| // SPDX-License-Identifier: GPL-2.0-only | 
 | /* | 
 |  * Kernel-based Virtual Machine driver for Linux | 
 |  * | 
 |  * derived from drivers/kvm/kvm_main.c | 
 |  * | 
 |  * Copyright (C) 2006 Qumranet, Inc. | 
 |  * Copyright (C) 2008 Qumranet, Inc. | 
 |  * Copyright IBM Corporation, 2008 | 
 |  * Copyright 2010 Red Hat, Inc. and/or its affiliates. | 
 |  * | 
 |  * Authors: | 
 |  *   Avi Kivity   <avi@qumranet.com> | 
 |  *   Yaniv Kamay  <yaniv@qumranet.com> | 
 |  *   Amit Shah    <amit.shah@qumranet.com> | 
 |  *   Ben-Ami Yassour <benami@il.ibm.com> | 
 |  */ | 
 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
 |  | 
 | #include <linux/kvm_host.h> | 
 | #include "irq.h" | 
 | #include "ioapic.h" | 
 | #include "mmu.h" | 
 | #include "i8254.h" | 
 | #include "tss.h" | 
 | #include "kvm_cache_regs.h" | 
 | #include "kvm_emulate.h" | 
 | #include "mmu/page_track.h" | 
 | #include "x86.h" | 
 | #include "cpuid.h" | 
 | #include "pmu.h" | 
 | #include "hyperv.h" | 
 | #include "lapic.h" | 
 | #include "xen.h" | 
 | #include "smm.h" | 
 |  | 
 | #include <linux/clocksource.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/kvm.h> | 
 | #include <linux/fs.h> | 
 | #include <linux/vmalloc.h> | 
 | #include <linux/export.h> | 
 | #include <linux/moduleparam.h> | 
 | #include <linux/mman.h> | 
 | #include <linux/highmem.h> | 
 | #include <linux/iommu.h> | 
 | #include <linux/cpufreq.h> | 
 | #include <linux/user-return-notifier.h> | 
 | #include <linux/srcu.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/perf_event.h> | 
 | #include <linux/uaccess.h> | 
 | #include <linux/hash.h> | 
 | #include <linux/pci.h> | 
 | #include <linux/timekeeper_internal.h> | 
 | #include <linux/pvclock_gtod.h> | 
 | #include <linux/kvm_irqfd.h> | 
 | #include <linux/irqbypass.h> | 
 | #include <linux/sched/stat.h> | 
 | #include <linux/sched/isolation.h> | 
 | #include <linux/mem_encrypt.h> | 
 | #include <linux/entry-kvm.h> | 
 | #include <linux/suspend.h> | 
 | #include <linux/smp.h> | 
 |  | 
 | #include <trace/events/ipi.h> | 
 | #include <trace/events/kvm.h> | 
 |  | 
 | #include <asm/debugreg.h> | 
 | #include <asm/msr.h> | 
 | #include <asm/desc.h> | 
 | #include <asm/mce.h> | 
 | #include <asm/pkru.h> | 
 | #include <linux/kernel_stat.h> | 
 | #include <asm/fpu/api.h> | 
 | #include <asm/fpu/xcr.h> | 
 | #include <asm/fpu/xstate.h> | 
 | #include <asm/pvclock.h> | 
 | #include <asm/div64.h> | 
 | #include <asm/irq_remapping.h> | 
 | #include <asm/mshyperv.h> | 
 | #include <asm/hypervisor.h> | 
 | #include <asm/tlbflush.h> | 
 | #include <asm/intel_pt.h> | 
 | #include <asm/emulate_prefix.h> | 
 | #include <asm/sgx.h> | 
 | #include <clocksource/hyperv_timer.h> | 
 |  | 
 | #define CREATE_TRACE_POINTS | 
 | #include "trace.h" | 
 |  | 
 | #define MAX_IO_MSRS 256 | 
 |  | 
 | /* | 
 |  * Note, kvm_caps fields should *never* have default values, all fields must be | 
 |  * recomputed from scratch during vendor module load, e.g. to account for a | 
 |  * vendor module being reloaded with different module parameters. | 
 |  */ | 
 | struct kvm_caps kvm_caps __read_mostly; | 
 | EXPORT_SYMBOL_GPL(kvm_caps); | 
 |  | 
 | struct kvm_host_values kvm_host __read_mostly; | 
 | EXPORT_SYMBOL_GPL(kvm_host); | 
 |  | 
 | #define  ERR_PTR_USR(e)  ((void __user *)ERR_PTR(e)) | 
 |  | 
 | #define emul_to_vcpu(ctxt) \ | 
 | 	((struct kvm_vcpu *)(ctxt)->vcpu) | 
 |  | 
 | /* EFER defaults: | 
 |  * - enable syscall per default because its emulated by KVM | 
 |  * - enable LME and LMA per default on 64 bit KVM | 
 |  */ | 
 | #ifdef CONFIG_X86_64 | 
 | static | 
 | u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); | 
 | #else | 
 | static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); | 
 | #endif | 
 |  | 
 | #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE) | 
 |  | 
 | #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE | 
 |  | 
 | #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \ | 
 |                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) | 
 |  | 
 | static void update_cr8_intercept(struct kvm_vcpu *vcpu); | 
 | static void process_nmi(struct kvm_vcpu *vcpu); | 
 | static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); | 
 | static void store_regs(struct kvm_vcpu *vcpu); | 
 | static int sync_regs(struct kvm_vcpu *vcpu); | 
 | static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu); | 
 |  | 
 | static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); | 
 | static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); | 
 |  | 
 | static DEFINE_MUTEX(vendor_module_lock); | 
 | struct kvm_x86_ops kvm_x86_ops __read_mostly; | 
 |  | 
 | #define KVM_X86_OP(func)					     \ | 
 | 	DEFINE_STATIC_CALL_NULL(kvm_x86_##func,			     \ | 
 | 				*(((struct kvm_x86_ops *)0)->func)); | 
 | #define KVM_X86_OP_OPTIONAL KVM_X86_OP | 
 | #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP | 
 | #include <asm/kvm-x86-ops.h> | 
 | EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits); | 
 | EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg); | 
 |  | 
 | static bool __read_mostly ignore_msrs = 0; | 
 | module_param(ignore_msrs, bool, 0644); | 
 |  | 
 | bool __read_mostly report_ignored_msrs = true; | 
 | module_param(report_ignored_msrs, bool, 0644); | 
 | EXPORT_SYMBOL_GPL(report_ignored_msrs); | 
 |  | 
 | unsigned int min_timer_period_us = 200; | 
 | module_param(min_timer_period_us, uint, 0644); | 
 |  | 
 | static bool __read_mostly kvmclock_periodic_sync = true; | 
 | module_param(kvmclock_periodic_sync, bool, 0444); | 
 |  | 
 | /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ | 
 | static u32 __read_mostly tsc_tolerance_ppm = 250; | 
 | module_param(tsc_tolerance_ppm, uint, 0644); | 
 |  | 
 | static bool __read_mostly vector_hashing = true; | 
 | module_param(vector_hashing, bool, 0444); | 
 |  | 
 | bool __read_mostly enable_vmware_backdoor = false; | 
 | module_param(enable_vmware_backdoor, bool, 0444); | 
 | EXPORT_SYMBOL_GPL(enable_vmware_backdoor); | 
 |  | 
 | /* | 
 |  * Flags to manipulate forced emulation behavior (any non-zero value will | 
 |  * enable forced emulation). | 
 |  */ | 
 | #define KVM_FEP_CLEAR_RFLAGS_RF	BIT(1) | 
 | static int __read_mostly force_emulation_prefix; | 
 | module_param(force_emulation_prefix, int, 0644); | 
 |  | 
 | int __read_mostly pi_inject_timer = -1; | 
 | module_param(pi_inject_timer, bint, 0644); | 
 |  | 
 | /* Enable/disable PMU virtualization */ | 
 | bool __read_mostly enable_pmu = true; | 
 | EXPORT_SYMBOL_GPL(enable_pmu); | 
 | module_param(enable_pmu, bool, 0444); | 
 |  | 
 | bool __read_mostly eager_page_split = true; | 
 | module_param(eager_page_split, bool, 0644); | 
 |  | 
 | /* Enable/disable SMT_RSB bug mitigation */ | 
 | static bool __read_mostly mitigate_smt_rsb; | 
 | module_param(mitigate_smt_rsb, bool, 0444); | 
 |  | 
 | /* | 
 |  * Restoring the host value for MSRs that are only consumed when running in | 
 |  * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU | 
 |  * returns to userspace, i.e. the kernel can run with the guest's value. | 
 |  */ | 
 | #define KVM_MAX_NR_USER_RETURN_MSRS 16 | 
 |  | 
 | struct kvm_user_return_msrs { | 
 | 	struct user_return_notifier urn; | 
 | 	bool registered; | 
 | 	struct kvm_user_return_msr_values { | 
 | 		u64 host; | 
 | 		u64 curr; | 
 | 	} values[KVM_MAX_NR_USER_RETURN_MSRS]; | 
 | }; | 
 |  | 
 | u32 __read_mostly kvm_nr_uret_msrs; | 
 | EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs); | 
 | static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS]; | 
 | static struct kvm_user_return_msrs __percpu *user_return_msrs; | 
 |  | 
 | #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \ | 
 | 				| XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \ | 
 | 				| XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \ | 
 | 				| XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE) | 
 |  | 
 | bool __read_mostly allow_smaller_maxphyaddr = 0; | 
 | EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr); | 
 |  | 
 | bool __read_mostly enable_apicv = true; | 
 | EXPORT_SYMBOL_GPL(enable_apicv); | 
 |  | 
 | bool __read_mostly enable_ipiv = true; | 
 | EXPORT_SYMBOL_GPL(enable_ipiv); | 
 |  | 
 | bool __read_mostly enable_device_posted_irqs = true; | 
 | EXPORT_SYMBOL_GPL(enable_device_posted_irqs); | 
 |  | 
 | const struct _kvm_stats_desc kvm_vm_stats_desc[] = { | 
 | 	KVM_GENERIC_VM_STATS(), | 
 | 	STATS_DESC_COUNTER(VM, mmu_shadow_zapped), | 
 | 	STATS_DESC_COUNTER(VM, mmu_pte_write), | 
 | 	STATS_DESC_COUNTER(VM, mmu_pde_zapped), | 
 | 	STATS_DESC_COUNTER(VM, mmu_flooded), | 
 | 	STATS_DESC_COUNTER(VM, mmu_recycled), | 
 | 	STATS_DESC_COUNTER(VM, mmu_cache_miss), | 
 | 	STATS_DESC_ICOUNTER(VM, mmu_unsync), | 
 | 	STATS_DESC_ICOUNTER(VM, pages_4k), | 
 | 	STATS_DESC_ICOUNTER(VM, pages_2m), | 
 | 	STATS_DESC_ICOUNTER(VM, pages_1g), | 
 | 	STATS_DESC_ICOUNTER(VM, nx_lpage_splits), | 
 | 	STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size), | 
 | 	STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions) | 
 | }; | 
 |  | 
 | const struct kvm_stats_header kvm_vm_stats_header = { | 
 | 	.name_size = KVM_STATS_NAME_SIZE, | 
 | 	.num_desc = ARRAY_SIZE(kvm_vm_stats_desc), | 
 | 	.id_offset = sizeof(struct kvm_stats_header), | 
 | 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, | 
 | 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + | 
 | 		       sizeof(kvm_vm_stats_desc), | 
 | }; | 
 |  | 
 | const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = { | 
 | 	KVM_GENERIC_VCPU_STATS(), | 
 | 	STATS_DESC_COUNTER(VCPU, pf_taken), | 
 | 	STATS_DESC_COUNTER(VCPU, pf_fixed), | 
 | 	STATS_DESC_COUNTER(VCPU, pf_emulate), | 
 | 	STATS_DESC_COUNTER(VCPU, pf_spurious), | 
 | 	STATS_DESC_COUNTER(VCPU, pf_fast), | 
 | 	STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created), | 
 | 	STATS_DESC_COUNTER(VCPU, pf_guest), | 
 | 	STATS_DESC_COUNTER(VCPU, tlb_flush), | 
 | 	STATS_DESC_COUNTER(VCPU, invlpg), | 
 | 	STATS_DESC_COUNTER(VCPU, exits), | 
 | 	STATS_DESC_COUNTER(VCPU, io_exits), | 
 | 	STATS_DESC_COUNTER(VCPU, mmio_exits), | 
 | 	STATS_DESC_COUNTER(VCPU, signal_exits), | 
 | 	STATS_DESC_COUNTER(VCPU, irq_window_exits), | 
 | 	STATS_DESC_COUNTER(VCPU, nmi_window_exits), | 
 | 	STATS_DESC_COUNTER(VCPU, l1d_flush), | 
 | 	STATS_DESC_COUNTER(VCPU, halt_exits), | 
 | 	STATS_DESC_COUNTER(VCPU, request_irq_exits), | 
 | 	STATS_DESC_COUNTER(VCPU, irq_exits), | 
 | 	STATS_DESC_COUNTER(VCPU, host_state_reload), | 
 | 	STATS_DESC_COUNTER(VCPU, fpu_reload), | 
 | 	STATS_DESC_COUNTER(VCPU, insn_emulation), | 
 | 	STATS_DESC_COUNTER(VCPU, insn_emulation_fail), | 
 | 	STATS_DESC_COUNTER(VCPU, hypercalls), | 
 | 	STATS_DESC_COUNTER(VCPU, irq_injections), | 
 | 	STATS_DESC_COUNTER(VCPU, nmi_injections), | 
 | 	STATS_DESC_COUNTER(VCPU, req_event), | 
 | 	STATS_DESC_COUNTER(VCPU, nested_run), | 
 | 	STATS_DESC_COUNTER(VCPU, directed_yield_attempted), | 
 | 	STATS_DESC_COUNTER(VCPU, directed_yield_successful), | 
 | 	STATS_DESC_COUNTER(VCPU, preemption_reported), | 
 | 	STATS_DESC_COUNTER(VCPU, preemption_other), | 
 | 	STATS_DESC_IBOOLEAN(VCPU, guest_mode), | 
 | 	STATS_DESC_COUNTER(VCPU, notify_window_exits), | 
 | }; | 
 |  | 
 | const struct kvm_stats_header kvm_vcpu_stats_header = { | 
 | 	.name_size = KVM_STATS_NAME_SIZE, | 
 | 	.num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc), | 
 | 	.id_offset = sizeof(struct kvm_stats_header), | 
 | 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, | 
 | 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + | 
 | 		       sizeof(kvm_vcpu_stats_desc), | 
 | }; | 
 |  | 
 | static struct kmem_cache *x86_emulator_cache; | 
 |  | 
 | /* | 
 |  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) track | 
 |  * the set of MSRs that KVM exposes to userspace through KVM_GET_MSRS, | 
 |  * KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.  msrs_to_save holds MSRs that | 
 |  * require host support, i.e. should be probed via RDMSR.  emulated_msrs holds | 
 |  * MSRs that KVM emulates without strictly requiring host support. | 
 |  * msr_based_features holds MSRs that enumerate features, i.e. are effectively | 
 |  * CPUID leafs.  Note, msr_based_features isn't mutually exclusive with | 
 |  * msrs_to_save and emulated_msrs. | 
 |  */ | 
 |  | 
 | static const u32 msrs_to_save_base[] = { | 
 | 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, | 
 | 	MSR_STAR, | 
 | #ifdef CONFIG_X86_64 | 
 | 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, | 
 | #endif | 
 | 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, | 
 | 	MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX, | 
 | 	MSR_IA32_SPEC_CTRL, MSR_IA32_TSX_CTRL, | 
 | 	MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH, | 
 | 	MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK, | 
 | 	MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B, | 
 | 	MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B, | 
 | 	MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B, | 
 | 	MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B, | 
 | 	MSR_IA32_UMWAIT_CONTROL, | 
 |  | 
 | 	MSR_IA32_XFD, MSR_IA32_XFD_ERR, | 
 | }; | 
 |  | 
 | static const u32 msrs_to_save_pmu[] = { | 
 | 	MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1, | 
 | 	MSR_ARCH_PERFMON_FIXED_CTR0 + 2, | 
 | 	MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS, | 
 | 	MSR_CORE_PERF_GLOBAL_CTRL, | 
 | 	MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG, | 
 |  | 
 | 	/* This part of MSRs should match KVM_MAX_NR_INTEL_GP_COUNTERS. */ | 
 | 	MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1, | 
 | 	MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3, | 
 | 	MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5, | 
 | 	MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7, | 
 | 	MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1, | 
 | 	MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3, | 
 | 	MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5, | 
 | 	MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7, | 
 |  | 
 | 	MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3, | 
 | 	MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3, | 
 |  | 
 | 	/* This part of MSRs should match KVM_MAX_NR_AMD_GP_COUNTERS. */ | 
 | 	MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2, | 
 | 	MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5, | 
 | 	MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2, | 
 | 	MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5, | 
 |  | 
 | 	MSR_AMD64_PERF_CNTR_GLOBAL_CTL, | 
 | 	MSR_AMD64_PERF_CNTR_GLOBAL_STATUS, | 
 | 	MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR, | 
 | }; | 
 |  | 
 | static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) + | 
 | 			ARRAY_SIZE(msrs_to_save_pmu)]; | 
 | static unsigned num_msrs_to_save; | 
 |  | 
 | static const u32 emulated_msrs_all[] = { | 
 | 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, | 
 | 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, | 
 |  | 
 | #ifdef CONFIG_KVM_HYPERV | 
 | 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, | 
 | 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC, | 
 | 	HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY, | 
 | 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2, | 
 | 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL, | 
 | 	HV_X64_MSR_RESET, | 
 | 	HV_X64_MSR_VP_INDEX, | 
 | 	HV_X64_MSR_VP_RUNTIME, | 
 | 	HV_X64_MSR_SCONTROL, | 
 | 	HV_X64_MSR_STIMER0_CONFIG, | 
 | 	HV_X64_MSR_VP_ASSIST_PAGE, | 
 | 	HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL, | 
 | 	HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL, | 
 | 	HV_X64_MSR_SYNDBG_OPTIONS, | 
 | 	HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS, | 
 | 	HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER, | 
 | 	HV_X64_MSR_SYNDBG_PENDING_BUFFER, | 
 | #endif | 
 |  | 
 | 	MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, | 
 | 	MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK, | 
 |  | 
 | 	MSR_IA32_TSC_ADJUST, | 
 | 	MSR_IA32_TSC_DEADLINE, | 
 | 	MSR_IA32_ARCH_CAPABILITIES, | 
 | 	MSR_IA32_PERF_CAPABILITIES, | 
 | 	MSR_IA32_MISC_ENABLE, | 
 | 	MSR_IA32_MCG_STATUS, | 
 | 	MSR_IA32_MCG_CTL, | 
 | 	MSR_IA32_MCG_EXT_CTL, | 
 | 	MSR_IA32_SMBASE, | 
 | 	MSR_SMI_COUNT, | 
 | 	MSR_PLATFORM_INFO, | 
 | 	MSR_MISC_FEATURES_ENABLES, | 
 | 	MSR_AMD64_VIRT_SPEC_CTRL, | 
 | 	MSR_AMD64_TSC_RATIO, | 
 | 	MSR_IA32_POWER_CTL, | 
 | 	MSR_IA32_UCODE_REV, | 
 |  | 
 | 	/* | 
 | 	 * KVM always supports the "true" VMX control MSRs, even if the host | 
 | 	 * does not.  The VMX MSRs as a whole are considered "emulated" as KVM | 
 | 	 * doesn't strictly require them to exist in the host (ignoring that | 
 | 	 * KVM would refuse to load in the first place if the core set of MSRs | 
 | 	 * aren't supported). | 
 | 	 */ | 
 | 	MSR_IA32_VMX_BASIC, | 
 | 	MSR_IA32_VMX_TRUE_PINBASED_CTLS, | 
 | 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS, | 
 | 	MSR_IA32_VMX_TRUE_EXIT_CTLS, | 
 | 	MSR_IA32_VMX_TRUE_ENTRY_CTLS, | 
 | 	MSR_IA32_VMX_MISC, | 
 | 	MSR_IA32_VMX_CR0_FIXED0, | 
 | 	MSR_IA32_VMX_CR4_FIXED0, | 
 | 	MSR_IA32_VMX_VMCS_ENUM, | 
 | 	MSR_IA32_VMX_PROCBASED_CTLS2, | 
 | 	MSR_IA32_VMX_EPT_VPID_CAP, | 
 | 	MSR_IA32_VMX_VMFUNC, | 
 |  | 
 | 	MSR_K7_HWCR, | 
 | 	MSR_KVM_POLL_CONTROL, | 
 | }; | 
 |  | 
 | static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)]; | 
 | static unsigned num_emulated_msrs; | 
 |  | 
 | /* | 
 |  * List of MSRs that control the existence of MSR-based features, i.e. MSRs | 
 |  * that are effectively CPUID leafs.  VMX MSRs are also included in the set of | 
 |  * feature MSRs, but are handled separately to allow expedited lookups. | 
 |  */ | 
 | static const u32 msr_based_features_all_except_vmx[] = { | 
 | 	MSR_AMD64_DE_CFG, | 
 | 	MSR_IA32_UCODE_REV, | 
 | 	MSR_IA32_ARCH_CAPABILITIES, | 
 | 	MSR_IA32_PERF_CAPABILITIES, | 
 | 	MSR_PLATFORM_INFO, | 
 | }; | 
 |  | 
 | static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all_except_vmx) + | 
 | 			      (KVM_LAST_EMULATED_VMX_MSR - KVM_FIRST_EMULATED_VMX_MSR + 1)]; | 
 | static unsigned int num_msr_based_features; | 
 |  | 
 | /* | 
 |  * All feature MSRs except uCode revID, which tracks the currently loaded uCode | 
 |  * patch, are immutable once the vCPU model is defined. | 
 |  */ | 
 | static bool kvm_is_immutable_feature_msr(u32 msr) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	if (msr >= KVM_FIRST_EMULATED_VMX_MSR && msr <= KVM_LAST_EMULATED_VMX_MSR) | 
 | 		return true; | 
 |  | 
 | 	for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) { | 
 | 		if (msr == msr_based_features_all_except_vmx[i]) | 
 | 			return msr != MSR_IA32_UCODE_REV; | 
 | 	} | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | static bool kvm_is_advertised_msr(u32 msr_index) | 
 | { | 
 | 	unsigned int i; | 
 |  | 
 | 	for (i = 0; i < num_msrs_to_save; i++) { | 
 | 		if (msrs_to_save[i] == msr_index) | 
 | 			return true; | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < num_emulated_msrs; i++) { | 
 | 		if (emulated_msrs[i] == msr_index) | 
 | 			return true; | 
 | 	} | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | typedef int (*msr_access_t)(struct kvm_vcpu *vcpu, u32 index, u64 *data, | 
 | 			    bool host_initiated); | 
 |  | 
 | static __always_inline int kvm_do_msr_access(struct kvm_vcpu *vcpu, u32 msr, | 
 | 					     u64 *data, bool host_initiated, | 
 | 					     enum kvm_msr_access rw, | 
 | 					     msr_access_t msr_access_fn) | 
 | { | 
 | 	const char *op = rw == MSR_TYPE_W ? "wrmsr" : "rdmsr"; | 
 | 	int ret; | 
 |  | 
 | 	BUILD_BUG_ON(rw != MSR_TYPE_R && rw != MSR_TYPE_W); | 
 |  | 
 | 	/* | 
 | 	 * Zero the data on read failures to avoid leaking stack data to the | 
 | 	 * guest and/or userspace, e.g. if the failure is ignored below. | 
 | 	 */ | 
 | 	ret = msr_access_fn(vcpu, msr, data, host_initiated); | 
 | 	if (ret && rw == MSR_TYPE_R) | 
 | 		*data = 0; | 
 |  | 
 | 	if (ret != KVM_MSR_RET_UNSUPPORTED) | 
 | 		return ret; | 
 |  | 
 | 	/* | 
 | 	 * Userspace is allowed to read MSRs, and write '0' to MSRs, that KVM | 
 | 	 * advertises to userspace, even if an MSR isn't fully supported. | 
 | 	 * Simply check that @data is '0', which covers both the write '0' case | 
 | 	 * and all reads (in which case @data is zeroed on failure; see above). | 
 | 	 */ | 
 | 	if (host_initiated && !*data && kvm_is_advertised_msr(msr)) | 
 | 		return 0; | 
 |  | 
 | 	if (!ignore_msrs) { | 
 | 		kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n", | 
 | 				      op, msr, *data); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	if (report_ignored_msrs) | 
 | 		kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n", op, msr, *data); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct kmem_cache *kvm_alloc_emulator_cache(void) | 
 | { | 
 | 	unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src); | 
 | 	unsigned int size = sizeof(struct x86_emulate_ctxt); | 
 |  | 
 | 	return kmem_cache_create_usercopy("x86_emulator", size, | 
 | 					  __alignof__(struct x86_emulate_ctxt), | 
 | 					  SLAB_ACCOUNT, useroffset, | 
 | 					  size - useroffset, NULL); | 
 | } | 
 |  | 
 | static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); | 
 |  | 
 | static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	int i; | 
 | 	for (i = 0; i < ASYNC_PF_PER_VCPU; i++) | 
 | 		vcpu->arch.apf.gfns[i] = ~0; | 
 | } | 
 |  | 
 | static void kvm_on_user_return(struct user_return_notifier *urn) | 
 | { | 
 | 	unsigned slot; | 
 | 	struct kvm_user_return_msrs *msrs | 
 | 		= container_of(urn, struct kvm_user_return_msrs, urn); | 
 | 	struct kvm_user_return_msr_values *values; | 
 | 	unsigned long flags; | 
 |  | 
 | 	/* | 
 | 	 * Disabling irqs at this point since the following code could be | 
 | 	 * interrupted and executed through kvm_arch_disable_virtualization_cpu() | 
 | 	 */ | 
 | 	local_irq_save(flags); | 
 | 	if (msrs->registered) { | 
 | 		msrs->registered = false; | 
 | 		user_return_notifier_unregister(urn); | 
 | 	} | 
 | 	local_irq_restore(flags); | 
 | 	for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) { | 
 | 		values = &msrs->values[slot]; | 
 | 		if (values->host != values->curr) { | 
 | 			wrmsrq(kvm_uret_msrs_list[slot], values->host); | 
 | 			values->curr = values->host; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static int kvm_probe_user_return_msr(u32 msr) | 
 | { | 
 | 	u64 val; | 
 | 	int ret; | 
 |  | 
 | 	preempt_disable(); | 
 | 	ret = rdmsrq_safe(msr, &val); | 
 | 	if (ret) | 
 | 		goto out; | 
 | 	ret = wrmsrq_safe(msr, val); | 
 | out: | 
 | 	preempt_enable(); | 
 | 	return ret; | 
 | } | 
 |  | 
 | int kvm_add_user_return_msr(u32 msr) | 
 | { | 
 | 	BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS); | 
 |  | 
 | 	if (kvm_probe_user_return_msr(msr)) | 
 | 		return -1; | 
 |  | 
 | 	kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr; | 
 | 	return kvm_nr_uret_msrs++; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_add_user_return_msr); | 
 |  | 
 | int kvm_find_user_return_msr(u32 msr) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < kvm_nr_uret_msrs; ++i) { | 
 | 		if (kvm_uret_msrs_list[i] == msr) | 
 | 			return i; | 
 | 	} | 
 | 	return -1; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_find_user_return_msr); | 
 |  | 
 | static void kvm_user_return_msr_cpu_online(void) | 
 | { | 
 | 	struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs); | 
 | 	u64 value; | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < kvm_nr_uret_msrs; ++i) { | 
 | 		rdmsrq_safe(kvm_uret_msrs_list[i], &value); | 
 | 		msrs->values[i].host = value; | 
 | 		msrs->values[i].curr = value; | 
 | 	} | 
 | } | 
 |  | 
 | static void kvm_user_return_register_notifier(struct kvm_user_return_msrs *msrs) | 
 | { | 
 | 	if (!msrs->registered) { | 
 | 		msrs->urn.on_user_return = kvm_on_user_return; | 
 | 		user_return_notifier_register(&msrs->urn); | 
 | 		msrs->registered = true; | 
 | 	} | 
 | } | 
 |  | 
 | int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask) | 
 | { | 
 | 	struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs); | 
 | 	int err; | 
 |  | 
 | 	value = (value & mask) | (msrs->values[slot].host & ~mask); | 
 | 	if (value == msrs->values[slot].curr) | 
 | 		return 0; | 
 | 	err = wrmsrq_safe(kvm_uret_msrs_list[slot], value); | 
 | 	if (err) | 
 | 		return 1; | 
 |  | 
 | 	msrs->values[slot].curr = value; | 
 | 	kvm_user_return_register_notifier(msrs); | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_set_user_return_msr); | 
 |  | 
 | void kvm_user_return_msr_update_cache(unsigned int slot, u64 value) | 
 | { | 
 | 	struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs); | 
 |  | 
 | 	msrs->values[slot].curr = value; | 
 | 	kvm_user_return_register_notifier(msrs); | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_user_return_msr_update_cache); | 
 |  | 
 | static void drop_user_return_notifiers(void) | 
 | { | 
 | 	struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs); | 
 |  | 
 | 	if (msrs->registered) | 
 | 		kvm_on_user_return(&msrs->urn); | 
 | } | 
 |  | 
 | /* | 
 |  * Handle a fault on a hardware virtualization (VMX or SVM) instruction. | 
 |  * | 
 |  * Hardware virtualization extension instructions may fault if a reboot turns | 
 |  * off virtualization while processes are running.  Usually after catching the | 
 |  * fault we just panic; during reboot instead the instruction is ignored. | 
 |  */ | 
 | noinstr void kvm_spurious_fault(void) | 
 | { | 
 | 	/* Fault while not rebooting.  We want the trace. */ | 
 | 	BUG_ON(!kvm_rebooting); | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_spurious_fault); | 
 |  | 
 | #define EXCPT_BENIGN		0 | 
 | #define EXCPT_CONTRIBUTORY	1 | 
 | #define EXCPT_PF		2 | 
 |  | 
 | static int exception_class(int vector) | 
 | { | 
 | 	switch (vector) { | 
 | 	case PF_VECTOR: | 
 | 		return EXCPT_PF; | 
 | 	case DE_VECTOR: | 
 | 	case TS_VECTOR: | 
 | 	case NP_VECTOR: | 
 | 	case SS_VECTOR: | 
 | 	case GP_VECTOR: | 
 | 		return EXCPT_CONTRIBUTORY; | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 | 	return EXCPT_BENIGN; | 
 | } | 
 |  | 
 | #define EXCPT_FAULT		0 | 
 | #define EXCPT_TRAP		1 | 
 | #define EXCPT_ABORT		2 | 
 | #define EXCPT_INTERRUPT		3 | 
 | #define EXCPT_DB		4 | 
 |  | 
 | static int exception_type(int vector) | 
 | { | 
 | 	unsigned int mask; | 
 |  | 
 | 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR)) | 
 | 		return EXCPT_INTERRUPT; | 
 |  | 
 | 	mask = 1 << vector; | 
 |  | 
 | 	/* | 
 | 	 * #DBs can be trap-like or fault-like, the caller must check other CPU | 
 | 	 * state, e.g. DR6, to determine whether a #DB is a trap or fault. | 
 | 	 */ | 
 | 	if (mask & (1 << DB_VECTOR)) | 
 | 		return EXCPT_DB; | 
 |  | 
 | 	if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR))) | 
 | 		return EXCPT_TRAP; | 
 |  | 
 | 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR))) | 
 | 		return EXCPT_ABORT; | 
 |  | 
 | 	/* Reserved exceptions will result in fault */ | 
 | 	return EXCPT_FAULT; | 
 | } | 
 |  | 
 | void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu, | 
 | 				   struct kvm_queued_exception *ex) | 
 | { | 
 | 	if (!ex->has_payload) | 
 | 		return; | 
 |  | 
 | 	switch (ex->vector) { | 
 | 	case DB_VECTOR: | 
 | 		/* | 
 | 		 * "Certain debug exceptions may clear bit 0-3.  The | 
 | 		 * remaining contents of the DR6 register are never | 
 | 		 * cleared by the processor". | 
 | 		 */ | 
 | 		vcpu->arch.dr6 &= ~DR_TRAP_BITS; | 
 | 		/* | 
 | 		 * In order to reflect the #DB exception payload in guest | 
 | 		 * dr6, three components need to be considered: active low | 
 | 		 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD, | 
 | 		 * DR6_BS and DR6_BT) | 
 | 		 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits. | 
 | 		 * In the target guest dr6: | 
 | 		 * FIXED_1 bits should always be set. | 
 | 		 * Active low bits should be cleared if 1-setting in payload. | 
 | 		 * Active high bits should be set if 1-setting in payload. | 
 | 		 * | 
 | 		 * Note, the payload is compatible with the pending debug | 
 | 		 * exceptions/exit qualification under VMX, that active_low bits | 
 | 		 * are active high in payload. | 
 | 		 * So they need to be flipped for DR6. | 
 | 		 */ | 
 | 		vcpu->arch.dr6 |= DR6_ACTIVE_LOW; | 
 | 		vcpu->arch.dr6 |= ex->payload; | 
 | 		vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW; | 
 |  | 
 | 		/* | 
 | 		 * The #DB payload is defined as compatible with the 'pending | 
 | 		 * debug exceptions' field under VMX, not DR6. While bit 12 is | 
 | 		 * defined in the 'pending debug exceptions' field (enabled | 
 | 		 * breakpoint), it is reserved and must be zero in DR6. | 
 | 		 */ | 
 | 		vcpu->arch.dr6 &= ~BIT(12); | 
 | 		break; | 
 | 	case PF_VECTOR: | 
 | 		vcpu->arch.cr2 = ex->payload; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	ex->has_payload = false; | 
 | 	ex->payload = 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload); | 
 |  | 
 | static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector, | 
 | 				       bool has_error_code, u32 error_code, | 
 | 				       bool has_payload, unsigned long payload) | 
 | { | 
 | 	struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit; | 
 |  | 
 | 	ex->vector = vector; | 
 | 	ex->injected = false; | 
 | 	ex->pending = true; | 
 | 	ex->has_error_code = has_error_code; | 
 | 	ex->error_code = error_code; | 
 | 	ex->has_payload = has_payload; | 
 | 	ex->payload = payload; | 
 | } | 
 |  | 
 | static void kvm_multiple_exception(struct kvm_vcpu *vcpu, unsigned int nr, | 
 | 				   bool has_error, u32 error_code, | 
 | 				   bool has_payload, unsigned long payload) | 
 | { | 
 | 	u32 prev_nr; | 
 | 	int class1, class2; | 
 |  | 
 | 	kvm_make_request(KVM_REQ_EVENT, vcpu); | 
 |  | 
 | 	/* | 
 | 	 * If the exception is destined for L2, morph it to a VM-Exit if L1 | 
 | 	 * wants to intercept the exception. | 
 | 	 */ | 
 | 	if (is_guest_mode(vcpu) && | 
 | 	    kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) { | 
 | 		kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code, | 
 | 					   has_payload, payload); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) { | 
 | 	queue: | 
 | 		vcpu->arch.exception.pending = true; | 
 | 		vcpu->arch.exception.injected = false; | 
 |  | 
 | 		vcpu->arch.exception.has_error_code = has_error; | 
 | 		vcpu->arch.exception.vector = nr; | 
 | 		vcpu->arch.exception.error_code = error_code; | 
 | 		vcpu->arch.exception.has_payload = has_payload; | 
 | 		vcpu->arch.exception.payload = payload; | 
 | 		if (!is_guest_mode(vcpu)) | 
 | 			kvm_deliver_exception_payload(vcpu, | 
 | 						      &vcpu->arch.exception); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* to check exception */ | 
 | 	prev_nr = vcpu->arch.exception.vector; | 
 | 	if (prev_nr == DF_VECTOR) { | 
 | 		/* triple fault -> shutdown */ | 
 | 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); | 
 | 		return; | 
 | 	} | 
 | 	class1 = exception_class(prev_nr); | 
 | 	class2 = exception_class(nr); | 
 | 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) || | 
 | 	    (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { | 
 | 		/* | 
 | 		 * Synthesize #DF.  Clear the previously injected or pending | 
 | 		 * exception so as not to incorrectly trigger shutdown. | 
 | 		 */ | 
 | 		vcpu->arch.exception.injected = false; | 
 | 		vcpu->arch.exception.pending = false; | 
 |  | 
 | 		kvm_queue_exception_e(vcpu, DF_VECTOR, 0); | 
 | 	} else { | 
 | 		/* replace previous exception with a new one in a hope | 
 | 		   that instruction re-execution will regenerate lost | 
 | 		   exception */ | 
 | 		goto queue; | 
 | 	} | 
 | } | 
 |  | 
 | void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) | 
 | { | 
 | 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0); | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_queue_exception); | 
 |  | 
 |  | 
 | void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, | 
 | 			   unsigned long payload) | 
 | { | 
 | 	kvm_multiple_exception(vcpu, nr, false, 0, true, payload); | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_queue_exception_p); | 
 |  | 
 | static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr, | 
 | 				    u32 error_code, unsigned long payload) | 
 | { | 
 | 	kvm_multiple_exception(vcpu, nr, true, error_code, true, payload); | 
 | } | 
 |  | 
 | void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned int nr, | 
 | 			   bool has_error_code, u32 error_code) | 
 | { | 
 |  | 
 | 	/* | 
 | 	 * On VM-Entry, an exception can be pending if and only if event | 
 | 	 * injection was blocked by nested_run_pending.  In that case, however, | 
 | 	 * vcpu_enter_guest() requests an immediate exit, and the guest | 
 | 	 * shouldn't proceed far enough to need reinjection. | 
 | 	 */ | 
 | 	WARN_ON_ONCE(kvm_is_exception_pending(vcpu)); | 
 |  | 
 | 	/* | 
 | 	 * Do not check for interception when injecting an event for L2, as the | 
 | 	 * exception was checked for intercept when it was original queued, and | 
 | 	 * re-checking is incorrect if _L1_ injected the exception, in which | 
 | 	 * case it's exempt from interception. | 
 | 	 */ | 
 | 	kvm_make_request(KVM_REQ_EVENT, vcpu); | 
 |  | 
 | 	vcpu->arch.exception.injected = true; | 
 | 	vcpu->arch.exception.has_error_code = has_error_code; | 
 | 	vcpu->arch.exception.vector = nr; | 
 | 	vcpu->arch.exception.error_code = error_code; | 
 | 	vcpu->arch.exception.has_payload = false; | 
 | 	vcpu->arch.exception.payload = 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_requeue_exception); | 
 |  | 
 | int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) | 
 | { | 
 | 	if (err) | 
 | 		kvm_inject_gp(vcpu, 0); | 
 | 	else | 
 | 		return kvm_skip_emulated_instruction(vcpu); | 
 |  | 
 | 	return 1; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); | 
 |  | 
 | static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err) | 
 | { | 
 | 	if (err) { | 
 | 		kvm_inject_gp(vcpu, 0); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP | | 
 | 				       EMULTYPE_COMPLETE_USER_EXIT); | 
 | } | 
 |  | 
 | void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) | 
 | { | 
 | 	++vcpu->stat.pf_guest; | 
 |  | 
 | 	/* | 
 | 	 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of | 
 | 	 * whether or not L1 wants to intercept "regular" #PF. | 
 | 	 */ | 
 | 	if (is_guest_mode(vcpu) && fault->async_page_fault) | 
 | 		kvm_queue_exception_vmexit(vcpu, PF_VECTOR, | 
 | 					   true, fault->error_code, | 
 | 					   true, fault->address); | 
 | 	else | 
 | 		kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code, | 
 | 					fault->address); | 
 | } | 
 |  | 
 | void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, | 
 | 				    struct x86_exception *fault) | 
 | { | 
 | 	struct kvm_mmu *fault_mmu; | 
 | 	WARN_ON_ONCE(fault->vector != PF_VECTOR); | 
 |  | 
 | 	fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu : | 
 | 					       vcpu->arch.walk_mmu; | 
 |  | 
 | 	/* | 
 | 	 * Invalidate the TLB entry for the faulting address, if it exists, | 
 | 	 * else the access will fault indefinitely (and to emulate hardware). | 
 | 	 */ | 
 | 	if ((fault->error_code & PFERR_PRESENT_MASK) && | 
 | 	    !(fault->error_code & PFERR_RSVD_MASK)) | 
 | 		kvm_mmu_invalidate_addr(vcpu, fault_mmu, fault->address, | 
 | 					KVM_MMU_ROOT_CURRENT); | 
 |  | 
 | 	fault_mmu->inject_page_fault(vcpu, fault); | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault); | 
 |  | 
 | void kvm_inject_nmi(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	atomic_inc(&vcpu->arch.nmi_queued); | 
 | 	kvm_make_request(KVM_REQ_NMI, vcpu); | 
 | } | 
 |  | 
 | void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) | 
 | { | 
 | 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0); | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_queue_exception_e); | 
 |  | 
 | /* | 
 |  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue | 
 |  * a #GP and return false. | 
 |  */ | 
 | bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) | 
 | { | 
 | 	if (kvm_x86_call(get_cpl)(vcpu) <= required_cpl) | 
 | 		return true; | 
 | 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0); | 
 | 	return false; | 
 | } | 
 |  | 
 | bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr) | 
 | { | 
 | 	if ((dr != 4 && dr != 5) || !kvm_is_cr4_bit_set(vcpu, X86_CR4_DE)) | 
 | 		return true; | 
 |  | 
 | 	kvm_queue_exception(vcpu, UD_VECTOR); | 
 | 	return false; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_require_dr); | 
 |  | 
 | static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2); | 
 | } | 
 |  | 
 | /* | 
 |  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise. | 
 |  */ | 
 | int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3) | 
 | { | 
 | 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu; | 
 | 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; | 
 | 	gpa_t real_gpa; | 
 | 	int i; | 
 | 	int ret; | 
 | 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; | 
 |  | 
 | 	/* | 
 | 	 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated | 
 | 	 * to an L1 GPA. | 
 | 	 */ | 
 | 	real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn), | 
 | 				     PFERR_USER_MASK | PFERR_WRITE_MASK, NULL); | 
 | 	if (real_gpa == INVALID_GPA) | 
 | 		return 0; | 
 |  | 
 | 	/* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */ | 
 | 	ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte, | 
 | 				       cr3 & GENMASK(11, 5), sizeof(pdpte)); | 
 | 	if (ret < 0) | 
 | 		return 0; | 
 |  | 
 | 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { | 
 | 		if ((pdpte[i] & PT_PRESENT_MASK) && | 
 | 		    (pdpte[i] & pdptr_rsvd_bits(vcpu))) { | 
 | 			return 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled. | 
 | 	 * Shadow page roots need to be reconstructed instead. | 
 | 	 */ | 
 | 	if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs))) | 
 | 		kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT); | 
 |  | 
 | 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); | 
 | 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); | 
 | 	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); | 
 | 	vcpu->arch.pdptrs_from_userspace = false; | 
 |  | 
 | 	return 1; | 
 | } | 
 | EXPORT_SYMBOL_GPL(load_pdptrs); | 
 |  | 
 | static bool kvm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) | 
 | { | 
 | #ifdef CONFIG_X86_64 | 
 | 	if (cr0 & 0xffffffff00000000UL) | 
 | 		return false; | 
 | #endif | 
 |  | 
 | 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) | 
 | 		return false; | 
 |  | 
 | 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) | 
 | 		return false; | 
 |  | 
 | 	return kvm_x86_call(is_valid_cr0)(vcpu, cr0); | 
 | } | 
 |  | 
 | void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0) | 
 | { | 
 | 	/* | 
 | 	 * CR0.WP is incorporated into the MMU role, but only for non-nested, | 
 | 	 * indirect shadow MMUs.  If paging is disabled, no updates are needed | 
 | 	 * as there are no permission bits to emulate.  If TDP is enabled, the | 
 | 	 * MMU's metadata needs to be updated, e.g. so that emulating guest | 
 | 	 * translations does the right thing, but there's no need to unload the | 
 | 	 * root as CR0.WP doesn't affect SPTEs. | 
 | 	 */ | 
 | 	if ((cr0 ^ old_cr0) == X86_CR0_WP) { | 
 | 		if (!(cr0 & X86_CR0_PG)) | 
 | 			return; | 
 |  | 
 | 		if (tdp_enabled) { | 
 | 			kvm_init_mmu(vcpu); | 
 | 			return; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if ((cr0 ^ old_cr0) & X86_CR0_PG) { | 
 | 		kvm_clear_async_pf_completion_queue(vcpu); | 
 | 		kvm_async_pf_hash_reset(vcpu); | 
 |  | 
 | 		/* | 
 | 		 * Clearing CR0.PG is defined to flush the TLB from the guest's | 
 | 		 * perspective. | 
 | 		 */ | 
 | 		if (!(cr0 & X86_CR0_PG)) | 
 | 			kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); | 
 | 	} | 
 |  | 
 | 	if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS) | 
 | 		kvm_mmu_reset_context(vcpu); | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_post_set_cr0); | 
 |  | 
 | int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) | 
 | { | 
 | 	unsigned long old_cr0 = kvm_read_cr0(vcpu); | 
 |  | 
 | 	if (!kvm_is_valid_cr0(vcpu, cr0)) | 
 | 		return 1; | 
 |  | 
 | 	cr0 |= X86_CR0_ET; | 
 |  | 
 | 	/* Write to CR0 reserved bits are ignored, even on Intel. */ | 
 | 	cr0 &= ~CR0_RESERVED_BITS; | 
 |  | 
 | #ifdef CONFIG_X86_64 | 
 | 	if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) && | 
 | 	    (cr0 & X86_CR0_PG)) { | 
 | 		int cs_db, cs_l; | 
 |  | 
 | 		if (!is_pae(vcpu)) | 
 | 			return 1; | 
 | 		kvm_x86_call(get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); | 
 | 		if (cs_l) | 
 | 			return 1; | 
 | 	} | 
 | #endif | 
 | 	if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) && | 
 | 	    is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) && | 
 | 	    !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) | 
 | 		return 1; | 
 |  | 
 | 	if (!(cr0 & X86_CR0_PG) && | 
 | 	    (is_64_bit_mode(vcpu) || kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE))) | 
 | 		return 1; | 
 |  | 
 | 	kvm_x86_call(set_cr0)(vcpu, cr0); | 
 |  | 
 | 	kvm_post_set_cr0(vcpu, old_cr0, cr0); | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_set_cr0); | 
 |  | 
 | void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) | 
 | { | 
 | 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_lmsw); | 
 |  | 
 | void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	if (vcpu->arch.guest_state_protected) | 
 | 		return; | 
 |  | 
 | 	if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) { | 
 |  | 
 | 		if (vcpu->arch.xcr0 != kvm_host.xcr0) | 
 | 			xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); | 
 |  | 
 | 		if (guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVES) && | 
 | 		    vcpu->arch.ia32_xss != kvm_host.xss) | 
 | 			wrmsrq(MSR_IA32_XSS, vcpu->arch.ia32_xss); | 
 | 	} | 
 |  | 
 | 	if (cpu_feature_enabled(X86_FEATURE_PKU) && | 
 | 	    vcpu->arch.pkru != vcpu->arch.host_pkru && | 
 | 	    ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || | 
 | 	     kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) | 
 | 		wrpkru(vcpu->arch.pkru); | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state); | 
 |  | 
 | void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	if (vcpu->arch.guest_state_protected) | 
 | 		return; | 
 |  | 
 | 	if (cpu_feature_enabled(X86_FEATURE_PKU) && | 
 | 	    ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || | 
 | 	     kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) { | 
 | 		vcpu->arch.pkru = rdpkru(); | 
 | 		if (vcpu->arch.pkru != vcpu->arch.host_pkru) | 
 | 			wrpkru(vcpu->arch.host_pkru); | 
 | 	} | 
 |  | 
 | 	if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) { | 
 |  | 
 | 		if (vcpu->arch.xcr0 != kvm_host.xcr0) | 
 | 			xsetbv(XCR_XFEATURE_ENABLED_MASK, kvm_host.xcr0); | 
 |  | 
 | 		if (guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVES) && | 
 | 		    vcpu->arch.ia32_xss != kvm_host.xss) | 
 | 			wrmsrq(MSR_IA32_XSS, kvm_host.xss); | 
 | 	} | 
 |  | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state); | 
 |  | 
 | #ifdef CONFIG_X86_64 | 
 | static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC; | 
 | } | 
 | #endif | 
 |  | 
 | static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) | 
 | { | 
 | 	u64 xcr0 = xcr; | 
 | 	u64 old_xcr0 = vcpu->arch.xcr0; | 
 | 	u64 valid_bits; | 
 |  | 
 | 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */ | 
 | 	if (index != XCR_XFEATURE_ENABLED_MASK) | 
 | 		return 1; | 
 | 	if (!(xcr0 & XFEATURE_MASK_FP)) | 
 | 		return 1; | 
 | 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE)) | 
 | 		return 1; | 
 |  | 
 | 	/* | 
 | 	 * Do not allow the guest to set bits that we do not support | 
 | 	 * saving.  However, xcr0 bit 0 is always set, even if the | 
 | 	 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()). | 
 | 	 */ | 
 | 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP; | 
 | 	if (xcr0 & ~valid_bits) | 
 | 		return 1; | 
 |  | 
 | 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) != | 
 | 	    (!(xcr0 & XFEATURE_MASK_BNDCSR))) | 
 | 		return 1; | 
 |  | 
 | 	if (xcr0 & XFEATURE_MASK_AVX512) { | 
 | 		if (!(xcr0 & XFEATURE_MASK_YMM)) | 
 | 			return 1; | 
 | 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512) | 
 | 			return 1; | 
 | 	} | 
 |  | 
 | 	if ((xcr0 & XFEATURE_MASK_XTILE) && | 
 | 	    ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE)) | 
 | 		return 1; | 
 |  | 
 | 	vcpu->arch.xcr0 = xcr0; | 
 |  | 
 | 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND) | 
 | 		vcpu->arch.cpuid_dynamic_bits_dirty = true; | 
 | 	return 0; | 
 | } | 
 |  | 
 | int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	/* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */ | 
 | 	if (kvm_x86_call(get_cpl)(vcpu) != 0 || | 
 | 	    __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) { | 
 | 		kvm_inject_gp(vcpu, 0); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	return kvm_skip_emulated_instruction(vcpu); | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv); | 
 |  | 
 | static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) | 
 | { | 
 | 	return __kvm_is_valid_cr4(vcpu, cr4) && | 
 | 	       kvm_x86_call(is_valid_cr4)(vcpu, cr4); | 
 | } | 
 |  | 
 | void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4) | 
 | { | 
 | 	if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS) | 
 | 		kvm_mmu_reset_context(vcpu); | 
 |  | 
 | 	/* | 
 | 	 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB | 
 | 	 * according to the SDM; however, stale prev_roots could be reused | 
 | 	 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we | 
 | 	 * free them all.  This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST | 
 | 	 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed, | 
 | 	 * so fall through. | 
 | 	 */ | 
 | 	if (!tdp_enabled && | 
 | 	    (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) | 
 | 		kvm_mmu_unload(vcpu); | 
 |  | 
 | 	/* | 
 | 	 * The TLB has to be flushed for all PCIDs if any of the following | 
 | 	 * (architecturally required) changes happen: | 
 | 	 * - CR4.PCIDE is changed from 1 to 0 | 
 | 	 * - CR4.PGE is toggled | 
 | 	 * | 
 | 	 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT. | 
 | 	 */ | 
 | 	if (((cr4 ^ old_cr4) & X86_CR4_PGE) || | 
 | 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) | 
 | 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); | 
 |  | 
 | 	/* | 
 | 	 * The TLB has to be flushed for the current PCID if any of the | 
 | 	 * following (architecturally required) changes happen: | 
 | 	 * - CR4.SMEP is changed from 0 to 1 | 
 | 	 * - CR4.PAE is toggled | 
 | 	 */ | 
 | 	else if (((cr4 ^ old_cr4) & X86_CR4_PAE) || | 
 | 		 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP))) | 
 | 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); | 
 |  | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_post_set_cr4); | 
 |  | 
 | int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) | 
 | { | 
 | 	unsigned long old_cr4 = kvm_read_cr4(vcpu); | 
 |  | 
 | 	if (!kvm_is_valid_cr4(vcpu, cr4)) | 
 | 		return 1; | 
 |  | 
 | 	if (is_long_mode(vcpu)) { | 
 | 		if (!(cr4 & X86_CR4_PAE)) | 
 | 			return 1; | 
 | 		if ((cr4 ^ old_cr4) & X86_CR4_LA57) | 
 | 			return 1; | 
 | 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) | 
 | 		   && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS) | 
 | 		   && !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) | 
 | 		return 1; | 
 |  | 
 | 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { | 
 | 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ | 
 | 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) | 
 | 			return 1; | 
 | 	} | 
 |  | 
 | 	kvm_x86_call(set_cr4)(vcpu, cr4); | 
 |  | 
 | 	kvm_post_set_cr4(vcpu, old_cr4, cr4); | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_set_cr4); | 
 |  | 
 | static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid) | 
 | { | 
 | 	struct kvm_mmu *mmu = vcpu->arch.mmu; | 
 | 	unsigned long roots_to_free = 0; | 
 | 	int i; | 
 |  | 
 | 	/* | 
 | 	 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but | 
 | 	 * this is reachable when running EPT=1 and unrestricted_guest=0,  and | 
 | 	 * also via the emulator.  KVM's TDP page tables are not in the scope of | 
 | 	 * the invalidation, but the guest's TLB entries need to be flushed as | 
 | 	 * the CPU may have cached entries in its TLB for the target PCID. | 
 | 	 */ | 
 | 	if (unlikely(tdp_enabled)) { | 
 | 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If neither the current CR3 nor any of the prev_roots use the given | 
 | 	 * PCID, then nothing needs to be done here because a resync will | 
 | 	 * happen anyway before switching to any other CR3. | 
 | 	 */ | 
 | 	if (kvm_get_active_pcid(vcpu) == pcid) { | 
 | 		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); | 
 | 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If PCID is disabled, there is no need to free prev_roots even if the | 
 | 	 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB | 
 | 	 * with PCIDE=0. | 
 | 	 */ | 
 | 	if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) | 
 | 		return; | 
 |  | 
 | 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) | 
 | 		if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid) | 
 | 			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); | 
 |  | 
 | 	kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free); | 
 | } | 
 |  | 
 | int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) | 
 | { | 
 | 	bool skip_tlb_flush = false; | 
 | 	unsigned long pcid = 0; | 
 | #ifdef CONFIG_X86_64 | 
 | 	if (kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) { | 
 | 		skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH; | 
 | 		cr3 &= ~X86_CR3_PCID_NOFLUSH; | 
 | 		pcid = cr3 & X86_CR3_PCID_MASK; | 
 | 	} | 
 | #endif | 
 |  | 
