|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | * mm/percpu.c - percpu memory allocator | 
|  | * | 
|  | * Copyright (C) 2009		SUSE Linux Products GmbH | 
|  | * Copyright (C) 2009		Tejun Heo <tj@kernel.org> | 
|  | * | 
|  | * Copyright (C) 2017		Facebook Inc. | 
|  | * Copyright (C) 2017		Dennis Zhou <dennis@kernel.org> | 
|  | * | 
|  | * The percpu allocator handles both static and dynamic areas.  Percpu | 
|  | * areas are allocated in chunks which are divided into units.  There is | 
|  | * a 1-to-1 mapping for units to possible cpus.  These units are grouped | 
|  | * based on NUMA properties of the machine. | 
|  | * | 
|  | *  c0                           c1                         c2 | 
|  | *  -------------------          -------------------        ------------ | 
|  | * | u0 | u1 | u2 | u3 |        | u0 | u1 | u2 | u3 |      | u0 | u1 | u | 
|  | *  -------------------  ......  -------------------  ....  ------------ | 
|  | * | 
|  | * Allocation is done by offsets into a unit's address space.  Ie., an | 
|  | * area of 512 bytes at 6k in c1 occupies 512 bytes at 6k in c1:u0, | 
|  | * c1:u1, c1:u2, etc.  On NUMA machines, the mapping may be non-linear | 
|  | * and even sparse.  Access is handled by configuring percpu base | 
|  | * registers according to the cpu to unit mappings and offsetting the | 
|  | * base address using pcpu_unit_size. | 
|  | * | 
|  | * There is special consideration for the first chunk which must handle | 
|  | * the static percpu variables in the kernel image as allocation services | 
|  | * are not online yet.  In short, the first chunk is structured like so: | 
|  | * | 
|  | *                  <Static | [Reserved] | Dynamic> | 
|  | * | 
|  | * The static data is copied from the original section managed by the | 
|  | * linker.  The reserved section, if non-zero, primarily manages static | 
|  | * percpu variables from kernel modules.  Finally, the dynamic section | 
|  | * takes care of normal allocations. | 
|  | * | 
|  | * The allocator organizes chunks into lists according to free size and | 
|  | * memcg-awareness.  To make a percpu allocation memcg-aware the __GFP_ACCOUNT | 
|  | * flag should be passed.  All memcg-aware allocations are sharing one set | 
|  | * of chunks and all unaccounted allocations and allocations performed | 
|  | * by processes belonging to the root memory cgroup are using the second set. | 
|  | * | 
|  | * The allocator tries to allocate from the fullest chunk first. Each chunk | 
|  | * is managed by a bitmap with metadata blocks.  The allocation map is updated | 
|  | * on every allocation and free to reflect the current state while the boundary | 
|  | * map is only updated on allocation.  Each metadata block contains | 
|  | * information to help mitigate the need to iterate over large portions | 
|  | * of the bitmap.  The reverse mapping from page to chunk is stored in | 
|  | * the page's index.  Lastly, units are lazily backed and grow in unison. | 
|  | * | 
|  | * There is a unique conversion that goes on here between bytes and bits. | 
|  | * Each bit represents a fragment of size PCPU_MIN_ALLOC_SIZE.  The chunk | 
|  | * tracks the number of pages it is responsible for in nr_pages.  Helper | 
|  | * functions are used to convert from between the bytes, bits, and blocks. | 
|  | * All hints are managed in bits unless explicitly stated. | 
|  | * | 
|  | * To use this allocator, arch code should do the following: | 
|  | * | 
|  | * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate | 
|  | *   regular address to percpu pointer and back if they need to be | 
|  | *   different from the default | 
|  | * | 
|  | * - use pcpu_setup_first_chunk() during percpu area initialization to | 
|  | *   setup the first chunk containing the kernel static percpu area | 
|  | */ | 
|  |  | 
|  | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
|  |  | 
|  | #include <linux/bitmap.h> | 
|  | #include <linux/cpumask.h> | 
|  | #include <linux/memblock.h> | 
|  | #include <linux/err.h> | 
|  | #include <linux/list.h> | 
|  | #include <linux/log2.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/mutex.h> | 
|  | #include <linux/percpu.h> | 
|  | #include <linux/pfn.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <linux/workqueue.h> | 
|  | #include <linux/kmemleak.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/sched/mm.h> | 
|  | #include <linux/memcontrol.h> | 
|  |  | 
|  | #include <asm/cacheflush.h> | 
|  | #include <asm/sections.h> | 
|  | #include <asm/tlbflush.h> | 
|  | #include <asm/io.h> | 
|  |  | 
|  | #define CREATE_TRACE_POINTS | 
|  | #include <trace/events/percpu.h> | 
|  |  | 
|  | #include "percpu-internal.h" | 
|  |  | 
|  | /* | 
|  | * The slots are sorted by the size of the biggest continuous free area. | 
|  | * 1-31 bytes share the same slot. | 
|  | */ | 
|  | #define PCPU_SLOT_BASE_SHIFT		5 | 
|  | /* chunks in slots below this are subject to being sidelined on failed alloc */ | 
|  | #define PCPU_SLOT_FAIL_THRESHOLD	3 | 
|  |  | 
|  | #define PCPU_EMPTY_POP_PAGES_LOW	2 | 
|  | #define PCPU_EMPTY_POP_PAGES_HIGH	4 | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */ | 
|  | #ifndef __addr_to_pcpu_ptr | 
|  | #define __addr_to_pcpu_ptr(addr)					\ | 
|  | (void __percpu *)((unsigned long)(addr) -			\ | 
|  | (unsigned long)pcpu_base_addr	+		\ | 
|  | (unsigned long)__per_cpu_start) | 
|  | #endif | 
|  | #ifndef __pcpu_ptr_to_addr | 
|  | #define __pcpu_ptr_to_addr(ptr)						\ | 
|  | (void __force *)((unsigned long)(ptr) +				\ | 
|  | (unsigned long)pcpu_base_addr -		\ | 
|  | (unsigned long)__per_cpu_start) | 
|  | #endif | 
|  | #else	/* CONFIG_SMP */ | 
|  | /* on UP, it's always identity mapped */ | 
|  | #define __addr_to_pcpu_ptr(addr)	(void __percpu *)(addr) | 
|  | #define __pcpu_ptr_to_addr(ptr)		(void __force *)(ptr) | 
|  | #endif	/* CONFIG_SMP */ | 
|  |  | 
|  | static int pcpu_unit_pages __ro_after_init; | 
|  | static int pcpu_unit_size __ro_after_init; | 
|  | static int pcpu_nr_units __ro_after_init; | 
|  | static int pcpu_atom_size __ro_after_init; | 
|  | int pcpu_nr_slots __ro_after_init; | 
|  | static int pcpu_free_slot __ro_after_init; | 
|  | int pcpu_sidelined_slot __ro_after_init; | 
|  | int pcpu_to_depopulate_slot __ro_after_init; | 
|  | static size_t pcpu_chunk_struct_size __ro_after_init; | 
|  |  | 
|  | /* cpus with the lowest and highest unit addresses */ | 
|  | static unsigned int pcpu_low_unit_cpu __ro_after_init; | 
|  | static unsigned int pcpu_high_unit_cpu __ro_after_init; | 
|  |  | 
|  | /* the address of the first chunk which starts with the kernel static area */ | 
|  | void *pcpu_base_addr __ro_after_init; | 
|  |  | 
|  | static const int *pcpu_unit_map __ro_after_init;		/* cpu -> unit */ | 
|  | const unsigned long *pcpu_unit_offsets __ro_after_init;	/* cpu -> unit offset */ | 
|  |  | 
|  | /* group information, used for vm allocation */ | 
|  | static int pcpu_nr_groups __ro_after_init; | 
|  | static const unsigned long *pcpu_group_offsets __ro_after_init; | 
|  | static const size_t *pcpu_group_sizes __ro_after_init; | 
|  |  | 
|  | /* | 
|  | * The first chunk which always exists.  Note that unlike other | 
|  | * chunks, this one can be allocated and mapped in several different | 
|  | * ways and thus often doesn't live in the vmalloc area. | 
|  | */ | 
|  | struct pcpu_chunk *pcpu_first_chunk __ro_after_init; | 
|  |  | 
|  | /* | 
|  | * Optional reserved chunk.  This chunk reserves part of the first | 
|  | * chunk and serves it for reserved allocations.  When the reserved | 
|  | * region doesn't exist, the following variable is NULL. | 
|  | */ | 
|  | struct pcpu_chunk *pcpu_reserved_chunk __ro_after_init; | 
|  |  | 
|  | DEFINE_SPINLOCK(pcpu_lock);	/* all internal data structures */ | 
|  | static DEFINE_MUTEX(pcpu_alloc_mutex);	/* chunk create/destroy, [de]pop, map ext */ | 
|  |  | 
|  | struct list_head *pcpu_chunk_lists __ro_after_init; /* chunk list slots */ | 
|  |  | 
|  | /* | 
|  | * The number of empty populated pages, protected by pcpu_lock. | 
|  | * The reserved chunk doesn't contribute to the count. | 
|  | */ | 
|  | int pcpu_nr_empty_pop_pages; | 
|  |  | 
|  | /* | 
|  | * The number of populated pages in use by the allocator, protected by | 
|  | * pcpu_lock.  This number is kept per a unit per chunk (i.e. when a page gets | 
|  | * allocated/deallocated, it is allocated/deallocated in all units of a chunk | 
|  | * and increments/decrements this count by 1). | 
|  | */ | 
|  | static unsigned long pcpu_nr_populated; | 
|  |  | 
|  | /* | 
|  | * Balance work is used to populate or destroy chunks asynchronously.  We | 
|  | * try to keep the number of populated free pages between | 
|  | * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one | 
|  | * empty chunk. | 
|  | */ | 
|  | static void pcpu_balance_workfn(struct work_struct *work); | 
|  | static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn); | 
|  | static bool pcpu_async_enabled __read_mostly; | 
|  | static bool pcpu_atomic_alloc_failed; | 
|  |  | 
|  | static void pcpu_schedule_balance_work(void) | 
|  | { | 
|  | if (pcpu_async_enabled) | 
|  | schedule_work(&pcpu_balance_work); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pcpu_addr_in_chunk - check if the address is served from this chunk | 
|  | * @chunk: chunk of interest | 
|  | * @addr: percpu address | 
|  | * | 
|  | * RETURNS: | 
|  | * True if the address is served from this chunk. | 
|  | */ | 
|  | static bool pcpu_addr_in_chunk(struct pcpu_chunk *chunk, void *addr) | 
|  | { | 
|  | void *start_addr, *end_addr; | 
|  |  | 
|  | if (!chunk) | 
|  | return false; | 
|  |  | 
|  | start_addr = chunk->base_addr + chunk->start_offset; | 
|  | end_addr = chunk->base_addr + chunk->nr_pages * PAGE_SIZE - | 
|  | chunk->end_offset; | 
|  |  | 
|  | return addr >= start_addr && addr < end_addr; | 
|  | } | 
|  |  | 
|  | static int __pcpu_size_to_slot(int size) | 
|  | { | 
|  | int highbit = fls(size);	/* size is in bytes */ | 
|  | return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1); | 
|  | } | 
|  |  | 
|  | static int pcpu_size_to_slot(int size) | 
|  | { | 
|  | if (size == pcpu_unit_size) | 
|  | return pcpu_free_slot; | 
|  | return __pcpu_size_to_slot(size); | 
|  | } | 
|  |  | 
|  | static int pcpu_chunk_slot(const struct pcpu_chunk *chunk) | 
|  | { | 
|  | const struct pcpu_block_md *chunk_md = &chunk->chunk_md; | 
|  |  | 
|  | if (chunk->free_bytes < PCPU_MIN_ALLOC_SIZE || | 
|  | chunk_md->contig_hint == 0) | 
|  | return 0; | 
|  |  | 
|  | return pcpu_size_to_slot(chunk_md->contig_hint * PCPU_MIN_ALLOC_SIZE); | 
|  | } | 
|  |  | 
|  | /* set the pointer to a chunk in a page struct */ | 
|  | static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu) | 
|  | { | 
|  | page->index = (unsigned long)pcpu; | 
|  | } | 
|  |  | 
|  | /* obtain pointer to a chunk from a page struct */ | 
|  | static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page) | 
|  | { | 
|  | return (struct pcpu_chunk *)page->index; | 
|  | } | 
|  |  | 
|  | static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx) | 
|  | { | 
|  | return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx; | 
|  | } | 
|  |  | 
|  | static unsigned long pcpu_unit_page_offset(unsigned int cpu, int page_idx) | 
|  | { | 
|  | return pcpu_unit_offsets[cpu] + (page_idx << PAGE_SHIFT); | 
|  | } | 
|  |  | 
|  | static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk, | 
|  | unsigned int cpu, int page_idx) | 
|  | { | 
|  | return (unsigned long)chunk->base_addr + | 
|  | pcpu_unit_page_offset(cpu, page_idx); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The following are helper functions to help access bitmaps and convert | 
|  | * between bitmap offsets to address offsets. | 
|  | */ | 
|  | static unsigned long *pcpu_index_alloc_map(struct pcpu_chunk *chunk, int index) | 
|  | { | 
|  | return chunk->alloc_map + | 
|  | (index * PCPU_BITMAP_BLOCK_BITS / BITS_PER_LONG); | 
|  | } | 
|  |  | 
|  | static unsigned long pcpu_off_to_block_index(int off) | 
|  | { | 
|  | return off / PCPU_BITMAP_BLOCK_BITS; | 
|  | } | 
|  |  | 
|  | static unsigned long pcpu_off_to_block_off(int off) | 
|  | { | 
|  | return off & (PCPU_BITMAP_BLOCK_BITS - 1); | 
|  | } | 
|  |  | 
|  | static unsigned long pcpu_block_off_to_off(int index, int off) | 
|  | { | 
|  | return index * PCPU_BITMAP_BLOCK_BITS + off; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pcpu_check_block_hint - check against the contig hint | 
|  | * @block: block of interest | 
|  | * @bits: size of allocation | 
|  | * @align: alignment of area (max PAGE_SIZE) | 
|  | * | 
|  | * Check to see if the allocation can fit in the block's contig hint. | 
|  | * Note, a chunk uses the same hints as a block so this can also check against | 
|  | * the chunk's contig hint. | 
|  | */ | 
|  | static bool pcpu_check_block_hint(struct pcpu_block_md *block, int bits, | 
|  | size_t align) | 
|  | { | 
|  | int bit_off = ALIGN(block->contig_hint_start, align) - | 
|  | block->contig_hint_start; | 
|  |  | 
|  | return bit_off + bits <= block->contig_hint; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * pcpu_next_hint - determine which hint to use | 
|  | * @block: block of interest | 
|  | * @alloc_bits: size of allocation | 
|  | * | 
|  | * This determines if we should scan based on the scan_hint or first_free. | 
|  | * In general, we want to scan from first_free to fulfill allocations by | 
|  | * first fit.  However, if we know a scan_hint at position scan_hint_start | 
|  | * cannot fulfill an allocation, we can begin scanning from there knowing | 
|  | * the contig_hint will be our fallback. | 
|  | */ | 
|  | static int pcpu_next_hint(struct pcpu_block_md *block, int alloc_bits) | 
|  | { | 
|  | /* | 
|  | * The three conditions below determine if we can skip past the | 
|  | * scan_hint.  First, does the scan hint exist.  Second, is the | 
|  | * contig_hint after the scan_hint (possibly not true iff | 
|  | * contig_hint == scan_hint).  Third, is the allocation request | 
|  | * larger than the scan_hint. | 
|  | */ | 
|  | if (block->scan_hint && | 
|  | block->contig_hint_start > block->scan_hint_start && | 
|  | alloc_bits > block->scan_hint) | 
|  | return block->scan_hint_start + block->scan_hint; | 
|  |  | 
|  | return block->first_free; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pcpu_next_md_free_region - finds the next hint free area | 
|  | * @chunk: chunk of interest | 
|  | * @bit_off: chunk offset | 
|  | * @bits: size of free area | 
|  | * | 
|  | * Helper function for pcpu_for_each_md_free_region.  It checks | 
|  | * block->contig_hint and performs aggregation across blocks to find the | 
|  | * next hint.  It modifies bit_off and bits in-place to be consumed in the | 
|  | * loop. | 
|  | */ | 
|  | static void pcpu_next_md_free_region(struct pcpu_chunk *chunk, int *bit_off, | 
|  | int *bits) | 
|  | { | 
|  | int i = pcpu_off_to_block_index(*bit_off); | 
|  | int block_off = pcpu_off_to_block_off(*bit_off); | 
|  | struct pcpu_block_md *block; | 
|  |  | 
|  | *bits = 0; | 
|  | for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk); | 
|  | block++, i++) { | 
|  | /* handles contig area across blocks */ | 
|  | if (*bits) { | 
|  | *bits += block->left_free; | 
|  | if (block->left_free == PCPU_BITMAP_BLOCK_BITS) | 
|  | continue; | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This checks three things.  First is there a contig_hint to | 
|  | * check.  Second, have we checked this hint before by | 
|  | * comparing the block_off.  Third, is this the same as the | 
|  | * right contig hint.  In the last case, it spills over into | 
|  | * the next block and should be handled by the contig area | 
|  | * across blocks code. | 
|  | */ | 
|  | *bits = block->contig_hint; | 
|  | if (*bits && block->contig_hint_start >= block_off && | 
