, SOCK) }, | 
 | 	[12 ... 49] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHA,   0, SOCK) }, | 
 | }; | 
 |  | 
 | static const struct pci_id_table pci_dev_descr_knl_table[] = { | 
 | 	PCI_ID_TABLE_ENTRY(pci_dev_descr_knl, ARRAY_SIZE(pci_dev_descr_knl), 1, KNIGHTS_LANDING), | 
 | 	{0,} | 
 | }; | 
 |  | 
 | /* | 
 |  * Broadwell support | 
 |  * | 
 |  * DE processor: | 
 |  *	- 1 IMC | 
 |  *	- 2 DDR3 channels, 2 DPC per channel | 
 |  * EP processor: | 
 |  *	- 1 or 2 IMC | 
 |  *	- 4 DDR4 channels, 3 DPC per channel | 
 |  * EP 4S processor: | 
 |  *	- 2 IMC | 
 |  *	- 4 DDR4 channels, 3 DPC per channel | 
 |  * EX processor: | 
 |  *	- 2 IMC | 
 |  *	- each IMC interfaces with a SMI 2 channel | 
 |  *	- each SMI channel interfaces with a scalable memory buffer | 
 |  *	- each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC | 
 |  */ | 
 | #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC 0x6f28 | 
 | #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0	0x6fa0 | 
 | #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1	0x6f60 | 
 | #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA	0x6fa8 | 
 | #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM	0x6f71 | 
 | #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA	0x6f68 | 
 | #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM	0x6f79 | 
 | #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0 0x6ffc | 
 | #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1 0x6ffd | 
 | #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0 0x6faa | 
 | #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1 0x6fab | 
 | #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2 0x6fac | 
 | #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3 0x6fad | 
 | #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0 0x6f6a | 
 | #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1 0x6f6b | 
 | #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2 0x6f6c | 
 | #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3 0x6f6d | 
 | #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0 0x6faf | 
 |  | 
 | static const struct pci_id_descr pci_dev_descr_broadwell[] = { | 
 | 	/* first item must be the HA */ | 
 | 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0,      0, IMC0) }, | 
 | 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1,      1, IMC1) }, | 
 |  | 
 | 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA,   0, IMC0) }, | 
 | 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM,   0, IMC0) }, | 
 | 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0, 0, IMC0) }, | 
 | 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1, 0, IMC0) }, | 
 | 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2, 1, IMC0) }, | 
 | 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3, 1, IMC0) }, | 
 |  | 
 | 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA,   1, IMC1) }, | 
 | 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM,   1, IMC1) }, | 
 | 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0, 1, IMC1) }, | 
 | 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1, 1, IMC1) }, | 
 | 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2, 1, IMC1) }, | 
 | 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3, 1, IMC1) }, | 
 |  | 
 | 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0, 0, SOCK) }, | 
 | 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1, 0, SOCK) }, | 
 | 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0,   1, SOCK) }, | 
 | }; | 
 |  | 
 | static const struct pci_id_table pci_dev_descr_broadwell_table[] = { | 
 | 	PCI_ID_TABLE_ENTRY(pci_dev_descr_broadwell, 10, 2, BROADWELL), | 
 | 	{0,}			/* 0 terminated list. */ | 
 | }; | 
 |  | 
 |  | 
 | /**************************************************************************** | 
 | 			Ancillary status routines | 
 |  ****************************************************************************/ | 
 |  | 
 | static inline int numrank(enum type type, u32 mtr) | 
 | { | 
 | 	int ranks = (1 << RANK_CNT_BITS(mtr)); | 
 | 	int max = 4; | 
 |  | 
 | 	if (type == HASWELL || type == BROADWELL || type == KNIGHTS_LANDING) | 
 | 		max = 8; | 
 |  | 
 | 	if (ranks > max) { | 
 | 		edac_dbg(0, "Invalid number of ranks: %d (max = %i) raw value = %x (%04x)\n", | 
 | 			 ranks, max, (unsigned int)RANK_CNT_BITS(mtr), mtr); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	return ranks; | 
 | } | 
 |  | 
 | static inline int numrow(u32 mtr) | 
 | { | 
 | 	int rows = (RANK_WIDTH_BITS(mtr) + 12); | 
 |  | 
 | 	if (rows < 13 || rows > 18) { | 
 | 		edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n", | 
 | 			 rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	return 1 << rows; | 
 | } | 
 |  | 
 | static inline int numcol(u32 mtr) | 
 | { | 
 | 	int cols = (COL_WIDTH_BITS(mtr) + 10); | 
 |  | 
 | 	if (cols > 12) { | 
 | 		edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n", | 
 | 			 cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	return 1 << cols; | 
 | } | 
 |  | 
 | static struct sbridge_dev *get_sbridge_dev(int seg, u8 bus, enum domain dom, | 
 | 					   int multi_bus, | 
 | 					   struct sbridge_dev *prev) | 
 | { | 
 | 	struct sbridge_dev *sbridge_dev; | 
 |  | 
 | 	/* | 
 | 	 * If we have devices scattered across several busses that pertain | 
 | 	 * to the same memory controller, we'll lump them all together. | 
 | 	 */ | 
 | 	if (multi_bus) { | 
 | 		return list_first_entry_or_null(&sbridge_edac_list, | 
 | 				struct sbridge_dev, list); | 
 | 	} | 
 |  | 
 | 	sbridge_dev = list_entry(prev ? prev->list.next | 
 | 				      : sbridge_edac_list.next, struct sbridge_dev, list); | 
 |  | 
 | 	list_for_each_entry_from(sbridge_dev, &sbridge_edac_list, list) { | 
 | 		if ((sbridge_dev->seg == seg) && (sbridge_dev->bus == bus) && | 
 | 				(dom == SOCK || dom == sbridge_dev->dom)) | 
 | 			return sbridge_dev; | 
 | 	} | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static struct sbridge_dev *alloc_sbridge_dev(int seg, u8 bus, enum domain dom, | 
 | 					     const struct pci_id_table *table) | 
 | { | 
 | 	struct sbridge_dev *sbridge_dev; | 
 |  | 
 | 	sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL); | 
 | 	if (!sbridge_dev) | 
 | 		return NULL; | 
 |  | 
 | 	sbridge_dev->pdev = kcalloc(table->n_devs_per_imc, | 
 | 				    sizeof(*sbridge_dev->pdev), | 
 | 				    GFP_KERNEL); | 
 | 	if (!sbridge_dev->pdev) { | 
 | 		kfree(sbridge_dev); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	sbridge_dev->seg = seg; | 
 | 	sbridge_dev->bus = bus; | 
 | 	sbridge_dev->dom = dom; | 
 | 	sbridge_dev->n_devs = table->n_devs_per_imc; | 
 | 	list_add_tail(&sbridge_dev->list, &sbridge_edac_list); | 
 |  | 
 | 	return sbridge_dev; | 
 | } | 
 |  | 
 | static void free_sbridge_dev(struct sbridge_dev *sbridge_dev) | 
 | { | 
 | 	list_del(&sbridge_dev->list); | 
 | 	kfree(sbridge_dev->pdev); | 
 | 	kfree(sbridge_dev); | 
 | } | 
 |  | 
 | static u64 sbridge_get_tolm(struct sbridge_pvt *pvt) | 
 | { | 
 | 	u32 reg; | 
 |  | 
 | 	/* Address range is 32:28 */ | 
 | 	pci_read_config_dword(pvt->pci_sad1, TOLM, ®); | 
 | 	return GET_TOLM(reg); | 
 | } | 
 |  | 
 | static u64 sbridge_get_tohm(struct sbridge_pvt *pvt) | 
 | { | 
 | 	u32 reg; | 
 |  | 
 | 	pci_read_config_dword(pvt->pci_sad1, TOHM, ®); | 
 | 	return GET_TOHM(reg); | 
 | } | 
 |  | 
 | static u64 ibridge_get_tolm(struct sbridge_pvt *pvt) | 
 | { | 
 | 	u32 reg; | 
 |  | 
 | 	pci_read_config_dword(pvt->pci_br1, TOLM, ®); | 
 |  | 
 | 	return GET_TOLM(reg); | 
 | } | 
 |  | 
 | static u64 ibridge_get_tohm(struct sbridge_pvt *pvt) | 
 | { | 
 | 	u32 reg; | 
 |  | 
 | 	pci_read_config_dword(pvt->pci_br1, TOHM, ®); | 
 |  | 
 | 	return GET_TOHM(reg); | 
 | } | 
 |  | 
 | static u64 rir_limit(u32 reg) | 
 | { | 
 | 	return ((u64)GET_BITFIELD(reg,  1, 10) << 29) | 0x1fffffff; | 
 | } | 
 |  | 
 | static u64 sad_limit(u32 reg) | 
 | { | 
 | 	return (GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff; | 
 | } | 
 |  | 
 | static u32 interleave_mode(u32 reg) | 
 | { | 
 | 	return GET_BITFIELD(reg, 1, 1); | 
 | } | 
 |  | 
 | static u32 dram_attr(u32 reg) | 
 | { | 
 | 	return GET_BITFIELD(reg, 2, 3); | 
 | } | 
 |  | 
 | static u64 knl_sad_limit(u32 reg) | 
 | { | 
 | 	return (GET_BITFIELD(reg, 7, 26) << 26) | 0x3ffffff; | 
 | } | 
 |  | 
 | static u32 knl_interleave_mode(u32 reg) | 
 | { | 
 | 	return GET_BITFIELD(reg, 1, 2); | 
 | } | 
 |  | 
 | static const char * const knl_intlv_mode[] = { | 
 | 	"[8:6]", "[10:8]", "[14:12]", "[32:30]" | 
 | }; | 
 |  | 
 | static const char *get_intlv_mode_str(u32 reg, enum type t) | 
 | { | 
 | 	if (t == KNIGHTS_LANDING) | 
 | 		return knl_intlv_mode[knl_interleave_mode(reg)]; | 
 | 	else | 
 | 		return interleave_mode(reg) ? "[8:6]" : "[8:6]XOR[18:16]"; | 
 | } | 
 |  | 
 | static u32 dram_attr_knl(u32 reg) | 
 | { | 
 | 	return GET_BITFIELD(reg, 3, 4); | 
 | } | 
 |  | 
 |  | 
 | static enum mem_type get_memory_type(struct sbridge_pvt *pvt) | 
 | { | 
 | 	u32 reg; | 
 | 	enum mem_type mtype; | 
 |  | 
 | 	if (pvt->pci_ddrio) { | 
 | 		pci_read_config_dword(pvt->pci_ddrio, pvt->info.rankcfgr, | 
 | 				      ®); | 
 | 		if (GET_BITFIELD(reg, 11, 11)) | 
 | 			/* FIXME: Can also be LRDIMM */ | 
 | 			mtype = MEM_RDDR3; | 
 | 		else | 
 | 			mtype = MEM_DDR3; | 
 | 	} else | 
 | 		mtype = MEM_UNKNOWN; | 
 |  | 
 | 	return mtype; | 
 | } | 
 |  | 
 | static enum mem_type haswell_get_memory_type(struct sbridge_pvt *pvt) | 
 | { | 
 | 	u32 reg; | 
 | 	bool registered = false; | 
 | 	enum mem_type mtype = MEM_UNKNOWN; | 
 |  | 
 | 	if (!pvt->pci_ddrio) | 
 | 		goto out; | 
 |  | 
 | 	pci_read_config_dword(pvt->pci_ddrio, | 
 | 			      HASWELL_DDRCRCLKCONTROLS, ®); | 
 | 	/* Is_Rdimm */ | 
 | 	if (GET_BITFIELD(reg, 16, 16)) | 
 | 		registered = true; | 
 |  | 
 | 	pci_read_config_dword(pvt->pci_ta, MCMTR, ®); | 
 | 	if (GET_BITFIELD(reg, 14, 14)) { | 
 | 		if (registered) | 
 | 			mtype = MEM_RDDR4; | 
 | 		else | 
 | 			mtype = MEM_DDR4; | 
 | 	} else { | 
 | 		if (registered) | 
 | 			mtype = MEM_RDDR3; | 
 | 		else | 
 | 			mtype = MEM_DDR3; | 
 | 	} | 
 |  | 
 | out: | 
 | 	return mtype; | 
 | } | 
 |  | 
 | static enum dev_type knl_get_width(struct sbridge_pvt *pvt, u32 mtr) | 
 | { | 
 | 	/* for KNL value is fixed */ | 
 | 	return DEV_X16; | 
 | } | 
 |  | 
 | static enum dev_type sbridge_get_width(struct sbridge_pvt *pvt, u32 mtr) | 
 | { | 
 | 	/* there's no way to figure out */ | 
 | 	return DEV_UNKNOWN; | 
 | } | 
 |  | 
 | static enum dev_type __ibridge_get_width(u32 mtr) | 
 | { | 
 | 	enum dev_type type = DEV_UNKNOWN; | 
 |  | 
 | 	switch (mtr) { | 
 | 	case 2: | 
 | 		type = DEV_X16; | 
 | 		break; | 
 | 	case 1: | 
 | 		type = DEV_X8; | 
 | 		break; | 
 | 	case 0: | 
 | 		type = DEV_X4; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return type; | 
 | } | 
 |  | 
 | static enum dev_type ibridge_get_width(struct sbridge_pvt *pvt, u32 mtr) | 
 | { | 
 | 	/* | 
 | 	 * ddr3_width on the documentation but also valid for DDR4 on | 
 | 	 * Haswell | 
 | 	 */ | 
 | 	return __ibridge_get_width(GET_BITFIELD(mtr, 7, 8)); | 
 | } | 
 |  | 
 | static enum dev_type broadwell_get_width(struct sbridge_pvt *pvt, u32 mtr) | 
 | { | 
 | 	/* ddr3_width on the documentation but also valid for DDR4 */ | 
 | 	return __ibridge_get_width(GET_BITFIELD(mtr, 8, 9)); | 
 | } | 
 |  | 
 | static enum mem_type knl_get_memory_type(struct sbridge_pvt *pvt) | 
 | { | 
 | 	/* DDR4 RDIMMS and LRDIMMS are supported */ | 
 | 	return MEM_RDDR4; | 
 | } | 
 |  | 
 | static u8 get_node_id(struct sbridge_pvt *pvt) | 
 | { | 
 | 	u32 reg; | 
 | 	pci_read_config_dword(pvt->pci_br0, SAD_CONTROL, ®); | 
 | 	return GET_BITFIELD(reg, 0, 2); | 
 | } | 
 |  | 
 | static u8 haswell_get_node_id(struct sbridge_pvt *pvt) | 
 | { | 
 | 	u32 reg; | 
 |  | 
 | 	pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, ®); | 
 | 	return GET_BITFIELD(reg, 0, 3); | 
 | } | 
 |  | 
 | static u8 knl_get_node_id(struct sbridge_pvt *pvt) | 
 | { | 
 | 	u32 reg; | 
 |  | 
 | 	pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, ®); | 
 | 	return GET_BITFIELD(reg, 0, 2); | 
 | } | 
 |  | 
 | /* | 
 |  * Use the reporting bank number to determine which memory | 
 |  * controller (also known as "ha" for "home agent"). Sandy | 
 |  * Bridge only has one memory controller per socket, so the | 
 |  * answer is always zero. | 
 |  */ | 
 | static u8 sbridge_get_ha(u8 bank) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * On Ivy Bridge, Haswell and Broadwell the error may be in a | 