 | 	/* PDPTRs are always reloaded for PAE paging. */ | 
 | 	if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu)) | 
 | 		goto handle_tlb_flush; | 
 |  | 
 | 	/* | 
 | 	 * Do not condition the GPA check on long mode, this helper is used to | 
 | 	 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that | 
 | 	 * the current vCPU mode is accurate. | 
 | 	 */ | 
 | 	if (!kvm_vcpu_is_legal_cr3(vcpu, cr3)) | 
 | 		return 1; | 
 |  | 
 | 	if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3)) | 
 | 		return 1; | 
 |  | 
 | 	if (cr3 != kvm_read_cr3(vcpu)) | 
 | 		kvm_mmu_new_pgd(vcpu, cr3); | 
 |  | 
 | 	vcpu->arch.cr3 = cr3; | 
 | 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); | 
 | 	/* Do not call post_set_cr3, we do not get here for confidential guests.  */ | 
 |  | 
 | handle_tlb_flush: | 
 | 	/* | 
 | 	 * A load of CR3 that flushes the TLB flushes only the current PCID, | 
 | 	 * even if PCID is disabled, in which case PCID=0 is flushed.  It's a | 
 | 	 * moot point in the end because _disabling_ PCID will flush all PCIDs, | 
 | 	 * and it's impossible to use a non-zero PCID when PCID is disabled, | 
 | 	 * i.e. only PCID=0 can be relevant. | 
 | 	 */ | 
 | 	if (!skip_tlb_flush) | 
 | 		kvm_invalidate_pcid(vcpu, pcid); | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_set_cr3); | 
 |  | 
 | int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) | 
 | { | 
 | 	if (cr8 & CR8_RESERVED_BITS) | 
 | 		return 1; | 
 | 	if (lapic_in_kernel(vcpu)) | 
 | 		kvm_lapic_set_tpr(vcpu, cr8); | 
 | 	else | 
 | 		vcpu->arch.cr8 = cr8; | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_set_cr8); | 
 |  | 
 | unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	if (lapic_in_kernel(vcpu)) | 
 | 		return kvm_lapic_get_cr8(vcpu); | 
 | 	else | 
 | 		return vcpu->arch.cr8; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_get_cr8); | 
 |  | 
 | static void kvm_update_dr0123(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { | 
 | 		for (i = 0; i < KVM_NR_DB_REGS; i++) | 
 | 			vcpu->arch.eff_db[i] = vcpu->arch.db[i]; | 
 | 	} | 
 | } | 
 |  | 
 | void kvm_update_dr7(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	unsigned long dr7; | 
 |  | 
 | 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) | 
 | 		dr7 = vcpu->arch.guest_debug_dr7; | 
 | 	else | 
 | 		dr7 = vcpu->arch.dr7; | 
 | 	kvm_x86_call(set_dr7)(vcpu, dr7); | 
 | 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED; | 
 | 	if (dr7 & DR7_BP_EN_MASK) | 
 | 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_update_dr7); | 
 |  | 
 | static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	u64 fixed = DR6_FIXED_1; | 
 |  | 
 | 	if (!guest_cpu_cap_has(vcpu, X86_FEATURE_RTM)) | 
 | 		fixed |= DR6_RTM; | 
 |  | 
 | 	if (!guest_cpu_cap_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)) | 
 | 		fixed |= DR6_BUS_LOCK; | 
 | 	return fixed; | 
 | } | 
 |  | 
 | int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) | 
 | { | 
 | 	size_t size = ARRAY_SIZE(vcpu->arch.db); | 
 |  | 
 | 	switch (dr) { | 
 | 	case 0 ... 3: | 
 | 		vcpu->arch.db[array_index_nospec(dr, size)] = val; | 
 | 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) | 
 | 			vcpu->arch.eff_db[dr] = val; | 
 | 		break; | 
 | 	case 4: | 
 | 	case 6: | 
 | 		if (!kvm_dr6_valid(val)) | 
 | 			return 1; /* #GP */ | 
 | 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu); | 
 | 		break; | 
 | 	case 5: | 
 | 	default: /* 7 */ | 
 | 		if (!kvm_dr7_valid(val)) | 
 | 			return 1; /* #GP */ | 
 | 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; | 
 | 		kvm_update_dr7(vcpu); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_set_dr); | 
 |  | 
 | unsigned long kvm_get_dr(struct kvm_vcpu *vcpu, int dr) | 
 | { | 
 | 	size_t size = ARRAY_SIZE(vcpu->arch.db); | 
 |  | 
 | 	switch (dr) { | 
 | 	case 0 ... 3: | 
 | 		return vcpu->arch.db[array_index_nospec(dr, size)]; | 
 | 	case 4: | 
 | 	case 6: | 
 | 		return vcpu->arch.dr6; | 
 | 	case 5: | 
 | 	default: /* 7 */ | 
 | 		return vcpu->arch.dr7; | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_get_dr); | 
 |  | 
 | int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	u32 ecx = kvm_rcx_read(vcpu); | 
 | 	u64 data; | 
 |  | 
 | 	if (kvm_pmu_rdpmc(vcpu, ecx, &data)) { | 
 | 		kvm_inject_gp(vcpu, 0); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	kvm_rax_write(vcpu, (u32)data); | 
 | 	kvm_rdx_write(vcpu, data >> 32); | 
 | 	return kvm_skip_emulated_instruction(vcpu); | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc); | 
 |  | 
 | /* | 
 |  * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM | 
 |  * does not yet virtualize. These include: | 
 |  *   10 - MISC_PACKAGE_CTRLS | 
 |  *   11 - ENERGY_FILTERING_CTL | 
 |  *   12 - DOITM | 
 |  *   18 - FB_CLEAR_CTRL | 
 |  *   21 - XAPIC_DISABLE_STATUS | 
 |  *   23 - OVERCLOCKING_STATUS | 
 |  */ | 
 |  | 
 | #define KVM_SUPPORTED_ARCH_CAP \ | 
 | 	(ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \ | 
 | 	 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \ | 
 | 	 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \ | 
 | 	 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \ | 
 | 	 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO | ARCH_CAP_GDS_NO | \ | 
 | 	 ARCH_CAP_RFDS_NO | ARCH_CAP_RFDS_CLEAR | ARCH_CAP_BHI_NO | ARCH_CAP_ITS_NO) | 
 |  | 
 | static u64 kvm_get_arch_capabilities(void) | 
 | { | 
 | 	u64 data = kvm_host.arch_capabilities & KVM_SUPPORTED_ARCH_CAP; | 
 |  | 
 | 	/* | 
 | 	 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that | 
 | 	 * the nested hypervisor runs with NX huge pages.  If it is not, | 
 | 	 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other | 
 | 	 * L1 guests, so it need not worry about its own (L2) guests. | 
 | 	 */ | 
 | 	data |= ARCH_CAP_PSCHANGE_MC_NO; | 
 |  | 
 | 	/* | 
 | 	 * If we're doing cache flushes (either "always" or "cond") | 
 | 	 * we will do one whenever the guest does a vmlaunch/vmresume. | 
 | 	 * If an outer hypervisor is doing the cache flush for us | 
 | 	 * (ARCH_CAP_SKIP_VMENTRY_L1DFLUSH), we can safely pass that | 
 | 	 * capability to the guest too, and if EPT is disabled we're not | 
 | 	 * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will | 
 | 	 * require a nested hypervisor to do a flush of its own. | 
 | 	 */ | 
 | 	if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER) | 
 | 		data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH; | 
 |  | 
 | 	if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN)) | 
 | 		data |= ARCH_CAP_RDCL_NO; | 
 | 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) | 
 | 		data |= ARCH_CAP_SSB_NO; | 
 | 	if (!boot_cpu_has_bug(X86_BUG_MDS)) | 
 | 		data |= ARCH_CAP_MDS_NO; | 
 | 	if (!boot_cpu_has_bug(X86_BUG_RFDS)) | 
 | 		data |= ARCH_CAP_RFDS_NO; | 
 | 	if (!boot_cpu_has_bug(X86_BUG_ITS)) | 
 | 		data |= ARCH_CAP_ITS_NO; | 
 |  | 
 | 	if (!boot_cpu_has(X86_FEATURE_RTM)) { | 
 | 		/* | 
 | 		 * If RTM=0 because the kernel has disabled TSX, the host might | 
 | 		 * have TAA_NO or TSX_CTRL.  Clear TAA_NO (the guest sees RTM=0 | 
 | 		 * and therefore knows that there cannot be TAA) but keep | 
 | 		 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts, | 
 | 		 * and we want to allow migrating those guests to tsx=off hosts. | 
 | 		 */ | 
 | 		data &= ~ARCH_CAP_TAA_NO; | 
 | 	} else if (!boot_cpu_has_bug(X86_BUG_TAA)) { | 
 | 		data |= ARCH_CAP_TAA_NO; | 
 | 	} else { | 
 | 		/* | 
 | 		 * Nothing to do here; we emulate TSX_CTRL if present on the | 
 | 		 * host so the guest can choose between disabling TSX or | 
 | 		 * using VERW to clear CPU buffers. | 
 | 		 */ | 
 | 	} | 
 |  | 
 | 	if (!boot_cpu_has_bug(X86_BUG_GDS) || gds_ucode_mitigated()) | 
 | 		data |= ARCH_CAP_GDS_NO; | 
 |  | 
 | 	return data; | 
 | } | 
 |  | 
 | static int kvm_get_feature_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, | 
 | 			       bool host_initiated) | 
 | { | 
 | 	WARN_ON_ONCE(!host_initiated); | 
 |  | 
 | 	switch (index) { | 
 | 	case MSR_IA32_ARCH_CAPABILITIES: | 
 | 		*data = kvm_get_arch_capabilities(); | 
 | 		break; | 
 | 	case MSR_IA32_PERF_CAPABILITIES: | 
 | 		*data = kvm_caps.supported_perf_cap; | 
 | 		break; | 
 | 	case MSR_PLATFORM_INFO: | 
 | 		*data = MSR_PLATFORM_INFO_CPUID_FAULT; | 
 | 		break; | 
 | 	case MSR_IA32_UCODE_REV: | 
 | 		rdmsrq_safe(index, data); | 
 | 		break; | 
 | 	default: | 
 | 		return kvm_x86_call(get_feature_msr)(index, data); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int do_get_feature_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) | 
 | { | 
 | 	return kvm_do_msr_access(vcpu, index, data, true, MSR_TYPE_R, | 
 | 				 kvm_get_feature_msr); | 
 | } | 
 |  | 
 | static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) | 
 | { | 
 | 	if (efer & EFER_AUTOIBRS && !guest_cpu_cap_has(vcpu, X86_FEATURE_AUTOIBRS)) | 
 | 		return false; | 
 |  | 
 | 	if (efer & EFER_FFXSR && !guest_cpu_cap_has(vcpu, X86_FEATURE_FXSR_OPT)) | 
 | 		return false; | 
 |  | 
 | 	if (efer & EFER_SVME && !guest_cpu_cap_has(vcpu, X86_FEATURE_SVM)) | 
 | 		return false; | 
 |  | 
 | 	if (efer & (EFER_LME | EFER_LMA) && | 
 | 	    !guest_cpu_cap_has(vcpu, X86_FEATURE_LM)) | 
 | 		return false; | 
 |  | 
 | 	if (efer & EFER_NX && !guest_cpu_cap_has(vcpu, X86_FEATURE_NX)) | 
 | 		return false; | 
 |  | 
 | 	return true; | 
 |  | 
 | } | 
 | bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) | 
 | { | 
 | 	if (efer & efer_reserved_bits) | 
 | 		return false; | 
 |  | 
 | 	return __kvm_valid_efer(vcpu, efer); | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_valid_efer); | 
 |  | 
 | static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info) | 
 | { | 
 | 	u64 old_efer = vcpu->arch.efer; | 
 | 	u64 efer = msr_info->data; | 
 | 	int r; | 
 |  | 
 | 	if (efer & efer_reserved_bits) | 
 | 		return 1; | 
 |  | 
 | 	if (!msr_info->host_initiated) { | 
 | 		if (!__kvm_valid_efer(vcpu, efer)) | 
 | 			return 1; | 
 |  | 
 | 		if (is_paging(vcpu) && | 
 | 		    (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) | 
 | 			return 1; | 
 | 	} | 
 |  | 
 | 	efer &= ~EFER_LMA; | 
 | 	efer |= vcpu->arch.efer & EFER_LMA; | 
 |  | 
 | 	r = kvm_x86_call(set_efer)(vcpu, efer); | 
 | 	if (r) { | 
 | 		WARN_ON(r > 0); | 
 | 		return r; | 
 | 	} | 
 |  | 
 | 	if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS) | 
 | 		kvm_mmu_reset_context(vcpu); | 
 |  | 
 | 	if (!static_cpu_has(X86_FEATURE_XSAVES) && | 
 | 	    (efer & EFER_SVME)) | 
 | 		kvm_hv_xsaves_xsavec_maybe_warn(vcpu); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | void kvm_enable_efer_bits(u64 mask) | 
 | { | 
 |        efer_reserved_bits &= ~mask; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); | 
 |  | 
 | bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type) | 
 | { | 
 | 	struct kvm_x86_msr_filter *msr_filter; | 
 | 	struct msr_bitmap_range *ranges; | 
 | 	struct kvm *kvm = vcpu->kvm; | 
 | 	bool allowed; | 
 | 	int idx; | 
 | 	u32 i; | 
 |  | 
 | 	/* x2APIC MSRs do not support filtering. */ | 
 | 	if (index >= 0x800 && index <= 0x8ff) | 
 | 		return true; | 
 |  | 
 | 	idx = srcu_read_lock(&kvm->srcu); | 
 |  | 
 | 	msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu); | 
 | 	if (!msr_filter) { | 
 | 		allowed = true; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	allowed = msr_filter->default_allow; | 
 | 	ranges = msr_filter->ranges; | 
 |  | 
 | 	for (i = 0; i < msr_filter->count; i++) { | 
 | 		u32 start = ranges[i].base; | 
 | 		u32 end = start + ranges[i].nmsrs; | 
 | 		u32 flags = ranges[i].flags; | 
 | 		unsigned long *bitmap = ranges[i].bitmap; | 
 |  | 
 | 		if ((index >= start) && (index < end) && (flags & type)) { | 
 | 			allowed = test_bit(index - start, bitmap); | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | out: | 
 | 	srcu_read_unlock(&kvm->srcu, idx); | 
 |  | 
 | 	return allowed; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_msr_allowed); | 
 |  | 
 | /* | 
 |  * Write @data into the MSR specified by @index.  Select MSR specific fault | 
 |  * checks are bypassed if @host_initiated is %true. | 
 |  * Returns 0 on success, non-0 otherwise. | 
 |  * Assumes vcpu_load() was already called. | 
 |  */ | 
 | static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data, | 
 | 			 bool host_initiated) | 
 | { | 
 | 	struct msr_data msr; | 
 |  | 
 | 	switch (index) { | 
 | 	case MSR_FS_BASE: | 
 | 	case MSR_GS_BASE: | 
 | 	case MSR_KERNEL_GS_BASE: | 
 | 	case MSR_CSTAR: | 
 | 	case MSR_LSTAR: | 
 | 		if (is_noncanonical_msr_address(data, vcpu)) | 
 | 			return 1; | 
 | 		break; | 
 | 	case MSR_IA32_SYSENTER_EIP: | 
 | 	case MSR_IA32_SYSENTER_ESP: | 
 | 		/* | 
 | 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if | 
 | 		 * non-canonical address is written on Intel but not on | 
 | 		 * AMD (which ignores the top 32-bits, because it does | 
 | 		 * not implement 64-bit SYSENTER). | 
 | 		 * | 
 | 		 * 64-bit code should hence be able to write a non-canonical | 
 | 		 * value on AMD.  Making the address canonical ensures that | 
 | 		 * vmentry does not fail on Intel after writing a non-canonical | 
 | 		 * value, and that something deterministic happens if the guest | 
 | 		 * invokes 64-bit SYSENTER. | 
 | 		 */ | 
 | 		data = __canonical_address(data, max_host_virt_addr_bits()); | 
 | 		break; | 
 | 	case MSR_TSC_AUX: | 
 | 		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) | 
 | 			return 1; | 
 |  | 
 | 		if (!host_initiated && | 
 | 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP) && | 
 | 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_RDPID)) | 
 | 			return 1; | 
 |  | 
 | 		/* | 
 | 		 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has | 
 | 		 * incomplete and conflicting architectural behavior.  Current | 
 | 		 * AMD CPUs completely ignore bits 63:32, i.e. they aren't | 
 | 		 * reserved and always read as zeros.  Enforce Intel's reserved | 
 | 		 * bits check if the guest CPU is Intel compatible, otherwise | 
 | 		 * clear the bits.  This ensures cross-vendor migration will | 
 | 		 * provide consistent behavior for the guest. | 
 | 		 */ | 
 | 		if (guest_cpuid_is_intel_compatible(vcpu) && (data >> 32) != 0) | 
 | 			return 1; | 
 |  | 
 | 		data = (u32)data; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	msr.data = data; | 
 | 	msr.index = index; | 
 | 	msr.host_initiated = host_initiated; | 
 |  | 
 | 	return kvm_x86_call(set_msr)(vcpu, &msr); | 
 | } | 
 |  | 
 | static int _kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, | 
 | 			bool host_initiated) | 
 | { | 
 | 	return __kvm_set_msr(vcpu, index, *data, host_initiated); | 
 | } | 
 |  | 
 | static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu, | 
 | 				     u32 index, u64 data, bool host_initiated) | 
 | { | 
 | 	return kvm_do_msr_access(vcpu, index, &data, host_initiated, MSR_TYPE_W, | 
 | 				 _kvm_set_msr); | 
 | } | 
 |  | 
 | /* | 
 |  * Read the MSR specified by @index into @data.  Select MSR specific fault | 
 |  * checks are bypassed if @host_initiated is %true. | 
 |  * Returns 0 on success, non-0 otherwise. | 
 |  * Assumes vcpu_load() was already called. | 
 |  */ | 
 | int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, | 
 | 		  bool host_initiated) | 
 | { | 
 | 	struct msr_data msr; | 
 | 	int ret; | 
 |  | 
 | 	switch (index) { | 
 | 	case MSR_TSC_AUX: | 
 | 		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) | 
 | 			return 1; | 
 |  | 
 | 		if (!host_initiated && | 
 | 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP) && | 
 | 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_RDPID)) | 
 | 			return 1; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	msr.index = index; | 
 | 	msr.host_initiated = host_initiated; | 
 |  | 
 | 	ret = kvm_x86_call(get_msr)(vcpu, &msr); | 
 | 	if (!ret) | 
 | 		*data = msr.data; | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu, | 
 | 				     u32 index, u64 *data, bool host_initiated) | 
 | { | 
 | 	return kvm_do_msr_access(vcpu, index, data, host_initiated, MSR_TYPE_R, | 
 | 				 __kvm_get_msr); | 
 | } | 
 |  | 
 | int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data) | 
 | { | 
 | 	if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ)) | 
 | 		return KVM_MSR_RET_FILTERED; | 
 | 	return kvm_get_msr_ignored_check(vcpu, index, data, false); | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_get_msr_with_filter); | 
 |  | 
 | int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data) | 
 | { | 
 | 	if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE)) | 
 | 		return KVM_MSR_RET_FILTERED; | 
 | 	return kvm_set_msr_ignored_check(vcpu, index, data, false); | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_set_msr_with_filter); | 
 |  | 
 | int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data) | 
 | { | 
 | 	return kvm_get_msr_ignored_check(vcpu, index, data, false); | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_get_msr); | 
 |  | 
 | int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data) | 
 | { | 
 | 	return kvm_set_msr_ignored_check(vcpu, index, data, false); | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_set_msr); | 
 |  | 
 | static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	if (!vcpu->run->msr.error) { | 
 | 		kvm_rax_write(vcpu, (u32)vcpu->run->msr.data); | 
 | 		kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32); | 
 | 	} | 
 | } | 
 |  | 
 | static int complete_emulated_msr_access(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error); | 
 | } | 
 |  | 
 | static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	complete_userspace_rdmsr(vcpu); | 
 | 	return complete_emulated_msr_access(vcpu); | 
 | } | 
 |  | 
 | static int complete_fast_msr_access(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	return kvm_x86_call(complete_emulated_msr)(vcpu, vcpu->run->msr.error); | 
 | } | 
 |  | 
 | static int complete_fast_rdmsr(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	complete_userspace_rdmsr(vcpu); | 
 | 	return complete_fast_msr_access(vcpu); | 
 | } | 
 |  | 
 | static u64 kvm_msr_reason(int r) | 
 | { | 
 | 	switch (r) { | 
 | 	case KVM_MSR_RET_UNSUPPORTED: | 
 | 		return KVM_MSR_EXIT_REASON_UNKNOWN; | 
 | 	case KVM_MSR_RET_FILTERED: | 
 | 		return KVM_MSR_EXIT_REASON_FILTER; | 
 | 	default: | 
 | 		return KVM_MSR_EXIT_REASON_INVAL; | 
 | 	} | 
 | } | 
 |  | 
 | static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index, | 
 | 			      u32 exit_reason, u64 data, | 
 | 			      int (*completion)(struct kvm_vcpu *vcpu), | 
 | 			      int r) | 
 | { | 
 | 	u64 msr_reason = kvm_msr_reason(r); | 
 |  | 
 | 	/* Check if the user wanted to know about this MSR fault */ | 
 | 	if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason)) | 
 | 		return 0; | 
 |  | 
 | 	vcpu->run->exit_reason = exit_reason; | 
 | 	vcpu->run->msr.error = 0; | 
 | 	memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad)); | 
 | 	vcpu->run->msr.reason = msr_reason; | 
 | 	vcpu->run->msr.index = index; | 
 | 	vcpu->run->msr.data = data; | 
 | 	vcpu->arch.complete_userspace_io = completion; | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	u32 ecx = kvm_rcx_read(vcpu); | 
 | 	u64 data; | 
 | 	int r; | 
 |  | 
 | 	r = kvm_get_msr_with_filter(vcpu, ecx, &data); | 
 |  | 
 | 	if (!r) { | 
 | 		trace_kvm_msr_read(ecx, data); | 
 |  | 
 | 		kvm_rax_write(vcpu, data & -1u); | 
 | 		kvm_rdx_write(vcpu, (data >> 32) & -1u); | 
 | 	} else { | 
 | 		/* MSR read failed? See if we should ask user space */ | 
 | 		if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0, | 
 | 				       complete_fast_rdmsr, r)) | 
 | 			return 0; | 
 | 		trace_kvm_msr_read_ex(ecx); | 
 | 	} | 
 |  | 
 | 	return kvm_x86_call(complete_emulated_msr)(vcpu, r); | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr); | 
 |  | 
 | int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	u32 ecx = kvm_rcx_read(vcpu); | 
 | 	u64 data = kvm_read_edx_eax(vcpu); | 
 | 	int r; | 
 |  | 
 | 	r = kvm_set_msr_with_filter(vcpu, ecx, data); | 
 |  | 
 | 	if (!r) { | 
 | 		trace_kvm_msr_write(ecx, data); | 
 | 	} else { | 
 | 		/* MSR write failed? See if we should ask user space */ | 
 | 		if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data, | 
 | 				       complete_fast_msr_access, r)) | 
 | 			return 0; | 
 | 		/* Signal all other negative errors to userspace */ | 
 | 		if (r < 0) | 
 | 			return r; | 
 | 		trace_kvm_msr_write_ex(ecx, data); | 
 | 	} | 
 |  | 
 | 	return kvm_x86_call(complete_emulated_msr)(vcpu, r); | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr); | 
 |  | 
 | int kvm_emulate_as_nop(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	return kvm_skip_emulated_instruction(vcpu); | 
 | } | 
 |  | 
 | int kvm_emulate_invd(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	/* Treat an INVD instruction as a NOP and just skip it. */ | 
 | 	return kvm_emulate_as_nop(vcpu); | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_emulate_invd); | 
 |  | 
 | int kvm_handle_invalid_op(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	kvm_queue_exception(vcpu, UD_VECTOR); | 
 | 	return 1; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_handle_invalid_op); | 
 |  | 
 |  | 
 | static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn) | 
 | { | 
 | 	bool enabled; | 
 |  | 
 | 	if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS)) | 
 | 		goto emulate_as_nop; | 
 |  | 
 | 	if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT)) | 
 | 		enabled = guest_cpu_cap_has(vcpu, X86_FEATURE_MWAIT); | 
 | 	else | 
 | 		enabled = vcpu->arch.ia32_misc_enable_msr & MSR_IA32_MISC_ENABLE_MWAIT; | 
 |  | 
 | 	if (!enabled) | 
 | 		return kvm_handle_invalid_op(vcpu); | 
 |  | 
 | emulate_as_nop: | 
 | 	pr_warn_once("%s instruction emulated as NOP!\n", insn); | 
 | 	return kvm_emulate_as_nop(vcpu); | 
 | } | 
 | int kvm_emulate_mwait(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	return kvm_emulate_monitor_mwait(vcpu, "MWAIT"); | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_emulate_mwait); | 
 |  | 
 | int kvm_emulate_monitor(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	return kvm_emulate_monitor_mwait(vcpu, "MONITOR"); | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_emulate_monitor); | 
 |  | 
 | static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	xfer_to_guest_mode_prepare(); | 
 |  | 
 | 	return READ_ONCE(vcpu->mode) == EXITING_GUEST_MODE || | 
 | 	       kvm_request_pending(vcpu) || xfer_to_guest_mode_work_pending(); | 
 | } | 
 |  | 
 | /* | 
 |  * The fast path for frequent and performance sensitive wrmsr emulation, | 
 |  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces | 
 |  * the latency of virtual IPI by avoiding the expensive bits of transitioning | 
 |  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the | 
 |  * other cases which must be called after interrupts are enabled on the host. | 
 |  */ | 
 | static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data) | 
 | { | 
 | 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic)) | 
 | 		return 1; | 
 |  | 
 | 	if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) && | 
 | 	    ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) && | 
 | 	    ((data & APIC_MODE_MASK) == APIC_DM_FIXED) && | 
 | 	    ((u32)(data >> 32) != X2APIC_BROADCAST)) | 
 | 		return kvm_x2apic_icr_write(vcpu->arch.apic, data); | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data) | 
 | { | 
 | 	if (!kvm_can_use_hv_timer(vcpu)) | 
 | 		return 1; | 
 |  | 
 | 	kvm_set_lapic_tscdeadline_msr(vcpu, data); | 
 | 	return 0; | 
 | } | 
 |  | 
 | fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	u32 msr = kvm_rcx_read(vcpu); | 
 | 	u64 data; | 
 | 	fastpath_t ret; | 
 | 	bool handled; | 
 |  | 
 | 	kvm_vcpu_srcu_read_lock(vcpu); | 
 |  | 
 | 	switch (msr) { | 
 | 	case APIC_BASE_MSR + (APIC_ICR >> 4): | 
 | 		data = kvm_read_edx_eax(vcpu); | 
 | 		handled = !handle_fastpath_set_x2apic_icr_irqoff(vcpu, data); | 
 | 		break; | 
 | 	case MSR_IA32_TSC_DEADLINE: | 
 | 		data = kvm_read_edx_eax(vcpu); | 
 | 		handled = !handle_fastpath_set_tscdeadline(vcpu, data); | 
 | 		break; | 
 | 	default: | 
 | 		handled = false; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	if (handled) { | 
 | 		if (!kvm_skip_emulated_instruction(vcpu)) | 
 | 			ret = EXIT_FASTPATH_EXIT_USERSPACE; | 
 | 		else | 
 | 			ret = EXIT_FASTPATH_REENTER_GUEST; | 
 | 		trace_kvm_msr_write(msr, data); | 
 | 	} else { | 
 | 		ret = EXIT_FASTPATH_NONE; | 
 | 	} | 
 |  | 
 | 	kvm_vcpu_srcu_read_unlock(vcpu); | 
 |  | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff); | 
 |  | 
 | /* | 
 |  * Adapt set_msr() to msr_io()'s calling convention | 
 |  */ | 
 | static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) | 
 | { | 
 | 	return kvm_get_msr_ignored_check(vcpu, index, data, true); | 
 | } | 
 |  | 
 | static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) | 
 | { | 
 | 	u64 val; | 
 |  | 
 | 	/* | 
 | 	 * Disallow writes to immutable feature MSRs after KVM_RUN.  KVM does | 
 | 	 * not support modifying the guest vCPU model on the fly, e.g. changing | 
 | 	 * the nVMX capabilities while L2 is running is nonsensical.  Allow | 
 | 	 * writes of the same value, e.g. to allow userspace to blindly stuff | 
 | 	 * all MSRs when emulating RESET. | 
 | 	 */ | 
 | 	if (kvm_vcpu_has_run(vcpu) && kvm_is_immutable_feature_msr(index) && | 
 | 	    (do_get_msr(vcpu, index, &val) || *data != val)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	return kvm_set_msr_ignored_check(vcpu, index, *data, true); | 
 | } | 
 |  | 
 | #ifdef CONFIG_X86_64 | 
 | struct pvclock_clock { | 
 | 	int vclock_mode; | 
 | 	u64 cycle_last; | 
 | 	u64 mask; | 
 | 	u32 mult; | 
 | 	u32 shift; | 
 | 	u64 base_cycles; | 
 | 	u64 offset; | 
 | }; | 
 |  | 
 | struct pvclock_gtod_data { | 
 | 	seqcount_t	seq; | 
 |  | 
 | 	struct pvclock_clock clock; /* extract of a clocksource struct */ | 
 | 	struct pvclock_clock raw_clock; /* extract of a clocksource struct */ | 
 |  | 
 | 	ktime_t		offs_boot; | 
 | 	u64		wall_time_sec; | 
 | }; | 
 |  | 
 | static struct pvclock_gtod_data pvclock_gtod_data; | 
 |  | 
 | static void update_pvclock_gtod(struct timekeeper *tk) | 
 | { | 
 | 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data; | 
 |  | 
 | 	write_seqcount_begin(&vdata->seq); | 
 |  | 
 | 	/* copy pvclock gtod data */ | 
 | 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->vdso_clock_mode; | 
 | 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last; | 
 | 	vdata->clock.mask		= tk->tkr_mono.mask; | 
 | 	vdata->clock.mult		= tk->tkr_mono.mult; | 
 | 	vdata->clock.shift		= tk->tkr_mono.shift; | 
 | 	vdata->clock.base_cycles	= tk->tkr_mono.xtime_nsec; | 
 | 	vdata->clock.offset		= tk->tkr_mono.base; | 
 |  | 
 | 	vdata->raw_clock.vclock_mode	= tk->tkr_raw.clock->vdso_clock_mode; | 
 | 	vdata->raw_clock.cycle_last	= tk->tkr_raw.cycle_last; | 
 | 	vdata->raw_clock.mask		= tk->tkr_raw.mask; | 
 | 	vdata->raw_clock.mult		= tk->tkr_raw.mult; | 
 | 	vdata->raw_clock.shift		= tk->tkr_raw.shift; | 
 | 	vdata->raw_clock.base_cycles	= tk->tkr_raw.xtime_nsec; | 
 | 	vdata->raw_clock.offset		= tk->tkr_raw.base; | 
 |  | 
 | 	vdata->wall_time_sec            = tk->xtime_sec; | 
 |  | 
 | 	vdata->offs_boot		= tk->offs_boot; | 
 |  | 
 | 	write_seqcount_end(&vdata->seq); | 
 | } | 
 |  | 
 | static s64 get_kvmclock_base_ns(void) | 
 | { | 
 | 	/* Count up from boot time, but with the frequency of the raw clock.  */ | 
 | 	return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot)); | 
 | } | 
 | #else | 
 | static s64 get_kvmclock_base_ns(void) | 
 | { | 
 | 	/* Master clock not used, so we can just use CLOCK_BOOTTIME.  */ | 
 | 	return ktime_get_boottime_ns(); | 
 | } | 
 | #endif | 
 |  | 
 | static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs) | 
 | { | 
 | 	int version; | 
 | 	int r; | 
 | 	struct pvclock_wall_clock wc; | 
 | 	u32 wc_sec_hi; | 
 | 	u64 wall_nsec; | 
 |  | 
 | 	if (!wall_clock) | 
 | 		return; | 
 |  | 
 | 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); | 
 | 	if (r) | 
 | 		return; | 
 |  | 
 | 	if (version & 1) | 
 | 		++version;  /* first time write, random junk */ | 
 |  | 
 | 	++version; | 
 |  | 
 | 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version))) | 
 | 		return; | 
 |  | 
 | 	wall_nsec = kvm_get_wall_clock_epoch(kvm); | 
 |  | 
 | 	wc.nsec = do_div(wall_nsec, NSEC_PER_SEC); | 
 | 	wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */ | 
 | 	wc.version = version; | 
 |  | 
 | 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); | 
 |  | 
 | 	if (sec_hi_ofs) { | 
 | 		wc_sec_hi = wall_nsec >> 32; | 
 | 		kvm_write_guest(kvm, wall_clock + sec_hi_ofs, | 
 | 				&wc_sec_hi, sizeof(wc_sec_hi)); | 
 | 	} | 
 |  | 
 | 	version++; | 
 | 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); | 
 | } | 
 |  | 
 | static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time, | 
 | 				  bool old_msr, bool host_initiated) | 
 | { | 
 | 	struct kvm_arch *ka = &vcpu->kvm->arch; | 
 |  | 
 | 	if (vcpu->vcpu_id == 0 && !host_initiated) { | 
 | 		if (ka->boot_vcpu_runs_old_kvmclock != old_msr) | 
 | 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); | 
 |  | 
 | 		ka->boot_vcpu_runs_old_kvmclock = old_msr; | 
 | 	} | 
 |  | 
 | 	vcpu->arch.time = system_time; | 
 | 	kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); | 
 |  | 
 | 	/* we verify if the enable bit is set... */ | 
 | 	if (system_time & 1) | 
 | 		kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL, | 
 | 				 sizeof(struct pvclock_vcpu_time_info)); | 
 | 	else | 
 | 		kvm_gpc_deactivate(&vcpu->arch.pv_time); | 
 |  | 
 | 	return; | 
 | } | 
 |  | 
 | static uint32_t div_frac(uint32_t dividend, uint32_t divisor) | 
 | { | 
 | 	do_shl32_div32(dividend, divisor); | 
 | 	return dividend; | 
 | } | 
 |  | 
 | static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz, | 
 | 			       s8 *pshift, u32 *pmultiplier) | 
 | { | 
 | 	uint64_t scaled64; | 
 | 	int32_t  shift = 0; | 
 | 	uint64_t tps64; | 
 | 	uint32_t tps32; | 
 |  | 
 | 	tps64 = base_hz; | 
 | 	scaled64 = scaled_hz; | 
 | 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { | 
 | 		tps64 >>= 1; | 
 | 		shift--; | 
 | 	} | 
 |  | 
 | 	tps32 = (uint32_t)tps64; | 
 | 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { | 
 | 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) | 
 | 			scaled64 >>= 1; | 
 | 		else | 
 | 			tps32 <<= 1; | 
 | 		shift++; | 
 | 	} | 
 |  | 
 | 	*pshift = shift; | 
 | 	*pmultiplier = div_frac(scaled64, tps32); | 
 | } | 
 |  | 
 | #ifdef CONFIG_X86_64 | 
 | static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); | 
 | #endif | 
 |  | 
 | static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); | 
 | static unsigned long max_tsc_khz; | 
 |  | 
 | static u32 adjust_tsc_khz(u32 khz, s32 ppm) | 
 | { | 
 | 	u64 v = (u64)khz * (1000000 + ppm); | 
 | 	do_div(v, 1000000); | 
 | 	return v; | 
 | } | 
 |  | 
 | static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier); | 
 |  | 
 | static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale) | 
 | { | 
 | 	u64 ratio; | 
 |  | 
 | 	/* Guest TSC same frequency as host TSC? */ | 
 | 	if (!scale) { | 
 | 		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* TSC scaling supported? */ | 
 | 	if (!kvm_caps.has_tsc_control) { | 
 | 		if (user_tsc_khz > tsc_khz) { | 
 | 			vcpu->arch.tsc_catchup = 1; | 
 | 			vcpu->arch.tsc_always_catchup = 1; | 
 | 			return 0; | 
 | 		} else { | 
 | 			pr_warn_ratelimited("user requested TSC rate below hardware speed\n"); | 
 | 			return -1; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* TSC scaling required  - calculate ratio */ | 
 | 	ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits, | 
 | 				user_tsc_khz, tsc_khz); | 
 |  | 
 | 	if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) { | 
 | 		pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n", | 
 | 			            user_tsc_khz); | 
 | 		return -1; | 
 | 	} | 
 |  | 
 | 	kvm_vcpu_write_tsc_multiplier(vcpu, ratio); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz) | 
 | { | 
 | 	u32 thresh_lo, thresh_hi; | 
 | 	int use_scaling = 0; | 
 |  | 
 | 	/* tsc_khz can be zero if TSC calibration fails */ | 
 | 	if (user_tsc_khz == 0) { | 
 | 		/* set tsc_scaling_ratio to a safe value */ | 
 | 		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); | 
 | 		return -1; | 
 | 	} | 
 |  | 
 | 	/* Compute a scale to convert nanoseconds in TSC cycles */ | 
 | 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC, | 
 | 			   &vcpu->arch.virtual_tsc_shift, | 
 | 			   &vcpu->arch.virtual_tsc_mult); | 
 | 	vcpu->arch.virtual_tsc_khz = user_tsc_khz; | 
 |  | 
 | 	/* | 
 | 	 * Compute the variation in TSC rate which is acceptable | 
 | 	 * within the range of tolerance and decide if the | 
 | 	 * rate being applied is within that bounds of the hardware | 
 | 	 * rate.  If so, no scaling or compensation need be done. | 
 | 	 */ | 
 | 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); | 
 | 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); | 
 | 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) { | 
 | 		pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n", | 
 | 			 user_tsc_khz, thresh_lo, thresh_hi); | 
 | 		use_scaling = 1; | 
 | 	} | 
 | 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling); | 
 | } | 
 |  | 
 | static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) | 
 | { | 
 | 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, | 
 | 				      vcpu->arch.virtual_tsc_mult, | 
 | 				      vcpu->arch.virtual_tsc_shift); | 
 | 	tsc += vcpu->arch.this_tsc_write; | 
 | 	return tsc; | 
 | } | 
 |  | 
 | #ifdef CONFIG_X86_64 | 
 | static inline bool gtod_is_based_on_tsc(int mode) | 
 | { | 
 | 	return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK; | 
 | } | 
 | #endif | 
 |  | 
 | static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu, bool new_generation) | 
 | { | 
 | #ifdef CONFIG_X86_64 | 
 | 	struct kvm_arch *ka = &vcpu->kvm->arch; | 
 | 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data; | 
 |  | 
 | 	/* | 
 | 	 * To use the masterclock, the host clocksource must be based on TSC | 
 | 	 * and all vCPUs must have matching TSCs.  Note, the count for matching | 
 | 	 * vCPUs doesn't include the reference vCPU, hence "+1". | 
 | 	 */ | 
 | 	bool use_master_clock = (ka->nr_vcpus_matched_tsc + 1 == | 
 | 				 atomic_read(&vcpu->kvm->online_vcpus)) && | 
 | 				gtod_is_based_on_tsc(gtod->clock.vclock_mode); | 
 |  | 
 | 	/* | 
 | 	 * Request a masterclock update if the masterclock needs to be toggled | 
 | 	 * on/off, or when starting a new generation and the masterclock is | 
 | 	 * enabled (compute_guest_tsc() requires the masterclock snapshot to be | 
 | 	 * taken _after_ the new generation is created). | 
 | 	 */ | 
 | 	if ((ka->use_master_clock && new_generation) || | 
 | 	    (ka->use_master_clock != use_master_clock)) | 
 | 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); | 
 |  | 
 | 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, | 
 | 			    atomic_read(&vcpu->kvm->online_vcpus), | 
 | 		            ka->use_master_clock, gtod->clock.vclock_mode); | 
 | #endif | 
 | } | 
 |  | 
 | /* | 
 |  * Multiply tsc by a fixed point number represented by ratio. | 
 |  * | 
 |  * The most significant 64-N bits (mult) of ratio represent the | 
 |  * integral part of the fixed point number; the remaining N bits | 
 |  * (frac) represent the fractional part, ie. ratio represents a fixed | 
 |  * point number (mult + frac * 2^(-N)). | 
 |  * | 
 |  * N equals to kvm_caps.tsc_scaling_ratio_frac_bits. | 
 |  */ | 
 | static inline u64 __scale_tsc(u64 ratio, u64 tsc) | 
 | { | 
 | 	return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits); | 
 | } | 
 |  | 
 | u64 kvm_scale_tsc(u64 tsc, u64 ratio) | 
 | { | 
 | 	u64 _tsc = tsc; | 
 |  | 
 | 	if (ratio != kvm_caps.default_tsc_scaling_ratio) | 
 | 		_tsc = __scale_tsc(ratio, tsc); | 
 |  | 
 | 	return _tsc; | 
 | } | 
 |  | 
 | static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc) | 
 | { | 
 | 	u64 tsc; | 
 |  | 
 | 	tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio); | 
 |  | 
 | 	return target_tsc - tsc; | 
 | } | 
 |  | 
 | u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc) | 
 | { | 
 | 	return vcpu->arch.l1_tsc_offset + | 
 | 		kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio); | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_read_l1_tsc); | 
 |  | 
 | u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier) | 
 | { | 
 | 	u64 nested_offset; | 
 |  | 
 | 	if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio) | 
 | 		nested_offset = l1_offset; | 
 | 	else | 
 | 		nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier, | 
 | 						kvm_caps.tsc_scaling_ratio_frac_bits); | 
 |  | 
 | 	nested_offset += l2_offset; | 
 | 	return nested_offset; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset); | 
 |  | 
 | u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier) | 
 | { | 
 | 	if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio) | 
 | 		return mul_u64_u64_shr(l1_multiplier, l2_multiplier, | 
 | 				       kvm_caps.tsc_scaling_ratio_frac_bits); | 
 |  | 
 | 	return l1_multiplier; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier); | 
 |  | 
 | static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset) | 
 | { | 
 | 	if (vcpu->arch.guest_tsc_protected) | 
 | 		return; | 
 |  | 
 | 	trace_kvm_write_tsc_offset(vcpu->vcpu_id, | 
 | 				   vcpu->arch.l1_tsc_offset, | 
 | 				   l1_offset); | 
 |  | 
 | 	vcpu->arch.l1_tsc_offset = l1_offset; | 
 |  | 
 | 	/* | 
 | 	 * If we are here because L1 chose not to trap WRMSR to TSC then | 
 | 	 * according to the spec this should set L1's TSC (as opposed to | 
 | 	 * setting L1's offset for L2). | 
 | 	 */ | 
 | 	if (is_guest_mode(vcpu)) | 
 | 		vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset( | 
 | 			l1_offset, | 
 | 			kvm_x86_call(get_l2_tsc_offset)(vcpu), | 
 | 			kvm_x86_call(get_l2_tsc_multiplier)(vcpu)); | 
 | 	else | 
 | 		vcpu->arch.tsc_offset = l1_offset; | 
 |  | 
 | 	kvm_x86_call(write_tsc_offset)(vcpu); | 
 | } | 
 |  | 
 | static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier) | 
 | { | 
 | 	vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier; | 
 |  | 
 | 	/* Userspace is changing the multiplier while L2 is active */ | 
 | 	if (is_guest_mode(vcpu)) | 
 | 		vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier( | 
 | 			l1_multiplier, | 
 | 			kvm_x86_call(get_l2_tsc_multiplier)(vcpu)); | 
 | 	else | 
 | 		vcpu->arch.tsc_scaling_ratio = l1_multiplier; | 
 |  | 
 | 	if (kvm_caps.has_tsc_control) | 
 | 		kvm_x86_call(write_tsc_multiplier)(vcpu); | 
 | } | 
 |  | 
 | static inline bool kvm_check_tsc_unstable(void) | 
 | { | 
 | #ifdef CONFIG_X86_64 | 
 | 	/* | 
 | 	 * TSC is marked unstable when we're running on Hyper-V, | 
 | 	 * 'TSC page' clocksource is good. | 
 | 	 */ | 
 | 	if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK) | 
 | 		return false; | 
 | #endif | 
 | 	return check_tsc_unstable(); | 
 | } | 
 |  | 
 | /* | 
 |  * Infers attempts to synchronize the guest's tsc from host writes. Sets the | 
 |  * offset for the vcpu and tracks the TSC matching generation that the vcpu | 
 |  * participates in. | 
 |  */ | 
 | static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc, | 
 | 				  u64 ns, bool matched, bool user_set_tsc) | 
 | { | 
 | 	struct kvm *kvm = vcpu->kvm; | 
 |  | 
 | 	lockdep_assert_held(&kvm->arch.tsc_write_lock); | 
 |  | 
 | 	if (vcpu->arch.guest_tsc_protected) | 
 | 		return; | 
 |  | 
 | 	if (user_set_tsc) | 
 | 		vcpu->kvm->arch.user_set_tsc = true; | 
 |  | 
 | 	/* | 
 | 	 * We also track th most recent recorded KHZ, write and time to | 
 | 	 * allow the matching interval to be extended at each write. | 
 | 	 */ | 
 | 	kvm->arch.last_tsc_nsec = ns; | 
 | 	kvm->arch.last_tsc_write = tsc; | 
 | 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; | 
 | 	kvm->arch.last_tsc_offset = offset; | 
 |  | 
 | 	vcpu->arch.last_guest_tsc = tsc; | 
 |  | 
 | 	kvm_vcpu_write_tsc_offset(vcpu, offset); | 
 |  | 
 | 	if (!matched) { | 
 | 		/* | 
 | 		 * We split periods of matched TSC writes into generations. | 
 | 		 * For each generation, we track the original measured | 
 | 		 * nanosecond time, offset, and write, so if TSCs are in | 
 | 		 * sync, we can match exact offset, and if not, we can match | 
 | 		 * exact software computation in compute_guest_tsc() | 
 | 		 * | 
 | 		 * These values are tracked in kvm->arch.cur_xxx variables. | 
 | 		 */ | 
 | 		kvm->arch.cur_tsc_generation++; | 
 | 		kvm->arch.cur_tsc_nsec = ns; | 
 | 		kvm->arch.cur_tsc_write = tsc; | 
 | 		kvm->arch.cur_tsc_offset = offset; | 
 | 		kvm->arch.nr_vcpus_matched_tsc = 0; | 
 | 	} else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) { | 
 | 		kvm->arch.nr_vcpus_matched_tsc++; | 
 | 	} | 
 |  | 
 | 	/* Keep track of which generation this VCPU has synchronized to */ | 
 | 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; | 
 | 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; | 
 | 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; | 
 |  | 
 | 	kvm_track_tsc_matching(vcpu, !matched); | 
 | } | 
 |  | 
 | static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 *user_value) | 
 | { | 
 | 	u64 data = user_value ? *user_value : 0; | 
 | 	struct kvm *kvm = vcpu->kvm; | 
 | 	u64 offset, ns, elapsed; | 
 | 	unsigned long flags; | 
 | 	bool matched = false; | 
 | 	bool synchronizing = false; | 
 |  | 
 | 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); | 
 | 	offset = kvm_compute_l1_tsc_offset(vcpu, data); | 
 | 	ns = get_kvmclock_base_ns(); | 
 | 	elapsed = ns - kvm->arch.last_tsc_nsec; | 
 |  | 
 | 	if (vcpu->arch.virtual_tsc_khz) { | 
 | 		if (data == 0) { | 
 | 			/* | 
 | 			 * Force synchronization when creating a vCPU, or when | 
 | 			 * userspace explicitly writes a zero value. | 
 | 			 */ | 
 | 			synchronizing = true; | 
 | 		} else if (kvm->arch.user_set_tsc) { | 
 | 			u64 tsc_exp = kvm->arch.last_tsc_write + | 
 | 						nsec_to_cycles(vcpu, elapsed); | 
 | 			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL; | 
 | 			/* | 
 | 			 * Here lies UAPI baggage: when a user-initiated TSC write has | 
 | 			 * a small delta (1 second) of virtual cycle time against the | 
 | 			 * previously set vCPU, we assume that they were intended to be | 
 | 			 * in sync and the delta was only due to the racy nature of the | 
 | 			 * legacy API. | 
 | 			 * | 
 | 			 * This trick falls down when restoring a guest which genuinely | 
 | 			 * has been running for less time than the 1 second of imprecision | 
 | 			 * which we allow for in the legacy API. In this case, the first | 
 | 			 * value written by userspace (on any vCPU) should not be subject | 
 | 			 * to this 'correction' to make it sync up with values that only | 
 | 			 * come from the kernel's default vCPU creation. Make the 1-second | 
 | 			 * slop hack only trigger if the user_set_tsc flag is already set. | 
 | 			 */ | 
 | 			synchronizing = data < tsc_exp + tsc_hz && | 
 | 					data + tsc_hz > tsc_exp; | 
 | 		} | 
 | 	} | 
 |  | 
 |  | 
 | 	/* | 
 | 	 * For a reliable TSC, we can match TSC offsets, and for an unstable | 
 | 	 * TSC, we add elapsed time in this computation.  We could let the | 
 | 	 * compensation code attempt to catch up if we fall behind, but | 
 | 	 * it's better to try to match offsets from the beginning. | 
 |          */ | 
 | 	if (synchronizing && | 
 | 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { | 
 | 		if (!kvm_check_tsc_unstable()) { | 
 | 			offset = kvm->arch.cur_tsc_offset; | 
 | 		} else { | 
 | 			u64 delta = nsec_to_cycles(vcpu, elapsed); | 
 | 			data += delta; | 
 | 			offset = kvm_compute_l1_tsc_offset(vcpu, data); | 
 | 		} | 
 | 		matched = true; | 
 | 	} | 
 |  | 
 | 	__kvm_synchronize_tsc(vcpu, offset, data, ns, matched, !!user_value); | 
 | 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); | 
 | } | 
 |  | 
 | static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, | 
 | 					   s64 adjustment) | 
 | { | 
 | 	u64 tsc_offset = vcpu->arch.l1_tsc_offset; | 
 | 	kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment); | 
 | } | 
 |  | 
 | static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment) | 
 | { | 
 | 	if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio) | 
 | 		WARN_ON(adjustment < 0); | 
 | 	adjustment = kvm_scale_tsc((u64) adjustment, | 
 | 				   vcpu->arch.l1_tsc_scaling_ratio); | 
 | 	adjust_tsc_offset_guest(vcpu, adjustment); | 
 | } | 
 |  | 
 | #ifdef CONFIG_X86_64 | 
 |  | 
 | static u64 read_tsc(void) | 
 | { | 
 | 	u64 ret = (u64)rdtsc_ordered(); | 
 | 	u64 last = pvclock_gtod_data.clock.cycle_last; | 
 |  | 
 | 	if (likely(ret >= last)) | 
 | 		return ret; | 
 |  | 
 | 	/* | 
 | 	 * GCC likes to generate cmov here, but this branch is extremely | 
 | 	 * predictable (it's just a function of time and the likely is | 
 | 	 * very likely) and there's a data dependence, so force GCC | 
 | 	 * to generate a branch instead.  I don't barrier() because | 
 | 	 * we don't actually need a barrier, and if this function | 
 | 	 * ever gets inlined it will generate worse code. | 
 | 	 */ | 
 | 	asm volatile (""); | 
 | 	return last; | 
 | } | 
 |  | 
 | static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp, | 
 | 			  int *mode) | 
 | { | 
 | 	u64 tsc_pg_val; | 
 | 	long v; | 
 |  | 
 | 	switch (clock->vclock_mode) { | 
 | 	case VDSO_CLOCKMODE_HVCLOCK: | 
 | 		if (hv_read_tsc_page_tsc(hv_get_tsc_page(), | 
 | 					 tsc_timestamp, &tsc_pg_val)) { | 
 | 			/* TSC page valid */ | 
 | 			*mode = VDSO_CLOCKMODE_HVCLOCK; | 
 | 			v = (tsc_pg_val - clock->cycle_last) & | 
 | 				clock->mask; | 
 | 		} else { | 
 | 			/* TSC page invalid */ | 
 | 			*mode = VDSO_CLOCKMODE_NONE; | 
 | 		} | 
 | 		break; | 
 | 	case VDSO_CLOCKMODE_TSC: | 
 | 		*mode = VDSO_CLOCKMODE_TSC; | 
 | 		*tsc_timestamp = read_tsc(); | 
 | 		v = (*tsc_timestamp - clock->cycle_last) & | 
 | 			clock->mask; | 
 | 		break; | 
 | 	default: | 
 | 		*mode = VDSO_CLOCKMODE_NONE; | 
 | 	} | 
 |  | 
 | 	if (*mode == VDSO_CLOCKMODE_NONE) | 
 | 		*tsc_timestamp = v = 0; | 
 |  | 
 | 	return v * clock->mult; | 
 | } | 
 |  | 
 | /* | 
 |  * As with get_kvmclock_base_ns(), this counts from boot time, at the | 
 |  * frequency of CLOCK_MONOTONIC_RAW (hence adding gtos->offs_boot). | 
 |  */ | 
 | static int do_kvmclock_base(s64 *t, u64 *tsc_timestamp) | 
 | { | 
 | 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data; | 
 | 	unsigned long seq; | 
 | 	int mode; | 
 | 	u64 ns; | 
 |  | 
 | 	do { | 
 | 		seq = read_seqcount_begin(>od->seq); | 
 | 		ns = gtod->raw_clock.base_cycles; | 
 | 		ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode); | 
 | 		ns >>= gtod->raw_clock.shift; | 
 | 		ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot)); | 
 | 	} while (unlikely(read_seqcount_retry(>od->seq, seq))); | 
 | 	*t = ns; | 
 |  | 
 | 	return mode; | 
 | } | 
 |  | 
 | /* | 
 |  * This calculates CLOCK_MONOTONIC at the time of the TSC snapshot, with | 
 |  * no boot time offset. | 
 |  */ | 
 | static int do_monotonic(s64 *t, u64 *tsc_timestamp) | 
 | { | 
 | 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data; | 
 | 	unsigned long seq; | 
 | 	int mode; | 
 | 	u64 ns; | 
 |  | 
 | 	do { | 
 | 		seq = read_seqcount_begin(>od->seq); | 
 | 		ns = gtod->clock.base_cycles; | 
 | 		ns += vgettsc(>od->clock, tsc_timestamp, &mode); | 
 | 		ns >>= gtod->clock.shift; | 
 | 		ns += ktime_to_ns(gtod->clock.offset); | 
 | 	} while (unlikely(read_seqcount_retry(>od->seq, seq))); | 
 | 	*t = ns; | 
 |  | 
 | 	return mode; | 
 | } | 
 |  | 
 | static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp) | 
 | { | 
 | 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data; | 
 | 	unsigned long seq; | 
 | 	int mode; | 
 | 	u64 ns; | 
 |  | 
 | 	do { | 
 | 		seq = read_seqcount_begin(>od->seq); | 
 | 		ts->tv_sec = gtod->wall_time_sec; | 
 | 		ns = gtod->clock.base_cycles; | 
 | 		ns += vgettsc(>od->clock, tsc_timestamp, &mode); | 
 | 		ns >>= gtod->clock.shift; | 
 | 	} while (unlikely(read_seqcount_retry(>od->seq, seq))); | 
 |  | 
 | 	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns); | 
 | 	ts->tv_nsec = ns; | 
 |  | 
 | 	return mode; | 
 | } | 
 |  | 
 | /* | 
 |  * Calculates the kvmclock_base_ns (CLOCK_MONOTONIC_RAW + boot time) and | 
 |  * reports the TSC value from which it do so. Returns true if host is | 
 |  * using TSC based clocksource. | 
 |  */ | 
 | static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp) | 
 | { | 
 | 	/* checked again under seqlock below */ | 
 | 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) | 
 | 		return false; | 
 |  | 
 | 	return gtod_is_based_on_tsc(do_kvmclock_base(kernel_ns, | 
 | 						     tsc_timestamp)); | 
 | } | 
 |  | 
 | /* | 
 |  * Calculates CLOCK_MONOTONIC and reports the TSC value from which it did | 
 |  * so. Returns true if host is using TSC based clocksource. | 
 |  */ | 
 | bool kvm_get_monotonic_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp) | 
 | { | 
 | 	/* checked again under seqlock below */ | 
 | 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) | 
 | 		return false; | 
 |  | 
 | 	return gtod_is_based_on_tsc(do_monotonic(kernel_ns, | 
 | 						 tsc_timestamp)); | 
 | } | 
 |  | 
 | /* | 
 |  * Calculates CLOCK_REALTIME and reports the TSC value from which it did | 
 |  * so. Returns true if host is using TSC based clocksource. | 
 |  * | 
 |  * DO NOT USE this for anything related to migration. You want CLOCK_TAI | 
 |  * for that. | 
 |  */ | 
 | static bool kvm_get_walltime_and_clockread(struct timespec64 *ts, | 
 | 					   u64 *tsc_timestamp) | 
 | { | 
 | 	/* checked again under seqlock below */ | 
 | 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) | 
 | 		return false; | 
 |  | 
 | 	return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp)); | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * | 
 |  * Assuming a stable TSC across physical CPUS, and a stable TSC | 