|  | *bits + block->contig_hint_start < PCPU_BITMAP_BLOCK_BITS) { | 
|  | *bit_off = pcpu_block_off_to_off(i, | 
|  | block->contig_hint_start); | 
|  | return; | 
|  | } | 
|  | /* reset to satisfy the second predicate above */ | 
|  | block_off = 0; | 
|  |  | 
|  | *bits = block->right_free; | 
|  | *bit_off = (i + 1) * PCPU_BITMAP_BLOCK_BITS - block->right_free; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pcpu_next_fit_region - finds fit areas for a given allocation request | 
|  | * @chunk: chunk of interest | 
|  | * @alloc_bits: size of allocation | 
|  | * @align: alignment of area (max PAGE_SIZE) | 
|  | * @bit_off: chunk offset | 
|  | * @bits: size of free area | 
|  | * | 
|  | * Finds the next free region that is viable for use with a given size and | 
|  | * alignment.  This only returns if there is a valid area to be used for this | 
|  | * allocation.  block->first_free is returned if the allocation request fits | 
|  | * within the block to see if the request can be fulfilled prior to the contig | 
|  | * hint. | 
|  | */ | 
|  | static void pcpu_next_fit_region(struct pcpu_chunk *chunk, int alloc_bits, | 
|  | int align, int *bit_off, int *bits) | 
|  | { | 
|  | int i = pcpu_off_to_block_index(*bit_off); | 
|  | int block_off = pcpu_off_to_block_off(*bit_off); | 
|  | struct pcpu_block_md *block; | 
|  |  | 
|  | *bits = 0; | 
|  | for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk); | 
|  | block++, i++) { | 
|  | /* handles contig area across blocks */ | 
|  | if (*bits) { | 
|  | *bits += block->left_free; | 
|  | if (*bits >= alloc_bits) | 
|  | return; | 
|  | if (block->left_free == PCPU_BITMAP_BLOCK_BITS) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* check block->contig_hint */ | 
|  | *bits = ALIGN(block->contig_hint_start, align) - | 
|  | block->contig_hint_start; | 
|  | /* | 
|  | * This uses the block offset to determine if this has been | 
|  | * checked in the prior iteration. | 
|  | */ | 
|  | if (block->contig_hint && | 
|  | block->contig_hint_start >= block_off && | 
|  | block->contig_hint >= *bits + alloc_bits) { | 
|  | int start = pcpu_next_hint(block, alloc_bits); | 
|  |  | 
|  | *bits += alloc_bits + block->contig_hint_start - | 
|  | start; | 
|  | *bit_off = pcpu_block_off_to_off(i, start); | 
|  | return; | 
|  | } | 
|  | /* reset to satisfy the second predicate above */ | 
|  | block_off = 0; | 
|  |  | 
|  | *bit_off = ALIGN(PCPU_BITMAP_BLOCK_BITS - block->right_free, | 
|  | align); | 
|  | *bits = PCPU_BITMAP_BLOCK_BITS - *bit_off; | 
|  | *bit_off = pcpu_block_off_to_off(i, *bit_off); | 
|  | if (*bits >= alloc_bits) | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* no valid offsets were found - fail condition */ | 
|  | *bit_off = pcpu_chunk_map_bits(chunk); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Metadata free area iterators.  These perform aggregation of free areas | 
|  | * based on the metadata blocks and return the offset @bit_off and size in | 
|  | * bits of the free area @bits.  pcpu_for_each_fit_region only returns when | 
|  | * a fit is found for the allocation request. | 
|  | */ | 
|  | #define pcpu_for_each_md_free_region(chunk, bit_off, bits)		\ | 
|  | for (pcpu_next_md_free_region((chunk), &(bit_off), &(bits));	\ | 
|  | (bit_off) < pcpu_chunk_map_bits((chunk));			\ | 
|  | (bit_off) += (bits) + 1,					\ | 
|  | pcpu_next_md_free_region((chunk), &(bit_off), &(bits))) | 
|  |  | 
|  | #define pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits)     \ | 
|  | for (pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \ | 
|  | &(bits));				      \ | 
|  | (bit_off) < pcpu_chunk_map_bits((chunk));			      \ | 
|  | (bit_off) += (bits),					      \ | 
|  | pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \ | 
|  | &(bits))) | 
|  |  | 
|  | /** | 
|  | * pcpu_mem_zalloc - allocate memory | 
|  | * @size: bytes to allocate | 
|  | * @gfp: allocation flags | 
|  | * | 
|  | * Allocate @size bytes.  If @size is smaller than PAGE_SIZE, | 
|  | * kzalloc() is used; otherwise, the equivalent of vzalloc() is used. | 
|  | * This is to facilitate passing through whitelisted flags.  The | 
|  | * returned memory is always zeroed. | 
|  | * | 
|  | * RETURNS: | 
|  | * Pointer to the allocated area on success, NULL on failure. | 
|  | */ | 
|  | static void *pcpu_mem_zalloc(size_t size, gfp_t gfp) | 
|  | { | 
|  | if (WARN_ON_ONCE(!slab_is_available())) | 
|  | return NULL; | 
|  |  | 
|  | if (size <= PAGE_SIZE) | 
|  | return kzalloc(size, gfp); | 
|  | else | 
|  | return __vmalloc(size, gfp | __GFP_ZERO); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pcpu_mem_free - free memory | 
|  | * @ptr: memory to free | 
|  | * | 
|  | * Free @ptr.  @ptr should have been allocated using pcpu_mem_zalloc(). | 
|  | */ | 
|  | static void pcpu_mem_free(void *ptr) | 
|  | { | 
|  | kvfree(ptr); | 
|  | } | 
|  |  | 
|  | static void __pcpu_chunk_move(struct pcpu_chunk *chunk, int slot, | 
|  | bool move_front) | 
|  | { | 
|  | if (chunk != pcpu_reserved_chunk) { | 
|  | if (move_front) | 
|  | list_move(&chunk->list, &pcpu_chunk_lists[slot]); | 
|  | else | 
|  | list_move_tail(&chunk->list, &pcpu_chunk_lists[slot]); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void pcpu_chunk_move(struct pcpu_chunk *chunk, int slot) | 
|  | { | 
|  | __pcpu_chunk_move(chunk, slot, true); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pcpu_chunk_relocate - put chunk in the appropriate chunk slot | 
|  | * @chunk: chunk of interest | 
|  | * @oslot: the previous slot it was on | 
|  | * | 
|  | * This function is called after an allocation or free changed @chunk. | 
|  | * New slot according to the changed state is determined and @chunk is | 
|  | * moved to the slot.  Note that the reserved chunk is never put on | 
|  | * chunk slots. | 
|  | * | 
|  | * CONTEXT: | 
|  | * pcpu_lock. | 
|  | */ | 
|  | static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot) | 
|  | { | 
|  | int nslot = pcpu_chunk_slot(chunk); | 
|  |  | 
|  | /* leave isolated chunks in-place */ | 
|  | if (chunk->isolated) | 
|  | return; | 
|  |  | 
|  | if (oslot != nslot) | 
|  | __pcpu_chunk_move(chunk, nslot, oslot < nslot); | 
|  | } | 
|  |  | 
|  | static void pcpu_isolate_chunk(struct pcpu_chunk *chunk) | 
|  | { | 
|  | lockdep_assert_held(&pcpu_lock); | 
|  |  | 
|  | if (!chunk->isolated) { | 
|  | chunk->isolated = true; | 
|  | pcpu_nr_empty_pop_pages -= chunk->nr_empty_pop_pages; | 
|  | } | 
|  | list_move(&chunk->list, &pcpu_chunk_lists[pcpu_to_depopulate_slot]); | 
|  | } | 
|  |  | 
|  | static void pcpu_reintegrate_chunk(struct pcpu_chunk *chunk) | 
|  | { | 
|  | lockdep_assert_held(&pcpu_lock); | 
|  |  | 
|  | if (chunk->isolated) { | 
|  | chunk->isolated = false; | 
|  | pcpu_nr_empty_pop_pages += chunk->nr_empty_pop_pages; | 
|  | pcpu_chunk_relocate(chunk, -1); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * pcpu_update_empty_pages - update empty page counters | 
|  | * @chunk: chunk of interest | 
|  | * @nr: nr of empty pages | 
|  | * | 
|  | * This is used to keep track of the empty pages now based on the premise | 
|  | * a md_block covers a page.  The hint update functions recognize if a block | 
|  | * is made full or broken to calculate deltas for keeping track of free pages. | 
|  | */ | 
|  | static inline void pcpu_update_empty_pages(struct pcpu_chunk *chunk, int nr) | 
|  | { | 
|  | chunk->nr_empty_pop_pages += nr; | 
|  | if (chunk != pcpu_reserved_chunk && !chunk->isolated) | 
|  | pcpu_nr_empty_pop_pages += nr; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * pcpu_region_overlap - determines if two regions overlap | 
|  | * @a: start of first region, inclusive | 
|  | * @b: end of first region, exclusive | 
|  | * @x: start of second region, inclusive | 
|  | * @y: end of second region, exclusive | 
|  | * | 
|  | * This is used to determine if the hint region [a, b) overlaps with the | 
|  | * allocated region [x, y). | 
|  | */ | 
|  | static inline bool pcpu_region_overlap(int a, int b, int x, int y) | 
|  | { | 
|  | return (a < y) && (x < b); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pcpu_block_update - updates a block given a free area | 
|  | * @block: block of interest | 
|  | * @start: start offset in block | 
|  | * @end: end offset in block | 
|  | * | 
|  | * Updates a block given a known free area.  The region [start, end) is | 
|  | * expected to be the entirety of the free area within a block.  Chooses | 
|  | * the best starting offset if the contig hints are equal. | 
|  | */ | 
|  | static void pcpu_block_update(struct pcpu_block_md *block, int start, int end) | 
|  | { | 
|  | int contig = end - start; | 
|  |  | 
|  | block->first_free = min(block->first_free, start); | 
|  | if (start == 0) | 
|  | block->left_free = contig; | 
|  |  | 
|  | if (end == block->nr_bits) | 
|  | block->right_free = contig; | 
|  |  | 
|  | if (contig > block->contig_hint) { | 
|  | /* promote the old contig_hint to be the new scan_hint */ | 
|  | if (start > block->contig_hint_start) { | 
|  | if (block->contig_hint > block->scan_hint) { | 
|  | block->scan_hint_start = | 
|  | block->contig_hint_start; | 
|  | block->scan_hint = block->contig_hint; | 
|  | } else if (start < block->scan_hint_start) { | 
|  | /* | 
|  | * The old contig_hint == scan_hint.  But, the | 
|  | * new contig is larger so hold the invariant | 
|  | * scan_hint_start < contig_hint_start. | 
|  | */ | 
|  | block->scan_hint = 0; | 
|  | } | 
|  | } else { | 
|  | block->scan_hint = 0; | 
|  | } | 
|  | block->contig_hint_start = start; | 
|  | block->contig_hint = contig; | 
|  | } else if (contig == block->contig_hint) { | 
|  | if (block->contig_hint_start && | 
|  | (!start || | 
|  | __ffs(start) > __ffs(block->contig_hint_start))) { | 
|  | /* start has a better alignment so use it */ | 
|  | block->contig_hint_start = start; | 
|  | if (start < block->scan_hint_start && | 
|  | block->contig_hint > block->scan_hint) | 
|  | block->scan_hint = 0; | 
|  | } else if (start > block->scan_hint_start || | 
|  | block->contig_hint > block->scan_hint) { | 
|  | /* | 
|  | * Knowing contig == contig_hint, update the scan_hint | 
|  | * if it is farther than or larger than the current | 
|  | * scan_hint. | 
|  | */ | 
|  | block->scan_hint_start = start; | 
|  | block->scan_hint = contig; | 
|  | } | 
|  | } else { | 
|  | /* | 
|  | * The region is smaller than the contig_hint.  So only update | 
|  | * the scan_hint if it is larger than or equal and farther than | 
|  | * the current scan_hint. | 
|  | */ | 
|  | if ((start < block->contig_hint_start && | 
|  | (contig > block->scan_hint || | 
|  | (contig == block->scan_hint && | 
|  | start > block->scan_hint_start)))) { | 
|  | block->scan_hint_start = start; | 
|  | block->scan_hint = contig; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * pcpu_block_update_scan - update a block given a free area from a scan | 
|  | * @chunk: chunk of interest | 
|  | * @bit_off: chunk offset | 
|  | * @bits: size of free area | 
|  | * | 
|  | * Finding the final allocation spot first goes through pcpu_find_block_fit() | 
|  | * to find a block that can hold the allocation and then pcpu_alloc_area() | 
|  | * where a scan is used.  When allocations require specific alignments, | 
|  | * we can inadvertently create holes which will not be seen in the alloc | 
|  | * or free paths. | 
|  | * | 
|  | * This takes a given free area hole and updates a block as it may change the | 
|  | * scan_hint.  We need to scan backwards to ensure we don't miss free bits | 
|  | * from alignment. | 
|  | */ | 
|  | static void pcpu_block_update_scan(struct pcpu_chunk *chunk, int bit_off, | 
|  | int bits) | 
|  | { | 
|  | int s_off = pcpu_off_to_block_off(bit_off); | 
|  | int e_off = s_off + bits; | 
|  | int s_index, l_bit; | 
|  | struct pcpu_block_md *block; | 
|  |  | 
|  | if (e_off > PCPU_BITMAP_BLOCK_BITS) | 
|  | return; | 
|  |  | 
|  | s_index = pcpu_off_to_block_index(bit_off); | 
|  | block = chunk->md_blocks + s_index; | 
|  |  | 
|  | /* scan backwards in case of alignment skipping free bits */ | 
|  | l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index), s_off); | 
|  | s_off = (s_off == l_bit) ? 0 : l_bit + 1; | 
|  |  | 
|  | pcpu_block_update(block, s_off, e_off); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pcpu_chunk_refresh_hint - updates metadata about a chunk | 
|  | * @chunk: chunk of interest | 
|  | * @full_scan: if we should scan from the beginning | 
|  | * | 
|  | * Iterates over the metadata blocks to find the largest contig area. | 
|  | * A full scan can be avoided on the allocation path as this is triggered | 
|  | * if we broke the contig_hint.  In doing so, the scan_hint will be before | 
|  | * the contig_hint or after if the scan_hint == contig_hint.  This cannot | 
|  | * be prevented on freeing as we want to find the largest area possibly | 
|  | * spanning blocks. | 
|  | */ | 
|  | static void pcpu_chunk_refresh_hint(struct pcpu_chunk *chunk, bool full_scan) | 
|  | { | 
|  | struct pcpu_block_md *chunk_md = &chunk->chunk_md; | 
|  | int bit_off, bits; | 
|  |  | 
|  | /* promote scan_hint to contig_hint */ | 
|  | if (!full_scan && chunk_md->scan_hint) { | 
|  | bit_off = chunk_md->scan_hint_start + chunk_md->scan_hint; | 
|  | chunk_md->contig_hint_start = chunk_md->scan_hint_start; | 
|  | chunk_md->contig_hint = chunk_md->scan_hint; | 
|  | chunk_md->scan_hint = 0; | 
|  | } else { | 
|  | bit_off = chunk_md->first_free; | 
|  | chunk_md->contig_hint = 0; | 
|  | } | 
|  |  | 
|  | bits = 0; | 
|  | pcpu_for_each_md_free_region(chunk, bit_off, bits) | 
|  | pcpu_block_update(chunk_md, bit_off, bit_off + bits); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pcpu_block_refresh_hint | 
|  | * @chunk: chunk of interest | 
|  | * @index: index of the metadata block | 
|  | * | 
|  | * Scans over the block beginning at first_free and updates the block | 
|  | * metadata accordingly. | 
|  | */ | 
|  | static void pcpu_block_refresh_hint(struct pcpu_chunk *chunk, int index) | 
|  | { | 
|  | struct pcpu_block_md *block = chunk->md_blocks + index; | 
|  | unsigned long *alloc_map = pcpu_index_alloc_map(chunk, index); | 
|  | unsigned int start, end;	/* region start, region end */ | 
|  |  | 
|  | /* promote scan_hint to contig_hint */ | 
|  | if (block->scan_hint) { | 
|  | start = block->scan_hint_start + block->scan_hint; | 
|  | block->contig_hint_start = block->scan_hint_start; | 
|  | block->contig_hint = block->scan_hint; | 
|  | block->scan_hint = 0; | 
|  | } else { | 
|  | start = block->first_free; | 
|  | block->contig_hint = 0; | 
|  | } | 
|  |  | 
|  | block->right_free = 0; | 
|  |  | 
|  | /* iterate over free areas and update the contig hints */ | 
|  | for_each_clear_bitrange_from(start, end, alloc_map, PCPU_BITMAP_BLOCK_BITS) | 
|  | pcpu_block_update(block, start, end); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pcpu_block_update_hint_alloc - update hint on allocation path | 
|  | * @chunk: chunk of interest | 
|  | * @bit_off: chunk offset | 
|  | * @bits: size of request | 
|  | * | 
|  | * Updates metadata for the allocation path.  The metadata only has to be | 
|  | * refreshed by a full scan iff the chunk's contig hint is broken.  Block level | 
|  | * scans are required if the block's contig hint is broken. | 
|  | */ | 
|  | static void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off, | 
|  | int bits) | 
|  | { | 
|  | struct pcpu_block_md *chunk_md = &chunk->chunk_md; | 
|  | int nr_empty_pages = 0; | 
|  | struct pcpu_block_md *s_block, *e_block, *block; | 
|  | int s_index, e_index;	/* block indexes of the freed allocation */ | 
|  | int s_off, e_off;	/* block offsets of the freed allocation */ | 
|  |  | 
|  | /* | 
|  | * Calculate per block offsets. | 
|  | * The calculation uses an inclusive range, but the resulting offsets | 