 |  * home agent bank (7, 8), or one of the per-channel memory | 
 |  * controller banks (9 .. 16). | 
 |  */ | 
 | static u8 ibridge_get_ha(u8 bank) | 
 | { | 
 | 	switch (bank) { | 
 | 	case 7 ... 8: | 
 | 		return bank - 7; | 
 | 	case 9 ... 16: | 
 | 		return (bank - 9) / 4; | 
 | 	default: | 
 | 		return 0xff; | 
 | 	} | 
 | } | 
 |  | 
 | /* Not used, but included for safety/symmetry */ | 
 | static u8 knl_get_ha(u8 bank) | 
 | { | 
 | 	return 0xff; | 
 | } | 
 |  | 
 | static u64 haswell_get_tolm(struct sbridge_pvt *pvt) | 
 | { | 
 | 	u32 reg; | 
 |  | 
 | 	pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOLM, ®); | 
 | 	return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff; | 
 | } | 
 |  | 
 | static u64 haswell_get_tohm(struct sbridge_pvt *pvt) | 
 | { | 
 | 	u64 rc; | 
 | 	u32 reg; | 
 |  | 
 | 	pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_0, ®); | 
 | 	rc = GET_BITFIELD(reg, 26, 31); | 
 | 	pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_1, ®); | 
 | 	rc = ((reg << 6) | rc) << 26; | 
 |  | 
 | 	return rc | 0x3ffffff; | 
 | } | 
 |  | 
 | static u64 knl_get_tolm(struct sbridge_pvt *pvt) | 
 | { | 
 | 	u32 reg; | 
 |  | 
 | 	pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOLM, ®); | 
 | 	return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff; | 
 | } | 
 |  | 
 | static u64 knl_get_tohm(struct sbridge_pvt *pvt) | 
 | { | 
 | 	u64 rc; | 
 | 	u32 reg_lo, reg_hi; | 
 |  | 
 | 	pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_0, ®_lo); | 
 | 	pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_1, ®_hi); | 
 | 	rc = ((u64)reg_hi << 32) | reg_lo; | 
 | 	return rc | 0x3ffffff; | 
 | } | 
 |  | 
 |  | 
 | static u64 haswell_rir_limit(u32 reg) | 
 | { | 
 | 	return (((u64)GET_BITFIELD(reg,  1, 11) + 1) << 29) - 1; | 
 | } | 
 |  | 
 | static inline u8 sad_pkg_socket(u8 pkg) | 
 | { | 
 | 	/* on Ivy Bridge, nodeID is SASS, where A is HA and S is node id */ | 
 | 	return ((pkg >> 3) << 2) | (pkg & 0x3); | 
 | } | 
 |  | 
 | static inline u8 sad_pkg_ha(u8 pkg) | 
 | { | 
 | 	return (pkg >> 2) & 0x1; | 
 | } | 
 |  | 
 | static int haswell_chan_hash(int idx, u64 addr) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	/* | 
 | 	 * XOR even bits from 12:26 to bit0 of idx, | 
 | 	 *     odd bits from 13:27 to bit1 | 
 | 	 */ | 
 | 	for (i = 12; i < 28; i += 2) | 
 | 		idx ^= (addr >> i) & 3; | 
 |  | 
 | 	return idx; | 
 | } | 
 |  | 
 | /* Low bits of TAD limit, and some metadata. */ | 
 | static const u32 knl_tad_dram_limit_lo[] = { | 
 | 	0x400, 0x500, 0x600, 0x700, | 
 | 	0x800, 0x900, 0xa00, 0xb00, | 
 | }; | 
 |  | 
 | /* Low bits of TAD offset. */ | 
 | static const u32 knl_tad_dram_offset_lo[] = { | 
 | 	0x404, 0x504, 0x604, 0x704, | 
 | 	0x804, 0x904, 0xa04, 0xb04, | 
 | }; | 
 |  | 
 | /* High 16 bits of TAD limit and offset. */ | 
 | static const u32 knl_tad_dram_hi[] = { | 
 | 	0x408, 0x508, 0x608, 0x708, | 
 | 	0x808, 0x908, 0xa08, 0xb08, | 
 | }; | 
 |  | 
 | /* Number of ways a tad entry is interleaved. */ | 
 | static const u32 knl_tad_ways[] = { | 
 | 	8, 6, 4, 3, 2, 1, | 
 | }; | 
 |  | 
 | /* | 
 |  * Retrieve the n'th Target Address Decode table entry | 
 |  * from the memory controller's TAD table. | 
 |  * | 
 |  * @pvt:	driver private data | 
 |  * @entry:	which entry you want to retrieve | 
 |  * @mc:		which memory controller (0 or 1) | 
 |  * @offset:	output tad range offset | 
 |  * @limit:	output address of first byte above tad range | 
 |  * @ways:	output number of interleave ways | 
 |  * | 
 |  * The offset value has curious semantics.  It's a sort of running total | 
 |  * of the sizes of all the memory regions that aren't mapped in this | 
 |  * tad table. | 
 |  */ | 
 | static int knl_get_tad(const struct sbridge_pvt *pvt, | 
 | 		const int entry, | 
 | 		const int mc, | 
 | 		u64 *offset, | 
 | 		u64 *limit, | 
 | 		int *ways) | 
 | { | 
 | 	u32 reg_limit_lo, reg_offset_lo, reg_hi; | 
 | 	struct pci_dev *pci_mc; | 
 | 	int way_id; | 
 |  | 
 | 	switch (mc) { | 
 | 	case 0: | 
 | 		pci_mc = pvt->knl.pci_mc0; | 
 | 		break; | 
 | 	case 1: | 
 | 		pci_mc = pvt->knl.pci_mc1; | 
 | 		break; | 
 | 	default: | 
 | 		WARN_ON(1); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	pci_read_config_dword(pci_mc, | 
 | 			knl_tad_dram_limit_lo[entry], ®_limit_lo); | 
 | 	pci_read_config_dword(pci_mc, | 
 | 			knl_tad_dram_offset_lo[entry], ®_offset_lo); | 
 | 	pci_read_config_dword(pci_mc, | 
 | 			knl_tad_dram_hi[entry], ®_hi); | 
 |  | 
 | 	/* Is this TAD entry enabled? */ | 
 | 	if (!GET_BITFIELD(reg_limit_lo, 0, 0)) | 
 | 		return -ENODEV; | 
 |  | 
 | 	way_id = GET_BITFIELD(reg_limit_lo, 3, 5); | 
 |  | 
 | 	if (way_id < ARRAY_SIZE(knl_tad_ways)) { | 
 | 		*ways = knl_tad_ways[way_id]; | 
 | 	} else { | 
 | 		*ways = 0; | 
 | 		sbridge_printk(KERN_ERR, | 
 | 				"Unexpected value %d in mc_tad_limit_lo wayness field\n", | 
 | 				way_id); | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * The least significant 6 bits of base and limit are truncated. | 
 | 	 * For limit, we fill the missing bits with 1s. | 
 | 	 */ | 
 | 	*offset = ((u64) GET_BITFIELD(reg_offset_lo, 6, 31) << 6) | | 
 | 				((u64) GET_BITFIELD(reg_hi, 0,  15) << 32); | 
 | 	*limit = ((u64) GET_BITFIELD(reg_limit_lo,  6, 31) << 6) | 63 | | 
 | 				((u64) GET_BITFIELD(reg_hi, 16, 31) << 32); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Determine which memory controller is responsible for a given channel. */ | 
 | static int knl_channel_mc(int channel) | 
 | { | 
 | 	WARN_ON(channel < 0 || channel >= 6); | 
 |  | 
 | 	return channel < 3 ? 1 : 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Get the Nth entry from EDC_ROUTE_TABLE register. | 
 |  * (This is the per-tile mapping of logical interleave targets to | 
 |  *  physical EDC modules.) | 
 |  * | 
 |  * entry 0: 0:2 | 
 |  *       1: 3:5 | 
 |  *       2: 6:8 | 
 |  *       3: 9:11 | 
 |  *       4: 12:14 | 
 |  *       5: 15:17 | 
 |  *       6: 18:20 | 
 |  *       7: 21:23 | 
 |  * reserved: 24:31 | 
 |  */ | 
 | static u32 knl_get_edc_route(int entry, u32 reg) | 
 | { | 
 | 	WARN_ON(entry >= KNL_MAX_EDCS); | 
 | 	return GET_BITFIELD(reg, entry*3, (entry*3)+2); | 
 | } | 
 |  | 
 | /* | 
 |  * Get the Nth entry from MC_ROUTE_TABLE register. | 
 |  * (This is the per-tile mapping of logical interleave targets to | 
 |  *  physical DRAM channels modules.) | 
 |  * | 
 |  * entry 0: mc 0:2   channel 18:19 | 
 |  *       1: mc 3:5   channel 20:21 | 
 |  *       2: mc 6:8   channel 22:23 | 
 |  *       3: mc 9:11  channel 24:25 | 
 |  *       4: mc 12:14 channel 26:27 | 
 |  *       5: mc 15:17 channel 28:29 | 
 |  * reserved: 30:31 | 
 |  * | 
 |  * Though we have 3 bits to identify the MC, we should only see | 
 |  * the values 0 or 1. | 
 |  */ | 
 |  | 
 | static u32 knl_get_mc_route(int entry, u32 reg) | 
 | { | 
 | 	int mc, chan; | 
 |  | 
 | 	WARN_ON(entry >= KNL_MAX_CHANNELS); | 
 |  | 
 | 	mc = GET_BITFIELD(reg, entry*3, (entry*3)+2); | 
 | 	chan = GET_BITFIELD(reg, (entry*2) + 18, (entry*2) + 18 + 1); | 
 |  | 
 | 	return knl_channel_remap(mc, chan); | 
 | } | 
 |  | 
 | /* | 
 |  * Render the EDC_ROUTE register in human-readable form. | 
 |  * Output string s should be at least KNL_MAX_EDCS*2 bytes. | 
 |  */ | 
 | static void knl_show_edc_route(u32 reg, char *s) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < KNL_MAX_EDCS; i++) { | 
 | 		s[i*2] = knl_get_edc_route(i, reg) + '0'; | 
 | 		s[i*2+1] = '-'; | 
 | 	} | 
 |  | 
 | 	s[KNL_MAX_EDCS*2 - 1] = '\0'; | 
 | } | 
 |  | 
 | /* | 
 |  * Render the MC_ROUTE register in human-readable form. | 
 |  * Output string s should be at least KNL_MAX_CHANNELS*2 bytes. | 
 |  */ | 
 | static void knl_show_mc_route(u32 reg, char *s) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < KNL_MAX_CHANNELS; i++) { | 
 | 		s[i*2] = knl_get_mc_route(i, reg) + '0'; | 
 | 		s[i*2+1] = '-'; | 
 | 	} | 
 |  | 
 | 	s[KNL_MAX_CHANNELS*2 - 1] = '\0'; | 
 | } | 
 |  | 
 | #define KNL_EDC_ROUTE 0xb8 | 
 | #define KNL_MC_ROUTE 0xb4 | 
 |  | 
 | /* Is this dram rule backed by regular DRAM in flat mode? */ | 
 | #define KNL_EDRAM(reg) GET_BITFIELD(reg, 29, 29) | 
 |  | 
 | /* Is this dram rule cached? */ | 
 | #define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28) | 
 |  | 
 | /* Is this rule backed by edc ? */ | 
 | #define KNL_EDRAM_ONLY(reg) GET_BITFIELD(reg, 29, 29) | 
 |  | 
 | /* Is this rule backed by DRAM, cacheable in EDRAM? */ | 
 | #define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28) | 
 |  | 
 | /* Is this rule mod3? */ | 
 | #define KNL_MOD3(reg) GET_BITFIELD(reg, 27, 27) | 
 |  | 
 | /* | 
 |  * Figure out how big our RAM modules are. | 
 |  * | 
 |  * The DIMMMTR register in KNL doesn't tell us the size of the DIMMs, so we | 
 |  * have to figure this out from the SAD rules, interleave lists, route tables, | 
 |  * and TAD rules. | 
 |  * | 
 |  * SAD rules can have holes in them (e.g. the 3G-4G hole), so we have to | 
 |  * inspect the TAD rules to figure out how large the SAD regions really are. | 
 |  * | 
 |  * When we know the real size of a SAD region and how many ways it's | 
 |  * interleaved, we know the individual contribution of each channel to | 
 |  * TAD is size/ways. | 
 |  * | 
 |  * Finally, we have to check whether each channel participates in each SAD | 
 |  * region. | 
 |  * | 
 |  * Fortunately, KNL only supports one DIMM per channel, so once we know how | 
 |  * much memory the channel uses, we know the DIMM is at least that large. | 
 |  * (The BIOS might possibly choose not to map all available memory, in which | 
 |  * case we will underreport the size of the DIMM.) | 
 |  * | 
 |  * In theory, we could try to determine the EDC sizes as well, but that would | 
 |  * only work in flat mode, not in cache mode. | 
 |  * | 
 |  * @mc_sizes: Output sizes of channels (must have space for KNL_MAX_CHANNELS | 
 |  *            elements) | 
 |  */ | 
 | static int knl_get_dimm_capacity(struct sbridge_pvt *pvt, u64 *mc_sizes) | 
 | { | 
 | 	u64 sad_base, sad_limit = 0; | 
 | 	u64 tad_base, tad_size, tad_limit, tad_deadspace, tad_livespace; | 
 | 	int sad_rule = 0; | 
 | 	int tad_rule = 0; | 
 | 	int intrlv_ways, tad_ways; | 
 | 	u32 first_pkg, pkg; | 
 | 	int i; | 
 | 	u64 sad_actual_size[2]; /* sad size accounting for holes, per mc */ | 
 | 	u32 dram_rule, interleave_reg; | 
 | 	u32 mc_route_reg[KNL_MAX_CHAS]; | 
 | 	u32 edc_route_reg[KNL_MAX_CHAS]; | 
 | 	int edram_only; | 
 | 	char edc_route_string[KNL_MAX_EDCS*2]; | 
 | 	char mc_route_string[KNL_MAX_CHANNELS*2]; | 
 | 	int cur_reg_start; | 
 | 	int mc; | 
 | 	int channel; | 
 | 	int participants[KNL_MAX_CHANNELS]; | 
 |  | 
 | 	for (i = 0; i < KNL_MAX_CHANNELS; i++) | 
 | 		mc_sizes[i] = 0; | 
 |  | 
 | 	/* Read the EDC route table in each CHA. */ | 
 | 	cur_reg_start = 0; | 
 | 	for (i = 0; i < KNL_MAX_CHAS; i++) { | 
 | 		pci_read_config_dword(pvt->knl.pci_cha[i], | 
 | 				KNL_EDC_ROUTE, &edc_route_reg[i]); | 
 |  | 
 | 		if (i > 0 && edc_route_reg[i] != edc_route_reg[i-1]) { | 
 | 			knl_show_edc_route(edc_route_reg[i-1], | 
 | 					edc_route_string); | 
 | 			if (cur_reg_start == i-1) | 
 | 				edac_dbg(0, "edc route table for CHA %d: %s\n", | 
 | 					cur_reg_start, edc_route_string); | 
 | 			else | 
 | 				edac_dbg(0, "edc route table for CHA %d-%d: %s\n", | 
 | 					cur_reg_start, i-1, edc_route_string); | 
 | 			cur_reg_start = i; | 
 | 		} | 
 | 	} | 
 | 	knl_show_edc_route(edc_route_reg[i-1], edc_route_string); | 
 | 	if (cur_reg_start == i-1) | 
 | 		edac_dbg(0, "edc route table for CHA %d: %s\n", | 
 | 			cur_reg_start, edc_route_string); | 
 | 	else | 
 | 		edac_dbg(0, "edc route table for CHA %d-%d: %s\n", | 
 | 			cur_reg_start, i-1, edc_route_string); | 
 |  | 
 | 	/* Read the MC route table in each CHA. */ | 
 | 	cur_reg_start = 0; | 
 | 	for (i = 0; i < KNL_MAX_CHAS; i++) { | 
 | 		pci_read_config_dword(pvt->knl.pci_cha[i], | 
 | 			KNL_MC_ROUTE, &mc_route_reg[i]); | 
 |  | 
 | 		if (i > 0 && mc_route_reg[i] != mc_route_reg[i-1]) { | 
 | 			knl_show_mc_route(mc_route_reg[i-1], mc_route_string); | 
 | 			if (cur_reg_start == i-1) | 
 | 				edac_dbg(0, "mc route table for CHA %d: %s\n", | 
 | 					cur_reg_start, mc_route_string); | 
 | 			else | 
 | 				edac_dbg(0, "mc route table for CHA %d-%d: %s\n", | 
 | 					cur_reg_start, i-1, mc_route_string); | 
 | 			cur_reg_start = i; | 
 | 		} | 
 | 	} | 