 |  * across virtual CPUs, the following condition is possible. | 
 |  * Each numbered line represents an event visible to both | 
 |  * CPUs at the next numbered event. | 
 |  * | 
 |  * "timespecX" represents host monotonic time. "tscX" represents | 
 |  * RDTSC value. | 
 |  * | 
 |  * 		VCPU0 on CPU0		|	VCPU1 on CPU1 | 
 |  * | 
 |  * 1.  read timespec0,tsc0 | 
 |  * 2.					| timespec1 = timespec0 + N | 
 |  * 					| tsc1 = tsc0 + M | 
 |  * 3. transition to guest		| transition to guest | 
 |  * 4. ret0 = timespec0 + (rdtsc - tsc0) | | 
 |  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1) | 
 |  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) | 
 |  * | 
 |  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: | 
 |  * | 
 |  * 	- ret0 < ret1 | 
 |  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) | 
 |  *		... | 
 |  *	- 0 < N - M => M < N | 
 |  * | 
 |  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not | 
 |  * always the case (the difference between two distinct xtime instances | 
 |  * might be smaller then the difference between corresponding TSC reads, | 
 |  * when updating guest vcpus pvclock areas). | 
 |  * | 
 |  * To avoid that problem, do not allow visibility of distinct | 
 |  * system_timestamp/tsc_timestamp values simultaneously: use a master | 
 |  * copy of host monotonic time values. Update that master copy | 
 |  * in lockstep. | 
 |  * | 
 |  * Rely on synchronization of host TSCs and guest TSCs for monotonicity. | 
 |  * | 
 |  */ | 
 |  | 
 | static void pvclock_update_vm_gtod_copy(struct kvm *kvm) | 
 | { | 
 | #ifdef CONFIG_X86_64 | 
 | 	struct kvm_arch *ka = &kvm->arch; | 
 | 	int vclock_mode; | 
 | 	bool host_tsc_clocksource, vcpus_matched; | 
 |  | 
 | 	lockdep_assert_held(&kvm->arch.tsc_write_lock); | 
 | 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == | 
 | 			atomic_read(&kvm->online_vcpus)); | 
 |  | 
 | 	/* | 
 | 	 * If the host uses TSC clock, then passthrough TSC as stable | 
 | 	 * to the guest. | 
 | 	 */ | 
 | 	host_tsc_clocksource = kvm_get_time_and_clockread( | 
 | 					&ka->master_kernel_ns, | 
 | 					&ka->master_cycle_now); | 
 |  | 
 | 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched | 
 | 				&& !ka->backwards_tsc_observed | 
 | 				&& !ka->boot_vcpu_runs_old_kvmclock; | 
 |  | 
 | 	if (ka->use_master_clock) | 
 | 		atomic_set(&kvm_guest_has_master_clock, 1); | 
 |  | 
 | 	vclock_mode = pvclock_gtod_data.clock.vclock_mode; | 
 | 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, | 
 | 					vcpus_matched); | 
 | #endif | 
 | } | 
 |  | 
 | static void kvm_make_mclock_inprogress_request(struct kvm *kvm) | 
 | { | 
 | 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); | 
 | } | 
 |  | 
 | static void __kvm_start_pvclock_update(struct kvm *kvm) | 
 | { | 
 | 	raw_spin_lock_irq(&kvm->arch.tsc_write_lock); | 
 | 	write_seqcount_begin(&kvm->arch.pvclock_sc); | 
 | } | 
 |  | 
 | static void kvm_start_pvclock_update(struct kvm *kvm) | 
 | { | 
 | 	kvm_make_mclock_inprogress_request(kvm); | 
 |  | 
 | 	/* no guest entries from this point */ | 
 | 	__kvm_start_pvclock_update(kvm); | 
 | } | 
 |  | 
 | static void kvm_end_pvclock_update(struct kvm *kvm) | 
 | { | 
 | 	struct kvm_arch *ka = &kvm->arch; | 
 | 	struct kvm_vcpu *vcpu; | 
 | 	unsigned long i; | 
 |  | 
 | 	write_seqcount_end(&ka->pvclock_sc); | 
 | 	raw_spin_unlock_irq(&ka->tsc_write_lock); | 
 | 	kvm_for_each_vcpu(i, vcpu, kvm) | 
 | 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); | 
 |  | 
 | 	/* guest entries allowed */ | 
 | 	kvm_for_each_vcpu(i, vcpu, kvm) | 
 | 		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); | 
 | } | 
 |  | 
 | static void kvm_update_masterclock(struct kvm *kvm) | 
 | { | 
 | 	kvm_hv_request_tsc_page_update(kvm); | 
 | 	kvm_start_pvclock_update(kvm); | 
 | 	pvclock_update_vm_gtod_copy(kvm); | 
 | 	kvm_end_pvclock_update(kvm); | 
 | } | 
 |  | 
 | /* | 
 |  * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's | 
 |  * per-CPU value (which may be zero if a CPU is going offline).  Note, tsc_khz | 
 |  * can change during boot even if the TSC is constant, as it's possible for KVM | 
 |  * to be loaded before TSC calibration completes.  Ideally, KVM would get a | 
 |  * notification when calibration completes, but practically speaking calibration | 
 |  * will complete before userspace is alive enough to create VMs. | 
 |  */ | 
 | static unsigned long get_cpu_tsc_khz(void) | 
 | { | 
 | 	if (static_cpu_has(X86_FEATURE_CONSTANT_TSC)) | 
 | 		return tsc_khz; | 
 | 	else | 
 | 		return __this_cpu_read(cpu_tsc_khz); | 
 | } | 
 |  | 
 | /* Called within read_seqcount_begin/retry for kvm->pvclock_sc.  */ | 
 | static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) | 
 | { | 
 | 	struct kvm_arch *ka = &kvm->arch; | 
 | 	struct pvclock_vcpu_time_info hv_clock; | 
 |  | 
 | 	/* both __this_cpu_read() and rdtsc() should be on the same cpu */ | 
 | 	get_cpu(); | 
 |  | 
 | 	data->flags = 0; | 
 | 	if (ka->use_master_clock && | 
 | 	    (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) { | 
 | #ifdef CONFIG_X86_64 | 
 | 		struct timespec64 ts; | 
 |  | 
 | 		if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) { | 
 | 			data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec; | 
 | 			data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC; | 
 | 		} else | 
 | #endif | 
 | 		data->host_tsc = rdtsc(); | 
 |  | 
 | 		data->flags |= KVM_CLOCK_TSC_STABLE; | 
 | 		hv_clock.tsc_timestamp = ka->master_cycle_now; | 
 | 		hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; | 
 | 		kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL, | 
 | 				   &hv_clock.tsc_shift, | 
 | 				   &hv_clock.tsc_to_system_mul); | 
 | 		data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc); | 
 | 	} else { | 
 | 		data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset; | 
 | 	} | 
 |  | 
 | 	put_cpu(); | 
 | } | 
 |  | 
 | static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) | 
 | { | 
 | 	struct kvm_arch *ka = &kvm->arch; | 
 | 	unsigned seq; | 
 |  | 
 | 	do { | 
 | 		seq = read_seqcount_begin(&ka->pvclock_sc); | 
 | 		__get_kvmclock(kvm, data); | 
 | 	} while (read_seqcount_retry(&ka->pvclock_sc, seq)); | 
 | } | 
 |  | 
 | u64 get_kvmclock_ns(struct kvm *kvm) | 
 | { | 
 | 	struct kvm_clock_data data; | 
 |  | 
 | 	get_kvmclock(kvm, &data); | 
 | 	return data.clock; | 
 | } | 
 |  | 
 | static void kvm_setup_guest_pvclock(struct pvclock_vcpu_time_info *ref_hv_clock, | 
 | 				    struct kvm_vcpu *vcpu, | 
 | 				    struct gfn_to_pfn_cache *gpc, | 
 | 				    unsigned int offset) | 
 | { | 
 | 	struct pvclock_vcpu_time_info *guest_hv_clock; | 
 | 	struct pvclock_vcpu_time_info hv_clock; | 
 | 	unsigned long flags; | 
 |  | 
 | 	memcpy(&hv_clock, ref_hv_clock, sizeof(hv_clock)); | 
 |  | 
 | 	read_lock_irqsave(&gpc->lock, flags); | 
 | 	while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) { | 
 | 		read_unlock_irqrestore(&gpc->lock, flags); | 
 |  | 
 | 		if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock))) | 
 | 			return; | 
 |  | 
 | 		read_lock_irqsave(&gpc->lock, flags); | 
 | 	} | 
 |  | 
 | 	guest_hv_clock = (void *)(gpc->khva + offset); | 
 |  | 
 | 	/* | 
 | 	 * This VCPU is paused, but it's legal for a guest to read another | 
 | 	 * VCPU's kvmclock, so we really have to follow the specification where | 
 | 	 * it says that version is odd if data is being modified, and even after | 
 | 	 * it is consistent. | 
 | 	 */ | 
 |  | 
 | 	guest_hv_clock->version = hv_clock.version = (guest_hv_clock->version + 1) | 1; | 
 | 	smp_wmb(); | 
 |  | 
 | 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ | 
 | 	hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED); | 
 |  | 
 | 	memcpy(guest_hv_clock, &hv_clock, sizeof(*guest_hv_clock)); | 
 |  | 
 | 	smp_wmb(); | 
 |  | 
 | 	guest_hv_clock->version = ++hv_clock.version; | 
 |  | 
 | 	kvm_gpc_mark_dirty_in_slot(gpc); | 
 | 	read_unlock_irqrestore(&gpc->lock, flags); | 
 |  | 
 | 	trace_kvm_pvclock_update(vcpu->vcpu_id, &hv_clock); | 
 | } | 
 |  | 
 | int kvm_guest_time_update(struct kvm_vcpu *v) | 
 | { | 
 | 	struct pvclock_vcpu_time_info hv_clock = {}; | 
 | 	unsigned long flags, tgt_tsc_khz; | 
 | 	unsigned seq; | 
 | 	struct kvm_vcpu_arch *vcpu = &v->arch; | 
 | 	struct kvm_arch *ka = &v->kvm->arch; | 
 | 	s64 kernel_ns; | 
 | 	u64 tsc_timestamp, host_tsc; | 
 | 	bool use_master_clock; | 
 |  | 
 | 	kernel_ns = 0; | 
 | 	host_tsc = 0; | 
 |  | 
 | 	/* | 
 | 	 * If the host uses TSC clock, then passthrough TSC as stable | 
 | 	 * to the guest. | 
 | 	 */ | 
 | 	do { | 
 | 		seq = read_seqcount_begin(&ka->pvclock_sc); | 
 | 		use_master_clock = ka->use_master_clock; | 
 | 		if (use_master_clock) { | 
 | 			host_tsc = ka->master_cycle_now; | 
 | 			kernel_ns = ka->master_kernel_ns; | 
 | 		} | 
 | 	} while (read_seqcount_retry(&ka->pvclock_sc, seq)); | 
 |  | 
 | 	/* Keep irq disabled to prevent changes to the clock */ | 
 | 	local_irq_save(flags); | 
 | 	tgt_tsc_khz = get_cpu_tsc_khz(); | 
 | 	if (unlikely(tgt_tsc_khz == 0)) { | 
 | 		local_irq_restore(flags); | 
 | 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); | 
 | 		return 1; | 
 | 	} | 
 | 	if (!use_master_clock) { | 
 | 		host_tsc = rdtsc(); | 
 | 		kernel_ns = get_kvmclock_base_ns(); | 
 | 	} | 
 |  | 
 | 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc); | 
 |  | 
 | 	/* | 
 | 	 * We may have to catch up the TSC to match elapsed wall clock | 
 | 	 * time for two reasons, even if kvmclock is used. | 
 | 	 *   1) CPU could have been running below the maximum TSC rate | 
 | 	 *   2) Broken TSC compensation resets the base at each VCPU | 
 | 	 *      entry to avoid unknown leaps of TSC even when running | 
 | 	 *      again on the same CPU.  This may cause apparent elapsed | 
 | 	 *      time to disappear, and the guest to stand still or run | 
 | 	 *	very slowly. | 
 | 	 */ | 
 | 	if (vcpu->tsc_catchup) { | 
 | 		u64 tsc = compute_guest_tsc(v, kernel_ns); | 
 | 		if (tsc > tsc_timestamp) { | 
 | 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp); | 
 | 			tsc_timestamp = tsc; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	local_irq_restore(flags); | 
 |  | 
 | 	/* With all the info we got, fill in the values */ | 
 |  | 
 | 	if (kvm_caps.has_tsc_control) { | 
 | 		tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz, | 
 | 					    v->arch.l1_tsc_scaling_ratio); | 
 | 		tgt_tsc_khz = tgt_tsc_khz ? : 1; | 
 | 	} | 
 |  | 
 | 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) { | 
 | 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL, | 
 | 				   &vcpu->pvclock_tsc_shift, | 
 | 				   &vcpu->pvclock_tsc_mul); | 
 | 		vcpu->hw_tsc_khz = tgt_tsc_khz; | 
 | 	} | 
 |  | 
 | 	hv_clock.tsc_shift = vcpu->pvclock_tsc_shift; | 
 | 	hv_clock.tsc_to_system_mul = vcpu->pvclock_tsc_mul; | 
 | 	hv_clock.tsc_timestamp = tsc_timestamp; | 
 | 	hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; | 
 | 	vcpu->last_guest_tsc = tsc_timestamp; | 
 |  | 
 | 	/* If the host uses TSC clocksource, then it is stable */ | 
 | 	hv_clock.flags = 0; | 
 | 	if (use_master_clock) | 
 | 		hv_clock.flags |= PVCLOCK_TSC_STABLE_BIT; | 
 |  | 
 | 	if (vcpu->pv_time.active) { | 
 | 		/* | 
 | 		 * GUEST_STOPPED is only supported by kvmclock, and KVM's | 
 | 		 * historic behavior is to only process the request if kvmclock | 
 | 		 * is active/enabled. | 
 | 		 */ | 
 | 		if (vcpu->pvclock_set_guest_stopped_request) { | 
 | 			hv_clock.flags |= PVCLOCK_GUEST_STOPPED; | 
 | 			vcpu->pvclock_set_guest_stopped_request = false; | 
 | 		} | 
 | 		kvm_setup_guest_pvclock(&hv_clock, v, &vcpu->pv_time, 0); | 
 |  | 
 | 		hv_clock.flags &= ~PVCLOCK_GUEST_STOPPED; | 
 | 	} | 
 |  | 
 | 	kvm_hv_setup_tsc_page(v->kvm, &hv_clock); | 
 |  | 
 | #ifdef CONFIG_KVM_XEN | 
 | 	/* | 
 | 	 * For Xen guests we may need to override PVCLOCK_TSC_STABLE_BIT as unless | 
 | 	 * explicitly told to use TSC as its clocksource Xen will not set this bit. | 
 | 	 * This default behaviour led to bugs in some guest kernels which cause | 
 | 	 * problems if they observe PVCLOCK_TSC_STABLE_BIT in the pvclock flags. | 
 | 	 * | 
 | 	 * Note!  Clear TSC_STABLE only for Xen clocks, i.e. the order matters! | 
 | 	 */ | 
 | 	if (ka->xen.hvm_config.flags & KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE) | 
 | 		hv_clock.flags &= ~PVCLOCK_TSC_STABLE_BIT; | 
 |  | 
 | 	if (vcpu->xen.vcpu_info_cache.active) | 
 | 		kvm_setup_guest_pvclock(&hv_clock, v, &vcpu->xen.vcpu_info_cache, | 
 | 					offsetof(struct compat_vcpu_info, time)); | 
 | 	if (vcpu->xen.vcpu_time_info_cache.active) | 
 | 		kvm_setup_guest_pvclock(&hv_clock, v, &vcpu->xen.vcpu_time_info_cache, 0); | 
 | #endif | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * The pvclock_wall_clock ABI tells the guest the wall clock time at | 
 |  * which it started (i.e. its epoch, when its kvmclock was zero). | 
 |  * | 
 |  * In fact those clocks are subtly different; wall clock frequency is | 
 |  * adjusted by NTP and has leap seconds, while the kvmclock is a | 
 |  * simple function of the TSC without any such adjustment. | 
 |  * | 
 |  * Perhaps the ABI should have exposed CLOCK_TAI and a ratio between | 
 |  * that and kvmclock, but even that would be subject to change over | 
 |  * time. | 
 |  * | 
 |  * Attempt to calculate the epoch at a given moment using the *same* | 
 |  * TSC reading via kvm_get_walltime_and_clockread() to obtain both | 
 |  * wallclock and kvmclock times, and subtracting one from the other. | 
 |  * | 
 |  * Fall back to using their values at slightly different moments by | 
 |  * calling ktime_get_real_ns() and get_kvmclock_ns() separately. | 
 |  */ | 
 | uint64_t kvm_get_wall_clock_epoch(struct kvm *kvm) | 
 | { | 
 | #ifdef CONFIG_X86_64 | 
 | 	struct pvclock_vcpu_time_info hv_clock; | 
 | 	struct kvm_arch *ka = &kvm->arch; | 
 | 	unsigned long seq, local_tsc_khz; | 
 | 	struct timespec64 ts; | 
 | 	uint64_t host_tsc; | 
 |  | 
 | 	do { | 
 | 		seq = read_seqcount_begin(&ka->pvclock_sc); | 
 |  | 
 | 		local_tsc_khz = 0; | 
 | 		if (!ka->use_master_clock) | 
 | 			break; | 
 |  | 
 | 		/* | 
 | 		 * The TSC read and the call to get_cpu_tsc_khz() must happen | 
 | 		 * on the same CPU. | 
 | 		 */ | 
 | 		get_cpu(); | 
 |  | 
 | 		local_tsc_khz = get_cpu_tsc_khz(); | 
 |  | 
 | 		if (local_tsc_khz && | 
 | 		    !kvm_get_walltime_and_clockread(&ts, &host_tsc)) | 
 | 			local_tsc_khz = 0; /* Fall back to old method */ | 
 |  | 
 | 		put_cpu(); | 
 |  | 
 | 		/* | 
 | 		 * These values must be snapshotted within the seqcount loop. | 
 | 		 * After that, it's just mathematics which can happen on any | 
 | 		 * CPU at any time. | 
 | 		 */ | 
 | 		hv_clock.tsc_timestamp = ka->master_cycle_now; | 
 | 		hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; | 
 |  | 
 | 	} while (read_seqcount_retry(&ka->pvclock_sc, seq)); | 
 |  | 
 | 	/* | 
 | 	 * If the conditions were right, and obtaining the wallclock+TSC was | 
 | 	 * successful, calculate the KVM clock at the corresponding time and | 
 | 	 * subtract one from the other to get the guest's epoch in nanoseconds | 
 | 	 * since 1970-01-01. | 
 | 	 */ | 
 | 	if (local_tsc_khz) { | 
 | 		kvm_get_time_scale(NSEC_PER_SEC, local_tsc_khz * NSEC_PER_USEC, | 
 | 				   &hv_clock.tsc_shift, | 
 | 				   &hv_clock.tsc_to_system_mul); | 
 | 		return ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec - | 
 | 			__pvclock_read_cycles(&hv_clock, host_tsc); | 
 | 	} | 
 | #endif | 
 | 	return ktime_get_real_ns() - get_kvmclock_ns(kvm); | 
 | } | 
 |  | 
 | /* | 
 |  * kvmclock updates which are isolated to a given vcpu, such as | 
 |  * vcpu->cpu migration, should not allow system_timestamp from | 
 |  * the rest of the vcpus to remain static. Otherwise ntp frequency | 
 |  * correction applies to one vcpu's system_timestamp but not | 
 |  * the others. | 
 |  * | 
 |  * So in those cases, request a kvmclock update for all vcpus. | 
 |  * We need to rate-limit these requests though, as they can | 
 |  * considerably slow guests that have a large number of vcpus. | 
 |  * The time for a remote vcpu to update its kvmclock is bound | 
 |  * by the delay we use to rate-limit the updates. | 
 |  */ | 
 |  | 
 | #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100) | 
 |  | 
 | static void kvmclock_update_fn(struct work_struct *work) | 
 | { | 
 | 	unsigned long i; | 
 | 	struct delayed_work *dwork = to_delayed_work(work); | 
 | 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch, | 
 | 					   kvmclock_update_work); | 
 | 	struct kvm *kvm = container_of(ka, struct kvm, arch); | 
 | 	struct kvm_vcpu *vcpu; | 
 |  | 
 | 	kvm_for_each_vcpu(i, vcpu, kvm) { | 
 | 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); | 
 | 		kvm_vcpu_kick(vcpu); | 
 | 	} | 
 | } | 
 |  | 
 | static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) | 
 | { | 
 | 	struct kvm *kvm = v->kvm; | 
 |  | 
 | 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); | 
 | 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, | 
 | 					KVMCLOCK_UPDATE_DELAY); | 
 | } | 
 |  | 
 | #define KVMCLOCK_SYNC_PERIOD (300 * HZ) | 
 |  | 
 | static void kvmclock_sync_fn(struct work_struct *work) | 
 | { | 
 | 	struct delayed_work *dwork = to_delayed_work(work); | 
 | 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch, | 
 | 					   kvmclock_sync_work); | 
 | 	struct kvm *kvm = container_of(ka, struct kvm, arch); | 
 |  | 
 | 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); | 
 | 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work, | 
 | 					KVMCLOCK_SYNC_PERIOD); | 
 | } | 
 |  | 
 | /* These helpers are safe iff @msr is known to be an MCx bank MSR. */ | 
 | static bool is_mci_control_msr(u32 msr) | 
 | { | 
 | 	return (msr & 3) == 0; | 
 | } | 
 | static bool is_mci_status_msr(u32 msr) | 
 | { | 
 | 	return (msr & 3) == 1; | 
 | } | 
 |  | 
 | /* | 
 |  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP. | 
 |  */ | 
 | static bool can_set_mci_status(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	/* McStatusWrEn enabled? */ | 
 | 	if (guest_cpuid_is_amd_compatible(vcpu)) | 
 | 		return !!(vcpu->arch.msr_hwcr & BIT_ULL(18)); | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info) | 
 | { | 
 | 	u64 mcg_cap = vcpu->arch.mcg_cap; | 
 | 	unsigned bank_num = mcg_cap & 0xff; | 
 | 	u32 msr = msr_info->index; | 
 | 	u64 data = msr_info->data; | 
 | 	u32 offset, last_msr; | 
 |  | 
 | 	switch (msr) { | 
 | 	case MSR_IA32_MCG_STATUS: | 
 | 		vcpu->arch.mcg_status = data; | 
 | 		break; | 
 | 	case MSR_IA32_MCG_CTL: | 
 | 		if (!(mcg_cap & MCG_CTL_P) && | 
 | 		    (data || !msr_info->host_initiated)) | 
 | 			return 1; | 
 | 		if (data != 0 && data != ~(u64)0) | 
 | 			return 1; | 
 | 		vcpu->arch.mcg_ctl = data; | 
 | 		break; | 
 | 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: | 
 | 		last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; | 
 | 		if (msr > last_msr) | 
 | 			return 1; | 
 |  | 
 | 		if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated)) | 
 | 			return 1; | 
 | 		/* An attempt to write a 1 to a reserved bit raises #GP */ | 
 | 		if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK)) | 
 | 			return 1; | 
 | 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, | 
 | 					    last_msr + 1 - MSR_IA32_MC0_CTL2); | 
 | 		vcpu->arch.mci_ctl2_banks[offset] = data; | 
 | 		break; | 
 | 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: | 
 | 		last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; | 
 | 		if (msr > last_msr) | 
 | 			return 1; | 
 |  | 
 | 		/* | 
 | 		 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other | 
 | 		 * values are architecturally undefined.  But, some Linux | 
 | 		 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB | 
 | 		 * issue on AMD K8s, allow bit 10 to be clear when setting all | 
 | 		 * other bits in order to avoid an uncaught #GP in the guest. | 
 | 		 * | 
 | 		 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable, | 
 | 		 * single-bit ECC data errors. | 
 | 		 */ | 
 | 		if (is_mci_control_msr(msr) && | 
 | 		    data != 0 && (data | (1 << 10) | 1) != ~(u64)0) | 
 | 			return 1; | 
 |  | 
 | 		/* | 
 | 		 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR. | 
 | 		 * AMD-based CPUs allow non-zero values, but if and only if | 
 | 		 * HWCR[McStatusWrEn] is set. | 
 | 		 */ | 
 | 		if (!msr_info->host_initiated && is_mci_status_msr(msr) && | 
 | 		    data != 0 && !can_set_mci_status(vcpu)) | 
 | 			return 1; | 
 |  | 
 | 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, | 
 | 					    last_msr + 1 - MSR_IA32_MC0_CTL); | 
 | 		vcpu->arch.mce_banks[offset] = data; | 
 | 		break; | 
 | 	default: | 
 | 		return 1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT; | 
 |  | 
 | 	return (vcpu->arch.apf.msr_en_val & mask) == mask; | 
 | } | 
 |  | 
 | static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) | 
 | { | 
 | 	gpa_t gpa = data & ~0x3f; | 
 |  | 
 | 	/* Bits 4:5 are reserved, Should be zero */ | 
 | 	if (data & 0x30) | 
 | 		return 1; | 
 |  | 
 | 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) && | 
 | 	    (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT)) | 
 | 		return 1; | 
 |  | 
 | 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) && | 
 | 	    (data & KVM_ASYNC_PF_DELIVERY_AS_INT)) | 
 | 		return 1; | 
 |  | 
 | 	if (!lapic_in_kernel(vcpu)) | 
 | 		return data ? 1 : 0; | 
 |  | 
 | 	vcpu->arch.apf.msr_en_val = data; | 
 |  | 
 | 	if (!kvm_pv_async_pf_enabled(vcpu)) { | 
 | 		kvm_clear_async_pf_completion_queue(vcpu); | 
 | 		kvm_async_pf_hash_reset(vcpu); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, | 
 | 					sizeof(u64))) | 
 | 		return 1; | 
 |  | 
 | 	vcpu->arch.apf.send_always = (data & KVM_ASYNC_PF_SEND_ALWAYS); | 
 | 	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT; | 
 |  | 
 | 	kvm_async_pf_wakeup_all(vcpu); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data) | 
 | { | 
 | 	/* Bits 8-63 are reserved */ | 
 | 	if (data >> 8) | 
 | 		return 1; | 
 |  | 
 | 	if (!lapic_in_kernel(vcpu)) | 
 | 		return 1; | 
 |  | 
 | 	vcpu->arch.apf.msr_int_val = data; | 
 |  | 
 | 	vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void kvmclock_reset(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	kvm_gpc_deactivate(&vcpu->arch.pv_time); | 
 | 	vcpu->arch.time = 0; | 
 | } | 
 |  | 
 | static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	++vcpu->stat.tlb_flush; | 
 | 	kvm_x86_call(flush_tlb_all)(vcpu); | 
 |  | 
 | 	/* Flushing all ASIDs flushes the current ASID... */ | 
 | 	kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); | 
 | } | 
 |  | 
 | static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	++vcpu->stat.tlb_flush; | 
 |  | 
 | 	if (!tdp_enabled) { | 
 | 		/* | 
 | 		 * A TLB flush on behalf of the guest is equivalent to | 
 | 		 * INVPCID(all), toggling CR4.PGE, etc., which requires | 
 | 		 * a forced sync of the shadow page tables.  Ensure all the | 
 | 		 * roots are synced and the guest TLB in hardware is clean. | 
 | 		 */ | 
 | 		kvm_mmu_sync_roots(vcpu); | 
 | 		kvm_mmu_sync_prev_roots(vcpu); | 
 | 	} | 
 |  | 
 | 	kvm_x86_call(flush_tlb_guest)(vcpu); | 
 |  | 
 | 	/* | 
 | 	 * Flushing all "guest" TLB is always a superset of Hyper-V's fine | 
 | 	 * grained flushing. | 
 | 	 */ | 
 | 	kvm_hv_vcpu_purge_flush_tlb(vcpu); | 
 | } | 
 |  | 
 |  | 
 | static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	++vcpu->stat.tlb_flush; | 
 | 	kvm_x86_call(flush_tlb_current)(vcpu); | 
 | } | 
 |  | 
 | /* | 
 |  * Service "local" TLB flush requests, which are specific to the current MMU | 
 |  * context.  In addition to the generic event handling in vcpu_enter_guest(), | 
 |  * TLB flushes that are targeted at an MMU context also need to be serviced | 
 |  * prior before nested VM-Enter/VM-Exit. | 
 |  */ | 
 | void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu)) | 
 | 		kvm_vcpu_flush_tlb_current(vcpu); | 
 |  | 
 | 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu)) | 
 | 		kvm_vcpu_flush_tlb_guest(vcpu); | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests); | 
 |  | 
 | static void record_steal_time(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; | 
 | 	struct kvm_steal_time __user *st; | 
 | 	struct kvm_memslots *slots; | 
 | 	gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; | 
 | 	u64 steal; | 
 | 	u32 version; | 
 |  | 
 | 	if (kvm_xen_msr_enabled(vcpu->kvm)) { | 
 | 		kvm_xen_runstate_set_running(vcpu); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) | 
 | 		return; | 
 |  | 
 | 	if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm)) | 
 | 		return; | 
 |  | 
 | 	slots = kvm_memslots(vcpu->kvm); | 
 |  | 
 | 	if (unlikely(slots->generation != ghc->generation || | 
 | 		     gpa != ghc->gpa || | 
 | 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot)) { | 
 | 		/* We rely on the fact that it fits in a single page. */ | 
 | 		BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS); | 
 |  | 
 | 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) || | 
 | 		    kvm_is_error_hva(ghc->hva) || !ghc->memslot) | 
 | 			return; | 
 | 	} | 
 |  | 
 | 	st = (struct kvm_steal_time __user *)ghc->hva; | 
 | 	/* | 
 | 	 * Doing a TLB flush here, on the guest's behalf, can avoid | 
 | 	 * expensive IPIs. | 
 | 	 */ | 
 | 	if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) { | 
 | 		u8 st_preempted = 0; | 
 | 		int err = -EFAULT; | 
 |  | 
 | 		if (!user_access_begin(st, sizeof(*st))) | 
 | 			return; | 
 |  | 
 | 		asm volatile("1: xchgb %0, %2\n" | 
 | 			     "xor %1, %1\n" | 
 | 			     "2:\n" | 
 | 			     _ASM_EXTABLE_UA(1b, 2b) | 
 | 			     : "+q" (st_preempted), | 
 | 			       "+&r" (err), | 
 | 			       "+m" (st->preempted)); | 
 | 		if (err) | 
 | 			goto out; | 
 |  | 
 | 		user_access_end(); | 
 |  | 
 | 		vcpu->arch.st.preempted = 0; | 
 |  | 
 | 		trace_kvm_pv_tlb_flush(vcpu->vcpu_id, | 
 | 				       st_preempted & KVM_VCPU_FLUSH_TLB); | 
 | 		if (st_preempted & KVM_VCPU_FLUSH_TLB) | 
 | 			kvm_vcpu_flush_tlb_guest(vcpu); | 
 |  | 
 | 		if (!user_access_begin(st, sizeof(*st))) | 
 | 			goto dirty; | 
 | 	} else { | 
 | 		if (!user_access_begin(st, sizeof(*st))) | 
 | 			return; | 
 |  | 
 | 		unsafe_put_user(0, &st->preempted, out); | 
 | 		vcpu->arch.st.preempted = 0; | 
 | 	} | 
 |  | 
 | 	unsafe_get_user(version, &st->version, out); | 
 | 	if (version & 1) | 
 | 		version += 1;  /* first time write, random junk */ | 
 |  | 
 | 	version += 1; | 
 | 	unsafe_put_user(version, &st->version, out); | 
 |  | 
 | 	smp_wmb(); | 
 |  | 
 | 	unsafe_get_user(steal, &st->steal, out); | 
 | 	steal += current->sched_info.run_delay - | 
 | 		vcpu->arch.st.last_steal; | 
 | 	vcpu->arch.st.last_steal = current->sched_info.run_delay; | 
 | 	unsafe_put_user(steal, &st->steal, out); | 
 |  | 
 | 	version += 1; | 
 | 	unsafe_put_user(version, &st->version, out); | 
 |  | 
 |  out: | 
 | 	user_access_end(); | 
 |  dirty: | 
 | 	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); | 
 | } | 
 |  | 
 | int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) | 
 | { | 
 | 	u32 msr = msr_info->index; | 
 | 	u64 data = msr_info->data; | 
 |  | 
 | 	/* | 
 | 	 * Do not allow host-initiated writes to trigger the Xen hypercall | 
 | 	 * page setup; it could incur locking paths which are not expected | 
 | 	 * if userspace sets the MSR in an unusual location. | 
 | 	 */ | 
 | 	if (kvm_xen_is_hypercall_page_msr(vcpu->kvm, msr) && | 
 | 	    !msr_info->host_initiated) | 
 | 		return kvm_xen_write_hypercall_page(vcpu, data); | 
 |  | 
 | 	switch (msr) { | 
 | 	case MSR_AMD64_NB_CFG: | 
 | 	case MSR_IA32_UCODE_WRITE: | 
 | 	case MSR_VM_HSAVE_PA: | 
 | 	case MSR_AMD64_PATCH_LOADER: | 
 | 	case MSR_AMD64_BU_CFG2: | 
 | 	case MSR_AMD64_DC_CFG: | 
 | 	case MSR_AMD64_TW_CFG: | 
 | 	case MSR_F15H_EX_CFG: | 
 | 		break; | 
 |  | 
 | 	case MSR_IA32_UCODE_REV: | 
 | 		if (msr_info->host_initiated) | 
 | 			vcpu->arch.microcode_version = data; | 
 | 		break; | 
 | 	case MSR_IA32_ARCH_CAPABILITIES: | 
 | 		if (!msr_info->host_initiated || | 
 | 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES)) | 
 | 			return KVM_MSR_RET_UNSUPPORTED; | 
 | 		vcpu->arch.arch_capabilities = data; | 
 | 		break; | 
 | 	case MSR_IA32_PERF_CAPABILITIES: | 
 | 		if (!msr_info->host_initiated || | 
 | 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_PDCM)) | 
 | 			return KVM_MSR_RET_UNSUPPORTED; | 
 |  | 
 | 		if (data & ~kvm_caps.supported_perf_cap) | 
 | 			return 1; | 
 |  | 
 | 		/* | 
 | 		 * Note, this is not just a performance optimization!  KVM | 
 | 		 * disallows changing feature MSRs after the vCPU has run; PMU | 
 | 		 * refresh will bug the VM if called after the vCPU has run. | 
 | 		 */ | 
 | 		if (vcpu->arch.perf_capabilities == data) | 
 | 			break; | 
 |  | 
 | 		vcpu->arch.perf_capabilities = data; | 
 | 		kvm_pmu_refresh(vcpu); | 
 | 		break; | 
 | 	case MSR_IA32_PRED_CMD: { | 
 | 		u64 reserved_bits = ~(PRED_CMD_IBPB | PRED_CMD_SBPB); | 
 |  | 
 | 		if (!msr_info->host_initiated) { | 
 | 			if ((!guest_has_pred_cmd_msr(vcpu))) | 
 | 				return 1; | 
 |  | 
 | 			if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SPEC_CTRL) && | 
 | 			    !guest_cpu_cap_has(vcpu, X86_FEATURE_AMD_IBPB)) | 
 | 				reserved_bits |= PRED_CMD_IBPB; | 
 |  | 
 | 			if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SBPB)) | 
 | 				reserved_bits |= PRED_CMD_SBPB; | 
 | 		} | 
 |  | 
 | 		if (!boot_cpu_has(X86_FEATURE_IBPB)) | 
 | 			reserved_bits |= PRED_CMD_IBPB; | 
 |  | 
 | 		if (!boot_cpu_has(X86_FEATURE_SBPB)) | 
 | 			reserved_bits |= PRED_CMD_SBPB; | 
 |  | 
 | 		if (data & reserved_bits) | 
 | 			return 1; | 
 |  | 
 | 		if (!data) | 
 | 			break; | 
 |  | 
 | 		wrmsrq(MSR_IA32_PRED_CMD, data); | 
 | 		break; | 
 | 	} | 
 | 	case MSR_IA32_FLUSH_CMD: | 
 | 		if (!msr_info->host_initiated && | 
 | 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_FLUSH_L1D)) | 
 | 			return 1; | 
 |  | 
 | 		if (!boot_cpu_has(X86_FEATURE_FLUSH_L1D) || (data & ~L1D_FLUSH)) | 
 | 			return 1; | 
 | 		if (!data) | 
 | 			break; | 
 |  | 
 | 		wrmsrq(MSR_IA32_FLUSH_CMD, L1D_FLUSH); | 
 | 		break; | 
 | 	case MSR_EFER: | 
 | 		return set_efer(vcpu, msr_info); | 
 | 	case MSR_K7_HWCR: | 
 | 		data &= ~(u64)0x40;	/* ignore flush filter disable */ | 
 | 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */ | 
 | 		data &= ~(u64)0x8;	/* ignore TLB cache disable */ | 
 |  | 
 | 		/* | 
 | 		 * Allow McStatusWrEn and TscFreqSel. (Linux guests from v3.2 | 
 | 		 * through at least v6.6 whine if TscFreqSel is clear, | 
 | 		 * depending on F/M/S. | 
 | 		 */ | 
 | 		if (data & ~(BIT_ULL(18) | BIT_ULL(24))) { | 
 | 			kvm_pr_unimpl_wrmsr(vcpu, msr, data); | 
 | 			return 1; | 
 | 		} | 
 | 		vcpu->arch.msr_hwcr = data; | 
 | 		break; | 
 | 	case MSR_FAM10H_MMIO_CONF_BASE: | 
 | 		if (data != 0) { | 
 | 			kvm_pr_unimpl_wrmsr(vcpu, msr, data); | 
 | 			return 1; | 
 | 		} | 
 | 		break; | 
 | 	case MSR_IA32_CR_PAT: | 
 | 		if (!kvm_pat_valid(data)) | 
 | 			return 1; | 
 |  | 
 | 		vcpu->arch.pat = data; | 
 | 		break; | 
 | 	case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000: | 
 | 	case MSR_MTRRdefType: | 
 | 		return kvm_mtrr_set_msr(vcpu, msr, data); | 
 | 	case MSR_IA32_APICBASE: | 
 | 		return kvm_apic_set_base(vcpu, data, msr_info->host_initiated); | 
 | 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: | 
 | 		return kvm_x2apic_msr_write(vcpu, msr, data); | 
 | 	case MSR_IA32_TSC_DEADLINE: | 
 | 		kvm_set_lapic_tscdeadline_msr(vcpu, data); | 
 | 		break; | 
 | 	case MSR_IA32_TSC_ADJUST: | 
 | 		if (guest_cpu_cap_has(vcpu, X86_FEATURE_TSC_ADJUST)) { | 
 | 			if (!msr_info->host_initiated) { | 
 | 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; | 
 | 				adjust_tsc_offset_guest(vcpu, adj); | 
 | 				/* Before back to guest, tsc_timestamp must be adjusted | 
 | 				 * as well, otherwise guest's percpu pvclock time could jump. | 
 | 				 */ | 
 | 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); | 
 | 			} | 
 | 			vcpu->arch.ia32_tsc_adjust_msr = data; | 
 | 		} | 
 | 		break; | 
 | 	case MSR_IA32_MISC_ENABLE: { | 
 | 		u64 old_val = vcpu->arch.ia32_misc_enable_msr; | 
 |  | 
 | 		if (!msr_info->host_initiated) { | 
 | 			/* RO bits */ | 
 | 			if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK) | 
 | 				return 1; | 
 |  | 
 | 			/* R bits, i.e. writes are ignored, but don't fault. */ | 
 | 			data = data & ~MSR_IA32_MISC_ENABLE_EMON; | 
 | 			data |= old_val & MSR_IA32_MISC_ENABLE_EMON; | 
 | 		} | 
 |  | 
 | 		if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) && | 
 | 		    ((old_val ^ data)  & MSR_IA32_MISC_ENABLE_MWAIT)) { | 
 | 			if (!guest_cpu_cap_has(vcpu, X86_FEATURE_XMM3)) | 
 | 				return 1; | 
 | 			vcpu->arch.ia32_misc_enable_msr = data; | 
 | 			vcpu->arch.cpuid_dynamic_bits_dirty = true; | 
 | 		} else { | 
 | 			vcpu->arch.ia32_misc_enable_msr = data; | 
 | 		} | 
 | 		break; | 
 | 	} | 
 | 	case MSR_IA32_SMBASE: | 
 | 		if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated) | 
 | 			return 1; | 
 | 		vcpu->arch.smbase = data; | 
 | 		break; | 
 | 	case MSR_IA32_POWER_CTL: | 
 | 		vcpu->arch.msr_ia32_power_ctl = data; | 
 | 		break; | 
 | 	case MSR_IA32_TSC: | 
 | 		if (msr_info->host_initiated) { | 
 | 			kvm_synchronize_tsc(vcpu, &data); | 
 | 		} else if (!vcpu->arch.guest_tsc_protected) { | 
 | 			u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset; | 
 | 			adjust_tsc_offset_guest(vcpu, adj); | 
 | 			vcpu->arch.ia32_tsc_adjust_msr += adj; | 
 | 		} | 
 | 		break; | 
 | 	case MSR_IA32_XSS: | 
 | 		if (!msr_info->host_initiated && | 
 | 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) | 
 | 			return 1; | 
 | 		/* | 
 | 		 * KVM supports exposing PT to the guest, but does not support | 
 | 		 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than | 
 | 		 * XSAVES/XRSTORS to save/restore PT MSRs. | 
 | 		 */ | 
 | 		if (data & ~kvm_caps.supported_xss) | 
 | 			return 1; | 
 | 		vcpu->arch.ia32_xss = data; | 
 | 		vcpu->arch.cpuid_dynamic_bits_dirty = true; | 
 | 		break; | 
 | 	case MSR_SMI_COUNT: | 
 | 		if (!msr_info->host_initiated) | 
 | 			return 1; | 
 | 		vcpu->arch.smi_count = data; | 
 | 		break; | 
 | 	case MSR_KVM_WALL_CLOCK_NEW: | 
 | 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) | 
 | 			return 1; | 
 |  | 
 | 		vcpu->kvm->arch.wall_clock = data; | 
 | 		kvm_write_wall_clock(vcpu->kvm, data, 0); | 
 | 		break; | 
 | 	case MSR_KVM_WALL_CLOCK: | 
 | 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) | 
 | 			return 1; | 
 |  | 
 | 		vcpu->kvm->arch.wall_clock = data; | 
 | 		kvm_write_wall_clock(vcpu->kvm, data, 0); | 
 | 		break; | 
 | 	case MSR_KVM_SYSTEM_TIME_NEW: | 
 | 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) | 
 | 			return 1; | 
 |  | 
 | 		kvm_write_system_time(vcpu, data, false, msr_info->host_initiated); | 
 | 		break; | 
 | 	case MSR_KVM_SYSTEM_TIME: | 
 | 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) | 
 | 			return 1; | 
 |  | 
 | 		kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated); | 
 | 		break; | 
 | 	case MSR_KVM_ASYNC_PF_EN: | 
 | 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) | 
 | 			return 1; | 
 |  | 
 | 		if (kvm_pv_enable_async_pf(vcpu, data)) | 
 | 			return 1; | 
 | 		break; | 
 | 	case MSR_KVM_ASYNC_PF_INT: | 
 | 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) | 
 | 			return 1; | 
 |  | 
 | 		if (kvm_pv_enable_async_pf_int(vcpu, data)) | 
 | 			return 1; | 
 | 		break; | 
 | 	case MSR_KVM_ASYNC_PF_ACK: | 
 | 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) | 
 | 			return 1; | 
 | 		if (data & 0x1) { | 
 | 			vcpu->arch.apf.pageready_pending = false; | 
 | 			kvm_check_async_pf_completion(vcpu); | 
 | 		} | 
 | 		break; | 
 | 	case MSR_KVM_STEAL_TIME: | 
 | 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) | 
 | 			return 1; | 
 |  | 
 | 		if (unlikely(!sched_info_on())) | 
 | 			return 1; | 
 |  | 
 | 		if (data & KVM_STEAL_RESERVED_MASK) | 
 | 			return 1; | 
 |  | 
 | 		vcpu->arch.st.msr_val = data; | 
 |  | 
 | 		if (!(data & KVM_MSR_ENABLED)) | 
 | 			break; | 
 |  | 
 | 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); | 
 |  | 
 | 		break; | 
 | 	case MSR_KVM_PV_EOI_EN: | 
 | 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) | 
 | 			return 1; | 
 |  | 
 | 		if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8))) | 
 | 			return 1; | 
 | 		break; | 
 |  | 
 | 	case MSR_KVM_POLL_CONTROL: | 
 | 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) | 
 | 			return 1; | 
 |  | 
 | 		/* only enable bit supported */ | 
 | 		if (data & (-1ULL << 1)) | 
 | 			return 1; | 
 |  | 
 | 		vcpu->arch.msr_kvm_poll_control = data; | 
 | 		break; | 
 |  | 
 | 	case MSR_IA32_MCG_CTL: | 
 | 	case MSR_IA32_MCG_STATUS: | 
 | 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: | 
 | 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: | 
 | 		return set_msr_mce(vcpu, msr_info); | 
 |  | 
 | 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: | 
 | 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: | 
 | 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: | 
 | 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: | 
 | 		if (kvm_pmu_is_valid_msr(vcpu, msr)) | 
 | 			return kvm_pmu_set_msr(vcpu, msr_info); | 
 |  | 
 | 		if (data) | 
 | 			kvm_pr_unimpl_wrmsr(vcpu, msr, data); | 
 | 		break; | 
 | 	case MSR_K7_CLK_CTL: | 
 | 		/* | 
 | 		 * Ignore all writes to this no longer documented MSR. | 
 | 		 * Writes are only relevant for old K7 processors, | 
 | 		 * all pre-dating SVM, but a recommended workaround from | 
 | 		 * AMD for these chips. It is possible to specify the | 
 | 		 * affected processor models on the command line, hence | 
 | 		 * the need to ignore the workaround. | 
 | 		 */ | 
 | 		break; | 
 | #ifdef CONFIG_KVM_HYPERV | 
 | 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: | 
 | 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: | 
 | 	case HV_X64_MSR_SYNDBG_OPTIONS: | 
 | 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: | 
 | 	case HV_X64_MSR_CRASH_CTL: | 
 | 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: | 
 | 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL: | 
 | 	case HV_X64_MSR_TSC_EMULATION_CONTROL: | 
 | 	case HV_X64_MSR_TSC_EMULATION_STATUS: | 
 | 	case HV_X64_MSR_TSC_INVARIANT_CONTROL: | 
 | 		return kvm_hv_set_msr_common(vcpu, msr, data, | 
 | 					     msr_info->host_initiated); | 
 | #endif | 
 | 	case MSR_IA32_BBL_CR_CTL3: | 
 | 		/* Drop writes to this legacy MSR -- see rdmsr | 
 | 		 * counterpart for further detail. | 
 | 		 */ | 
 | 		kvm_pr_unimpl_wrmsr(vcpu, msr, data); | 
 | 		break; | 
 | 	case MSR_AMD64_OSVW_ID_LENGTH: | 
 | 		if (!guest_cpu_cap_has(vcpu, X86_FEATURE_OSVW)) | 
 | 			return 1; | 
 | 		vcpu->arch.osvw.length = data; | 
 | 		break; | 
 | 	case MSR_AMD64_OSVW_STATUS: | 
 | 		if (!guest_cpu_cap_has(vcpu, X86_FEATURE_OSVW)) | 
 | 			return 1; | 
 | 		vcpu->arch.osvw.status = data; | 
 | 		break; | 
 | 	case MSR_PLATFORM_INFO: | 
 | 		if (!msr_info->host_initiated) | 
 | 			return 1; | 
 | 		vcpu->arch.msr_platform_info = data; | 
 | 		break; | 
 | 	case MSR_MISC_FEATURES_ENABLES: | 
 | 		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT || | 
 | 		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT && | 
 | 		     !supports_cpuid_fault(vcpu))) | 
 | 			return 1; | 
 | 		vcpu->arch.msr_misc_features_enables = data; | 
 | 		break; | 
 | #ifdef CONFIG_X86_64 | 
 | 	case MSR_IA32_XFD: | 
 | 		if (!msr_info->host_initiated && | 
 | 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD)) | 
 | 			return 1; | 
 |  | 
 | 		if (data & ~kvm_guest_supported_xfd(vcpu)) | 
 | 			return 1; | 
 |  | 
 | 		fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data); | 
 | 		break; | 
 | 	case MSR_IA32_XFD_ERR: | 
 | 		if (!msr_info->host_initiated && | 
 | 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD)) | 
 | 			return 1; | 
 |  | 
 | 		if (data & ~kvm_guest_supported_xfd(vcpu)) | 
 | 			return 1; | 
 |  | 
 | 		vcpu->arch.guest_fpu.xfd_err = data; | 
 | 		break; | 
 | #endif | 
 | 	default: | 
 | 		if (kvm_pmu_is_valid_msr(vcpu, msr)) | 
 | 			return kvm_pmu_set_msr(vcpu, msr_info); | 
 |  | 
 | 		return KVM_MSR_RET_UNSUPPORTED; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_set_msr_common); | 
 |  | 
 | static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host) | 
 | { | 
 | 	u64 data; | 
 | 	u64 mcg_cap = vcpu->arch.mcg_cap; | 
 | 	unsigned bank_num = mcg_cap & 0xff; | 
 | 	u32 offset, last_msr; | 
 |  | 
 | 	switch (msr) { | 
 | 	case MSR_IA32_P5_MC_ADDR: | 
 | 	case MSR_IA32_P5_MC_TYPE: | 
 | 		data = 0; | 
 | 		break; | 
 | 	case MSR_IA32_MCG_CAP: | 
 | 		data = vcpu->arch.mcg_cap; | 
 | 		break; | 
 | 	case MSR_IA32_MCG_CTL: | 
 | 		if (!(mcg_cap & MCG_CTL_P) && !host) | 
 | 			return 1; | 
 | 		data = vcpu->arch.mcg_ctl; | 
 | 		break; | 
 | 	case MSR_IA32_MCG_STATUS: | 
 | 		data = vcpu->arch.mcg_status; | 
 | 		break; | 
 | 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: | 
 | 		last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; | 
 | 		if (msr > last_msr) | 
 | 			return 1; | 
 |  | 
 | 		if (!(mcg_cap & MCG_CMCI_P) && !host) | 
 | 			return 1; | 
 | 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, | 
 | 					    last_msr + 1 - MSR_IA32_MC0_CTL2); | 
 | 		data = vcpu->arch.mci_ctl2_banks[offset]; | 
 | 		break; | 
 | 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: | 
 | 		last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; | 
 | 		if (msr > last_msr) | 
 | 			return 1; | 
 |  | 
 | 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, | 
 | 					    last_msr + 1 - MSR_IA32_MC0_CTL); | 
 | 		data = vcpu->arch.mce_banks[offset]; | 
 | 		break; | 
 | 	default: | 
 | 		return 1; | 
 | 	} | 
 | 	*pdata = data; | 
 | 	return 0; | 
 | } | 
 |  | 
 | int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) | 
 | { | 
 | 	switch (msr_info->index) { | 
 | 	case MSR_IA32_PLATFORM_ID: | 
 | 	case MSR_IA32_EBL_CR_POWERON: | 
 | 	case MSR_IA32_LASTBRANCHFROMIP: | 
 | 	case MSR_IA32_LASTBRANCHTOIP: | 
 | 	case MSR_IA32_LASTINTFROMIP: | 
 | 	case MSR_IA32_LASTINTTOIP: | 
 | 	case MSR_AMD64_SYSCFG: | 
 | 	case MSR_K8_TSEG_ADDR: | 
 | 	case MSR_K8_TSEG_MASK: | 
 | 	case MSR_VM_HSAVE_PA: | 
 | 	case MSR_K8_INT_PENDING_MSG: | 
 | 	case MSR_AMD64_NB_CFG: | 
 | 	case MSR_FAM10H_MMIO_CONF_BASE: | 
 | 	case MSR_AMD64_BU_CFG2: | 
 | 	case MSR_IA32_PERF_CTL: | 
 | 	case MSR_AMD64_DC_CFG: | 
 | 	case MSR_AMD64_TW_CFG: | 
 | 	case MSR_F15H_EX_CFG: | 
 | 	/* | 
 | 	 * Intel Sandy Bridge CPUs must support the RAPL (running average power | 
 | 	 * limit) MSRs. Just return 0, as we do not want to expose the host | 
 | 	 * data here. Do not conditionalize this on CPUID, as KVM does not do | 
 | 	 * so for existing CPU-specific MSRs. | 
 | 	 */ | 
 | 	case MSR_RAPL_POWER_UNIT: | 
 | 	case MSR_PP0_ENERGY_STATUS:	/* Power plane 0 (core) */ | 
 | 	case MSR_PP1_ENERGY_STATUS:	/* Power plane 1 (graphics uncore) */ | 
 | 	case MSR_PKG_ENERGY_STATUS:	/* Total package */ | 
 | 	case MSR_DRAM_ENERGY_STATUS:	/* DRAM controller */ | 
 | 		msr_info->data = 0; | 
 | 		break; | 
 | 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: | 
 | 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: | 
 | 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: | 
 | 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: | 
 | 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) | 
 | 			return kvm_pmu_get_msr(vcpu, msr_info); | 
 | 		msr_info->data = 0; | 
 | 		break; | 
 | 	case MSR_IA32_UCODE_REV: | 
 | 		msr_info->data = vcpu->arch.microcode_version; | 
 | 		break; | 
 | 	case MSR_IA32_ARCH_CAPABILITIES: | 
 | 		if (!guest_cpu_cap_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES)) | 
 | 			return KVM_MSR_RET_UNSUPPORTED; | 
 | 		msr_info->data = vcpu->arch.arch_capabilities; | 
 | 		break; | 
 | 	case MSR_IA32_PERF_CAPABILITIES: | 
 | 		if (!guest_cpu_cap_has(vcpu, X86_FEATURE_PDCM)) | 
 | 			return KVM_MSR_RET_UNSUPPORTED; | 
 | 		msr_info->data = vcpu->arch.perf_capabilities; | 
 | 		break; | 
 | 	case MSR_IA32_POWER_CTL: | 
 | 		msr_info->data = vcpu->arch.msr_ia32_power_ctl; | 
 | 		break; | 
 | 	case MSR_IA32_TSC: { | 
 | 		/* | 
 | 		 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset | 
 | 		 * even when not intercepted. AMD manual doesn't explicitly | 
 | 		 * state this but appears to behave the same. | 
 | 		 * | 
 | 		 * On userspace reads and writes, however, we unconditionally | 
 | 		 * return L1's TSC value to ensure backwards-compatible | 
 | 		 * behavior for migration. | 
 | 		 */ | 
 | 		u64 offset, ratio; | 
 |  | 
 | 		if (msr_info->host_initiated) { | 
 | 			offset = vcpu->arch.l1_tsc_offset; | 
 | 			ratio = vcpu->arch.l1_tsc_scaling_ratio; | 
 | 		} else { | 
 | 			offset = vcpu->arch.tsc_offset; | 
 | 			ratio = vcpu->arch.tsc_scaling_ratio; | 
 | 		} | 
 |  | 
 | 		msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset; | 
 | 		break; | 
 | 	} | 
 | 	case MSR_IA32_CR_PAT: | 
 | 		msr_info->data = vcpu->arch.pat; | 
 | 		break; | 
 | 	case MSR_MTRRcap: | 
 | 	case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000: | 
 | 	case MSR_MTRRdefType: | 
 | 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data); | 
 | 	case 0xcd: /* fsb frequency */ | 
 | 		msr_info->data = 3; | 
 | 		break; | 
 | 		/* | 
 | 		 * MSR_EBC_FREQUENCY_ID | 
 | 		 * Conservative value valid for even the basic CPU models. | 
 | 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of | 
 | 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, | 
 | 		 * and 266MHz for model 3, or 4. Set Core Clock | 
 | 		 * Frequency to System Bus Frequency Ratio to 1 (bits | 
 | 		 * 31:24) even though these are only valid for CPU | 
 | 		 * models > 2, however guests may end up dividing or | 
 | 		 * multiplying by zero otherwise. | 
 | 		 */ | 
 | 	case MSR_EBC_FREQUENCY_ID: | 
 | 		msr_info->data = 1 << 24; | 
 | 		break; | 
 | 	case MSR_IA32_APICBASE: | 
 | 		msr_info->data = vcpu->arch.apic_base; | 
 | 		break; | 
 | 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: | 
 | 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data); | 
 | 	case MSR_IA32_TSC_DEADLINE: | 
 | 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu); | 
 | 		break; | 
 | 	case MSR_IA32_TSC_ADJUST: | 
 | 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr; | 
 | 		break; | 
 | 	case MSR_IA32_MISC_ENABLE: | 
 | 		msr_info->data = vcpu->arch.ia32_misc_enable_msr; | 
 | 		break; | 
 | 	case MSR_IA32_SMBASE: | 
 | 		if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated) | 
 | 			return 1; | 
 | 		msr_info->data = vcpu->arch.smbase; | 
 | 		break; | 
 | 	case MSR_SMI_COUNT: | 
 | 		msr_info->data = vcpu->arch.smi_count; | 
 | 		break; | 
 | 	case MSR_IA32_PERF_STATUS: | 
 | 		/* TSC increment by tick */ | 
 | 		msr_info->data = 1000ULL; | 
 | 		/* CPU multiplier */ | 
 | 		msr_info->data |= (((uint64_t)4ULL) << 40); | 
 | 		break; | 
 | 	case MSR_EFER: | 
 | 		msr_info->data = vcpu->arch.efer; | 
 | 		break; | 
 | 	case MSR_KVM_WALL_CLOCK: | 
 | 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) | 
 | 			return 1; | 
 |  | 
 | 		msr_info->data = vcpu->kvm->arch.wall_clock; | 
 | 		break; | 
 | 	case MSR_KVM_WALL_CLOCK_NEW: | 
 | 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) | 
 | 			return 1; | 
 |  | 
 | 		msr_info->data = vcpu->kvm->arch.wall_clock; | 
 | 		break; | 
 | 	case MSR_KVM_SYSTEM_TIME: | 
 | 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) | 
 | 			return 1; | 
 |  | 
 | 		msr_info->data = vcpu->arch.time; | 
 | 		break; | 
 | 	case MSR_KVM_SYSTEM_TIME_NEW: | 
 | 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) | 
 | 			return 1; | 
 |  | 
 | 		msr_info->data = vcpu->arch.time; | 
 | 		break; | 
 | 	case MSR_KVM_ASYNC_PF_EN: | 
 | 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) | 
 | 			return 1; | 
 |  | 
 | 		msr_info->data = vcpu->arch.apf.msr_en_val; | 
 | 		break; | 
 | 	case MSR_KVM_ASYNC_PF_INT: | 
 | 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) | 
 | 			return 1; | 
 |  | 
 | 		msr_info->data = vcpu->arch.apf.msr_int_val; | 
 | 		break; | 
 | 	case MSR_KVM_ASYNC_PF_ACK: | 
 | 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) | 
 | 			return 1; | 
 |  | 
 | 		msr_info->data = 0; | 
 | 		break; | 
 | 	case MSR_KVM_STEAL_TIME: | 
 | 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) | 
 | 			return 1; | 
 |  | 
 | 		msr_info->data = vcpu->arch.st.msr_val; | 
 | 		break; | 
 | 	case MSR_KVM_PV_EOI_EN: | 
 | 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) | 
 | 			return 1; | 
 |  | 
 | 		msr_info->data = vcpu->arch.pv_eoi.msr_val; | 
 | 		break; | 
 | 	case MSR_KVM_POLL_CONTROL: | 
 | 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) | 
 | 			return 1; | 
 |  | 
 | 		msr_info->data = vcpu->arch.msr_kvm_poll_control; | 
 | 		break; | 
 | 	case MSR_IA32_P5_MC_ADDR: | 
 | 	case MSR_IA32_P5_MC_TYPE: | 
 | 	case MSR_IA32_MCG_CAP: | 
 | 	case MSR_IA32_MCG_CTL: | 
 | 	case MSR_IA32_MCG_STATUS: | 
 | 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: | 
 | 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: | 
 | 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data, | 
 | 				   msr_info->host_initiated); | 
 | 	case MSR_IA32_XSS: | 
 | 		if (!msr_info->host_initiated && | 
 | 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) | 
 | 			return 1; | 
 | 		msr_info->data = vcpu->arch.ia32_xss; | 
 | 		break; | 
 | 	case MSR_K7_CLK_CTL: | 
 | 		/* | 
 | 		 * Provide expected ramp-up count for K7. All other | 
 | 		 * are set to zero, indicating minimum divisors for | 
 | 		 * every field. | 
 | 		 * | 
 | 		 * This prevents guest kernels on AMD host with CPU | 
 | 		 * type 6, model 8 and higher from exploding due to | 
 | 		 * the rdmsr failing. | 
 | 		 */ | 
 | 		msr_info->data = 0x20000000; | 
 | 		break; | 
 | #ifdef CONFIG_KVM_HYPERV | 
 | 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: | 
 | 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: | 
 | 	case HV_X64_MSR_SYNDBG_OPTIONS: | 