|  | * are [start, end).  e_index always points to the last block in the | 
|  | * range. | 
|  | */ | 
|  | s_index = pcpu_off_to_block_index(bit_off); | 
|  | e_index = pcpu_off_to_block_index(bit_off + bits - 1); | 
|  | s_off = pcpu_off_to_block_off(bit_off); | 
|  | e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1; | 
|  |  | 
|  | s_block = chunk->md_blocks + s_index; | 
|  | e_block = chunk->md_blocks + e_index; | 
|  |  | 
|  | /* | 
|  | * Update s_block. | 
|  | */ | 
|  | if (s_block->contig_hint == PCPU_BITMAP_BLOCK_BITS) | 
|  | nr_empty_pages++; | 
|  |  | 
|  | /* | 
|  | * block->first_free must be updated if the allocation takes its place. | 
|  | * If the allocation breaks the contig_hint, a scan is required to | 
|  | * restore this hint. | 
|  | */ | 
|  | if (s_off == s_block->first_free) | 
|  | s_block->first_free = find_next_zero_bit( | 
|  | pcpu_index_alloc_map(chunk, s_index), | 
|  | PCPU_BITMAP_BLOCK_BITS, | 
|  | s_off + bits); | 
|  |  | 
|  | if (pcpu_region_overlap(s_block->scan_hint_start, | 
|  | s_block->scan_hint_start + s_block->scan_hint, | 
|  | s_off, | 
|  | s_off + bits)) | 
|  | s_block->scan_hint = 0; | 
|  |  | 
|  | if (pcpu_region_overlap(s_block->contig_hint_start, | 
|  | s_block->contig_hint_start + | 
|  | s_block->contig_hint, | 
|  | s_off, | 
|  | s_off + bits)) { | 
|  | /* block contig hint is broken - scan to fix it */ | 
|  | if (!s_off) | 
|  | s_block->left_free = 0; | 
|  | pcpu_block_refresh_hint(chunk, s_index); | 
|  | } else { | 
|  | /* update left and right contig manually */ | 
|  | s_block->left_free = min(s_block->left_free, s_off); | 
|  | if (s_index == e_index) | 
|  | s_block->right_free = min_t(int, s_block->right_free, | 
|  | PCPU_BITMAP_BLOCK_BITS - e_off); | 
|  | else | 
|  | s_block->right_free = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Update e_block. | 
|  | */ | 
|  | if (s_index != e_index) { | 
|  | if (e_block->contig_hint == PCPU_BITMAP_BLOCK_BITS) | 
|  | nr_empty_pages++; | 
|  |  | 
|  | /* | 
|  | * When the allocation is across blocks, the end is along | 
|  | * the left part of the e_block. | 
|  | */ | 
|  | e_block->first_free = find_next_zero_bit( | 
|  | pcpu_index_alloc_map(chunk, e_index), | 
|  | PCPU_BITMAP_BLOCK_BITS, e_off); | 
|  |  | 
|  | if (e_off == PCPU_BITMAP_BLOCK_BITS) { | 
|  | /* reset the block */ | 
|  | e_block++; | 
|  | } else { | 
|  | if (e_off > e_block->scan_hint_start) | 
|  | e_block->scan_hint = 0; | 
|  |  | 
|  | e_block->left_free = 0; | 
|  | if (e_off > e_block->contig_hint_start) { | 
|  | /* contig hint is broken - scan to fix it */ | 
|  | pcpu_block_refresh_hint(chunk, e_index); | 
|  | } else { | 
|  | e_block->right_free = | 
|  | min_t(int, e_block->right_free, | 
|  | PCPU_BITMAP_BLOCK_BITS - e_off); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* update in-between md_blocks */ | 
|  | nr_empty_pages += (e_index - s_index - 1); | 
|  | for (block = s_block + 1; block < e_block; block++) { | 
|  | block->scan_hint = 0; | 
|  | block->contig_hint = 0; | 
|  | block->left_free = 0; | 
|  | block->right_free = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the allocation is not atomic, some blocks may not be | 
|  | * populated with pages, while we account it here.  The number | 
|  | * of pages will be added back with pcpu_chunk_populated() | 
|  | * when populating pages. | 
|  | */ | 
|  | if (nr_empty_pages) | 
|  | pcpu_update_empty_pages(chunk, -nr_empty_pages); | 
|  |  | 
|  | if (pcpu_region_overlap(chunk_md->scan_hint_start, | 
|  | chunk_md->scan_hint_start + | 
|  | chunk_md->scan_hint, | 
|  | bit_off, | 
|  | bit_off + bits)) | 
|  | chunk_md->scan_hint = 0; | 
|  |  | 
|  | /* | 
|  | * The only time a full chunk scan is required is if the chunk | 
|  | * contig hint is broken.  Otherwise, it means a smaller space | 
|  | * was used and therefore the chunk contig hint is still correct. | 
|  | */ | 
|  | if (pcpu_region_overlap(chunk_md->contig_hint_start, | 
|  | chunk_md->contig_hint_start + | 
|  | chunk_md->contig_hint, | 
|  | bit_off, | 
|  | bit_off + bits)) | 
|  | pcpu_chunk_refresh_hint(chunk, false); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pcpu_block_update_hint_free - updates the block hints on the free path | 
|  | * @chunk: chunk of interest | 
|  | * @bit_off: chunk offset | 
|  | * @bits: size of request | 
|  | * | 
|  | * Updates metadata for the allocation path.  This avoids a blind block | 
|  | * refresh by making use of the block contig hints.  If this fails, it scans | 
|  | * forward and backward to determine the extent of the free area.  This is | 
|  | * capped at the boundary of blocks. | 
|  | * | 
|  | * A chunk update is triggered if a page becomes free, a block becomes free, | 
|  | * or the free spans across blocks.  This tradeoff is to minimize iterating | 
|  | * over the block metadata to update chunk_md->contig_hint. | 
|  | * chunk_md->contig_hint may be off by up to a page, but it will never be more | 
|  | * than the available space.  If the contig hint is contained in one block, it | 
|  | * will be accurate. | 
|  | */ | 
|  | static void pcpu_block_update_hint_free(struct pcpu_chunk *chunk, int bit_off, | 
|  | int bits) | 
|  | { | 
|  | int nr_empty_pages = 0; | 
|  | struct pcpu_block_md *s_block, *e_block, *block; | 
|  | int s_index, e_index;	/* block indexes of the freed allocation */ | 
|  | int s_off, e_off;	/* block offsets of the freed allocation */ | 
|  | int start, end;		/* start and end of the whole free area */ | 
|  |  | 
|  | /* | 
|  | * Calculate per block offsets. | 
|  | * The calculation uses an inclusive range, but the resulting offsets | 
|  | * are [start, end).  e_index always points to the last block in the | 
|  | * range. | 
|  | */ | 
|  | s_index = pcpu_off_to_block_index(bit_off); | 
|  | e_index = pcpu_off_to_block_index(bit_off + bits - 1); | 
|  | s_off = pcpu_off_to_block_off(bit_off); | 
|  | e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1; | 
|  |  | 
|  | s_block = chunk->md_blocks + s_index; | 
|  | e_block = chunk->md_blocks + e_index; | 
|  |  | 
|  | /* | 
|  | * Check if the freed area aligns with the block->contig_hint. | 
|  | * If it does, then the scan to find the beginning/end of the | 
|  | * larger free area can be avoided. | 
|  | * | 
|  | * start and end refer to beginning and end of the free area | 
|  | * within each their respective blocks.  This is not necessarily | 
|  | * the entire free area as it may span blocks past the beginning | 
|  | * or end of the block. | 
|  | */ | 
|  | start = s_off; | 
|  | if (s_off == s_block->contig_hint + s_block->contig_hint_start) { | 
|  | start = s_block->contig_hint_start; | 
|  | } else { | 
|  | /* | 
|  | * Scan backwards to find the extent of the free area. | 
|  | * find_last_bit returns the starting bit, so if the start bit | 
|  | * is returned, that means there was no last bit and the | 
|  | * remainder of the chunk is free. | 
|  | */ | 
|  | int l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index), | 
|  | start); | 
|  | start = (start == l_bit) ? 0 : l_bit + 1; | 
|  | } | 
|  |  | 
|  | end = e_off; | 
|  | if (e_off == e_block->contig_hint_start) | 
|  | end = e_block->contig_hint_start + e_block->contig_hint; | 
|  | else | 
|  | end = find_next_bit(pcpu_index_alloc_map(chunk, e_index), | 
|  | PCPU_BITMAP_BLOCK_BITS, end); | 
|  |  | 
|  | /* update s_block */ | 
|  | e_off = (s_index == e_index) ? end : PCPU_BITMAP_BLOCK_BITS; | 
|  | if (!start && e_off == PCPU_BITMAP_BLOCK_BITS) | 
|  | nr_empty_pages++; | 
|  | pcpu_block_update(s_block, start, e_off); | 
|  |  | 
|  | /* freeing in the same block */ | 
|  | if (s_index != e_index) { | 
|  | /* update e_block */ | 
|  | if (end == PCPU_BITMAP_BLOCK_BITS) | 
|  | nr_empty_pages++; | 
|  | pcpu_block_update(e_block, 0, end); | 
|  |  | 
|  | /* reset md_blocks in the middle */ | 
|  | nr_empty_pages += (e_index - s_index - 1); | 
|  | for (block = s_block + 1; block < e_block; block++) { | 
|  | block->first_free = 0; | 
|  | block->scan_hint = 0; | 
|  | block->contig_hint_start = 0; | 
|  | block->contig_hint = PCPU_BITMAP_BLOCK_BITS; | 
|  | block->left_free = PCPU_BITMAP_BLOCK_BITS; | 
|  | block->right_free = PCPU_BITMAP_BLOCK_BITS; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (nr_empty_pages) | 
|  | pcpu_update_empty_pages(chunk, nr_empty_pages); | 
|  |  | 
|  | /* | 
|  | * Refresh chunk metadata when the free makes a block free or spans | 
|  | * across blocks.  The contig_hint may be off by up to a page, but if | 
|  | * the contig_hint is contained in a block, it will be accurate with | 
|  | * the else condition below. | 
|  | */ | 
|  | if (((end - start) >= PCPU_BITMAP_BLOCK_BITS) || s_index != e_index) | 
|  | pcpu_chunk_refresh_hint(chunk, true); | 
|  | else | 
|  | pcpu_block_update(&chunk->chunk_md, | 
|  | pcpu_block_off_to_off(s_index, start), | 
|  | end); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pcpu_is_populated - determines if the region is populated | 
|  | * @chunk: chunk of interest | 
|  | * @bit_off: chunk offset | 
|  | * @bits: size of area | 
|  | * @next_off: return value for the next offset to start searching | 
|  | * | 
|  | * For atomic allocations, check if the backing pages are populated. | 
|  | * | 
|  | * RETURNS: | 
|  | * Bool if the backing pages are populated. | 
|  | * next_index is to skip over unpopulated blocks in pcpu_find_block_fit. | 
|  | */ | 
|  | static bool pcpu_is_populated(struct pcpu_chunk *chunk, int bit_off, int bits, | 
|  | int *next_off) | 
|  | { | 
|  | unsigned int start, end; | 
|  |  | 
|  | start = PFN_DOWN(bit_off * PCPU_MIN_ALLOC_SIZE); | 
|  | end = PFN_UP((bit_off + bits) * PCPU_MIN_ALLOC_SIZE); | 
|  |  | 
|  | start = find_next_zero_bit(chunk->populated, end, start); | 
|  | if (start >= end) | 
|  | return true; | 
|  |  | 
|  | end = find_next_bit(chunk->populated, end, start + 1); | 
|  |  | 
|  | *next_off = end * PAGE_SIZE / PCPU_MIN_ALLOC_SIZE; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pcpu_find_block_fit - finds the block index to start searching | 
|  | * @chunk: chunk of interest | 
|  | * @alloc_bits: size of request in allocation units | 
|  | * @align: alignment of area (max PAGE_SIZE bytes) | 
|  | * @pop_only: use populated regions only | 
|  | * | 
|  | * Given a chunk and an allocation spec, find the offset to begin searching | 
|  | * for a free region.  This iterates over the bitmap metadata blocks to | 
|  | * find an offset that will be guaranteed to fit the requirements.  It is | 
|  | * not quite first fit as if the allocation does not fit in the contig hint | 
|  | * of a block or chunk, it is skipped.  This errs on the side of caution | 
|  | * to prevent excess iteration.  Poor alignment can cause the allocator to | 
|  | * skip over blocks and chunks that have valid free areas. | 
|  | * | 
|  | * RETURNS: | 
|  | * The offset in the bitmap to begin searching. | 
|  | * -1 if no offset is found. | 
|  | */ | 
|  | static int pcpu_find_block_fit(struct pcpu_chunk *chunk, int alloc_bits, | 
|  | size_t align, bool pop_only) | 
|  | { | 
|  | struct pcpu_block_md *chunk_md = &chunk->chunk_md; | 
|  | int bit_off, bits, next_off; | 
|  |  | 
|  | /* | 
|  | * This is an optimization to prevent scanning by assuming if the | 
|  | * allocation cannot fit in the global hint, there is memory pressure | 
|  | * and creating a new chunk would happen soon. | 
|  | */ | 
|  | if (!pcpu_check_block_hint(chunk_md, alloc_bits, align)) | 
|  | return -1; | 
|  |  | 
|  | bit_off = pcpu_next_hint(chunk_md, alloc_bits); | 
|  | bits = 0; | 
|  | pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) { | 
|  | if (!pop_only || pcpu_is_populated(chunk, bit_off, bits, | 
|  | &next_off)) | 
|  | break; | 
|  |  | 
|  | bit_off = next_off; | 
|  | bits = 0; | 
|  | } | 
|  |  | 
|  | if (bit_off == pcpu_chunk_map_bits(chunk)) | 
|  | return -1; | 
|  |  | 
|  | return bit_off; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * pcpu_find_zero_area - modified from bitmap_find_next_zero_area_off() | 
|  | * @map: the address to base the search on | 
|  | * @size: the bitmap size in bits | 
|  | * @start: the bitnumber to start searching at | 
|  | * @nr: the number of zeroed bits we're looking for | 
|  | * @align_mask: alignment mask for zero area | 
|  | * @largest_off: offset of the largest area skipped | 
|  | * @largest_bits: size of the largest area skipped | 
|  | * | 
|  | * The @align_mask should be one less than a power of 2. | 
|  | * | 
|  | * This is a modified version of bitmap_find_next_zero_area_off() to remember | 
|  | * the largest area that was skipped.  This is imperfect, but in general is | 
|  | * good enough.  The largest remembered region is the largest failed region | 
|  | * seen.  This does not include anything we possibly skipped due to alignment. | 
|  | * pcpu_block_update_scan() does scan backwards to try and recover what was | 
|  | * lost to alignment.  While this can cause scanning to miss earlier possible | 
|  | * free areas, smaller allocations will eventually fill those holes. | 
|  | */ | 
|  | static unsigned long pcpu_find_zero_area(unsigned long *map, | 
|  | unsigned long size, | 
|  | unsigned long start, | 
|  | unsigned long nr, | 
|  | unsigned long align_mask, | 
|  | unsigned long *largest_off, | 
|  | unsigned long *largest_bits) | 
|  | { | 
|  | unsigned long index, end, i, area_off, area_bits; | 
|  | again: | 
|  | index = find_next_zero_bit(map, size, start); | 
|  |  | 
|  | /* Align allocation */ | 
|  | index = __ALIGN_MASK(index, align_mask); | 
|  | area_off = index; | 
|  |  | 
|  | end = index + nr; | 
|  | if (end > size) | 
|  | return end; | 
|  | i = find_next_bit(map, end, index); | 
|  | if (i < end) { | 
|  | area_bits = i - area_off; | 
|  | /* remember largest unused area with best alignment */ | 
|  | if (area_bits > *largest_bits || | 
|  | (area_bits == *largest_bits && *largest_off && | 
|  | (!area_off || __ffs(area_off) > __ffs(*largest_off)))) { | 
|  | *largest_off = area_off; | 
|  | *largest_bits = area_bits; | 
|  | } | 
|  |  | 
|  | start = i + 1; | 
|  | goto again; | 
|  | } | 
|  | return index; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pcpu_alloc_area - allocates an area from a pcpu_chunk | 
|  | * @chunk: chunk of interest | 
|  | * @alloc_bits: size of request in allocation units | 
|  | * @align: alignment of area (max PAGE_SIZE) | 
|  | * @start: bit_off to start searching | 
|  | * | 
|  | * This function takes in a @start offset to begin searching to fit an | 
|  | * allocation of @alloc_bits with alignment @align.  It needs to scan | 
|  | * the allocation map because if it fits within the block's contig hint, | 
|  | * @start will be block->first_free. This is an attempt to fill the | 
|  | * allocation prior to breaking the contig hint.  The allocation and | 
|  | * boundary maps are updated accordingly if it confirms a valid | 
|  | * free area. | 
|  | * | 
|  | * RETURNS: | 
|  | * Allocated addr offset in @chunk on success. | 
|  | * -1 if no matching area is found. | 
|  | */ | 
|  | static int pcpu_alloc_area(struct pcpu_chunk *chunk, int alloc_bits, | 
|  | size_t align, int start) | 
|  | { | 
|  | struct pcpu_block_md *chunk_md = &chunk->chunk_md; | 
|  | size_t align_mask = (align) ? (align - 1) : 0; | 
|  | unsigned long area_off = 0, area_bits = 0; | 
|  | int bit_off, end, oslot; | 
|  |  | 
|  | lockdep_assert_held(&pcpu_lock); | 
|  |  | 
|  | oslot = pcpu_chunk_slot(chunk); | 
|  |  | 
|  | /* | 
|  | * Search to find a fit. | 
|  | */ | 
|  | end = min_t(int, start + alloc_bits + PCPU_BITMAP_BLOCK_BITS, | 
|  | pcpu_chunk_map_bits(chunk)); | 
|  | bit_off = pcpu_find_zero_area(chunk->alloc_map, end, start, alloc_bits, | 
|  | align_mask, &area_off, &area_bits); | 
|  | if (bit_off >= end) | 
|  | return -1; | 
|  |  | 
|  | if (area_bits) | 