 | 	knl_show_mc_route(mc_route_reg[i-1], mc_route_string); | 
 | 	if (cur_reg_start == i-1) | 
 | 		edac_dbg(0, "mc route table for CHA %d: %s\n", | 
 | 			cur_reg_start, mc_route_string); | 
 | 	else | 
 | 		edac_dbg(0, "mc route table for CHA %d-%d: %s\n", | 
 | 			cur_reg_start, i-1, mc_route_string); | 
 |  | 
 | 	/* Process DRAM rules */ | 
 | 	for (sad_rule = 0; sad_rule < pvt->info.max_sad; sad_rule++) { | 
 | 		/* previous limit becomes the new base */ | 
 | 		sad_base = sad_limit; | 
 |  | 
 | 		pci_read_config_dword(pvt->pci_sad0, | 
 | 			pvt->info.dram_rule[sad_rule], &dram_rule); | 
 |  | 
 | 		if (!DRAM_RULE_ENABLE(dram_rule)) | 
 | 			break; | 
 |  | 
 | 		edram_only = KNL_EDRAM_ONLY(dram_rule); | 
 |  | 
 | 		sad_limit = pvt->info.sad_limit(dram_rule)+1; | 
 |  | 
 | 		pci_read_config_dword(pvt->pci_sad0, | 
 | 			pvt->info.interleave_list[sad_rule], &interleave_reg); | 
 |  | 
 | 		/* | 
 | 		 * Find out how many ways this dram rule is interleaved. | 
 | 		 * We stop when we see the first channel again. | 
 | 		 */ | 
 | 		first_pkg = sad_pkg(pvt->info.interleave_pkg, | 
 | 						interleave_reg, 0); | 
 | 		for (intrlv_ways = 1; intrlv_ways < 8; intrlv_ways++) { | 
 | 			pkg = sad_pkg(pvt->info.interleave_pkg, | 
 | 						interleave_reg, intrlv_ways); | 
 |  | 
 | 			if ((pkg & 0x8) == 0) { | 
 | 				/* | 
 | 				 * 0 bit means memory is non-local, | 
 | 				 * which KNL doesn't support | 
 | 				 */ | 
 | 				edac_dbg(0, "Unexpected interleave target %d\n", | 
 | 					pkg); | 
 | 				return -1; | 
 | 			} | 
 |  | 
 | 			if (pkg == first_pkg) | 
 | 				break; | 
 | 		} | 
 | 		if (KNL_MOD3(dram_rule)) | 
 | 			intrlv_ways *= 3; | 
 |  | 
 | 		edac_dbg(3, "dram rule %d (base 0x%llx, limit 0x%llx), %d way interleave%s\n", | 
 | 			sad_rule, | 
 | 			sad_base, | 
 | 			sad_limit, | 
 | 			intrlv_ways, | 
 | 			edram_only ? ", EDRAM" : ""); | 
 |  | 
 | 		/* | 
 | 		 * Find out how big the SAD region really is by iterating | 
 | 		 * over TAD tables (SAD regions may contain holes). | 
 | 		 * Each memory controller might have a different TAD table, so | 
 | 		 * we have to look at both. | 
 | 		 * | 
 | 		 * Livespace is the memory that's mapped in this TAD table, | 
 | 		 * deadspace is the holes (this could be the MMIO hole, or it | 
 | 		 * could be memory that's mapped by the other TAD table but | 
 | 		 * not this one). | 
 | 		 */ | 
 | 		for (mc = 0; mc < 2; mc++) { | 
 | 			sad_actual_size[mc] = 0; | 
 | 			tad_livespace = 0; | 
 | 			for (tad_rule = 0; | 
 | 					tad_rule < ARRAY_SIZE( | 
 | 						knl_tad_dram_limit_lo); | 
 | 					tad_rule++) { | 
 | 				if (knl_get_tad(pvt, | 
 | 						tad_rule, | 
 | 						mc, | 
 | 						&tad_deadspace, | 
 | 						&tad_limit, | 
 | 						&tad_ways)) | 
 | 					break; | 
 |  | 
 | 				tad_size = (tad_limit+1) - | 
 | 					(tad_livespace + tad_deadspace); | 
 | 				tad_livespace += tad_size; | 
 | 				tad_base = (tad_limit+1) - tad_size; | 
 |  | 
 | 				if (tad_base < sad_base) { | 
 | 					if (tad_limit > sad_base) | 
 | 						edac_dbg(0, "TAD region overlaps lower SAD boundary -- TAD tables may be configured incorrectly.\n"); | 
 | 				} else if (tad_base < sad_limit) { | 
 | 					if (tad_limit+1 > sad_limit) { | 
 | 						edac_dbg(0, "TAD region overlaps upper SAD boundary -- TAD tables may be configured incorrectly.\n"); | 
 | 					} else { | 
 | 						/* TAD region is completely inside SAD region */ | 
 | 						edac_dbg(3, "TAD region %d 0x%llx - 0x%llx (%lld bytes) table%d\n", | 
 | 							tad_rule, tad_base, | 
 | 							tad_limit, tad_size, | 
 | 							mc); | 
 | 						sad_actual_size[mc] += tad_size; | 
 | 					} | 
 | 				} | 
 | 			} | 
 | 		} | 
 |  | 
 | 		for (mc = 0; mc < 2; mc++) { | 
 | 			edac_dbg(3, " total TAD DRAM footprint in table%d : 0x%llx (%lld bytes)\n", | 
 | 				mc, sad_actual_size[mc], sad_actual_size[mc]); | 
 | 		} | 
 |  | 
 | 		/* Ignore EDRAM rule */ | 
 | 		if (edram_only) | 
 | 			continue; | 
 |  | 
 | 		/* Figure out which channels participate in interleave. */ | 
 | 		for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) | 
 | 			participants[channel] = 0; | 
 |  | 
 | 		/* For each channel, does at least one CHA have | 
 | 		 * this channel mapped to the given target? | 
 | 		 */ | 
 | 		for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) { | 
 | 			int target; | 
 | 			int cha; | 
 |  | 
 | 			for (target = 0; target < KNL_MAX_CHANNELS; target++) { | 
 | 				for (cha = 0; cha < KNL_MAX_CHAS; cha++) { | 
 | 					if (knl_get_mc_route(target, | 
 | 						mc_route_reg[cha]) == channel | 
 | 						&& !participants[channel]) { | 
 | 						participants[channel] = 1; | 
 | 						break; | 
 | 					} | 
 | 				} | 
 | 			} | 
 | 		} | 
 |  | 
 | 		for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) { | 
 | 			mc = knl_channel_mc(channel); | 
 | 			if (participants[channel]) { | 
 | 				edac_dbg(4, "mc channel %d contributes %lld bytes via sad entry %d\n", | 
 | 					channel, | 
 | 					sad_actual_size[mc]/intrlv_ways, | 
 | 					sad_rule); | 
 | 				mc_sizes[channel] += | 
 | 					sad_actual_size[mc]/intrlv_ways; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void get_source_id(struct mem_ctl_info *mci) | 
 | { | 
 | 	struct sbridge_pvt *pvt = mci->pvt_info; | 
 | 	u32 reg; | 
 |  | 
 | 	if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL || | 
 | 	    pvt->info.type == KNIGHTS_LANDING) | 
 | 		pci_read_config_dword(pvt->pci_sad1, SAD_TARGET, ®); | 
 | 	else | 
 | 		pci_read_config_dword(pvt->pci_br0, SAD_TARGET, ®); | 
 |  | 
 | 	if (pvt->info.type == KNIGHTS_LANDING) | 
 | 		pvt->sbridge_dev->source_id = SOURCE_ID_KNL(reg); | 
 | 	else | 
 | 		pvt->sbridge_dev->source_id = SOURCE_ID(reg); | 
 | } | 
 |  | 
 | static int __populate_dimms(struct mem_ctl_info *mci, | 
 | 			    u64 knl_mc_sizes[KNL_MAX_CHANNELS], | 
 | 			    enum edac_type mode) | 
 | { | 
 | 	struct sbridge_pvt *pvt = mci->pvt_info; | 
 | 	int channels = pvt->info.type == KNIGHTS_LANDING ? KNL_MAX_CHANNELS | 
 | 							 : NUM_CHANNELS; | 
 | 	unsigned int i, j, banks, ranks, rows, cols, npages; | 
 | 	struct dimm_info *dimm; | 
 | 	enum mem_type mtype; | 
 | 	u64 size; | 
 |  | 
 | 	mtype = pvt->info.get_memory_type(pvt); | 
 | 	if (mtype == MEM_RDDR3 || mtype == MEM_RDDR4) | 
 | 		edac_dbg(0, "Memory is registered\n"); | 
 | 	else if (mtype == MEM_UNKNOWN) | 
 | 		edac_dbg(0, "Cannot determine memory type\n"); | 
 | 	else | 
 | 		edac_dbg(0, "Memory is unregistered\n"); | 
 |  | 
 | 	if (mtype == MEM_DDR4 || mtype == MEM_RDDR4) | 
 | 		banks = 16; | 
 | 	else | 
 | 		banks = 8; | 
 |  | 
 | 	for (i = 0; i < channels; i++) { | 
 | 		u32 mtr, amap = 0; | 
 |  | 
 | 		int max_dimms_per_channel; | 
 |  | 
 | 		if (pvt->info.type == KNIGHTS_LANDING) { | 
 | 			max_dimms_per_channel = 1; | 
 | 			if (!pvt->knl.pci_channel[i]) | 
 | 				continue; | 
 | 		} else { | 
 | 			max_dimms_per_channel = ARRAY_SIZE(mtr_regs); | 
 | 			if (!pvt->pci_tad[i]) | 
 | 				continue; | 
 | 			pci_read_config_dword(pvt->pci_tad[i], 0x8c, &amap); | 
 | 		} | 
 |  | 
 | 		for (j = 0; j < max_dimms_per_channel; j++) { | 
 | 			dimm = edac_get_dimm(mci, i, j, 0); | 
 | 			if (pvt->info.type == KNIGHTS_LANDING) { | 
 | 				pci_read_config_dword(pvt->knl.pci_channel[i], | 
 | 					knl_mtr_reg, &mtr); | 
 | 			} else { | 
 | 				pci_read_config_dword(pvt->pci_tad[i], | 
 | 					mtr_regs[j], &mtr); | 
 | 			} | 
 | 			edac_dbg(4, "Channel #%d  MTR%d = %x\n", i, j, mtr); | 
 |  | 
 | 			if (IS_DIMM_PRESENT(mtr)) { | 
 | 				if (!IS_ECC_ENABLED(pvt->info.mcmtr)) { | 
 | 					sbridge_printk(KERN_ERR, "CPU SrcID #%d, Ha #%d, Channel #%d has DIMMs, but ECC is disabled\n", | 
 | 						       pvt->sbridge_dev->source_id, | 
 | 						       pvt->sbridge_dev->dom, i); | 
 | 					return -ENODEV; | 
 | 				} | 
 | 				pvt->channel[i].dimms++; | 
 |  | 
 | 				ranks = numrank(pvt->info.type, mtr); | 
 |  | 
 | 				if (pvt->info.type == KNIGHTS_LANDING) { | 
 | 					/* For DDR4, this is fixed. */ | 
 | 					cols = 1 << 10; | 
 | 					rows = knl_mc_sizes[i] / | 
 | 						((u64) cols * ranks * banks * 8); | 
 | 				} else { | 
 | 					rows = numrow(mtr); | 
 | 					cols = numcol(mtr); | 
 | 				} | 
 |  | 
 | 				size = ((u64)rows * cols * banks * ranks) >> (20 - 3); | 
 | 				npages = MiB_TO_PAGES(size); | 
 |  | 
 | 				edac_dbg(0, "mc#%d: ha %d channel %d, dimm %d, %lld MiB (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n", | 
 | 					 pvt->sbridge_dev->mc, pvt->sbridge_dev->dom, i, j, | 
 | 					 size, npages, | 
 | 					 banks, ranks, rows, cols); | 
 |  | 
 | 				dimm->nr_pages = npages; | 
 | 				dimm->grain = 32; | 
 | 				dimm->dtype = pvt->info.get_width(pvt, mtr); | 
 | 				dimm->mtype = mtype; | 
 | 				dimm->edac_mode = mode; | 
 | 				pvt->channel[i].dimm[j].rowbits = order_base_2(rows); | 
 | 				pvt->channel[i].dimm[j].colbits = order_base_2(cols); | 
 | 				pvt->channel[i].dimm[j].bank_xor_enable = | 
 | 						GET_BITFIELD(pvt->info.mcmtr, 9, 9); | 
 | 				pvt->channel[i].dimm[j].amap_fine = GET_BITFIELD(amap, 0, 0); | 
 | 				snprintf(dimm->label, sizeof(dimm->label), | 
 | 						 "CPU_SrcID#%u_Ha#%u_Chan#%u_DIMM#%u", | 
 | 						 pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom, i, j); | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int get_dimm_config(struct mem_ctl_info *mci) | 
 | { | 
 | 	struct sbridge_pvt *pvt = mci->pvt_info; | 
 | 	u64 knl_mc_sizes[KNL_MAX_CHANNELS]; | 
 | 	enum edac_type mode; | 
 | 	u32 reg; | 
 |  | 
 | 	pvt->sbridge_dev->node_id = pvt->info.get_node_id(pvt); | 
 | 	edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n", | 
 | 		 pvt->sbridge_dev->mc, | 
 | 		 pvt->sbridge_dev->node_id, | 
 | 		 pvt->sbridge_dev->source_id); | 
 |  | 
 | 	/* KNL doesn't support mirroring or lockstep, | 
 | 	 * and is always closed page | 
 | 	 */ | 
 | 	if (pvt->info.type == KNIGHTS_LANDING) { | 
 | 		mode = EDAC_S4ECD4ED; | 
 | 		pvt->mirror_mode = NON_MIRRORING; | 
 | 		pvt->is_cur_addr_mirrored = false; | 
 |  | 
 | 		if (knl_get_dimm_capacity(pvt, knl_mc_sizes) != 0) | 
 | 			return -1; | 
 | 		if (pci_read_config_dword(pvt->pci_ta, KNL_MCMTR, &pvt->info.mcmtr)) { | 
 | 			edac_dbg(0, "Failed to read KNL_MCMTR register\n"); | 
 | 			return -ENODEV; | 
 | 		} | 
 | 	} else { | 
 | 		if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) { | 
 | 			if (pci_read_config_dword(pvt->pci_ha, HASWELL_HASYSDEFEATURE2, ®)) { | 
 | 				edac_dbg(0, "Failed to read HASWELL_HASYSDEFEATURE2 register\n"); | 
 | 				return -ENODEV; | 
 | 			} | 
 | 			pvt->is_chan_hash = GET_BITFIELD(reg, 21, 21); | 
 | 			if (GET_BITFIELD(reg, 28, 28)) { | 
 | 				pvt->mirror_mode = ADDR_RANGE_MIRRORING; | 
 | 				edac_dbg(0, "Address range partial memory mirroring is enabled\n"); | 
 | 				goto next; | 
 | 			} | 
 | 		} | 
 | 		if (pci_read_config_dword(pvt->pci_ras, RASENABLES, ®)) { | 
 | 			edac_dbg(0, "Failed to read RASENABLES register\n"); | 
 | 			return -ENODEV; | 
 | 		} | 
 | 		if (IS_MIRROR_ENABLED(reg)) { | 
 | 			pvt->mirror_mode = FULL_MIRRORING; | 
 | 			edac_dbg(0, "Full memory mirroring is enabled\n"); | 
 | 		} else { | 
 | 			pvt->mirror_mode = NON_MIRRORING; | 
 | 			edac_dbg(0, "Memory mirroring is disabled\n"); | 
 | 		} | 
 |  | 
 | next: | 
 | 		if (pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr)) { | 
 | 			edac_dbg(0, "Failed to read MCMTR register\n"); | 
 | 			return -ENODEV; | 
 | 		} | 
 | 		if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) { | 
 | 			edac_dbg(0, "Lockstep is enabled\n"); | 
 | 			mode = EDAC_S8ECD8ED; | 
 | 			pvt->is_lockstep = true; | 
 | 		} else { | 
 | 			edac_dbg(0, "Lockstep is disabled\n"); | 
 | 			mode = EDAC_S4ECD4ED; | 
 | 			pvt->is_lockstep = false; | 
 | 		} | 
 | 		if (IS_CLOSE_PG(pvt->info.mcmtr)) { | 
 | 			edac_dbg(0, "address map is on closed page mode\n"); | 
 | 			pvt->is_close_pg = true; | 
 | 		} else { | 
 | 			edac_dbg(0, "address map is on open page mode\n"); | 
 | 			pvt->is_close_pg = false; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return __populate_dimms(mci, knl_mc_sizes, mode); | 
 | } | 
 |  | 
 | static void get_memory_layout(const struct mem_ctl_info *mci) | 
 | { | 
 | 	struct sbridge_pvt *pvt = mci->pvt_info; | 
 | 	int i, j, k, n_sads, n_tads, sad_interl; | 
 | 	u32 reg; | 
 | 	u64 limit, prv = 0; | 
 | 	u64 tmp_mb; | 
 | 	u32 gb, mb; | 
 | 	u32 rir_way; | 
 |  | 
 | 	/* | 
 | 	 * Step 1) Get TOLM/TOHM ranges | 
 | 	 */ | 
 |  | 
 | 	pvt->tolm = pvt->info.get_tolm(pvt); | 