 | 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: | 
 | 	case HV_X64_MSR_CRASH_CTL: | 
 | 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: | 
 | 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL: | 
 | 	case HV_X64_MSR_TSC_EMULATION_CONTROL: | 
 | 	case HV_X64_MSR_TSC_EMULATION_STATUS: | 
 | 	case HV_X64_MSR_TSC_INVARIANT_CONTROL: | 
 | 		return kvm_hv_get_msr_common(vcpu, | 
 | 					     msr_info->index, &msr_info->data, | 
 | 					     msr_info->host_initiated); | 
 | #endif | 
 | 	case MSR_IA32_BBL_CR_CTL3: | 
 | 		/* This legacy MSR exists but isn't fully documented in current | 
 | 		 * silicon.  It is however accessed by winxp in very narrow | 
 | 		 * scenarios where it sets bit #19, itself documented as | 
 | 		 * a "reserved" bit.  Best effort attempt to source coherent | 
 | 		 * read data here should the balance of the register be | 
 | 		 * interpreted by the guest: | 
 | 		 * | 
 | 		 * L2 cache control register 3: 64GB range, 256KB size, | 
 | 		 * enabled, latency 0x1, configured | 
 | 		 */ | 
 | 		msr_info->data = 0xbe702111; | 
 | 		break; | 
 | 	case MSR_AMD64_OSVW_ID_LENGTH: | 
 | 		if (!guest_cpu_cap_has(vcpu, X86_FEATURE_OSVW)) | 
 | 			return 1; | 
 | 		msr_info->data = vcpu->arch.osvw.length; | 
 | 		break; | 
 | 	case MSR_AMD64_OSVW_STATUS: | 
 | 		if (!guest_cpu_cap_has(vcpu, X86_FEATURE_OSVW)) | 
 | 			return 1; | 
 | 		msr_info->data = vcpu->arch.osvw.status; | 
 | 		break; | 
 | 	case MSR_PLATFORM_INFO: | 
 | 		if (!msr_info->host_initiated && | 
 | 		    !vcpu->kvm->arch.guest_can_read_msr_platform_info) | 
 | 			return 1; | 
 | 		msr_info->data = vcpu->arch.msr_platform_info; | 
 | 		break; | 
 | 	case MSR_MISC_FEATURES_ENABLES: | 
 | 		msr_info->data = vcpu->arch.msr_misc_features_enables; | 
 | 		break; | 
 | 	case MSR_K7_HWCR: | 
 | 		msr_info->data = vcpu->arch.msr_hwcr; | 
 | 		break; | 
 | #ifdef CONFIG_X86_64 | 
 | 	case MSR_IA32_XFD: | 
 | 		if (!msr_info->host_initiated && | 
 | 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD)) | 
 | 			return 1; | 
 |  | 
 | 		msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd; | 
 | 		break; | 
 | 	case MSR_IA32_XFD_ERR: | 
 | 		if (!msr_info->host_initiated && | 
 | 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD)) | 
 | 			return 1; | 
 |  | 
 | 		msr_info->data = vcpu->arch.guest_fpu.xfd_err; | 
 | 		break; | 
 | #endif | 
 | 	default: | 
 | 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) | 
 | 			return kvm_pmu_get_msr(vcpu, msr_info); | 
 |  | 
 | 		return KVM_MSR_RET_UNSUPPORTED; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_get_msr_common); | 
 |  | 
 | /* | 
 |  * Read or write a bunch of msrs. All parameters are kernel addresses. | 
 |  * | 
 |  * @return number of msrs set successfully. | 
 |  */ | 
 | static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, | 
 | 		    struct kvm_msr_entry *entries, | 
 | 		    int (*do_msr)(struct kvm_vcpu *vcpu, | 
 | 				  unsigned index, u64 *data)) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < msrs->nmsrs; ++i) | 
 | 		if (do_msr(vcpu, entries[i].index, &entries[i].data)) | 
 | 			break; | 
 |  | 
 | 	return i; | 
 | } | 
 |  | 
 | /* | 
 |  * Read or write a bunch of msrs. Parameters are user addresses. | 
 |  * | 
 |  * @return number of msrs set successfully. | 
 |  */ | 
 | static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, | 
 | 		  int (*do_msr)(struct kvm_vcpu *vcpu, | 
 | 				unsigned index, u64 *data), | 
 | 		  int writeback) | 
 | { | 
 | 	struct kvm_msrs msrs; | 
 | 	struct kvm_msr_entry *entries; | 
 | 	unsigned size; | 
 | 	int r; | 
 |  | 
 | 	r = -EFAULT; | 
 | 	if (copy_from_user(&msrs, user_msrs, sizeof(msrs))) | 
 | 		goto out; | 
 |  | 
 | 	r = -E2BIG; | 
 | 	if (msrs.nmsrs >= MAX_IO_MSRS) | 
 | 		goto out; | 
 |  | 
 | 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; | 
 | 	entries = memdup_user(user_msrs->entries, size); | 
 | 	if (IS_ERR(entries)) { | 
 | 		r = PTR_ERR(entries); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	r = __msr_io(vcpu, &msrs, entries, do_msr); | 
 |  | 
 | 	if (writeback && copy_to_user(user_msrs->entries, entries, size)) | 
 | 		r = -EFAULT; | 
 |  | 
 | 	kfree(entries); | 
 | out: | 
 | 	return r; | 
 | } | 
 |  | 
 | static inline bool kvm_can_mwait_in_guest(void) | 
 | { | 
 | 	return boot_cpu_has(X86_FEATURE_MWAIT) && | 
 | 		!boot_cpu_has_bug(X86_BUG_MONITOR) && | 
 | 		boot_cpu_has(X86_FEATURE_ARAT); | 
 | } | 
 |  | 
 | static u64 kvm_get_allowed_disable_exits(void) | 
 | { | 
 | 	u64 r = KVM_X86_DISABLE_EXITS_PAUSE; | 
 |  | 
 | 	if (boot_cpu_has(X86_FEATURE_APERFMPERF)) | 
 | 		r |= KVM_X86_DISABLE_EXITS_APERFMPERF; | 
 |  | 
 | 	if (!mitigate_smt_rsb) { | 
 | 		r |= KVM_X86_DISABLE_EXITS_HLT | | 
 | 			KVM_X86_DISABLE_EXITS_CSTATE; | 
 |  | 
 | 		if (kvm_can_mwait_in_guest()) | 
 | 			r |= KVM_X86_DISABLE_EXITS_MWAIT; | 
 | 	} | 
 | 	return r; | 
 | } | 
 |  | 
 | #ifdef CONFIG_KVM_HYPERV | 
 | static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu, | 
 | 					    struct kvm_cpuid2 __user *cpuid_arg) | 
 | { | 
 | 	struct kvm_cpuid2 cpuid; | 
 | 	int r; | 
 |  | 
 | 	r = -EFAULT; | 
 | 	if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) | 
 | 		return r; | 
 |  | 
 | 	r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries); | 
 | 	if (r) | 
 | 		return r; | 
 |  | 
 | 	r = -EFAULT; | 
 | 	if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) | 
 | 		return r; | 
 |  | 
 | 	return 0; | 
 | } | 
 | #endif | 
 |  | 
 | static bool kvm_is_vm_type_supported(unsigned long type) | 
 | { | 
 | 	return type < 32 && (kvm_caps.supported_vm_types & BIT(type)); | 
 | } | 
 |  | 
 | static inline u64 kvm_sync_valid_fields(struct kvm *kvm) | 
 | { | 
 | 	return kvm && kvm->arch.has_protected_state ? 0 : KVM_SYNC_X86_VALID_FIELDS; | 
 | } | 
 |  | 
 | int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) | 
 | { | 
 | 	int r = 0; | 
 |  | 
 | 	switch (ext) { | 
 | 	case KVM_CAP_IRQCHIP: | 
 | 	case KVM_CAP_HLT: | 
 | 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: | 
 | 	case KVM_CAP_SET_TSS_ADDR: | 
 | 	case KVM_CAP_EXT_CPUID: | 
 | 	case KVM_CAP_EXT_EMUL_CPUID: | 
 | 	case KVM_CAP_CLOCKSOURCE: | 
 | #ifdef CONFIG_KVM_IOAPIC | 
 | 	case KVM_CAP_PIT: | 
 | 	case KVM_CAP_PIT2: | 
 | 	case KVM_CAP_PIT_STATE2: | 
 | 	case KVM_CAP_REINJECT_CONTROL: | 
 | #endif | 
 | 	case KVM_CAP_NOP_IO_DELAY: | 
 | 	case KVM_CAP_MP_STATE: | 
 | 	case KVM_CAP_SYNC_MMU: | 
 | 	case KVM_CAP_USER_NMI: | 
 | 	case KVM_CAP_IRQ_INJECT_STATUS: | 
 | 	case KVM_CAP_IOEVENTFD: | 
 | 	case KVM_CAP_IOEVENTFD_NO_LENGTH: | 
 |  | 
 | 	case KVM_CAP_SET_IDENTITY_MAP_ADDR: | 
 | 	case KVM_CAP_VCPU_EVENTS: | 
 | #ifdef CONFIG_KVM_HYPERV | 
 | 	case KVM_CAP_HYPERV: | 
 | 	case KVM_CAP_HYPERV_VAPIC: | 
 | 	case KVM_CAP_HYPERV_SPIN: | 
 | 	case KVM_CAP_HYPERV_TIME: | 
 | 	case KVM_CAP_HYPERV_SYNIC: | 
 | 	case KVM_CAP_HYPERV_SYNIC2: | 
 | 	case KVM_CAP_HYPERV_VP_INDEX: | 
 | 	case KVM_CAP_HYPERV_EVENTFD: | 
 | 	case KVM_CAP_HYPERV_TLBFLUSH: | 
 | 	case KVM_CAP_HYPERV_SEND_IPI: | 
 | 	case KVM_CAP_HYPERV_CPUID: | 
 | 	case KVM_CAP_HYPERV_ENFORCE_CPUID: | 
 | 	case KVM_CAP_SYS_HYPERV_CPUID: | 
 | #endif | 
 | 	case KVM_CAP_PCI_SEGMENT: | 
 | 	case KVM_CAP_DEBUGREGS: | 
 | 	case KVM_CAP_X86_ROBUST_SINGLESTEP: | 
 | 	case KVM_CAP_XSAVE: | 
 | 	case KVM_CAP_ASYNC_PF: | 
 | 	case KVM_CAP_ASYNC_PF_INT: | 
 | 	case KVM_CAP_GET_TSC_KHZ: | 
 | 	case KVM_CAP_KVMCLOCK_CTRL: | 
 | 	case KVM_CAP_IOAPIC_POLARITY_IGNORED: | 
 | 	case KVM_CAP_TSC_DEADLINE_TIMER: | 
 | 	case KVM_CAP_DISABLE_QUIRKS: | 
 | 	case KVM_CAP_SET_BOOT_CPU_ID: | 
 |  	case KVM_CAP_SPLIT_IRQCHIP: | 
 | 	case KVM_CAP_IMMEDIATE_EXIT: | 
 | 	case KVM_CAP_PMU_EVENT_FILTER: | 
 | 	case KVM_CAP_PMU_EVENT_MASKED_EVENTS: | 
 | 	case KVM_CAP_GET_MSR_FEATURES: | 
 | 	case KVM_CAP_MSR_PLATFORM_INFO: | 
 | 	case KVM_CAP_EXCEPTION_PAYLOAD: | 
 | 	case KVM_CAP_X86_TRIPLE_FAULT_EVENT: | 
 | 	case KVM_CAP_SET_GUEST_DEBUG: | 
 | 	case KVM_CAP_LAST_CPU: | 
 | 	case KVM_CAP_X86_USER_SPACE_MSR: | 
 | 	case KVM_CAP_X86_MSR_FILTER: | 
 | 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: | 
 | #ifdef CONFIG_X86_SGX_KVM | 
 | 	case KVM_CAP_SGX_ATTRIBUTE: | 
 | #endif | 
 | 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: | 
 | 	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: | 
 | 	case KVM_CAP_SREGS2: | 
 | 	case KVM_CAP_EXIT_ON_EMULATION_FAILURE: | 
 | 	case KVM_CAP_VCPU_ATTRIBUTES: | 
 | 	case KVM_CAP_SYS_ATTRIBUTES: | 
 | 	case KVM_CAP_VAPIC: | 
 | 	case KVM_CAP_ENABLE_CAP: | 
 | 	case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: | 
 | 	case KVM_CAP_IRQFD_RESAMPLE: | 
 | 	case KVM_CAP_MEMORY_FAULT_INFO: | 
 | 	case KVM_CAP_X86_GUEST_MODE: | 
 | 		r = 1; | 
 | 		break; | 
 | 	case KVM_CAP_PRE_FAULT_MEMORY: | 
 | 		r = tdp_enabled; | 
 | 		break; | 
 | 	case KVM_CAP_X86_APIC_BUS_CYCLES_NS: | 
 | 		r = APIC_BUS_CYCLE_NS_DEFAULT; | 
 | 		break; | 
 | 	case KVM_CAP_EXIT_HYPERCALL: | 
 | 		r = KVM_EXIT_HYPERCALL_VALID_MASK; | 
 | 		break; | 
 | 	case KVM_CAP_SET_GUEST_DEBUG2: | 
 | 		return KVM_GUESTDBG_VALID_MASK; | 
 | #ifdef CONFIG_KVM_XEN | 
 | 	case KVM_CAP_XEN_HVM: | 
 | 		r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR | | 
 | 		    KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL | | 
 | 		    KVM_XEN_HVM_CONFIG_SHARED_INFO | | 
 | 		    KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL | | 
 | 		    KVM_XEN_HVM_CONFIG_EVTCHN_SEND | | 
 | 		    KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE | | 
 | 		    KVM_XEN_HVM_CONFIG_SHARED_INFO_HVA; | 
 | 		if (sched_info_on()) | 
 | 			r |= KVM_XEN_HVM_CONFIG_RUNSTATE | | 
 | 			     KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG; | 
 | 		break; | 
 | #endif | 
 | 	case KVM_CAP_SYNC_REGS: | 
 | 		r = kvm_sync_valid_fields(kvm); | 
 | 		break; | 
 | 	case KVM_CAP_ADJUST_CLOCK: | 
 | 		r = KVM_CLOCK_VALID_FLAGS; | 
 | 		break; | 
 | 	case KVM_CAP_X86_DISABLE_EXITS: | 
 | 		r = kvm_get_allowed_disable_exits(); | 
 | 		break; | 
 | 	case KVM_CAP_X86_SMM: | 
 | 		if (!IS_ENABLED(CONFIG_KVM_SMM)) | 
 | 			break; | 
 |  | 
 | 		/* SMBASE is usually relocated above 1M on modern chipsets, | 
 | 		 * and SMM handlers might indeed rely on 4G segment limits, | 
 | 		 * so do not report SMM to be available if real mode is | 
 | 		 * emulated via vm86 mode.  Still, do not go to great lengths | 
 | 		 * to avoid userspace's usage of the feature, because it is a | 
 | 		 * fringe case that is not enabled except via specific settings | 
 | 		 * of the module parameters. | 
 | 		 */ | 
 | 		r = kvm_x86_call(has_emulated_msr)(kvm, MSR_IA32_SMBASE); | 
 | 		break; | 
 | 	case KVM_CAP_NR_VCPUS: | 
 | 		r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS); | 
 | 		break; | 
 | 	case KVM_CAP_MAX_VCPUS: | 
 | 		r = KVM_MAX_VCPUS; | 
 | 		if (kvm) | 
 | 			r = kvm->max_vcpus; | 
 | 		break; | 
 | 	case KVM_CAP_MAX_VCPU_ID: | 
 | 		r = KVM_MAX_VCPU_IDS; | 
 | 		break; | 
 | 	case KVM_CAP_PV_MMU:	/* obsolete */ | 
 | 		r = 0; | 
 | 		break; | 
 | 	case KVM_CAP_MCE: | 
 | 		r = KVM_MAX_MCE_BANKS; | 
 | 		break; | 
 | 	case KVM_CAP_XCRS: | 
 | 		r = boot_cpu_has(X86_FEATURE_XSAVE); | 
 | 		break; | 
 | 	case KVM_CAP_TSC_CONTROL: | 
 | 	case KVM_CAP_VM_TSC_CONTROL: | 
 | 		r = kvm_caps.has_tsc_control; | 
 | 		break; | 
 | 	case KVM_CAP_X2APIC_API: | 
 | 		r = KVM_X2APIC_API_VALID_FLAGS; | 
 | 		break; | 
 | 	case KVM_CAP_NESTED_STATE: | 
 | 		r = kvm_x86_ops.nested_ops->get_state ? | 
 | 			kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0; | 
 | 		break; | 
 | #ifdef CONFIG_KVM_HYPERV | 
 | 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: | 
 | 		r = kvm_x86_ops.enable_l2_tlb_flush != NULL; | 
 | 		break; | 
 | 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: | 
 | 		r = kvm_x86_ops.nested_ops->enable_evmcs != NULL; | 
 | 		break; | 
 | #endif | 
 | 	case KVM_CAP_SMALLER_MAXPHYADDR: | 
 | 		r = (int) allow_smaller_maxphyaddr; | 
 | 		break; | 
 | 	case KVM_CAP_STEAL_TIME: | 
 | 		r = sched_info_on(); | 
 | 		break; | 
 | 	case KVM_CAP_X86_BUS_LOCK_EXIT: | 
 | 		if (kvm_caps.has_bus_lock_exit) | 
 | 			r = KVM_BUS_LOCK_DETECTION_OFF | | 
 | 			    KVM_BUS_LOCK_DETECTION_EXIT; | 
 | 		else | 
 | 			r = 0; | 
 | 		break; | 
 | 	case KVM_CAP_XSAVE2: { | 
 | 		r = xstate_required_size(kvm_get_filtered_xcr0(), false); | 
 | 		if (r < sizeof(struct kvm_xsave)) | 
 | 			r = sizeof(struct kvm_xsave); | 
 | 		break; | 
 | 	} | 
 | 	case KVM_CAP_PMU_CAPABILITY: | 
 | 		r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0; | 
 | 		break; | 
 | 	case KVM_CAP_DISABLE_QUIRKS2: | 
 | 		r = kvm_caps.supported_quirks; | 
 | 		break; | 
 | 	case KVM_CAP_X86_NOTIFY_VMEXIT: | 
 | 		r = kvm_caps.has_notify_vmexit; | 
 | 		break; | 
 | 	case KVM_CAP_VM_TYPES: | 
 | 		r = kvm_caps.supported_vm_types; | 
 | 		break; | 
 | 	case KVM_CAP_READONLY_MEM: | 
 | 		r = kvm ? kvm_arch_has_readonly_mem(kvm) : 1; | 
 | 		break; | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 | 	return r; | 
 | } | 
 |  | 
 | static int __kvm_x86_dev_get_attr(struct kvm_device_attr *attr, u64 *val) | 
 | { | 
 | 	if (attr->group) { | 
 | 		if (kvm_x86_ops.dev_get_attr) | 
 | 			return kvm_x86_call(dev_get_attr)(attr->group, attr->attr, val); | 
 | 		return -ENXIO; | 
 | 	} | 
 |  | 
 | 	switch (attr->attr) { | 
 | 	case KVM_X86_XCOMP_GUEST_SUPP: | 
 | 		*val = kvm_caps.supported_xcr0; | 
 | 		return 0; | 
 | 	default: | 
 | 		return -ENXIO; | 
 | 	} | 
 | } | 
 |  | 
 | static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr) | 
 | { | 
 | 	u64 __user *uaddr = u64_to_user_ptr(attr->addr); | 
 | 	int r; | 
 | 	u64 val; | 
 |  | 
 | 	r = __kvm_x86_dev_get_attr(attr, &val); | 
 | 	if (r < 0) | 
 | 		return r; | 
 |  | 
 | 	if (put_user(val, uaddr)) | 
 | 		return -EFAULT; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr) | 
 | { | 
 | 	u64 val; | 
 |  | 
 | 	return __kvm_x86_dev_get_attr(attr, &val); | 
 | } | 
 |  | 
 | long kvm_arch_dev_ioctl(struct file *filp, | 
 | 			unsigned int ioctl, unsigned long arg) | 
 | { | 
 | 	void __user *argp = (void __user *)arg; | 
 | 	long r; | 
 |  | 
 | 	switch (ioctl) { | 
 | 	case KVM_GET_MSR_INDEX_LIST: { | 
 | 		struct kvm_msr_list __user *user_msr_list = argp; | 
 | 		struct kvm_msr_list msr_list; | 
 | 		unsigned n; | 
 |  | 
 | 		r = -EFAULT; | 
 | 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) | 
 | 			goto out; | 
 | 		n = msr_list.nmsrs; | 
 | 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs; | 
 | 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) | 
 | 			goto out; | 
 | 		r = -E2BIG; | 
 | 		if (n < msr_list.nmsrs) | 
 | 			goto out; | 
 | 		r = -EFAULT; | 
 | 		if (copy_to_user(user_msr_list->indices, &msrs_to_save, | 
 | 				 num_msrs_to_save * sizeof(u32))) | 
 | 			goto out; | 
 | 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save, | 
 | 				 &emulated_msrs, | 
 | 				 num_emulated_msrs * sizeof(u32))) | 
 | 			goto out; | 
 | 		r = 0; | 
 | 		break; | 
 | 	} | 
 | 	case KVM_GET_SUPPORTED_CPUID: | 
 | 	case KVM_GET_EMULATED_CPUID: { | 
 | 		struct kvm_cpuid2 __user *cpuid_arg = argp; | 
 | 		struct kvm_cpuid2 cpuid; | 
 |  | 
 | 		r = -EFAULT; | 
 | 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) | 
 | 			goto out; | 
 |  | 
 | 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, | 
 | 					    ioctl); | 
 | 		if (r) | 
 | 			goto out; | 
 |  | 
 | 		r = -EFAULT; | 
 | 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) | 
 | 			goto out; | 
 | 		r = 0; | 
 | 		break; | 
 | 	} | 
 | 	case KVM_X86_GET_MCE_CAP_SUPPORTED: | 
 | 		r = -EFAULT; | 
 | 		if (copy_to_user(argp, &kvm_caps.supported_mce_cap, | 
 | 				 sizeof(kvm_caps.supported_mce_cap))) | 
 | 			goto out; | 
 | 		r = 0; | 
 | 		break; | 
 | 	case KVM_GET_MSR_FEATURE_INDEX_LIST: { | 
 | 		struct kvm_msr_list __user *user_msr_list = argp; | 
 | 		struct kvm_msr_list msr_list; | 
 | 		unsigned int n; | 
 |  | 
 | 		r = -EFAULT; | 
 | 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) | 
 | 			goto out; | 
 | 		n = msr_list.nmsrs; | 
 | 		msr_list.nmsrs = num_msr_based_features; | 
 | 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) | 
 | 			goto out; | 
 | 		r = -E2BIG; | 
 | 		if (n < msr_list.nmsrs) | 
 | 			goto out; | 
 | 		r = -EFAULT; | 
 | 		if (copy_to_user(user_msr_list->indices, &msr_based_features, | 
 | 				 num_msr_based_features * sizeof(u32))) | 
 | 			goto out; | 
 | 		r = 0; | 
 | 		break; | 
 | 	} | 
 | 	case KVM_GET_MSRS: | 
 | 		r = msr_io(NULL, argp, do_get_feature_msr, 1); | 
 | 		break; | 
 | #ifdef CONFIG_KVM_HYPERV | 
 | 	case KVM_GET_SUPPORTED_HV_CPUID: | 
 | 		r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp); | 
 | 		break; | 
 | #endif | 
 | 	case KVM_GET_DEVICE_ATTR: { | 
 | 		struct kvm_device_attr attr; | 
 | 		r = -EFAULT; | 
 | 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) | 
 | 			break; | 
 | 		r = kvm_x86_dev_get_attr(&attr); | 
 | 		break; | 
 | 	} | 
 | 	case KVM_HAS_DEVICE_ATTR: { | 
 | 		struct kvm_device_attr attr; | 
 | 		r = -EFAULT; | 
 | 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) | 
 | 			break; | 
 | 		r = kvm_x86_dev_has_attr(&attr); | 
 | 		break; | 
 | 	} | 
 | 	default: | 
 | 		r = -EINVAL; | 
 | 		break; | 
 | 	} | 
 | out: | 
 | 	return r; | 
 | } | 
 |  | 
 | static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	return kvm_arch_has_noncoherent_dma(vcpu->kvm); | 
 | } | 
 |  | 
 | static DEFINE_PER_CPU(struct kvm_vcpu *, last_vcpu); | 
 |  | 
 | void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) | 
 | { | 
 | 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); | 
 |  | 
 | 	vcpu->arch.l1tf_flush_l1d = true; | 
 |  | 
 | 	if (vcpu->scheduled_out && pmu->version && pmu->event_count) { | 
 | 		pmu->need_cleanup = true; | 
 | 		kvm_make_request(KVM_REQ_PMU, vcpu); | 
 | 	} | 
 |  | 
 | 	/* Address WBINVD may be executed by guest */ | 
 | 	if (need_emulate_wbinvd(vcpu)) { | 
 | 		if (kvm_x86_call(has_wbinvd_exit)()) | 
 | 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); | 
 | 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu) | 
 | 			wbinvd_on_cpu(vcpu->cpu); | 
 | 	} | 
 |  | 
 | 	kvm_x86_call(vcpu_load)(vcpu, cpu); | 
 |  | 
 | 	if (vcpu != per_cpu(last_vcpu, cpu)) { | 
 | 		/* | 
 | 		 * Flush the branch predictor when switching vCPUs on the same | 
 | 		 * physical CPU, as each vCPU needs its own branch prediction | 
 | 		 * domain.  No IBPB is needed when switching between L1 and L2 | 
 | 		 * on the same vCPU unless IBRS is advertised to the vCPU; that | 
 | 		 * is handled on the nested VM-Exit path. | 
 | 		 */ | 
 | 		if (static_branch_likely(&switch_vcpu_ibpb)) | 
 | 			indirect_branch_prediction_barrier(); | 
 | 		per_cpu(last_vcpu, cpu) = vcpu; | 
 | 	} | 
 |  | 
 | 	/* Save host pkru register if supported */ | 
 | 	vcpu->arch.host_pkru = read_pkru(); | 
 |  | 
 | 	/* Apply any externally detected TSC adjustments (due to suspend) */ | 
 | 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) { | 
 | 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); | 
 | 		vcpu->arch.tsc_offset_adjustment = 0; | 
 | 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); | 
 | 	} | 
 |  | 
 | 	if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) { | 
 | 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : | 
 | 				rdtsc() - vcpu->arch.last_host_tsc; | 
 | 		if (tsc_delta < 0) | 
 | 			mark_tsc_unstable("KVM discovered backwards TSC"); | 
 |  | 
 | 		if (kvm_check_tsc_unstable()) { | 
 | 			u64 offset = kvm_compute_l1_tsc_offset(vcpu, | 
 | 						vcpu->arch.last_guest_tsc); | 
 | 			kvm_vcpu_write_tsc_offset(vcpu, offset); | 
 | 			if (!vcpu->arch.guest_tsc_protected) | 
 | 				vcpu->arch.tsc_catchup = 1; | 
 | 		} | 
 |  | 
 | 		if (kvm_lapic_hv_timer_in_use(vcpu)) | 
 | 			kvm_lapic_restart_hv_timer(vcpu); | 
 |  | 
 | 		/* | 
 | 		 * On a host with synchronized TSC, there is no need to update | 
 | 		 * kvmclock on vcpu->cpu migration | 
 | 		 */ | 
 | 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) | 
 | 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); | 
 | 		if (vcpu->cpu != cpu) | 
 | 			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu); | 
 | 		vcpu->cpu = cpu; | 
 | 	} | 
 |  | 
 | 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); | 
 | } | 
 |  | 
 | static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; | 
 | 	struct kvm_steal_time __user *st; | 
 | 	struct kvm_memslots *slots; | 
 | 	static const u8 preempted = KVM_VCPU_PREEMPTED; | 
 | 	gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; | 
 |  | 
 | 	/* | 
 | 	 * The vCPU can be marked preempted if and only if the VM-Exit was on | 
 | 	 * an instruction boundary and will not trigger guest emulation of any | 
 | 	 * kind (see vcpu_run).  Vendor specific code controls (conservatively) | 
 | 	 * when this is true, for example allowing the vCPU to be marked | 
 | 	 * preempted if and only if the VM-Exit was due to a host interrupt. | 
 | 	 */ | 
 | 	if (!vcpu->arch.at_instruction_boundary) { | 
 | 		vcpu->stat.preemption_other++; | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	vcpu->stat.preemption_reported++; | 
 | 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) | 
 | 		return; | 
 |  | 
 | 	if (vcpu->arch.st.preempted) | 
 | 		return; | 
 |  | 
 | 	/* This happens on process exit */ | 
 | 	if (unlikely(current->mm != vcpu->kvm->mm)) | 
 | 		return; | 
 |  | 
 | 	slots = kvm_memslots(vcpu->kvm); | 
 |  | 
 | 	if (unlikely(slots->generation != ghc->generation || | 
 | 		     gpa != ghc->gpa || | 
 | 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot)) | 
 | 		return; | 
 |  | 
 | 	st = (struct kvm_steal_time __user *)ghc->hva; | 
 | 	BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted)); | 
 |  | 
 | 	if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted))) | 
 | 		vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED; | 
 |  | 
 | 	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); | 
 | } | 
 |  | 
 | void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	int idx; | 
 |  | 
 | 	if (vcpu->preempted) { | 
 | 		/* | 
 | 		 * Assume protected guests are in-kernel.  Inefficient yielding | 
 | 		 * due to false positives is preferable to never yielding due | 
 | 		 * to false negatives. | 
 | 		 */ | 
 | 		vcpu->arch.preempted_in_kernel = vcpu->arch.guest_state_protected || | 
 | 						 !kvm_x86_call(get_cpl_no_cache)(vcpu); | 
 |  | 
 | 		/* | 
 | 		 * Take the srcu lock as memslots will be accessed to check the gfn | 
 | 		 * cache generation against the memslots generation. | 
 | 		 */ | 
 | 		idx = srcu_read_lock(&vcpu->kvm->srcu); | 
 | 		if (kvm_xen_msr_enabled(vcpu->kvm)) | 
 | 			kvm_xen_runstate_set_preempted(vcpu); | 
 | 		else | 
 | 			kvm_steal_time_set_preempted(vcpu); | 
 | 		srcu_read_unlock(&vcpu->kvm->srcu, idx); | 
 | 	} | 
 |  | 
 | 	kvm_x86_call(vcpu_put)(vcpu); | 
 | 	vcpu->arch.last_host_tsc = rdtsc(); | 
 | } | 
 |  | 
 | static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, | 
 | 				    struct kvm_lapic_state *s) | 
 | { | 
 | 	if (vcpu->arch.apic->guest_apic_protected) | 
 | 		return -EINVAL; | 
 |  | 
 | 	kvm_x86_call(sync_pir_to_irr)(vcpu); | 
 |  | 
 | 	return kvm_apic_get_state(vcpu, s); | 
 | } | 
 |  | 
 | static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, | 
 | 				    struct kvm_lapic_state *s) | 
 | { | 
 | 	int r; | 
 |  | 
 | 	if (vcpu->arch.apic->guest_apic_protected) | 
 | 		return -EINVAL; | 
 |  | 
 | 	r = kvm_apic_set_state(vcpu, s); | 
 | 	if (r) | 
 | 		return r; | 
 | 	update_cr8_intercept(vcpu); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	/* | 
 | 	 * We can accept userspace's request for interrupt injection | 
 | 	 * as long as we have a place to store the interrupt number. | 
 | 	 * The actual injection will happen when the CPU is able to | 
 | 	 * deliver the interrupt. | 
 | 	 */ | 
 | 	if (kvm_cpu_has_extint(vcpu)) | 
 | 		return false; | 
 |  | 
 | 	/* Acknowledging ExtINT does not happen if LINT0 is masked.  */ | 
 | 	return (!lapic_in_kernel(vcpu) || | 
 | 		kvm_apic_accept_pic_intr(vcpu)); | 
 | } | 
 |  | 
 | static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	/* | 
 | 	 * Do not cause an interrupt window exit if an exception | 
 | 	 * is pending or an event needs reinjection; userspace | 
 | 	 * might want to inject the interrupt manually using KVM_SET_REGS | 
 | 	 * or KVM_SET_SREGS.  For that to work, we must be at an | 
 | 	 * instruction boundary and with no events half-injected. | 
 | 	 */ | 
 | 	return (kvm_arch_interrupt_allowed(vcpu) && | 
 | 		kvm_cpu_accept_dm_intr(vcpu) && | 
 | 		!kvm_event_needs_reinjection(vcpu) && | 
 | 		!kvm_is_exception_pending(vcpu)); | 
 | } | 
 |  | 
 | static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, | 
 | 				    struct kvm_interrupt *irq) | 
 | { | 
 | 	if (irq->irq >= KVM_NR_INTERRUPTS) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (!irqchip_in_kernel(vcpu->kvm)) { | 
 | 		kvm_queue_interrupt(vcpu, irq->irq, false); | 
 | 		kvm_make_request(KVM_REQ_EVENT, vcpu); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so | 
 | 	 * fail for in-kernel 8259. | 
 | 	 */ | 
 | 	if (pic_in_kernel(vcpu->kvm)) | 
 | 		return -ENXIO; | 
 |  | 
 | 	if (vcpu->arch.pending_external_vector != -1) | 
 | 		return -EEXIST; | 
 |  | 
 | 	vcpu->arch.pending_external_vector = irq->irq; | 
 | 	kvm_make_request(KVM_REQ_EVENT, vcpu); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	kvm_inject_nmi(vcpu); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, | 
 | 					   struct kvm_tpr_access_ctl *tac) | 
 | { | 
 | 	if (tac->flags) | 
 | 		return -EINVAL; | 
 | 	vcpu->arch.tpr_access_reporting = !!tac->enabled; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, | 
 | 					u64 mcg_cap) | 
 | { | 
 | 	int r; | 
 | 	unsigned bank_num = mcg_cap & 0xff, bank; | 
 |  | 
 | 	r = -EINVAL; | 
 | 	if (!bank_num || bank_num > KVM_MAX_MCE_BANKS) | 
 | 		goto out; | 
 | 	if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000)) | 
 | 		goto out; | 
 | 	r = 0; | 
 | 	vcpu->arch.mcg_cap = mcg_cap; | 
 | 	/* Init IA32_MCG_CTL to all 1s */ | 
 | 	if (mcg_cap & MCG_CTL_P) | 
 | 		vcpu->arch.mcg_ctl = ~(u64)0; | 
 | 	/* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */ | 
 | 	for (bank = 0; bank < bank_num; bank++) { | 
 | 		vcpu->arch.mce_banks[bank*4] = ~(u64)0; | 
 | 		if (mcg_cap & MCG_CMCI_P) | 
 | 			vcpu->arch.mci_ctl2_banks[bank] = 0; | 
 | 	} | 
 |  | 
 | 	kvm_apic_after_set_mcg_cap(vcpu); | 
 |  | 
 | 	kvm_x86_call(setup_mce)(vcpu); | 
 | out: | 
 | 	return r; | 
 | } | 
 |  | 
 | /* | 
 |  * Validate this is an UCNA (uncorrectable no action) error by checking the | 
 |  * MCG_STATUS and MCi_STATUS registers: | 
 |  * - none of the bits for Machine Check Exceptions are set | 
 |  * - both the VAL (valid) and UC (uncorrectable) bits are set | 
 |  * MCI_STATUS_PCC - Processor Context Corrupted | 
 |  * MCI_STATUS_S - Signaled as a Machine Check Exception | 
 |  * MCI_STATUS_AR - Software recoverable Action Required | 
 |  */ | 
 | static bool is_ucna(struct kvm_x86_mce *mce) | 
 | { | 
 | 	return	!mce->mcg_status && | 
 | 		!(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) && | 
 | 		(mce->status & MCI_STATUS_VAL) && | 
 | 		(mce->status & MCI_STATUS_UC); | 
 | } | 
 |  | 
 | static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks) | 
 | { | 
 | 	u64 mcg_cap = vcpu->arch.mcg_cap; | 
 |  | 
 | 	banks[1] = mce->status; | 
 | 	banks[2] = mce->addr; | 
 | 	banks[3] = mce->misc; | 
 | 	vcpu->arch.mcg_status = mce->mcg_status; | 
 |  | 
 | 	if (!(mcg_cap & MCG_CMCI_P) || | 
 | 	    !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN)) | 
 | 		return 0; | 
 |  | 
 | 	if (lapic_in_kernel(vcpu)) | 
 | 		kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, | 
 | 				      struct kvm_x86_mce *mce) | 
 | { | 
 | 	u64 mcg_cap = vcpu->arch.mcg_cap; | 
 | 	unsigned bank_num = mcg_cap & 0xff; | 
 | 	u64 *banks = vcpu->arch.mce_banks; | 
 |  | 
 | 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	banks += array_index_nospec(4 * mce->bank, 4 * bank_num); | 
 |  | 
 | 	if (is_ucna(mce)) | 
 | 		return kvm_vcpu_x86_set_ucna(vcpu, mce, banks); | 
 |  | 
 | 	/* | 
 | 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error | 
 | 	 * reporting is disabled | 
 | 	 */ | 
 | 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && | 
 | 	    vcpu->arch.mcg_ctl != ~(u64)0) | 
 | 		return 0; | 
 | 	/* | 
 | 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error | 
 | 	 * reporting is disabled for the bank | 
 | 	 */ | 
 | 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) | 
 | 		return 0; | 
 | 	if (mce->status & MCI_STATUS_UC) { | 
 | 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || | 
 | 		    !kvm_is_cr4_bit_set(vcpu, X86_CR4_MCE)) { | 
 | 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); | 
 | 			return 0; | 
 | 		} | 
 | 		if (banks[1] & MCI_STATUS_VAL) | 
 | 			mce->status |= MCI_STATUS_OVER; | 
 | 		banks[2] = mce->addr; | 
 | 		banks[3] = mce->misc; | 
 | 		vcpu->arch.mcg_status = mce->mcg_status; | 
 | 		banks[1] = mce->status; | 
 | 		kvm_queue_exception(vcpu, MC_VECTOR); | 
 | 	} else if (!(banks[1] & MCI_STATUS_VAL) | 
 | 		   || !(banks[1] & MCI_STATUS_UC)) { | 
 | 		if (banks[1] & MCI_STATUS_VAL) | 
 | 			mce->status |= MCI_STATUS_OVER; | 
 | 		banks[2] = mce->addr; | 
 | 		banks[3] = mce->misc; | 
 | 		banks[1] = mce->status; | 
 | 	} else | 
 | 		banks[1] |= MCI_STATUS_OVER; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, | 
 | 					       struct kvm_vcpu_events *events) | 
 | { | 
 | 	struct kvm_queued_exception *ex; | 
 |  | 
 | 	process_nmi(vcpu); | 
 |  | 
 | #ifdef CONFIG_KVM_SMM | 
 | 	if (kvm_check_request(KVM_REQ_SMI, vcpu)) | 
 | 		process_smi(vcpu); | 
 | #endif | 
 |  | 
 | 	/* | 
 | 	 * KVM's ABI only allows for one exception to be migrated.  Luckily, | 
 | 	 * the only time there can be two queued exceptions is if there's a | 
 | 	 * non-exiting _injected_ exception, and a pending exiting exception. | 
 | 	 * In that case, ignore the VM-Exiting exception as it's an extension | 
 | 	 * of the injected exception. | 
 | 	 */ | 
 | 	if (vcpu->arch.exception_vmexit.pending && | 
 | 	    !vcpu->arch.exception.pending && | 
 | 	    !vcpu->arch.exception.injected) | 
 | 		ex = &vcpu->arch.exception_vmexit; | 
 | 	else | 
 | 		ex = &vcpu->arch.exception; | 
 |  | 
 | 	/* | 
 | 	 * In guest mode, payload delivery should be deferred if the exception | 
 | 	 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1 | 
 | 	 * intercepts #PF, ditto for DR6 and #DBs.  If the per-VM capability, | 
 | 	 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not | 
 | 	 * propagate the payload and so it cannot be safely deferred.  Deliver | 
 | 	 * the payload if the capability hasn't been requested. | 
 | 	 */ | 
 | 	if (!vcpu->kvm->arch.exception_payload_enabled && | 
 | 	    ex->pending && ex->has_payload) | 
 | 		kvm_deliver_exception_payload(vcpu, ex); | 
 |  | 
 | 	memset(events, 0, sizeof(*events)); | 
 |  | 
 | 	/* | 
 | 	 * The API doesn't provide the instruction length for software | 
 | 	 * exceptions, so don't report them. As long as the guest RIP | 
 | 	 * isn't advanced, we should expect to encounter the exception | 
 | 	 * again. | 
 | 	 */ | 
 | 	if (!kvm_exception_is_soft(ex->vector)) { | 
 | 		events->exception.injected = ex->injected; | 
 | 		events->exception.pending = ex->pending; | 
 | 		/* | 
 | 		 * For ABI compatibility, deliberately conflate | 
 | 		 * pending and injected exceptions when | 
 | 		 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled. | 
 | 		 */ | 
 | 		if (!vcpu->kvm->arch.exception_payload_enabled) | 
 | 			events->exception.injected |= ex->pending; | 
 | 	} | 
 | 	events->exception.nr = ex->vector; | 
 | 	events->exception.has_error_code = ex->has_error_code; | 
 | 	events->exception.error_code = ex->error_code; | 
 | 	events->exception_has_payload = ex->has_payload; | 
 | 	events->exception_payload = ex->payload; | 
 |  | 
 | 	events->interrupt.injected = | 
 | 		vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft; | 
 | 	events->interrupt.nr = vcpu->arch.interrupt.nr; | 
 | 	events->interrupt.shadow = kvm_x86_call(get_interrupt_shadow)(vcpu); | 
 |  | 
 | 	events->nmi.injected = vcpu->arch.nmi_injected; | 
 | 	events->nmi.pending = kvm_get_nr_pending_nmis(vcpu); | 
 | 	events->nmi.masked = kvm_x86_call(get_nmi_mask)(vcpu); | 
 |  | 
 | 	/* events->sipi_vector is never valid when reporting to user space */ | 
 |  | 
 | #ifdef CONFIG_KVM_SMM | 
 | 	events->smi.smm = is_smm(vcpu); | 
 | 	events->smi.pending = vcpu->arch.smi_pending; | 
 | 	events->smi.smm_inside_nmi = | 
 | 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK); | 
 | #endif | 
 | 	events->smi.latched_init = kvm_lapic_latched_init(vcpu); | 
 |  | 
 | 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING | 
 | 			 | KVM_VCPUEVENT_VALID_SHADOW | 
 | 			 | KVM_VCPUEVENT_VALID_SMM); | 
 | 	if (vcpu->kvm->arch.exception_payload_enabled) | 
 | 		events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD; | 
 | 	if (vcpu->kvm->arch.triple_fault_event) { | 
 | 		events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu); | 
 | 		events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT; | 
 | 	} | 
 | } | 
 |  | 
 | static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, | 
 | 					      struct kvm_vcpu_events *events) | 
 | { | 
 | 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING | 
 | 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR | 
 | 			      | KVM_VCPUEVENT_VALID_SHADOW | 
 | 			      | KVM_VCPUEVENT_VALID_SMM | 
 | 			      | KVM_VCPUEVENT_VALID_PAYLOAD | 
 | 			      | KVM_VCPUEVENT_VALID_TRIPLE_FAULT)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) { | 
 | 		if (!vcpu->kvm->arch.exception_payload_enabled) | 
 | 			return -EINVAL; | 
 | 		if (events->exception.pending) | 
 | 			events->exception.injected = 0; | 
 | 		else | 
 | 			events->exception_has_payload = 0; | 
 | 	} else { | 
 | 		events->exception.pending = 0; | 
 | 		events->exception_has_payload = 0; | 
 | 	} | 
 |  | 
 | 	if ((events->exception.injected || events->exception.pending) && | 
 | 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	process_nmi(vcpu); | 
 |  | 
 | 	/* | 
 | 	 * Flag that userspace is stuffing an exception, the next KVM_RUN will | 
 | 	 * morph the exception to a VM-Exit if appropriate.  Do this only for | 
 | 	 * pending exceptions, already-injected exceptions are not subject to | 
 | 	 * intercpetion.  Note, userspace that conflates pending and injected | 
 | 	 * is hosed, and will incorrectly convert an injected exception into a | 
 | 	 * pending exception, which in turn may cause a spurious VM-Exit. | 
 | 	 */ | 
 | 	vcpu->arch.exception_from_userspace = events->exception.pending; | 
 |  | 
 | 	vcpu->arch.exception_vmexit.pending = false; | 
 |  | 
 | 	vcpu->arch.exception.injected = events->exception.injected; | 
 | 	vcpu->arch.exception.pending = events->exception.pending; | 
 | 	vcpu->arch.exception.vector = events->exception.nr; | 
 | 	vcpu->arch.exception.has_error_code = events->exception.has_error_code; | 
 | 	vcpu->arch.exception.error_code = events->exception.error_code; | 
 | 	vcpu->arch.exception.has_payload = events->exception_has_payload; | 
 | 	vcpu->arch.exception.payload = events->exception_payload; | 
 |  | 
 | 	vcpu->arch.interrupt.injected = events->interrupt.injected; | 
 | 	vcpu->arch.interrupt.nr = events->interrupt.nr; | 
 | 	vcpu->arch.interrupt.soft = events->interrupt.soft; | 
 | 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) | 
 | 		kvm_x86_call(set_interrupt_shadow)(vcpu, | 
 | 						   events->interrupt.shadow); | 
 |  | 
 | 	vcpu->arch.nmi_injected = events->nmi.injected; | 
 | 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) { | 
 | 		vcpu->arch.nmi_pending = 0; | 
 | 		atomic_set(&vcpu->arch.nmi_queued, events->nmi.pending); | 
 | 		if (events->nmi.pending) | 
 | 			kvm_make_request(KVM_REQ_NMI, vcpu); | 
 | 	} | 
 | 	kvm_x86_call(set_nmi_mask)(vcpu, events->nmi.masked); | 
 |  | 
 | 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && | 
 | 	    lapic_in_kernel(vcpu)) | 
 | 		vcpu->arch.apic->sipi_vector = events->sipi_vector; | 
 |  | 
 | 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) { | 
 | #ifdef CONFIG_KVM_SMM | 
 | 		if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) { | 
 | 			kvm_leave_nested(vcpu); | 
 | 			kvm_smm_changed(vcpu, events->smi.smm); | 
 | 		} | 
 |  | 
 | 		vcpu->arch.smi_pending = events->smi.pending; | 
 |  | 
 | 		if (events->smi.smm) { | 
 | 			if (events->smi.smm_inside_nmi) | 
 | 				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; | 
 | 			else | 
 | 				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK; | 
 | 		} | 
 |  | 
 | #else | 
 | 		if (events->smi.smm || events->smi.pending || | 
 | 		    events->smi.smm_inside_nmi) | 
 | 			return -EINVAL; | 
 | #endif | 
 |  | 
 | 		if (lapic_in_kernel(vcpu)) { | 
 | 			if (events->smi.latched_init) | 
 | 				set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); | 
 | 			else | 
 | 				clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) { | 
 | 		if (!vcpu->kvm->arch.triple_fault_event) | 
 | 			return -EINVAL; | 
 | 		if (events->triple_fault.pending) | 
 | 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); | 
 | 		else | 
 | 			kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu); | 
 | 	} | 
 |  | 
 | 	kvm_make_request(KVM_REQ_EVENT, vcpu); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, | 
 | 					    struct kvm_debugregs *dbgregs) | 
 | { | 
 | 	unsigned int i; | 
 |  | 
 | 	if (vcpu->kvm->arch.has_protected_state && | 
 | 	    vcpu->arch.guest_state_protected) | 
 | 		return -EINVAL; | 
 |  | 
 | 	memset(dbgregs, 0, sizeof(*dbgregs)); | 
 |  | 
 | 	BUILD_BUG_ON(ARRAY_SIZE(vcpu->arch.db) != ARRAY_SIZE(dbgregs->db)); | 
 | 	for (i = 0; i < ARRAY_SIZE(vcpu->arch.db); i++) | 
 | 		dbgregs->db[i] = vcpu->arch.db[i]; | 
 |  | 
 | 	dbgregs->dr6 = vcpu->arch.dr6; | 
 | 	dbgregs->dr7 = vcpu->arch.dr7; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, | 
 | 					    struct kvm_debugregs *dbgregs) | 
 | { | 
 | 	unsigned int i; | 
 |  | 
 | 	if (vcpu->kvm->arch.has_protected_state && | 
 | 	    vcpu->arch.guest_state_protected) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (dbgregs->flags) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (!kvm_dr6_valid(dbgregs->dr6)) | 
 | 		return -EINVAL; | 
 | 	if (!kvm_dr7_valid(dbgregs->dr7)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	for (i = 0; i < ARRAY_SIZE(vcpu->arch.db); i++) | 
 | 		vcpu->arch.db[i] = dbgregs->db[i]; | 
 |  | 
 | 	kvm_update_dr0123(vcpu); | 
 | 	vcpu->arch.dr6 = dbgregs->dr6; | 
 | 	vcpu->arch.dr7 = dbgregs->dr7; | 
 | 	kvm_update_dr7(vcpu); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | static int kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu, | 
 | 					 u8 *state, unsigned int size) | 
 | { | 
 | 	/* | 
 | 	 * Only copy state for features that are enabled for the guest.  The | 
 | 	 * state itself isn't problematic, but setting bits in the header for | 
 | 	 * features that are supported in *this* host but not exposed to the | 
 | 	 * guest can result in KVM_SET_XSAVE failing when live migrating to a | 
 | 	 * compatible host without the features that are NOT exposed to the | 
 | 	 * guest. | 
 | 	 * | 
 | 	 * FP+SSE can always be saved/restored via KVM_{G,S}ET_XSAVE, even if | 
 | 	 * XSAVE/XCRO are not exposed to the guest, and even if XSAVE isn't | 
 | 	 * supported by the host. | 
 | 	 */ | 
 | 	u64 supported_xcr0 = vcpu->arch.guest_supported_xcr0 | | 
 | 			     XFEATURE_MASK_FPSSE; | 
 |  | 
 | 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) | 
 | 		return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0; | 
 |  | 
 | 	fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, state, size, | 
 | 				       supported_xcr0, vcpu->arch.pkru); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, | 
 | 					struct kvm_xsave *guest_xsave) | 
 | { | 
 | 	return kvm_vcpu_ioctl_x86_get_xsave2(vcpu, (void *)guest_xsave->region, | 
 | 					     sizeof(guest_xsave->region)); | 
 | } | 
 |  | 
 | static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, | 
 | 					struct kvm_xsave *guest_xsave) | 
 | { | 
 | 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) | 
 | 		return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0; | 
 |  | 
 | 	return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu, | 
 | 					      guest_xsave->region, | 
 | 					      kvm_caps.supported_xcr0, | 
 | 					      &vcpu->arch.pkru); | 
 | } | 
 |  | 
 | static int kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, | 
 | 				       struct kvm_xcrs *guest_xcrs) | 
 | { | 
 | 	if (vcpu->kvm->arch.has_protected_state && | 
 | 	    vcpu->arch.guest_state_protected) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) { | 
 | 		guest_xcrs->nr_xcrs = 0; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	guest_xcrs->nr_xcrs = 1; | 
 | 	guest_xcrs->flags = 0; | 
 | 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; | 
 | 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, | 
 | 				       struct kvm_xcrs *guest_xcrs) | 
 | { | 
 | 	int i, r = 0; | 
 |  | 
 | 	if (vcpu->kvm->arch.has_protected_state && | 
 | 	    vcpu->arch.guest_state_protected) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) | 
 | 		return -EINVAL; | 
 |  | 
 | 	for (i = 0; i < guest_xcrs->nr_xcrs; i++) | 
 | 		/* Only support XCR0 currently */ | 
 | 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { | 
 | 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, | 
 | 				guest_xcrs->xcrs[i].value); | 
 | 			break; | 
 | 		} | 
 | 	if (r) | 
 | 		r = -EINVAL; | 
 | 	return r; | 
 | } | 
 |  | 
 | /* | 
 |  * kvm_set_guest_paused() indicates to the guest kernel that it has been | 
 |  * stopped by the hypervisor.  This function will be called from the host only. | 
 |  * EINVAL is returned when the host attempts to set the flag for a guest that | 
 |  * does not support pv clocks. | 
 |  */ | 
 | static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	if (!vcpu->arch.pv_time.active) | 
 | 		return -EINVAL; | 
 | 	vcpu->arch.pvclock_set_guest_stopped_request = true; | 
 | 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu, | 
 | 				 struct kvm_device_attr *attr) | 
 | { | 
 | 	int r; | 
 |  | 
 | 	switch (attr->attr) { | 
 | 	case KVM_VCPU_TSC_OFFSET: | 
 | 		r = 0; | 
 | 		break; | 
 | 	default: | 
 | 		r = -ENXIO; | 
 | 	} | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu, | 
 | 				 struct kvm_device_attr *attr) | 
 | { | 
 | 	u64 __user *uaddr = u64_to_user_ptr(attr->addr); | 
 | 	int r; | 
 |  | 
 | 	switch (attr->attr) { | 
 | 	case KVM_VCPU_TSC_OFFSET: | 
 | 		r = -EFAULT; | 
 | 		if (put_user(vcpu->arch.l1_tsc_offset, uaddr)) | 
 | 			break; | 
 | 		r = 0; | 
 | 		break; | 
 | 	default: | 
 | 		r = -ENXIO; | 
 | 	} | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu, | 
 | 				 struct kvm_device_attr *attr) | 
 | { | 
 | 	u64 __user *uaddr = u64_to_user_ptr(attr->addr); | 
 | 	struct kvm *kvm = vcpu->kvm; | 
 | 	int r; | 
 |  | 
 | 	switch (attr->attr) { | 
 | 	case KVM_VCPU_TSC_OFFSET: { | 
 | 		u64 offset, tsc, ns; | 
 | 		unsigned long flags; | 
 | 		bool matched; | 
 |  | 
 | 		r = -EFAULT; | 
 | 		if (get_user(offset, uaddr)) | 
 | 			break; | 
 |  | 
 | 		raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); | 
 |  | 
 | 		matched = (vcpu->arch.virtual_tsc_khz && | 
 | 			   kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz && | 
 | 			   kvm->arch.last_tsc_offset == offset); | 
 |  | 
 | 		tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset; | 
 | 		ns = get_kvmclock_base_ns(); | 
 |  | 
 | 		__kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched, true); | 
 | 		raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); | 
 |  | 
 | 		r = 0; | 
 | 		break; | 
 | 	} | 
 | 	default: | 
 | 		r = -ENXIO; | 
 | 	} | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu, | 
 | 				      unsigned int ioctl, | 
 | 				      void __user *argp) | 
 | { | 
 | 	struct kvm_device_attr attr; | 
 | 	int r; | 
 |  | 
 | 	if (copy_from_user(&attr, argp, sizeof(attr))) | 
 | 		return -EFAULT; | 
 |  | 
 | 	if (attr.group != KVM_VCPU_TSC_CTRL) | 
 | 		return -ENXIO; | 
 |  | 
 | 	switch (ioctl) { | 
 | 	case KVM_HAS_DEVICE_ATTR: | 
 | 		r = kvm_arch_tsc_has_attr(vcpu, &attr); | 
 | 		break; | 
 | 	case KVM_GET_DEVICE_ATTR: | 
 | 		r = kvm_arch_tsc_get_attr(vcpu, &attr); | 
 | 		break; | 
 | 	case KVM_SET_DEVICE_ATTR: | 
 | 		r = kvm_arch_tsc_set_attr(vcpu, &attr); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, | 
 | 				     struct kvm_enable_cap *cap) | 
 | { | 
 | 	if (cap->flags) | 
 | 		return -EINVAL; | 
 |  | 
 | 	switch (cap->cap) { | 
 | #ifdef CONFIG_KVM_HYPERV | 
 | 	case KVM_CAP_HYPERV_SYNIC2: | 
 | 		if (cap->args[0]) | 
 | 			return -EINVAL; | 
 | 		fallthrough; | 
 |  | 
 | 	case KVM_CAP_HYPERV_SYNIC: | 
 | 		if (!irqchip_in_kernel(vcpu->kvm)) | 
 | 			return -EINVAL; | 
 | 		return kvm_hv_activate_synic(vcpu, cap->cap == | 
 | 					     KVM_CAP_HYPERV_SYNIC2); | 
 | 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: | 
 | 		{ | 
 | 			int r; | 
 | 			uint16_t vmcs_version; | 
 | 			void __user *user_ptr; | 
 |  | 
 | 			if (!kvm_x86_ops.nested_ops->enable_evmcs) | 
 | 				return -ENOTTY; | 
 | 			r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version); | 
 | 			if (!r) { | 
 | 				user_ptr = (void __user *)(uintptr_t)cap->args[0]; | 
 | 				if (copy_to_user(user_ptr, &vmcs_version, | 
 | 						 sizeof(vmcs_version))) | 
 | 					r = -EFAULT; | 
 | 			} | 
 | 			return r; | 
 | 		} | 
 | 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: | 
 | 		if (!kvm_x86_ops.enable_l2_tlb_flush) | 
 | 			return -ENOTTY; | 
 |  | 
 | 		return kvm_x86_call(enable_l2_tlb_flush)(vcpu); | 
 |  | 
 | 	case KVM_CAP_HYPERV_ENFORCE_CPUID: | 
 | 		return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]); | 
 | #endif | 
 |  | 
 | 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: | 
 | 		vcpu->arch.pv_cpuid.enforce = cap->args[0]; | 
 | 		return 0; | 
 | 	default: | 
 | 		return -EINVAL; | 
 | 	} | 
 | } | 
 |  | 
 | long kvm_arch_vcpu_ioctl(struct file *filp, | 
 | 			 unsigned int ioctl, unsigned long arg) | 
 | { | 
 | 	struct kvm_vcpu *vcpu = filp->private_data; | 
 | 	void __user *argp = (void __user *)arg; | 
 | 	int r; | 
 | 	union { | 
 | 		struct kvm_sregs2 *sregs2; | 
 | 		struct kvm_lapic_state *lapic; | 
 | 		struct kvm_xsave *xsave; | 
 | 		struct kvm_xcrs *xcrs; | 
 | 		void *buffer; | 
 | 	} u; | 
 |  | 
 | 	vcpu_load(vcpu); | 
 |  | 
 | 	u.buffer = NULL; | 
 | 	switch (ioctl) { | 
 | 	case KVM_GET_LAPIC: { | 
 | 		r = -EINVAL; | 
 | 		if (!lapic_in_kernel(vcpu)) | 
 | 			goto out; | 
 | 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL); | 
 |  | 
 | 		r = -ENOMEM; | 
 | 		if (!u.lapic) | 
 | 			goto out; | 
 | 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); | 
 | 		if (r) | 
 | 			goto out; | 
 | 		r = -EFAULT; | 
 | 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) | 
 | 			goto out; | 
 | 		r = 0; | 
 | 		break; | 
 | 	} | 
 | 	case KVM_SET_LAPIC: { | 
 | 		r = -EINVAL; | 
 | 		if (!lapic_in_kernel(vcpu)) | 
 | 			goto out; | 
 | 		u.lapic = memdup_user(argp, sizeof(*u.lapic)); | 
 | 		if (IS_ERR(u.lapic)) { | 
 | 			r = PTR_ERR(u.lapic); | 
 | 			goto out_nofree; | 
 | 		} | 
 |  | 
 | 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); | 
 | 		break; | 
 | 	} | 
 | 	case KVM_INTERRUPT: { | 
 | 		struct kvm_interrupt irq; | 
 |  | 
 | 		r = -EFAULT; | 
 | 		if (copy_from_user(&irq, argp, sizeof(irq))) | 
 | 			goto out; | 
 | 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); | 
 | 		break; | 
 | 	} | 
 | 	case KVM_NMI: { | 
 | 		r = kvm_vcpu_ioctl_nmi(vcpu); | 
 | 		break; | 
 | 	} | 
 | 	case KVM_SMI: { | 
 | 		r = kvm_inject_smi(vcpu); | 
 | 		break; | 
 | 	} | 
 | 	case KVM_SET_CPUID: { | 
 | 		struct kvm_cpuid __user *cpuid_arg = argp; | 
 | 		struct kvm_cpuid cpuid; | 
 |  | 
 | 		r = -EFAULT; | 
 | 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) | 
 | 			goto out; | 
 | 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); | 
 | 		break; | 
 | 	} | 
 | 	case KVM_SET_CPUID2: { | 
 | 		struct kvm_cpuid2 __user *cpuid_arg = argp; | 
 | 		struct kvm_cpuid2 cpuid; | 
 |  | 
 | 		r = -EFAULT; | 
 | 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) | 
 | 			goto out; | 
 | 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, | 
 | 					      cpuid_arg->entries); | 
 | 		break; | 
 | 	} | 
 | 	case KVM_GET_CPUID2: { | 
 | 		struct kvm_cpuid2 __user *cpuid_arg = argp; | 
 | 		struct kvm_cpuid2 cpuid; | 
 |  | 
 | 		r = -EFAULT; | 
 | 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) | 
 | 			goto out; | 
 | 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, | 
 | 					      cpuid_arg->entries); | 
 | 		if (r) | 
 | 			goto out; | 
 | 		r = -EFAULT; | 
 | 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) | 
 | 			goto out; | 
 | 		r = 0; | 
 | 		break; | 
 | 	} | 
 | 	case KVM_GET_MSRS: { | 
 | 		int idx = srcu_read_lock(&vcpu->kvm->srcu); | 
 | 		r = msr_io(vcpu, argp, do_get_msr, 1); | 
 | 		srcu_read_unlock(&vcpu->kvm->srcu, idx); | 
 | 		break; | 
 | 	} | 
 | 	case KVM_SET_MSRS: { | 
 | 		int idx = srcu_read_lock(&vcpu->kvm->srcu); | 
 | 		r = msr_io(vcpu, argp, do_set_msr, 0); | 
 | 		srcu_read_unlock(&vcpu->kvm->srcu, idx); | 
 | 		break; | 
 | 	} | 
 | 	case KVM_TPR_ACCESS_REPORTING: { | 
 | 		struct kvm_tpr_access_ctl tac; | 
 |  | 
 | 		r = -EFAULT; | 
 | 		if (copy_from_user(&tac, argp, sizeof(tac))) | 
 | 			goto out; | 
 | 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); | 
 | 		if (r) | 
 | 			goto out; | 
 | 		r = -EFAULT; | 
 | 		if (copy_to_user(argp, &tac, sizeof(tac))) | 
 | 			goto out; | 
 | 		r = 0; | 
 | 		break; | 
 | 	}; | 
 | 	case KVM_SET_VAPIC_ADDR: { | 
 | 		struct kvm_vapic_addr va; | 
 | 		int idx; | 
 |  | 
 | 		r = -EINVAL; | 
 | 		if (!lapic_in_kernel(vcpu)) | 
 | 			goto out; | 
 | 		r = -EFAULT; | 