|  | pcpu_block_update_scan(chunk, area_off, area_bits); | 
|  |  | 
|  | /* update alloc map */ | 
|  | bitmap_set(chunk->alloc_map, bit_off, alloc_bits); | 
|  |  | 
|  | /* update boundary map */ | 
|  | set_bit(bit_off, chunk->bound_map); | 
|  | bitmap_clear(chunk->bound_map, bit_off + 1, alloc_bits - 1); | 
|  | set_bit(bit_off + alloc_bits, chunk->bound_map); | 
|  |  | 
|  | chunk->free_bytes -= alloc_bits * PCPU_MIN_ALLOC_SIZE; | 
|  |  | 
|  | /* update first free bit */ | 
|  | if (bit_off == chunk_md->first_free) | 
|  | chunk_md->first_free = find_next_zero_bit( | 
|  | chunk->alloc_map, | 
|  | pcpu_chunk_map_bits(chunk), | 
|  | bit_off + alloc_bits); | 
|  |  | 
|  | pcpu_block_update_hint_alloc(chunk, bit_off, alloc_bits); | 
|  |  | 
|  | pcpu_chunk_relocate(chunk, oslot); | 
|  |  | 
|  | return bit_off * PCPU_MIN_ALLOC_SIZE; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pcpu_free_area - frees the corresponding offset | 
|  | * @chunk: chunk of interest | 
|  | * @off: addr offset into chunk | 
|  | * | 
|  | * This function determines the size of an allocation to free using | 
|  | * the boundary bitmap and clears the allocation map. | 
|  | * | 
|  | * RETURNS: | 
|  | * Number of freed bytes. | 
|  | */ | 
|  | static int pcpu_free_area(struct pcpu_chunk *chunk, int off) | 
|  | { | 
|  | struct pcpu_block_md *chunk_md = &chunk->chunk_md; | 
|  | int bit_off, bits, end, oslot, freed; | 
|  |  | 
|  | lockdep_assert_held(&pcpu_lock); | 
|  | pcpu_stats_area_dealloc(chunk); | 
|  |  | 
|  | oslot = pcpu_chunk_slot(chunk); | 
|  |  | 
|  | bit_off = off / PCPU_MIN_ALLOC_SIZE; | 
|  |  | 
|  | /* find end index */ | 
|  | end = find_next_bit(chunk->bound_map, pcpu_chunk_map_bits(chunk), | 
|  | bit_off + 1); | 
|  | bits = end - bit_off; | 
|  | bitmap_clear(chunk->alloc_map, bit_off, bits); | 
|  |  | 
|  | freed = bits * PCPU_MIN_ALLOC_SIZE; | 
|  |  | 
|  | /* update metadata */ | 
|  | chunk->free_bytes += freed; | 
|  |  | 
|  | /* update first free bit */ | 
|  | chunk_md->first_free = min(chunk_md->first_free, bit_off); | 
|  |  | 
|  | pcpu_block_update_hint_free(chunk, bit_off, bits); | 
|  |  | 
|  | pcpu_chunk_relocate(chunk, oslot); | 
|  |  | 
|  | return freed; | 
|  | } | 
|  |  | 
|  | static void pcpu_init_md_block(struct pcpu_block_md *block, int nr_bits) | 
|  | { | 
|  | block->scan_hint = 0; | 
|  | block->contig_hint = nr_bits; | 
|  | block->left_free = nr_bits; | 
|  | block->right_free = nr_bits; | 
|  | block->first_free = 0; | 
|  | block->nr_bits = nr_bits; | 
|  | } | 
|  |  | 
|  | static void pcpu_init_md_blocks(struct pcpu_chunk *chunk) | 
|  | { | 
|  | struct pcpu_block_md *md_block; | 
|  |  | 
|  | /* init the chunk's block */ | 
|  | pcpu_init_md_block(&chunk->chunk_md, pcpu_chunk_map_bits(chunk)); | 
|  |  | 
|  | for (md_block = chunk->md_blocks; | 
|  | md_block != chunk->md_blocks + pcpu_chunk_nr_blocks(chunk); | 
|  | md_block++) | 
|  | pcpu_init_md_block(md_block, PCPU_BITMAP_BLOCK_BITS); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pcpu_alloc_first_chunk - creates chunks that serve the first chunk | 
|  | * @tmp_addr: the start of the region served | 
|  | * @map_size: size of the region served | 
|  | * | 
|  | * This is responsible for creating the chunks that serve the first chunk.  The | 
|  | * base_addr is page aligned down of @tmp_addr while the region end is page | 
|  | * aligned up.  Offsets are kept track of to determine the region served. All | 
|  | * this is done to appease the bitmap allocator in avoiding partial blocks. | 
|  | * | 
|  | * RETURNS: | 
|  | * Chunk serving the region at @tmp_addr of @map_size. | 
|  | */ | 
|  | static struct pcpu_chunk * __init pcpu_alloc_first_chunk(unsigned long tmp_addr, | 
|  | int map_size) | 
|  | { | 
|  | struct pcpu_chunk *chunk; | 
|  | unsigned long aligned_addr; | 
|  | int start_offset, offset_bits, region_size, region_bits; | 
|  | size_t alloc_size; | 
|  |  | 
|  | /* region calculations */ | 
|  | aligned_addr = tmp_addr & PAGE_MASK; | 
|  |  | 
|  | start_offset = tmp_addr - aligned_addr; | 
|  | region_size = ALIGN(start_offset + map_size, PAGE_SIZE); | 
|  |  | 
|  | /* allocate chunk */ | 
|  | alloc_size = struct_size(chunk, populated, | 
|  | BITS_TO_LONGS(region_size >> PAGE_SHIFT)); | 
|  | chunk = memblock_alloc(alloc_size, SMP_CACHE_BYTES); | 
|  | if (!chunk) | 
|  | panic("%s: Failed to allocate %zu bytes\n", __func__, | 
|  | alloc_size); | 
|  |  | 
|  | INIT_LIST_HEAD(&chunk->list); | 
|  |  | 
|  | chunk->base_addr = (void *)aligned_addr; | 
|  | chunk->start_offset = start_offset; | 
|  | chunk->end_offset = region_size - chunk->start_offset - map_size; | 
|  |  | 
|  | chunk->nr_pages = region_size >> PAGE_SHIFT; | 
|  | region_bits = pcpu_chunk_map_bits(chunk); | 
|  |  | 
|  | alloc_size = BITS_TO_LONGS(region_bits) * sizeof(chunk->alloc_map[0]); | 
|  | chunk->alloc_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES); | 
|  | if (!chunk->alloc_map) | 
|  | panic("%s: Failed to allocate %zu bytes\n", __func__, | 
|  | alloc_size); | 
|  |  | 
|  | alloc_size = | 
|  | BITS_TO_LONGS(region_bits + 1) * sizeof(chunk->bound_map[0]); | 
|  | chunk->bound_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES); | 
|  | if (!chunk->bound_map) | 
|  | panic("%s: Failed to allocate %zu bytes\n", __func__, | 
|  | alloc_size); | 
|  |  | 
|  | alloc_size = pcpu_chunk_nr_blocks(chunk) * sizeof(chunk->md_blocks[0]); | 
|  | chunk->md_blocks = memblock_alloc(alloc_size, SMP_CACHE_BYTES); | 
|  | if (!chunk->md_blocks) | 
|  | panic("%s: Failed to allocate %zu bytes\n", __func__, | 
|  | alloc_size); | 
|  |  | 
|  | #ifdef CONFIG_MEMCG_KMEM | 
|  | /* first chunk is free to use */ | 
|  | chunk->obj_cgroups = NULL; | 
|  | #endif | 
|  | pcpu_init_md_blocks(chunk); | 
|  |  | 
|  | /* manage populated page bitmap */ | 
|  | chunk->immutable = true; | 
|  | bitmap_fill(chunk->populated, chunk->nr_pages); | 
|  | chunk->nr_populated = chunk->nr_pages; | 
|  | chunk->nr_empty_pop_pages = chunk->nr_pages; | 
|  |  | 
|  | chunk->free_bytes = map_size; | 
|  |  | 
|  | if (chunk->start_offset) { | 
|  | /* hide the beginning of the bitmap */ | 
|  | offset_bits = chunk->start_offset / PCPU_MIN_ALLOC_SIZE; | 
|  | bitmap_set(chunk->alloc_map, 0, offset_bits); | 
|  | set_bit(0, chunk->bound_map); | 
|  | set_bit(offset_bits, chunk->bound_map); | 
|  |  | 
|  | chunk->chunk_md.first_free = offset_bits; | 
|  |  | 
|  | pcpu_block_update_hint_alloc(chunk, 0, offset_bits); | 
|  | } | 
|  |  | 
|  | if (chunk->end_offset) { | 
|  | /* hide the end of the bitmap */ | 
|  | offset_bits = chunk->end_offset / PCPU_MIN_ALLOC_SIZE; | 
|  | bitmap_set(chunk->alloc_map, | 
|  | pcpu_chunk_map_bits(chunk) - offset_bits, | 
|  | offset_bits); | 
|  | set_bit((start_offset + map_size) / PCPU_MIN_ALLOC_SIZE, | 
|  | chunk->bound_map); | 
|  | set_bit(region_bits, chunk->bound_map); | 
|  |  | 
|  | pcpu_block_update_hint_alloc(chunk, pcpu_chunk_map_bits(chunk) | 
|  | - offset_bits, offset_bits); | 
|  | } | 
|  |  | 
|  | return chunk; | 
|  | } | 
|  |  | 
|  | static struct pcpu_chunk *pcpu_alloc_chunk(gfp_t gfp) | 
|  | { | 
|  | struct pcpu_chunk *chunk; | 
|  | int region_bits; | 
|  |  | 
|  | chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size, gfp); | 
|  | if (!chunk) | 
|  | return NULL; | 
|  |  | 
|  | INIT_LIST_HEAD(&chunk->list); | 
|  | chunk->nr_pages = pcpu_unit_pages; | 
|  | region_bits = pcpu_chunk_map_bits(chunk); | 
|  |  | 
|  | chunk->alloc_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits) * | 
|  | sizeof(chunk->alloc_map[0]), gfp); | 
|  | if (!chunk->alloc_map) | 
|  | goto alloc_map_fail; | 
|  |  | 
|  | chunk->bound_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits + 1) * | 
|  | sizeof(chunk->bound_map[0]), gfp); | 
|  | if (!chunk->bound_map) | 
|  | goto bound_map_fail; | 
|  |  | 
|  | chunk->md_blocks = pcpu_mem_zalloc(pcpu_chunk_nr_blocks(chunk) * | 
|  | sizeof(chunk->md_blocks[0]), gfp); | 
|  | if (!chunk->md_blocks) | 
|  | goto md_blocks_fail; | 
|  |  | 
|  | #ifdef CONFIG_MEMCG_KMEM | 
|  | if (!mem_cgroup_kmem_disabled()) { | 
|  | chunk->obj_cgroups = | 
|  | pcpu_mem_zalloc(pcpu_chunk_map_bits(chunk) * | 
|  | sizeof(struct obj_cgroup *), gfp); | 
|  | if (!chunk->obj_cgroups) | 
|  | goto objcg_fail; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | pcpu_init_md_blocks(chunk); | 
|  |  | 
|  | /* init metadata */ | 
|  | chunk->free_bytes = chunk->nr_pages * PAGE_SIZE; | 
|  |  | 
|  | return chunk; | 
|  |  | 
|  | #ifdef CONFIG_MEMCG_KMEM | 
|  | objcg_fail: | 
|  | pcpu_mem_free(chunk->md_blocks); | 
|  | #endif | 
|  | md_blocks_fail: | 
|  | pcpu_mem_free(chunk->bound_map); | 
|  | bound_map_fail: | 
|  | pcpu_mem_free(chunk->alloc_map); | 
|  | alloc_map_fail: | 
|  | pcpu_mem_free(chunk); | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void pcpu_free_chunk(struct pcpu_chunk *chunk) | 
|  | { | 
|  | if (!chunk) | 
|  | return; | 
|  | #ifdef CONFIG_MEMCG_KMEM | 
|  | pcpu_mem_free(chunk->obj_cgroups); | 
|  | #endif | 
|  | pcpu_mem_free(chunk->md_blocks); | 
|  | pcpu_mem_free(chunk->bound_map); | 
|  | pcpu_mem_free(chunk->alloc_map); | 
|  | pcpu_mem_free(chunk); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pcpu_chunk_populated - post-population bookkeeping | 
|  | * @chunk: pcpu_chunk which got populated | 
|  | * @page_start: the start page | 
|  | * @page_end: the end page | 
|  | * | 
|  | * Pages in [@page_start,@page_end) have been populated to @chunk.  Update | 
|  | * the bookkeeping information accordingly.  Must be called after each | 
|  | * successful population. | 
|  | */ | 
|  | static void pcpu_chunk_populated(struct pcpu_chunk *chunk, int page_start, | 
|  | int page_end) | 
|  | { | 
|  | int nr = page_end - page_start; | 
|  |  | 
|  | lockdep_assert_held(&pcpu_lock); | 
|  |  | 
|  | bitmap_set(chunk->populated, page_start, nr); | 
|  | chunk->nr_populated += nr; | 
|  | pcpu_nr_populated += nr; | 
|  |  | 
|  | pcpu_update_empty_pages(chunk, nr); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pcpu_chunk_depopulated - post-depopulation bookkeeping | 
|  | * @chunk: pcpu_chunk which got depopulated | 
|  | * @page_start: the start page | 
|  | * @page_end: the end page | 
|  | * | 
|  | * Pages in [@page_start,@page_end) have been depopulated from @chunk. | 
|  | * Update the bookkeeping information accordingly.  Must be called after | 
|  | * each successful depopulation. | 
|  | */ | 
|  | static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk, | 
|  | int page_start, int page_end) | 
|  | { | 
|  | int nr = page_end - page_start; | 
|  |  | 
|  | lockdep_assert_held(&pcpu_lock); | 
|  |  | 
|  | bitmap_clear(chunk->populated, page_start, nr); | 
|  | chunk->nr_populated -= nr; | 
|  | pcpu_nr_populated -= nr; | 
|  |  | 
|  | pcpu_update_empty_pages(chunk, -nr); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Chunk management implementation. | 
|  | * | 
|  | * To allow different implementations, chunk alloc/free and | 
|  | * [de]population are implemented in a separate file which is pulled | 
|  | * into this file and compiled together.  The following functions | 
|  | * should be implemented. | 
|  | * | 
|  | * pcpu_populate_chunk		- populate the specified range of a chunk | 
|  | * pcpu_depopulate_chunk	- depopulate the specified range of a chunk | 
|  | * pcpu_post_unmap_tlb_flush	- flush tlb for the specified range of a chunk | 
|  | * pcpu_create_chunk		- create a new chunk | 
|  | * pcpu_destroy_chunk		- destroy a chunk, always preceded by full depop | 
|  | * pcpu_addr_to_page		- translate address to physical address | 
|  | * pcpu_verify_alloc_info	- check alloc_info is acceptable during init | 
|  | */ | 
|  | static int pcpu_populate_chunk(struct pcpu_chunk *chunk, | 
|  | int page_start, int page_end, gfp_t gfp); | 
|  | static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, | 
|  | int page_start, int page_end); | 
|  | static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk, | 
|  | int page_start, int page_end); | 
|  | static struct pcpu_chunk *pcpu_create_chunk(gfp_t gfp); | 
|  | static void pcpu_destroy_chunk(struct pcpu_chunk *chunk); | 
|  | static struct page *pcpu_addr_to_page(void *addr); | 
|  | static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai); | 
|  |  | 
|  | #ifdef CONFIG_NEED_PER_CPU_KM | 
|  | #include "percpu-km.c" | 
|  | #else | 
|  | #include "percpu-vm.c" | 
|  | #endif | 
|  |  | 
|  | /** | 
|  | * pcpu_chunk_addr_search - determine chunk containing specified address | 
|  | * @addr: address for which the chunk needs to be determined. | 
|  | * | 
|  | * This is an internal function that handles all but static allocations. | 
|  | * Static percpu address values should never be passed into the allocator. | 
|  | * | 
|  | * RETURNS: | 
|  | * The address of the found chunk. | 
|  | */ | 
|  | static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr) | 
|  | { | 
|  | /* is it in the dynamic region (first chunk)? */ | 
|  | if (pcpu_addr_in_chunk(pcpu_first_chunk, addr)) | 
|  | return pcpu_first_chunk; | 
|  |  | 
|  | /* is it in the reserved region? */ | 
|  | if (pcpu_addr_in_chunk(pcpu_reserved_chunk, addr)) | 
|  | return pcpu_reserved_chunk; | 
|  |  | 
|  | /* | 
|  | * The address is relative to unit0 which might be unused and | 
|  | * thus unmapped.  Offset the address to the unit space of the | 
|  | * current processor before looking it up in the vmalloc | 
|  | * space.  Note that any possible cpu id can be used here, so | 
|  | * there's no need to worry about preemption or cpu hotplug. | 
|  | */ | 
|  | addr += pcpu_unit_offsets[raw_smp_processor_id()]; | 
|  | return pcpu_get_page_chunk(pcpu_addr_to_page(addr)); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MEMCG_KMEM | 
|  | static bool pcpu_memcg_pre_alloc_hook(size_t size, gfp_t gfp, | 
|  | struct obj_cgroup **objcgp) | 
|  | { | 
|  | struct obj_cgroup *objcg; | 
|  |  | 
|  | if (!memcg_kmem_online() || !(gfp & __GFP_ACCOUNT)) | 
|  | return true; | 
|  |  | 
|  | objcg = get_obj_cgroup_from_current(); | 
|  | if (!objcg) | 
|  | return true; | 
|  |  | 
|  | if (obj_cgroup_charge(objcg, gfp, pcpu_obj_full_size(size))) { | 
|  | obj_cgroup_put(objcg); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | *objcgp = objcg; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void pcpu_memcg_post_alloc_hook(struct obj_cgroup *objcg, | 
|  | struct pcpu_chunk *chunk, int off, | 
|  | size_t size) | 
|  | { | 
|  | if (!objcg) | 
|  | return; | 
|  |  | 
|  | if (likely(chunk && chunk->obj_cgroups)) { | 
|  | chunk->obj_cgroups[off >> PCPU_MIN_ALLOC_SHIFT] = objcg; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | mod_memcg_state(obj_cgroup_memcg(objcg), MEMCG_PERCPU_B, | 
|  | pcpu_obj_full_size(size)); | 
|  | rcu_read_unlock(); | 
|  | } else { | 
|  | obj_cgroup_uncharge(objcg, pcpu_obj_full_size(size)); | 
|  | obj_cgroup_put(objcg); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void pcpu_memcg_free_hook(struct pcpu_chunk *chunk, int off, size_t size) | 
|  | { | 
|  | struct obj_cgroup *objcg; | 
|  |  | 
|  | if (unlikely(!chunk->obj_cgroups)) | 
|  | return; | 
|  |  | 
|  | objcg = chunk->obj_cgroups[off >> PCPU_MIN_ALLOC_SHIFT]; | 
|  | if (!objcg) | 
|  | return; | 
|  | chunk->obj_cgroups[off >> PCPU_MIN_ALLOC_SHIFT] = NULL; | 
|  |  | 
|  | obj_cgroup_uncharge(objcg, pcpu_obj_full_size(size)); | 
|  |  | 
|  | rcu_read_lock(); | 
|  | mod_memcg_state(obj_cgroup_memcg(objcg), MEMCG_PERCPU_B, | 
|  | -pcpu_obj_full_size(size)); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | obj_cgroup_put(objcg); | 
|  | } | 
|  |  | 
|  | #else /* CONFIG_MEMCG_KMEM */ | 
|  | static bool | 
|  | pcpu_memcg_pre_alloc_hook(size_t size, gfp_t gfp, struct obj_cgroup **objcgp) | 
|  | { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void pcpu_memcg_post_alloc_hook(struct obj_cgroup *objcg, | 