 | 	tmp_mb = (1 + pvt->tolm) >> 20; | 
 |  | 
 | 	gb = div_u64_rem(tmp_mb, 1024, &mb); | 
 | 	edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n", | 
 | 		gb, (mb*1000)/1024, (u64)pvt->tolm); | 
 |  | 
 | 	/* Address range is already 45:25 */ | 
 | 	pvt->tohm = pvt->info.get_tohm(pvt); | 
 | 	tmp_mb = (1 + pvt->tohm) >> 20; | 
 |  | 
 | 	gb = div_u64_rem(tmp_mb, 1024, &mb); | 
 | 	edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)\n", | 
 | 		gb, (mb*1000)/1024, (u64)pvt->tohm); | 
 |  | 
 | 	/* | 
 | 	 * Step 2) Get SAD range and SAD Interleave list | 
 | 	 * TAD registers contain the interleave wayness. However, it | 
 | 	 * seems simpler to just discover it indirectly, with the | 
 | 	 * algorithm bellow. | 
 | 	 */ | 
 | 	prv = 0; | 
 | 	for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) { | 
 | 		/* SAD_LIMIT Address range is 45:26 */ | 
 | 		pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads], | 
 | 				      ®); | 
 | 		limit = pvt->info.sad_limit(reg); | 
 |  | 
 | 		if (!DRAM_RULE_ENABLE(reg)) | 
 | 			continue; | 
 |  | 
 | 		if (limit <= prv) | 
 | 			break; | 
 |  | 
 | 		tmp_mb = (limit + 1) >> 20; | 
 | 		gb = div_u64_rem(tmp_mb, 1024, &mb); | 
 | 		edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n", | 
 | 			 n_sads, | 
 | 			 show_dram_attr(pvt->info.dram_attr(reg)), | 
 | 			 gb, (mb*1000)/1024, | 
 | 			 ((u64)tmp_mb) << 20L, | 
 | 			 get_intlv_mode_str(reg, pvt->info.type), | 
 | 			 reg); | 
 | 		prv = limit; | 
 |  | 
 | 		pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads], | 
 | 				      ®); | 
 | 		sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0); | 
 | 		for (j = 0; j < 8; j++) { | 
 | 			u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, j); | 
 | 			if (j > 0 && sad_interl == pkg) | 
 | 				break; | 
 |  | 
 | 			edac_dbg(0, "SAD#%d, interleave #%d: %d\n", | 
 | 				 n_sads, j, pkg); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (pvt->info.type == KNIGHTS_LANDING) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * Step 3) Get TAD range | 
 | 	 */ | 
 | 	prv = 0; | 
 | 	for (n_tads = 0; n_tads < MAX_TAD; n_tads++) { | 
 | 		pci_read_config_dword(pvt->pci_ha, tad_dram_rule[n_tads], ®); | 
 | 		limit = TAD_LIMIT(reg); | 
 | 		if (limit <= prv) | 
 | 			break; | 
 | 		tmp_mb = (limit + 1) >> 20; | 
 |  | 
 | 		gb = div_u64_rem(tmp_mb, 1024, &mb); | 
 | 		edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n", | 
 | 			 n_tads, gb, (mb*1000)/1024, | 
 | 			 ((u64)tmp_mb) << 20L, | 
 | 			 (u32)(1 << TAD_SOCK(reg)), | 
 | 			 (u32)TAD_CH(reg) + 1, | 
 | 			 (u32)TAD_TGT0(reg), | 
 | 			 (u32)TAD_TGT1(reg), | 
 | 			 (u32)TAD_TGT2(reg), | 
 | 			 (u32)TAD_TGT3(reg), | 
 | 			 reg); | 
 | 		prv = limit; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Step 4) Get TAD offsets, per each channel | 
 | 	 */ | 
 | 	for (i = 0; i < NUM_CHANNELS; i++) { | 
 | 		if (!pvt->channel[i].dimms) | 
 | 			continue; | 
 | 		for (j = 0; j < n_tads; j++) { | 
 | 			pci_read_config_dword(pvt->pci_tad[i], | 
 | 					      tad_ch_nilv_offset[j], | 
 | 					      ®); | 
 | 			tmp_mb = TAD_OFFSET(reg) >> 20; | 
 | 			gb = div_u64_rem(tmp_mb, 1024, &mb); | 
 | 			edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n", | 
 | 				 i, j, | 
 | 				 gb, (mb*1000)/1024, | 
 | 				 ((u64)tmp_mb) << 20L, | 
 | 				 reg); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Step 6) Get RIR Wayness/Limit, per each channel | 
 | 	 */ | 
 | 	for (i = 0; i < NUM_CHANNELS; i++) { | 
 | 		if (!pvt->channel[i].dimms) | 
 | 			continue; | 
 | 		for (j = 0; j < MAX_RIR_RANGES; j++) { | 
 | 			pci_read_config_dword(pvt->pci_tad[i], | 
 | 					      rir_way_limit[j], | 
 | 					      ®); | 
 |  | 
 | 			if (!IS_RIR_VALID(reg)) | 
 | 				continue; | 
 |  | 
 | 			tmp_mb = pvt->info.rir_limit(reg) >> 20; | 
 | 			rir_way = 1 << RIR_WAY(reg); | 
 | 			gb = div_u64_rem(tmp_mb, 1024, &mb); | 
 | 			edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n", | 
 | 				 i, j, | 
 | 				 gb, (mb*1000)/1024, | 
 | 				 ((u64)tmp_mb) << 20L, | 
 | 				 rir_way, | 
 | 				 reg); | 
 |  | 
 | 			for (k = 0; k < rir_way; k++) { | 
 | 				pci_read_config_dword(pvt->pci_tad[i], | 
 | 						      rir_offset[j][k], | 
 | 						      ®); | 
 | 				tmp_mb = RIR_OFFSET(pvt->info.type, reg) << 6; | 
 |  | 
 | 				gb = div_u64_rem(tmp_mb, 1024, &mb); | 
 | 				edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n", | 
 | 					 i, j, k, | 
 | 					 gb, (mb*1000)/1024, | 
 | 					 ((u64)tmp_mb) << 20L, | 
 | 					 (u32)RIR_RNK_TGT(pvt->info.type, reg), | 
 | 					 reg); | 
 | 			} | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static struct mem_ctl_info *get_mci_for_node_id(u8 node_id, u8 ha) | 
 | { | 
 | 	struct sbridge_dev *sbridge_dev; | 
 |  | 
 | 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) { | 
 | 		if (sbridge_dev->node_id == node_id && sbridge_dev->dom == ha) | 
 | 			return sbridge_dev->mci; | 
 | 	} | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static u8 sb_close_row[] = { | 
 | 	15, 16, 17, 18, 20, 21, 22, 28, 10, 11, 12, 13, 29, 30, 31, 32, 33 | 
 | }; | 
 |  | 
 | static u8 sb_close_column[] = { | 
 | 	3, 4, 5, 14, 19, 23, 24, 25, 26, 27 | 
 | }; | 
 |  | 
 | static u8 sb_open_row[] = { | 
 | 	14, 15, 16, 20, 28, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33 | 
 | }; | 
 |  | 
 | static u8 sb_open_column[] = { | 
 | 	3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | 
 | }; | 
 |  | 
 | static u8 sb_open_fine_column[] = { | 
 | 	3, 4, 5, 7, 8, 9, 10, 11, 12, 13 | 
 | }; | 
 |  | 
 | static int sb_bits(u64 addr, int nbits, u8 *bits) | 
 | { | 
 | 	int i, res = 0; | 
 |  | 
 | 	for (i = 0; i < nbits; i++) | 
 | 		res |= ((addr >> bits[i]) & 1) << i; | 
 | 	return res; | 
 | } | 
 |  | 
 | static int sb_bank_bits(u64 addr, int b0, int b1, int do_xor, int x0, int x1) | 
 | { | 
 | 	int ret = GET_BITFIELD(addr, b0, b0) | (GET_BITFIELD(addr, b1, b1) << 1); | 
 |  | 
 | 	if (do_xor) | 
 | 		ret ^= GET_BITFIELD(addr, x0, x0) | (GET_BITFIELD(addr, x1, x1) << 1); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static bool sb_decode_ddr4(struct mem_ctl_info *mci, int ch, u8 rank, | 
 | 			   u64 rank_addr, char *msg) | 
 | { | 
 | 	int dimmno = 0; | 
 | 	int row, col, bank_address, bank_group; | 
 | 	struct sbridge_pvt *pvt; | 
 | 	u32 bg0 = 0, rowbits = 0, colbits = 0; | 
 | 	u32 amap_fine = 0, bank_xor_enable = 0; | 
 |  | 
 | 	dimmno = (rank < 12) ? rank / 4 : 2; | 
 | 	pvt = mci->pvt_info; | 
 | 	amap_fine =  pvt->channel[ch].dimm[dimmno].amap_fine; | 
 | 	bg0 = amap_fine ? 6 : 13; | 
 | 	rowbits = pvt->channel[ch].dimm[dimmno].rowbits; | 
 | 	colbits = pvt->channel[ch].dimm[dimmno].colbits; | 
 | 	bank_xor_enable = pvt->channel[ch].dimm[dimmno].bank_xor_enable; | 
 |  | 
 | 	if (pvt->is_lockstep) { | 
 | 		pr_warn_once("LockStep row/column decode is not supported yet!\n"); | 
 | 		msg[0] = '\0'; | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	if (pvt->is_close_pg) { | 
 | 		row = sb_bits(rank_addr, rowbits, sb_close_row); | 
 | 		col = sb_bits(rank_addr, colbits, sb_close_column); | 
 | 		col |= 0x400; /* C10 is autoprecharge, always set */ | 
 | 		bank_address = sb_bank_bits(rank_addr, 8, 9, bank_xor_enable, 22, 28); | 
 | 		bank_group = sb_bank_bits(rank_addr, 6, 7, bank_xor_enable, 20, 21); | 
 | 	} else { | 
 | 		row = sb_bits(rank_addr, rowbits, sb_open_row); | 
 | 		if (amap_fine) | 
 | 			col = sb_bits(rank_addr, colbits, sb_open_fine_column); | 
 | 		else | 
 | 			col = sb_bits(rank_addr, colbits, sb_open_column); | 
 | 		bank_address = sb_bank_bits(rank_addr, 18, 19, bank_xor_enable, 22, 23); | 
 | 		bank_group = sb_bank_bits(rank_addr, bg0, 17, bank_xor_enable, 20, 21); | 
 | 	} | 
 |  | 
 | 	row &= (1u << rowbits) - 1; | 
 |  | 
 | 	sprintf(msg, "row:0x%x col:0x%x bank_addr:%d bank_group:%d", | 
 | 		row, col, bank_address, bank_group); | 
 | 	return true; | 
 | } | 
 |  | 
 | static bool sb_decode_ddr3(struct mem_ctl_info *mci, int ch, u8 rank, | 
 | 			   u64 rank_addr, char *msg) | 
 | { | 
 | 	pr_warn_once("DDR3 row/column decode not support yet!\n"); | 
 | 	msg[0] = '\0'; | 
 | 	return false; | 
 | } | 
 |  | 
 | static int get_memory_error_data(struct mem_ctl_info *mci, | 
 | 				 u64 addr, | 
 | 				 u8 *socket, u8 *ha, | 
 | 				 long *channel_mask, | 
 | 				 u8 *rank, | 
 | 				 char **area_type, char *msg) | 
 | { | 
 | 	struct mem_ctl_info	*new_mci; | 
 | 	struct sbridge_pvt *pvt = mci->pvt_info; | 
 | 	struct pci_dev		*pci_ha; | 
 | 	int			n_rir, n_sads, n_tads, sad_way, sck_xch; | 
 | 	int			sad_interl, idx, base_ch; | 
 | 	int			interleave_mode, shiftup = 0; | 
 | 	unsigned int		sad_interleave[MAX_INTERLEAVE]; | 
 | 	u32			reg, dram_rule; | 
 | 	u8			ch_way, sck_way, pkg, sad_ha = 0, rankid = 0; | 
 | 	u32			tad_offset; | 
 | 	u32			rir_way; | 
 | 	u32			mb, gb; | 
 | 	u64			ch_addr, offset, limit = 0, prv = 0; | 
 | 	u64			rank_addr; | 
 | 	enum mem_type		mtype; | 
 |  | 
 | 	/* | 
 | 	 * Step 0) Check if the address is at special memory ranges | 
 | 	 * The check bellow is probably enough to fill all cases where | 
 | 	 * the error is not inside a memory, except for the legacy | 
 | 	 * range (e. g. VGA addresses). It is unlikely, however, that the | 
 | 	 * memory controller would generate an error on that range. | 
 | 	 */ | 
 | 	if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) { | 
 | 		sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	if (addr >= (u64)pvt->tohm) { | 
 | 		sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Step 1) Get socket | 
 | 	 */ | 
 | 	for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) { | 
 | 		pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads], | 
 | 				      ®); | 
 |  | 
 | 		if (!DRAM_RULE_ENABLE(reg)) | 
 | 			continue; | 
 |  | 
 | 		limit = pvt->info.sad_limit(reg); | 
 | 		if (limit <= prv) { | 
 | 			sprintf(msg, "Can't discover the memory socket"); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 		if  (addr <= limit) | 
 | 			break; | 
 | 		prv = limit; | 
 | 	} | 
 | 	if (n_sads == pvt->info.max_sad) { | 
 | 		sprintf(msg, "Can't discover the memory socket"); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	dram_rule = reg; | 
 | 	*area_type = show_dram_attr(pvt->info.dram_attr(dram_rule)); | 
 | 	interleave_mode = pvt->info.interleave_mode(dram_rule); | 
 |  | 
 | 	pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads], | 
 | 			      ®); | 
 |  | 
 | 	if (pvt->info.type == SANDY_BRIDGE) { | 
 | 		sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0); | 
 | 		for (sad_way = 0; sad_way < 8; sad_way++) { | 
 | 			u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, sad_way); | 
 | 			if (sad_way > 0 && sad_interl == pkg) | 
 | 				break; | 
 | 			sad_interleave[sad_way] = pkg; | 
 | 			edac_dbg(0, "SAD interleave #%d: %d\n", | 
 | 				 sad_way, sad_interleave[sad_way]); | 
 | 		} | 
 | 		edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n", | 
 | 			 pvt->sbridge_dev->mc, | 
 | 			 n_sads, | 
 | 			 addr, | 
 | 			 limit, | 
 | 			 sad_way + 7, | 
 | 			 !interleave_mode ? "" : "XOR[18:16]"); | 
 | 		if (interleave_mode) | 
 | 			idx = ((addr >> 6) ^ (addr >> 16)) & 7; | 
 | 		else | 
 | 			idx = (addr >> 6) & 7; | 
 | 		switch (sad_way) { | 
 | 		case 1: | 
 | 			idx = 0; | 
 | 			break; | 
 | 		case 2: | 
 | 			idx = idx & 1; | 
 | 			break; | 
 | 		case 4: | 
 | 			idx = idx & 3; | 
 | 			break; | 
 | 		case 8: | 
 | 			break; | 
 | 		default: | 
 | 			sprintf(msg, "Can't discover socket interleave"); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 		*socket = sad_interleave[idx]; | 
 | 		edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n", | 
 | 			 idx, sad_way, *socket); | 
 | 	} else if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) { | 
 | 		int bits, a7mode = A7MODE(dram_rule); | 
 |  | 
 | 		if (a7mode) { | 
 | 			/* A7 mode swaps P9 with P6 */ | 
 | 			bits = GET_BITFIELD(addr, 7, 8) << 1; | 
 | 			bits |= GET_BITFIELD(addr, 9, 9); | 
 | 		} else | 
 | 			bits = GET_BITFIELD(addr, 6, 8); | 
 |  | 
 | 		if (interleave_mode == 0) { | 
 | 			/* interleave mode will XOR {8,7,6} with {18,17,16} */ | 
 | 			idx = GET_BITFIELD(addr, 16, 18); | 
 | 			idx ^= bits; | 
 | 		} else | 
 | 			idx = bits; | 
 |  | 
 | 		pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx); | 
 | 		*socket = sad_pkg_socket(pkg); | 
 | 		sad_ha = sad_pkg_ha(pkg); | 
 |  | 
 | 		if (a7mode) { | 
 | 			/* MCChanShiftUpEnable */ | 