 | 		if (copy_from_user(&va, argp, sizeof(va))) | 
 | 			goto out; | 
 | 		idx = srcu_read_lock(&vcpu->kvm->srcu); | 
 | 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); | 
 | 		srcu_read_unlock(&vcpu->kvm->srcu, idx); | 
 | 		break; | 
 | 	} | 
 | 	case KVM_X86_SETUP_MCE: { | 
 | 		u64 mcg_cap; | 
 |  | 
 | 		r = -EFAULT; | 
 | 		if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap))) | 
 | 			goto out; | 
 | 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); | 
 | 		break; | 
 | 	} | 
 | 	case KVM_X86_SET_MCE: { | 
 | 		struct kvm_x86_mce mce; | 
 |  | 
 | 		r = -EFAULT; | 
 | 		if (copy_from_user(&mce, argp, sizeof(mce))) | 
 | 			goto out; | 
 | 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); | 
 | 		break; | 
 | 	} | 
 | 	case KVM_GET_VCPU_EVENTS: { | 
 | 		struct kvm_vcpu_events events; | 
 |  | 
 | 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); | 
 |  | 
 | 		r = -EFAULT; | 
 | 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) | 
 | 			break; | 
 | 		r = 0; | 
 | 		break; | 
 | 	} | 
 | 	case KVM_SET_VCPU_EVENTS: { | 
 | 		struct kvm_vcpu_events events; | 
 |  | 
 | 		r = -EFAULT; | 
 | 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) | 
 | 			break; | 
 |  | 
 | 		kvm_vcpu_srcu_read_lock(vcpu); | 
 | 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); | 
 | 		kvm_vcpu_srcu_read_unlock(vcpu); | 
 | 		break; | 
 | 	} | 
 | 	case KVM_GET_DEBUGREGS: { | 
 | 		struct kvm_debugregs dbgregs; | 
 |  | 
 | 		r = kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); | 
 | 		if (r < 0) | 
 | 			break; | 
 |  | 
 | 		r = -EFAULT; | 
 | 		if (copy_to_user(argp, &dbgregs, | 
 | 				 sizeof(struct kvm_debugregs))) | 
 | 			break; | 
 | 		r = 0; | 
 | 		break; | 
 | 	} | 
 | 	case KVM_SET_DEBUGREGS: { | 
 | 		struct kvm_debugregs dbgregs; | 
 |  | 
 | 		r = -EFAULT; | 
 | 		if (copy_from_user(&dbgregs, argp, | 
 | 				   sizeof(struct kvm_debugregs))) | 
 | 			break; | 
 |  | 
 | 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); | 
 | 		break; | 
 | 	} | 
 | 	case KVM_GET_XSAVE: { | 
 | 		r = -EINVAL; | 
 | 		if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave)) | 
 | 			break; | 
 |  | 
 | 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL); | 
 | 		r = -ENOMEM; | 
 | 		if (!u.xsave) | 
 | 			break; | 
 |  | 
 | 		r = kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); | 
 | 		if (r < 0) | 
 | 			break; | 
 |  | 
 | 		r = -EFAULT; | 
 | 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) | 
 | 			break; | 
 | 		r = 0; | 
 | 		break; | 
 | 	} | 
 | 	case KVM_SET_XSAVE: { | 
 | 		int size = vcpu->arch.guest_fpu.uabi_size; | 
 |  | 
 | 		u.xsave = memdup_user(argp, size); | 
 | 		if (IS_ERR(u.xsave)) { | 
 | 			r = PTR_ERR(u.xsave); | 
 | 			goto out_nofree; | 
 | 		} | 
 |  | 
 | 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	case KVM_GET_XSAVE2: { | 
 | 		int size = vcpu->arch.guest_fpu.uabi_size; | 
 |  | 
 | 		u.xsave = kzalloc(size, GFP_KERNEL); | 
 | 		r = -ENOMEM; | 
 | 		if (!u.xsave) | 
 | 			break; | 
 |  | 
 | 		r = kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size); | 
 | 		if (r < 0) | 
 | 			break; | 
 |  | 
 | 		r = -EFAULT; | 
 | 		if (copy_to_user(argp, u.xsave, size)) | 
 | 			break; | 
 |  | 
 | 		r = 0; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	case KVM_GET_XCRS: { | 
 | 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL); | 
 | 		r = -ENOMEM; | 
 | 		if (!u.xcrs) | 
 | 			break; | 
 |  | 
 | 		r = kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); | 
 | 		if (r < 0) | 
 | 			break; | 
 |  | 
 | 		r = -EFAULT; | 
 | 		if (copy_to_user(argp, u.xcrs, | 
 | 				 sizeof(struct kvm_xcrs))) | 
 | 			break; | 
 | 		r = 0; | 
 | 		break; | 
 | 	} | 
 | 	case KVM_SET_XCRS: { | 
 | 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); | 
 | 		if (IS_ERR(u.xcrs)) { | 
 | 			r = PTR_ERR(u.xcrs); | 
 | 			goto out_nofree; | 
 | 		} | 
 |  | 
 | 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); | 
 | 		break; | 
 | 	} | 
 | 	case KVM_SET_TSC_KHZ: { | 
 | 		u32 user_tsc_khz; | 
 |  | 
 | 		r = -EINVAL; | 
 |  | 
 | 		if (vcpu->arch.guest_tsc_protected) | 
 | 			goto out; | 
 |  | 
 | 		user_tsc_khz = (u32)arg; | 
 |  | 
 | 		if (kvm_caps.has_tsc_control && | 
 | 		    user_tsc_khz >= kvm_caps.max_guest_tsc_khz) | 
 | 			goto out; | 
 |  | 
 | 		if (user_tsc_khz == 0) | 
 | 			user_tsc_khz = tsc_khz; | 
 |  | 
 | 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz)) | 
 | 			r = 0; | 
 |  | 
 | 		goto out; | 
 | 	} | 
 | 	case KVM_GET_TSC_KHZ: { | 
 | 		r = vcpu->arch.virtual_tsc_khz; | 
 | 		goto out; | 
 | 	} | 
 | 	case KVM_KVMCLOCK_CTRL: { | 
 | 		r = kvm_set_guest_paused(vcpu); | 
 | 		goto out; | 
 | 	} | 
 | 	case KVM_ENABLE_CAP: { | 
 | 		struct kvm_enable_cap cap; | 
 |  | 
 | 		r = -EFAULT; | 
 | 		if (copy_from_user(&cap, argp, sizeof(cap))) | 
 | 			goto out; | 
 | 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); | 
 | 		break; | 
 | 	} | 
 | 	case KVM_GET_NESTED_STATE: { | 
 | 		struct kvm_nested_state __user *user_kvm_nested_state = argp; | 
 | 		u32 user_data_size; | 
 |  | 
 | 		r = -EINVAL; | 
 | 		if (!kvm_x86_ops.nested_ops->get_state) | 
 | 			break; | 
 |  | 
 | 		BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size)); | 
 | 		r = -EFAULT; | 
 | 		if (get_user(user_data_size, &user_kvm_nested_state->size)) | 
 | 			break; | 
 |  | 
 | 		r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state, | 
 | 						     user_data_size); | 
 | 		if (r < 0) | 
 | 			break; | 
 |  | 
 | 		if (r > user_data_size) { | 
 | 			if (put_user(r, &user_kvm_nested_state->size)) | 
 | 				r = -EFAULT; | 
 | 			else | 
 | 				r = -E2BIG; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		r = 0; | 
 | 		break; | 
 | 	} | 
 | 	case KVM_SET_NESTED_STATE: { | 
 | 		struct kvm_nested_state __user *user_kvm_nested_state = argp; | 
 | 		struct kvm_nested_state kvm_state; | 
 | 		int idx; | 
 |  | 
 | 		r = -EINVAL; | 
 | 		if (!kvm_x86_ops.nested_ops->set_state) | 
 | 			break; | 
 |  | 
 | 		r = -EFAULT; | 
 | 		if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state))) | 
 | 			break; | 
 |  | 
 | 		r = -EINVAL; | 
 | 		if (kvm_state.size < sizeof(kvm_state)) | 
 | 			break; | 
 |  | 
 | 		if (kvm_state.flags & | 
 | 		    ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE | 
 | 		      | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING | 
 | 		      | KVM_STATE_NESTED_GIF_SET)) | 
 | 			break; | 
 |  | 
 | 		/* nested_run_pending implies guest_mode.  */ | 
 | 		if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING) | 
 | 		    && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE)) | 
 | 			break; | 
 |  | 
 | 		idx = srcu_read_lock(&vcpu->kvm->srcu); | 
 | 		r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state); | 
 | 		srcu_read_unlock(&vcpu->kvm->srcu, idx); | 
 | 		break; | 
 | 	} | 
 | #ifdef CONFIG_KVM_HYPERV | 
 | 	case KVM_GET_SUPPORTED_HV_CPUID: | 
 | 		r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp); | 
 | 		break; | 
 | #endif | 
 | #ifdef CONFIG_KVM_XEN | 
 | 	case KVM_XEN_VCPU_GET_ATTR: { | 
 | 		struct kvm_xen_vcpu_attr xva; | 
 |  | 
 | 		r = -EFAULT; | 
 | 		if (copy_from_user(&xva, argp, sizeof(xva))) | 
 | 			goto out; | 
 | 		r = kvm_xen_vcpu_get_attr(vcpu, &xva); | 
 | 		if (!r && copy_to_user(argp, &xva, sizeof(xva))) | 
 | 			r = -EFAULT; | 
 | 		break; | 
 | 	} | 
 | 	case KVM_XEN_VCPU_SET_ATTR: { | 
 | 		struct kvm_xen_vcpu_attr xva; | 
 |  | 
 | 		r = -EFAULT; | 
 | 		if (copy_from_user(&xva, argp, sizeof(xva))) | 
 | 			goto out; | 
 | 		r = kvm_xen_vcpu_set_attr(vcpu, &xva); | 
 | 		break; | 
 | 	} | 
 | #endif | 
 | 	case KVM_GET_SREGS2: { | 
 | 		r = -EINVAL; | 
 | 		if (vcpu->kvm->arch.has_protected_state && | 
 | 		    vcpu->arch.guest_state_protected) | 
 | 			goto out; | 
 |  | 
 | 		u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL); | 
 | 		r = -ENOMEM; | 
 | 		if (!u.sregs2) | 
 | 			goto out; | 
 | 		__get_sregs2(vcpu, u.sregs2); | 
 | 		r = -EFAULT; | 
 | 		if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2))) | 
 | 			goto out; | 
 | 		r = 0; | 
 | 		break; | 
 | 	} | 
 | 	case KVM_SET_SREGS2: { | 
 | 		r = -EINVAL; | 
 | 		if (vcpu->kvm->arch.has_protected_state && | 
 | 		    vcpu->arch.guest_state_protected) | 
 | 			goto out; | 
 |  | 
 | 		u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2)); | 
 | 		if (IS_ERR(u.sregs2)) { | 
 | 			r = PTR_ERR(u.sregs2); | 
 | 			u.sregs2 = NULL; | 
 | 			goto out; | 
 | 		} | 
 | 		r = __set_sregs2(vcpu, u.sregs2); | 
 | 		break; | 
 | 	} | 
 | 	case KVM_HAS_DEVICE_ATTR: | 
 | 	case KVM_GET_DEVICE_ATTR: | 
 | 	case KVM_SET_DEVICE_ATTR: | 
 | 		r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp); | 
 | 		break; | 
 | 	case KVM_MEMORY_ENCRYPT_OP: | 
 | 		r = -ENOTTY; | 
 | 		if (!kvm_x86_ops.vcpu_mem_enc_ioctl) | 
 | 			goto out; | 
 | 		r = kvm_x86_ops.vcpu_mem_enc_ioctl(vcpu, argp); | 
 | 		break; | 
 | 	default: | 
 | 		r = -EINVAL; | 
 | 	} | 
 | out: | 
 | 	kfree(u.buffer); | 
 | out_nofree: | 
 | 	vcpu_put(vcpu); | 
 | 	return r; | 
 | } | 
 |  | 
 | vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) | 
 | { | 
 | 	return VM_FAULT_SIGBUS; | 
 | } | 
 |  | 
 | static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	if (addr > (unsigned int)(-3 * PAGE_SIZE)) | 
 | 		return -EINVAL; | 
 | 	ret = kvm_x86_call(set_tss_addr)(kvm, addr); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, | 
 | 					      u64 ident_addr) | 
 | { | 
 | 	return kvm_x86_call(set_identity_map_addr)(kvm, ident_addr); | 
 | } | 
 |  | 
 | static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, | 
 | 					 unsigned long kvm_nr_mmu_pages) | 
 | { | 
 | 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) | 
 | 		return -EINVAL; | 
 |  | 
 | 	mutex_lock(&kvm->slots_lock); | 
 |  | 
 | 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); | 
 | 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; | 
 |  | 
 | 	mutex_unlock(&kvm->slots_lock); | 
 | 	return 0; | 
 | } | 
 |  | 
 | void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) | 
 | { | 
 |  | 
 | 	/* | 
 | 	 * Flush all CPUs' dirty log buffers to the  dirty_bitmap.  Called | 
 | 	 * before reporting dirty_bitmap to userspace.  KVM flushes the buffers | 
 | 	 * on all VM-Exits, thus we only need to kick running vCPUs to force a | 
 | 	 * VM-Exit. | 
 | 	 */ | 
 | 	struct kvm_vcpu *vcpu; | 
 | 	unsigned long i; | 
 |  | 
 | 	if (!kvm->arch.cpu_dirty_log_size) | 
 | 		return; | 
 |  | 
 | 	kvm_for_each_vcpu(i, vcpu, kvm) | 
 | 		kvm_vcpu_kick(vcpu); | 
 | } | 
 |  | 
 | int kvm_vm_ioctl_enable_cap(struct kvm *kvm, | 
 | 			    struct kvm_enable_cap *cap) | 
 | { | 
 | 	int r; | 
 |  | 
 | 	if (cap->flags) | 
 | 		return -EINVAL; | 
 |  | 
 | 	switch (cap->cap) { | 
 | 	case KVM_CAP_DISABLE_QUIRKS2: | 
 | 		r = -EINVAL; | 
 | 		if (cap->args[0] & ~kvm_caps.supported_quirks) | 
 | 			break; | 
 | 		fallthrough; | 
 | 	case KVM_CAP_DISABLE_QUIRKS: | 
 | 		kvm->arch.disabled_quirks |= cap->args[0] & kvm_caps.supported_quirks; | 
 | 		r = 0; | 
 | 		break; | 
 | 	case KVM_CAP_SPLIT_IRQCHIP: { | 
 | 		mutex_lock(&kvm->lock); | 
 | 		r = -EINVAL; | 
 | 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS) | 
 | 			goto split_irqchip_unlock; | 
 | 		r = -EEXIST; | 
 | 		if (irqchip_in_kernel(kvm)) | 
 | 			goto split_irqchip_unlock; | 
 | 		if (kvm->created_vcpus) | 
 | 			goto split_irqchip_unlock; | 
 | 		/* Pairs with irqchip_in_kernel. */ | 
 | 		smp_wmb(); | 
 | 		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT; | 
 | 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0]; | 
 | 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); | 
 | 		r = 0; | 
 | split_irqchip_unlock: | 
 | 		mutex_unlock(&kvm->lock); | 
 | 		break; | 
 | 	} | 
 | 	case KVM_CAP_X2APIC_API: | 
 | 		r = -EINVAL; | 
 | 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS) | 
 | 			break; | 
 |  | 
 | 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS) | 
 | 			kvm->arch.x2apic_format = true; | 
 | 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) | 
 | 			kvm->arch.x2apic_broadcast_quirk_disabled = true; | 
 |  | 
 | 		r = 0; | 
 | 		break; | 
 | 	case KVM_CAP_X86_DISABLE_EXITS: | 
 | 		r = -EINVAL; | 
 | 		if (cap->args[0] & ~kvm_get_allowed_disable_exits()) | 
 | 			break; | 
 |  | 
 | 		mutex_lock(&kvm->lock); | 
 | 		if (kvm->created_vcpus) | 
 | 			goto disable_exits_unlock; | 
 |  | 
 | #define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \ | 
 | 		    "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests." | 
 |  | 
 | 		if (!mitigate_smt_rsb && boot_cpu_has_bug(X86_BUG_SMT_RSB) && | 
 | 		    cpu_smt_possible() && | 
 | 		    (cap->args[0] & ~(KVM_X86_DISABLE_EXITS_PAUSE | | 
 | 				      KVM_X86_DISABLE_EXITS_APERFMPERF))) | 
 | 			pr_warn_once(SMT_RSB_MSG); | 
 |  | 
 | 		kvm_disable_exits(kvm, cap->args[0]); | 
 | 		r = 0; | 
 | disable_exits_unlock: | 
 | 		mutex_unlock(&kvm->lock); | 
 | 		break; | 
 | 	case KVM_CAP_MSR_PLATFORM_INFO: | 
 | 		kvm->arch.guest_can_read_msr_platform_info = cap->args[0]; | 
 | 		r = 0; | 
 | 		break; | 
 | 	case KVM_CAP_EXCEPTION_PAYLOAD: | 
 | 		kvm->arch.exception_payload_enabled = cap->args[0]; | 
 | 		r = 0; | 
 | 		break; | 
 | 	case KVM_CAP_X86_TRIPLE_FAULT_EVENT: | 
 | 		kvm->arch.triple_fault_event = cap->args[0]; | 
 | 		r = 0; | 
 | 		break; | 
 | 	case KVM_CAP_X86_USER_SPACE_MSR: | 
 | 		r = -EINVAL; | 
 | 		if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK) | 
 | 			break; | 
 | 		kvm->arch.user_space_msr_mask = cap->args[0]; | 
 | 		r = 0; | 
 | 		break; | 
 | 	case KVM_CAP_X86_BUS_LOCK_EXIT: | 
 | 		r = -EINVAL; | 
 | 		if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE) | 
 | 			break; | 
 |  | 
 | 		if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) && | 
 | 		    (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)) | 
 | 			break; | 
 |  | 
 | 		if (kvm_caps.has_bus_lock_exit && | 
 | 		    cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT) | 
 | 			kvm->arch.bus_lock_detection_enabled = true; | 
 | 		r = 0; | 
 | 		break; | 
 | #ifdef CONFIG_X86_SGX_KVM | 
 | 	case KVM_CAP_SGX_ATTRIBUTE: { | 
 | 		unsigned long allowed_attributes = 0; | 
 |  | 
 | 		r = sgx_set_attribute(&allowed_attributes, cap->args[0]); | 
 | 		if (r) | 
 | 			break; | 
 |  | 
 | 		/* KVM only supports the PROVISIONKEY privileged attribute. */ | 
 | 		if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) && | 
 | 		    !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY)) | 
 | 			kvm->arch.sgx_provisioning_allowed = true; | 
 | 		else | 
 | 			r = -EINVAL; | 
 | 		break; | 
 | 	} | 
 | #endif | 
 | 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: | 
 | 		r = -EINVAL; | 
 | 		if (!kvm_x86_ops.vm_copy_enc_context_from) | 
 | 			break; | 
 |  | 
 | 		r = kvm_x86_call(vm_copy_enc_context_from)(kvm, cap->args[0]); | 
 | 		break; | 
 | 	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: | 
 | 		r = -EINVAL; | 
 | 		if (!kvm_x86_ops.vm_move_enc_context_from) | 
 | 			break; | 
 |  | 
 | 		r = kvm_x86_call(vm_move_enc_context_from)(kvm, cap->args[0]); | 
 | 		break; | 
 | 	case KVM_CAP_EXIT_HYPERCALL: | 
 | 		if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) { | 
 | 			r = -EINVAL; | 
 | 			break; | 
 | 		} | 
 | 		kvm->arch.hypercall_exit_enabled = cap->args[0]; | 
 | 		r = 0; | 
 | 		break; | 
 | 	case KVM_CAP_EXIT_ON_EMULATION_FAILURE: | 
 | 		r = -EINVAL; | 
 | 		if (cap->args[0] & ~1) | 
 | 			break; | 
 | 		kvm->arch.exit_on_emulation_error = cap->args[0]; | 
 | 		r = 0; | 
 | 		break; | 
 | 	case KVM_CAP_PMU_CAPABILITY: | 
 | 		r = -EINVAL; | 
 | 		if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK)) | 
 | 			break; | 
 |  | 
 | 		mutex_lock(&kvm->lock); | 
 | 		if (!kvm->created_vcpus) { | 
 | 			kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE); | 
 | 			r = 0; | 
 | 		} | 
 | 		mutex_unlock(&kvm->lock); | 
 | 		break; | 
 | 	case KVM_CAP_MAX_VCPU_ID: | 
 | 		r = -EINVAL; | 
 | 		if (cap->args[0] > KVM_MAX_VCPU_IDS) | 
 | 			break; | 
 |  | 
 | 		mutex_lock(&kvm->lock); | 
 | 		if (kvm->arch.bsp_vcpu_id > cap->args[0]) { | 
 | 			; | 
 | 		} else if (kvm->arch.max_vcpu_ids == cap->args[0]) { | 
 | 			r = 0; | 
 | 		} else if (!kvm->arch.max_vcpu_ids) { | 
 | 			kvm->arch.max_vcpu_ids = cap->args[0]; | 
 | 			r = 0; | 
 | 		} | 
 | 		mutex_unlock(&kvm->lock); | 
 | 		break; | 
 | 	case KVM_CAP_X86_NOTIFY_VMEXIT: | 
 | 		r = -EINVAL; | 
 | 		if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS) | 
 | 			break; | 
 | 		if (!kvm_caps.has_notify_vmexit) | 
 | 			break; | 
 | 		if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED)) | 
 | 			break; | 
 | 		mutex_lock(&kvm->lock); | 
 | 		if (!kvm->created_vcpus) { | 
 | 			kvm->arch.notify_window = cap->args[0] >> 32; | 
 | 			kvm->arch.notify_vmexit_flags = (u32)cap->args[0]; | 
 | 			r = 0; | 
 | 		} | 
 | 		mutex_unlock(&kvm->lock); | 
 | 		break; | 
 | 	case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: | 
 | 		r = -EINVAL; | 
 |  | 
 | 		/* | 
 | 		 * Since the risk of disabling NX hugepages is a guest crashing | 
 | 		 * the system, ensure the userspace process has permission to | 
 | 		 * reboot the system. | 
 | 		 * | 
 | 		 * Note that unlike the reboot() syscall, the process must have | 
 | 		 * this capability in the root namespace because exposing | 
 | 		 * /dev/kvm into a container does not limit the scope of the | 
 | 		 * iTLB multihit bug to that container. In other words, | 
 | 		 * this must use capable(), not ns_capable(). | 
 | 		 */ | 
 | 		if (!capable(CAP_SYS_BOOT)) { | 
 | 			r = -EPERM; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		if (cap->args[0]) | 
 | 			break; | 
 |  | 
 | 		mutex_lock(&kvm->lock); | 
 | 		if (!kvm->created_vcpus) { | 
 | 			kvm->arch.disable_nx_huge_pages = true; | 
 | 			r = 0; | 
 | 		} | 
 | 		mutex_unlock(&kvm->lock); | 
 | 		break; | 
 | 	case KVM_CAP_X86_APIC_BUS_CYCLES_NS: { | 
 | 		u64 bus_cycle_ns = cap->args[0]; | 
 | 		u64 unused; | 
 |  | 
 | 		/* | 
 | 		 * Guard against overflow in tmict_to_ns(). 128 is the highest | 
 | 		 * divide value that can be programmed in APIC_TDCR. | 
 | 		 */ | 
 | 		r = -EINVAL; | 
 | 		if (!bus_cycle_ns || | 
 | 		    check_mul_overflow((u64)U32_MAX * 128, bus_cycle_ns, &unused)) | 
 | 			break; | 
 |  | 
 | 		r = 0; | 
 | 		mutex_lock(&kvm->lock); | 
 | 		if (!irqchip_in_kernel(kvm)) | 
 | 			r = -ENXIO; | 
 | 		else if (kvm->created_vcpus) | 
 | 			r = -EINVAL; | 
 | 		else | 
 | 			kvm->arch.apic_bus_cycle_ns = bus_cycle_ns; | 
 | 		mutex_unlock(&kvm->lock); | 
 | 		break; | 
 | 	} | 
 | 	default: | 
 | 		r = -EINVAL; | 
 | 		break; | 
 | 	} | 
 | 	return r; | 
 | } | 
 |  | 
 | static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow) | 
 | { | 
 | 	struct kvm_x86_msr_filter *msr_filter; | 
 |  | 
 | 	msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT); | 
 | 	if (!msr_filter) | 
 | 		return NULL; | 
 |  | 
 | 	msr_filter->default_allow = default_allow; | 
 | 	return msr_filter; | 
 | } | 
 |  | 
 | static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter) | 
 | { | 
 | 	u32 i; | 
 |  | 
 | 	if (!msr_filter) | 
 | 		return; | 
 |  | 
 | 	for (i = 0; i < msr_filter->count; i++) | 
 | 		kfree(msr_filter->ranges[i].bitmap); | 
 |  | 
 | 	kfree(msr_filter); | 
 | } | 
 |  | 
 | static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter, | 
 | 			      struct kvm_msr_filter_range *user_range) | 
 | { | 
 | 	unsigned long *bitmap; | 
 | 	size_t bitmap_size; | 
 |  | 
 | 	if (!user_range->nmsrs) | 
 | 		return 0; | 
 |  | 
 | 	if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (!user_range->flags) | 
 | 		return -EINVAL; | 
 |  | 
 | 	bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long); | 
 | 	if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE) | 
 | 		return -EINVAL; | 
 |  | 
 | 	bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size); | 
 | 	if (IS_ERR(bitmap)) | 
 | 		return PTR_ERR(bitmap); | 
 |  | 
 | 	msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) { | 
 | 		.flags = user_range->flags, | 
 | 		.base = user_range->base, | 
 | 		.nmsrs = user_range->nmsrs, | 
 | 		.bitmap = bitmap, | 
 | 	}; | 
 |  | 
 | 	msr_filter->count++; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, | 
 | 				       struct kvm_msr_filter *filter) | 
 | { | 
 | 	struct kvm_x86_msr_filter *new_filter, *old_filter; | 
 | 	bool default_allow; | 
 | 	bool empty = true; | 
 | 	int r; | 
 | 	u32 i; | 
 |  | 
 | 	if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK) | 
 | 		return -EINVAL; | 
 |  | 
 | 	for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) | 
 | 		empty &= !filter->ranges[i].nmsrs; | 
 |  | 
 | 	default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY); | 
 | 	if (empty && !default_allow) | 
 | 		return -EINVAL; | 
 |  | 
 | 	new_filter = kvm_alloc_msr_filter(default_allow); | 
 | 	if (!new_filter) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) { | 
 | 		r = kvm_add_msr_filter(new_filter, &filter->ranges[i]); | 
 | 		if (r) { | 
 | 			kvm_free_msr_filter(new_filter); | 
 | 			return r; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	mutex_lock(&kvm->lock); | 
 | 	old_filter = rcu_replace_pointer(kvm->arch.msr_filter, new_filter, | 
 | 					 mutex_is_locked(&kvm->lock)); | 
 | 	mutex_unlock(&kvm->lock); | 
 | 	synchronize_srcu(&kvm->srcu); | 
 |  | 
 | 	kvm_free_msr_filter(old_filter); | 
 |  | 
 | 	kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | #ifdef CONFIG_KVM_COMPAT | 
 | /* for KVM_X86_SET_MSR_FILTER */ | 
 | struct kvm_msr_filter_range_compat { | 
 | 	__u32 flags; | 
 | 	__u32 nmsrs; | 
 | 	__u32 base; | 
 | 	__u32 bitmap; | 
 | }; | 
 |  | 
 | struct kvm_msr_filter_compat { | 
 | 	__u32 flags; | 
 | 	struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES]; | 
 | }; | 
 |  | 
 | #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat) | 
 |  | 
 | long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, | 
 | 			      unsigned long arg) | 
 | { | 
 | 	void __user *argp = (void __user *)arg; | 
 | 	struct kvm *kvm = filp->private_data; | 
 | 	long r = -ENOTTY; | 
 |  | 
 | 	switch (ioctl) { | 
 | 	case KVM_X86_SET_MSR_FILTER_COMPAT: { | 
 | 		struct kvm_msr_filter __user *user_msr_filter = argp; | 
 | 		struct kvm_msr_filter_compat filter_compat; | 
 | 		struct kvm_msr_filter filter; | 
 | 		int i; | 
 |  | 
 | 		if (copy_from_user(&filter_compat, user_msr_filter, | 
 | 				   sizeof(filter_compat))) | 
 | 			return -EFAULT; | 
 |  | 
 | 		filter.flags = filter_compat.flags; | 
 | 		for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) { | 
 | 			struct kvm_msr_filter_range_compat *cr; | 
 |  | 
 | 			cr = &filter_compat.ranges[i]; | 
 | 			filter.ranges[i] = (struct kvm_msr_filter_range) { | 
 | 				.flags = cr->flags, | 
 | 				.nmsrs = cr->nmsrs, | 
 | 				.base = cr->base, | 
 | 				.bitmap = (__u8 *)(ulong)cr->bitmap, | 
 | 			}; | 
 | 		} | 
 |  | 
 | 		r = kvm_vm_ioctl_set_msr_filter(kvm, &filter); | 
 | 		break; | 
 | 	} | 
 | 	} | 
 |  | 
 | 	return r; | 
 | } | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER | 
 | static int kvm_arch_suspend_notifier(struct kvm *kvm) | 
 | { | 
 | 	struct kvm_vcpu *vcpu; | 
 | 	unsigned long i; | 
 |  | 
 | 	/* | 
 | 	 * Ignore the return, marking the guest paused only "fails" if the vCPU | 
 | 	 * isn't using kvmclock; continuing on is correct and desirable. | 
 | 	 */ | 
 | 	kvm_for_each_vcpu(i, vcpu, kvm) | 
 | 		(void)kvm_set_guest_paused(vcpu); | 
 |  | 
 | 	return NOTIFY_DONE; | 
 | } | 
 |  | 
 | int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state) | 
 | { | 
 | 	switch (state) { | 
 | 	case PM_HIBERNATION_PREPARE: | 
 | 	case PM_SUSPEND_PREPARE: | 
 | 		return kvm_arch_suspend_notifier(kvm); | 
 | 	} | 
 |  | 
 | 	return NOTIFY_DONE; | 
 | } | 
 | #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ | 
 |  | 
 | static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp) | 
 | { | 
 | 	struct kvm_clock_data data = { 0 }; | 
 |  | 
 | 	get_kvmclock(kvm, &data); | 
 | 	if (copy_to_user(argp, &data, sizeof(data))) | 
 | 		return -EFAULT; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp) | 
 | { | 
 | 	struct kvm_arch *ka = &kvm->arch; | 
 | 	struct kvm_clock_data data; | 
 | 	u64 now_raw_ns; | 
 |  | 
 | 	if (copy_from_user(&data, argp, sizeof(data))) | 
 | 		return -EFAULT; | 
 |  | 
 | 	/* | 
 | 	 * Only KVM_CLOCK_REALTIME is used, but allow passing the | 
 | 	 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK. | 
 | 	 */ | 
 | 	if (data.flags & ~KVM_CLOCK_VALID_FLAGS) | 
 | 		return -EINVAL; | 
 |  | 
 | 	kvm_hv_request_tsc_page_update(kvm); | 
 | 	kvm_start_pvclock_update(kvm); | 
 | 	pvclock_update_vm_gtod_copy(kvm); | 
 |  | 
 | 	/* | 
 | 	 * This pairs with kvm_guest_time_update(): when masterclock is | 
 | 	 * in use, we use master_kernel_ns + kvmclock_offset to set | 
 | 	 * unsigned 'system_time' so if we use get_kvmclock_ns() (which | 
 | 	 * is slightly ahead) here we risk going negative on unsigned | 
 | 	 * 'system_time' when 'data.clock' is very small. | 
 | 	 */ | 
 | 	if (data.flags & KVM_CLOCK_REALTIME) { | 
 | 		u64 now_real_ns = ktime_get_real_ns(); | 
 |  | 
 | 		/* | 
 | 		 * Avoid stepping the kvmclock backwards. | 
 | 		 */ | 
 | 		if (now_real_ns > data.realtime) | 
 | 			data.clock += now_real_ns - data.realtime; | 
 | 	} | 
 |  | 
 | 	if (ka->use_master_clock) | 
 | 		now_raw_ns = ka->master_kernel_ns; | 
 | 	else | 
 | 		now_raw_ns = get_kvmclock_base_ns(); | 
 | 	ka->kvmclock_offset = data.clock - now_raw_ns; | 
 | 	kvm_end_pvclock_update(kvm); | 
 | 	return 0; | 
 | } | 
 |  | 
 | int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) | 
 | { | 
 | 	struct kvm *kvm = filp->private_data; | 
 | 	void __user *argp = (void __user *)arg; | 
 | 	int r = -ENOTTY; | 
 |  | 
 | #ifdef CONFIG_KVM_IOAPIC | 
 | 	/* | 
 | 	 * This union makes it completely explicit to gcc-3.x | 
 | 	 * that these three variables' stack usage should be | 
 | 	 * combined, not added together. | 
 | 	 */ | 
 | 	union { | 
 | 		struct kvm_pit_state ps; | 
 | 		struct kvm_pit_state2 ps2; | 
 | 		struct kvm_pit_config pit_config; | 
 | 	} u; | 
 | #endif | 
 |  | 
 | 	switch (ioctl) { | 
 | 	case KVM_SET_TSS_ADDR: | 
 | 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg); | 
 | 		break; | 
 | 	case KVM_SET_IDENTITY_MAP_ADDR: { | 
 | 		u64 ident_addr; | 
 |  | 
 | 		mutex_lock(&kvm->lock); | 
 | 		r = -EINVAL; | 
 | 		if (kvm->created_vcpus) | 
 | 			goto set_identity_unlock; | 
 | 		r = -EFAULT; | 
 | 		if (copy_from_user(&ident_addr, argp, sizeof(ident_addr))) | 
 | 			goto set_identity_unlock; | 
 | 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); | 
 | set_identity_unlock: | 
 | 		mutex_unlock(&kvm->lock); | 
 | 		break; | 
 | 	} | 
 | 	case KVM_SET_NR_MMU_PAGES: | 
 | 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); | 
 | 		break; | 
 | #ifdef CONFIG_KVM_IOAPIC | 
 | 	case KVM_CREATE_IRQCHIP: { | 
 | 		mutex_lock(&kvm->lock); | 
 |  | 
 | 		r = -EEXIST; | 
 | 		if (irqchip_in_kernel(kvm)) | 
 | 			goto create_irqchip_unlock; | 
 |  | 
 | 		r = -EINVAL; | 
 | 		if (kvm->created_vcpus) | 
 | 			goto create_irqchip_unlock; | 
 |  | 
 | 		r = kvm_pic_init(kvm); | 
 | 		if (r) | 
 | 			goto create_irqchip_unlock; | 
 |  | 
 | 		r = kvm_ioapic_init(kvm); | 
 | 		if (r) { | 
 | 			kvm_pic_destroy(kvm); | 
 | 			goto create_irqchip_unlock; | 
 | 		} | 
 |  | 
 | 		r = kvm_setup_default_ioapic_and_pic_routing(kvm); | 
 | 		if (r) { | 
 | 			kvm_ioapic_destroy(kvm); | 
 | 			kvm_pic_destroy(kvm); | 
 | 			goto create_irqchip_unlock; | 
 | 		} | 
 | 		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */ | 
 | 		smp_wmb(); | 
 | 		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL; | 
 | 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); | 
 | 	create_irqchip_unlock: | 
 | 		mutex_unlock(&kvm->lock); | 
 | 		break; | 
 | 	} | 
 | 	case KVM_CREATE_PIT: | 
 | 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; | 
 | 		goto create_pit; | 
 | 	case KVM_CREATE_PIT2: | 
 | 		r = -EFAULT; | 
 | 		if (copy_from_user(&u.pit_config, argp, | 
 | 				   sizeof(struct kvm_pit_config))) | 
 | 			goto out; | 
 | 	create_pit: | 
 | 		mutex_lock(&kvm->lock); | 
 | 		r = -EEXIST; | 
 | 		if (kvm->arch.vpit) | 
 | 			goto create_pit_unlock; | 
 | 		r = -ENOENT; | 
 | 		if (!pic_in_kernel(kvm)) | 
 | 			goto create_pit_unlock; | 
 | 		r = -ENOMEM; | 
 | 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); | 
 | 		if (kvm->arch.vpit) | 
 | 			r = 0; | 
 | 	create_pit_unlock: | 
 | 		mutex_unlock(&kvm->lock); | 
 | 		break; | 
 | 	case KVM_GET_IRQCHIP: { | 
 | 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */ | 
 | 		struct kvm_irqchip *chip; | 
 |  | 
 | 		chip = memdup_user(argp, sizeof(*chip)); | 
 | 		if (IS_ERR(chip)) { | 
 | 			r = PTR_ERR(chip); | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		r = -ENXIO; | 
 | 		if (!irqchip_full(kvm)) | 
 | 			goto get_irqchip_out; | 
 | 		r = kvm_vm_ioctl_get_irqchip(kvm, chip); | 
 | 		if (r) | 
 | 			goto get_irqchip_out; | 
 | 		r = -EFAULT; | 
 | 		if (copy_to_user(argp, chip, sizeof(*chip))) | 
 | 			goto get_irqchip_out; | 
 | 		r = 0; | 
 | 	get_irqchip_out: | 
 | 		kfree(chip); | 
 | 		break; | 
 | 	} | 
 | 	case KVM_SET_IRQCHIP: { | 
 | 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */ | 
 | 		struct kvm_irqchip *chip; | 
 |  | 
 | 		chip = memdup_user(argp, sizeof(*chip)); | 
 | 		if (IS_ERR(chip)) { | 
 | 			r = PTR_ERR(chip); | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		r = -ENXIO; | 
 | 		if (!irqchip_full(kvm)) | 
 | 			goto set_irqchip_out; | 
 | 		r = kvm_vm_ioctl_set_irqchip(kvm, chip); | 
 | 	set_irqchip_out: | 
 | 		kfree(chip); | 
 | 		break; | 
 | 	} | 
 | 	case KVM_GET_PIT: { | 
 | 		r = -EFAULT; | 
 | 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) | 
 | 			goto out; | 
 | 		r = -ENXIO; | 
 | 		if (!kvm->arch.vpit) | 
 | 			goto out; | 
 | 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps); | 
 | 		if (r) | 
 | 			goto out; | 
 | 		r = -EFAULT; | 
 | 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) | 
 | 			goto out; | 
 | 		r = 0; | 
 | 		break; | 
 | 	} | 
 | 	case KVM_SET_PIT: { | 
 | 		r = -EFAULT; | 
 | 		if (copy_from_user(&u.ps, argp, sizeof(u.ps))) | 
 | 			goto out; | 
 | 		mutex_lock(&kvm->lock); | 
 | 		r = -ENXIO; | 
 | 		if (!kvm->arch.vpit) | 
 | 			goto set_pit_out; | 
 | 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps); | 
 | set_pit_out: | 
 | 		mutex_unlock(&kvm->lock); | 
 | 		break; | 
 | 	} | 
 | 	case KVM_GET_PIT2: { | 
 | 		r = -ENXIO; | 
 | 		if (!kvm->arch.vpit) | 
 | 			goto out; | 
 | 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); | 
 | 		if (r) | 
 | 			goto out; | 
 | 		r = -EFAULT; | 
 | 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) | 
 | 			goto out; | 
 | 		r = 0; | 
 | 		break; | 
 | 	} | 
 | 	case KVM_SET_PIT2: { | 
 | 		r = -EFAULT; | 
 | 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) | 
 | 			goto out; | 
 | 		mutex_lock(&kvm->lock); | 
 | 		r = -ENXIO; | 
 | 		if (!kvm->arch.vpit) | 
 | 			goto set_pit2_out; | 
 | 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); | 
 | set_pit2_out: | 
 | 		mutex_unlock(&kvm->lock); | 
 | 		break; | 
 | 	} | 
 | 	case KVM_REINJECT_CONTROL: { | 
 | 		struct kvm_reinject_control control; | 
 | 		r =  -EFAULT; | 
 | 		if (copy_from_user(&control, argp, sizeof(control))) | 
 | 			goto out; | 
 | 		r = -ENXIO; | 
 | 		if (!kvm->arch.vpit) | 
 | 			goto out; | 
 | 		r = kvm_vm_ioctl_reinject(kvm, &control); | 
 | 		break; | 
 | 	} | 
 | #endif | 
 | 	case KVM_SET_BOOT_CPU_ID: | 
 | 		r = 0; | 
 | 		mutex_lock(&kvm->lock); | 
 | 		if (kvm->created_vcpus) | 
 | 			r = -EBUSY; | 
 | 		else if (arg > KVM_MAX_VCPU_IDS || | 
 | 			 (kvm->arch.max_vcpu_ids && arg > kvm->arch.max_vcpu_ids)) | 
 | 			r = -EINVAL; | 
 | 		else | 
 | 			kvm->arch.bsp_vcpu_id = arg; | 
 | 		mutex_unlock(&kvm->lock); | 
 | 		break; | 
 | #ifdef CONFIG_KVM_XEN | 
 | 	case KVM_XEN_HVM_CONFIG: { | 
 | 		struct kvm_xen_hvm_config xhc; | 
 | 		r = -EFAULT; | 
 | 		if (copy_from_user(&xhc, argp, sizeof(xhc))) | 
 | 			goto out; | 
 | 		r = kvm_xen_hvm_config(kvm, &xhc); | 
 | 		break; | 
 | 	} | 
 | 	case KVM_XEN_HVM_GET_ATTR: { | 
 | 		struct kvm_xen_hvm_attr xha; | 
 |  | 
 | 		r = -EFAULT; | 
 | 		if (copy_from_user(&xha, argp, sizeof(xha))) | 
 | 			goto out; | 
 | 		r = kvm_xen_hvm_get_attr(kvm, &xha); | 
 | 		if (!r && copy_to_user(argp, &xha, sizeof(xha))) | 
 | 			r = -EFAULT; | 
 | 		break; | 
 | 	} | 
 | 	case KVM_XEN_HVM_SET_ATTR: { | 
 | 		struct kvm_xen_hvm_attr xha; | 
 |  | 
 | 		r = -EFAULT; | 
 | 		if (copy_from_user(&xha, argp, sizeof(xha))) | 
 | 			goto out; | 
 | 		r = kvm_xen_hvm_set_attr(kvm, &xha); | 
 | 		break; | 
 | 	} | 
 | 	case KVM_XEN_HVM_EVTCHN_SEND: { | 
 | 		struct kvm_irq_routing_xen_evtchn uxe; | 
 |  | 
 | 		r = -EFAULT; | 
 | 		if (copy_from_user(&uxe, argp, sizeof(uxe))) | 
 | 			goto out; | 
 | 		r = kvm_xen_hvm_evtchn_send(kvm, &uxe); | 
 | 		break; | 
 | 	} | 
 | #endif | 
 | 	case KVM_SET_CLOCK: | 
 | 		r = kvm_vm_ioctl_set_clock(kvm, argp); | 
 | 		break; | 
 | 	case KVM_GET_CLOCK: | 
 | 		r = kvm_vm_ioctl_get_clock(kvm, argp); | 
 | 		break; | 
 | 	case KVM_SET_TSC_KHZ: { | 
 | 		u32 user_tsc_khz; | 
 |  | 
 | 		r = -EINVAL; | 
 | 		user_tsc_khz = (u32)arg; | 
 |  | 
 | 		if (kvm_caps.has_tsc_control && | 
 | 		    user_tsc_khz >= kvm_caps.max_guest_tsc_khz) | 
 | 			goto out; | 
 |  | 
 | 		if (user_tsc_khz == 0) | 
 | 			user_tsc_khz = tsc_khz; | 
 |  | 
 | 		mutex_lock(&kvm->lock); | 
 | 		if (!kvm->created_vcpus) { | 
 | 			WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz); | 
 | 			r = 0; | 
 | 		} | 
 | 		mutex_unlock(&kvm->lock); | 
 | 		goto out; | 
 | 	} | 
 | 	case KVM_GET_TSC_KHZ: { | 
 | 		r = READ_ONCE(kvm->arch.default_tsc_khz); | 
 | 		goto out; | 
 | 	} | 
 | 	case KVM_MEMORY_ENCRYPT_OP: | 
 | 		r = -ENOTTY; | 
 | 		if (!kvm_x86_ops.mem_enc_ioctl) | 
 | 			goto out; | 
 |  | 
 | 		r = kvm_x86_call(mem_enc_ioctl)(kvm, argp); | 
 | 		break; | 
 | 	case KVM_MEMORY_ENCRYPT_REG_REGION: { | 
 | 		struct kvm_enc_region region; | 
 |  | 
 | 		r = -EFAULT; | 
 | 		if (copy_from_user(®ion, argp, sizeof(region))) | 
 | 			goto out; | 
 |  | 
 | 		r = -ENOTTY; | 
 | 		if (!kvm_x86_ops.mem_enc_register_region) | 
 | 			goto out; | 
 |  | 
 | 		r = kvm_x86_call(mem_enc_register_region)(kvm, ®ion); | 
 | 		break; | 
 | 	} | 
 | 	case KVM_MEMORY_ENCRYPT_UNREG_REGION: { | 
 | 		struct kvm_enc_region region; | 
 |  | 
 | 		r = -EFAULT; | 
 | 		if (copy_from_user(®ion, argp, sizeof(region))) | 
 | 			goto out; | 
 |  | 
 | 		r = -ENOTTY; | 
 | 		if (!kvm_x86_ops.mem_enc_unregister_region) | 
 | 			goto out; | 
 |  | 
 | 		r = kvm_x86_call(mem_enc_unregister_region)(kvm, ®ion); | 
 | 		break; | 
 | 	} | 
 | #ifdef CONFIG_KVM_HYPERV | 
 | 	case KVM_HYPERV_EVENTFD: { | 
 | 		struct kvm_hyperv_eventfd hvevfd; | 
 |  | 
 | 		r = -EFAULT; | 
 | 		if (copy_from_user(&hvevfd, argp, sizeof(hvevfd))) | 
 | 			goto out; | 
 | 		r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd); | 
 | 		break; | 
 | 	} | 
 | #endif | 
 | 	case KVM_SET_PMU_EVENT_FILTER: | 
 | 		r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp); | 
 | 		break; | 
 | 	case KVM_X86_SET_MSR_FILTER: { | 
 | 		struct kvm_msr_filter __user *user_msr_filter = argp; | 
 | 		struct kvm_msr_filter filter; | 
 |  | 
 | 		if (copy_from_user(&filter, user_msr_filter, sizeof(filter))) | 
 | 			return -EFAULT; | 
 |  | 
 | 		r = kvm_vm_ioctl_set_msr_filter(kvm, &filter); | 
 | 		break; | 
 | 	} | 
 | 	default: | 
 | 		r = -ENOTTY; | 
 | 	} | 
 | out: | 
 | 	return r; | 
 | } | 
 |  | 
 | static void kvm_probe_feature_msr(u32 msr_index) | 
 | { | 
 | 	u64 data; | 
 |  | 
 | 	if (kvm_get_feature_msr(NULL, msr_index, &data, true)) | 
 | 		return; | 
 |  | 
 | 	msr_based_features[num_msr_based_features++] = msr_index; | 
 | } | 
 |  | 
 | static void kvm_probe_msr_to_save(u32 msr_index) | 
 | { | 
 | 	u32 dummy[2]; | 
 |  | 
 | 	if (rdmsr_safe(msr_index, &dummy[0], &dummy[1])) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * Even MSRs that are valid in the host may not be exposed to guests in | 
 | 	 * some cases. | 
 | 	 */ | 
 | 	switch (msr_index) { | 
 | 	case MSR_IA32_BNDCFGS: | 
 | 		if (!kvm_mpx_supported()) | 
 | 			return; | 
 | 		break; | 
 | 	case MSR_TSC_AUX: | 
 | 		if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) && | 
 | 		    !kvm_cpu_cap_has(X86_FEATURE_RDPID)) | 
 | 			return; | 
 | 		break; | 
 | 	case MSR_IA32_UMWAIT_CONTROL: | 
 | 		if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG)) | 
 | 			return; | 
 | 		break; | 
 | 	case MSR_IA32_RTIT_CTL: | 
 | 	case MSR_IA32_RTIT_STATUS: | 
 | 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) | 
 | 			return; | 
 | 		break; | 
 | 	case MSR_IA32_RTIT_CR3_MATCH: | 
 | 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || | 
 | 		    !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering)) | 
 | 			return; | 
 | 		break; | 
 | 	case MSR_IA32_RTIT_OUTPUT_BASE: | 
 | 	case MSR_IA32_RTIT_OUTPUT_MASK: | 
 | 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || | 
 | 		    (!intel_pt_validate_hw_cap(PT_CAP_topa_output) && | 
 | 		     !intel_pt_validate_hw_cap(PT_CAP_single_range_output))) | 
 | 			return; | 
 | 		break; | 
 | 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: | 
 | 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || | 
 | 		    (msr_index - MSR_IA32_RTIT_ADDR0_A >= | 
 | 		     intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)) | 
 | 			return; | 
 | 		break; | 
 | 	case MSR_ARCH_PERFMON_PERFCTR0 ... | 
 | 	     MSR_ARCH_PERFMON_PERFCTR0 + KVM_MAX_NR_GP_COUNTERS - 1: | 
 | 		if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >= | 
 | 		    kvm_pmu_cap.num_counters_gp) | 
 | 			return; | 
 | 		break; | 
 | 	case MSR_ARCH_PERFMON_EVENTSEL0 ... | 
 | 	     MSR_ARCH_PERFMON_EVENTSEL0 + KVM_MAX_NR_GP_COUNTERS - 1: | 
 | 		if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >= | 
 | 		    kvm_pmu_cap.num_counters_gp) | 
 | 			return; | 
 | 		break; | 
 | 	case MSR_ARCH_PERFMON_FIXED_CTR0 ... | 
 | 	     MSR_ARCH_PERFMON_FIXED_CTR0 + KVM_MAX_NR_FIXED_COUNTERS - 1: | 
 | 		if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >= | 
 | 		    kvm_pmu_cap.num_counters_fixed) | 
 | 			return; | 
 | 		break; | 
 | 	case MSR_AMD64_PERF_CNTR_GLOBAL_CTL: | 
 | 	case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS: | 
 | 	case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR: | 
 | 		if (!kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2)) | 
 | 			return; | 
 | 		break; | 
 | 	case MSR_IA32_XFD: | 
 | 	case MSR_IA32_XFD_ERR: | 
 | 		if (!kvm_cpu_cap_has(X86_FEATURE_XFD)) | 
 | 			return; | 
 | 		break; | 
 | 	case MSR_IA32_TSX_CTRL: | 
 | 		if (!(kvm_get_arch_capabilities() & ARCH_CAP_TSX_CTRL_MSR)) | 
 | 			return; | 
 | 		break; | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	msrs_to_save[num_msrs_to_save++] = msr_index; | 
 | } | 
 |  | 
 | static void kvm_init_msr_lists(void) | 
 | { | 
 | 	unsigned i; | 
 |  | 
 | 	BUILD_BUG_ON_MSG(KVM_MAX_NR_FIXED_COUNTERS != 3, | 
 | 			 "Please update the fixed PMCs in msrs_to_save_pmu[]"); | 
 |  | 
 | 	num_msrs_to_save = 0; | 
 | 	num_emulated_msrs = 0; | 
 | 	num_msr_based_features = 0; | 
 |  | 
 | 	for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++) | 
 | 		kvm_probe_msr_to_save(msrs_to_save_base[i]); | 
 |  | 
 | 	if (enable_pmu) { | 
 | 		for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++) | 
 | 			kvm_probe_msr_to_save(msrs_to_save_pmu[i]); | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) { | 
 | 		if (!kvm_x86_call(has_emulated_msr)(NULL, | 
 | 						    emulated_msrs_all[i])) | 
 | 			continue; | 
 |  | 
 | 		emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i]; | 
 | 	} | 
 |  | 
 | 	for (i = KVM_FIRST_EMULATED_VMX_MSR; i <= KVM_LAST_EMULATED_VMX_MSR; i++) | 
 | 		kvm_probe_feature_msr(i); | 
 |  | 
 | 	for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) | 
 | 		kvm_probe_feature_msr(msr_based_features_all_except_vmx[i]); | 
 | } | 
 |  | 
 | static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, | 
 | 			   const void *v) | 
 | { | 
 | 	int handled = 0; | 
 | 	int n; | 
 |  | 
 | 	do { | 
 | 		n = min(len, 8); | 
 | 		if (!(lapic_in_kernel(vcpu) && | 
 | 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v)) | 
 | 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v)) | 
 | 			break; | 
 | 		handled += n; | 
 | 		addr += n; | 
 | 		len -= n; | 
 | 		v += n; | 
 | 	} while (len); | 
 |  | 
 | 	return handled; | 
 | } | 
 |  | 
 | static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) | 
 | { | 
 | 	int handled = 0; | 
 | 	int n; | 
 |  | 
 | 	do { | 
 | 		n = min(len, 8); | 
 | 		if (!(lapic_in_kernel(vcpu) && | 
 | 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev, | 
 | 					 addr, n, v)) | 
 | 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v)) | 
 | 			break; | 
 | 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v); | 
 | 		handled += n; | 
 | 		addr += n; | 
 | 		len -= n; | 
 | 		v += n; | 
 | 	} while (len); | 
 |  | 
 | 	return handled; | 
 | } | 
 |  | 
 | void kvm_set_segment(struct kvm_vcpu *vcpu, | 
 | 		     struct kvm_segment *var, int seg) | 
 | { | 
 | 	kvm_x86_call(set_segment)(vcpu, var, seg); | 
 | } | 
 |  | 
 | void kvm_get_segment(struct kvm_vcpu *vcpu, | 
 | 		     struct kvm_segment *var, int seg) | 
 | { | 
 | 	kvm_x86_call(get_segment)(vcpu, var, seg); | 
 | } | 
 |  | 
 | gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access, | 
 | 			   struct x86_exception *exception) | 
 | { | 
 | 	struct kvm_mmu *mmu = vcpu->arch.mmu; | 
 | 	gpa_t t_gpa; | 
 |  | 
 | 	BUG_ON(!mmu_is_nested(vcpu)); | 
 |  | 
 | 	/* NPT walks are always user-walks */ | 
 | 	access |= PFERR_USER_MASK; | 
 | 	t_gpa  = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception); | 
 |  | 
 | 	return t_gpa; | 
 | } | 
 |  | 
 | gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, | 
 | 			      struct x86_exception *exception) | 
 | { | 
 | 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu; | 
 |  | 
 | 	u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; | 
 | 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read); | 
 |  | 
 | gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, | 
 | 			       struct x86_exception *exception) | 
 | { | 
 | 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu; | 
 |  | 
 | 	u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; | 
 | 	access |= PFERR_WRITE_MASK; | 
 | 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write); | 
 |  | 
 | /* uses this to access any guest's mapped memory without checking CPL */ | 
 | gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, | 
 | 				struct x86_exception *exception) | 
 | { | 
 | 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu; | 
 |  | 
 | 	return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception); | 
 | } | 
 |  | 
 | static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, | 
 | 				      struct kvm_vcpu *vcpu, u64 access, | 
 | 				      struct x86_exception *exception) | 
 | { | 
 | 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu; | 
 | 	void *data = val; | 
 | 	int r = X86EMUL_CONTINUE; | 
 |  | 
 | 	while (bytes) { | 
 | 		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); | 
 | 		unsigned offset = addr & (PAGE_SIZE-1); | 
 | 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); | 
 | 		int ret; | 
 |  | 
 | 		if (gpa == INVALID_GPA) | 
 | 			return X86EMUL_PROPAGATE_FAULT; | 
 | 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data, | 
 | 					       offset, toread); | 
 | 		if (ret < 0) { | 
 | 			r = X86EMUL_IO_NEEDED; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		bytes -= toread; | 
 | 		data += toread; | 
 | 		addr += toread; | 
 | 	} | 
 | out: | 
 | 	return r; | 
 | } | 
 |  | 
 | /* used for instruction fetching */ | 
 | static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, | 
 | 				gva_t addr, void *val, unsigned int bytes, | 
 | 				struct x86_exception *exception) | 
 | { | 
 | 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); | 
 | 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu; | 
 | 	u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; | 
 | 	unsigned offset; | 
 | 	int ret; | 
 |  | 
 | 	/* Inline kvm_read_guest_virt_helper for speed.  */ | 
 | 	gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK, | 
 | 				    exception); | 
 | 	if (unlikely(gpa == INVALID_GPA)) | 
 | 		return X86EMUL_PROPAGATE_FAULT; | 
 |  | 
 | 	offset = addr & (PAGE_SIZE-1); | 
 | 	if (WARN_ON(offset + bytes > PAGE_SIZE)) | 
 | 		bytes = (unsigned)PAGE_SIZE - offset; | 
 | 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val, | 
 | 				       offset, bytes); | 
 | 	if (unlikely(ret < 0)) | 
 | 		return X86EMUL_IO_NEEDED; | 
 |  | 
 | 	return X86EMUL_CONTINUE; | 
 | } | 
 |  | 
 | int kvm_read_guest_virt(struct kvm_vcpu *vcpu, | 
 | 			       gva_t addr, void *val, unsigned int bytes, | 
 | 			       struct x86_exception *exception) | 
 | { | 
 | 	u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; | 
 |  | 
 | 	/* | 
 | 	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED | 
 | 	 * is returned, but our callers are not ready for that and they blindly | 
 | 	 * call kvm_inject_page_fault.  Ensure that they at least do not leak | 
 | 	 * uninitialized kernel stack memory into cr2 and error code. | 
 | 	 */ | 
 | 	memset(exception, 0, sizeof(*exception)); | 
 | 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, | 
 | 					  exception); | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_read_guest_virt); | 
 |  | 
 | static int emulator_read_std(struct x86_emulate_ctxt *ctxt, | 
 | 			     gva_t addr, void *val, unsigned int bytes, | 
 | 			     struct x86_exception *exception, bool system) | 
 | { | 
 | 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); | 
 | 	u64 access = 0; | 
 |  | 
 | 	if (system) | 
 | 		access |= PFERR_IMPLICIT_ACCESS; | 
 | 	else if (kvm_x86_call(get_cpl)(vcpu) == 3) | 
 | 		access |= PFERR_USER_MASK; | 
 |  | 
 | 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception); | 
 | } | 
 |  | 
 | static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, | 
 | 				      struct kvm_vcpu *vcpu, u64 access, | 
 | 				      struct x86_exception *exception) | 
 | { | 
 | 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu; | 
 | 	void *data = val; | 
 | 	int r = X86EMUL_CONTINUE; | 
 |  | 
 | 	while (bytes) { | 
 | 		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); | 
 | 		unsigned offset = addr & (PAGE_SIZE-1); | 
 | 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); | 
 | 		int ret; | 
 |  | 
 | 		if (gpa == INVALID_GPA) | 
 | 			return X86EMUL_PROPAGATE_FAULT; | 
 | 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite); | 
 | 		if (ret < 0) { | 
 | 			r = X86EMUL_IO_NEEDED; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		bytes -= towrite; | 
 | 		data += towrite; | 
 | 		addr += towrite; | 
 | 	} | 
 | out: | 
 | 	return r; | 
 | } | 
 |  | 
 | static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val, | 
 | 			      unsigned int bytes, struct x86_exception *exception, | 
 | 			      bool system) | 
 | { | 
 | 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); | 
 | 	u64 access = PFERR_WRITE_MASK; | 
 |  | 
 | 	if (system) | 
 | 		access |= PFERR_IMPLICIT_ACCESS; | 
 | 	else if (kvm_x86_call(get_cpl)(vcpu) == 3) | 
 | 		access |= PFERR_USER_MASK; | 
 |  | 
 | 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, | 
 | 					   access, exception); | 
 | } | 
 |  | 
 | int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val, | 
 | 				unsigned int bytes, struct x86_exception *exception) | 
 | { | 
 | 	/* kvm_write_guest_virt_system can pull in tons of pages. */ | 
 | 	vcpu->arch.l1tf_flush_l1d = true; | 
 |  | 
 | 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, | 
 | 					   PFERR_WRITE_MASK, exception); | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); | 
 |  | 
 | static int kvm_check_emulate_insn(struct kvm_vcpu *vcpu, int emul_type, | 
 | 				  void *insn, int insn_len) | 
 | { | 
 | 	return kvm_x86_call(check_emulate_instruction)(vcpu, emul_type, | 
 | 						       insn, insn_len); | 
 | } | 
 |  | 
 | int handle_ud(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX }; | 
 | 	int fep_flags = READ_ONCE(force_emulation_prefix); | 
 | 	int emul_type = EMULTYPE_TRAP_UD; | 
 | 	char sig[5]; /* ud2; .ascii "kvm" */ | 
 | 	struct x86_exception e; | 
 | 	int r; | 
 |  | 
 | 	r = kvm_check_emulate_insn(vcpu, emul_type, NULL, 0); | 
 | 	if (r != X86EMUL_CONTINUE) | 
 | 		return 1; | 
 |  | 
 | 	if (fep_flags && | 
 | 	    kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu), | 
 | 				sig, sizeof(sig), &e) == 0 && | 
 | 	    memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) { | 
 | 		if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF) | 
 | 			kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF); | 
 | 		kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig)); | 
 | 		emul_type = EMULTYPE_TRAP_UD_FORCED; | 
 | 	} | 
 |  | 
 | 	return kvm_emulate_instruction(vcpu, emul_type); | 
 | } | 
 | EXPORT_SYMBOL_GPL(handle_ud); | 
 |  | 
 | static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva, | 
 | 			    gpa_t gpa, bool write) | 
 | { | 
 | 	/* For APIC access vmexit */ | 
 | 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) | 
 | 		return 1; | 
 |  | 
 | 	if (vcpu_match_mmio_gpa(vcpu, gpa)) { | 
 | 		trace_vcpu_match_mmio(gva, gpa, write, true); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, | 
 | 				gpa_t *gpa, struct x86_exception *exception, | 
 | 				bool write) | 
 | { | 
 | 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu; | 
 | 	u64 access = ((kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0) | 
 | 		     | (write ? PFERR_WRITE_MASK : 0); | 
 |  | 
 | 	/* | 
 | 	 * currently PKRU is only applied to ept enabled guest so | 
 | 	 * there is no pkey in EPT page table for L1 guest or EPT | 
 | 	 * shadow page table for L2 guest. | 