|  | struct pcpu_chunk *chunk, int off, | 
|  | size_t size) | 
|  | { | 
|  | } | 
|  |  | 
|  | static void pcpu_memcg_free_hook(struct pcpu_chunk *chunk, int off, size_t size) | 
|  | { | 
|  | } | 
|  | #endif /* CONFIG_MEMCG_KMEM */ | 
|  |  | 
|  | /** | 
|  | * pcpu_alloc - the percpu allocator | 
|  | * @size: size of area to allocate in bytes | 
|  | * @align: alignment of area (max PAGE_SIZE) | 
|  | * @reserved: allocate from the reserved chunk if available | 
|  | * @gfp: allocation flags | 
|  | * | 
|  | * Allocate percpu area of @size bytes aligned at @align.  If @gfp doesn't | 
|  | * contain %GFP_KERNEL, the allocation is atomic. If @gfp has __GFP_NOWARN | 
|  | * then no warning will be triggered on invalid or failed allocation | 
|  | * requests. | 
|  | * | 
|  | * RETURNS: | 
|  | * Percpu pointer to the allocated area on success, NULL on failure. | 
|  | */ | 
|  | static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved, | 
|  | gfp_t gfp) | 
|  | { | 
|  | gfp_t pcpu_gfp; | 
|  | bool is_atomic; | 
|  | bool do_warn; | 
|  | struct obj_cgroup *objcg = NULL; | 
|  | static int warn_limit = 10; | 
|  | struct pcpu_chunk *chunk, *next; | 
|  | const char *err; | 
|  | int slot, off, cpu, ret; | 
|  | unsigned long flags; | 
|  | void __percpu *ptr; | 
|  | size_t bits, bit_align; | 
|  |  | 
|  | gfp = current_gfp_context(gfp); | 
|  | /* whitelisted flags that can be passed to the backing allocators */ | 
|  | pcpu_gfp = gfp & (GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN); | 
|  | is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL; | 
|  | do_warn = !(gfp & __GFP_NOWARN); | 
|  |  | 
|  | /* | 
|  | * There is now a minimum allocation size of PCPU_MIN_ALLOC_SIZE, | 
|  | * therefore alignment must be a minimum of that many bytes. | 
|  | * An allocation may have internal fragmentation from rounding up | 
|  | * of up to PCPU_MIN_ALLOC_SIZE - 1 bytes. | 
|  | */ | 
|  | if (unlikely(align < PCPU_MIN_ALLOC_SIZE)) | 
|  | align = PCPU_MIN_ALLOC_SIZE; | 
|  |  | 
|  | size = ALIGN(size, PCPU_MIN_ALLOC_SIZE); | 
|  | bits = size >> PCPU_MIN_ALLOC_SHIFT; | 
|  | bit_align = align >> PCPU_MIN_ALLOC_SHIFT; | 
|  |  | 
|  | if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE || | 
|  | !is_power_of_2(align))) { | 
|  | WARN(do_warn, "illegal size (%zu) or align (%zu) for percpu allocation\n", | 
|  | size, align); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | if (unlikely(!pcpu_memcg_pre_alloc_hook(size, gfp, &objcg))) | 
|  | return NULL; | 
|  |  | 
|  | if (!is_atomic) { | 
|  | /* | 
|  | * pcpu_balance_workfn() allocates memory under this mutex, | 
|  | * and it may wait for memory reclaim. Allow current task | 
|  | * to become OOM victim, in case of memory pressure. | 
|  | */ | 
|  | if (gfp & __GFP_NOFAIL) { | 
|  | mutex_lock(&pcpu_alloc_mutex); | 
|  | } else if (mutex_lock_killable(&pcpu_alloc_mutex)) { | 
|  | pcpu_memcg_post_alloc_hook(objcg, NULL, 0, size); | 
|  | return NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | spin_lock_irqsave(&pcpu_lock, flags); | 
|  |  | 
|  | /* serve reserved allocations from the reserved chunk if available */ | 
|  | if (reserved && pcpu_reserved_chunk) { | 
|  | chunk = pcpu_reserved_chunk; | 
|  |  | 
|  | off = pcpu_find_block_fit(chunk, bits, bit_align, is_atomic); | 
|  | if (off < 0) { | 
|  | err = "alloc from reserved chunk failed"; | 
|  | goto fail_unlock; | 
|  | } | 
|  |  | 
|  | off = pcpu_alloc_area(chunk, bits, bit_align, off); | 
|  | if (off >= 0) | 
|  | goto area_found; | 
|  |  | 
|  | err = "alloc from reserved chunk failed"; | 
|  | goto fail_unlock; | 
|  | } | 
|  |  | 
|  | restart: | 
|  | /* search through normal chunks */ | 
|  | for (slot = pcpu_size_to_slot(size); slot <= pcpu_free_slot; slot++) { | 
|  | list_for_each_entry_safe(chunk, next, &pcpu_chunk_lists[slot], | 
|  | list) { | 
|  | off = pcpu_find_block_fit(chunk, bits, bit_align, | 
|  | is_atomic); | 
|  | if (off < 0) { | 
|  | if (slot < PCPU_SLOT_FAIL_THRESHOLD) | 
|  | pcpu_chunk_move(chunk, 0); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | off = pcpu_alloc_area(chunk, bits, bit_align, off); | 
|  | if (off >= 0) { | 
|  | pcpu_reintegrate_chunk(chunk); | 
|  | goto area_found; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | spin_unlock_irqrestore(&pcpu_lock, flags); | 
|  |  | 
|  | if (is_atomic) { | 
|  | err = "atomic alloc failed, no space left"; | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | /* No space left.  Create a new chunk. */ | 
|  | if (list_empty(&pcpu_chunk_lists[pcpu_free_slot])) { | 
|  | chunk = pcpu_create_chunk(pcpu_gfp); | 
|  | if (!chunk) { | 
|  | err = "failed to allocate new chunk"; | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | spin_lock_irqsave(&pcpu_lock, flags); | 
|  | pcpu_chunk_relocate(chunk, -1); | 
|  | } else { | 
|  | spin_lock_irqsave(&pcpu_lock, flags); | 
|  | } | 
|  |  | 
|  | goto restart; | 
|  |  | 
|  | area_found: | 
|  | pcpu_stats_area_alloc(chunk, size); | 
|  | spin_unlock_irqrestore(&pcpu_lock, flags); | 
|  |  | 
|  | /* populate if not all pages are already there */ | 
|  | if (!is_atomic) { | 
|  | unsigned int page_end, rs, re; | 
|  |  | 
|  | rs = PFN_DOWN(off); | 
|  | page_end = PFN_UP(off + size); | 
|  |  | 
|  | for_each_clear_bitrange_from(rs, re, chunk->populated, page_end) { | 
|  | WARN_ON(chunk->immutable); | 
|  |  | 
|  | ret = pcpu_populate_chunk(chunk, rs, re, pcpu_gfp); | 
|  |  | 
|  | spin_lock_irqsave(&pcpu_lock, flags); | 
|  | if (ret) { | 
|  | pcpu_free_area(chunk, off); | 
|  | err = "failed to populate"; | 
|  | goto fail_unlock; | 
|  | } | 
|  | pcpu_chunk_populated(chunk, rs, re); | 
|  | spin_unlock_irqrestore(&pcpu_lock, flags); | 
|  | } | 
|  |  | 
|  | mutex_unlock(&pcpu_alloc_mutex); | 
|  | } | 
|  |  | 
|  | if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW) | 
|  | pcpu_schedule_balance_work(); | 
|  |  | 
|  | /* clear the areas and return address relative to base address */ | 
|  | for_each_possible_cpu(cpu) | 
|  | memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size); | 
|  |  | 
|  | ptr = __addr_to_pcpu_ptr(chunk->base_addr + off); | 
|  | kmemleak_alloc_percpu(ptr, size, gfp); | 
|  |  | 
|  | trace_percpu_alloc_percpu(_RET_IP_, reserved, is_atomic, size, align, | 
|  | chunk->base_addr, off, ptr, | 
|  | pcpu_obj_full_size(size), gfp); | 
|  |  | 
|  | pcpu_memcg_post_alloc_hook(objcg, chunk, off, size); | 
|  |  | 
|  | return ptr; | 
|  |  | 
|  | fail_unlock: | 
|  | spin_unlock_irqrestore(&pcpu_lock, flags); | 
|  | fail: | 
|  | trace_percpu_alloc_percpu_fail(reserved, is_atomic, size, align); | 
|  |  | 
|  | if (!is_atomic && do_warn && warn_limit) { | 
|  | pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n", | 
|  | size, align, is_atomic, err); | 
|  | dump_stack(); | 
|  | if (!--warn_limit) | 
|  | pr_info("limit reached, disable warning\n"); | 
|  | } | 
|  | if (is_atomic) { | 
|  | /* see the flag handling in pcpu_balance_workfn() */ | 
|  | pcpu_atomic_alloc_failed = true; | 
|  | pcpu_schedule_balance_work(); | 
|  | } else { | 
|  | mutex_unlock(&pcpu_alloc_mutex); | 
|  | } | 
|  |  | 
|  | pcpu_memcg_post_alloc_hook(objcg, NULL, 0, size); | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __alloc_percpu_gfp - allocate dynamic percpu area | 
|  | * @size: size of area to allocate in bytes | 
|  | * @align: alignment of area (max PAGE_SIZE) | 
|  | * @gfp: allocation flags | 
|  | * | 
|  | * Allocate zero-filled percpu area of @size bytes aligned at @align.  If | 
|  | * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can | 
|  | * be called from any context but is a lot more likely to fail. If @gfp | 
|  | * has __GFP_NOWARN then no warning will be triggered on invalid or failed | 
|  | * allocation requests. | 
|  | * | 
|  | * RETURNS: | 
|  | * Percpu pointer to the allocated area on success, NULL on failure. | 
|  | */ | 
|  | void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp) | 
|  | { | 
|  | return pcpu_alloc(size, align, false, gfp); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(__alloc_percpu_gfp); | 
|  |  | 
|  | /** | 
|  | * __alloc_percpu - allocate dynamic percpu area | 
|  | * @size: size of area to allocate in bytes | 
|  | * @align: alignment of area (max PAGE_SIZE) | 
|  | * | 
|  | * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL). | 
|  | */ | 
|  | void __percpu *__alloc_percpu(size_t size, size_t align) | 
|  | { | 
|  | return pcpu_alloc(size, align, false, GFP_KERNEL); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(__alloc_percpu); | 
|  |  | 
|  | /** | 
|  | * __alloc_reserved_percpu - allocate reserved percpu area | 
|  | * @size: size of area to allocate in bytes | 
|  | * @align: alignment of area (max PAGE_SIZE) | 
|  | * | 
|  | * Allocate zero-filled percpu area of @size bytes aligned at @align | 
|  | * from reserved percpu area if arch has set it up; otherwise, | 
|  | * allocation is served from the same dynamic area.  Might sleep. | 
|  | * Might trigger writeouts. | 
|  | * | 
|  | * CONTEXT: | 
|  | * Does GFP_KERNEL allocation. | 
|  | * | 
|  | * RETURNS: | 
|  | * Percpu pointer to the allocated area on success, NULL on failure. | 
|  | */ | 
|  | void __percpu *__alloc_reserved_percpu(size_t size, size_t align) | 
|  | { | 
|  | return pcpu_alloc(size, align, true, GFP_KERNEL); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pcpu_balance_free - manage the amount of free chunks | 
|  | * @empty_only: free chunks only if there are no populated pages | 
|  | * | 
|  | * If empty_only is %false, reclaim all fully free chunks regardless of the | 
|  | * number of populated pages.  Otherwise, only reclaim chunks that have no | 
|  | * populated pages. | 
|  | * | 
|  | * CONTEXT: | 
|  | * pcpu_lock (can be dropped temporarily) | 
|  | */ | 
|  | static void pcpu_balance_free(bool empty_only) | 
|  | { | 
|  | LIST_HEAD(to_free); | 
|  | struct list_head *free_head = &pcpu_chunk_lists[pcpu_free_slot]; | 
|  | struct pcpu_chunk *chunk, *next; | 
|  |  | 
|  | lockdep_assert_held(&pcpu_lock); | 
|  |  | 
|  | /* | 
|  | * There's no reason to keep around multiple unused chunks and VM | 
|  | * areas can be scarce.  Destroy all free chunks except for one. | 
|  | */ | 
|  | list_for_each_entry_safe(chunk, next, free_head, list) { | 
|  | WARN_ON(chunk->immutable); | 
|  |  | 
|  | /* spare the first one */ | 
|  | if (chunk == list_first_entry(free_head, struct pcpu_chunk, list)) | 
|  | continue; | 
|  |  | 
|  | if (!empty_only || chunk->nr_empty_pop_pages == 0) | 
|  | list_move(&chunk->list, &to_free); | 
|  | } | 
|  |  | 
|  | if (list_empty(&to_free)) | 
|  | return; | 
|  |  | 
|  | spin_unlock_irq(&pcpu_lock); | 
|  | list_for_each_entry_safe(chunk, next, &to_free, list) { | 
|  | unsigned int rs, re; | 
|  |  | 
|  | for_each_set_bitrange(rs, re, chunk->populated, chunk->nr_pages) { | 
|  | pcpu_depopulate_chunk(chunk, rs, re); | 
|  | spin_lock_irq(&pcpu_lock); | 
|  | pcpu_chunk_depopulated(chunk, rs, re); | 
|  | spin_unlock_irq(&pcpu_lock); | 
|  | } | 
|  | pcpu_destroy_chunk(chunk); | 
|  | cond_resched(); | 
|  | } | 
|  | spin_lock_irq(&pcpu_lock); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pcpu_balance_populated - manage the amount of populated pages | 
|  | * | 
|  | * Maintain a certain amount of populated pages to satisfy atomic allocations. | 
|  | * It is possible that this is called when physical memory is scarce causing | 
|  | * OOM killer to be triggered.  We should avoid doing so until an actual | 
|  | * allocation causes the failure as it is possible that requests can be | 
|  | * serviced from already backed regions. | 
|  | * | 
|  | * CONTEXT: | 
|  | * pcpu_lock (can be dropped temporarily) | 
|  | */ | 
|  | static void pcpu_balance_populated(void) | 
|  | { | 
|  | /* gfp flags passed to underlying allocators */ | 
|  | const gfp_t gfp = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN; | 
|  | struct pcpu_chunk *chunk; | 
|  | int slot, nr_to_pop, ret; | 
|  |  | 
|  | lockdep_assert_held(&pcpu_lock); | 
|  |  | 
|  | /* | 
|  | * Ensure there are certain number of free populated pages for | 
|  | * atomic allocs.  Fill up from the most packed so that atomic | 
|  | * allocs don't increase fragmentation.  If atomic allocation | 
|  | * failed previously, always populate the maximum amount.  This | 
|  | * should prevent atomic allocs larger than PAGE_SIZE from keeping | 
|  | * failing indefinitely; however, large atomic allocs are not | 
|  | * something we support properly and can be highly unreliable and | 
|  | * inefficient. | 
|  | */ | 
|  | retry_pop: | 
|  | if (pcpu_atomic_alloc_failed) { | 
|  | nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH; | 
|  | /* best effort anyway, don't worry about synchronization */ | 
|  | pcpu_atomic_alloc_failed = false; | 
|  | } else { | 
|  | nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH - | 
|  | pcpu_nr_empty_pop_pages, | 
|  | 0, PCPU_EMPTY_POP_PAGES_HIGH); | 
|  | } | 
|  |  | 
|  | for (slot = pcpu_size_to_slot(PAGE_SIZE); slot <= pcpu_free_slot; slot++) { | 
|  | unsigned int nr_unpop = 0, rs, re; | 
|  |  | 
|  | if (!nr_to_pop) | 
|  | break; | 
|  |  | 
|  | list_for_each_entry(chunk, &pcpu_chunk_lists[slot], list) { | 
|  | nr_unpop = chunk->nr_pages - chunk->nr_populated; | 
|  | if (nr_unpop) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!nr_unpop) | 
|  | continue; | 
|  |  | 
|  | /* @chunk can't go away while pcpu_alloc_mutex is held */ | 
|  | for_each_clear_bitrange(rs, re, chunk->populated, chunk->nr_pages) { | 
|  | int nr = min_t(int, re - rs, nr_to_pop); | 
|  |  | 
|  | spin_unlock_irq(&pcpu_lock); | 
|  | ret = pcpu_populate_chunk(chunk, rs, rs + nr, gfp); | 
|  | cond_resched(); | 
|  | spin_lock_irq(&pcpu_lock); | 
|  | if (!ret) { | 
|  | nr_to_pop -= nr; | 
|  | pcpu_chunk_populated(chunk, rs, rs + nr); | 
|  | } else { | 
|  | nr_to_pop = 0; | 
|  | } | 
|  |  | 
|  | if (!nr_to_pop) | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (nr_to_pop) { | 
|  | /* ran out of chunks to populate, create a new one and retry */ | 
|  | spin_unlock_irq(&pcpu_lock); | 
|  | chunk = pcpu_create_chunk(gfp); | 
|  | cond_resched(); | 
|  | spin_lock_irq(&pcpu_lock); | 
|  | if (chunk) { | 
|  | pcpu_chunk_relocate(chunk, -1); | 
|  | goto retry_pop; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pcpu_reclaim_populated - scan over to_depopulate chunks and free empty pages | 
|  | * | 
|  | * Scan over chunks in the depopulate list and try to release unused populated | 
|  | * pages back to the system.  Depopulated chunks are sidelined to prevent | 
|  | * repopulating these pages unless required.  Fully free chunks are reintegrated | 
|  | * and freed accordingly (1 is kept around).  If we drop below the empty | 
|  | * populated pages threshold, reintegrate the chunk if it has empty free pages. | 
|  | * Each chunk is scanned in the reverse order to keep populated pages close to | 
|  | * the beginning of the chunk. | 
|  | * | 
|  | * CONTEXT: | 
|  | * pcpu_lock (can be dropped temporarily) | 
|  | * | 
|  | */ | 
|  | static void pcpu_reclaim_populated(void) | 
|  | { | 
|  | struct pcpu_chunk *chunk; | 
|  | struct pcpu_block_md *block; | 
|  | int freed_page_start, freed_page_end; | 
|  | int i, end; | 
|  | bool reintegrate; | 
|  |  | 
|  | lockdep_assert_held(&pcpu_lock); | 
|  |  | 
|  | /* | 
|  | * Once a chunk is isolated to the to_depopulate list, the chunk is no | 
|  | * longer discoverable to allocations whom may populate pages.  The only | 
|  | * other accessor is the free path which only returns area back to the | 
|  | * allocator not touching the populated bitmap. | 
|  | */ | 
|  | while ((chunk = list_first_entry_or_null( | 
|  | &pcpu_chunk_lists[pcpu_to_depopulate_slot], | 
|  | struct pcpu_chunk, list))) { | 
|  | WARN_ON(chunk->immutable); | 