 | 			pci_read_config_dword(pvt->pci_ha, HASWELL_HASYSDEFEATURE2, ®); | 
 | 			shiftup = GET_BITFIELD(reg, 22, 22); | 
 | 		} | 
 |  | 
 | 		edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %i, shiftup: %i\n", | 
 | 			 idx, *socket, sad_ha, shiftup); | 
 | 	} else { | 
 | 		/* Ivy Bridge's SAD mode doesn't support XOR interleave mode */ | 
 | 		idx = (addr >> 6) & 7; | 
 | 		pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx); | 
 | 		*socket = sad_pkg_socket(pkg); | 
 | 		sad_ha = sad_pkg_ha(pkg); | 
 | 		edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %d\n", | 
 | 			 idx, *socket, sad_ha); | 
 | 	} | 
 |  | 
 | 	*ha = sad_ha; | 
 |  | 
 | 	/* | 
 | 	 * Move to the proper node structure, in order to access the | 
 | 	 * right PCI registers | 
 | 	 */ | 
 | 	new_mci = get_mci_for_node_id(*socket, sad_ha); | 
 | 	if (!new_mci) { | 
 | 		sprintf(msg, "Struct for socket #%u wasn't initialized", | 
 | 			*socket); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	mci = new_mci; | 
 | 	pvt = mci->pvt_info; | 
 |  | 
 | 	/* | 
 | 	 * Step 2) Get memory channel | 
 | 	 */ | 
 | 	prv = 0; | 
 | 	pci_ha = pvt->pci_ha; | 
 | 	for (n_tads = 0; n_tads < MAX_TAD; n_tads++) { | 
 | 		pci_read_config_dword(pci_ha, tad_dram_rule[n_tads], ®); | 
 | 		limit = TAD_LIMIT(reg); | 
 | 		if (limit <= prv) { | 
 | 			sprintf(msg, "Can't discover the memory channel"); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 		if  (addr <= limit) | 
 | 			break; | 
 | 		prv = limit; | 
 | 	} | 
 | 	if (n_tads == MAX_TAD) { | 
 | 		sprintf(msg, "Can't discover the memory channel"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	ch_way = TAD_CH(reg) + 1; | 
 | 	sck_way = TAD_SOCK(reg); | 
 |  | 
 | 	if (ch_way == 3) | 
 | 		idx = addr >> 6; | 
 | 	else { | 
 | 		idx = (addr >> (6 + sck_way + shiftup)) & 0x3; | 
 | 		if (pvt->is_chan_hash) | 
 | 			idx = haswell_chan_hash(idx, addr); | 
 | 	} | 
 | 	idx = idx % ch_way; | 
 |  | 
 | 	/* | 
 | 	 * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ??? | 
 | 	 */ | 
 | 	switch (idx) { | 
 | 	case 0: | 
 | 		base_ch = TAD_TGT0(reg); | 
 | 		break; | 
 | 	case 1: | 
 | 		base_ch = TAD_TGT1(reg); | 
 | 		break; | 
 | 	case 2: | 
 | 		base_ch = TAD_TGT2(reg); | 
 | 		break; | 
 | 	case 3: | 
 | 		base_ch = TAD_TGT3(reg); | 
 | 		break; | 
 | 	default: | 
 | 		sprintf(msg, "Can't discover the TAD target"); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	*channel_mask = 1 << base_ch; | 
 |  | 
 | 	pci_read_config_dword(pvt->pci_tad[base_ch], tad_ch_nilv_offset[n_tads], &tad_offset); | 
 |  | 
 | 	if (pvt->mirror_mode == FULL_MIRRORING || | 
 | 	    (pvt->mirror_mode == ADDR_RANGE_MIRRORING && n_tads == 0)) { | 
 | 		*channel_mask |= 1 << ((base_ch + 2) % 4); | 
 | 		switch(ch_way) { | 
 | 		case 2: | 
 | 		case 4: | 
 | 			sck_xch = (1 << sck_way) * (ch_way >> 1); | 
 | 			break; | 
 | 		default: | 
 | 			sprintf(msg, "Invalid mirror set. Can't decode addr"); | 
 | 			return -EINVAL; | 
 | 		} | 
 |  | 
 | 		pvt->is_cur_addr_mirrored = true; | 
 | 	} else { | 
 | 		sck_xch = (1 << sck_way) * ch_way; | 
 | 		pvt->is_cur_addr_mirrored = false; | 
 | 	} | 
 |  | 
 | 	if (pvt->is_lockstep) | 
 | 		*channel_mask |= 1 << ((base_ch + 1) % 4); | 
 |  | 
 | 	offset = TAD_OFFSET(tad_offset); | 
 |  | 
 | 	edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n", | 
 | 		 n_tads, | 
 | 		 addr, | 
 | 		 limit, | 
 | 		 sck_way, | 
 | 		 ch_way, | 
 | 		 offset, | 
 | 		 idx, | 
 | 		 base_ch, | 
 | 		 *channel_mask); | 
 |  | 
 | 	/* Calculate channel address */ | 
 | 	/* Remove the TAD offset */ | 
 |  | 
 | 	if (offset > addr) { | 
 | 		sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!", | 
 | 			offset, addr); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	ch_addr = addr - offset; | 
 | 	ch_addr >>= (6 + shiftup); | 
 | 	ch_addr /= sck_xch; | 
 | 	ch_addr <<= (6 + shiftup); | 
 | 	ch_addr |= addr & ((1 << (6 + shiftup)) - 1); | 
 |  | 
 | 	/* | 
 | 	 * Step 3) Decode rank | 
 | 	 */ | 
 | 	for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) { | 
 | 		pci_read_config_dword(pvt->pci_tad[base_ch], rir_way_limit[n_rir], ®); | 
 |  | 
 | 		if (!IS_RIR_VALID(reg)) | 
 | 			continue; | 
 |  | 
 | 		limit = pvt->info.rir_limit(reg); | 
 | 		gb = div_u64_rem(limit >> 20, 1024, &mb); | 
 | 		edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n", | 
 | 			 n_rir, | 
 | 			 gb, (mb*1000)/1024, | 
 | 			 limit, | 
 | 			 1 << RIR_WAY(reg)); | 
 | 		if  (ch_addr <= limit) | 
 | 			break; | 
 | 	} | 
 | 	if (n_rir == MAX_RIR_RANGES) { | 
 | 		sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx", | 
 | 			ch_addr); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	rir_way = RIR_WAY(reg); | 
 |  | 
 | 	if (pvt->is_close_pg) | 
 | 		idx = (ch_addr >> 6); | 
 | 	else | 
 | 		idx = (ch_addr >> 13);	/* FIXME: Datasheet says to shift by 15 */ | 
 | 	idx %= 1 << rir_way; | 
 |  | 
 | 	pci_read_config_dword(pvt->pci_tad[base_ch], rir_offset[n_rir][idx], ®); | 
 | 	*rank = RIR_RNK_TGT(pvt->info.type, reg); | 
 |  | 
 | 	if (pvt->info.type == BROADWELL) { | 
 | 		if (pvt->is_close_pg) | 
 | 			shiftup = 6; | 
 | 		else | 
 | 			shiftup = 13; | 
 |  | 
 | 		rank_addr = ch_addr >> shiftup; | 
 | 		rank_addr /= (1 << rir_way); | 
 | 		rank_addr <<= shiftup; | 
 | 		rank_addr |= ch_addr & GENMASK_ULL(shiftup - 1, 0); | 
 | 		rank_addr -= RIR_OFFSET(pvt->info.type, reg); | 
 |  | 
 | 		mtype = pvt->info.get_memory_type(pvt); | 
 | 		rankid = *rank; | 
 | 		if (mtype == MEM_DDR4 || mtype == MEM_RDDR4) | 
 | 			sb_decode_ddr4(mci, base_ch, rankid, rank_addr, msg); | 
 | 		else | 
 | 			sb_decode_ddr3(mci, base_ch, rankid, rank_addr, msg); | 
 | 	} else { | 
 | 		msg[0] = '\0'; | 
 | 	} | 
 |  | 
 | 	edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n", | 
 | 		 n_rir, | 
 | 		 ch_addr, | 
 | 		 limit, | 
 | 		 rir_way, | 
 | 		 idx); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int get_memory_error_data_from_mce(struct mem_ctl_info *mci, | 
 | 					  const struct mce *m, u8 *socket, | 
 | 					  u8 *ha, long *channel_mask, | 
 | 					  char *msg) | 
 | { | 
 | 	u32 reg, channel = GET_BITFIELD(m->status, 0, 3); | 
 | 	struct mem_ctl_info *new_mci; | 
 | 	struct sbridge_pvt *pvt; | 
 | 	struct pci_dev *pci_ha; | 
 | 	bool tad0; | 
 |  | 
 | 	if (channel >= NUM_CHANNELS) { | 
 | 		sprintf(msg, "Invalid channel 0x%x", channel); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	pvt = mci->pvt_info; | 
 | 	if (!pvt->info.get_ha) { | 
 | 		sprintf(msg, "No get_ha()"); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	*ha = pvt->info.get_ha(m->bank); | 
 | 	if (*ha != 0 && *ha != 1) { | 
 | 		sprintf(msg, "Impossible bank %d", m->bank); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	*socket = m->socketid; | 
 | 	new_mci = get_mci_for_node_id(*socket, *ha); | 
 | 	if (!new_mci) { | 
 | 		strcpy(msg, "mci socket got corrupted!"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	pvt = new_mci->pvt_info; | 
 | 	pci_ha = pvt->pci_ha; | 
 | 	pci_read_config_dword(pci_ha, tad_dram_rule[0], ®); | 
 | 	tad0 = m->addr <= TAD_LIMIT(reg); | 
 |  | 
 | 	*channel_mask = 1 << channel; | 
 | 	if (pvt->mirror_mode == FULL_MIRRORING || | 
 | 	    (pvt->mirror_mode == ADDR_RANGE_MIRRORING && tad0)) { | 
 | 		*channel_mask |= 1 << ((channel + 2) % 4); | 
 | 		pvt->is_cur_addr_mirrored = true; | 
 | 	} else { | 
 | 		pvt->is_cur_addr_mirrored = false; | 
 | 	} | 
 |  | 
 | 	if (pvt->is_lockstep) | 
 | 		*channel_mask |= 1 << ((channel + 1) % 4); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /**************************************************************************** | 
 | 	Device initialization routines: put/get, init/exit | 
 |  ****************************************************************************/ | 
 |  | 
 | /* | 
 |  *	sbridge_put_all_devices	'put' all the devices that we have | 
 |  *				reserved via 'get' | 
 |  */ | 
 | static void sbridge_put_devices(struct sbridge_dev *sbridge_dev) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	edac_dbg(0, "\n"); | 
 | 	for (i = 0; i < sbridge_dev->n_devs; i++) { | 
 | 		struct pci_dev *pdev = sbridge_dev->pdev[i]; | 
 | 		if (!pdev) | 
 | 			continue; | 
 | 		edac_dbg(0, "Removing dev %02x:%02x.%d\n", | 
 | 			 pdev->bus->number, | 
 | 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn)); | 
 | 		pci_dev_put(pdev); | 
 | 	} | 
 | } | 
 |  | 
 | static void sbridge_put_all_devices(void) | 
 | { | 
 | 	struct sbridge_dev *sbridge_dev, *tmp; | 
 |  | 
 | 	list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) { | 
 | 		sbridge_put_devices(sbridge_dev); | 
 | 		free_sbridge_dev(sbridge_dev); | 
 | 	} | 
 | } | 
 |  | 
 | static int sbridge_get_onedevice(struct pci_dev **prev, | 
 | 				 u8 *num_mc, | 
 | 				 const struct pci_id_table *table, | 
 | 				 const unsigned devno, | 
 | 				 const int multi_bus) | 
 | { | 
 | 	struct sbridge_dev *sbridge_dev = NULL; | 
 | 	const struct pci_id_descr *dev_descr = &table->descr[devno]; | 
 | 	struct pci_dev *pdev = NULL; | 
 | 	int seg = 0; | 
 | 	u8 bus = 0; | 
 | 	int i = 0; | 
 |  | 
 | 	sbridge_printk(KERN_DEBUG, | 
 | 		"Seeking for: PCI ID %04x:%04x\n", | 
 | 		PCI_VENDOR_ID_INTEL, dev_descr->dev_id); | 
 |  | 
 | 	pdev = pci_get_device(PCI_VENDOR_ID_INTEL, | 
 | 			      dev_descr->dev_id, *prev); | 
 |  | 
 | 	if (!pdev) { | 
 | 		if (*prev) { | 
 | 			*prev = pdev; | 
 | 			return 0; | 
 | 		} | 
 |  | 
 | 		if (dev_descr->optional) | 
 | 			return 0; | 
 |  | 
 | 		/* if the HA wasn't found */ | 
 | 		if (devno == 0) | 
 | 			return -ENODEV; | 
 |  | 
 | 		sbridge_printk(KERN_INFO, | 
 | 			"Device not found: %04x:%04x\n", | 
 | 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id); | 
 |  | 
 | 		/* End of list, leave */ | 
 | 		return -ENODEV; | 
 | 	} | 
 | 	seg = pci_domain_nr(pdev->bus); | 
 | 	bus = pdev->bus->number; | 
 |  | 
 | next_imc: | 
 | 	sbridge_dev = get_sbridge_dev(seg, bus, dev_descr->dom, | 
 | 				      multi_bus, sbridge_dev); | 
 | 	if (!sbridge_dev) { | 
 | 		/* If the HA1 wasn't found, don't create EDAC second memory controller */ | 
 | 		if (dev_descr->dom == IMC1 && devno != 1) { | 
 | 			edac_dbg(0, "Skip IMC1: %04x:%04x (since HA1 was absent)\n", | 
 | 				 PCI_VENDOR_ID_INTEL, dev_descr->dev_id); | 
 | 			pci_dev_put(pdev); | 
 | 			return 0; | 
 | 		} | 
 |  | 
 | 		if (dev_descr->dom == SOCK) | 
 | 			goto out_imc; | 
 |  | 
 | 		sbridge_dev = alloc_sbridge_dev(seg, bus, dev_descr->dom, table); | 
 | 		if (!sbridge_dev) { | 
 | 			pci_dev_put(pdev); | 
 | 			return -ENOMEM; | 
 | 		} | 
 | 		(*num_mc)++; | 
 | 	} | 
 |  | 
 | 	if (sbridge_dev->pdev[sbridge_dev->i_devs]) { | 
 | 		sbridge_printk(KERN_ERR, | 
 | 			"Duplicated device for %04x:%04x\n", | 
 | 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id); | 
 | 		pci_dev_put(pdev); | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	sbridge_dev->pdev[sbridge_dev->i_devs++] = pdev; | 
 |  | 
 | 	/* pdev belongs to more than one IMC, do extra gets */ | 
 | 	if (++i > 1) | 
 | 		pci_dev_get(pdev); | 
 |  | 
 | 	if (dev_descr->dom == SOCK && i < table->n_imcs_per_sock) | 
 | 		goto next_imc; | 
 |  | 
 | out_imc: | 
 | 	/* Be sure that the device is enabled */ | 
 | 	if (unlikely(pci_enable_device(pdev) < 0)) { | 
 | 		sbridge_printk(KERN_ERR, | 
 | 			"Couldn't enable %04x:%04x\n", | 
 | 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id); | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	edac_dbg(0, "Detected %04x:%04x\n", | 
 | 		 PCI_VENDOR_ID_INTEL, dev_descr->dev_id); | 
 |  | 
 | 	/* | 
 | 	 * As stated on drivers/pci/search.c, the reference count for | 
 | 	 * @from is always decremented if it is not %NULL. So, as we need | 
 | 	 * to get all devices up to null, we need to do a get for the device | 
 | 	 */ | 
 | 	pci_dev_get(pdev); | 
 |  | 
 | 	*prev = pdev; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * sbridge_get_all_devices - Find and perform 'get' operation on the MCH's | 
 |  *			     devices we want to reference for this driver. | 
 |  * @num_mc: pointer to the memory controllers count, to be incremented in case | 
 |  *	    of success. | 
 |  * @table: model specific table | 
 |  * | 
 |  * returns 0 in case of success or error code | 
 |  */ | 
 | static int sbridge_get_all_devices(u8 *num_mc, | 
 | 					const struct pci_id_table *table) | 
 | { | 
 | 	int i, rc; | 
 | 	struct pci_dev *pdev = NULL; | 
 | 	int allow_dups = 0; | 
 | 	int multi_bus = 0; | 