 | 	 */ | 
 | 	if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) || | 
 | 	    !permission_fault(vcpu, vcpu->arch.walk_mmu, | 
 | 			      vcpu->arch.mmio_access, 0, access))) { | 
 | 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | | 
 | 					(gva & (PAGE_SIZE - 1)); | 
 | 		trace_vcpu_match_mmio(gva, *gpa, write, false); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	*gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); | 
 |  | 
 | 	if (*gpa == INVALID_GPA) | 
 | 		return -1; | 
 |  | 
 | 	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write); | 
 | } | 
 |  | 
 | int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, | 
 | 			const void *val, int bytes) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes); | 
 | 	if (ret < 0) | 
 | 		return 0; | 
 | 	kvm_page_track_write(vcpu, gpa, val, bytes); | 
 | 	return 1; | 
 | } | 
 |  | 
 | struct read_write_emulator_ops { | 
 | 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, | 
 | 				  int bytes); | 
 | 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, | 
 | 				  void *val, int bytes); | 
 | 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, | 
 | 			       int bytes, void *val); | 
 | 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, | 
 | 				    void *val, int bytes); | 
 | 	bool write; | 
 | }; | 
 |  | 
 | static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) | 
 | { | 
 | 	if (vcpu->mmio_read_completed) { | 
 | 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, | 
 | 			       vcpu->mmio_fragments[0].gpa, val); | 
 | 		vcpu->mmio_read_completed = 0; | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, | 
 | 			void *val, int bytes) | 
 | { | 
 | 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes); | 
 | } | 
 |  | 
 | static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, | 
 | 			 void *val, int bytes) | 
 | { | 
 | 	return emulator_write_phys(vcpu, gpa, val, bytes); | 
 | } | 
 |  | 
 | static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) | 
 | { | 
 | 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val); | 
 | 	return vcpu_mmio_write(vcpu, gpa, bytes, val); | 
 | } | 
 |  | 
 | static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, | 
 | 			  void *val, int bytes) | 
 | { | 
 | 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL); | 
 | 	return X86EMUL_IO_NEEDED; | 
 | } | 
 |  | 
 | static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, | 
 | 			   void *val, int bytes) | 
 | { | 
 | 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; | 
 |  | 
 | 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); | 
 | 	return X86EMUL_CONTINUE; | 
 | } | 
 |  | 
 | static const struct read_write_emulator_ops read_emultor = { | 
 | 	.read_write_prepare = read_prepare, | 
 | 	.read_write_emulate = read_emulate, | 
 | 	.read_write_mmio = vcpu_mmio_read, | 
 | 	.read_write_exit_mmio = read_exit_mmio, | 
 | }; | 
 |  | 
 | static const struct read_write_emulator_ops write_emultor = { | 
 | 	.read_write_emulate = write_emulate, | 
 | 	.read_write_mmio = write_mmio, | 
 | 	.read_write_exit_mmio = write_exit_mmio, | 
 | 	.write = true, | 
 | }; | 
 |  | 
 | static int emulator_read_write_onepage(unsigned long addr, void *val, | 
 | 				       unsigned int bytes, | 
 | 				       struct x86_exception *exception, | 
 | 				       struct kvm_vcpu *vcpu, | 
 | 				       const struct read_write_emulator_ops *ops) | 
 | { | 
 | 	gpa_t gpa; | 
 | 	int handled, ret; | 
 | 	bool write = ops->write; | 
 | 	struct kvm_mmio_fragment *frag; | 
 | 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; | 
 |  | 
 | 	/* | 
 | 	 * If the exit was due to a NPF we may already have a GPA. | 
 | 	 * If the GPA is present, use it to avoid the GVA to GPA table walk. | 
 | 	 * Note, this cannot be used on string operations since string | 
 | 	 * operation using rep will only have the initial GPA from the NPF | 
 | 	 * occurred. | 
 | 	 */ | 
 | 	if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) && | 
 | 	    (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) { | 
 | 		gpa = ctxt->gpa_val; | 
 | 		ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write); | 
 | 	} else { | 
 | 		ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); | 
 | 		if (ret < 0) | 
 | 			return X86EMUL_PROPAGATE_FAULT; | 
 | 	} | 
 |  | 
 | 	if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes)) | 
 | 		return X86EMUL_CONTINUE; | 
 |  | 
 | 	/* | 
 | 	 * Is this MMIO handled locally? | 
 | 	 */ | 
 | 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val); | 
 | 	if (handled == bytes) | 
 | 		return X86EMUL_CONTINUE; | 
 |  | 
 | 	gpa += handled; | 
 | 	bytes -= handled; | 
 | 	val += handled; | 
 |  | 
 | 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); | 
 | 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; | 
 | 	frag->gpa = gpa; | 
 | 	frag->data = val; | 
 | 	frag->len = bytes; | 
 | 	return X86EMUL_CONTINUE; | 
 | } | 
 |  | 
 | static int emulator_read_write(struct x86_emulate_ctxt *ctxt, | 
 | 			unsigned long addr, | 
 | 			void *val, unsigned int bytes, | 
 | 			struct x86_exception *exception, | 
 | 			const struct read_write_emulator_ops *ops) | 
 | { | 
 | 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); | 
 | 	gpa_t gpa; | 
 | 	int rc; | 
 |  | 
 | 	if (ops->read_write_prepare && | 
 | 		  ops->read_write_prepare(vcpu, val, bytes)) | 
 | 		return X86EMUL_CONTINUE; | 
 |  | 
 | 	vcpu->mmio_nr_fragments = 0; | 
 |  | 
 | 	/* Crossing a page boundary? */ | 
 | 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { | 
 | 		int now; | 
 |  | 
 | 		now = -addr & ~PAGE_MASK; | 
 | 		rc = emulator_read_write_onepage(addr, val, now, exception, | 
 | 						 vcpu, ops); | 
 |  | 
 | 		if (rc != X86EMUL_CONTINUE) | 
 | 			return rc; | 
 | 		addr += now; | 
 | 		if (ctxt->mode != X86EMUL_MODE_PROT64) | 
 | 			addr = (u32)addr; | 
 | 		val += now; | 
 | 		bytes -= now; | 
 | 	} | 
 |  | 
 | 	rc = emulator_read_write_onepage(addr, val, bytes, exception, | 
 | 					 vcpu, ops); | 
 | 	if (rc != X86EMUL_CONTINUE) | 
 | 		return rc; | 
 |  | 
 | 	if (!vcpu->mmio_nr_fragments) | 
 | 		return X86EMUL_CONTINUE; | 
 |  | 
 | 	gpa = vcpu->mmio_fragments[0].gpa; | 
 |  | 
 | 	vcpu->mmio_needed = 1; | 
 | 	vcpu->mmio_cur_fragment = 0; | 
 |  | 
 | 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); | 
 | 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; | 
 | 	vcpu->run->exit_reason = KVM_EXIT_MMIO; | 
 | 	vcpu->run->mmio.phys_addr = gpa; | 
 |  | 
 | 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); | 
 | } | 
 |  | 
 | static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, | 
 | 				  unsigned long addr, | 
 | 				  void *val, | 
 | 				  unsigned int bytes, | 
 | 				  struct x86_exception *exception) | 
 | { | 
 | 	return emulator_read_write(ctxt, addr, val, bytes, | 
 | 				   exception, &read_emultor); | 
 | } | 
 |  | 
 | static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, | 
 | 			    unsigned long addr, | 
 | 			    const void *val, | 
 | 			    unsigned int bytes, | 
 | 			    struct x86_exception *exception) | 
 | { | 
 | 	return emulator_read_write(ctxt, addr, (void *)val, bytes, | 
 | 				   exception, &write_emultor); | 
 | } | 
 |  | 
 | #define emulator_try_cmpxchg_user(t, ptr, old, new) \ | 
 | 	(__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t)) | 
 |  | 
 | static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, | 
 | 				     unsigned long addr, | 
 | 				     const void *old, | 
 | 				     const void *new, | 
 | 				     unsigned int bytes, | 
 | 				     struct x86_exception *exception) | 
 | { | 
 | 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); | 
 | 	u64 page_line_mask; | 
 | 	unsigned long hva; | 
 | 	gpa_t gpa; | 
 | 	int r; | 
 |  | 
 | 	/* guests cmpxchg8b have to be emulated atomically */ | 
 | 	if (bytes > 8 || (bytes & (bytes - 1))) | 
 | 		goto emul_write; | 
 |  | 
 | 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); | 
 |  | 
 | 	if (gpa == INVALID_GPA || | 
 | 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) | 
 | 		goto emul_write; | 
 |  | 
 | 	/* | 
 | 	 * Emulate the atomic as a straight write to avoid #AC if SLD is | 
 | 	 * enabled in the host and the access splits a cache line. | 
 | 	 */ | 
 | 	if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) | 
 | 		page_line_mask = ~(cache_line_size() - 1); | 
 | 	else | 
 | 		page_line_mask = PAGE_MASK; | 
 |  | 
 | 	if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask)) | 
 | 		goto emul_write; | 
 |  | 
 | 	hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa)); | 
 | 	if (kvm_is_error_hva(hva)) | 
 | 		goto emul_write; | 
 |  | 
 | 	hva += offset_in_page(gpa); | 
 |  | 
 | 	switch (bytes) { | 
 | 	case 1: | 
 | 		r = emulator_try_cmpxchg_user(u8, hva, old, new); | 
 | 		break; | 
 | 	case 2: | 
 | 		r = emulator_try_cmpxchg_user(u16, hva, old, new); | 
 | 		break; | 
 | 	case 4: | 
 | 		r = emulator_try_cmpxchg_user(u32, hva, old, new); | 
 | 		break; | 
 | 	case 8: | 
 | 		r = emulator_try_cmpxchg_user(u64, hva, old, new); | 
 | 		break; | 
 | 	default: | 
 | 		BUG(); | 
 | 	} | 
 |  | 
 | 	if (r < 0) | 
 | 		return X86EMUL_UNHANDLEABLE; | 
 |  | 
 | 	/* | 
 | 	 * Mark the page dirty _before_ checking whether or not the CMPXCHG was | 
 | 	 * successful, as the old value is written back on failure.  Note, for | 
 | 	 * live migration, this is unnecessarily conservative as CMPXCHG writes | 
 | 	 * back the original value and the access is atomic, but KVM's ABI is | 
 | 	 * that all writes are dirty logged, regardless of the value written. | 
 | 	 */ | 
 | 	kvm_vcpu_mark_page_dirty(vcpu, gpa_to_gfn(gpa)); | 
 |  | 
 | 	if (r) | 
 | 		return X86EMUL_CMPXCHG_FAILED; | 
 |  | 
 | 	kvm_page_track_write(vcpu, gpa, new, bytes); | 
 |  | 
 | 	return X86EMUL_CONTINUE; | 
 |  | 
 | emul_write: | 
 | 	pr_warn_once("emulating exchange as write\n"); | 
 |  | 
 | 	return emulator_write_emulated(ctxt, addr, new, bytes, exception); | 
 | } | 
 |  | 
 | static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, | 
 | 			       unsigned short port, void *data, | 
 | 			       unsigned int count, bool in) | 
 | { | 
 | 	unsigned i; | 
 | 	int r; | 
 |  | 
 | 	WARN_ON_ONCE(vcpu->arch.pio.count); | 
 | 	for (i = 0; i < count; i++) { | 
 | 		if (in) | 
 | 			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data); | 
 | 		else | 
 | 			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data); | 
 |  | 
 | 		if (r) { | 
 | 			if (i == 0) | 
 | 				goto userspace_io; | 
 |  | 
 | 			/* | 
 | 			 * Userspace must have unregistered the device while PIO | 
 | 			 * was running.  Drop writes / read as 0. | 
 | 			 */ | 
 | 			if (in) | 
 | 				memset(data, 0, size * (count - i)); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		data += size; | 
 | 	} | 
 | 	return 1; | 
 |  | 
 | userspace_io: | 
 | 	vcpu->arch.pio.port = port; | 
 | 	vcpu->arch.pio.in = in; | 
 | 	vcpu->arch.pio.count = count; | 
 | 	vcpu->arch.pio.size = size; | 
 |  | 
 | 	if (in) | 
 | 		memset(vcpu->arch.pio_data, 0, size * count); | 
 | 	else | 
 | 		memcpy(vcpu->arch.pio_data, data, size * count); | 
 |  | 
 | 	vcpu->run->exit_reason = KVM_EXIT_IO; | 
 | 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; | 
 | 	vcpu->run->io.size = size; | 
 | 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; | 
 | 	vcpu->run->io.count = count; | 
 | 	vcpu->run->io.port = port; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int emulator_pio_in(struct kvm_vcpu *vcpu, int size, | 
 |       			   unsigned short port, void *val, unsigned int count) | 
 | { | 
 | 	int r = emulator_pio_in_out(vcpu, size, port, val, count, true); | 
 | 	if (r) | 
 | 		trace_kvm_pio(KVM_PIO_IN, port, size, count, val); | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val) | 
 | { | 
 | 	int size = vcpu->arch.pio.size; | 
 | 	unsigned int count = vcpu->arch.pio.count; | 
 | 	memcpy(val, vcpu->arch.pio_data, size * count); | 
 | 	trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data); | 
 | 	vcpu->arch.pio.count = 0; | 
 | } | 
 |  | 
 | static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, | 
 | 				    int size, unsigned short port, void *val, | 
 | 				    unsigned int count) | 
 | { | 
 | 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); | 
 | 	if (vcpu->arch.pio.count) { | 
 | 		/* | 
 | 		 * Complete a previous iteration that required userspace I/O. | 
 | 		 * Note, @count isn't guaranteed to match pio.count as userspace | 
 | 		 * can modify ECX before rerunning the vCPU.  Ignore any such | 
 | 		 * shenanigans as KVM doesn't support modifying the rep count, | 
 | 		 * and the emulator ensures @count doesn't overflow the buffer. | 
 | 		 */ | 
 | 		complete_emulator_pio_in(vcpu, val); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	return emulator_pio_in(vcpu, size, port, val, count); | 
 | } | 
 |  | 
 | static int emulator_pio_out(struct kvm_vcpu *vcpu, int size, | 
 | 			    unsigned short port, const void *val, | 
 | 			    unsigned int count) | 
 | { | 
 | 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, val); | 
 | 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); | 
 | } | 
 |  | 
 | static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, | 
 | 				     int size, unsigned short port, | 
 | 				     const void *val, unsigned int count) | 
 | { | 
 | 	return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count); | 
 | } | 
 |  | 
 | static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) | 
 | { | 
 | 	return kvm_x86_call(get_segment_base)(vcpu, seg); | 
 | } | 
 |  | 
 | static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) | 
 | { | 
 | 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); | 
 | } | 
 |  | 
 | static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	if (!need_emulate_wbinvd(vcpu)) | 
 | 		return X86EMUL_CONTINUE; | 
 |  | 
 | 	if (kvm_x86_call(has_wbinvd_exit)()) { | 
 | 		int cpu = get_cpu(); | 
 |  | 
 | 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); | 
 | 		wbinvd_on_cpus_mask(vcpu->arch.wbinvd_dirty_mask); | 
 | 		put_cpu(); | 
 | 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask); | 
 | 	} else | 
 | 		wbinvd(); | 
 | 	return X86EMUL_CONTINUE; | 
 | } | 
 |  | 
 | int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	kvm_emulate_wbinvd_noskip(vcpu); | 
 | 	return kvm_skip_emulated_instruction(vcpu); | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); | 
 |  | 
 |  | 
 |  | 
 | static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) | 
 | { | 
 | 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt)); | 
 | } | 
 |  | 
 | static unsigned long emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr) | 
 | { | 
 | 	return kvm_get_dr(emul_to_vcpu(ctxt), dr); | 
 | } | 
 |  | 
 | static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, | 
 | 			   unsigned long value) | 
 | { | 
 |  | 
 | 	return kvm_set_dr(emul_to_vcpu(ctxt), dr, value); | 
 | } | 
 |  | 
 | static u64 mk_cr_64(u64 curr_cr, u32 new_val) | 
 | { | 
 | 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val; | 
 | } | 
 |  | 
 | static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) | 
 | { | 
 | 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); | 
 | 	unsigned long value; | 
 |  | 
 | 	switch (cr) { | 
 | 	case 0: | 
 | 		value = kvm_read_cr0(vcpu); | 
 | 		break; | 
 | 	case 2: | 
 | 		value = vcpu->arch.cr2; | 
 | 		break; | 
 | 	case 3: | 
 | 		value = kvm_read_cr3(vcpu); | 
 | 		break; | 
 | 	case 4: | 
 | 		value = kvm_read_cr4(vcpu); | 
 | 		break; | 
 | 	case 8: | 
 | 		value = kvm_get_cr8(vcpu); | 
 | 		break; | 
 | 	default: | 
 | 		kvm_err("%s: unexpected cr %u\n", __func__, cr); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	return value; | 
 | } | 
 |  | 
 | static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) | 
 | { | 
 | 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); | 
 | 	int res = 0; | 
 |  | 
 | 	switch (cr) { | 
 | 	case 0: | 
 | 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); | 
 | 		break; | 
 | 	case 2: | 
 | 		vcpu->arch.cr2 = val; | 
 | 		break; | 
 | 	case 3: | 
 | 		res = kvm_set_cr3(vcpu, val); | 
 | 		break; | 
 | 	case 4: | 
 | 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); | 
 | 		break; | 
 | 	case 8: | 
 | 		res = kvm_set_cr8(vcpu, val); | 
 | 		break; | 
 | 	default: | 
 | 		kvm_err("%s: unexpected cr %u\n", __func__, cr); | 
 | 		res = -1; | 
 | 	} | 
 |  | 
 | 	return res; | 
 | } | 
 |  | 
 | static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) | 
 | { | 
 | 	return kvm_x86_call(get_cpl)(emul_to_vcpu(ctxt)); | 
 | } | 
 |  | 
 | static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) | 
 | { | 
 | 	kvm_x86_call(get_gdt)(emul_to_vcpu(ctxt), dt); | 
 | } | 
 |  | 
 | static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) | 
 | { | 
 | 	kvm_x86_call(get_idt)(emul_to_vcpu(ctxt), dt); | 
 | } | 
 |  | 
 | static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) | 
 | { | 
 | 	kvm_x86_call(set_gdt)(emul_to_vcpu(ctxt), dt); | 
 | } | 
 |  | 
 | static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) | 
 | { | 
 | 	kvm_x86_call(set_idt)(emul_to_vcpu(ctxt), dt); | 
 | } | 
 |  | 
 | static unsigned long emulator_get_cached_segment_base( | 
 | 	struct x86_emulate_ctxt *ctxt, int seg) | 
 | { | 
 | 	return get_segment_base(emul_to_vcpu(ctxt), seg); | 
 | } | 
 |  | 
 | static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, | 
 | 				 struct desc_struct *desc, u32 *base3, | 
 | 				 int seg) | 
 | { | 
 | 	struct kvm_segment var; | 
 |  | 
 | 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); | 
 | 	*selector = var.selector; | 
 |  | 
 | 	if (var.unusable) { | 
 | 		memset(desc, 0, sizeof(*desc)); | 
 | 		if (base3) | 
 | 			*base3 = 0; | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	if (var.g) | 
 | 		var.limit >>= 12; | 
 | 	set_desc_limit(desc, var.limit); | 
 | 	set_desc_base(desc, (unsigned long)var.base); | 
 | #ifdef CONFIG_X86_64 | 
 | 	if (base3) | 
 | 		*base3 = var.base >> 32; | 
 | #endif | 
 | 	desc->type = var.type; | 
 | 	desc->s = var.s; | 
 | 	desc->dpl = var.dpl; | 
 | 	desc->p = var.present; | 
 | 	desc->avl = var.avl; | 
 | 	desc->l = var.l; | 
 | 	desc->d = var.db; | 
 | 	desc->g = var.g; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, | 
 | 				 struct desc_struct *desc, u32 base3, | 
 | 				 int seg) | 
 | { | 
 | 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); | 
 | 	struct kvm_segment var; | 
 |  | 
 | 	var.selector = selector; | 
 | 	var.base = get_desc_base(desc); | 
 | #ifdef CONFIG_X86_64 | 
 | 	var.base |= ((u64)base3) << 32; | 
 | #endif | 
 | 	var.limit = get_desc_limit(desc); | 
 | 	if (desc->g) | 
 | 		var.limit = (var.limit << 12) | 0xfff; | 
 | 	var.type = desc->type; | 
 | 	var.dpl = desc->dpl; | 
 | 	var.db = desc->d; | 
 | 	var.s = desc->s; | 
 | 	var.l = desc->l; | 
 | 	var.g = desc->g; | 
 | 	var.avl = desc->avl; | 
 | 	var.present = desc->p; | 
 | 	var.unusable = !var.present; | 
 | 	var.padding = 0; | 
 |  | 
 | 	kvm_set_segment(vcpu, &var, seg); | 
 | 	return; | 
 | } | 
 |  | 
 | static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt, | 
 | 					u32 msr_index, u64 *pdata) | 
 | { | 
 | 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); | 
 | 	int r; | 
 |  | 
 | 	r = kvm_get_msr_with_filter(vcpu, msr_index, pdata); | 
 | 	if (r < 0) | 
 | 		return X86EMUL_UNHANDLEABLE; | 
 |  | 
 | 	if (r) { | 
 | 		if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0, | 
 | 				       complete_emulated_rdmsr, r)) | 
 | 			return X86EMUL_IO_NEEDED; | 
 |  | 
 | 		trace_kvm_msr_read_ex(msr_index); | 
 | 		return X86EMUL_PROPAGATE_FAULT; | 
 | 	} | 
 |  | 
 | 	trace_kvm_msr_read(msr_index, *pdata); | 
 | 	return X86EMUL_CONTINUE; | 
 | } | 
 |  | 
 | static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt, | 
 | 					u32 msr_index, u64 data) | 
 | { | 
 | 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); | 
 | 	int r; | 
 |  | 
 | 	r = kvm_set_msr_with_filter(vcpu, msr_index, data); | 
 | 	if (r < 0) | 
 | 		return X86EMUL_UNHANDLEABLE; | 
 |  | 
 | 	if (r) { | 
 | 		if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data, | 
 | 				       complete_emulated_msr_access, r)) | 
 | 			return X86EMUL_IO_NEEDED; | 
 |  | 
 | 		trace_kvm_msr_write_ex(msr_index, data); | 
 | 		return X86EMUL_PROPAGATE_FAULT; | 
 | 	} | 
 |  | 
 | 	trace_kvm_msr_write(msr_index, data); | 
 | 	return X86EMUL_CONTINUE; | 
 | } | 
 |  | 
 | static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, | 
 | 			    u32 msr_index, u64 *pdata) | 
 | { | 
 | 	return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata); | 
 | } | 
 |  | 
 | static int emulator_check_rdpmc_early(struct x86_emulate_ctxt *ctxt, u32 pmc) | 
 | { | 
 | 	return kvm_pmu_check_rdpmc_early(emul_to_vcpu(ctxt), pmc); | 
 | } | 
 |  | 
 | static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, | 
 | 			     u32 pmc, u64 *pdata) | 
 | { | 
 | 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata); | 
 | } | 
 |  | 
 | static void emulator_halt(struct x86_emulate_ctxt *ctxt) | 
 | { | 
 | 	emul_to_vcpu(ctxt)->arch.halt_request = 1; | 
 | } | 
 |  | 
 | static int emulator_intercept(struct x86_emulate_ctxt *ctxt, | 
 | 			      struct x86_instruction_info *info, | 
 | 			      enum x86_intercept_stage stage) | 
 | { | 
 | 	return kvm_x86_call(check_intercept)(emul_to_vcpu(ctxt), info, stage, | 
 | 					     &ctxt->exception); | 
 | } | 
 |  | 
 | static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, | 
 | 			      u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, | 
 | 			      bool exact_only) | 
 | { | 
 | 	return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only); | 
 | } | 
 |  | 
 | static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt) | 
 | { | 
 | 	return guest_cpu_cap_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE); | 
 | } | 
 |  | 
 | static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt) | 
 | { | 
 | 	return guest_cpu_cap_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR); | 
 | } | 
 |  | 
 | static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt) | 
 | { | 
 | 	return guest_cpu_cap_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID); | 
 | } | 
 |  | 
 | static bool emulator_guest_cpuid_is_intel_compatible(struct x86_emulate_ctxt *ctxt) | 
 | { | 
 | 	return guest_cpuid_is_intel_compatible(emul_to_vcpu(ctxt)); | 
 | } | 
 |  | 
 | static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) | 
 | { | 
 | 	return kvm_register_read_raw(emul_to_vcpu(ctxt), reg); | 
 | } | 
 |  | 
 | static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) | 
 | { | 
 | 	kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val); | 
 | } | 
 |  | 
 | static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked) | 
 | { | 
 | 	kvm_x86_call(set_nmi_mask)(emul_to_vcpu(ctxt), masked); | 
 | } | 
 |  | 
 | static bool emulator_is_smm(struct x86_emulate_ctxt *ctxt) | 
 | { | 
 | 	return is_smm(emul_to_vcpu(ctxt)); | 
 | } | 
 |  | 
 | static bool emulator_is_guest_mode(struct x86_emulate_ctxt *ctxt) | 
 | { | 
 | 	return is_guest_mode(emul_to_vcpu(ctxt)); | 
 | } | 
 |  | 
 | #ifndef CONFIG_KVM_SMM | 
 | static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt) | 
 | { | 
 | 	WARN_ON_ONCE(1); | 
 | 	return X86EMUL_UNHANDLEABLE; | 
 | } | 
 | #endif | 
 |  | 
 | static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt) | 
 | { | 
 | 	kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt)); | 
 | } | 
 |  | 
 | static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr) | 
 | { | 
 | 	return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr); | 
 | } | 
 |  | 
 | static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt) | 
 | { | 
 | 	struct kvm *kvm = emul_to_vcpu(ctxt)->kvm; | 
 |  | 
 | 	if (!kvm->vm_bugged) | 
 | 		kvm_vm_bugged(kvm); | 
 | } | 
 |  | 
 | static gva_t emulator_get_untagged_addr(struct x86_emulate_ctxt *ctxt, | 
 | 					gva_t addr, unsigned int flags) | 
 | { | 
 | 	if (!kvm_x86_ops.get_untagged_addr) | 
 | 		return addr; | 
 |  | 
 | 	return kvm_x86_call(get_untagged_addr)(emul_to_vcpu(ctxt), | 
 | 					       addr, flags); | 
 | } | 
 |  | 
 | static bool emulator_is_canonical_addr(struct x86_emulate_ctxt *ctxt, | 
 | 				       gva_t addr, unsigned int flags) | 
 | { | 
 | 	return !is_noncanonical_address(addr, emul_to_vcpu(ctxt), flags); | 
 | } | 
 |  | 
 | static const struct x86_emulate_ops emulate_ops = { | 
 | 	.vm_bugged           = emulator_vm_bugged, | 
 | 	.read_gpr            = emulator_read_gpr, | 
 | 	.write_gpr           = emulator_write_gpr, | 
 | 	.read_std            = emulator_read_std, | 
 | 	.write_std           = emulator_write_std, | 
 | 	.fetch               = kvm_fetch_guest_virt, | 
 | 	.read_emulated       = emulator_read_emulated, | 
 | 	.write_emulated      = emulator_write_emulated, | 
 | 	.cmpxchg_emulated    = emulator_cmpxchg_emulated, | 
 | 	.invlpg              = emulator_invlpg, | 
 | 	.pio_in_emulated     = emulator_pio_in_emulated, | 
 | 	.pio_out_emulated    = emulator_pio_out_emulated, | 
 | 	.get_segment         = emulator_get_segment, | 
 | 	.set_segment         = emulator_set_segment, | 
 | 	.get_cached_segment_base = emulator_get_cached_segment_base, | 
 | 	.get_gdt             = emulator_get_gdt, | 
 | 	.get_idt	     = emulator_get_idt, | 
 | 	.set_gdt             = emulator_set_gdt, | 
 | 	.set_idt	     = emulator_set_idt, | 
 | 	.get_cr              = emulator_get_cr, | 
 | 	.set_cr              = emulator_set_cr, | 
 | 	.cpl                 = emulator_get_cpl, | 
 | 	.get_dr              = emulator_get_dr, | 
 | 	.set_dr              = emulator_set_dr, | 
 | 	.set_msr_with_filter = emulator_set_msr_with_filter, | 
 | 	.get_msr_with_filter = emulator_get_msr_with_filter, | 
 | 	.get_msr             = emulator_get_msr, | 
 | 	.check_rdpmc_early   = emulator_check_rdpmc_early, | 
 | 	.read_pmc            = emulator_read_pmc, | 
 | 	.halt                = emulator_halt, | 
 | 	.wbinvd              = emulator_wbinvd, | 
 | 	.fix_hypercall       = emulator_fix_hypercall, | 
 | 	.intercept           = emulator_intercept, | 
 | 	.get_cpuid           = emulator_get_cpuid, | 
 | 	.guest_has_movbe     = emulator_guest_has_movbe, | 
 | 	.guest_has_fxsr      = emulator_guest_has_fxsr, | 
 | 	.guest_has_rdpid     = emulator_guest_has_rdpid, | 
 | 	.guest_cpuid_is_intel_compatible = emulator_guest_cpuid_is_intel_compatible, | 
 | 	.set_nmi_mask        = emulator_set_nmi_mask, | 
 | 	.is_smm              = emulator_is_smm, | 
 | 	.is_guest_mode       = emulator_is_guest_mode, | 
 | 	.leave_smm           = emulator_leave_smm, | 
 | 	.triple_fault        = emulator_triple_fault, | 
 | 	.set_xcr             = emulator_set_xcr, | 
 | 	.get_untagged_addr   = emulator_get_untagged_addr, | 
 | 	.is_canonical_addr   = emulator_is_canonical_addr, | 
 | }; | 
 |  | 
 | static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) | 
 | { | 
 | 	u32 int_shadow = kvm_x86_call(get_interrupt_shadow)(vcpu); | 
 | 	/* | 
 | 	 * an sti; sti; sequence only disable interrupts for the first | 
 | 	 * instruction. So, if the last instruction, be it emulated or | 
 | 	 * not, left the system with the INT_STI flag enabled, it | 
 | 	 * means that the last instruction is an sti. We should not | 
 | 	 * leave the flag on in this case. The same goes for mov ss | 
 | 	 */ | 
 | 	if (int_shadow & mask) | 
 | 		mask = 0; | 
 | 	if (unlikely(int_shadow || mask)) { | 
 | 		kvm_x86_call(set_interrupt_shadow)(vcpu, mask); | 
 | 		if (!mask) | 
 | 			kvm_make_request(KVM_REQ_EVENT, vcpu); | 
 | 	} | 
 | } | 
 |  | 
 | static void inject_emulated_exception(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; | 
 |  | 
 | 	if (ctxt->exception.vector == PF_VECTOR) | 
 | 		kvm_inject_emulated_page_fault(vcpu, &ctxt->exception); | 
 | 	else if (ctxt->exception.error_code_valid) | 
 | 		kvm_queue_exception_e(vcpu, ctxt->exception.vector, | 
 | 				      ctxt->exception.error_code); | 
 | 	else | 
 | 		kvm_queue_exception(vcpu, ctxt->exception.vector); | 
 | } | 
 |  | 
 | static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct x86_emulate_ctxt *ctxt; | 
 |  | 
 | 	ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT); | 
 | 	if (!ctxt) { | 
 | 		pr_err("failed to allocate vcpu's emulator\n"); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	ctxt->vcpu = vcpu; | 
 | 	ctxt->ops = &emulate_ops; | 
 | 	vcpu->arch.emulate_ctxt = ctxt; | 
 |  | 
 | 	return ctxt; | 
 | } | 
 |  | 
 | static void init_emulate_ctxt(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; | 
 | 	int cs_db, cs_l; | 
 |  | 
 | 	kvm_x86_call(get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); | 
 |  | 
 | 	ctxt->gpa_available = false; | 
 | 	ctxt->eflags = kvm_get_rflags(vcpu); | 
 | 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0; | 
 |  | 
 | 	ctxt->eip = kvm_rip_read(vcpu); | 
 | 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL : | 
 | 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 : | 
 | 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 : | 
 | 		     cs_db				? X86EMUL_MODE_PROT32 : | 
 | 							  X86EMUL_MODE_PROT16; | 
 | 	ctxt->interruptibility = 0; | 
 | 	ctxt->have_exception = false; | 
 | 	ctxt->exception.vector = -1; | 
 | 	ctxt->perm_ok = false; | 
 |  | 
 | 	init_decode_cache(ctxt); | 
 | 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false; | 
 | } | 
 |  | 
 | void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) | 
 | { | 
 | 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; | 
 | 	int ret; | 
 |  | 
 | 	init_emulate_ctxt(vcpu); | 
 |  | 
 | 	ctxt->op_bytes = 2; | 
 | 	ctxt->ad_bytes = 2; | 
 | 	ctxt->_eip = ctxt->eip + inc_eip; | 
 | 	ret = emulate_int_real(ctxt, irq); | 
 |  | 
 | 	if (ret != X86EMUL_CONTINUE) { | 
 | 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); | 
 | 	} else { | 
 | 		ctxt->eip = ctxt->_eip; | 
 | 		kvm_rip_write(vcpu, ctxt->eip); | 
 | 		kvm_set_rflags(vcpu, ctxt->eflags); | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); | 
 |  | 
 | static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, | 
 | 					   u8 ndata, u8 *insn_bytes, u8 insn_size) | 
 | { | 
 | 	struct kvm_run *run = vcpu->run; | 
 | 	u64 info[5]; | 
 | 	u8 info_start; | 
 |  | 
 | 	/* | 
 | 	 * Zero the whole array used to retrieve the exit info, as casting to | 
 | 	 * u32 for select entries will leave some chunks uninitialized. | 
 | 	 */ | 
 | 	memset(&info, 0, sizeof(info)); | 
 |  | 
 | 	kvm_x86_call(get_exit_info)(vcpu, (u32 *)&info[0], &info[1], &info[2], | 
 | 				    (u32 *)&info[3], (u32 *)&info[4]); | 
 |  | 
 | 	run->exit_reason = KVM_EXIT_INTERNAL_ERROR; | 
 | 	run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION; | 
 |  | 
 | 	/* | 
 | 	 * There's currently space for 13 entries, but 5 are used for the exit | 
 | 	 * reason and info.  Restrict to 4 to reduce the maintenance burden | 
 | 	 * when expanding kvm_run.emulation_failure in the future. | 
 | 	 */ | 
 | 	if (WARN_ON_ONCE(ndata > 4)) | 
 | 		ndata = 4; | 
 |  | 
 | 	/* Always include the flags as a 'data' entry. */ | 
 | 	info_start = 1; | 
 | 	run->emulation_failure.flags = 0; | 
 |  | 
 | 	if (insn_size) { | 
 | 		BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) + | 
 | 			      sizeof(run->emulation_failure.insn_bytes) != 16)); | 
 | 		info_start += 2; | 
 | 		run->emulation_failure.flags |= | 
 | 			KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES; | 
 | 		run->emulation_failure.insn_size = insn_size; | 
 | 		memset(run->emulation_failure.insn_bytes, 0x90, | 
 | 		       sizeof(run->emulation_failure.insn_bytes)); | 
 | 		memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size); | 
 | 	} | 
 |  | 
 | 	memcpy(&run->internal.data[info_start], info, sizeof(info)); | 
 | 	memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data, | 
 | 	       ndata * sizeof(data[0])); | 
 |  | 
 | 	run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata; | 
 | } | 
 |  | 
 | static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; | 
 |  | 
 | 	prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data, | 
 | 				       ctxt->fetch.end - ctxt->fetch.data); | 
 | } | 
 |  | 
 | void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, | 
 | 					  u8 ndata) | 
 | { | 
 | 	prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0); | 
 | } | 
 | EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit); | 
 |  | 
 | void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	__kvm_prepare_emulation_failure_exit(vcpu, NULL, 0); | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit); | 
 |  | 
 | void kvm_prepare_event_vectoring_exit(struct kvm_vcpu *vcpu, gpa_t gpa) | 
 | { | 
 | 	u32 reason, intr_info, error_code; | 
 | 	struct kvm_run *run = vcpu->run; | 
 | 	u64 info1, info2; | 
 | 	int ndata = 0; | 
 |  | 
 | 	kvm_x86_call(get_exit_info)(vcpu, &reason, &info1, &info2, | 
 | 				    &intr_info, &error_code); | 
 |  | 
 | 	run->internal.data[ndata++] = info2; | 
 | 	run->internal.data[ndata++] = reason; | 
 | 	run->internal.data[ndata++] = info1; | 
 | 	run->internal.data[ndata++] = gpa; | 
 | 	run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu; | 
 |  | 
 | 	run->exit_reason = KVM_EXIT_INTERNAL_ERROR; | 
 | 	run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV; | 
 | 	run->internal.ndata = ndata; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_prepare_event_vectoring_exit); | 
 |  | 
 | static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type) | 
 | { | 
 | 	struct kvm *kvm = vcpu->kvm; | 
 |  | 
 | 	++vcpu->stat.insn_emulation_fail; | 
 | 	trace_kvm_emulate_insn_failed(vcpu); | 
 |  | 
 | 	if (emulation_type & EMULTYPE_VMWARE_GP) { | 
 | 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	if (kvm->arch.exit_on_emulation_error || | 
 | 	    (emulation_type & EMULTYPE_SKIP)) { | 
 | 		prepare_emulation_ctxt_failure_exit(vcpu); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	kvm_queue_exception(vcpu, UD_VECTOR); | 
 |  | 
 | 	if (!is_guest_mode(vcpu) && kvm_x86_call(get_cpl)(vcpu) == 0) { | 
 | 		prepare_emulation_ctxt_failure_exit(vcpu); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | static bool kvm_unprotect_and_retry_on_failure(struct kvm_vcpu *vcpu, | 
 | 					       gpa_t cr2_or_gpa, | 
 | 					       int emulation_type) | 
 | { | 
 | 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) | 
 | 		return false; | 
 |  | 
 | 	/* | 
 | 	 * If the failed instruction faulted on an access to page tables that | 
 | 	 * are used to translate any part of the instruction, KVM can't resolve | 
 | 	 * the issue by unprotecting the gfn, as zapping the shadow page will | 
 | 	 * result in the instruction taking a !PRESENT page fault and thus put | 
 | 	 * the vCPU into an infinite loop of page faults.  E.g. KVM will create | 
 | 	 * a SPTE and write-protect the gfn to resolve the !PRESENT fault, and | 
 | 	 * then zap the SPTE to unprotect the gfn, and then do it all over | 
 | 	 * again.  Report the error to userspace. | 
 | 	 */ | 
 | 	if (emulation_type & EMULTYPE_WRITE_PF_TO_SP) | 
 | 		return false; | 
 |  | 
 | 	/* | 
 | 	 * If emulation may have been triggered by a write to a shadowed page | 
 | 	 * table, unprotect the gfn (zap any relevant SPTEs) and re-enter the | 
 | 	 * guest to let the CPU re-execute the instruction in the hope that the | 
 | 	 * CPU can cleanly execute the instruction that KVM failed to emulate. | 
 | 	 */ | 
 | 	__kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa, true); | 
 |  | 
 | 	/* | 
 | 	 * Retry even if _this_ vCPU didn't unprotect the gfn, as it's possible | 
 | 	 * all SPTEs were already zapped by a different task.  The alternative | 
 | 	 * is to report the error to userspace and likely terminate the guest, | 
 | 	 * and the last_retry_{eip,addr} checks will prevent retrying the page | 
 | 	 * fault indefinitely, i.e. there's nothing to lose by retrying. | 
 | 	 */ | 
 | 	return true; | 
 | } | 
 |  | 
 | static int complete_emulated_mmio(struct kvm_vcpu *vcpu); | 
 | static int complete_emulated_pio(struct kvm_vcpu *vcpu); | 
 |  | 
 | static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, | 
 | 				unsigned long *db) | 
 | { | 
 | 	u32 dr6 = 0; | 
 | 	int i; | 
 | 	u32 enable, rwlen; | 
 |  | 
 | 	enable = dr7; | 
 | 	rwlen = dr7 >> 16; | 
 | 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) | 
 | 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) | 
 | 			dr6 |= (1 << i); | 
 | 	return dr6; | 
 | } | 
 |  | 
 | static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct kvm_run *kvm_run = vcpu->run; | 
 |  | 
 | 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { | 
 | 		kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW; | 
 | 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); | 
 | 		kvm_run->debug.arch.exception = DB_VECTOR; | 
 | 		kvm_run->exit_reason = KVM_EXIT_DEBUG; | 
 | 		return 0; | 
 | 	} | 
 | 	kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS); | 
 | 	return 1; | 
 | } | 
 |  | 
 | int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	unsigned long rflags = kvm_x86_call(get_rflags)(vcpu); | 
 | 	int r; | 
 |  | 
 | 	r = kvm_x86_call(skip_emulated_instruction)(vcpu); | 
 | 	if (unlikely(!r)) | 
 | 		return 0; | 
 |  | 
 | 	kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.INSTRUCTIONS_RETIRED); | 
 |  | 
 | 	/* | 
 | 	 * rflags is the old, "raw" value of the flags.  The new value has | 
 | 	 * not been saved yet. | 
 | 	 * | 
 | 	 * This is correct even for TF set by the guest, because "the | 
 | 	 * processor will not generate this exception after the instruction | 
 | 	 * that sets the TF flag". | 
 | 	 */ | 
 | 	if (unlikely(rflags & X86_EFLAGS_TF)) | 
 | 		r = kvm_vcpu_do_singlestep(vcpu); | 
 | 	return r; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction); | 
 |  | 
 | static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF) | 
 | 		return true; | 
 |  | 
 | 	/* | 
 | 	 * Intel compatible CPUs inhibit code #DBs when MOV/POP SS blocking is | 
 | 	 * active, but AMD compatible CPUs do not. | 
 | 	 */ | 
 | 	if (!guest_cpuid_is_intel_compatible(vcpu)) | 
 | 		return false; | 
 |  | 
 | 	return kvm_x86_call(get_interrupt_shadow)(vcpu) & KVM_X86_SHADOW_INT_MOV_SS; | 
 | } | 
 |  | 
 | static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu, | 
 | 					   int emulation_type, int *r) | 
 | { | 
 | 	WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE); | 
 |  | 
 | 	/* | 
 | 	 * Do not check for code breakpoints if hardware has already done the | 
 | 	 * checks, as inferred from the emulation type.  On NO_DECODE and SKIP, | 
 | 	 * the instruction has passed all exception checks, and all intercepted | 
 | 	 * exceptions that trigger emulation have lower priority than code | 
 | 	 * breakpoints, i.e. the fact that the intercepted exception occurred | 
 | 	 * means any code breakpoints have already been serviced. | 
 | 	 * | 
 | 	 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as | 
 | 	 * hardware has checked the RIP of the magic prefix, but not the RIP of | 
 | 	 * the instruction being emulated.  The intent of forced emulation is | 
 | 	 * to behave as if KVM intercepted the instruction without an exception | 
 | 	 * and without a prefix. | 
 | 	 */ | 
 | 	if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP | | 
 | 			      EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF)) | 
 | 		return false; | 
 |  | 
 | 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && | 
 | 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { | 
 | 		struct kvm_run *kvm_run = vcpu->run; | 
 | 		unsigned long eip = kvm_get_linear_rip(vcpu); | 
 | 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, | 
 | 					   vcpu->arch.guest_debug_dr7, | 
 | 					   vcpu->arch.eff_db); | 
 |  | 
 | 		if (dr6 != 0) { | 
 | 			kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW; | 
 | 			kvm_run->debug.arch.pc = eip; | 
 | 			kvm_run->debug.arch.exception = DB_VECTOR; | 
 | 			kvm_run->exit_reason = KVM_EXIT_DEBUG; | 
 | 			*r = 0; | 
 | 			return true; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) && | 
 | 	    !kvm_is_code_breakpoint_inhibited(vcpu)) { | 
 | 		unsigned long eip = kvm_get_linear_rip(vcpu); | 
 | 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, | 
 | 					   vcpu->arch.dr7, | 
 | 					   vcpu->arch.db); | 
 |  | 
 | 		if (dr6 != 0) { | 
 | 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); | 
 | 			*r = 1; | 
 | 			return true; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt) | 
 | { | 
 | 	switch (ctxt->opcode_len) { | 
 | 	case 1: | 
 | 		switch (ctxt->b) { | 
 | 		case 0xe4:	/* IN */ | 
 | 		case 0xe5: | 
 | 		case 0xec: | 
 | 		case 0xed: | 
 | 		case 0xe6:	/* OUT */ | 
 | 		case 0xe7: | 
 | 		case 0xee: | 
 | 		case 0xef: | 
 | 		case 0x6c:	/* INS */ | 
 | 		case 0x6d: | 
 | 		case 0x6e:	/* OUTS */ | 
 | 		case 0x6f: | 
 | 			return true; | 
 | 		} | 
 | 		break; | 
 | 	case 2: | 
 | 		switch (ctxt->b) { | 
 | 		case 0x33:	/* RDPMC */ | 
 | 			return true; | 
 | 		} | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | /* | 
 |  * Decode an instruction for emulation.  The caller is responsible for handling | 
 |  * code breakpoints.  Note, manually detecting code breakpoints is unnecessary | 
 |  * (and wrong) when emulating on an intercepted fault-like exception[*], as | 
 |  * code breakpoints have higher priority and thus have already been done by | 
 |  * hardware. | 
 |  * | 
 |  * [*] Except #MC, which is higher priority, but KVM should never emulate in | 
 |  *     response to a machine check. | 
 |  */ | 
 | int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type, | 
 | 				    void *insn, int insn_len) | 
 | { | 
 | 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; | 
 | 	int r; | 
 |  | 
 | 	init_emulate_ctxt(vcpu); | 
 |  | 
 | 	r = x86_decode_insn(ctxt, insn, insn_len, emulation_type); | 
 |  | 
 | 	trace_kvm_emulate_insn_start(vcpu); | 
 | 	++vcpu->stat.insn_emulation; | 
 |  | 
 | 	return r; | 
 | } | 
 | EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction); | 
 |  | 
 | int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, | 
 | 			    int emulation_type, void *insn, int insn_len) | 
 | { | 
 | 	int r; | 
 | 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; | 
 | 	bool writeback = true; | 
 |  | 
 | 	if ((emulation_type & EMULTYPE_ALLOW_RETRY_PF) && | 
 | 	    (WARN_ON_ONCE(is_guest_mode(vcpu)) || | 
 | 	     WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))) | 
 | 		emulation_type &= ~EMULTYPE_ALLOW_RETRY_PF; | 
 |  | 
 | 	r = kvm_check_emulate_insn(vcpu, emulation_type, insn, insn_len); | 
 | 	if (r != X86EMUL_CONTINUE) { | 
 | 		if (r == X86EMUL_RETRY_INSTR || r == X86EMUL_PROPAGATE_FAULT) | 
 | 			return 1; | 
 |  | 
 | 		if (kvm_unprotect_and_retry_on_failure(vcpu, cr2_or_gpa, | 
 | 						       emulation_type)) | 
 | 			return 1; | 
 |  | 
 | 		if (r == X86EMUL_UNHANDLEABLE_VECTORING) { | 
 | 			kvm_prepare_event_vectoring_exit(vcpu, cr2_or_gpa); | 
 | 			return 0; | 
 | 		} | 
 |  | 
 | 		WARN_ON_ONCE(r != X86EMUL_UNHANDLEABLE); | 
 | 		return handle_emulation_failure(vcpu, emulation_type); | 
 | 	} | 
 |  | 
 | 	vcpu->arch.l1tf_flush_l1d = true; | 
 |  | 
 | 	if (!(emulation_type & EMULTYPE_NO_DECODE)) { | 
 | 		kvm_clear_exception_queue(vcpu); | 
 |  | 
 | 		/* | 
 | 		 * Return immediately if RIP hits a code breakpoint, such #DBs | 
 | 		 * are fault-like and are higher priority than any faults on | 
 | 		 * the code fetch itself. | 
 | 		 */ | 
 | 		if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r)) | 
 | 			return r; | 
 |  | 
 | 		r = x86_decode_emulated_instruction(vcpu, emulation_type, | 
 | 						    insn, insn_len); | 
 | 		if (r != EMULATION_OK)  { | 
 | 			if ((emulation_type & EMULTYPE_TRAP_UD) || | 
 | 			    (emulation_type & EMULTYPE_TRAP_UD_FORCED)) { | 
 | 				kvm_queue_exception(vcpu, UD_VECTOR); | 
 | 				return 1; | 
 | 			} | 
 | 			if (kvm_unprotect_and_retry_on_failure(vcpu, cr2_or_gpa, | 
 | 							       emulation_type)) | 
 | 				return 1; | 
 |  | 
 | 			if (ctxt->have_exception && | 
 | 			    !(emulation_type & EMULTYPE_SKIP)) { | 
 | 				/* | 
 | 				 * #UD should result in just EMULATION_FAILED, and trap-like | 
 | 				 * exception should not be encountered during decode. | 
 | 				 */ | 
 | 				WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR || | 
 | 					     exception_type(ctxt->exception.vector) == EXCPT_TRAP); | 
 | 				inject_emulated_exception(vcpu); | 
 | 				return 1; | 
 | 			} | 
 | 			return handle_emulation_failure(vcpu, emulation_type); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if ((emulation_type & EMULTYPE_VMWARE_GP) && | 
 | 	    !is_vmware_backdoor_opcode(ctxt)) { | 
 | 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for | 
 | 	 * use *only* by vendor callbacks for kvm_skip_emulated_instruction(). | 
 | 	 * The caller is responsible for updating interruptibility state and | 
 | 	 * injecting single-step #DBs. | 
 | 	 */ | 
 | 	if (emulation_type & EMULTYPE_SKIP) { | 
 | 		if (ctxt->mode != X86EMUL_MODE_PROT64) | 
 | 			ctxt->eip = (u32)ctxt->_eip; | 
 | 		else | 
 | 			ctxt->eip = ctxt->_eip; | 
 |  | 
 | 		if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) { | 
 | 			r = 1; | 
 | 			goto writeback; | 
 | 		} | 
 |  | 
 | 		kvm_rip_write(vcpu, ctxt->eip); | 
 | 		if (ctxt->eflags & X86_EFLAGS_RF) | 
 | 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If emulation was caused by a write-protection #PF on a non-page_table | 
 | 	 * writing instruction, try to unprotect the gfn, i.e. zap shadow pages, | 
 | 	 * and retry the instruction, as the vCPU is likely no longer using the | 
 | 	 * gfn as a page table. | 
 | 	 */ | 
 | 	if ((emulation_type & EMULTYPE_ALLOW_RETRY_PF) && | 
 | 	    !x86_page_table_writing_insn(ctxt) && | 
 | 	    kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa)) | 
 | 		return 1; | 
 |  | 
 | 	/* this is needed for vmware backdoor interface to work since it | 
 | 	   changes registers values  during IO operation */ | 
 | 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { | 
 | 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false; | 
 | 		emulator_invalidate_register_cache(ctxt); | 
 | 	} | 
 |  | 
 | restart: | 
 | 	if (emulation_type & EMULTYPE_PF) { | 
 | 		/* Save the faulting GPA (cr2) in the address field */ | 
 | 		ctxt->exception.address = cr2_or_gpa; | 
 |  | 
 | 		/* With shadow page tables, cr2 contains a GVA or nGPA. */ | 
 | 		if (vcpu->arch.mmu->root_role.direct) { | 
 | 			ctxt->gpa_available = true; | 
 | 			ctxt->gpa_val = cr2_or_gpa; | 
 | 		} | 
 | 	} else { | 
 | 		/* Sanitize the address out of an abundance of paranoia. */ | 
 | 		ctxt->exception.address = 0; | 
 | 	} | 
 |  | 
 | 	r = x86_emulate_insn(ctxt); | 
 |  | 
 | 	if (r == EMULATION_INTERCEPTED) | 
 | 		return 1; | 
 |  | 
 | 	if (r == EMULATION_FAILED) { | 
 | 		if (kvm_unprotect_and_retry_on_failure(vcpu, cr2_or_gpa, | 
 | 						       emulation_type)) | 
 | 			return 1; | 
 |  | 
 | 		return handle_emulation_failure(vcpu, emulation_type); | 
 | 	} | 
 |  | 
 | 	if (ctxt->have_exception) { | 
 | 		WARN_ON_ONCE(vcpu->mmio_needed && !vcpu->mmio_is_write); | 
 | 		vcpu->mmio_needed = false; | 
 | 		r = 1; | 
 | 		inject_emulated_exception(vcpu); | 
 | 	} else if (vcpu->arch.pio.count) { | 
 | 		if (!vcpu->arch.pio.in) { | 
 | 			/* FIXME: return into emulator if single-stepping.  */ | 
 | 			vcpu->arch.pio.count = 0; | 
 | 		} else { | 
 | 			writeback = false; | 
 | 			vcpu->arch.complete_userspace_io = complete_emulated_pio; | 
 | 		} | 
 | 		r = 0; | 
 | 	} else if (vcpu->mmio_needed) { | 
 | 		++vcpu->stat.mmio_exits; | 
 |  | 
 | 		if (!vcpu->mmio_is_write) | 
 | 			writeback = false; | 
 | 		r = 0; | 
 | 		vcpu->arch.complete_userspace_io = complete_emulated_mmio; | 
 | 	} else if (vcpu->arch.complete_userspace_io) { | 
 | 		writeback = false; | 
 | 		r = 0; | 
 | 	} else if (r == EMULATION_RESTART) | 
 | 		goto restart; | 
 | 	else | 
 | 		r = 1; | 
 |  | 
 | writeback: | 
 | 	if (writeback) { | 
 | 		unsigned long rflags = kvm_x86_call(get_rflags)(vcpu); | 
 | 		toggle_interruptibility(vcpu, ctxt->interruptibility); | 
 | 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false; | 
 |  | 
 | 		/* | 
 | 		 * Note, EXCPT_DB is assumed to be fault-like as the emulator | 
 | 		 * only supports code breakpoints and general detect #DB, both | 
 | 		 * of which are fault-like. | 
 | 		 */ | 
 | 		if (!ctxt->have_exception || | 
 | 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP) { | 
 | 			kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.INSTRUCTIONS_RETIRED); | 
 | 			if (ctxt->is_branch) | 
 | 				kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.BRANCH_INSTRUCTIONS_RETIRED); | 
 | 			kvm_rip_write(vcpu, ctxt->eip); | 
 | 			if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP))) | 
 | 				r = kvm_vcpu_do_singlestep(vcpu); | 
 | 			kvm_x86_call(update_emulated_instruction)(vcpu); | 
 | 			__kvm_set_rflags(vcpu, ctxt->eflags); | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will | 
 | 		 * do nothing, and it will be requested again as soon as | 
 | 		 * the shadow expires.  But we still need to check here, | 
 | 		 * because POPF has no interrupt shadow. | 
 | 		 */ | 
 | 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF)) | 
 | 			kvm_make_request(KVM_REQ_EVENT, vcpu); | 
 | 	} else | 
 | 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true; | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type) | 
 | { | 
 | 	return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0); | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_emulate_instruction); | 
 |  | 
 | int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, | 
 | 					void *insn, int insn_len) | 
 | { | 
 | 	return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len); | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer); | 
 |  | 