|  |  | 
|  | /* | 
|  | * Scan chunk's pages in the reverse order to keep populated | 
|  | * pages close to the beginning of the chunk. | 
|  | */ | 
|  | freed_page_start = chunk->nr_pages; | 
|  | freed_page_end = 0; | 
|  | reintegrate = false; | 
|  | for (i = chunk->nr_pages - 1, end = -1; i >= 0; i--) { | 
|  | /* no more work to do */ | 
|  | if (chunk->nr_empty_pop_pages == 0) | 
|  | break; | 
|  |  | 
|  | /* reintegrate chunk to prevent atomic alloc failures */ | 
|  | if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_HIGH) { | 
|  | reintegrate = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the page is empty and populated, start or | 
|  | * extend the (i, end) range.  If i == 0, decrease | 
|  | * i and perform the depopulation to cover the last | 
|  | * (first) page in the chunk. | 
|  | */ | 
|  | block = chunk->md_blocks + i; | 
|  | if (block->contig_hint == PCPU_BITMAP_BLOCK_BITS && | 
|  | test_bit(i, chunk->populated)) { | 
|  | if (end == -1) | 
|  | end = i; | 
|  | if (i > 0) | 
|  | continue; | 
|  | i--; | 
|  | } | 
|  |  | 
|  | /* depopulate if there is an active range */ | 
|  | if (end == -1) | 
|  | continue; | 
|  |  | 
|  | spin_unlock_irq(&pcpu_lock); | 
|  | pcpu_depopulate_chunk(chunk, i + 1, end + 1); | 
|  | cond_resched(); | 
|  | spin_lock_irq(&pcpu_lock); | 
|  |  | 
|  | pcpu_chunk_depopulated(chunk, i + 1, end + 1); | 
|  | freed_page_start = min(freed_page_start, i + 1); | 
|  | freed_page_end = max(freed_page_end, end + 1); | 
|  |  | 
|  | /* reset the range and continue */ | 
|  | end = -1; | 
|  | } | 
|  |  | 
|  | /* batch tlb flush per chunk to amortize cost */ | 
|  | if (freed_page_start < freed_page_end) { | 
|  | spin_unlock_irq(&pcpu_lock); | 
|  | pcpu_post_unmap_tlb_flush(chunk, | 
|  | freed_page_start, | 
|  | freed_page_end); | 
|  | cond_resched(); | 
|  | spin_lock_irq(&pcpu_lock); | 
|  | } | 
|  |  | 
|  | if (reintegrate || chunk->free_bytes == pcpu_unit_size) | 
|  | pcpu_reintegrate_chunk(chunk); | 
|  | else | 
|  | list_move_tail(&chunk->list, | 
|  | &pcpu_chunk_lists[pcpu_sidelined_slot]); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pcpu_balance_workfn - manage the amount of free chunks and populated pages | 
|  | * @work: unused | 
|  | * | 
|  | * For each chunk type, manage the number of fully free chunks and the number of | 
|  | * populated pages.  An important thing to consider is when pages are freed and | 
|  | * how they contribute to the global counts. | 
|  | */ | 
|  | static void pcpu_balance_workfn(struct work_struct *work) | 
|  | { | 
|  | /* | 
|  | * pcpu_balance_free() is called twice because the first time we may | 
|  | * trim pages in the active pcpu_nr_empty_pop_pages which may cause us | 
|  | * to grow other chunks.  This then gives pcpu_reclaim_populated() time | 
|  | * to move fully free chunks to the active list to be freed if | 
|  | * appropriate. | 
|  | */ | 
|  | mutex_lock(&pcpu_alloc_mutex); | 
|  | spin_lock_irq(&pcpu_lock); | 
|  |  | 
|  | pcpu_balance_free(false); | 
|  | pcpu_reclaim_populated(); | 
|  | pcpu_balance_populated(); | 
|  | pcpu_balance_free(true); | 
|  |  | 
|  | spin_unlock_irq(&pcpu_lock); | 
|  | mutex_unlock(&pcpu_alloc_mutex); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * free_percpu - free percpu area | 
|  | * @ptr: pointer to area to free | 
|  | * | 
|  | * Free percpu area @ptr. | 
|  | * | 
|  | * CONTEXT: | 
|  | * Can be called from atomic context. | 
|  | */ | 
|  | void free_percpu(void __percpu *ptr) | 
|  | { | 
|  | void *addr; | 
|  | struct pcpu_chunk *chunk; | 
|  | unsigned long flags; | 
|  | int size, off; | 
|  | bool need_balance = false; | 
|  |  | 
|  | if (!ptr) | 
|  | return; | 
|  |  | 
|  | kmemleak_free_percpu(ptr); | 
|  |  | 
|  | addr = __pcpu_ptr_to_addr(ptr); | 
|  |  | 
|  | spin_lock_irqsave(&pcpu_lock, flags); | 
|  |  | 
|  | chunk = pcpu_chunk_addr_search(addr); | 
|  | off = addr - chunk->base_addr; | 
|  |  | 
|  | size = pcpu_free_area(chunk, off); | 
|  |  | 
|  | pcpu_memcg_free_hook(chunk, off, size); | 
|  |  | 
|  | /* | 
|  | * If there are more than one fully free chunks, wake up grim reaper. | 
|  | * If the chunk is isolated, it may be in the process of being | 
|  | * reclaimed.  Let reclaim manage cleaning up of that chunk. | 
|  | */ | 
|  | if (!chunk->isolated && chunk->free_bytes == pcpu_unit_size) { | 
|  | struct pcpu_chunk *pos; | 
|  |  | 
|  | list_for_each_entry(pos, &pcpu_chunk_lists[pcpu_free_slot], list) | 
|  | if (pos != chunk) { | 
|  | need_balance = true; | 
|  | break; | 
|  | } | 
|  | } else if (pcpu_should_reclaim_chunk(chunk)) { | 
|  | pcpu_isolate_chunk(chunk); | 
|  | need_balance = true; | 
|  | } | 
|  |  | 
|  | trace_percpu_free_percpu(chunk->base_addr, off, ptr); | 
|  |  | 
|  | spin_unlock_irqrestore(&pcpu_lock, flags); | 
|  |  | 
|  | if (need_balance) | 
|  | pcpu_schedule_balance_work(); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(free_percpu); | 
|  |  | 
|  | bool __is_kernel_percpu_address(unsigned long addr, unsigned long *can_addr) | 
|  | { | 
|  | #ifdef CONFIG_SMP | 
|  | const size_t static_size = __per_cpu_end - __per_cpu_start; | 
|  | void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr); | 
|  | unsigned int cpu; | 
|  |  | 
|  | for_each_possible_cpu(cpu) { | 
|  | void *start = per_cpu_ptr(base, cpu); | 
|  | void *va = (void *)addr; | 
|  |  | 
|  | if (va >= start && va < start + static_size) { | 
|  | if (can_addr) { | 
|  | *can_addr = (unsigned long) (va - start); | 
|  | *can_addr += (unsigned long) | 
|  | per_cpu_ptr(base, get_boot_cpu_id()); | 
|  | } | 
|  | return true; | 
|  | } | 
|  | } | 
|  | #endif | 
|  | /* on UP, can't distinguish from other static vars, always false */ | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * is_kernel_percpu_address - test whether address is from static percpu area | 
|  | * @addr: address to test | 
|  | * | 
|  | * Test whether @addr belongs to in-kernel static percpu area.  Module | 
|  | * static percpu areas are not considered.  For those, use | 
|  | * is_module_percpu_address(). | 
|  | * | 
|  | * RETURNS: | 
|  | * %true if @addr is from in-kernel static percpu area, %false otherwise. | 
|  | */ | 
|  | bool is_kernel_percpu_address(unsigned long addr) | 
|  | { | 
|  | return __is_kernel_percpu_address(addr, NULL); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * per_cpu_ptr_to_phys - convert translated percpu address to physical address | 
|  | * @addr: the address to be converted to physical address | 
|  | * | 
|  | * Given @addr which is dereferenceable address obtained via one of | 
|  | * percpu access macros, this function translates it into its physical | 
|  | * address.  The caller is responsible for ensuring @addr stays valid | 
|  | * until this function finishes. | 
|  | * | 
|  | * percpu allocator has special setup for the first chunk, which currently | 
|  | * supports either embedding in linear address space or vmalloc mapping, | 
|  | * and, from the second one, the backing allocator (currently either vm or | 
|  | * km) provides translation. | 
|  | * | 
|  | * The addr can be translated simply without checking if it falls into the | 
|  | * first chunk. But the current code reflects better how percpu allocator | 
|  | * actually works, and the verification can discover both bugs in percpu | 
|  | * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current | 
|  | * code. | 
|  | * | 
|  | * RETURNS: | 
|  | * The physical address for @addr. | 
|  | */ | 
|  | phys_addr_t per_cpu_ptr_to_phys(void *addr) | 
|  | { | 
|  | void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr); | 
|  | bool in_first_chunk = false; | 
|  | unsigned long first_low, first_high; | 
|  | unsigned int cpu; | 
|  |  | 
|  | /* | 
|  | * The following test on unit_low/high isn't strictly | 
|  | * necessary but will speed up lookups of addresses which | 
|  | * aren't in the first chunk. | 
|  | * | 
|  | * The address check is against full chunk sizes.  pcpu_base_addr | 
|  | * points to the beginning of the first chunk including the | 
|  | * static region.  Assumes good intent as the first chunk may | 
|  | * not be full (ie. < pcpu_unit_pages in size). | 
|  | */ | 
|  | first_low = (unsigned long)pcpu_base_addr + | 
|  | pcpu_unit_page_offset(pcpu_low_unit_cpu, 0); | 
|  | first_high = (unsigned long)pcpu_base_addr + | 
|  | pcpu_unit_page_offset(pcpu_high_unit_cpu, pcpu_unit_pages); | 
|  | if ((unsigned long)addr >= first_low && | 
|  | (unsigned long)addr < first_high) { | 
|  | for_each_possible_cpu(cpu) { | 
|  | void *start = per_cpu_ptr(base, cpu); | 
|  |  | 
|  | if (addr >= start && addr < start + pcpu_unit_size) { | 
|  | in_first_chunk = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (in_first_chunk) { | 
|  | if (!is_vmalloc_addr(addr)) | 
|  | return __pa(addr); | 
|  | else | 
|  | return page_to_phys(vmalloc_to_page(addr)) + | 
|  | offset_in_page(addr); | 
|  | } else | 
|  | return page_to_phys(pcpu_addr_to_page(addr)) + | 
|  | offset_in_page(addr); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pcpu_alloc_alloc_info - allocate percpu allocation info | 
|  | * @nr_groups: the number of groups | 
|  | * @nr_units: the number of units | 
|  | * | 
|  | * Allocate ai which is large enough for @nr_groups groups containing | 
|  | * @nr_units units.  The returned ai's groups[0].cpu_map points to the | 
|  | * cpu_map array which is long enough for @nr_units and filled with | 
|  | * NR_CPUS.  It's the caller's responsibility to initialize cpu_map | 
|  | * pointer of other groups. | 
|  | * | 
|  | * RETURNS: | 
|  | * Pointer to the allocated pcpu_alloc_info on success, NULL on | 
|  | * failure. | 
|  | */ | 
|  | struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups, | 
|  | int nr_units) | 
|  | { | 
|  | struct pcpu_alloc_info *ai; | 
|  | size_t base_size, ai_size; | 
|  | void *ptr; | 
|  | int unit; | 
|  |  | 
|  | base_size = ALIGN(struct_size(ai, groups, nr_groups), | 
|  | __alignof__(ai->groups[0].cpu_map[0])); | 
|  | ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]); | 
|  |  | 
|  | ptr = memblock_alloc(PFN_ALIGN(ai_size), PAGE_SIZE); | 
|  | if (!ptr) | 
|  | return NULL; | 
|  | ai = ptr; | 
|  | ptr += base_size; | 
|  |  | 
|  | ai->groups[0].cpu_map = ptr; | 
|  |  | 
|  | for (unit = 0; unit < nr_units; unit++) | 
|  | ai->groups[0].cpu_map[unit] = NR_CPUS; | 
|  |  | 
|  | ai->nr_groups = nr_groups; | 
|  | ai->__ai_size = PFN_ALIGN(ai_size); | 
|  |  | 
|  | return ai; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pcpu_free_alloc_info - free percpu allocation info | 
|  | * @ai: pcpu_alloc_info to free | 
|  | * | 
|  | * Free @ai which was allocated by pcpu_alloc_alloc_info(). | 
|  | */ | 
|  | void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai) | 
|  | { | 
|  | memblock_free(ai, ai->__ai_size); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pcpu_dump_alloc_info - print out information about pcpu_alloc_info | 
|  | * @lvl: loglevel | 
|  | * @ai: allocation info to dump | 
|  | * | 
|  | * Print out information about @ai using loglevel @lvl. | 
|  | */ | 
|  | static void pcpu_dump_alloc_info(const char *lvl, | 
|  | const struct pcpu_alloc_info *ai) | 
|  | { | 
|  | int group_width = 1, cpu_width = 1, width; | 
|  | char empty_str[] = "--------"; | 
|  | int alloc = 0, alloc_end = 0; | 
|  | int group, v; | 
|  | int upa, apl;	/* units per alloc, allocs per line */ | 
|  |  | 
|  | v = ai->nr_groups; | 
|  | while (v /= 10) | 
|  | group_width++; | 
|  |  | 
|  | v = num_possible_cpus(); | 
|  | while (v /= 10) | 
|  | cpu_width++; | 
|  | empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0'; | 
|  |  | 
|  | upa = ai->alloc_size / ai->unit_size; | 
|  | width = upa * (cpu_width + 1) + group_width + 3; | 
|  | apl = rounddown_pow_of_two(max(60 / width, 1)); | 
|  |  | 
|  | printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu", | 
|  | lvl, ai->static_size, ai->reserved_size, ai->dyn_size, | 
|  | ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size); | 
|  |  | 
|  | for (group = 0; group < ai->nr_groups; group++) { | 
|  | const struct pcpu_group_info *gi = &ai->groups[group]; | 
|  | int unit = 0, unit_end = 0; | 
|  |  | 
|  | BUG_ON(gi->nr_units % upa); | 
|  | for (alloc_end += gi->nr_units / upa; | 
|  | alloc < alloc_end; alloc++) { | 
|  | if (!(alloc % apl)) { | 
|  | pr_cont("\n"); | 
|  | printk("%spcpu-alloc: ", lvl); | 
|  | } | 
|  | pr_cont("[%0*d] ", group_width, group); | 
|  |  | 
|  | for (unit_end += upa; unit < unit_end; unit++) | 
|  | if (gi->cpu_map[unit] != NR_CPUS) | 
|  | pr_cont("%0*d ", | 
|  | cpu_width, gi->cpu_map[unit]); | 
|  | else | 
|  | pr_cont("%s ", empty_str); | 
|  | } | 
|  | } | 
|  | pr_cont("\n"); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pcpu_setup_first_chunk - initialize the first percpu chunk | 
|  | * @ai: pcpu_alloc_info describing how to percpu area is shaped | 
|  | * @base_addr: mapped address | 
|  | * | 
|  | * Initialize the first percpu chunk which contains the kernel static | 
|  | * percpu area.  This function is to be called from arch percpu area | 
|  | * setup path. | 
|  | * | 
|  | * @ai contains all information necessary to initialize the first | 
|  | * chunk and prime the dynamic percpu allocator. | 
|  | * | 
|  | * @ai->static_size is the size of static percpu area. | 
|  | * | 
|  | * @ai->reserved_size, if non-zero, specifies the amount of bytes to | 
|  | * reserve after the static area in the first chunk.  This reserves | 
|  | * the first chunk such that it's available only through reserved | 
|  | * percpu allocation.  This is primarily used to serve module percpu | 
|  | * static areas on architectures where the addressing model has | 
|  | * limited offset range for symbol relocations to guarantee module | 
|  | * percpu symbols fall inside the relocatable range. | 
|  | * | 
|  | * @ai->dyn_size determines the number of bytes available for dynamic | 
|  | * allocation in the first chunk.  The area between @ai->static_size + | 
|  | * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused. | 
|  | * | 
|  | * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE | 
|  | * and equal to or larger than @ai->static_size + @ai->reserved_size + | 
|  | * @ai->dyn_size. | 
|  | * | 
|  | * @ai->atom_size is the allocation atom size and used as alignment | 
|  | * for vm areas. | 
|  | * | 
|  | * @ai->alloc_size is the allocation size and always multiple of | 
|  | * @ai->atom_size.  This is larger than @ai->atom_size if | 
|  | * @ai->unit_size is larger than @ai->atom_size. | 
|  | * | 
|  | * @ai->nr_groups and @ai->groups describe virtual memory layout of | 
|  | * percpu areas.  Units which should be colocated are put into the | 
|  | * same group.  Dynamic VM areas will be allocated according to these | 
|  | * groupings.  If @ai->nr_groups is zero, a single group containing | 
|  | * all units is assumed. | 
|  | * | 
|  | * The caller should have mapped the first chunk at @base_addr and | 
|  | * copied static data to each unit. | 
|  | * | 
|  | * The first chunk will always contain a static and a dynamic region. | 
|  | * However, the static region is not managed by any chunk.  If the first | 
|  | * chunk also contains a reserved region, it is served by two chunks - | 
|  | * one for the reserved region and one for the dynamic region.  They | 
|  | * share the same vm, but use offset regions in the area allocation map. | 
|  | * The chunk serving the dynamic region is circulated in the chunk slots | 
|  | * and available for dynamic allocation like any other chunk. | 
|  | */ | 
|  | void __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai, | 
|  | void *base_addr) | 
|  | { | 
|  | size_t size_sum = ai->static_size + ai->reserved_size + ai->dyn_size; | 
|  | size_t static_size, dyn_size; | 
|  | struct pcpu_chunk *chunk; | 