 |  | 
 | 	if (table->type == KNIGHTS_LANDING) | 
 | 		allow_dups = multi_bus = 1; | 
 | 	while (table && table->descr) { | 
 | 		for (i = 0; i < table->n_devs_per_sock; i++) { | 
 | 			if (!allow_dups || i == 0 || | 
 | 					table->descr[i].dev_id != | 
 | 						table->descr[i-1].dev_id) { | 
 | 				pdev = NULL; | 
 | 			} | 
 | 			do { | 
 | 				rc = sbridge_get_onedevice(&pdev, num_mc, | 
 | 							   table, i, multi_bus); | 
 | 				if (rc < 0) { | 
 | 					if (i == 0) { | 
 | 						i = table->n_devs_per_sock; | 
 | 						break; | 
 | 					} | 
 | 					sbridge_put_all_devices(); | 
 | 					return -ENODEV; | 
 | 				} | 
 | 			} while (pdev && !allow_dups); | 
 | 		} | 
 | 		table++; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Device IDs for {SBRIDGE,IBRIDGE,HASWELL,BROADWELL}_IMC_HA0_TAD0 are in | 
 |  * the format: XXXa. So we can convert from a device to the corresponding | 
 |  * channel like this | 
 |  */ | 
 | #define TAD_DEV_TO_CHAN(dev) (((dev) & 0xf) - 0xa) | 
 |  | 
 | static int sbridge_mci_bind_devs(struct mem_ctl_info *mci, | 
 | 				 struct sbridge_dev *sbridge_dev) | 
 | { | 
 | 	struct sbridge_pvt *pvt = mci->pvt_info; | 
 | 	struct pci_dev *pdev; | 
 | 	u8 saw_chan_mask = 0; | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < sbridge_dev->n_devs; i++) { | 
 | 		pdev = sbridge_dev->pdev[i]; | 
 | 		if (!pdev) | 
 | 			continue; | 
 |  | 
 | 		switch (pdev->device) { | 
 | 		case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0: | 
 | 			pvt->pci_sad0 = pdev; | 
 | 			break; | 
 | 		case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1: | 
 | 			pvt->pci_sad1 = pdev; | 
 | 			break; | 
 | 		case PCI_DEVICE_ID_INTEL_SBRIDGE_BR: | 
 | 			pvt->pci_br0 = pdev; | 
 | 			break; | 
 | 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0: | 
 | 			pvt->pci_ha = pdev; | 
 | 			break; | 
 | 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA: | 
 | 			pvt->pci_ta = pdev; | 
 | 			break; | 
 | 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS: | 
 | 			pvt->pci_ras = pdev; | 
 | 			break; | 
 | 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0: | 
 | 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1: | 
 | 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2: | 
 | 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3: | 
 | 		{ | 
 | 			int id = TAD_DEV_TO_CHAN(pdev->device); | 
 | 			pvt->pci_tad[id] = pdev; | 
 | 			saw_chan_mask |= 1 << id; | 
 | 		} | 
 | 			break; | 
 | 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO: | 
 | 			pvt->pci_ddrio = pdev; | 
 | 			break; | 
 | 		default: | 
 | 			goto error; | 
 | 		} | 
 |  | 
 | 		edac_dbg(0, "Associated PCI %02x:%02x, bus %d with dev = %p\n", | 
 | 			 pdev->vendor, pdev->device, | 
 | 			 sbridge_dev->bus, | 
 | 			 pdev); | 
 | 	} | 
 |  | 
 | 	/* Check if everything were registered */ | 
 | 	if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha || | 
 | 	    !pvt->pci_ras || !pvt->pci_ta) | 
 | 		goto enodev; | 
 |  | 
 | 	if (saw_chan_mask != 0x0f) | 
 | 		goto enodev; | 
 | 	return 0; | 
 |  | 
 | enodev: | 
 | 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n"); | 
 | 	return -ENODEV; | 
 |  | 
 | error: | 
 | 	sbridge_printk(KERN_ERR, "Unexpected device %02x:%02x\n", | 
 | 		       PCI_VENDOR_ID_INTEL, pdev->device); | 
 | 	return -EINVAL; | 
 | } | 
 |  | 
 | static int ibridge_mci_bind_devs(struct mem_ctl_info *mci, | 
 | 				 struct sbridge_dev *sbridge_dev) | 
 | { | 
 | 	struct sbridge_pvt *pvt = mci->pvt_info; | 
 | 	struct pci_dev *pdev; | 
 | 	u8 saw_chan_mask = 0; | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < sbridge_dev->n_devs; i++) { | 
 | 		pdev = sbridge_dev->pdev[i]; | 
 | 		if (!pdev) | 
 | 			continue; | 
 |  | 
 | 		switch (pdev->device) { | 
 | 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0: | 
 | 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1: | 
 | 			pvt->pci_ha = pdev; | 
 | 			break; | 
 | 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA: | 
 | 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA: | 
 | 			pvt->pci_ta = pdev; | 
 | 			break; | 
 | 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS: | 
 | 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS: | 
 | 			pvt->pci_ras = pdev; | 
 | 			break; | 
 | 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0: | 
 | 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1: | 
 | 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2: | 
 | 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3: | 
 | 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0: | 
 | 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1: | 
 | 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2: | 
 | 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3: | 
 | 		{ | 
 | 			int id = TAD_DEV_TO_CHAN(pdev->device); | 
 | 			pvt->pci_tad[id] = pdev; | 
 | 			saw_chan_mask |= 1 << id; | 
 | 		} | 
 | 			break; | 
 | 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0: | 
 | 			pvt->pci_ddrio = pdev; | 
 | 			break; | 
 | 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0: | 
 | 			pvt->pci_ddrio = pdev; | 
 | 			break; | 
 | 		case PCI_DEVICE_ID_INTEL_IBRIDGE_SAD: | 
 | 			pvt->pci_sad0 = pdev; | 
 | 			break; | 
 | 		case PCI_DEVICE_ID_INTEL_IBRIDGE_BR0: | 
 | 			pvt->pci_br0 = pdev; | 
 | 			break; | 
 | 		case PCI_DEVICE_ID_INTEL_IBRIDGE_BR1: | 
 | 			pvt->pci_br1 = pdev; | 
 | 			break; | 
 | 		default: | 
 | 			goto error; | 
 | 		} | 
 |  | 
 | 		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n", | 
 | 			 sbridge_dev->bus, | 
 | 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn), | 
 | 			 pdev); | 
 | 	} | 
 |  | 
 | 	/* Check if everything were registered */ | 
 | 	if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_br0 || | 
 | 	    !pvt->pci_br1 || !pvt->pci_ras || !pvt->pci_ta) | 
 | 		goto enodev; | 
 |  | 
 | 	if (saw_chan_mask != 0x0f && /* -EN/-EX */ | 
 | 	    saw_chan_mask != 0x03)   /* -EP */ | 
 | 		goto enodev; | 
 | 	return 0; | 
 |  | 
 | enodev: | 
 | 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n"); | 
 | 	return -ENODEV; | 
 |  | 
 | error: | 
 | 	sbridge_printk(KERN_ERR, | 
 | 		       "Unexpected device %02x:%02x\n", PCI_VENDOR_ID_INTEL, | 
 | 			pdev->device); | 
 | 	return -EINVAL; | 
 | } | 
 |  | 
 | static int haswell_mci_bind_devs(struct mem_ctl_info *mci, | 
 | 				 struct sbridge_dev *sbridge_dev) | 
 | { | 
 | 	struct sbridge_pvt *pvt = mci->pvt_info; | 
 | 	struct pci_dev *pdev; | 
 | 	u8 saw_chan_mask = 0; | 
 | 	int i; | 
 |  | 
 | 	/* there's only one device per system; not tied to any bus */ | 
 | 	if (pvt->info.pci_vtd == NULL) | 
 | 		/* result will be checked later */ | 
 | 		pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL, | 
 | 						   PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC, | 
 | 						   NULL); | 
 |  | 
 | 	for (i = 0; i < sbridge_dev->n_devs; i++) { | 
 | 		pdev = sbridge_dev->pdev[i]; | 
 | 		if (!pdev) | 
 | 			continue; | 
 |  | 
 | 		switch (pdev->device) { | 
 | 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0: | 
 | 			pvt->pci_sad0 = pdev; | 
 | 			break; | 
 | 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1: | 
 | 			pvt->pci_sad1 = pdev; | 
 | 			break; | 
 | 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0: | 
 | 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1: | 
 | 			pvt->pci_ha = pdev; | 
 | 			break; | 
 | 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA: | 
 | 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA: | 
 | 			pvt->pci_ta = pdev; | 
 | 			break; | 
 | 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM: | 
 | 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM: | 
 | 			pvt->pci_ras = pdev; | 
 | 			break; | 
 | 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0: | 
 | 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1: | 
 | 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2: | 
 | 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3: | 
 | 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0: | 
 | 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1: | 
 | 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2: | 
 | 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3: | 
 | 		{ | 
 | 			int id = TAD_DEV_TO_CHAN(pdev->device); | 
 | 			pvt->pci_tad[id] = pdev; | 
 | 			saw_chan_mask |= 1 << id; | 
 | 		} | 
 | 			break; | 
 | 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0: | 
 | 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1: | 
 | 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2: | 
 | 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3: | 
 | 			if (!pvt->pci_ddrio) | 
 | 				pvt->pci_ddrio = pdev; | 
 | 			break; | 
 | 		default: | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n", | 
 | 			 sbridge_dev->bus, | 
 | 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn), | 
 | 			 pdev); | 
 | 	} | 
 |  | 
 | 	/* Check if everything were registered */ | 
 | 	if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_sad1 || | 
 | 	    !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd) | 
 | 		goto enodev; | 
 |  | 
 | 	if (saw_chan_mask != 0x0f && /* -EN/-EX */ | 
 | 	    saw_chan_mask != 0x03)   /* -EP */ | 
 | 		goto enodev; | 
 | 	return 0; | 
 |  | 
 | enodev: | 
 | 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n"); | 
 | 	return -ENODEV; | 
 | } | 
 |  | 
 | static int broadwell_mci_bind_devs(struct mem_ctl_info *mci, | 
 | 				 struct sbridge_dev *sbridge_dev) | 
 | { | 
 | 	struct sbridge_pvt *pvt = mci->pvt_info; | 
 | 	struct pci_dev *pdev; | 
 | 	u8 saw_chan_mask = 0; | 
 | 	int i; | 
 |  | 
 | 	/* there's only one device per system; not tied to any bus */ | 
 | 	if (pvt->info.pci_vtd == NULL) | 
 | 		/* result will be checked later */ | 
 | 		pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL, | 
 | 						   PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC, | 
 | 						   NULL); | 
 |  | 
 | 	for (i = 0; i < sbridge_dev->n_devs; i++) { | 
 | 		pdev = sbridge_dev->pdev[i]; | 
 | 		if (!pdev) | 
 | 			continue; | 
 |  | 
 | 		switch (pdev->device) { | 
 | 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0: | 
 | 			pvt->pci_sad0 = pdev; | 
 | 			break; | 
 | 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1: | 
 | 			pvt->pci_sad1 = pdev; | 
 | 			break; | 
 | 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0: | 
 | 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1: | 
 | 			pvt->pci_ha = pdev; | 
 | 			break; | 
 | 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA: | 
 | 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA: | 
 | 			pvt->pci_ta = pdev; | 
 | 			break; | 
 | 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM: | 
 | 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM: | 
 | 			pvt->pci_ras = pdev; | 
 | 			break; | 
 | 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0: | 
 | 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1: | 
 | 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2: | 
 | 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3: | 
 | 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0: | 
 | 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1: | 
 | 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2: | 
 | 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3: | 
 | 		{ | 
 | 			int id = TAD_DEV_TO_CHAN(pdev->device); | 
 | 			pvt->pci_tad[id] = pdev; | 
 | 			saw_chan_mask |= 1 << id; | 
 | 		} | 
 | 			break; | 
 | 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0: | 
 | 			pvt->pci_ddrio = pdev; | 
 | 			break; | 
 | 		default: | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n", | 
 | 			 sbridge_dev->bus, | 
 | 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn), | 
 | 			 pdev); | 
 | 	} | 
 |  | 
 | 	/* Check if everything were registered */ | 
 | 	if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_sad1 || | 
 | 	    !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd) | 
 | 		goto enodev; | 
 |  | 
 | 	if (saw_chan_mask != 0x0f && /* -EN/-EX */ | 
 | 	    saw_chan_mask != 0x03)   /* -EP */ | 
 | 		goto enodev; | 
 | 	return 0; | 
 |  | 
 | enodev: | 
 | 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n"); | 
 | 	return -ENODEV; | 
 | } | 
 |  | 
 | static int knl_mci_bind_devs(struct mem_ctl_info *mci, | 
 | 			struct sbridge_dev *sbridge_dev) | 
 | { | 
 | 	struct sbridge_pvt *pvt = mci->pvt_info; | 
 | 	struct pci_dev *pdev; | 