 | static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	vcpu->arch.pio.count = 0; | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int complete_fast_pio_out(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	vcpu->arch.pio.count = 0; | 
 |  | 
 | 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.cui_linear_rip))) | 
 | 		return 1; | 
 |  | 
 | 	return kvm_skip_emulated_instruction(vcpu); | 
 | } | 
 |  | 
 | static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, | 
 | 			    unsigned short port) | 
 | { | 
 | 	unsigned long val = kvm_rax_read(vcpu); | 
 | 	int ret = emulator_pio_out(vcpu, size, port, &val, 1); | 
 |  | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	/* | 
 | 	 * Workaround userspace that relies on old KVM behavior of %rip being | 
 | 	 * incremented prior to exiting to userspace to handle "OUT 0x7e". | 
 | 	 */ | 
 | 	if (port == 0x7e && | 
 | 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) { | 
 | 		vcpu->arch.complete_userspace_io = | 
 | 			complete_fast_pio_out_port_0x7e; | 
 | 		kvm_skip_emulated_instruction(vcpu); | 
 | 	} else { | 
 | 		vcpu->arch.cui_linear_rip = kvm_get_linear_rip(vcpu); | 
 | 		vcpu->arch.complete_userspace_io = complete_fast_pio_out; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int complete_fast_pio_in(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	unsigned long val; | 
 |  | 
 | 	/* We should only ever be called with arch.pio.count equal to 1 */ | 
 | 	BUG_ON(vcpu->arch.pio.count != 1); | 
 |  | 
 | 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.cui_linear_rip))) { | 
 | 		vcpu->arch.pio.count = 0; | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	/* For size less than 4 we merge, else we zero extend */ | 
 | 	val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0; | 
 |  | 
 | 	complete_emulator_pio_in(vcpu, &val); | 
 | 	kvm_rax_write(vcpu, val); | 
 |  | 
 | 	return kvm_skip_emulated_instruction(vcpu); | 
 | } | 
 |  | 
 | static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, | 
 | 			   unsigned short port) | 
 | { | 
 | 	unsigned long val; | 
 | 	int ret; | 
 |  | 
 | 	/* For size less than 4 we merge, else we zero extend */ | 
 | 	val = (size < 4) ? kvm_rax_read(vcpu) : 0; | 
 |  | 
 | 	ret = emulator_pio_in(vcpu, size, port, &val, 1); | 
 | 	if (ret) { | 
 | 		kvm_rax_write(vcpu, val); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	vcpu->arch.cui_linear_rip = kvm_get_linear_rip(vcpu); | 
 | 	vcpu->arch.complete_userspace_io = complete_fast_pio_in; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	if (in) | 
 | 		ret = kvm_fast_pio_in(vcpu, size, port); | 
 | 	else | 
 | 		ret = kvm_fast_pio_out(vcpu, size, port); | 
 | 	return ret && kvm_skip_emulated_instruction(vcpu); | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_fast_pio); | 
 |  | 
 | static int kvmclock_cpu_down_prep(unsigned int cpu) | 
 | { | 
 | 	__this_cpu_write(cpu_tsc_khz, 0); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void tsc_khz_changed(void *data) | 
 | { | 
 | 	struct cpufreq_freqs *freq = data; | 
 | 	unsigned long khz; | 
 |  | 
 | 	WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC)); | 
 |  | 
 | 	if (data) | 
 | 		khz = freq->new; | 
 | 	else | 
 | 		khz = cpufreq_quick_get(raw_smp_processor_id()); | 
 | 	if (!khz) | 
 | 		khz = tsc_khz; | 
 | 	__this_cpu_write(cpu_tsc_khz, khz); | 
 | } | 
 |  | 
 | #ifdef CONFIG_X86_64 | 
 | static void kvm_hyperv_tsc_notifier(void) | 
 | { | 
 | 	struct kvm *kvm; | 
 | 	int cpu; | 
 |  | 
 | 	mutex_lock(&kvm_lock); | 
 | 	list_for_each_entry(kvm, &vm_list, vm_list) | 
 | 		kvm_make_mclock_inprogress_request(kvm); | 
 |  | 
 | 	/* no guest entries from this point */ | 
 | 	hyperv_stop_tsc_emulation(); | 
 |  | 
 | 	/* TSC frequency always matches when on Hyper-V */ | 
 | 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { | 
 | 		for_each_present_cpu(cpu) | 
 | 			per_cpu(cpu_tsc_khz, cpu) = tsc_khz; | 
 | 	} | 
 | 	kvm_caps.max_guest_tsc_khz = tsc_khz; | 
 |  | 
 | 	list_for_each_entry(kvm, &vm_list, vm_list) { | 
 | 		__kvm_start_pvclock_update(kvm); | 
 | 		pvclock_update_vm_gtod_copy(kvm); | 
 | 		kvm_end_pvclock_update(kvm); | 
 | 	} | 
 |  | 
 | 	mutex_unlock(&kvm_lock); | 
 | } | 
 | #endif | 
 |  | 
 | static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu) | 
 | { | 
 | 	struct kvm *kvm; | 
 | 	struct kvm_vcpu *vcpu; | 
 | 	int send_ipi = 0; | 
 | 	unsigned long i; | 
 |  | 
 | 	/* | 
 | 	 * We allow guests to temporarily run on slowing clocks, | 
 | 	 * provided we notify them after, or to run on accelerating | 
 | 	 * clocks, provided we notify them before.  Thus time never | 
 | 	 * goes backwards. | 
 | 	 * | 
 | 	 * However, we have a problem.  We can't atomically update | 
 | 	 * the frequency of a given CPU from this function; it is | 
 | 	 * merely a notifier, which can be called from any CPU. | 
 | 	 * Changing the TSC frequency at arbitrary points in time | 
 | 	 * requires a recomputation of local variables related to | 
 | 	 * the TSC for each VCPU.  We must flag these local variables | 
 | 	 * to be updated and be sure the update takes place with the | 
 | 	 * new frequency before any guests proceed. | 
 | 	 * | 
 | 	 * Unfortunately, the combination of hotplug CPU and frequency | 
 | 	 * change creates an intractable locking scenario; the order | 
 | 	 * of when these callouts happen is undefined with respect to | 
 | 	 * CPU hotplug, and they can race with each other.  As such, | 
 | 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is | 
 | 	 * undefined; you can actually have a CPU frequency change take | 
 | 	 * place in between the computation of X and the setting of the | 
 | 	 * variable.  To protect against this problem, all updates of | 
 | 	 * the per_cpu tsc_khz variable are done in an interrupt | 
 | 	 * protected IPI, and all callers wishing to update the value | 
 | 	 * must wait for a synchronous IPI to complete (which is trivial | 
 | 	 * if the caller is on the CPU already).  This establishes the | 
 | 	 * necessary total order on variable updates. | 
 | 	 * | 
 | 	 * Note that because a guest time update may take place | 
 | 	 * anytime after the setting of the VCPU's request bit, the | 
 | 	 * correct TSC value must be set before the request.  However, | 
 | 	 * to ensure the update actually makes it to any guest which | 
 | 	 * starts running in hardware virtualization between the set | 
 | 	 * and the acquisition of the spinlock, we must also ping the | 
 | 	 * CPU after setting the request bit. | 
 | 	 * | 
 | 	 */ | 
 |  | 
 | 	smp_call_function_single(cpu, tsc_khz_changed, freq, 1); | 
 |  | 
 | 	mutex_lock(&kvm_lock); | 
 | 	list_for_each_entry(kvm, &vm_list, vm_list) { | 
 | 		kvm_for_each_vcpu(i, vcpu, kvm) { | 
 | 			if (vcpu->cpu != cpu) | 
 | 				continue; | 
 | 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); | 
 | 			if (vcpu->cpu != raw_smp_processor_id()) | 
 | 				send_ipi = 1; | 
 | 		} | 
 | 	} | 
 | 	mutex_unlock(&kvm_lock); | 
 |  | 
 | 	if (freq->old < freq->new && send_ipi) { | 
 | 		/* | 
 | 		 * We upscale the frequency.  Must make the guest | 
 | 		 * doesn't see old kvmclock values while running with | 
 | 		 * the new frequency, otherwise we risk the guest sees | 
 | 		 * time go backwards. | 
 | 		 * | 
 | 		 * In case we update the frequency for another cpu | 
 | 		 * (which might be in guest context) send an interrupt | 
 | 		 * to kick the cpu out of guest context.  Next time | 
 | 		 * guest context is entered kvmclock will be updated, | 
 | 		 * so the guest will not see stale values. | 
 | 		 */ | 
 | 		smp_call_function_single(cpu, tsc_khz_changed, freq, 1); | 
 | 	} | 
 | } | 
 |  | 
 | static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, | 
 | 				     void *data) | 
 | { | 
 | 	struct cpufreq_freqs *freq = data; | 
 | 	int cpu; | 
 |  | 
 | 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) | 
 | 		return 0; | 
 | 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) | 
 | 		return 0; | 
 |  | 
 | 	for_each_cpu(cpu, freq->policy->cpus) | 
 | 		__kvmclock_cpufreq_notifier(freq, cpu); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct notifier_block kvmclock_cpufreq_notifier_block = { | 
 | 	.notifier_call  = kvmclock_cpufreq_notifier | 
 | }; | 
 |  | 
 | static int kvmclock_cpu_online(unsigned int cpu) | 
 | { | 
 | 	tsc_khz_changed(NULL); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void kvm_timer_init(void) | 
 | { | 
 | 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { | 
 | 		max_tsc_khz = tsc_khz; | 
 |  | 
 | 		if (IS_ENABLED(CONFIG_CPU_FREQ)) { | 
 | 			struct cpufreq_policy *policy; | 
 | 			int cpu; | 
 |  | 
 | 			cpu = get_cpu(); | 
 | 			policy = cpufreq_cpu_get(cpu); | 
 | 			if (policy) { | 
 | 				if (policy->cpuinfo.max_freq) | 
 | 					max_tsc_khz = policy->cpuinfo.max_freq; | 
 | 				cpufreq_cpu_put(policy); | 
 | 			} | 
 | 			put_cpu(); | 
 | 		} | 
 | 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, | 
 | 					  CPUFREQ_TRANSITION_NOTIFIER); | 
 |  | 
 | 		cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online", | 
 | 				  kvmclock_cpu_online, kvmclock_cpu_down_prep); | 
 | 	} | 
 | } | 
 |  | 
 | #ifdef CONFIG_X86_64 | 
 | static void pvclock_gtod_update_fn(struct work_struct *work) | 
 | { | 
 | 	struct kvm *kvm; | 
 | 	struct kvm_vcpu *vcpu; | 
 | 	unsigned long i; | 
 |  | 
 | 	mutex_lock(&kvm_lock); | 
 | 	list_for_each_entry(kvm, &vm_list, vm_list) | 
 | 		kvm_for_each_vcpu(i, vcpu, kvm) | 
 | 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); | 
 | 	atomic_set(&kvm_guest_has_master_clock, 0); | 
 | 	mutex_unlock(&kvm_lock); | 
 | } | 
 |  | 
 | static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); | 
 |  | 
 | /* | 
 |  * Indirection to move queue_work() out of the tk_core.seq write held | 
 |  * region to prevent possible deadlocks against time accessors which | 
 |  * are invoked with work related locks held. | 
 |  */ | 
 | static void pvclock_irq_work_fn(struct irq_work *w) | 
 | { | 
 | 	queue_work(system_long_wq, &pvclock_gtod_work); | 
 | } | 
 |  | 
 | static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn); | 
 |  | 
 | /* | 
 |  * Notification about pvclock gtod data update. | 
 |  */ | 
 | static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, | 
 | 			       void *priv) | 
 | { | 
 | 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data; | 
 | 	struct timekeeper *tk = priv; | 
 |  | 
 | 	update_pvclock_gtod(tk); | 
 |  | 
 | 	/* | 
 | 	 * Disable master clock if host does not trust, or does not use, | 
 | 	 * TSC based clocksource. Delegate queue_work() to irq_work as | 
 | 	 * this is invoked with tk_core.seq write held. | 
 | 	 */ | 
 | 	if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) && | 
 | 	    atomic_read(&kvm_guest_has_master_clock) != 0) | 
 | 		irq_work_queue(&pvclock_irq_work); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct notifier_block pvclock_gtod_notifier = { | 
 | 	.notifier_call = pvclock_gtod_notify, | 
 | }; | 
 | #endif | 
 |  | 
 | static inline void kvm_ops_update(struct kvm_x86_init_ops *ops) | 
 | { | 
 | 	memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops)); | 
 |  | 
 | #define __KVM_X86_OP(func) \ | 
 | 	static_call_update(kvm_x86_##func, kvm_x86_ops.func); | 
 | #define KVM_X86_OP(func) \ | 
 | 	WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func) | 
 | #define KVM_X86_OP_OPTIONAL __KVM_X86_OP | 
 | #define KVM_X86_OP_OPTIONAL_RET0(func) \ | 
 | 	static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \ | 
 | 					   (void *)__static_call_return0); | 
 | #include <asm/kvm-x86-ops.h> | 
 | #undef __KVM_X86_OP | 
 |  | 
 | 	kvm_pmu_ops_update(ops->pmu_ops); | 
 | } | 
 |  | 
 | static int kvm_x86_check_processor_compatibility(void) | 
 | { | 
 | 	int cpu = smp_processor_id(); | 
 | 	struct cpuinfo_x86 *c = &cpu_data(cpu); | 
 |  | 
 | 	/* | 
 | 	 * Compatibility checks are done when loading KVM and when enabling | 
 | 	 * hardware, e.g. during CPU hotplug, to ensure all online CPUs are | 
 | 	 * compatible, i.e. KVM should never perform a compatibility check on | 
 | 	 * an offline CPU. | 
 | 	 */ | 
 | 	WARN_ON(!cpu_online(cpu)); | 
 |  | 
 | 	if (__cr4_reserved_bits(cpu_has, c) != | 
 | 	    __cr4_reserved_bits(cpu_has, &boot_cpu_data)) | 
 | 		return -EIO; | 
 |  | 
 | 	return kvm_x86_call(check_processor_compatibility)(); | 
 | } | 
 |  | 
 | static void kvm_x86_check_cpu_compat(void *ret) | 
 | { | 
 | 	*(int *)ret = kvm_x86_check_processor_compatibility(); | 
 | } | 
 |  | 
 | int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops) | 
 | { | 
 | 	u64 host_pat; | 
 | 	int r, cpu; | 
 |  | 
 | 	guard(mutex)(&vendor_module_lock); | 
 |  | 
 | 	if (kvm_x86_ops.enable_virtualization_cpu) { | 
 | 		pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name); | 
 | 		return -EEXIST; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * KVM explicitly assumes that the guest has an FPU and | 
 | 	 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the | 
 | 	 * vCPU's FPU state as a fxregs_state struct. | 
 | 	 */ | 
 | 	if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) { | 
 | 		pr_err("inadequate fpu\n"); | 
 | 		return -EOPNOTSUPP; | 
 | 	} | 
 |  | 
 | 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { | 
 | 		pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n"); | 
 | 		return -EOPNOTSUPP; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes | 
 | 	 * the PAT bits in SPTEs.  Bail if PAT[0] is programmed to something | 
 | 	 * other than WB.  Note, EPT doesn't utilize the PAT, but don't bother | 
 | 	 * with an exception.  PAT[0] is set to WB on RESET and also by the | 
 | 	 * kernel, i.e. failure indicates a kernel bug or broken firmware. | 
 | 	 */ | 
 | 	if (rdmsrq_safe(MSR_IA32_CR_PAT, &host_pat) || | 
 | 	    (host_pat & GENMASK(2, 0)) != 6) { | 
 | 		pr_err("host PAT[0] is not WB\n"); | 
 | 		return -EIO; | 
 | 	} | 
 |  | 
 | 	memset(&kvm_caps, 0, sizeof(kvm_caps)); | 
 |  | 
 | 	x86_emulator_cache = kvm_alloc_emulator_cache(); | 
 | 	if (!x86_emulator_cache) { | 
 | 		pr_err("failed to allocate cache for x86 emulator\n"); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	user_return_msrs = alloc_percpu(struct kvm_user_return_msrs); | 
 | 	if (!user_return_msrs) { | 
 | 		pr_err("failed to allocate percpu kvm_user_return_msrs\n"); | 
 | 		r = -ENOMEM; | 
 | 		goto out_free_x86_emulator_cache; | 
 | 	} | 
 | 	kvm_nr_uret_msrs = 0; | 
 |  | 
 | 	r = kvm_mmu_vendor_module_init(); | 
 | 	if (r) | 
 | 		goto out_free_percpu; | 
 |  | 
 | 	kvm_caps.supported_vm_types = BIT(KVM_X86_DEFAULT_VM); | 
 | 	kvm_caps.supported_mce_cap = MCG_CTL_P | MCG_SER_P; | 
 |  | 
 | 	if (boot_cpu_has(X86_FEATURE_XSAVE)) { | 
 | 		kvm_host.xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); | 
 | 		kvm_caps.supported_xcr0 = kvm_host.xcr0 & KVM_SUPPORTED_XCR0; | 
 | 	} | 
 | 	kvm_caps.supported_quirks = KVM_X86_VALID_QUIRKS; | 
 | 	kvm_caps.inapplicable_quirks = KVM_X86_CONDITIONAL_QUIRKS; | 
 |  | 
 | 	rdmsrq_safe(MSR_EFER, &kvm_host.efer); | 
 |  | 
 | 	if (boot_cpu_has(X86_FEATURE_XSAVES)) | 
 | 		rdmsrq(MSR_IA32_XSS, kvm_host.xss); | 
 |  | 
 | 	kvm_init_pmu_capability(ops->pmu_ops); | 
 |  | 
 | 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) | 
 | 		rdmsrq(MSR_IA32_ARCH_CAPABILITIES, kvm_host.arch_capabilities); | 
 |  | 
 | 	r = ops->hardware_setup(); | 
 | 	if (r != 0) | 
 | 		goto out_mmu_exit; | 
 |  | 
 | 	enable_device_posted_irqs &= enable_apicv && | 
 | 				     irq_remapping_cap(IRQ_POSTING_CAP); | 
 |  | 
 | 	kvm_ops_update(ops); | 
 |  | 
 | 	for_each_online_cpu(cpu) { | 
 | 		smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1); | 
 | 		if (r < 0) | 
 | 			goto out_unwind_ops; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Point of no return!  DO NOT add error paths below this point unless | 
 | 	 * absolutely necessary, as most operations from this point forward | 
 | 	 * require unwinding. | 
 | 	 */ | 
 | 	kvm_timer_init(); | 
 |  | 
 | 	if (pi_inject_timer == -1) | 
 | 		pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER); | 
 | #ifdef CONFIG_X86_64 | 
 | 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier); | 
 |  | 
 | 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) | 
 | 		set_hv_tscchange_cb(kvm_hyperv_tsc_notifier); | 
 | #endif | 
 |  | 
 | 	kvm_register_perf_callbacks(ops->handle_intel_pt_intr); | 
 |  | 
 | 	if (IS_ENABLED(CONFIG_KVM_SW_PROTECTED_VM) && tdp_mmu_enabled) | 
 | 		kvm_caps.supported_vm_types |= BIT(KVM_X86_SW_PROTECTED_VM); | 
 |  | 
 | 	/* KVM always ignores guest PAT for shadow paging.  */ | 
 | 	if (!tdp_enabled) | 
 | 		kvm_caps.supported_quirks &= ~KVM_X86_QUIRK_IGNORE_GUEST_PAT; | 
 |  | 
 | 	if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES)) | 
 | 		kvm_caps.supported_xss = 0; | 
 |  | 
 | 	if (kvm_caps.has_tsc_control) { | 
 | 		/* | 
 | 		 * Make sure the user can only configure tsc_khz values that | 
 | 		 * fit into a signed integer. | 
 | 		 * A min value is not calculated because it will always | 
 | 		 * be 1 on all machines. | 
 | 		 */ | 
 | 		u64 max = min(0x7fffffffULL, | 
 | 			      __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz)); | 
 | 		kvm_caps.max_guest_tsc_khz = max; | 
 | 	} | 
 | 	kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits; | 
 | 	kvm_init_msr_lists(); | 
 | 	return 0; | 
 |  | 
 | out_unwind_ops: | 
 | 	kvm_x86_ops.enable_virtualization_cpu = NULL; | 
 | 	kvm_x86_call(hardware_unsetup)(); | 
 | out_mmu_exit: | 
 | 	kvm_mmu_vendor_module_exit(); | 
 | out_free_percpu: | 
 | 	free_percpu(user_return_msrs); | 
 | out_free_x86_emulator_cache: | 
 | 	kmem_cache_destroy(x86_emulator_cache); | 
 | 	return r; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_x86_vendor_init); | 
 |  | 
 | void kvm_x86_vendor_exit(void) | 
 | { | 
 | 	kvm_unregister_perf_callbacks(); | 
 |  | 
 | #ifdef CONFIG_X86_64 | 
 | 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) | 
 | 		clear_hv_tscchange_cb(); | 
 | #endif | 
 | 	kvm_lapic_exit(); | 
 |  | 
 | 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { | 
 | 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, | 
 | 					    CPUFREQ_TRANSITION_NOTIFIER); | 
 | 		cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE); | 
 | 	} | 
 | #ifdef CONFIG_X86_64 | 
 | 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); | 
 | 	irq_work_sync(&pvclock_irq_work); | 
 | 	cancel_work_sync(&pvclock_gtod_work); | 
 | #endif | 
 | 	kvm_x86_call(hardware_unsetup)(); | 
 | 	kvm_mmu_vendor_module_exit(); | 
 | 	free_percpu(user_return_msrs); | 
 | 	kmem_cache_destroy(x86_emulator_cache); | 
 | #ifdef CONFIG_KVM_XEN | 
 | 	static_key_deferred_flush(&kvm_xen_enabled); | 
 | 	WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key)); | 
 | #endif | 
 | 	mutex_lock(&vendor_module_lock); | 
 | 	kvm_x86_ops.enable_virtualization_cpu = NULL; | 
 | 	mutex_unlock(&vendor_module_lock); | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit); | 
 |  | 
 | #ifdef CONFIG_X86_64 | 
 | static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr, | 
 | 			        unsigned long clock_type) | 
 | { | 
 | 	struct kvm_clock_pairing clock_pairing; | 
 | 	struct timespec64 ts; | 
 | 	u64 cycle; | 
 | 	int ret; | 
 |  | 
 | 	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK) | 
 | 		return -KVM_EOPNOTSUPP; | 
 |  | 
 | 	/* | 
 | 	 * When tsc is in permanent catchup mode guests won't be able to use | 
 | 	 * pvclock_read_retry loop to get consistent view of pvclock | 
 | 	 */ | 
 | 	if (vcpu->arch.tsc_always_catchup) | 
 | 		return -KVM_EOPNOTSUPP; | 
 |  | 
 | 	if (!kvm_get_walltime_and_clockread(&ts, &cycle)) | 
 | 		return -KVM_EOPNOTSUPP; | 
 |  | 
 | 	clock_pairing.sec = ts.tv_sec; | 
 | 	clock_pairing.nsec = ts.tv_nsec; | 
 | 	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle); | 
 | 	clock_pairing.flags = 0; | 
 | 	memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad)); | 
 |  | 
 | 	ret = 0; | 
 | 	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing, | 
 | 			    sizeof(struct kvm_clock_pairing))) | 
 | 		ret = -KVM_EFAULT; | 
 |  | 
 | 	return ret; | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * kvm_pv_kick_cpu_op:  Kick a vcpu. | 
 |  * | 
 |  * @apicid - apicid of vcpu to be kicked. | 
 |  */ | 
 | static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid) | 
 | { | 
 | 	/* | 
 | 	 * All other fields are unused for APIC_DM_REMRD, but may be consumed by | 
 | 	 * common code, e.g. for tracing. Defer initialization to the compiler. | 
 | 	 */ | 
 | 	struct kvm_lapic_irq lapic_irq = { | 
 | 		.delivery_mode = APIC_DM_REMRD, | 
 | 		.dest_mode = APIC_DEST_PHYSICAL, | 
 | 		.shorthand = APIC_DEST_NOSHORT, | 
 | 		.dest_id = apicid, | 
 | 	}; | 
 |  | 
 | 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL); | 
 | } | 
 |  | 
 | bool kvm_apicv_activated(struct kvm *kvm) | 
 | { | 
 | 	return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0); | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_apicv_activated); | 
 |  | 
 | bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons); | 
 | 	ulong vcpu_reasons = | 
 | 			kvm_x86_call(vcpu_get_apicv_inhibit_reasons)(vcpu); | 
 |  | 
 | 	return (vm_reasons | vcpu_reasons) == 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated); | 
 |  | 
 | static void set_or_clear_apicv_inhibit(unsigned long *inhibits, | 
 | 				       enum kvm_apicv_inhibit reason, bool set) | 
 | { | 
 | 	const struct trace_print_flags apicv_inhibits[] = { APICV_INHIBIT_REASONS }; | 
 |  | 
 | 	BUILD_BUG_ON(ARRAY_SIZE(apicv_inhibits) != NR_APICV_INHIBIT_REASONS); | 
 |  | 
 | 	if (set) | 
 | 		__set_bit(reason, inhibits); | 
 | 	else | 
 | 		__clear_bit(reason, inhibits); | 
 |  | 
 | 	trace_kvm_apicv_inhibit_changed(reason, set, *inhibits); | 
 | } | 
 |  | 
 | static void kvm_apicv_init(struct kvm *kvm) | 
 | { | 
 | 	enum kvm_apicv_inhibit reason = enable_apicv ? APICV_INHIBIT_REASON_ABSENT : | 
 | 						       APICV_INHIBIT_REASON_DISABLED; | 
 |  | 
 | 	set_or_clear_apicv_inhibit(&kvm->arch.apicv_inhibit_reasons, reason, true); | 
 |  | 
 | 	init_rwsem(&kvm->arch.apicv_update_lock); | 
 | } | 
 |  | 
 | static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id) | 
 | { | 
 | 	struct kvm_vcpu *target = NULL; | 
 | 	struct kvm_apic_map *map; | 
 |  | 
 | 	vcpu->stat.directed_yield_attempted++; | 
 |  | 
 | 	if (single_task_running()) | 
 | 		goto no_yield; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	map = rcu_dereference(vcpu->kvm->arch.apic_map); | 
 |  | 
 | 	if (likely(map) && dest_id <= map->max_apic_id) { | 
 | 		dest_id = array_index_nospec(dest_id, map->max_apic_id + 1); | 
 | 		if (map->phys_map[dest_id]) | 
 | 			target = map->phys_map[dest_id]->vcpu; | 
 | 	} | 
 |  | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	if (!target || !READ_ONCE(target->ready)) | 
 | 		goto no_yield; | 
 |  | 
 | 	/* Ignore requests to yield to self */ | 
 | 	if (vcpu == target) | 
 | 		goto no_yield; | 
 |  | 
 | 	if (kvm_vcpu_yield_to(target) <= 0) | 
 | 		goto no_yield; | 
 |  | 
 | 	vcpu->stat.directed_yield_successful++; | 
 |  | 
 | no_yield: | 
 | 	return; | 
 | } | 
 |  | 
 | static int complete_hypercall_exit(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	u64 ret = vcpu->run->hypercall.ret; | 
 |  | 
 | 	if (!is_64_bit_hypercall(vcpu)) | 
 | 		ret = (u32)ret; | 
 | 	kvm_rax_write(vcpu, ret); | 
 | 	return kvm_skip_emulated_instruction(vcpu); | 
 | } | 
 |  | 
 | int ____kvm_emulate_hypercall(struct kvm_vcpu *vcpu, int cpl, | 
 | 			      int (*complete_hypercall)(struct kvm_vcpu *)) | 
 | { | 
 | 	unsigned long ret; | 
 | 	unsigned long nr = kvm_rax_read(vcpu); | 
 | 	unsigned long a0 = kvm_rbx_read(vcpu); | 
 | 	unsigned long a1 = kvm_rcx_read(vcpu); | 
 | 	unsigned long a2 = kvm_rdx_read(vcpu); | 
 | 	unsigned long a3 = kvm_rsi_read(vcpu); | 
 | 	int op_64_bit = is_64_bit_hypercall(vcpu); | 
 |  | 
 | 	++vcpu->stat.hypercalls; | 
 |  | 
 | 	trace_kvm_hypercall(nr, a0, a1, a2, a3); | 
 |  | 
 | 	if (!op_64_bit) { | 
 | 		nr &= 0xFFFFFFFF; | 
 | 		a0 &= 0xFFFFFFFF; | 
 | 		a1 &= 0xFFFFFFFF; | 
 | 		a2 &= 0xFFFFFFFF; | 
 | 		a3 &= 0xFFFFFFFF; | 
 | 	} | 
 |  | 
 | 	if (cpl) { | 
 | 		ret = -KVM_EPERM; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	ret = -KVM_ENOSYS; | 
 |  | 
 | 	switch (nr) { | 
 | 	case KVM_HC_VAPIC_POLL_IRQ: | 
 | 		ret = 0; | 
 | 		break; | 
 | 	case KVM_HC_KICK_CPU: | 
 | 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT)) | 
 | 			break; | 
 |  | 
 | 		kvm_pv_kick_cpu_op(vcpu->kvm, a1); | 
 | 		kvm_sched_yield(vcpu, a1); | 
 | 		ret = 0; | 
 | 		break; | 
 | #ifdef CONFIG_X86_64 | 
 | 	case KVM_HC_CLOCK_PAIRING: | 
 | 		ret = kvm_pv_clock_pairing(vcpu, a0, a1); | 
 | 		break; | 
 | #endif | 
 | 	case KVM_HC_SEND_IPI: | 
 | 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI)) | 
 | 			break; | 
 |  | 
 | 		ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit); | 
 | 		break; | 
 | 	case KVM_HC_SCHED_YIELD: | 
 | 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD)) | 
 | 			break; | 
 |  | 
 | 		kvm_sched_yield(vcpu, a0); | 
 | 		ret = 0; | 
 | 		break; | 
 | 	case KVM_HC_MAP_GPA_RANGE: { | 
 | 		u64 gpa = a0, npages = a1, attrs = a2; | 
 |  | 
 | 		ret = -KVM_ENOSYS; | 
 | 		if (!user_exit_on_hypercall(vcpu->kvm, KVM_HC_MAP_GPA_RANGE)) | 
 | 			break; | 
 |  | 
 | 		if (!PAGE_ALIGNED(gpa) || !npages || | 
 | 		    gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) { | 
 | 			ret = -KVM_EINVAL; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		vcpu->run->exit_reason        = KVM_EXIT_HYPERCALL; | 
 | 		vcpu->run->hypercall.nr       = KVM_HC_MAP_GPA_RANGE; | 
 | 		/* | 
 | 		 * In principle this should have been -KVM_ENOSYS, but userspace (QEMU <=9.2) | 
 | 		 * assumed that vcpu->run->hypercall.ret is never changed by KVM and thus that | 
 | 		 * it was always zero on KVM_EXIT_HYPERCALL.  Since KVM is now overwriting | 
 | 		 * vcpu->run->hypercall.ret, ensuring that it is zero to not break QEMU. | 
 | 		 */ | 
 | 		vcpu->run->hypercall.ret = 0; | 
 | 		vcpu->run->hypercall.args[0]  = gpa; | 
 | 		vcpu->run->hypercall.args[1]  = npages; | 
 | 		vcpu->run->hypercall.args[2]  = attrs; | 
 | 		vcpu->run->hypercall.flags    = 0; | 
 | 		if (op_64_bit) | 
 | 			vcpu->run->hypercall.flags |= KVM_EXIT_HYPERCALL_LONG_MODE; | 
 |  | 
 | 		WARN_ON_ONCE(vcpu->run->hypercall.flags & KVM_EXIT_HYPERCALL_MBZ); | 
 | 		vcpu->arch.complete_userspace_io = complete_hypercall; | 
 | 		return 0; | 
 | 	} | 
 | 	default: | 
 | 		ret = -KVM_ENOSYS; | 
 | 		break; | 
 | 	} | 
 |  | 
 | out: | 
 | 	vcpu->run->hypercall.ret = ret; | 
 | 	return 1; | 
 | } | 
 | EXPORT_SYMBOL_GPL(____kvm_emulate_hypercall); | 
 |  | 
 | int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	if (kvm_xen_hypercall_enabled(vcpu->kvm)) | 
 | 		return kvm_xen_hypercall(vcpu); | 
 |  | 
 | 	if (kvm_hv_hypercall_enabled(vcpu)) | 
 | 		return kvm_hv_hypercall(vcpu); | 
 |  | 
 | 	return __kvm_emulate_hypercall(vcpu, kvm_x86_call(get_cpl)(vcpu), | 
 | 				       complete_hypercall_exit); | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); | 
 |  | 
 | static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) | 
 | { | 
 | 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); | 
 | 	char instruction[3]; | 
 | 	unsigned long rip = kvm_rip_read(vcpu); | 
 |  | 
 | 	/* | 
 | 	 * If the quirk is disabled, synthesize a #UD and let the guest pick up | 
 | 	 * the pieces. | 
 | 	 */ | 
 | 	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) { | 
 | 		ctxt->exception.error_code_valid = false; | 
 | 		ctxt->exception.vector = UD_VECTOR; | 
 | 		ctxt->have_exception = true; | 
 | 		return X86EMUL_PROPAGATE_FAULT; | 
 | 	} | 
 |  | 
 | 	kvm_x86_call(patch_hypercall)(vcpu, instruction); | 
 |  | 
 | 	return emulator_write_emulated(ctxt, rip, instruction, 3, | 
 | 		&ctxt->exception); | 
 | } | 
 |  | 
 | static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	return vcpu->run->request_interrupt_window && | 
 | 		likely(!pic_in_kernel(vcpu->kvm)); | 
 | } | 
 |  | 
 | /* Called within kvm->srcu read side.  */ | 
 | static void post_kvm_run_save(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct kvm_run *kvm_run = vcpu->run; | 
 |  | 
 | 	kvm_run->if_flag = kvm_x86_call(get_if_flag)(vcpu); | 
 | 	kvm_run->cr8 = kvm_get_cr8(vcpu); | 
 | 	kvm_run->apic_base = vcpu->arch.apic_base; | 
 |  | 
 | 	kvm_run->ready_for_interrupt_injection = | 
 | 		pic_in_kernel(vcpu->kvm) || | 
 | 		kvm_vcpu_ready_for_interrupt_injection(vcpu); | 
 |  | 
 | 	if (is_smm(vcpu)) | 
 | 		kvm_run->flags |= KVM_RUN_X86_SMM; | 
 | 	if (is_guest_mode(vcpu)) | 
 | 		kvm_run->flags |= KVM_RUN_X86_GUEST_MODE; | 
 | } | 
 |  | 
 | static void update_cr8_intercept(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	int max_irr, tpr; | 
 |  | 
 | 	if (!kvm_x86_ops.update_cr8_intercept) | 
 | 		return; | 
 |  | 
 | 	if (!lapic_in_kernel(vcpu)) | 
 | 		return; | 
 |  | 
 | 	if (vcpu->arch.apic->apicv_active) | 
 | 		return; | 
 |  | 
 | 	if (!vcpu->arch.apic->vapic_addr) | 
 | 		max_irr = kvm_lapic_find_highest_irr(vcpu); | 
 | 	else | 
 | 		max_irr = -1; | 
 |  | 
 | 	if (max_irr != -1) | 
 | 		max_irr >>= 4; | 
 |  | 
 | 	tpr = kvm_lapic_get_cr8(vcpu); | 
 |  | 
 | 	kvm_x86_call(update_cr8_intercept)(vcpu, tpr, max_irr); | 
 | } | 
 |  | 
 |  | 
 | int kvm_check_nested_events(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { | 
 | 		kvm_x86_ops.nested_ops->triple_fault(vcpu); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	return kvm_x86_ops.nested_ops->check_events(vcpu); | 
 | } | 
 |  | 
 | static void kvm_inject_exception(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	/* | 
 | 	 * Suppress the error code if the vCPU is in Real Mode, as Real Mode | 
 | 	 * exceptions don't report error codes.  The presence of an error code | 
 | 	 * is carried with the exception and only stripped when the exception | 
 | 	 * is injected as intercepted #PF VM-Exits for AMD's Paged Real Mode do | 
 | 	 * report an error code despite the CPU being in Real Mode. | 
 | 	 */ | 
 | 	vcpu->arch.exception.has_error_code &= is_protmode(vcpu); | 
 |  | 
 | 	trace_kvm_inj_exception(vcpu->arch.exception.vector, | 
 | 				vcpu->arch.exception.has_error_code, | 
 | 				vcpu->arch.exception.error_code, | 
 | 				vcpu->arch.exception.injected); | 
 |  | 
 | 	kvm_x86_call(inject_exception)(vcpu); | 
 | } | 
 |  | 
 | /* | 
 |  * Check for any event (interrupt or exception) that is ready to be injected, | 
 |  * and if there is at least one event, inject the event with the highest | 
 |  * priority.  This handles both "pending" events, i.e. events that have never | 
 |  * been injected into the guest, and "injected" events, i.e. events that were | 
 |  * injected as part of a previous VM-Enter, but weren't successfully delivered | 
 |  * and need to be re-injected. | 
 |  * | 
 |  * Note, this is not guaranteed to be invoked on a guest instruction boundary, | 
 |  * i.e. doesn't guarantee that there's an event window in the guest.  KVM must | 
 |  * be able to inject exceptions in the "middle" of an instruction, and so must | 
 |  * also be able to re-inject NMIs and IRQs in the middle of an instruction. | 
 |  * I.e. for exceptions and re-injected events, NOT invoking this on instruction | 
 |  * boundaries is necessary and correct. | 
 |  * | 
 |  * For simplicity, KVM uses a single path to inject all events (except events | 
 |  * that are injected directly from L1 to L2) and doesn't explicitly track | 
 |  * instruction boundaries for asynchronous events.  However, because VM-Exits | 
 |  * that can occur during instruction execution typically result in KVM skipping | 
 |  * the instruction or injecting an exception, e.g. instruction and exception | 
 |  * intercepts, and because pending exceptions have higher priority than pending | 
 |  * interrupts, KVM still honors instruction boundaries in most scenarios. | 
 |  * | 
 |  * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip | 
 |  * the instruction or inject an exception, then KVM can incorrecty inject a new | 
 |  * asynchronous event if the event became pending after the CPU fetched the | 
 |  * instruction (in the guest).  E.g. if a page fault (#PF, #NPF, EPT violation) | 
 |  * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be | 
 |  * injected on the restarted instruction instead of being deferred until the | 
 |  * instruction completes. | 
 |  * | 
 |  * In practice, this virtualization hole is unlikely to be observed by the | 
 |  * guest, and even less likely to cause functional problems.  To detect the | 
 |  * hole, the guest would have to trigger an event on a side effect of an early | 
 |  * phase of instruction execution, e.g. on the instruction fetch from memory. | 
 |  * And for it to be a functional problem, the guest would need to depend on the | 
 |  * ordering between that side effect, the instruction completing, _and_ the | 
 |  * delivery of the asynchronous event. | 
 |  */ | 
 | static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu, | 
 | 				       bool *req_immediate_exit) | 
 | { | 
 | 	bool can_inject; | 
 | 	int r; | 
 |  | 
 | 	/* | 
 | 	 * Process nested events first, as nested VM-Exit supersedes event | 
 | 	 * re-injection.  If there's an event queued for re-injection, it will | 
 | 	 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit. | 
 | 	 */ | 
 | 	if (is_guest_mode(vcpu)) | 
 | 		r = kvm_check_nested_events(vcpu); | 
 | 	else | 
 | 		r = 0; | 
 |  | 
 | 	/* | 
 | 	 * Re-inject exceptions and events *especially* if immediate entry+exit | 
 | 	 * to/from L2 is needed, as any event that has already been injected | 
 | 	 * into L2 needs to complete its lifecycle before injecting a new event. | 
 | 	 * | 
 | 	 * Don't re-inject an NMI or interrupt if there is a pending exception. | 
 | 	 * This collision arises if an exception occurred while vectoring the | 
 | 	 * injected event, KVM intercepted said exception, and KVM ultimately | 
 | 	 * determined the fault belongs to the guest and queues the exception | 
 | 	 * for injection back into the guest. | 
 | 	 * | 
 | 	 * "Injected" interrupts can also collide with pending exceptions if | 
 | 	 * userspace ignores the "ready for injection" flag and blindly queues | 
 | 	 * an interrupt.  In that case, prioritizing the exception is correct, | 
 | 	 * as the exception "occurred" before the exit to userspace.  Trap-like | 
 | 	 * exceptions, e.g. most #DBs, have higher priority than interrupts. | 
 | 	 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest | 
 | 	 * priority, they're only generated (pended) during instruction | 
 | 	 * execution, and interrupts are recognized at instruction boundaries. | 
 | 	 * Thus a pending fault-like exception means the fault occurred on the | 
 | 	 * *previous* instruction and must be serviced prior to recognizing any | 
 | 	 * new events in order to fully complete the previous instruction. | 
 | 	 */ | 
 | 	if (vcpu->arch.exception.injected) | 
 | 		kvm_inject_exception(vcpu); | 
 | 	else if (kvm_is_exception_pending(vcpu)) | 
 | 		; /* see above */ | 
 | 	else if (vcpu->arch.nmi_injected) | 
 | 		kvm_x86_call(inject_nmi)(vcpu); | 
 | 	else if (vcpu->arch.interrupt.injected) | 
 | 		kvm_x86_call(inject_irq)(vcpu, true); | 
 |  | 
 | 	/* | 
 | 	 * Exceptions that morph to VM-Exits are handled above, and pending | 
 | 	 * exceptions on top of injected exceptions that do not VM-Exit should | 
 | 	 * either morph to #DF or, sadly, override the injected exception. | 
 | 	 */ | 
 | 	WARN_ON_ONCE(vcpu->arch.exception.injected && | 
 | 		     vcpu->arch.exception.pending); | 
 |  | 
 | 	/* | 
 | 	 * Bail if immediate entry+exit to/from the guest is needed to complete | 
 | 	 * nested VM-Enter or event re-injection so that a different pending | 
 | 	 * event can be serviced (or if KVM needs to exit to userspace). | 
 | 	 * | 
 | 	 * Otherwise, continue processing events even if VM-Exit occurred.  The | 
 | 	 * VM-Exit will have cleared exceptions that were meant for L2, but | 
 | 	 * there may now be events that can be injected into L1. | 
 | 	 */ | 
 | 	if (r < 0) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * A pending exception VM-Exit should either result in nested VM-Exit | 
 | 	 * or force an immediate re-entry and exit to/from L2, and exception | 
 | 	 * VM-Exits cannot be injected (flag should _never_ be set). | 
 | 	 */ | 
 | 	WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected || | 
 | 		     vcpu->arch.exception_vmexit.pending); | 
 |  | 
 | 	/* | 
 | 	 * New events, other than exceptions, cannot be injected if KVM needs | 
 | 	 * to re-inject a previous event.  See above comments on re-injecting | 
 | 	 * for why pending exceptions get priority. | 
 | 	 */ | 
 | 	can_inject = !kvm_event_needs_reinjection(vcpu); | 
 |  | 
 | 	if (vcpu->arch.exception.pending) { | 
 | 		/* | 
 | 		 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS | 
 | 		 * value pushed on the stack.  Trap-like exception and all #DBs | 
 | 		 * leave RF as-is (KVM follows Intel's behavior in this regard; | 
 | 		 * AMD states that code breakpoint #DBs excplitly clear RF=0). | 
 | 		 * | 
 | 		 * Note, most versions of Intel's SDM and AMD's APM incorrectly | 
 | 		 * describe the behavior of General Detect #DBs, which are | 
 | 		 * fault-like.  They do _not_ set RF, a la code breakpoints. | 
 | 		 */ | 
 | 		if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT) | 
 | 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) | | 
 | 					     X86_EFLAGS_RF); | 
 |  | 
 | 		if (vcpu->arch.exception.vector == DB_VECTOR) { | 
 | 			kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception); | 
 | 			if (vcpu->arch.dr7 & DR7_GD) { | 
 | 				vcpu->arch.dr7 &= ~DR7_GD; | 
 | 				kvm_update_dr7(vcpu); | 
 | 			} | 
 | 		} | 
 |  | 
 | 		kvm_inject_exception(vcpu); | 
 |  | 
 | 		vcpu->arch.exception.pending = false; | 
 | 		vcpu->arch.exception.injected = true; | 
 |  | 
 | 		can_inject = false; | 
 | 	} | 
 |  | 
 | 	/* Don't inject interrupts if the user asked to avoid doing so */ | 
 | 	if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * Finally, inject interrupt events.  If an event cannot be injected | 
 | 	 * due to architectural conditions (e.g. IF=0) a window-open exit | 
 | 	 * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending | 
 | 	 * and can architecturally be injected, but we cannot do it right now: | 
 | 	 * an interrupt could have arrived just now and we have to inject it | 
 | 	 * as a vmexit, or there could already an event in the queue, which is | 
 | 	 * indicated by can_inject.  In that case we request an immediate exit | 
 | 	 * in order to make progress and get back here for another iteration. | 
 | 	 * The kvm_x86_ops hooks communicate this by returning -EBUSY. | 
 | 	 */ | 
 | #ifdef CONFIG_KVM_SMM | 
 | 	if (vcpu->arch.smi_pending) { | 
 | 		r = can_inject ? kvm_x86_call(smi_allowed)(vcpu, true) : | 
 | 				 -EBUSY; | 
 | 		if (r < 0) | 
 | 			goto out; | 
 | 		if (r) { | 
 | 			vcpu->arch.smi_pending = false; | 
 | 			++vcpu->arch.smi_count; | 
 | 			enter_smm(vcpu); | 
 | 			can_inject = false; | 
 | 		} else | 
 | 			kvm_x86_call(enable_smi_window)(vcpu); | 
 | 	} | 
 | #endif | 
 |  | 
 | 	if (vcpu->arch.nmi_pending) { | 
 | 		r = can_inject ? kvm_x86_call(nmi_allowed)(vcpu, true) : | 
 | 				 -EBUSY; | 
 | 		if (r < 0) | 
 | 			goto out; | 
 | 		if (r) { | 
 | 			--vcpu->arch.nmi_pending; | 
 | 			vcpu->arch.nmi_injected = true; | 
 | 			kvm_x86_call(inject_nmi)(vcpu); | 
 | 			can_inject = false; | 
 | 			WARN_ON(kvm_x86_call(nmi_allowed)(vcpu, true) < 0); | 
 | 		} | 
 | 		if (vcpu->arch.nmi_pending) | 
 | 			kvm_x86_call(enable_nmi_window)(vcpu); | 
 | 	} | 
 |  | 
 | 	if (kvm_cpu_has_injectable_intr(vcpu)) { | 
 | 		r = can_inject ? kvm_x86_call(interrupt_allowed)(vcpu, true) : | 
 | 				 -EBUSY; | 
 | 		if (r < 0) | 
 | 			goto out; | 
 | 		if (r) { | 
 | 			int irq = kvm_cpu_get_interrupt(vcpu); | 
 |  | 
 | 			if (!WARN_ON_ONCE(irq == -1)) { | 
 | 				kvm_queue_interrupt(vcpu, irq, false); | 
 | 				kvm_x86_call(inject_irq)(vcpu, false); | 
 | 				WARN_ON(kvm_x86_call(interrupt_allowed)(vcpu, true) < 0); | 
 | 			} | 
 | 		} | 
 | 		if (kvm_cpu_has_injectable_intr(vcpu)) | 
 | 			kvm_x86_call(enable_irq_window)(vcpu); | 
 | 	} | 
 |  | 
 | 	if (is_guest_mode(vcpu) && | 
 | 	    kvm_x86_ops.nested_ops->has_events && | 
 | 	    kvm_x86_ops.nested_ops->has_events(vcpu, true)) | 
 | 		*req_immediate_exit = true; | 
 |  | 
 | 	/* | 
 | 	 * KVM must never queue a new exception while injecting an event; KVM | 
 | 	 * is done emulating and should only propagate the to-be-injected event | 
 | 	 * to the VMCS/VMCB.  Queueing a new exception can put the vCPU into an | 
 | 	 * infinite loop as KVM will bail from VM-Enter to inject the pending | 
 | 	 * exception and start the cycle all over. | 
 | 	 * | 
 | 	 * Exempt triple faults as they have special handling and won't put the | 
 | 	 * vCPU into an infinite loop.  Triple fault can be queued when running | 
 | 	 * VMX without unrestricted guest, as that requires KVM to emulate Real | 
 | 	 * Mode events (see kvm_inject_realmode_interrupt()). | 
 | 	 */ | 
 | 	WARN_ON_ONCE(vcpu->arch.exception.pending || | 
 | 		     vcpu->arch.exception_vmexit.pending); | 
 | 	return 0; | 
 |  | 
 | out: | 
 | 	if (r == -EBUSY) { | 
 | 		*req_immediate_exit = true; | 
 | 		r = 0; | 
 | 	} | 
 | 	return r; | 
 | } | 
 |  | 
 | static void process_nmi(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	unsigned int limit; | 
 |  | 
 | 	/* | 
 | 	 * x86 is limited to one NMI pending, but because KVM can't react to | 
 | 	 * incoming NMIs as quickly as bare metal, e.g. if the vCPU is | 
 | 	 * scheduled out, KVM needs to play nice with two queued NMIs showing | 
 | 	 * up at the same time.  To handle this scenario, allow two NMIs to be | 
 | 	 * (temporarily) pending so long as NMIs are not blocked and KVM is not | 
 | 	 * waiting for a previous NMI injection to complete (which effectively | 
 | 	 * blocks NMIs).  KVM will immediately inject one of the two NMIs, and | 
 | 	 * will request an NMI window to handle the second NMI. | 
 | 	 */ | 
 | 	if (kvm_x86_call(get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected) | 
 | 		limit = 1; | 
 | 	else | 
 | 		limit = 2; | 
 |  | 
 | 	/* | 
 | 	 * Adjust the limit to account for pending virtual NMIs, which aren't | 
 | 	 * tracked in vcpu->arch.nmi_pending. | 
 | 	 */ | 
 | 	if (kvm_x86_call(is_vnmi_pending)(vcpu)) | 
 | 		limit--; | 
 |  | 
 | 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); | 
 | 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); | 
 |  | 
 | 	if (vcpu->arch.nmi_pending && | 
 | 	    (kvm_x86_call(set_vnmi_pending)(vcpu))) | 
 | 		vcpu->arch.nmi_pending--; | 
 |  | 
 | 	if (vcpu->arch.nmi_pending) | 
 | 		kvm_make_request(KVM_REQ_EVENT, vcpu); | 
 | } | 
 |  | 
 | /* Return total number of NMIs pending injection to the VM */ | 
 | int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	return vcpu->arch.nmi_pending + | 
 | 	       kvm_x86_call(is_vnmi_pending)(vcpu); | 
 | } | 
 |  | 
 | void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, | 
 | 				       unsigned long *vcpu_bitmap) | 
 | { | 
 | 	kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap); | 
 | } | 
 |  | 
 | void kvm_make_scan_ioapic_request(struct kvm *kvm) | 
 | { | 
 | 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); | 
 | } | 
 |  | 
 | void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct kvm_lapic *apic = vcpu->arch.apic; | 
 | 	bool activate; | 
 |  | 
 | 	if (!lapic_in_kernel(vcpu)) | 
 | 		return; | 
 |  | 
 | 	down_read(&vcpu->kvm->arch.apicv_update_lock); | 
 | 	preempt_disable(); | 
 |  | 
 | 	/* Do not activate APICV when APIC is disabled */ | 
 | 	activate = kvm_vcpu_apicv_activated(vcpu) && | 
 | 		   (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED); | 
 |  | 
 | 	if (apic->apicv_active == activate) | 
 | 		goto out; | 
 |  | 
 | 	apic->apicv_active = activate; | 
 | 	kvm_apic_update_apicv(vcpu); | 
 | 	kvm_x86_call(refresh_apicv_exec_ctrl)(vcpu); | 
 |  | 
 | 	/* | 
 | 	 * When APICv gets disabled, we may still have injected interrupts | 
 | 	 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was | 
 | 	 * still active when the interrupt got accepted. Make sure | 
 | 	 * kvm_check_and_inject_events() is called to check for that. | 
 | 	 */ | 
 | 	if (!apic->apicv_active) | 
 | 		kvm_make_request(KVM_REQ_EVENT, vcpu); | 
 |  | 
 | out: | 
 | 	preempt_enable(); | 
 | 	up_read(&vcpu->kvm->arch.apicv_update_lock); | 
 | } | 
 | EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv); | 
 |  | 
 | static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	if (!lapic_in_kernel(vcpu)) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * Due to sharing page tables across vCPUs, the xAPIC memslot must be | 
 | 	 * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but | 
 | 	 * and hardware doesn't support x2APIC virtualization.  E.g. some AMD | 
 | 	 * CPUs support AVIC but not x2APIC.  KVM still allows enabling AVIC in | 
 | 	 * this case so that KVM can use the AVIC doorbell to inject interrupts | 
 | 	 * to running vCPUs, but KVM must not create SPTEs for the APIC base as | 
 | 	 * the vCPU would incorrectly be able to access the vAPIC page via MMIO | 
 | 	 * despite being in x2APIC mode.  For simplicity, inhibiting the APIC | 
 | 	 * access page is sticky. | 
 | 	 */ | 
 | 	if (apic_x2apic_mode(vcpu->arch.apic) && | 
 | 	    kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization) | 
 | 		kvm_inhibit_apic_access_page(vcpu); | 
 |  | 
 | 	__kvm_vcpu_update_apicv(vcpu); | 
 | } | 
 |  | 
 | void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, | 
 | 				      enum kvm_apicv_inhibit reason, bool set) | 
 | { | 
 | 	unsigned long old, new; | 
 |  | 
 | 	lockdep_assert_held_write(&kvm->arch.apicv_update_lock); | 
 |  | 
 | 	if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason))) | 
 | 		return; | 
 |  | 
 | 	old = new = kvm->arch.apicv_inhibit_reasons; | 
 |  | 
 | 	set_or_clear_apicv_inhibit(&new, reason, set); | 
 |  | 
 | 	if (!!old != !!new) { | 
 | 		/* | 
 | 		 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid | 
 | 		 * false positives in the sanity check WARN in vcpu_enter_guest(). | 
 | 		 * This task will wait for all vCPUs to ack the kick IRQ before | 
 | 		 * updating apicv_inhibit_reasons, and all other vCPUs will | 
 | 		 * block on acquiring apicv_update_lock so that vCPUs can't | 
 | 		 * redo vcpu_enter_guest() without seeing the new inhibit state. | 
 | 		 * | 
 | 		 * Note, holding apicv_update_lock and taking it in the read | 
 | 		 * side (handling the request) also prevents other vCPUs from | 
 | 		 * servicing the request with a stale apicv_inhibit_reasons. | 
 | 		 */ | 
 | 		kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE); | 
 | 		kvm->arch.apicv_inhibit_reasons = new; | 
 | 		if (new) { | 
 | 			unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE); | 
 | 			int idx = srcu_read_lock(&kvm->srcu); | 
 |  | 
 | 			kvm_zap_gfn_range(kvm, gfn, gfn+1); | 
 | 			srcu_read_unlock(&kvm->srcu, idx); | 
 | 		} | 
 | 	} else { | 
 | 		kvm->arch.apicv_inhibit_reasons = new; | 
 | 	} | 
 | } | 
 |  | 
 | void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, | 
 | 				    enum kvm_apicv_inhibit reason, bool set) | 
 | { | 
 | 	if (!enable_apicv) | 
 | 		return; | 
 |  | 
 | 	down_write(&kvm->arch.apicv_update_lock); | 
 | 	__kvm_set_or_clear_apicv_inhibit(kvm, reason, set); | 
 | 	up_write(&kvm->arch.apicv_update_lock); | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit); | 
 |  | 
 | static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	if (!kvm_apic_present(vcpu)) | 
 | 		return; | 
 |  | 
 | 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256); | 
 | 	vcpu->arch.highest_stale_pending_ioapic_eoi = -1; | 
 |  | 
 | 	kvm_x86_call(sync_pir_to_irr)(vcpu); | 
 |  | 
 | 	if (irqchip_split(vcpu->kvm)) | 
 | 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors); | 
 | #ifdef CONFIG_KVM_IOAPIC | 
 | 	else if (ioapic_in_kernel(vcpu->kvm)) | 
 | 		kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors); | 
 | #endif | 
 |  | 
 | 	if (is_guest_mode(vcpu)) | 
 | 		vcpu->arch.load_eoi_exitmap_pending = true; | 
 | 	else | 
 | 		kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu); | 
 | } | 
 |  | 
 | static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	if (!kvm_apic_hw_enabled(vcpu->arch.apic)) | 
 | 		return; | 
 |  | 
 | #ifdef CONFIG_KVM_HYPERV | 
 | 	if (to_hv_vcpu(vcpu)) { | 
 | 		u64 eoi_exit_bitmap[4]; | 
 |  | 
 | 		bitmap_or((ulong *)eoi_exit_bitmap, | 
 | 			  vcpu->arch.ioapic_handled_vectors, | 
 | 			  to_hv_synic(vcpu)->vec_bitmap, 256); | 
 | 		kvm_x86_call(load_eoi_exitmap)(vcpu, eoi_exit_bitmap); | 
 | 		return; | 
 | 	} | 
 | #endif | 
 | 	kvm_x86_call(load_eoi_exitmap)( | 
 | 		vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors); | 
 | } | 
 |  | 
 | void kvm_arch_guest_memory_reclaimed(struct kvm *kvm) | 
 | { | 
 | 	kvm_x86_call(guest_memory_reclaimed)(kvm); | 
 | } | 
 |  | 
 | static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	if (!lapic_in_kernel(vcpu)) | 
 | 		return; | 
 |  | 
 | 	kvm_x86_call(set_apic_access_page_addr)(vcpu); | 
 | } | 
 |  | 
 | /* | 
 |  * Called within kvm->srcu read side. | 
 |  * Returns 1 to let vcpu_run() continue the guest execution loop without | 
 |  * exiting to the userspace.  Otherwise, the value will be returned to the | 
 |  * userspace. | 
 |  */ | 
 | static int vcpu_enter_guest(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	int r; | 
 | 	bool req_int_win = | 
 | 		dm_request_for_irq_injection(vcpu) && | 
 | 		kvm_cpu_accept_dm_intr(vcpu); | 
 | 	fastpath_t exit_fastpath; | 
 | 	u64 run_flags, debug_ctl; | 
 |  | 
 | 	bool req_immediate_exit = false; | 
 |  | 
 | 	if (kvm_request_pending(vcpu)) { | 
 | 		if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) { | 
 | 			r = -EIO; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		if (kvm_dirty_ring_check_request(vcpu)) { | 
 | 			r = 0; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) { | 