|  | unsigned long *group_offsets; | 
|  | size_t *group_sizes; | 
|  | unsigned long *unit_off; | 
|  | unsigned int cpu; | 
|  | int *unit_map; | 
|  | int group, unit, i; | 
|  | int map_size; | 
|  | unsigned long tmp_addr; | 
|  | size_t alloc_size; | 
|  |  | 
|  | #define PCPU_SETUP_BUG_ON(cond)	do {					\ | 
|  | if (unlikely(cond)) {						\ | 
|  | pr_emerg("failed to initialize, %s\n", #cond);		\ | 
|  | pr_emerg("cpu_possible_mask=%*pb\n",			\ | 
|  | cpumask_pr_args(cpu_possible_mask));		\ | 
|  | pcpu_dump_alloc_info(KERN_EMERG, ai);			\ | 
|  | BUG();							\ | 
|  | }								\ | 
|  | } while (0) | 
|  |  | 
|  | /* sanity checks */ | 
|  | PCPU_SETUP_BUG_ON(ai->nr_groups <= 0); | 
|  | #ifdef CONFIG_SMP | 
|  | PCPU_SETUP_BUG_ON(!ai->static_size); | 
|  | PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start)); | 
|  | #endif | 
|  | PCPU_SETUP_BUG_ON(!base_addr); | 
|  | PCPU_SETUP_BUG_ON(offset_in_page(base_addr)); | 
|  | PCPU_SETUP_BUG_ON(ai->unit_size < size_sum); | 
|  | PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size)); | 
|  | PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE); | 
|  | PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->unit_size, PCPU_BITMAP_BLOCK_SIZE)); | 
|  | PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE); | 
|  | PCPU_SETUP_BUG_ON(!ai->dyn_size); | 
|  | PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->reserved_size, PCPU_MIN_ALLOC_SIZE)); | 
|  | PCPU_SETUP_BUG_ON(!(IS_ALIGNED(PCPU_BITMAP_BLOCK_SIZE, PAGE_SIZE) || | 
|  | IS_ALIGNED(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE))); | 
|  | PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0); | 
|  |  | 
|  | /* process group information and build config tables accordingly */ | 
|  | alloc_size = ai->nr_groups * sizeof(group_offsets[0]); | 
|  | group_offsets = memblock_alloc(alloc_size, SMP_CACHE_BYTES); | 
|  | if (!group_offsets) | 
|  | panic("%s: Failed to allocate %zu bytes\n", __func__, | 
|  | alloc_size); | 
|  |  | 
|  | alloc_size = ai->nr_groups * sizeof(group_sizes[0]); | 
|  | group_sizes = memblock_alloc(alloc_size, SMP_CACHE_BYTES); | 
|  | if (!group_sizes) | 
|  | panic("%s: Failed to allocate %zu bytes\n", __func__, | 
|  | alloc_size); | 
|  |  | 
|  | alloc_size = nr_cpu_ids * sizeof(unit_map[0]); | 
|  | unit_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES); | 
|  | if (!unit_map) | 
|  | panic("%s: Failed to allocate %zu bytes\n", __func__, | 
|  | alloc_size); | 
|  |  | 
|  | alloc_size = nr_cpu_ids * sizeof(unit_off[0]); | 
|  | unit_off = memblock_alloc(alloc_size, SMP_CACHE_BYTES); | 
|  | if (!unit_off) | 
|  | panic("%s: Failed to allocate %zu bytes\n", __func__, | 
|  | alloc_size); | 
|  |  | 
|  | for (cpu = 0; cpu < nr_cpu_ids; cpu++) | 
|  | unit_map[cpu] = UINT_MAX; | 
|  |  | 
|  | pcpu_low_unit_cpu = NR_CPUS; | 
|  | pcpu_high_unit_cpu = NR_CPUS; | 
|  |  | 
|  | for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) { | 
|  | const struct pcpu_group_info *gi = &ai->groups[group]; | 
|  |  | 
|  | group_offsets[group] = gi->base_offset; | 
|  | group_sizes[group] = gi->nr_units * ai->unit_size; | 
|  |  | 
|  | for (i = 0; i < gi->nr_units; i++) { | 
|  | cpu = gi->cpu_map[i]; | 
|  | if (cpu == NR_CPUS) | 
|  | continue; | 
|  |  | 
|  | PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids); | 
|  | PCPU_SETUP_BUG_ON(!cpu_possible(cpu)); | 
|  | PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX); | 
|  |  | 
|  | unit_map[cpu] = unit + i; | 
|  | unit_off[cpu] = gi->base_offset + i * ai->unit_size; | 
|  |  | 
|  | /* determine low/high unit_cpu */ | 
|  | if (pcpu_low_unit_cpu == NR_CPUS || | 
|  | unit_off[cpu] < unit_off[pcpu_low_unit_cpu]) | 
|  | pcpu_low_unit_cpu = cpu; | 
|  | if (pcpu_high_unit_cpu == NR_CPUS || | 
|  | unit_off[cpu] > unit_off[pcpu_high_unit_cpu]) | 
|  | pcpu_high_unit_cpu = cpu; | 
|  | } | 
|  | } | 
|  | pcpu_nr_units = unit; | 
|  |  | 
|  | for_each_possible_cpu(cpu) | 
|  | PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX); | 
|  |  | 
|  | /* we're done parsing the input, undefine BUG macro and dump config */ | 
|  | #undef PCPU_SETUP_BUG_ON | 
|  | pcpu_dump_alloc_info(KERN_DEBUG, ai); | 
|  |  | 
|  | pcpu_nr_groups = ai->nr_groups; | 
|  | pcpu_group_offsets = group_offsets; | 
|  | pcpu_group_sizes = group_sizes; | 
|  | pcpu_unit_map = unit_map; | 
|  | pcpu_unit_offsets = unit_off; | 
|  |  | 
|  | /* determine basic parameters */ | 
|  | pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT; | 
|  | pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT; | 
|  | pcpu_atom_size = ai->atom_size; | 
|  | pcpu_chunk_struct_size = struct_size(chunk, populated, | 
|  | BITS_TO_LONGS(pcpu_unit_pages)); | 
|  |  | 
|  | pcpu_stats_save_ai(ai); | 
|  |  | 
|  | /* | 
|  | * Allocate chunk slots.  The slots after the active slots are: | 
|  | *   sidelined_slot - isolated, depopulated chunks | 
|  | *   free_slot - fully free chunks | 
|  | *   to_depopulate_slot - isolated, chunks to depopulate | 
|  | */ | 
|  | pcpu_sidelined_slot = __pcpu_size_to_slot(pcpu_unit_size) + 1; | 
|  | pcpu_free_slot = pcpu_sidelined_slot + 1; | 
|  | pcpu_to_depopulate_slot = pcpu_free_slot + 1; | 
|  | pcpu_nr_slots = pcpu_to_depopulate_slot + 1; | 
|  | pcpu_chunk_lists = memblock_alloc(pcpu_nr_slots * | 
|  | sizeof(pcpu_chunk_lists[0]), | 
|  | SMP_CACHE_BYTES); | 
|  | if (!pcpu_chunk_lists) | 
|  | panic("%s: Failed to allocate %zu bytes\n", __func__, | 
|  | pcpu_nr_slots * sizeof(pcpu_chunk_lists[0])); | 
|  |  | 
|  | for (i = 0; i < pcpu_nr_slots; i++) | 
|  | INIT_LIST_HEAD(&pcpu_chunk_lists[i]); | 
|  |  | 
|  | /* | 
|  | * The end of the static region needs to be aligned with the | 
|  | * minimum allocation size as this offsets the reserved and | 
|  | * dynamic region.  The first chunk ends page aligned by | 
|  | * expanding the dynamic region, therefore the dynamic region | 
|  | * can be shrunk to compensate while still staying above the | 
|  | * configured sizes. | 
|  | */ | 
|  | static_size = ALIGN(ai->static_size, PCPU_MIN_ALLOC_SIZE); | 
|  | dyn_size = ai->dyn_size - (static_size - ai->static_size); | 
|  |  | 
|  | /* | 
|  | * Initialize first chunk. | 
|  | * If the reserved_size is non-zero, this initializes the reserved | 
|  | * chunk.  If the reserved_size is zero, the reserved chunk is NULL | 
|  | * and the dynamic region is initialized here.  The first chunk, | 
|  | * pcpu_first_chunk, will always point to the chunk that serves | 
|  | * the dynamic region. | 
|  | */ | 
|  | tmp_addr = (unsigned long)base_addr + static_size; | 
|  | map_size = ai->reserved_size ?: dyn_size; | 
|  | chunk = pcpu_alloc_first_chunk(tmp_addr, map_size); | 
|  |  | 
|  | /* init dynamic chunk if necessary */ | 
|  | if (ai->reserved_size) { | 
|  | pcpu_reserved_chunk = chunk; | 
|  |  | 
|  | tmp_addr = (unsigned long)base_addr + static_size + | 
|  | ai->reserved_size; | 
|  | map_size = dyn_size; | 
|  | chunk = pcpu_alloc_first_chunk(tmp_addr, map_size); | 
|  | } | 
|  |  | 
|  | /* link the first chunk in */ | 
|  | pcpu_first_chunk = chunk; | 
|  | pcpu_nr_empty_pop_pages = pcpu_first_chunk->nr_empty_pop_pages; | 
|  | pcpu_chunk_relocate(pcpu_first_chunk, -1); | 
|  |  | 
|  | /* include all regions of the first chunk */ | 
|  | pcpu_nr_populated += PFN_DOWN(size_sum); | 
|  |  | 
|  | pcpu_stats_chunk_alloc(); | 
|  | trace_percpu_create_chunk(base_addr); | 
|  |  | 
|  | /* we're done */ | 
|  | pcpu_base_addr = base_addr; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  |  | 
|  | const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = { | 
|  | [PCPU_FC_AUTO]	= "auto", | 
|  | [PCPU_FC_EMBED]	= "embed", | 
|  | [PCPU_FC_PAGE]	= "page", | 
|  | }; | 
|  |  | 
|  | enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO; | 
|  |  | 
|  | static int __init percpu_alloc_setup(char *str) | 
|  | { | 
|  | if (!str) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (0) | 
|  | /* nada */; | 
|  | #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK | 
|  | else if (!strcmp(str, "embed")) | 
|  | pcpu_chosen_fc = PCPU_FC_EMBED; | 
|  | #endif | 
|  | #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK | 
|  | else if (!strcmp(str, "page")) | 
|  | pcpu_chosen_fc = PCPU_FC_PAGE; | 
|  | #endif | 
|  | else | 
|  | pr_warn("unknown allocator %s specified\n", str); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | early_param("percpu_alloc", percpu_alloc_setup); | 
|  |  | 
|  | /* | 
|  | * pcpu_embed_first_chunk() is used by the generic percpu setup. | 
|  | * Build it if needed by the arch config or the generic setup is going | 
|  | * to be used. | 
|  | */ | 
|  | #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \ | 
|  | !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA) | 
|  | #define BUILD_EMBED_FIRST_CHUNK | 
|  | #endif | 
|  |  | 
|  | /* build pcpu_page_first_chunk() iff needed by the arch config */ | 
|  | #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK) | 
|  | #define BUILD_PAGE_FIRST_CHUNK | 
|  | #endif | 
|  |  | 
|  | /* pcpu_build_alloc_info() is used by both embed and page first chunk */ | 
|  | #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK) | 
|  | /** | 
|  | * pcpu_build_alloc_info - build alloc_info considering distances between CPUs | 
|  | * @reserved_size: the size of reserved percpu area in bytes | 
|  | * @dyn_size: minimum free size for dynamic allocation in bytes | 
|  | * @atom_size: allocation atom size | 
|  | * @cpu_distance_fn: callback to determine distance between cpus, optional | 
|  | * | 
|  | * This function determines grouping of units, their mappings to cpus | 
|  | * and other parameters considering needed percpu size, allocation | 
|  | * atom size and distances between CPUs. | 
|  | * | 
|  | * Groups are always multiples of atom size and CPUs which are of | 
|  | * LOCAL_DISTANCE both ways are grouped together and share space for | 
|  | * units in the same group.  The returned configuration is guaranteed | 
|  | * to have CPUs on different nodes on different groups and >=75% usage | 
|  | * of allocated virtual address space. | 
|  | * | 
|  | * RETURNS: | 
|  | * On success, pointer to the new allocation_info is returned.  On | 
|  | * failure, ERR_PTR value is returned. | 
|  | */ | 
|  | static struct pcpu_alloc_info * __init __flatten pcpu_build_alloc_info( | 
|  | size_t reserved_size, size_t dyn_size, | 
|  | size_t atom_size, | 
|  | pcpu_fc_cpu_distance_fn_t cpu_distance_fn) | 
|  | { | 
|  | static int group_map[NR_CPUS] __initdata; | 
|  | static int group_cnt[NR_CPUS] __initdata; | 
|  | static struct cpumask mask __initdata; | 
|  | const size_t static_size = __per_cpu_end - __per_cpu_start; | 
|  | int nr_groups = 1, nr_units = 0; | 
|  | size_t size_sum, min_unit_size, alloc_size; | 
|  | int upa, max_upa, best_upa;	/* units_per_alloc */ | 
|  | int last_allocs, group, unit; | 
|  | unsigned int cpu, tcpu; | 
|  | struct pcpu_alloc_info *ai; | 
|  | unsigned int *cpu_map; | 
|  |  | 
|  | /* this function may be called multiple times */ | 
|  | memset(group_map, 0, sizeof(group_map)); | 
|  | memset(group_cnt, 0, sizeof(group_cnt)); | 
|  | cpumask_clear(&mask); | 
|  |  | 
|  | /* calculate size_sum and ensure dyn_size is enough for early alloc */ | 
|  | size_sum = PFN_ALIGN(static_size + reserved_size + | 
|  | max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE)); | 
|  | dyn_size = size_sum - static_size - reserved_size; | 
|  |  | 
|  | /* | 
|  | * Determine min_unit_size, alloc_size and max_upa such that | 
|  | * alloc_size is multiple of atom_size and is the smallest | 
|  | * which can accommodate 4k aligned segments which are equal to | 
|  | * or larger than min_unit_size. | 
|  | */ | 
|  | min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE); | 
|  |  | 
|  | /* determine the maximum # of units that can fit in an allocation */ | 
|  | alloc_size = roundup(min_unit_size, atom_size); | 
|  | upa = alloc_size / min_unit_size; | 
|  | while (alloc_size % upa || (offset_in_page(alloc_size / upa))) | 
|  | upa--; | 
|  | max_upa = upa; | 
|  |  | 
|  | cpumask_copy(&mask, cpu_possible_mask); | 
|  |  | 
|  | /* group cpus according to their proximity */ | 
|  | for (group = 0; !cpumask_empty(&mask); group++) { | 
|  | /* pop the group's first cpu */ | 
|  | cpu = cpumask_first(&mask); | 
|  | group_map[cpu] = group; | 
|  | group_cnt[group]++; | 
|  | cpumask_clear_cpu(cpu, &mask); | 
|  |  | 
|  | for_each_cpu(tcpu, &mask) { | 
|  | if (!cpu_distance_fn || | 
|  | (cpu_distance_fn(cpu, tcpu) == LOCAL_DISTANCE && | 
|  | cpu_distance_fn(tcpu, cpu) == LOCAL_DISTANCE)) { | 
|  | group_map[tcpu] = group; | 
|  | group_cnt[group]++; | 
|  | cpumask_clear_cpu(tcpu, &mask); | 
|  | } | 
|  | } | 
|  | } | 
|  | nr_groups = group; | 
|  |  | 
|  | /* | 
|  | * Wasted space is caused by a ratio imbalance of upa to group_cnt. | 
|  | * Expand the unit_size until we use >= 75% of the units allocated. | 
|  | * Related to atom_size, which could be much larger than the unit_size. | 
|  | */ | 
|  | last_allocs = INT_MAX; | 
|  | best_upa = 0; | 
|  | for (upa = max_upa; upa; upa--) { | 
|  | int allocs = 0, wasted = 0; | 
|  |  | 
|  | if (alloc_size % upa || (offset_in_page(alloc_size / upa))) | 
|  | continue; | 
|  |  | 
|  | for (group = 0; group < nr_groups; group++) { | 
|  | int this_allocs = DIV_ROUND_UP(group_cnt[group], upa); | 
|  | allocs += this_allocs; | 
|  | wasted += this_allocs * upa - group_cnt[group]; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Don't accept if wastage is over 1/3.  The | 
|  | * greater-than comparison ensures upa==1 always | 
|  | * passes the following check. | 
|  | */ | 
|  | if (wasted > num_possible_cpus() / 3) | 
|  | continue; | 
|  |  | 
|  | /* and then don't consume more memory */ | 
|  | if (allocs > last_allocs) | 
|  | break; | 
|  | last_allocs = allocs; | 
|  | best_upa = upa; | 
|  | } | 
|  | BUG_ON(!best_upa); | 
|  | upa = best_upa; | 
|  |  | 
|  | /* allocate and fill alloc_info */ | 
|  | for (group = 0; group < nr_groups; group++) | 
|  | nr_units += roundup(group_cnt[group], upa); | 
|  |  | 
|  | ai = pcpu_alloc_alloc_info(nr_groups, nr_units); | 
|  | if (!ai) | 
|  | return ERR_PTR(-ENOMEM); | 
|  | cpu_map = ai->groups[0].cpu_map; | 
|  |  | 
|  | for (group = 0; group < nr_groups; group++) { | 
|  | ai->groups[group].cpu_map = cpu_map; | 
|  | cpu_map += roundup(group_cnt[group], upa); | 
|  | } | 
|  |  | 
|  | ai->static_size = static_size; | 
|  | ai->reserved_size = reserved_size; | 
|  | ai->dyn_size = dyn_size; | 
|  | ai->unit_size = alloc_size / upa; | 
|  | ai->atom_size = atom_size; | 
|  | ai->alloc_size = alloc_size; | 
|  |  | 
|  | for (group = 0, unit = 0; group < nr_groups; group++) { | 
|  | struct pcpu_group_info *gi = &ai->groups[group]; | 
|  |  | 
|  | /* | 
|  | * Initialize base_offset as if all groups are located | 
|  | * back-to-back.  The caller should update this to | 
|  | * reflect actual allocation. | 
|  | */ | 
|  | gi->base_offset = unit * ai->unit_size; | 
|  |  | 
|  | for_each_possible_cpu(cpu) | 
|  | if (group_map[cpu] == group) | 
|  | gi->cpu_map[gi->nr_units++] = cpu; | 
|  | gi->nr_units = roundup(gi->nr_units, upa); | 
|  | unit += gi->nr_units; | 
|  | } | 
|  | BUG_ON(unit != nr_units); | 
|  |  | 
|  | return ai; | 
|  | } | 
|  |  | 
|  | static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align, | 
|  | pcpu_fc_cpu_to_node_fn_t cpu_to_nd_fn) | 
|  | { | 
|  | const unsigned long goal = __pa(MAX_DMA_ADDRESS); | 
|  | #ifdef CONFIG_NUMA | 
|  | int node = NUMA_NO_NODE; | 
|  | void *ptr; | 
|  |  | 
|  | if (cpu_to_nd_fn) | 
|  | node = cpu_to_nd_fn(cpu); | 
|  |  | 
|  | if (node == NUMA_NO_NODE || !node_online(node) || !NODE_DATA(node)) { | 
|  | ptr = memblock_alloc_from(size, align, goal); | 
|  | pr_info("cpu %d has no node %d or node-local memory\n", | 
|  | cpu, node); | 