 | 	int dev, func; | 
 |  | 
 | 	int i; | 
 | 	int devidx; | 
 |  | 
 | 	for (i = 0; i < sbridge_dev->n_devs; i++) { | 
 | 		pdev = sbridge_dev->pdev[i]; | 
 | 		if (!pdev) | 
 | 			continue; | 
 |  | 
 | 		/* Extract PCI device and function. */ | 
 | 		dev = (pdev->devfn >> 3) & 0x1f; | 
 | 		func = pdev->devfn & 0x7; | 
 |  | 
 | 		switch (pdev->device) { | 
 | 		case PCI_DEVICE_ID_INTEL_KNL_IMC_MC: | 
 | 			if (dev == 8) | 
 | 				pvt->knl.pci_mc0 = pdev; | 
 | 			else if (dev == 9) | 
 | 				pvt->knl.pci_mc1 = pdev; | 
 | 			else { | 
 | 				sbridge_printk(KERN_ERR, | 
 | 					"Memory controller in unexpected place! (dev %d, fn %d)\n", | 
 | 					dev, func); | 
 | 				continue; | 
 | 			} | 
 | 			break; | 
 |  | 
 | 		case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0: | 
 | 			pvt->pci_sad0 = pdev; | 
 | 			break; | 
 |  | 
 | 		case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1: | 
 | 			pvt->pci_sad1 = pdev; | 
 | 			break; | 
 |  | 
 | 		case PCI_DEVICE_ID_INTEL_KNL_IMC_CHA: | 
 | 			/* There are one of these per tile, and range from | 
 | 			 * 1.14.0 to 1.18.5. | 
 | 			 */ | 
 | 			devidx = ((dev-14)*8)+func; | 
 |  | 
 | 			if (devidx < 0 || devidx >= KNL_MAX_CHAS) { | 
 | 				sbridge_printk(KERN_ERR, | 
 | 					"Caching and Home Agent in unexpected place! (dev %d, fn %d)\n", | 
 | 					dev, func); | 
 | 				continue; | 
 | 			} | 
 |  | 
 | 			WARN_ON(pvt->knl.pci_cha[devidx] != NULL); | 
 |  | 
 | 			pvt->knl.pci_cha[devidx] = pdev; | 
 | 			break; | 
 |  | 
 | 		case PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN: | 
 | 			devidx = -1; | 
 |  | 
 | 			/* | 
 | 			 *  MC0 channels 0-2 are device 9 function 2-4, | 
 | 			 *  MC1 channels 3-5 are device 8 function 2-4. | 
 | 			 */ | 
 |  | 
 | 			if (dev == 9) | 
 | 				devidx = func-2; | 
 | 			else if (dev == 8) | 
 | 				devidx = 3 + (func-2); | 
 |  | 
 | 			if (devidx < 0 || devidx >= KNL_MAX_CHANNELS) { | 
 | 				sbridge_printk(KERN_ERR, | 
 | 					"DRAM Channel Registers in unexpected place! (dev %d, fn %d)\n", | 
 | 					dev, func); | 
 | 				continue; | 
 | 			} | 
 |  | 
 | 			WARN_ON(pvt->knl.pci_channel[devidx] != NULL); | 
 | 			pvt->knl.pci_channel[devidx] = pdev; | 
 | 			break; | 
 |  | 
 | 		case PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM: | 
 | 			pvt->knl.pci_mc_info = pdev; | 
 | 			break; | 
 |  | 
 | 		case PCI_DEVICE_ID_INTEL_KNL_IMC_TA: | 
 | 			pvt->pci_ta = pdev; | 
 | 			break; | 
 |  | 
 | 		default: | 
 | 			sbridge_printk(KERN_ERR, "Unexpected device %d\n", | 
 | 				pdev->device); | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (!pvt->knl.pci_mc0  || !pvt->knl.pci_mc1 || | 
 | 	    !pvt->pci_sad0     || !pvt->pci_sad1    || | 
 | 	    !pvt->pci_ta) { | 
 | 		goto enodev; | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < KNL_MAX_CHANNELS; i++) { | 
 | 		if (!pvt->knl.pci_channel[i]) { | 
 | 			sbridge_printk(KERN_ERR, "Missing channel %d\n", i); | 
 | 			goto enodev; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < KNL_MAX_CHAS; i++) { | 
 | 		if (!pvt->knl.pci_cha[i]) { | 
 | 			sbridge_printk(KERN_ERR, "Missing CHA %d\n", i); | 
 | 			goto enodev; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 |  | 
 | enodev: | 
 | 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n"); | 
 | 	return -ENODEV; | 
 | } | 
 |  | 
 | /**************************************************************************** | 
 | 			Error check routines | 
 |  ****************************************************************************/ | 
 |  | 
 | /* | 
 |  * While Sandy Bridge has error count registers, SMI BIOS read values from | 
 |  * and resets the counters. So, they are not reliable for the OS to read | 
 |  * from them. So, we have no option but to just trust on whatever MCE is | 
 |  * telling us about the errors. | 
 |  */ | 
 | static void sbridge_mce_output_error(struct mem_ctl_info *mci, | 
 | 				    const struct mce *m) | 
 | { | 
 | 	struct mem_ctl_info *new_mci; | 
 | 	struct sbridge_pvt *pvt = mci->pvt_info; | 
 | 	enum hw_event_mc_err_type tp_event; | 
 | 	char *optype, msg[256], msg_full[512]; | 
 | 	bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0); | 
 | 	bool overflow = GET_BITFIELD(m->status, 62, 62); | 
 | 	bool uncorrected_error = GET_BITFIELD(m->status, 61, 61); | 
 | 	bool recoverable; | 
 | 	u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52); | 
 | 	u32 mscod = GET_BITFIELD(m->status, 16, 31); | 
 | 	u32 errcode = GET_BITFIELD(m->status, 0, 15); | 
 | 	u32 channel = GET_BITFIELD(m->status, 0, 3); | 
 | 	u32 optypenum = GET_BITFIELD(m->status, 4, 6); | 
 | 	/* | 
 | 	 * Bits 5-0 of MCi_MISC give the least significant bit that is valid. | 
 | 	 * A value 6 is for cache line aligned address, a value 12 is for page | 
 | 	 * aligned address reported by patrol scrubber. | 
 | 	 */ | 
 | 	u32 lsb = GET_BITFIELD(m->misc, 0, 5); | 
 | 	long channel_mask, first_channel; | 
 | 	u8  rank = 0xff, socket, ha; | 
 | 	int rc, dimm; | 
 | 	char *area_type = "DRAM"; | 
 |  | 
 | 	if (pvt->info.type != SANDY_BRIDGE) | 
 | 		recoverable = true; | 
 | 	else | 
 | 		recoverable = GET_BITFIELD(m->status, 56, 56); | 
 |  | 
 | 	if (uncorrected_error) { | 
 | 		core_err_cnt = 1; | 
 | 		if (ripv) { | 
 | 			tp_event = HW_EVENT_ERR_UNCORRECTED; | 
 | 		} else { | 
 | 			tp_event = HW_EVENT_ERR_FATAL; | 
 | 		} | 
 | 	} else { | 
 | 		tp_event = HW_EVENT_ERR_CORRECTED; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * According with Table 15-9 of the Intel Architecture spec vol 3A, | 
 | 	 * memory errors should fit in this mask: | 
 | 	 *	000f 0000 1mmm cccc (binary) | 
 | 	 * where: | 
 | 	 *	f = Correction Report Filtering Bit. If 1, subsequent errors | 
 | 	 *	    won't be shown | 
 | 	 *	mmm = error type | 
 | 	 *	cccc = channel | 
 | 	 * If the mask doesn't match, report an error to the parsing logic | 
 | 	 */ | 
 | 	switch (optypenum) { | 
 | 	case 0: | 
 | 		optype = "generic undef request error"; | 
 | 		break; | 
 | 	case 1: | 
 | 		optype = "memory read error"; | 
 | 		break; | 
 | 	case 2: | 
 | 		optype = "memory write error"; | 
 | 		break; | 
 | 	case 3: | 
 | 		optype = "addr/cmd error"; | 
 | 		break; | 
 | 	case 4: | 
 | 		optype = "memory scrubbing error"; | 
 | 		break; | 
 | 	default: | 
 | 		optype = "reserved"; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	if (pvt->info.type == KNIGHTS_LANDING) { | 
 | 		if (channel == 14) { | 
 | 			edac_dbg(0, "%s%s err_code:%04x:%04x EDRAM bank %d\n", | 
 | 				overflow ? " OVERFLOW" : "", | 
 | 				(uncorrected_error && recoverable) | 
 | 				? " recoverable" : "", | 
 | 				mscod, errcode, | 
 | 				m->bank); | 
 | 		} else { | 
 | 			char A = *("A"); | 
 |  | 
 | 			/* | 
 | 			 * Reported channel is in range 0-2, so we can't map it | 
 | 			 * back to mc. To figure out mc we check machine check | 
 | 			 * bank register that reported this error. | 
 | 			 * bank15 means mc0 and bank16 means mc1. | 
 | 			 */ | 
 | 			channel = knl_channel_remap(m->bank == 16, channel); | 
 | 			channel_mask = 1 << channel; | 
 |  | 
 | 			snprintf(msg, sizeof(msg), | 
 | 				"%s%s err_code:%04x:%04x channel:%d (DIMM_%c)", | 
 | 				overflow ? " OVERFLOW" : "", | 
 | 				(uncorrected_error && recoverable) | 
 | 				? " recoverable" : " ", | 
 | 				mscod, errcode, channel, A + channel); | 
 | 			edac_mc_handle_error(tp_event, mci, core_err_cnt, | 
 | 				m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0, | 
 | 				channel, 0, -1, | 
 | 				optype, msg); | 
 | 		} | 
 | 		return; | 
 | 	} else if (lsb < 12) { | 
 | 		rc = get_memory_error_data(mci, m->addr, &socket, &ha, | 
 | 					   &channel_mask, &rank, | 
 | 					   &area_type, msg); | 
 | 	} else { | 
 | 		rc = get_memory_error_data_from_mce(mci, m, &socket, &ha, | 
 | 						    &channel_mask, msg); | 
 | 	} | 
 |  | 
 | 	if (rc < 0) | 
 | 		goto err_parsing; | 
 | 	new_mci = get_mci_for_node_id(socket, ha); | 
 | 	if (!new_mci) { | 
 | 		strcpy(msg, "Error: socket got corrupted!"); | 
 | 		goto err_parsing; | 
 | 	} | 
 | 	mci = new_mci; | 
 | 	pvt = mci->pvt_info; | 
 |  | 
 | 	first_channel = find_first_bit(&channel_mask, NUM_CHANNELS); | 
 |  | 
 | 	if (rank == 0xff) | 
 | 		dimm = -1; | 
 | 	else if (rank < 4) | 
 | 		dimm = 0; | 
 | 	else if (rank < 8) | 
 | 		dimm = 1; | 
 | 	else | 
 | 		dimm = 2; | 
 |  | 
 | 	/* | 
 | 	 * FIXME: On some memory configurations (mirror, lockstep), the | 
 | 	 * Memory Controller can't point the error to a single DIMM. The | 
 | 	 * EDAC core should be handling the channel mask, in order to point | 
 | 	 * to the group of dimm's where the error may be happening. | 
 | 	 */ | 
 | 	if (!pvt->is_lockstep && !pvt->is_cur_addr_mirrored && !pvt->is_close_pg) | 
 | 		channel = first_channel; | 
 | 	snprintf(msg_full, sizeof(msg_full), | 
 | 		 "%s%s area:%s err_code:%04x:%04x socket:%d ha:%d channel_mask:%ld rank:%d %s", | 
 | 		 overflow ? " OVERFLOW" : "", | 
 | 		 (uncorrected_error && recoverable) ? " recoverable" : "", | 
 | 		 area_type, | 
 | 		 mscod, errcode, | 
 | 		 socket, ha, | 
 | 		 channel_mask, | 
 | 		 rank, msg); | 
 |  | 
 | 	edac_dbg(0, "%s\n", msg_full); | 
 |  | 
 | 	/* FIXME: need support for channel mask */ | 
 |  | 
 | 	if (channel == CHANNEL_UNSPECIFIED) | 
 | 		channel = -1; | 
 |  | 
 | 	/* Call the helper to output message */ | 
 | 	edac_mc_handle_error(tp_event, mci, core_err_cnt, | 
 | 			     m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0, | 
 | 			     channel, dimm, -1, | 
 | 			     optype, msg_full); | 
 | 	return; | 
 | err_parsing: | 
 | 	edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0, | 
 | 			     -1, -1, -1, | 
 | 			     msg, ""); | 
 |  | 
 | } | 
 |  | 
 | /* | 
 |  * Check that logging is enabled and that this is the right type | 
 |  * of error for us to handle. | 
 |  */ | 
 | static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val, | 
 | 				   void *data) | 
 | { | 
 | 	struct mce *mce = (struct mce *)data; | 
 | 	struct mem_ctl_info *mci; | 
 | 	char *type; | 
 |  | 
 | 	if (mce->kflags & MCE_HANDLED_CEC) | 
 | 		return NOTIFY_DONE; | 
 |  | 
 | 	/* | 
 | 	 * Just let mcelog handle it if the error is | 
 | 	 * outside the memory controller. A memory error | 
 | 	 * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0. | 
 | 	 * bit 12 has an special meaning. | 
 | 	 */ | 
 | 	if ((mce->status & 0xefff) >> 7 != 1) | 
 | 		return NOTIFY_DONE; | 
 |  | 
 | 	/* Check ADDRV bit in STATUS */ | 
 | 	if (!GET_BITFIELD(mce->status, 58, 58)) | 
 | 		return NOTIFY_DONE; | 
 |  | 
 | 	/* Check MISCV bit in STATUS */ | 
 | 	if (!GET_BITFIELD(mce->status, 59, 59)) | 
 | 		return NOTIFY_DONE; | 
 |  | 
 | 	/* Check address type in MISC (physical address only) */ | 
 | 	if (GET_BITFIELD(mce->misc, 6, 8) != 2) | 
 | 		return NOTIFY_DONE; | 
 |  | 
 | 	mci = get_mci_for_node_id(mce->socketid, IMC0); | 
 | 	if (!mci) | 
 | 		return NOTIFY_DONE; | 
 |  | 
 | 	if (mce->mcgstatus & MCG_STATUS_MCIP) | 
 | 		type = "Exception"; | 
 | 	else | 
 | 		type = "Event"; | 
 |  | 
 | 	sbridge_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n"); | 
 |  | 
 | 	sbridge_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: %Lx " | 
 | 			  "Bank %d: %016Lx\n", mce->extcpu, type, | 
 | 			  mce->mcgstatus, mce->bank, mce->status); | 
 | 	sbridge_mc_printk(mci, KERN_DEBUG, "TSC %llx ", mce->tsc); | 
 | 	sbridge_mc_printk(mci, KERN_DEBUG, "ADDR %llx ", mce->addr); | 
 | 	sbridge_mc_printk(mci, KERN_DEBUG, "MISC %llx ", mce->misc); | 
 |  | 
 | 	sbridge_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:%x TIME %llu SOCKET " | 
 | 			  "%u APIC %x\n", mce->cpuvendor, mce->cpuid, | 
 | 			  mce->time, mce->socketid, mce->apicid); | 
 |  | 
 | 	sbridge_mce_output_error(mci, mce); | 
 |  | 
 | 	/* Advice mcelog that the error were handled */ | 
 | 	mce->kflags |= MCE_HANDLED_EDAC; | 
 | 	return NOTIFY_OK; | 
 | } | 
 |  | 
 | static struct notifier_block sbridge_mce_dec = { | 
 | 	.notifier_call	= sbridge_mce_check_error, | 
 | 	.priority	= MCE_PRIO_EDAC, | 
 | }; | 
 |  | 
 | /**************************************************************************** | 
 | 			EDAC register/unregister logic | 
 |  ****************************************************************************/ | 
 |  | 
 | static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev) | 
 | { | 
 | 	struct mem_ctl_info *mci = sbridge_dev->mci; | 
 |  | 
 | 	if (unlikely(!mci || !mci->pvt_info)) { | 
 | 		edac_dbg(0, "MC: dev = %p\n", &sbridge_dev->pdev[0]->dev); | 