|  | pr_debug("per cpu data for cpu%d %zu bytes at 0x%llx\n", | 
|  | cpu, size, (u64)__pa(ptr)); | 
|  | } else { | 
|  | ptr = memblock_alloc_try_nid(size, align, goal, | 
|  | MEMBLOCK_ALLOC_ACCESSIBLE, | 
|  | node); | 
|  |  | 
|  | pr_debug("per cpu data for cpu%d %zu bytes on node%d at 0x%llx\n", | 
|  | cpu, size, node, (u64)__pa(ptr)); | 
|  | } | 
|  | return ptr; | 
|  | #else | 
|  | return memblock_alloc_from(size, align, goal); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void __init pcpu_fc_free(void *ptr, size_t size) | 
|  | { | 
|  | memblock_free(ptr, size); | 
|  | } | 
|  | #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */ | 
|  |  | 
|  | #if defined(BUILD_EMBED_FIRST_CHUNK) | 
|  | /** | 
|  | * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem | 
|  | * @reserved_size: the size of reserved percpu area in bytes | 
|  | * @dyn_size: minimum free size for dynamic allocation in bytes | 
|  | * @atom_size: allocation atom size | 
|  | * @cpu_distance_fn: callback to determine distance between cpus, optional | 
|  | * @cpu_to_nd_fn: callback to convert cpu to it's node, optional | 
|  | * | 
|  | * This is a helper to ease setting up embedded first percpu chunk and | 
|  | * can be called where pcpu_setup_first_chunk() is expected. | 
|  | * | 
|  | * If this function is used to setup the first chunk, it is allocated | 
|  | * by calling pcpu_fc_alloc and used as-is without being mapped into | 
|  | * vmalloc area.  Allocations are always whole multiples of @atom_size | 
|  | * aligned to @atom_size. | 
|  | * | 
|  | * This enables the first chunk to piggy back on the linear physical | 
|  | * mapping which often uses larger page size.  Please note that this | 
|  | * can result in very sparse cpu->unit mapping on NUMA machines thus | 
|  | * requiring large vmalloc address space.  Don't use this allocator if | 
|  | * vmalloc space is not orders of magnitude larger than distances | 
|  | * between node memory addresses (ie. 32bit NUMA machines). | 
|  | * | 
|  | * @dyn_size specifies the minimum dynamic area size. | 
|  | * | 
|  | * If the needed size is smaller than the minimum or specified unit | 
|  | * size, the leftover is returned using pcpu_fc_free. | 
|  | * | 
|  | * RETURNS: | 
|  | * 0 on success, -errno on failure. | 
|  | */ | 
|  | int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size, | 
|  | size_t atom_size, | 
|  | pcpu_fc_cpu_distance_fn_t cpu_distance_fn, | 
|  | pcpu_fc_cpu_to_node_fn_t cpu_to_nd_fn) | 
|  | { | 
|  | void *base = (void *)ULONG_MAX; | 
|  | void **areas = NULL; | 
|  | struct pcpu_alloc_info *ai; | 
|  | size_t size_sum, areas_size; | 
|  | unsigned long max_distance; | 
|  | int group, i, highest_group, rc = 0; | 
|  |  | 
|  | ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size, | 
|  | cpu_distance_fn); | 
|  | if (IS_ERR(ai)) | 
|  | return PTR_ERR(ai); | 
|  |  | 
|  | size_sum = ai->static_size + ai->reserved_size + ai->dyn_size; | 
|  | areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *)); | 
|  |  | 
|  | areas = memblock_alloc(areas_size, SMP_CACHE_BYTES); | 
|  | if (!areas) { | 
|  | rc = -ENOMEM; | 
|  | goto out_free; | 
|  | } | 
|  |  | 
|  | /* allocate, copy and determine base address & max_distance */ | 
|  | highest_group = 0; | 
|  | for (group = 0; group < ai->nr_groups; group++) { | 
|  | struct pcpu_group_info *gi = &ai->groups[group]; | 
|  | unsigned int cpu = NR_CPUS; | 
|  | void *ptr; | 
|  |  | 
|  | for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++) | 
|  | cpu = gi->cpu_map[i]; | 
|  | BUG_ON(cpu == NR_CPUS); | 
|  |  | 
|  | /* allocate space for the whole group */ | 
|  | ptr = pcpu_fc_alloc(cpu, gi->nr_units * ai->unit_size, atom_size, cpu_to_nd_fn); | 
|  | if (!ptr) { | 
|  | rc = -ENOMEM; | 
|  | goto out_free_areas; | 
|  | } | 
|  | /* kmemleak tracks the percpu allocations separately */ | 
|  | kmemleak_ignore_phys(__pa(ptr)); | 
|  | areas[group] = ptr; | 
|  |  | 
|  | base = min(ptr, base); | 
|  | if (ptr > areas[highest_group]) | 
|  | highest_group = group; | 
|  | } | 
|  | max_distance = areas[highest_group] - base; | 
|  | max_distance += ai->unit_size * ai->groups[highest_group].nr_units; | 
|  |  | 
|  | /* warn if maximum distance is further than 75% of vmalloc space */ | 
|  | if (max_distance > VMALLOC_TOTAL * 3 / 4) { | 
|  | pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n", | 
|  | max_distance, VMALLOC_TOTAL); | 
|  | #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK | 
|  | /* and fail if we have fallback */ | 
|  | rc = -EINVAL; | 
|  | goto out_free_areas; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Copy data and free unused parts.  This should happen after all | 
|  | * allocations are complete; otherwise, we may end up with | 
|  | * overlapping groups. | 
|  | */ | 
|  | for (group = 0; group < ai->nr_groups; group++) { | 
|  | struct pcpu_group_info *gi = &ai->groups[group]; | 
|  | void *ptr = areas[group]; | 
|  |  | 
|  | for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) { | 
|  | if (gi->cpu_map[i] == NR_CPUS) { | 
|  | /* unused unit, free whole */ | 
|  | pcpu_fc_free(ptr, ai->unit_size); | 
|  | continue; | 
|  | } | 
|  | /* copy and return the unused part */ | 
|  | memcpy(ptr, __per_cpu_load, ai->static_size); | 
|  | pcpu_fc_free(ptr + size_sum, ai->unit_size - size_sum); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* base address is now known, determine group base offsets */ | 
|  | for (group = 0; group < ai->nr_groups; group++) { | 
|  | ai->groups[group].base_offset = areas[group] - base; | 
|  | } | 
|  |  | 
|  | pr_info("Embedded %zu pages/cpu s%zu r%zu d%zu u%zu\n", | 
|  | PFN_DOWN(size_sum), ai->static_size, ai->reserved_size, | 
|  | ai->dyn_size, ai->unit_size); | 
|  |  | 
|  | pcpu_setup_first_chunk(ai, base); | 
|  | goto out_free; | 
|  |  | 
|  | out_free_areas: | 
|  | for (group = 0; group < ai->nr_groups; group++) | 
|  | if (areas[group]) | 
|  | pcpu_fc_free(areas[group], | 
|  | ai->groups[group].nr_units * ai->unit_size); | 
|  | out_free: | 
|  | pcpu_free_alloc_info(ai); | 
|  | if (areas) | 
|  | memblock_free(areas, areas_size); | 
|  | return rc; | 
|  | } | 
|  | #endif /* BUILD_EMBED_FIRST_CHUNK */ | 
|  |  | 
|  | #ifdef BUILD_PAGE_FIRST_CHUNK | 
|  | #include <asm/pgalloc.h> | 
|  |  | 
|  | #ifndef P4D_TABLE_SIZE | 
|  | #define P4D_TABLE_SIZE PAGE_SIZE | 
|  | #endif | 
|  |  | 
|  | #ifndef PUD_TABLE_SIZE | 
|  | #define PUD_TABLE_SIZE PAGE_SIZE | 
|  | #endif | 
|  |  | 
|  | #ifndef PMD_TABLE_SIZE | 
|  | #define PMD_TABLE_SIZE PAGE_SIZE | 
|  | #endif | 
|  |  | 
|  | #ifndef PTE_TABLE_SIZE | 
|  | #define PTE_TABLE_SIZE PAGE_SIZE | 
|  | #endif | 
|  | void __init __weak pcpu_populate_pte(unsigned long addr) | 
|  | { | 
|  | pgd_t *pgd = pgd_offset_k(addr); | 
|  | p4d_t *p4d; | 
|  | pud_t *pud; | 
|  | pmd_t *pmd; | 
|  |  | 
|  | if (pgd_none(*pgd)) { | 
|  | p4d_t *new; | 
|  |  | 
|  | new = memblock_alloc(P4D_TABLE_SIZE, P4D_TABLE_SIZE); | 
|  | if (!new) | 
|  | goto err_alloc; | 
|  | pgd_populate(&init_mm, pgd, new); | 
|  | } | 
|  |  | 
|  | p4d = p4d_offset(pgd, addr); | 
|  | if (p4d_none(*p4d)) { | 
|  | pud_t *new; | 
|  |  | 
|  | new = memblock_alloc(PUD_TABLE_SIZE, PUD_TABLE_SIZE); | 
|  | if (!new) | 
|  | goto err_alloc; | 
|  | p4d_populate(&init_mm, p4d, new); | 
|  | } | 
|  |  | 
|  | pud = pud_offset(p4d, addr); | 
|  | if (pud_none(*pud)) { | 
|  | pmd_t *new; | 
|  |  | 
|  | new = memblock_alloc(PMD_TABLE_SIZE, PMD_TABLE_SIZE); | 
|  | if (!new) | 
|  | goto err_alloc; | 
|  | pud_populate(&init_mm, pud, new); | 
|  | } | 
|  |  | 
|  | pmd = pmd_offset(pud, addr); | 
|  | if (!pmd_present(*pmd)) { | 
|  | pte_t *new; | 
|  |  | 
|  | new = memblock_alloc(PTE_TABLE_SIZE, PTE_TABLE_SIZE); | 
|  | if (!new) | 
|  | goto err_alloc; | 
|  | pmd_populate_kernel(&init_mm, pmd, new); | 
|  | } | 
|  |  | 
|  | return; | 
|  |  | 
|  | err_alloc: | 
|  | panic("%s: Failed to allocate memory\n", __func__); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages | 
|  | * @reserved_size: the size of reserved percpu area in bytes | 
|  | * @cpu_to_nd_fn: callback to convert cpu to it's node, optional | 
|  | * | 
|  | * This is a helper to ease setting up page-remapped first percpu | 
|  | * chunk and can be called where pcpu_setup_first_chunk() is expected. | 
|  | * | 
|  | * This is the basic allocator.  Static percpu area is allocated | 
|  | * page-by-page into vmalloc area. | 
|  | * | 
|  | * RETURNS: | 
|  | * 0 on success, -errno on failure. | 
|  | */ | 
|  | int __init pcpu_page_first_chunk(size_t reserved_size, pcpu_fc_cpu_to_node_fn_t cpu_to_nd_fn) | 
|  | { | 
|  | static struct vm_struct vm; | 
|  | struct pcpu_alloc_info *ai; | 
|  | char psize_str[16]; | 
|  | int unit_pages; | 
|  | size_t pages_size; | 
|  | struct page **pages; | 
|  | int unit, i, j, rc = 0; | 
|  | int upa; | 
|  | int nr_g0_units; | 
|  |  | 
|  | snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10); | 
|  |  | 
|  | ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL); | 
|  | if (IS_ERR(ai)) | 
|  | return PTR_ERR(ai); | 
|  | BUG_ON(ai->nr_groups != 1); | 
|  | upa = ai->alloc_size/ai->unit_size; | 
|  | nr_g0_units = roundup(num_possible_cpus(), upa); | 
|  | if (WARN_ON(ai->groups[0].nr_units != nr_g0_units)) { | 
|  | pcpu_free_alloc_info(ai); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | unit_pages = ai->unit_size >> PAGE_SHIFT; | 
|  |  | 
|  | /* unaligned allocations can't be freed, round up to page size */ | 
|  | pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() * | 
|  | sizeof(pages[0])); | 
|  | pages = memblock_alloc(pages_size, SMP_CACHE_BYTES); | 
|  | if (!pages) | 
|  | panic("%s: Failed to allocate %zu bytes\n", __func__, | 
|  | pages_size); | 
|  |  | 
|  | /* allocate pages */ | 
|  | j = 0; | 
|  | for (unit = 0; unit < num_possible_cpus(); unit++) { | 
|  | unsigned int cpu = ai->groups[0].cpu_map[unit]; | 
|  | for (i = 0; i < unit_pages; i++) { | 
|  | void *ptr; | 
|  |  | 
|  | ptr = pcpu_fc_alloc(cpu, PAGE_SIZE, PAGE_SIZE, cpu_to_nd_fn); | 
|  | if (!ptr) { | 
|  | pr_warn("failed to allocate %s page for cpu%u\n", | 
|  | psize_str, cpu); | 
|  | goto enomem; | 
|  | } | 
|  | /* kmemleak tracks the percpu allocations separately */ | 
|  | kmemleak_ignore_phys(__pa(ptr)); | 
|  | pages[j++] = virt_to_page(ptr); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* allocate vm area, map the pages and copy static data */ | 
|  | vm.flags = VM_ALLOC; | 
|  | vm.size = num_possible_cpus() * ai->unit_size; | 
|  | vm_area_register_early(&vm, PAGE_SIZE); | 
|  |  | 
|  | for (unit = 0; unit < num_possible_cpus(); unit++) { | 
|  | unsigned long unit_addr = | 
|  | (unsigned long)vm.addr + unit * ai->unit_size; | 
|  |  | 
|  | for (i = 0; i < unit_pages; i++) | 
|  | pcpu_populate_pte(unit_addr + (i << PAGE_SHIFT)); | 
|  |  | 
|  | /* pte already populated, the following shouldn't fail */ | 
|  | rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages], | 
|  | unit_pages); | 
|  | if (rc < 0) | 
|  | panic("failed to map percpu area, err=%d\n", rc); | 
|  |  | 
|  | /* | 
|  | * FIXME: Archs with virtual cache should flush local | 
|  | * cache for the linear mapping here - something | 
|  | * equivalent to flush_cache_vmap() on the local cpu. | 
|  | * flush_cache_vmap() can't be used as most supporting | 
|  | * data structures are not set up yet. | 
|  | */ | 
|  |  | 
|  | /* copy static data */ | 
|  | memcpy((void *)unit_addr, __per_cpu_load, ai->static_size); | 
|  | } | 
|  |  | 
|  | /* we're ready, commit */ | 
|  | pr_info("%d %s pages/cpu s%zu r%zu d%zu\n", | 
|  | unit_pages, psize_str, ai->static_size, | 
|  | ai->reserved_size, ai->dyn_size); | 
|  |  | 
|  | pcpu_setup_first_chunk(ai, vm.addr); | 
|  | goto out_free_ar; | 
|  |  | 
|  | enomem: | 
|  | while (--j >= 0) | 
|  | pcpu_fc_free(page_address(pages[j]), PAGE_SIZE); | 
|  | rc = -ENOMEM; | 
|  | out_free_ar: | 
|  | memblock_free(pages, pages_size); | 
|  | pcpu_free_alloc_info(ai); | 
|  | return rc; | 
|  | } | 
|  | #endif /* BUILD_PAGE_FIRST_CHUNK */ | 
|  |  | 
|  | #ifndef	CONFIG_HAVE_SETUP_PER_CPU_AREA | 
|  | /* | 
|  | * Generic SMP percpu area setup. | 
|  | * | 
|  | * The embedding helper is used because its behavior closely resembles | 
|  | * the original non-dynamic generic percpu area setup.  This is | 
|  | * important because many archs have addressing restrictions and might | 
|  | * fail if the percpu area is located far away from the previous | 
|  | * location.  As an added bonus, in non-NUMA cases, embedding is | 
|  | * generally a good idea TLB-wise because percpu area can piggy back | 
|  | * on the physical linear memory mapping which uses large page | 
|  | * mappings on applicable archs. | 
|  | */ | 
|  | unsigned long __per_cpu_offset[NR_CPUS] __read_mostly; | 
|  | EXPORT_SYMBOL(__per_cpu_offset); | 
|  |  | 
|  | void __init setup_per_cpu_areas(void) | 
|  | { | 
|  | unsigned long delta; | 
|  | unsigned int cpu; | 
|  | int rc; | 
|  |  | 
|  | /* | 
|  | * Always reserve area for module percpu variables.  That's | 
|  | * what the legacy allocator did. | 
|  | */ | 
|  | rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE, PERCPU_DYNAMIC_RESERVE, | 
|  | PAGE_SIZE, NULL, NULL); | 
|  | if (rc < 0) | 
|  | panic("Failed to initialize percpu areas."); | 
|  |  | 
|  | delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start; | 
|  | for_each_possible_cpu(cpu) | 
|  | __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu]; | 
|  | } | 
|  | #endif	/* CONFIG_HAVE_SETUP_PER_CPU_AREA */ | 
|  |  | 
|  | #else	/* CONFIG_SMP */ | 
|  |  | 
|  | /* | 
|  | * UP percpu area setup. | 
|  | * | 
|  | * UP always uses km-based percpu allocator with identity mapping. | 
|  | * Static percpu variables are indistinguishable from the usual static | 
|  | * variables and don't require any special preparation. | 
|  | */ | 
|  | void __init setup_per_cpu_areas(void) | 
|  | { | 
|  | const size_t unit_size = | 
|  | roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE, | 
|  | PERCPU_DYNAMIC_RESERVE)); | 
|  | struct pcpu_alloc_info *ai; | 
|  | void *fc; | 
|  |  | 
|  | ai = pcpu_alloc_alloc_info(1, 1); | 
|  | fc = memblock_alloc_from(unit_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS)); | 
|  | if (!ai || !fc) | 
|  | panic("Failed to allocate memory for percpu areas."); | 
|  | /* kmemleak tracks the percpu allocations separately */ | 
|  | kmemleak_ignore_phys(__pa(fc)); | 
|  |  | 
|  | ai->dyn_size = unit_size; | 
|  | ai->unit_size = unit_size; | 
|  | ai->atom_size = unit_size; | 
|  | ai->alloc_size = unit_size; | 
|  | ai->groups[0].nr_units = 1; | 
|  | ai->groups[0].cpu_map[0] = 0; | 
|  |  | 
|  | pcpu_setup_first_chunk(ai, fc); | 
|  | pcpu_free_alloc_info(ai); | 
|  | } | 
|  |  | 
|  | #endif	/* CONFIG_SMP */ | 
|  |  | 
|  | /* | 
|  | * pcpu_nr_pages - calculate total number of populated backing pages | 
|  | * | 
|  | * This reflects the number of pages populated to back chunks.  Metadata is | 
|  | * excluded in the number exposed in meminfo as the number of backing pages | 
|  | * scales with the number of cpus and can quickly outweigh the memory used for | 
|  | * metadata.  It also keeps this calculation nice and simple. | 
|  | * | 
|  | * RETURNS: | 
|  | * Total number of populated backing pages in use by the allocator. | 
|  | */ | 
|  | unsigned long pcpu_nr_pages(void) | 
|  | { | 
|  | return pcpu_nr_populated * pcpu_nr_units; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Percpu allocator is initialized early during boot when neither slab or | 
|  | * workqueue is available.  Plug async management until everything is up | 
|  | * and running. | 
|  | */ | 
|  | static int __init percpu_enable_async(void) | 
|  | { | 
|  | pcpu_async_enabled = true; | 
|  | return 0; | 
|  | } | 
|  | subsys_initcall(percpu_enable_async); |