 |  | 
 | 		sbridge_printk(KERN_ERR, "Couldn't find mci handler\n"); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	edac_dbg(0, "MC: mci = %p, dev = %p\n", | 
 | 		 mci, &sbridge_dev->pdev[0]->dev); | 
 |  | 
 | 	/* Remove MC sysfs nodes */ | 
 | 	edac_mc_del_mc(mci->pdev); | 
 |  | 
 | 	edac_dbg(1, "%s: free mci struct\n", mci->ctl_name); | 
 | 	kfree(mci->ctl_name); | 
 | 	edac_mc_free(mci); | 
 | 	sbridge_dev->mci = NULL; | 
 | } | 
 |  | 
 | static int sbridge_register_mci(struct sbridge_dev *sbridge_dev, enum type type) | 
 | { | 
 | 	struct mem_ctl_info *mci; | 
 | 	struct edac_mc_layer layers[2]; | 
 | 	struct sbridge_pvt *pvt; | 
 | 	struct pci_dev *pdev = sbridge_dev->pdev[0]; | 
 | 	int rc; | 
 |  | 
 | 	/* allocate a new MC control structure */ | 
 | 	layers[0].type = EDAC_MC_LAYER_CHANNEL; | 
 | 	layers[0].size = type == KNIGHTS_LANDING ? | 
 | 		KNL_MAX_CHANNELS : NUM_CHANNELS; | 
 | 	layers[0].is_virt_csrow = false; | 
 | 	layers[1].type = EDAC_MC_LAYER_SLOT; | 
 | 	layers[1].size = type == KNIGHTS_LANDING ? 1 : MAX_DIMMS; | 
 | 	layers[1].is_virt_csrow = true; | 
 | 	mci = edac_mc_alloc(sbridge_dev->mc, ARRAY_SIZE(layers), layers, | 
 | 			    sizeof(*pvt)); | 
 |  | 
 | 	if (unlikely(!mci)) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	edac_dbg(0, "MC: mci = %p, dev = %p\n", | 
 | 		 mci, &pdev->dev); | 
 |  | 
 | 	pvt = mci->pvt_info; | 
 | 	memset(pvt, 0, sizeof(*pvt)); | 
 |  | 
 | 	/* Associate sbridge_dev and mci for future usage */ | 
 | 	pvt->sbridge_dev = sbridge_dev; | 
 | 	sbridge_dev->mci = mci; | 
 |  | 
 | 	mci->mtype_cap = type == KNIGHTS_LANDING ? | 
 | 		MEM_FLAG_DDR4 : MEM_FLAG_DDR3; | 
 | 	mci->edac_ctl_cap = EDAC_FLAG_NONE; | 
 | 	mci->edac_cap = EDAC_FLAG_NONE; | 
 | 	mci->mod_name = EDAC_MOD_STR; | 
 | 	mci->dev_name = pci_name(pdev); | 
 | 	mci->ctl_page_to_phys = NULL; | 
 |  | 
 | 	pvt->info.type = type; | 
 | 	switch (type) { | 
 | 	case IVY_BRIDGE: | 
 | 		pvt->info.rankcfgr = IB_RANK_CFG_A; | 
 | 		pvt->info.get_tolm = ibridge_get_tolm; | 
 | 		pvt->info.get_tohm = ibridge_get_tohm; | 
 | 		pvt->info.dram_rule = ibridge_dram_rule; | 
 | 		pvt->info.get_memory_type = get_memory_type; | 
 | 		pvt->info.get_node_id = get_node_id; | 
 | 		pvt->info.get_ha = ibridge_get_ha; | 
 | 		pvt->info.rir_limit = rir_limit; | 
 | 		pvt->info.sad_limit = sad_limit; | 
 | 		pvt->info.interleave_mode = interleave_mode; | 
 | 		pvt->info.dram_attr = dram_attr; | 
 | 		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule); | 
 | 		pvt->info.interleave_list = ibridge_interleave_list; | 
 | 		pvt->info.interleave_pkg = ibridge_interleave_pkg; | 
 | 		pvt->info.get_width = ibridge_get_width; | 
 |  | 
 | 		/* Store pci devices at mci for faster access */ | 
 | 		rc = ibridge_mci_bind_devs(mci, sbridge_dev); | 
 | 		if (unlikely(rc < 0)) | 
 | 			goto fail0; | 
 | 		get_source_id(mci); | 
 | 		mci->ctl_name = kasprintf(GFP_KERNEL, "Ivy Bridge SrcID#%d_Ha#%d", | 
 | 			pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom); | 
 | 		break; | 
 | 	case SANDY_BRIDGE: | 
 | 		pvt->info.rankcfgr = SB_RANK_CFG_A; | 
 | 		pvt->info.get_tolm = sbridge_get_tolm; | 
 | 		pvt->info.get_tohm = sbridge_get_tohm; | 
 | 		pvt->info.dram_rule = sbridge_dram_rule; | 
 | 		pvt->info.get_memory_type = get_memory_type; | 
 | 		pvt->info.get_node_id = get_node_id; | 
 | 		pvt->info.get_ha = sbridge_get_ha; | 
 | 		pvt->info.rir_limit = rir_limit; | 
 | 		pvt->info.sad_limit = sad_limit; | 
 | 		pvt->info.interleave_mode = interleave_mode; | 
 | 		pvt->info.dram_attr = dram_attr; | 
 | 		pvt->info.max_sad = ARRAY_SIZE(sbridge_dram_rule); | 
 | 		pvt->info.interleave_list = sbridge_interleave_list; | 
 | 		pvt->info.interleave_pkg = sbridge_interleave_pkg; | 
 | 		pvt->info.get_width = sbridge_get_width; | 
 |  | 
 | 		/* Store pci devices at mci for faster access */ | 
 | 		rc = sbridge_mci_bind_devs(mci, sbridge_dev); | 
 | 		if (unlikely(rc < 0)) | 
 | 			goto fail0; | 
 | 		get_source_id(mci); | 
 | 		mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge SrcID#%d_Ha#%d", | 
 | 			pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom); | 
 | 		break; | 
 | 	case HASWELL: | 
 | 		/* rankcfgr isn't used */ | 
 | 		pvt->info.get_tolm = haswell_get_tolm; | 
 | 		pvt->info.get_tohm = haswell_get_tohm; | 
 | 		pvt->info.dram_rule = ibridge_dram_rule; | 
 | 		pvt->info.get_memory_type = haswell_get_memory_type; | 
 | 		pvt->info.get_node_id = haswell_get_node_id; | 
 | 		pvt->info.get_ha = ibridge_get_ha; | 
 | 		pvt->info.rir_limit = haswell_rir_limit; | 
 | 		pvt->info.sad_limit = sad_limit; | 
 | 		pvt->info.interleave_mode = interleave_mode; | 
 | 		pvt->info.dram_attr = dram_attr; | 
 | 		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule); | 
 | 		pvt->info.interleave_list = ibridge_interleave_list; | 
 | 		pvt->info.interleave_pkg = ibridge_interleave_pkg; | 
 | 		pvt->info.get_width = ibridge_get_width; | 
 |  | 
 | 		/* Store pci devices at mci for faster access */ | 
 | 		rc = haswell_mci_bind_devs(mci, sbridge_dev); | 
 | 		if (unlikely(rc < 0)) | 
 | 			goto fail0; | 
 | 		get_source_id(mci); | 
 | 		mci->ctl_name = kasprintf(GFP_KERNEL, "Haswell SrcID#%d_Ha#%d", | 
 | 			pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom); | 
 | 		break; | 
 | 	case BROADWELL: | 
 | 		/* rankcfgr isn't used */ | 
 | 		pvt->info.get_tolm = haswell_get_tolm; | 
 | 		pvt->info.get_tohm = haswell_get_tohm; | 
 | 		pvt->info.dram_rule = ibridge_dram_rule; | 
 | 		pvt->info.get_memory_type = haswell_get_memory_type; | 
 | 		pvt->info.get_node_id = haswell_get_node_id; | 
 | 		pvt->info.get_ha = ibridge_get_ha; | 
 | 		pvt->info.rir_limit = haswell_rir_limit; | 
 | 		pvt->info.sad_limit = sad_limit; | 
 | 		pvt->info.interleave_mode = interleave_mode; | 
 | 		pvt->info.dram_attr = dram_attr; | 
 | 		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule); | 
 | 		pvt->info.interleave_list = ibridge_interleave_list; | 
 | 		pvt->info.interleave_pkg = ibridge_interleave_pkg; | 
 | 		pvt->info.get_width = broadwell_get_width; | 
 |  | 
 | 		/* Store pci devices at mci for faster access */ | 
 | 		rc = broadwell_mci_bind_devs(mci, sbridge_dev); | 
 | 		if (unlikely(rc < 0)) | 
 | 			goto fail0; | 
 | 		get_source_id(mci); | 
 | 		mci->ctl_name = kasprintf(GFP_KERNEL, "Broadwell SrcID#%d_Ha#%d", | 
 | 			pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom); | 
 | 		break; | 
 | 	case KNIGHTS_LANDING: | 
 | 		/* pvt->info.rankcfgr == ??? */ | 
 | 		pvt->info.get_tolm = knl_get_tolm; | 
 | 		pvt->info.get_tohm = knl_get_tohm; | 
 | 		pvt->info.dram_rule = knl_dram_rule; | 
 | 		pvt->info.get_memory_type = knl_get_memory_type; | 
 | 		pvt->info.get_node_id = knl_get_node_id; | 
 | 		pvt->info.get_ha = knl_get_ha; | 
 | 		pvt->info.rir_limit = NULL; | 
 | 		pvt->info.sad_limit = knl_sad_limit; | 
 | 		pvt->info.interleave_mode = knl_interleave_mode; | 
 | 		pvt->info.dram_attr = dram_attr_knl; | 
 | 		pvt->info.max_sad = ARRAY_SIZE(knl_dram_rule); | 
 | 		pvt->info.interleave_list = knl_interleave_list; | 
 | 		pvt->info.interleave_pkg = ibridge_interleave_pkg; | 
 | 		pvt->info.get_width = knl_get_width; | 
 |  | 
 | 		rc = knl_mci_bind_devs(mci, sbridge_dev); | 
 | 		if (unlikely(rc < 0)) | 
 | 			goto fail0; | 
 | 		get_source_id(mci); | 
 | 		mci->ctl_name = kasprintf(GFP_KERNEL, "Knights Landing SrcID#%d_Ha#%d", | 
 | 			pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	if (!mci->ctl_name) { | 
 | 		rc = -ENOMEM; | 
 | 		goto fail0; | 
 | 	} | 
 |  | 
 | 	/* Get dimm basic config and the memory layout */ | 
 | 	rc = get_dimm_config(mci); | 
 | 	if (rc < 0) { | 
 | 		edac_dbg(0, "MC: failed to get_dimm_config()\n"); | 
 | 		goto fail; | 
 | 	} | 
 | 	get_memory_layout(mci); | 
 |  | 
 | 	/* record ptr to the generic device */ | 
 | 	mci->pdev = &pdev->dev; | 
 |  | 
 | 	/* add this new MC control structure to EDAC's list of MCs */ | 
 | 	if (unlikely(edac_mc_add_mc(mci))) { | 
 | 		edac_dbg(0, "MC: failed edac_mc_add_mc()\n"); | 
 | 		rc = -EINVAL; | 
 | 		goto fail; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 |  | 
 | fail: | 
 | 	kfree(mci->ctl_name); | 
 | fail0: | 
 | 	edac_mc_free(mci); | 
 | 	sbridge_dev->mci = NULL; | 
 | 	return rc; | 
 | } | 
 |  | 
 | static const struct x86_cpu_id sbridge_cpuids[] = { | 
 | 	X86_MATCH_INTEL_FAM6_MODEL(SANDYBRIDGE_X, &pci_dev_descr_sbridge_table), | 
 | 	X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE_X,	  &pci_dev_descr_ibridge_table), | 
 | 	X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X,	  &pci_dev_descr_haswell_table), | 
 | 	X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X,	  &pci_dev_descr_broadwell_table), | 
 | 	X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_D,	  &pci_dev_descr_broadwell_table), | 
 | 	X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNL,  &pci_dev_descr_knl_table), | 
 | 	X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNM,  &pci_dev_descr_knl_table), | 
 | 	{ } | 
 | }; | 
 | MODULE_DEVICE_TABLE(x86cpu, sbridge_cpuids); | 
 |  | 
 | /* | 
 |  *	sbridge_probe	Get all devices and register memory controllers | 
 |  *			present. | 
 |  *	return: | 
 |  *		0 for FOUND a device | 
 |  *		< 0 for error code | 
 |  */ | 
 |  | 
 | static int sbridge_probe(const struct x86_cpu_id *id) | 
 | { | 
 | 	int rc; | 
 | 	u8 mc, num_mc = 0; | 
 | 	struct sbridge_dev *sbridge_dev; | 
 | 	struct pci_id_table *ptable = (struct pci_id_table *)id->driver_data; | 
 |  | 
 | 	/* get the pci devices we want to reserve for our use */ | 
 | 	rc = sbridge_get_all_devices(&num_mc, ptable); | 
 |  | 
 | 	if (unlikely(rc < 0)) { | 
 | 		edac_dbg(0, "couldn't get all devices\n"); | 
 | 		goto fail0; | 
 | 	} | 
 |  | 
 | 	mc = 0; | 
 |  | 
 | 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) { | 
 | 		edac_dbg(0, "Registering MC#%d (%d of %d)\n", | 
 | 			 mc, mc + 1, num_mc); | 
 |  | 
 | 		sbridge_dev->mc = mc++; | 
 | 		rc = sbridge_register_mci(sbridge_dev, ptable->type); | 
 | 		if (unlikely(rc < 0)) | 
 | 			goto fail1; | 
 | 	} | 
 |  | 
 | 	sbridge_printk(KERN_INFO, "%s\n", SBRIDGE_REVISION); | 
 |  | 
 | 	return 0; | 
 |  | 
 | fail1: | 
 | 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) | 
 | 		sbridge_unregister_mci(sbridge_dev); | 
 |  | 
 | 	sbridge_put_all_devices(); | 
 | fail0: | 
 | 	return rc; | 
 | } | 
 |  | 
 | /* | 
 |  *	sbridge_remove	cleanup | 
 |  * | 
 |  */ | 
 | static void sbridge_remove(void) | 
 | { | 
 | 	struct sbridge_dev *sbridge_dev; | 
 |  | 
 | 	edac_dbg(0, "\n"); | 
 |  | 
 | 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) | 
 | 		sbridge_unregister_mci(sbridge_dev); | 
 |  | 
 | 	/* Release PCI resources */ | 
 | 	sbridge_put_all_devices(); | 
 | } | 
 |  | 
 | /* | 
 |  *	sbridge_init		Module entry function | 
 |  *			Try to initialize this module for its devices | 
 |  */ | 
 | static int __init sbridge_init(void) | 
 | { | 
 | 	const struct x86_cpu_id *id; | 
 | 	const char *owner; | 
 | 	int rc; | 
 |  | 
 | 	edac_dbg(2, "\n"); | 
 |  | 
 | 	if (ghes_get_devices()) | 
 | 		return -EBUSY; | 
 |  | 
 | 	owner = edac_get_owner(); | 
 | 	if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR))) | 
 | 		return -EBUSY; | 
 |  | 
 | 	if (cpu_feature_enabled(X86_FEATURE_HYPERVISOR)) | 
 | 		return -ENODEV; | 
 |  | 
 | 	id = x86_match_cpu(sbridge_cpuids); | 
 | 	if (!id) | 
 | 		return -ENODEV; | 
 |  | 
 | 	/* Ensure that the OPSTATE is set correctly for POLL or NMI */ | 
 | 	opstate_init(); | 
 |  | 
 | 	rc = sbridge_probe(id); | 
 |  | 
 | 	if (rc >= 0) { | 
 | 		mce_register_decode_chain(&sbridge_mce_dec); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n", | 
 | 		      rc); | 
 |  | 
 | 	return rc; | 
 | } | 
 |  | 
 | /* | 
 |  *	sbridge_exit()	Module exit function | 
 |  *			Unregister the driver | 
 |  */ | 
 | static void __exit sbridge_exit(void) | 
 | { | 
 | 	edac_dbg(2, "\n"); | 
 | 	sbridge_remove(); | 
 | 	mce_unregister_decode_chain(&sbridge_mce_dec); | 
 | } | 
 |  | 
 | module_init(sbridge_init); | 
 | module_exit(sbridge_exit); | 
 |  | 
 | module_param(edac_op_state, int, 0444); | 
 | MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI"); | 
 |  | 
 | MODULE_LICENSE("GPL"); | 
 | MODULE_AUTHOR("Mauro Carvalho Chehab"); | 
 | MODULE_AUTHOR("Red Hat Inc. (https://www.redhat.com)"); | 
 | MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge and Ivy Bridge memory controllers - " | 
 | 		   SBRIDGE_REVISION); |