 | 			if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) { | 
 | 				r = 0; | 
 | 				goto out; | 
 | 			} | 
 | 		} | 
 | 		if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu)) | 
 | 			kvm_mmu_free_obsolete_roots(vcpu); | 
 | 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) | 
 | 			__kvm_migrate_timers(vcpu); | 
 | 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) | 
 | 			kvm_update_masterclock(vcpu->kvm); | 
 | 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) | 
 | 			kvm_gen_kvmclock_update(vcpu); | 
 | 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { | 
 | 			r = kvm_guest_time_update(vcpu); | 
 | 			if (unlikely(r)) | 
 | 				goto out; | 
 | 		} | 
 | 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) | 
 | 			kvm_mmu_sync_roots(vcpu); | 
 | 		if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu)) | 
 | 			kvm_mmu_load_pgd(vcpu); | 
 |  | 
 | 		/* | 
 | 		 * Note, the order matters here, as flushing "all" TLB entries | 
 | 		 * also flushes the "current" TLB entries, i.e. servicing the | 
 | 		 * flush "all" will clear any request to flush "current". | 
 | 		 */ | 
 | 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) | 
 | 			kvm_vcpu_flush_tlb_all(vcpu); | 
 |  | 
 | 		kvm_service_local_tlb_flush_requests(vcpu); | 
 |  | 
 | 		/* | 
 | 		 * Fall back to a "full" guest flush if Hyper-V's precise | 
 | 		 * flushing fails.  Note, Hyper-V's flushing is per-vCPU, but | 
 | 		 * the flushes are considered "remote" and not "local" because | 
 | 		 * the requests can be initiated from other vCPUs. | 
 | 		 */ | 
 | #ifdef CONFIG_KVM_HYPERV | 
 | 		if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) && | 
 | 		    kvm_hv_vcpu_flush_tlb(vcpu)) | 
 | 			kvm_vcpu_flush_tlb_guest(vcpu); | 
 | #endif | 
 |  | 
 | 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { | 
 | 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; | 
 | 			r = 0; | 
 | 			goto out; | 
 | 		} | 
 | 		if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { | 
 | 			if (is_guest_mode(vcpu)) | 
 | 				kvm_x86_ops.nested_ops->triple_fault(vcpu); | 
 |  | 
 | 			if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { | 
 | 				vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; | 
 | 				vcpu->mmio_needed = 0; | 
 | 				r = 0; | 
 | 				goto out; | 
 | 			} | 
 | 		} | 
 | 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { | 
 | 			/* Page is swapped out. Do synthetic halt */ | 
 | 			vcpu->arch.apf.halted = true; | 
 | 			r = 1; | 
 | 			goto out; | 
 | 		} | 
 | 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) | 
 | 			record_steal_time(vcpu); | 
 | 		if (kvm_check_request(KVM_REQ_PMU, vcpu)) | 
 | 			kvm_pmu_handle_event(vcpu); | 
 | 		if (kvm_check_request(KVM_REQ_PMI, vcpu)) | 
 | 			kvm_pmu_deliver_pmi(vcpu); | 
 | #ifdef CONFIG_KVM_SMM | 
 | 		if (kvm_check_request(KVM_REQ_SMI, vcpu)) | 
 | 			process_smi(vcpu); | 
 | #endif | 
 | 		if (kvm_check_request(KVM_REQ_NMI, vcpu)) | 
 | 			process_nmi(vcpu); | 
 | 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) { | 
 | 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255); | 
 | 			if (test_bit(vcpu->arch.pending_ioapic_eoi, | 
 | 				     vcpu->arch.ioapic_handled_vectors)) { | 
 | 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI; | 
 | 				vcpu->run->eoi.vector = | 
 | 						vcpu->arch.pending_ioapic_eoi; | 
 | 				r = 0; | 
 | 				goto out; | 
 | 			} | 
 | 		} | 
 | 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) | 
 | 			vcpu_scan_ioapic(vcpu); | 
 | 		if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu)) | 
 | 			vcpu_load_eoi_exitmap(vcpu); | 
 | 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu)) | 
 | 			kvm_vcpu_reload_apic_access_page(vcpu); | 
 | #ifdef CONFIG_KVM_HYPERV | 
 | 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) { | 
 | 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; | 
 | 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH; | 
 | 			vcpu->run->system_event.ndata = 0; | 
 | 			r = 0; | 
 | 			goto out; | 
 | 		} | 
 | 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) { | 
 | 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; | 
 | 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET; | 
 | 			vcpu->run->system_event.ndata = 0; | 
 | 			r = 0; | 
 | 			goto out; | 
 | 		} | 
 | 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) { | 
 | 			struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); | 
 |  | 
 | 			vcpu->run->exit_reason = KVM_EXIT_HYPERV; | 
 | 			vcpu->run->hyperv = hv_vcpu->exit; | 
 | 			r = 0; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * KVM_REQ_HV_STIMER has to be processed after | 
 | 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers | 
 | 		 * depend on the guest clock being up-to-date | 
 | 		 */ | 
 | 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu)) | 
 | 			kvm_hv_process_stimers(vcpu); | 
 | #endif | 
 | 		if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu)) | 
 | 			kvm_vcpu_update_apicv(vcpu); | 
 | 		if (kvm_check_request(KVM_REQ_APF_READY, vcpu)) | 
 | 			kvm_check_async_pf_completion(vcpu); | 
 |  | 
 | 		/* | 
 | 		 * Recalc MSR intercepts as userspace may want to intercept | 
 | 		 * accesses to MSRs that KVM would otherwise pass through to | 
 | 		 * the guest. | 
 | 		 */ | 
 | 		if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu)) | 
 | 			kvm_x86_call(recalc_msr_intercepts)(vcpu); | 
 |  | 
 | 		if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu)) | 
 | 			kvm_x86_call(update_cpu_dirty_logging)(vcpu); | 
 |  | 
 | 		if (kvm_check_request(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, vcpu)) { | 
 | 			kvm_vcpu_reset(vcpu, true); | 
 | 			if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE) { | 
 | 				r = 1; | 
 | 				goto out; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win || | 
 | 	    kvm_xen_has_interrupt(vcpu)) { | 
 | 		++vcpu->stat.req_event; | 
 | 		r = kvm_apic_accept_events(vcpu); | 
 | 		if (r < 0) { | 
 | 			r = 0; | 
 | 			goto out; | 
 | 		} | 
 | 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { | 
 | 			r = 1; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		r = kvm_check_and_inject_events(vcpu, &req_immediate_exit); | 
 | 		if (r < 0) { | 
 | 			r = 0; | 
 | 			goto out; | 
 | 		} | 
 | 		if (req_int_win) | 
 | 			kvm_x86_call(enable_irq_window)(vcpu); | 
 |  | 
 | 		if (kvm_lapic_enabled(vcpu)) { | 
 | 			update_cr8_intercept(vcpu); | 
 | 			kvm_lapic_sync_to_vapic(vcpu); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	r = kvm_mmu_reload(vcpu); | 
 | 	if (unlikely(r)) { | 
 | 		goto cancel_injection; | 
 | 	} | 
 |  | 
 | 	preempt_disable(); | 
 |  | 
 | 	kvm_x86_call(prepare_switch_to_guest)(vcpu); | 
 |  | 
 | 	/* | 
 | 	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt | 
 | 	 * IPI are then delayed after guest entry, which ensures that they | 
 | 	 * result in virtual interrupt delivery. | 
 | 	 */ | 
 | 	local_irq_disable(); | 
 |  | 
 | 	/* Store vcpu->apicv_active before vcpu->mode.  */ | 
 | 	smp_store_release(&vcpu->mode, IN_GUEST_MODE); | 
 |  | 
 | 	kvm_vcpu_srcu_read_unlock(vcpu); | 
 |  | 
 | 	/* | 
 | 	 * 1) We should set ->mode before checking ->requests.  Please see | 
 | 	 * the comment in kvm_vcpu_exiting_guest_mode(). | 
 | 	 * | 
 | 	 * 2) For APICv, we should set ->mode before checking PID.ON. This | 
 | 	 * pairs with the memory barrier implicit in pi_test_and_set_on | 
 | 	 * (see vmx_deliver_posted_interrupt). | 
 | 	 * | 
 | 	 * 3) This also orders the write to mode from any reads to the page | 
 | 	 * tables done while the VCPU is running.  Please see the comment | 
 | 	 * in kvm_flush_remote_tlbs. | 
 | 	 */ | 
 | 	smp_mb__after_srcu_read_unlock(); | 
 |  | 
 | 	/* | 
 | 	 * Process pending posted interrupts to handle the case where the | 
 | 	 * notification IRQ arrived in the host, or was never sent (because the | 
 | 	 * target vCPU wasn't running).  Do this regardless of the vCPU's APICv | 
 | 	 * status, KVM doesn't update assigned devices when APICv is inhibited, | 
 | 	 * i.e. they can post interrupts even if APICv is temporarily disabled. | 
 | 	 */ | 
 | 	if (kvm_lapic_enabled(vcpu)) | 
 | 		kvm_x86_call(sync_pir_to_irr)(vcpu); | 
 |  | 
 | 	if (kvm_vcpu_exit_request(vcpu)) { | 
 | 		vcpu->mode = OUTSIDE_GUEST_MODE; | 
 | 		smp_wmb(); | 
 | 		local_irq_enable(); | 
 | 		preempt_enable(); | 
 | 		kvm_vcpu_srcu_read_lock(vcpu); | 
 | 		r = 1; | 
 | 		goto cancel_injection; | 
 | 	} | 
 |  | 
 | 	run_flags = 0; | 
 | 	if (req_immediate_exit) { | 
 | 		run_flags |= KVM_RUN_FORCE_IMMEDIATE_EXIT; | 
 | 		kvm_make_request(KVM_REQ_EVENT, vcpu); | 
 | 	} | 
 |  | 
 | 	fpregs_assert_state_consistent(); | 
 | 	if (test_thread_flag(TIF_NEED_FPU_LOAD)) | 
 | 		switch_fpu_return(); | 
 |  | 
 | 	if (vcpu->arch.guest_fpu.xfd_err) | 
 | 		wrmsrq(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err); | 
 |  | 
 | 	if (unlikely(vcpu->arch.switch_db_regs && | 
 | 		     !(vcpu->arch.switch_db_regs & KVM_DEBUGREG_AUTO_SWITCH))) { | 
 | 		set_debugreg(DR7_FIXED_1, 7); | 
 | 		set_debugreg(vcpu->arch.eff_db[0], 0); | 
 | 		set_debugreg(vcpu->arch.eff_db[1], 1); | 
 | 		set_debugreg(vcpu->arch.eff_db[2], 2); | 
 | 		set_debugreg(vcpu->arch.eff_db[3], 3); | 
 | 		/* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */ | 
 | 		if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) | 
 | 			run_flags |= KVM_RUN_LOAD_GUEST_DR6; | 
 | 	} else if (unlikely(hw_breakpoint_active())) { | 
 | 		set_debugreg(DR7_FIXED_1, 7); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Refresh the host DEBUGCTL snapshot after disabling IRQs, as DEBUGCTL | 
 | 	 * can be modified in IRQ context, e.g. via SMP function calls.  Inform | 
 | 	 * vendor code if any host-owned bits were changed, e.g. so that the | 
 | 	 * value loaded into hardware while running the guest can be updated. | 
 | 	 */ | 
 | 	debug_ctl = get_debugctlmsr(); | 
 | 	if ((debug_ctl ^ vcpu->arch.host_debugctl) & kvm_x86_ops.HOST_OWNED_DEBUGCTL && | 
 | 	    !vcpu->arch.guest_state_protected) | 
 | 		run_flags |= KVM_RUN_LOAD_DEBUGCTL; | 
 | 	vcpu->arch.host_debugctl = debug_ctl; | 
 |  | 
 | 	guest_timing_enter_irqoff(); | 
 |  | 
 | 	for (;;) { | 
 | 		/* | 
 | 		 * Assert that vCPU vs. VM APICv state is consistent.  An APICv | 
 | 		 * update must kick and wait for all vCPUs before toggling the | 
 | 		 * per-VM state, and responding vCPUs must wait for the update | 
 | 		 * to complete before servicing KVM_REQ_APICV_UPDATE. | 
 | 		 */ | 
 | 		WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) && | 
 | 			     (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED)); | 
 |  | 
 | 		exit_fastpath = kvm_x86_call(vcpu_run)(vcpu, run_flags); | 
 | 		if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST)) | 
 | 			break; | 
 |  | 
 | 		if (kvm_lapic_enabled(vcpu)) | 
 | 			kvm_x86_call(sync_pir_to_irr)(vcpu); | 
 |  | 
 | 		if (unlikely(kvm_vcpu_exit_request(vcpu))) { | 
 | 			exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		run_flags = 0; | 
 |  | 
 | 		/* Note, VM-Exits that go down the "slow" path are accounted below. */ | 
 | 		++vcpu->stat.exits; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Do this here before restoring debug registers on the host.  And | 
 | 	 * since we do this before handling the vmexit, a DR access vmexit | 
 | 	 * can (a) read the correct value of the debug registers, (b) set | 
 | 	 * KVM_DEBUGREG_WONT_EXIT again. | 
 | 	 */ | 
 | 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) { | 
 | 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP); | 
 | 		WARN_ON(vcpu->arch.switch_db_regs & KVM_DEBUGREG_AUTO_SWITCH); | 
 | 		kvm_x86_call(sync_dirty_debug_regs)(vcpu); | 
 | 		kvm_update_dr0123(vcpu); | 
 | 		kvm_update_dr7(vcpu); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If the guest has used debug registers, at least dr7 | 
 | 	 * will be disabled while returning to the host. | 
 | 	 * If we don't have active breakpoints in the host, we don't | 
 | 	 * care about the messed up debug address registers. But if | 
 | 	 * we have some of them active, restore the old state. | 
 | 	 */ | 
 | 	if (hw_breakpoint_active()) | 
 | 		hw_breakpoint_restore(); | 
 |  | 
 | 	vcpu->arch.last_vmentry_cpu = vcpu->cpu; | 
 | 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); | 
 |  | 
 | 	vcpu->mode = OUTSIDE_GUEST_MODE; | 
 | 	smp_wmb(); | 
 |  | 
 | 	/* | 
 | 	 * Sync xfd before calling handle_exit_irqoff() which may | 
 | 	 * rely on the fact that guest_fpu::xfd is up-to-date (e.g. | 
 | 	 * in #NM irqoff handler). | 
 | 	 */ | 
 | 	if (vcpu->arch.xfd_no_write_intercept) | 
 | 		fpu_sync_guest_vmexit_xfd_state(); | 
 |  | 
 | 	kvm_x86_call(handle_exit_irqoff)(vcpu); | 
 |  | 
 | 	if (vcpu->arch.guest_fpu.xfd_err) | 
 | 		wrmsrq(MSR_IA32_XFD_ERR, 0); | 
 |  | 
 | 	/* | 
 | 	 * Mark this CPU as needing a branch predictor flush before running | 
 | 	 * userspace. Must be done before enabling preemption to ensure it gets | 
 | 	 * set for the CPU that actually ran the guest, and not the CPU that it | 
 | 	 * may migrate to. | 
 | 	 */ | 
 | 	if (cpu_feature_enabled(X86_FEATURE_IBPB_EXIT_TO_USER)) | 
 | 		this_cpu_write(x86_ibpb_exit_to_user, true); | 
 |  | 
 | 	/* | 
 | 	 * Consume any pending interrupts, including the possible source of | 
 | 	 * VM-Exit on SVM and any ticks that occur between VM-Exit and now. | 
 | 	 * An instruction is required after local_irq_enable() to fully unblock | 
 | 	 * interrupts on processors that implement an interrupt shadow, the | 
 | 	 * stat.exits increment will do nicely. | 
 | 	 */ | 
 | 	kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ); | 
 | 	local_irq_enable(); | 
 | 	++vcpu->stat.exits; | 
 | 	local_irq_disable(); | 
 | 	kvm_after_interrupt(vcpu); | 
 |  | 
 | 	/* | 
 | 	 * Wait until after servicing IRQs to account guest time so that any | 
 | 	 * ticks that occurred while running the guest are properly accounted | 
 | 	 * to the guest.  Waiting until IRQs are enabled degrades the accuracy | 
 | 	 * of accounting via context tracking, but the loss of accuracy is | 
 | 	 * acceptable for all known use cases. | 
 | 	 */ | 
 | 	guest_timing_exit_irqoff(); | 
 |  | 
 | 	local_irq_enable(); | 
 | 	preempt_enable(); | 
 |  | 
 | 	kvm_vcpu_srcu_read_lock(vcpu); | 
 |  | 
 | 	/* | 
 | 	 * Call this to ensure WC buffers in guest are evicted after each VM | 
 | 	 * Exit, so that the evicted WC writes can be snooped across all cpus | 
 | 	 */ | 
 | 	smp_mb__after_srcu_read_lock(); | 
 |  | 
 | 	/* | 
 | 	 * Profile KVM exit RIPs: | 
 | 	 */ | 
 | 	if (unlikely(prof_on == KVM_PROFILING && | 
 | 		     !vcpu->arch.guest_state_protected)) { | 
 | 		unsigned long rip = kvm_rip_read(vcpu); | 
 | 		profile_hit(KVM_PROFILING, (void *)rip); | 
 | 	} | 
 |  | 
 | 	if (unlikely(vcpu->arch.tsc_always_catchup)) | 
 | 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); | 
 |  | 
 | 	if (vcpu->arch.apic_attention) | 
 | 		kvm_lapic_sync_from_vapic(vcpu); | 
 |  | 
 | 	if (unlikely(exit_fastpath == EXIT_FASTPATH_EXIT_USERSPACE)) | 
 | 		return 0; | 
 |  | 
 | 	r = kvm_x86_call(handle_exit)(vcpu, exit_fastpath); | 
 | 	return r; | 
 |  | 
 | cancel_injection: | 
 | 	if (req_immediate_exit) | 
 | 		kvm_make_request(KVM_REQ_EVENT, vcpu); | 
 | 	kvm_x86_call(cancel_injection)(vcpu); | 
 | 	if (unlikely(vcpu->arch.apic_attention)) | 
 | 		kvm_lapic_sync_from_vapic(vcpu); | 
 | out: | 
 | 	return r; | 
 | } | 
 |  | 
 | static bool kvm_vcpu_running(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && | 
 | 		!vcpu->arch.apf.halted); | 
 | } | 
 |  | 
 | bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	if (!list_empty_careful(&vcpu->async_pf.done)) | 
 | 		return true; | 
 |  | 
 | 	if (kvm_apic_has_pending_init_or_sipi(vcpu) && | 
 | 	    kvm_apic_init_sipi_allowed(vcpu)) | 
 | 		return true; | 
 |  | 
 | 	if (kvm_is_exception_pending(vcpu)) | 
 | 		return true; | 
 |  | 
 | 	if (kvm_test_request(KVM_REQ_NMI, vcpu) || | 
 | 	    (vcpu->arch.nmi_pending && | 
 | 	     kvm_x86_call(nmi_allowed)(vcpu, false))) | 
 | 		return true; | 
 |  | 
 | #ifdef CONFIG_KVM_SMM | 
 | 	if (kvm_test_request(KVM_REQ_SMI, vcpu) || | 
 | 	    (vcpu->arch.smi_pending && | 
 | 	     kvm_x86_call(smi_allowed)(vcpu, false))) | 
 | 		return true; | 
 | #endif | 
 |  | 
 | 	if (kvm_test_request(KVM_REQ_PMI, vcpu)) | 
 | 		return true; | 
 |  | 
 | 	if (kvm_test_request(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, vcpu)) | 
 | 		return true; | 
 |  | 
 | 	if (kvm_arch_interrupt_allowed(vcpu) && kvm_cpu_has_interrupt(vcpu)) | 
 | 		return true; | 
 |  | 
 | 	if (kvm_hv_has_stimer_pending(vcpu)) | 
 | 		return true; | 
 |  | 
 | 	if (is_guest_mode(vcpu) && | 
 | 	    kvm_x86_ops.nested_ops->has_events && | 
 | 	    kvm_x86_ops.nested_ops->has_events(vcpu, false)) | 
 | 		return true; | 
 |  | 
 | 	if (kvm_xen_has_pending_events(vcpu)) | 
 | 		return true; | 
 |  | 
 | 	return false; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_vcpu_has_events); | 
 |  | 
 | int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	return kvm_vcpu_running(vcpu) || vcpu->arch.pv.pv_unhalted || | 
 | 	       kvm_vcpu_has_events(vcpu); | 
 | } | 
 |  | 
 | /* Called within kvm->srcu read side.  */ | 
 | static inline int vcpu_block(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	bool hv_timer; | 
 |  | 
 | 	if (!kvm_arch_vcpu_runnable(vcpu)) { | 
 | 		/* | 
 | 		 * Switch to the software timer before halt-polling/blocking as | 
 | 		 * the guest's timer may be a break event for the vCPU, and the | 
 | 		 * hypervisor timer runs only when the CPU is in guest mode. | 
 | 		 * Switch before halt-polling so that KVM recognizes an expired | 
 | 		 * timer before blocking. | 
 | 		 */ | 
 | 		hv_timer = kvm_lapic_hv_timer_in_use(vcpu); | 
 | 		if (hv_timer) | 
 | 			kvm_lapic_switch_to_sw_timer(vcpu); | 
 |  | 
 | 		kvm_vcpu_srcu_read_unlock(vcpu); | 
 | 		if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED) | 
 | 			kvm_vcpu_halt(vcpu); | 
 | 		else | 
 | 			kvm_vcpu_block(vcpu); | 
 | 		kvm_vcpu_srcu_read_lock(vcpu); | 
 |  | 
 | 		if (hv_timer) | 
 | 			kvm_lapic_switch_to_hv_timer(vcpu); | 
 |  | 
 | 		/* | 
 | 		 * If the vCPU is not runnable, a signal or another host event | 
 | 		 * of some kind is pending; service it without changing the | 
 | 		 * vCPU's activity state. | 
 | 		 */ | 
 | 		if (!kvm_arch_vcpu_runnable(vcpu)) | 
 | 			return 1; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Evaluate nested events before exiting the halted state.  This allows | 
 | 	 * the halt state to be recorded properly in the VMCS12's activity | 
 | 	 * state field (AMD does not have a similar field and a VM-Exit always | 
 | 	 * causes a spurious wakeup from HLT). | 
 | 	 */ | 
 | 	if (is_guest_mode(vcpu)) { | 
 | 		int r = kvm_check_nested_events(vcpu); | 
 |  | 
 | 		WARN_ON_ONCE(r == -EBUSY); | 
 | 		if (r < 0) | 
 | 			return 0; | 
 | 	} | 
 |  | 
 | 	if (kvm_apic_accept_events(vcpu) < 0) | 
 | 		return 0; | 
 | 	switch(vcpu->arch.mp_state) { | 
 | 	case KVM_MP_STATE_HALTED: | 
 | 	case KVM_MP_STATE_AP_RESET_HOLD: | 
 | 		kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE); | 
 | 		fallthrough; | 
 | 	case KVM_MP_STATE_RUNNABLE: | 
 | 		vcpu->arch.apf.halted = false; | 
 | 		break; | 
 | 	case KVM_MP_STATE_INIT_RECEIVED: | 
 | 		break; | 
 | 	default: | 
 | 		WARN_ON_ONCE(1); | 
 | 		break; | 
 | 	} | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* Called within kvm->srcu read side.  */ | 
 | static int vcpu_run(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	int r; | 
 |  | 
 | 	vcpu->run->exit_reason = KVM_EXIT_UNKNOWN; | 
 |  | 
 | 	for (;;) { | 
 | 		/* | 
 | 		 * If another guest vCPU requests a PV TLB flush in the middle | 
 | 		 * of instruction emulation, the rest of the emulation could | 
 | 		 * use a stale page translation. Assume that any code after | 
 | 		 * this point can start executing an instruction. | 
 | 		 */ | 
 | 		vcpu->arch.at_instruction_boundary = false; | 
 | 		if (kvm_vcpu_running(vcpu)) { | 
 | 			r = vcpu_enter_guest(vcpu); | 
 | 		} else { | 
 | 			r = vcpu_block(vcpu); | 
 | 		} | 
 |  | 
 | 		if (r <= 0) | 
 | 			break; | 
 |  | 
 | 		kvm_clear_request(KVM_REQ_UNBLOCK, vcpu); | 
 | 		if (kvm_xen_has_pending_events(vcpu)) | 
 | 			kvm_xen_inject_pending_events(vcpu); | 
 |  | 
 | 		if (kvm_cpu_has_pending_timer(vcpu)) | 
 | 			kvm_inject_pending_timer_irqs(vcpu); | 
 |  | 
 | 		if (dm_request_for_irq_injection(vcpu) && | 
 | 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) { | 
 | 			r = 0; | 
 | 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; | 
 | 			++vcpu->stat.request_irq_exits; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		if (__xfer_to_guest_mode_work_pending()) { | 
 | 			kvm_vcpu_srcu_read_unlock(vcpu); | 
 | 			r = xfer_to_guest_mode_handle_work(vcpu); | 
 | 			kvm_vcpu_srcu_read_lock(vcpu); | 
 | 			if (r) | 
 | 				return r; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason) | 
 | { | 
 | 	/* | 
 | 	 * The vCPU has halted, e.g. executed HLT.  Update the run state if the | 
 | 	 * local APIC is in-kernel, the run loop will detect the non-runnable | 
 | 	 * state and halt the vCPU.  Exit to userspace if the local APIC is | 
 | 	 * managed by userspace, in which case userspace is responsible for | 
 | 	 * handling wake events. | 
 | 	 */ | 
 | 	++vcpu->stat.halt_exits; | 
 | 	if (lapic_in_kernel(vcpu)) { | 
 | 		if (kvm_vcpu_has_events(vcpu) || vcpu->arch.pv.pv_unhalted) | 
 | 			state = KVM_MP_STATE_RUNNABLE; | 
 | 		kvm_set_mp_state(vcpu, state); | 
 | 		return 1; | 
 | 	} else { | 
 | 		vcpu->run->exit_reason = reason; | 
 | 		return 0; | 
 | 	} | 
 | } | 
 |  | 
 | int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT); | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip); | 
 |  | 
 | int kvm_emulate_halt(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	int ret = kvm_skip_emulated_instruction(vcpu); | 
 | 	/* | 
 | 	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered | 
 | 	 * KVM_EXIT_DEBUG here. | 
 | 	 */ | 
 | 	return kvm_emulate_halt_noskip(vcpu) && ret; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_emulate_halt); | 
 |  | 
 | fastpath_t handle_fastpath_hlt(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	kvm_vcpu_srcu_read_lock(vcpu); | 
 | 	ret = kvm_emulate_halt(vcpu); | 
 | 	kvm_vcpu_srcu_read_unlock(vcpu); | 
 |  | 
 | 	if (!ret) | 
 | 		return EXIT_FASTPATH_EXIT_USERSPACE; | 
 |  | 
 | 	if (kvm_vcpu_running(vcpu)) | 
 | 		return EXIT_FASTPATH_REENTER_GUEST; | 
 |  | 
 | 	return EXIT_FASTPATH_EXIT_HANDLED; | 
 | } | 
 | EXPORT_SYMBOL_GPL(handle_fastpath_hlt); | 
 |  | 
 | int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	int ret = kvm_skip_emulated_instruction(vcpu); | 
 |  | 
 | 	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, | 
 | 					KVM_EXIT_AP_RESET_HOLD) && ret; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold); | 
 |  | 
 | bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	return kvm_vcpu_apicv_active(vcpu) && | 
 | 	       kvm_x86_call(dy_apicv_has_pending_interrupt)(vcpu); | 
 | } | 
 |  | 
 | bool kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	return vcpu->arch.preempted_in_kernel; | 
 | } | 
 |  | 
 | bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	if (READ_ONCE(vcpu->arch.pv.pv_unhalted)) | 
 | 		return true; | 
 |  | 
 | 	if (kvm_test_request(KVM_REQ_NMI, vcpu) || | 
 | #ifdef CONFIG_KVM_SMM | 
 | 		kvm_test_request(KVM_REQ_SMI, vcpu) || | 
 | #endif | 
 | 		 kvm_test_request(KVM_REQ_EVENT, vcpu)) | 
 | 		return true; | 
 |  | 
 | 	return kvm_arch_dy_has_pending_interrupt(vcpu); | 
 | } | 
 |  | 
 | static inline int complete_emulated_io(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE); | 
 | } | 
 |  | 
 | static int complete_emulated_pio(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	BUG_ON(!vcpu->arch.pio.count); | 
 |  | 
 | 	return complete_emulated_io(vcpu); | 
 | } | 
 |  | 
 | /* | 
 |  * Implements the following, as a state machine: | 
 |  * | 
 |  * read: | 
 |  *   for each fragment | 
 |  *     for each mmio piece in the fragment | 
 |  *       write gpa, len | 
 |  *       exit | 
 |  *       copy data | 
 |  *   execute insn | 
 |  * | 
 |  * write: | 
 |  *   for each fragment | 
 |  *     for each mmio piece in the fragment | 
 |  *       write gpa, len | 
 |  *       copy data | 
 |  *       exit | 
 |  */ | 
 | static int complete_emulated_mmio(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct kvm_run *run = vcpu->run; | 
 | 	struct kvm_mmio_fragment *frag; | 
 | 	unsigned len; | 
 |  | 
 | 	BUG_ON(!vcpu->mmio_needed); | 
 |  | 
 | 	/* Complete previous fragment */ | 
 | 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; | 
 | 	len = min(8u, frag->len); | 
 | 	if (!vcpu->mmio_is_write) | 
 | 		memcpy(frag->data, run->mmio.data, len); | 
 |  | 
 | 	if (frag->len <= 8) { | 
 | 		/* Switch to the next fragment. */ | 
 | 		frag++; | 
 | 		vcpu->mmio_cur_fragment++; | 
 | 	} else { | 
 | 		/* Go forward to the next mmio piece. */ | 
 | 		frag->data += len; | 
 | 		frag->gpa += len; | 
 | 		frag->len -= len; | 
 | 	} | 
 |  | 
 | 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { | 
 | 		vcpu->mmio_needed = 0; | 
 |  | 
 | 		/* FIXME: return into emulator if single-stepping.  */ | 
 | 		if (vcpu->mmio_is_write) | 
 | 			return 1; | 
 | 		vcpu->mmio_read_completed = 1; | 
 | 		return complete_emulated_io(vcpu); | 
 | 	} | 
 |  | 
 | 	run->exit_reason = KVM_EXIT_MMIO; | 
 | 	run->mmio.phys_addr = frag->gpa; | 
 | 	if (vcpu->mmio_is_write) | 
 | 		memcpy(run->mmio.data, frag->data, min(8u, frag->len)); | 
 | 	run->mmio.len = min(8u, frag->len); | 
 | 	run->mmio.is_write = vcpu->mmio_is_write; | 
 | 	vcpu->arch.complete_userspace_io = complete_emulated_mmio; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Swap (qemu) user FPU context for the guest FPU context. */ | 
 | static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	/* Exclude PKRU, it's restored separately immediately after VM-Exit. */ | 
 | 	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true); | 
 | 	trace_kvm_fpu(1); | 
 | } | 
 |  | 
 | /* When vcpu_run ends, restore user space FPU context. */ | 
 | static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false); | 
 | 	++vcpu->stat.fpu_reload; | 
 | 	trace_kvm_fpu(0); | 
 | } | 
 |  | 
 | static int kvm_x86_vcpu_pre_run(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	/* | 
 | 	 * SIPI_RECEIVED is obsolete; KVM leaves the vCPU in Wait-For-SIPI and | 
 | 	 * tracks the pending SIPI separately.  SIPI_RECEIVED is still accepted | 
 | 	 * by KVM_SET_VCPU_EVENTS for backwards compatibility, but should be | 
 | 	 * converted to INIT_RECEIVED. | 
 | 	 */ | 
 | 	if (WARN_ON_ONCE(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* | 
 | 	 * Disallow running the vCPU if userspace forced it into an impossible | 
 | 	 * MP_STATE, e.g. if the vCPU is in WFS but SIPI is blocked. | 
 | 	 */ | 
 | 	if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED && | 
 | 	    !kvm_apic_init_sipi_allowed(vcpu)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	return kvm_x86_call(vcpu_pre_run)(vcpu); | 
 | } | 
 |  | 
 | int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct kvm_queued_exception *ex = &vcpu->arch.exception; | 
 | 	struct kvm_run *kvm_run = vcpu->run; | 
 | 	u64 sync_valid_fields; | 
 | 	int r; | 
 |  | 
 | 	r = kvm_mmu_post_init_vm(vcpu->kvm); | 
 | 	if (r) | 
 | 		return r; | 
 |  | 
 | 	vcpu_load(vcpu); | 
 | 	kvm_sigset_activate(vcpu); | 
 | 	kvm_run->flags = 0; | 
 | 	kvm_load_guest_fpu(vcpu); | 
 |  | 
 | 	kvm_vcpu_srcu_read_lock(vcpu); | 
 | 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { | 
 | 		if (!vcpu->wants_to_run) { | 
 | 			r = -EINTR; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Don't bother switching APIC timer emulation from the | 
 | 		 * hypervisor timer to the software timer, the only way for the | 
 | 		 * APIC timer to be active is if userspace stuffed vCPU state, | 
 | 		 * i.e. put the vCPU into a nonsensical state.  Only an INIT | 
 | 		 * will transition the vCPU out of UNINITIALIZED (without more | 
 | 		 * state stuffing from userspace), which will reset the local | 
 | 		 * APIC and thus cancel the timer or drop the IRQ (if the timer | 
 | 		 * already expired). | 
 | 		 */ | 
 | 		kvm_vcpu_srcu_read_unlock(vcpu); | 
 | 		kvm_vcpu_block(vcpu); | 
 | 		kvm_vcpu_srcu_read_lock(vcpu); | 
 |  | 
 | 		if (kvm_apic_accept_events(vcpu) < 0) { | 
 | 			r = 0; | 
 | 			goto out; | 
 | 		} | 
 | 		r = -EAGAIN; | 
 | 		if (signal_pending(current)) { | 
 | 			r = -EINTR; | 
 | 			kvm_run->exit_reason = KVM_EXIT_INTR; | 
 | 			++vcpu->stat.signal_exits; | 
 | 		} | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	sync_valid_fields = kvm_sync_valid_fields(vcpu->kvm); | 
 | 	if ((kvm_run->kvm_valid_regs & ~sync_valid_fields) || | 
 | 	    (kvm_run->kvm_dirty_regs & ~sync_valid_fields)) { | 
 | 		r = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (kvm_run->kvm_dirty_regs) { | 
 | 		r = sync_regs(vcpu); | 
 | 		if (r != 0) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	/* re-sync apic's tpr */ | 
 | 	if (!lapic_in_kernel(vcpu)) { | 
 | 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { | 
 | 			r = -EINVAL; | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If userspace set a pending exception and L2 is active, convert it to | 
 | 	 * a pending VM-Exit if L1 wants to intercept the exception. | 
 | 	 */ | 
 | 	if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) && | 
 | 	    kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector, | 
 | 							ex->error_code)) { | 
 | 		kvm_queue_exception_vmexit(vcpu, ex->vector, | 
 | 					   ex->has_error_code, ex->error_code, | 
 | 					   ex->has_payload, ex->payload); | 
 | 		ex->injected = false; | 
 | 		ex->pending = false; | 
 | 	} | 
 | 	vcpu->arch.exception_from_userspace = false; | 
 |  | 
 | 	if (unlikely(vcpu->arch.complete_userspace_io)) { | 
 | 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; | 
 | 		vcpu->arch.complete_userspace_io = NULL; | 
 | 		r = cui(vcpu); | 
 | 		if (r <= 0) | 
 | 			goto out; | 
 | 	} else { | 
 | 		WARN_ON_ONCE(vcpu->arch.pio.count); | 
 | 		WARN_ON_ONCE(vcpu->mmio_needed); | 
 | 	} | 
 |  | 
 | 	if (!vcpu->wants_to_run) { | 
 | 		r = -EINTR; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	r = kvm_x86_vcpu_pre_run(vcpu); | 
 | 	if (r <= 0) | 
 | 		goto out; | 
 |  | 
 | 	r = vcpu_run(vcpu); | 
 |  | 
 | out: | 
 | 	kvm_put_guest_fpu(vcpu); | 
 | 	if (kvm_run->kvm_valid_regs && likely(!vcpu->arch.guest_state_protected)) | 
 | 		store_regs(vcpu); | 
 | 	post_kvm_run_save(vcpu); | 
 | 	kvm_vcpu_srcu_read_unlock(vcpu); | 
 |  | 
 | 	kvm_sigset_deactivate(vcpu); | 
 | 	vcpu_put(vcpu); | 
 | 	return r; | 
 | } | 
 |  | 
 | static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) | 
 | { | 
 | 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { | 
 | 		/* | 
 | 		 * We are here if userspace calls get_regs() in the middle of | 
 | 		 * instruction emulation. Registers state needs to be copied | 
 | 		 * back from emulation context to vcpu. Userspace shouldn't do | 
 | 		 * that usually, but some bad designed PV devices (vmware | 
 | 		 * backdoor interface) need this to work | 
 | 		 */ | 
 | 		emulator_writeback_register_cache(vcpu->arch.emulate_ctxt); | 
 | 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false; | 
 | 	} | 
 | 	regs->rax = kvm_rax_read(vcpu); | 
 | 	regs->rbx = kvm_rbx_read(vcpu); | 
 | 	regs->rcx = kvm_rcx_read(vcpu); | 
 | 	regs->rdx = kvm_rdx_read(vcpu); | 
 | 	regs->rsi = kvm_rsi_read(vcpu); | 
 | 	regs->rdi = kvm_rdi_read(vcpu); | 
 | 	regs->rsp = kvm_rsp_read(vcpu); | 
 | 	regs->rbp = kvm_rbp_read(vcpu); | 
 | #ifdef CONFIG_X86_64 | 
 | 	regs->r8 = kvm_r8_read(vcpu); | 
 | 	regs->r9 = kvm_r9_read(vcpu); | 
 | 	regs->r10 = kvm_r10_read(vcpu); | 
 | 	regs->r11 = kvm_r11_read(vcpu); | 
 | 	regs->r12 = kvm_r12_read(vcpu); | 
 | 	regs->r13 = kvm_r13_read(vcpu); | 
 | 	regs->r14 = kvm_r14_read(vcpu); | 
 | 	regs->r15 = kvm_r15_read(vcpu); | 
 | #endif | 
 |  | 
 | 	regs->rip = kvm_rip_read(vcpu); | 
 | 	regs->rflags = kvm_get_rflags(vcpu); | 
 | } | 
 |  | 
 | int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) | 
 | { | 
 | 	if (vcpu->kvm->arch.has_protected_state && | 
 | 	    vcpu->arch.guest_state_protected) | 
 | 		return -EINVAL; | 
 |  | 
 | 	vcpu_load(vcpu); | 
 | 	__get_regs(vcpu, regs); | 
 | 	vcpu_put(vcpu); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) | 
 | { | 
 | 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true; | 
 | 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false; | 
 |  | 
 | 	kvm_rax_write(vcpu, regs->rax); | 
 | 	kvm_rbx_write(vcpu, regs->rbx); | 
 | 	kvm_rcx_write(vcpu, regs->rcx); | 
 | 	kvm_rdx_write(vcpu, regs->rdx); | 
 | 	kvm_rsi_write(vcpu, regs->rsi); | 
 | 	kvm_rdi_write(vcpu, regs->rdi); | 
 | 	kvm_rsp_write(vcpu, regs->rsp); | 
 | 	kvm_rbp_write(vcpu, regs->rbp); | 
 | #ifdef CONFIG_X86_64 | 
 | 	kvm_r8_write(vcpu, regs->r8); | 
 | 	kvm_r9_write(vcpu, regs->r9); | 
 | 	kvm_r10_write(vcpu, regs->r10); | 
 | 	kvm_r11_write(vcpu, regs->r11); | 
 | 	kvm_r12_write(vcpu, regs->r12); | 
 | 	kvm_r13_write(vcpu, regs->r13); | 
 | 	kvm_r14_write(vcpu, regs->r14); | 
 | 	kvm_r15_write(vcpu, regs->r15); | 
 | #endif | 
 |  | 
 | 	kvm_rip_write(vcpu, regs->rip); | 
 | 	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED); | 
 |  | 
 | 	vcpu->arch.exception.pending = false; | 
 | 	vcpu->arch.exception_vmexit.pending = false; | 
 |  | 
 | 	kvm_make_request(KVM_REQ_EVENT, vcpu); | 
 | } | 
 |  | 
 | int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) | 
 | { | 
 | 	if (vcpu->kvm->arch.has_protected_state && | 
 | 	    vcpu->arch.guest_state_protected) | 
 | 		return -EINVAL; | 
 |  | 
 | 	vcpu_load(vcpu); | 
 | 	__set_regs(vcpu, regs); | 
 | 	vcpu_put(vcpu); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) | 
 | { | 
 | 	struct desc_ptr dt; | 
 |  | 
 | 	if (vcpu->arch.guest_state_protected) | 
 | 		goto skip_protected_regs; | 
 |  | 
 | 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); | 
 | 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); | 
 | 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); | 
 | 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); | 
 | 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); | 
 | 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); | 
 |  | 
 | 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); | 
 | 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); | 
 |  | 
 | 	kvm_x86_call(get_idt)(vcpu, &dt); | 
 | 	sregs->idt.limit = dt.size; | 
 | 	sregs->idt.base = dt.address; | 
 | 	kvm_x86_call(get_gdt)(vcpu, &dt); | 
 | 	sregs->gdt.limit = dt.size; | 
 | 	sregs->gdt.base = dt.address; | 
 |  | 
 | 	sregs->cr2 = vcpu->arch.cr2; | 
 | 	sregs->cr3 = kvm_read_cr3(vcpu); | 
 |  | 
 | skip_protected_regs: | 
 | 	sregs->cr0 = kvm_read_cr0(vcpu); | 
 | 	sregs->cr4 = kvm_read_cr4(vcpu); | 
 | 	sregs->cr8 = kvm_get_cr8(vcpu); | 
 | 	sregs->efer = vcpu->arch.efer; | 
 | 	sregs->apic_base = vcpu->arch.apic_base; | 
 | } | 
 |  | 
 | static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) | 
 | { | 
 | 	__get_sregs_common(vcpu, sregs); | 
 |  | 
 | 	if (vcpu->arch.guest_state_protected) | 
 | 		return; | 
 |  | 
 | 	if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft) | 
 | 		set_bit(vcpu->arch.interrupt.nr, | 
 | 			(unsigned long *)sregs->interrupt_bitmap); | 
 | } | 
 |  | 
 | static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	__get_sregs_common(vcpu, (struct kvm_sregs *)sregs2); | 
 |  | 
 | 	if (vcpu->arch.guest_state_protected) | 
 | 		return; | 
 |  | 
 | 	if (is_pae_paging(vcpu)) { | 
 | 		for (i = 0 ; i < 4 ; i++) | 
 | 			sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i); | 
 | 		sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID; | 
 | 	} | 
 | } | 
 |  | 
 | int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, | 
 | 				  struct kvm_sregs *sregs) | 
 | { | 
 | 	if (vcpu->kvm->arch.has_protected_state && | 
 | 	    vcpu->arch.guest_state_protected) | 
 | 		return -EINVAL; | 
 |  | 
 | 	vcpu_load(vcpu); | 
 | 	__get_sregs(vcpu, sregs); | 
 | 	vcpu_put(vcpu); | 
 | 	return 0; | 
 | } | 
 |  | 
 | int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, | 
 | 				    struct kvm_mp_state *mp_state) | 
 | { | 
 | 	int r; | 
 |  | 
 | 	vcpu_load(vcpu); | 
 | 	if (kvm_mpx_supported()) | 
 | 		kvm_load_guest_fpu(vcpu); | 
 |  | 
 | 	kvm_vcpu_srcu_read_lock(vcpu); | 
 |  | 
 | 	r = kvm_apic_accept_events(vcpu); | 
 | 	if (r < 0) | 
 | 		goto out; | 
 | 	r = 0; | 
 |  | 
 | 	if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED || | 
 | 	     vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) && | 
 | 	    vcpu->arch.pv.pv_unhalted) | 
 | 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE; | 
 | 	else | 
 | 		mp_state->mp_state = vcpu->arch.mp_state; | 
 |  | 
 | out: | 
 | 	kvm_vcpu_srcu_read_unlock(vcpu); | 
 |  | 
 | 	if (kvm_mpx_supported()) | 
 | 		kvm_put_guest_fpu(vcpu); | 
 | 	vcpu_put(vcpu); | 
 | 	return r; | 
 | } | 
 |  | 
 | int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, | 
 | 				    struct kvm_mp_state *mp_state) | 
 | { | 
 | 	int ret = -EINVAL; | 
 |  | 
 | 	vcpu_load(vcpu); | 
 |  | 
 | 	switch (mp_state->mp_state) { | 
 | 	case KVM_MP_STATE_UNINITIALIZED: | 
 | 	case KVM_MP_STATE_HALTED: | 
 | 	case KVM_MP_STATE_AP_RESET_HOLD: | 
 | 	case KVM_MP_STATE_INIT_RECEIVED: | 
 | 	case KVM_MP_STATE_SIPI_RECEIVED: | 
 | 		if (!lapic_in_kernel(vcpu)) | 
 | 			goto out; | 
 | 		break; | 
 |  | 
 | 	case KVM_MP_STATE_RUNNABLE: | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * SIPI_RECEIVED is obsolete and no longer used internally; KVM instead | 
 | 	 * leaves the vCPU in INIT_RECIEVED (Wait-For-SIPI) and pends the SIPI. | 
 | 	 * Translate SIPI_RECEIVED as appropriate for backwards compatibility. | 
 | 	 */ | 
 | 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { | 
 | 		mp_state->mp_state = KVM_MP_STATE_INIT_RECEIVED; | 
 | 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); | 
 | 	} | 
 |  | 
 | 	kvm_set_mp_state(vcpu, mp_state->mp_state); | 
 | 	kvm_make_request(KVM_REQ_EVENT, vcpu); | 
 |  | 
 | 	ret = 0; | 
 | out: | 
 | 	vcpu_put(vcpu); | 
 | 	return ret; | 
 | } | 
 |  | 
 | int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, | 
 | 		    int reason, bool has_error_code, u32 error_code) | 
 | { | 
 | 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; | 
 | 	int ret; | 
 |  | 
 | 	init_emulate_ctxt(vcpu); | 
 |  | 
 | 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, | 
 | 				   has_error_code, error_code); | 
 |  | 
 | 	/* | 
 | 	 * Report an error userspace if MMIO is needed, as KVM doesn't support | 
 | 	 * MMIO during a task switch (or any other complex operation). | 
 | 	 */ | 
 | 	if (ret || vcpu->mmio_needed) { | 
 | 		vcpu->mmio_needed = false; | 
 | 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; | 
 | 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; | 
 | 		vcpu->run->internal.ndata = 0; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	kvm_rip_write(vcpu, ctxt->eip); | 
 | 	kvm_set_rflags(vcpu, ctxt->eflags); | 
 | 	return 1; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_task_switch); | 
 |  | 
 | static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) | 
 | { | 
 | 	if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) { | 
 | 		/* | 
 | 		 * When EFER.LME and CR0.PG are set, the processor is in | 
 | 		 * 64-bit mode (though maybe in a 32-bit code segment). | 
 | 		 * CR4.PAE and EFER.LMA must be set. | 
 | 		 */ | 
 | 		if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA)) | 
 | 			return false; | 
 | 		if (!kvm_vcpu_is_legal_cr3(vcpu, sregs->cr3)) | 
 | 			return false; | 
 | 	} else { | 
 | 		/* | 
 | 		 * Not in 64-bit mode: EFER.LMA is clear and the code | 
 | 		 * segment cannot be 64-bit. | 
 | 		 */ | 
 | 		if (sregs->efer & EFER_LMA || sregs->cs.l) | 
 | 			return false; | 
 | 	} | 
 |  | 
 | 	return kvm_is_valid_cr4(vcpu, sregs->cr4) && | 
 | 	       kvm_is_valid_cr0(vcpu, sregs->cr0); | 
 | } | 
 |  | 
 | static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs, | 
 | 		int *mmu_reset_needed, bool update_pdptrs) | 
 | { | 
 | 	int idx; | 
 | 	struct desc_ptr dt; | 
 |  | 
 | 	if (!kvm_is_valid_sregs(vcpu, sregs)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (kvm_apic_set_base(vcpu, sregs->apic_base, true)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (vcpu->arch.guest_state_protected) | 
 | 		return 0; | 
 |  | 
 | 	dt.size = sregs->idt.limit; | 
 | 	dt.address = sregs->idt.base; | 
 | 	kvm_x86_call(set_idt)(vcpu, &dt); | 
 | 	dt.size = sregs->gdt.limit; | 
 | 	dt.address = sregs->gdt.base; | 
 | 	kvm_x86_call(set_gdt)(vcpu, &dt); | 
 |  | 
 | 	vcpu->arch.cr2 = sregs->cr2; | 
 | 	*mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; | 
 | 	vcpu->arch.cr3 = sregs->cr3; | 
 | 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); | 
 | 	kvm_x86_call(post_set_cr3)(vcpu, sregs->cr3); | 
 |  | 
 | 	kvm_set_cr8(vcpu, sregs->cr8); | 
 |  | 
 | 	*mmu_reset_needed |= vcpu->arch.efer != sregs->efer; | 
 | 	kvm_x86_call(set_efer)(vcpu, sregs->efer); | 
 |  | 
 | 	*mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; | 
 | 	kvm_x86_call(set_cr0)(vcpu, sregs->cr0); | 
 |  | 
 | 	*mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; | 
 | 	kvm_x86_call(set_cr4)(vcpu, sregs->cr4); | 
 |  | 
 | 	if (update_pdptrs) { | 
 | 		idx = srcu_read_lock(&vcpu->kvm->srcu); | 
 | 		if (is_pae_paging(vcpu)) { | 
 | 			load_pdptrs(vcpu, kvm_read_cr3(vcpu)); | 
 | 			*mmu_reset_needed = 1; | 
 | 		} | 
 | 		srcu_read_unlock(&vcpu->kvm->srcu, idx); | 
 | 	} | 
 |  | 
 | 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); | 
 | 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); | 
 | 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); | 
 | 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); | 
 | 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); | 
 | 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); | 
 |  | 
 | 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); | 
 | 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); | 
 |  | 
 | 	update_cr8_intercept(vcpu); | 
 |  | 
 | 	/* Older userspace won't unhalt the vcpu on reset. */ | 
 | 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && | 
 | 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && | 
 | 	    !is_protmode(vcpu)) | 
 | 		kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) | 
 | { | 
 | 	int pending_vec, max_bits; | 
 | 	int mmu_reset_needed = 0; | 
 | 	int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true); | 
 |  | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	if (mmu_reset_needed) { | 
 | 		kvm_mmu_reset_context(vcpu); | 
 | 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); | 
 | 	} | 
 |  | 
 | 	max_bits = KVM_NR_INTERRUPTS; | 
 | 	pending_vec = find_first_bit( | 
 | 		(const unsigned long *)sregs->interrupt_bitmap, max_bits); | 
 |  | 
 | 	if (pending_vec < max_bits) { | 
 | 		kvm_queue_interrupt(vcpu, pending_vec, false); | 
 | 		pr_debug("Set back pending irq %d\n", pending_vec); | 
 | 		kvm_make_request(KVM_REQ_EVENT, vcpu); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) | 
 | { | 
 | 	int mmu_reset_needed = 0; | 
 | 	bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID; | 
 | 	bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) && | 
 | 		!(sregs2->efer & EFER_LMA); | 
 | 	int i, ret; | 
 |  | 
 | 	if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2, | 
 | 				 &mmu_reset_needed, !valid_pdptrs); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	if (valid_pdptrs) { | 
 | 		for (i = 0; i < 4 ; i++) | 
 | 			kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]); | 
 |  | 
 | 		kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); | 
 | 		mmu_reset_needed = 1; | 
 | 		vcpu->arch.pdptrs_from_userspace = true; | 
 | 	} | 
 | 	if (mmu_reset_needed) { | 
 | 		kvm_mmu_reset_context(vcpu); | 
 | 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, | 
 | 				  struct kvm_sregs *sregs) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	if (vcpu->kvm->arch.has_protected_state && | 
 | 	    vcpu->arch.guest_state_protected) | 
 | 		return -EINVAL; | 
 |  | 
 | 	vcpu_load(vcpu); | 
 | 	ret = __set_sregs(vcpu, sregs); | 
 | 	vcpu_put(vcpu); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm) | 
 | { | 
 | 	bool set = false; | 
 | 	struct kvm_vcpu *vcpu; | 
 | 	unsigned long i; | 
 |  | 
 | 	if (!enable_apicv) | 
 | 		return; | 
 |  | 
 | 	down_write(&kvm->arch.apicv_update_lock); | 
 |  | 
 | 	kvm_for_each_vcpu(i, vcpu, kvm) { | 
 | 		if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) { | 
 | 			set = true; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	__kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set); | 
 | 	up_write(&kvm->arch.apicv_update_lock); | 
 | } | 
 |  | 
 | int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, | 
 | 					struct kvm_guest_debug *dbg) | 
 | { | 
 | 	unsigned long rflags; | 
 | 	int i, r; | 
 |  | 
 | 	if (vcpu->arch.guest_state_protected) | 
 | 		return -EINVAL; | 
 |  | 
 | 	vcpu_load(vcpu); | 
 |  | 
 | 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { | 
 | 		r = -EBUSY; | 
 | 		if (kvm_is_exception_pending(vcpu)) | 
 | 			goto out; | 
 | 		if (dbg->control & KVM_GUESTDBG_INJECT_DB) | 
 | 			kvm_queue_exception(vcpu, DB_VECTOR); | 
 | 		else | 
 | 			kvm_queue_exception(vcpu, BP_VECTOR); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Read rflags as long as potentially injected trace flags are still | 
 | 	 * filtered out. | 
 | 	 */ | 
 | 	rflags = kvm_get_rflags(vcpu); | 
 |  | 
 | 	vcpu->guest_debug = dbg->control; | 
 | 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) | 
 | 		vcpu->guest_debug = 0; | 
 |  | 
 | 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { | 
 | 		for (i = 0; i < KVM_NR_DB_REGS; ++i) | 
 | 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; | 
 | 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; | 
 | 	} else { | 
 | 		for (i = 0; i < KVM_NR_DB_REGS; i++) | 
 | 			vcpu->arch.eff_db[i] = vcpu->arch.db[i]; | 
 | 	} | 
 | 	kvm_update_dr7(vcpu); | 
 |  | 
 | 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) | 
 | 		vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu); | 
 |  | 
 | 	/* | 
 | 	 * Trigger an rflags update that will inject or remove the trace | 
 | 	 * flags. | 
 | 	 */ | 
 | 	kvm_set_rflags(vcpu, rflags); | 
 |  | 
 | 	kvm_x86_call(update_exception_bitmap)(vcpu); | 
 |  | 
 | 	kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm); | 
 |  | 
 | 	r = 0; | 
 |  | 
 | out: | 
 | 	vcpu_put(vcpu); | 
 | 	return r; | 
 | } | 
 |  | 
 | /* | 
 |  * Translate a guest virtual address to a guest physical address. | 
 |  */ | 
 | int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, | 
 | 				    struct kvm_translation *tr) | 
 | { | 
 | 	unsigned long vaddr = tr->linear_address; | 
 | 	gpa_t gpa; | 
 | 	int idx; | 
 |  | 
 | 	vcpu_load(vcpu); | 
 |  | 
 | 	idx = srcu_read_lock(&vcpu->kvm->srcu); | 
 | 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); | 
 | 	srcu_read_unlock(&vcpu->kvm->srcu, idx); | 
 | 	tr->physical_address = gpa; | 
 | 	tr->valid = gpa != INVALID_GPA; | 
 | 	tr->writeable = 1; | 
 | 	tr->usermode = 0; | 
 |  | 
 | 	vcpu_put(vcpu); | 
 | 	return 0; | 
 | } | 
 |  | 
 | int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) | 
 | { | 
 | 	struct fxregs_state *fxsave; | 
 |  | 
 | 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) | 
 | 		return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0; | 
 |  | 
 | 	vcpu_load(vcpu); | 
 |  | 
 | 	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; | 
 | 	memcpy(fpu->fpr, fxsave->st_space, 128); | 
 | 	fpu->fcw = fxsave->cwd; | 
 | 	fpu->fsw = fxsave->swd; | 
 | 	fpu->ftwx = fxsave->twd; | 
 | 	fpu->last_opcode = fxsave->fop; | 
 | 	fpu->last_ip = fxsave->rip; | 
 | 	fpu->last_dp = fxsave->rdp; | 
 | 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space)); | 
 |  | 
 | 	vcpu_put(vcpu); | 
 | 	return 0; | 
 | } | 
 |  | 
 | int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) | 
 | { | 
 | 	struct fxregs_state *fxsave; | 
 |  | 
 | 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) | 
 | 		return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0; | 
 |  | 
 | 	vcpu_load(vcpu); | 
 |  | 
 | 	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; | 
 |  | 
 | 	memcpy(fxsave->st_space, fpu->fpr, 128); | 
 | 	fxsave->cwd = fpu->fcw; | 
 | 	fxsave->swd = fpu->fsw; | 
 | 	fxsave->twd = fpu->ftwx; | 
 | 	fxsave->fop = fpu->last_opcode; | 
 | 	fxsave->rip = fpu->last_ip; | 
 | 	fxsave->rdp = fpu->last_dp; | 
 | 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space)); | 
 |  | 
 | 	vcpu_put(vcpu); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void store_regs(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES); | 
 |  | 
 | 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS) | 
 | 		__get_regs(vcpu, &vcpu->run->s.regs.regs); | 
 |  | 
 | 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS) | 
 | 		__get_sregs(vcpu, &vcpu->run->s.regs.sregs); | 
 |  | 
 | 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS) | 
 | 		kvm_vcpu_ioctl_x86_get_vcpu_events( | 
 | 				vcpu, &vcpu->run->s.regs.events); | 
 | } | 
 |  | 
 | static int sync_regs(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) { | 
 | 		__set_regs(vcpu, &vcpu->run->s.regs.regs); | 
 | 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS; | 
 | 	} | 
 |  | 
 | 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) { | 
 | 		struct kvm_sregs sregs = vcpu->run->s.regs.sregs; | 
 |  | 
 | 		if (__set_sregs(vcpu, &sregs)) | 
 | 			return -EINVAL; | 
 |  | 
 | 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS; | 
 | 	} | 
 |  | 
 | 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) { | 
 | 		struct kvm_vcpu_events events = vcpu->run->s.regs.events; | 
 |  | 
 | 		if (kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events)) | 
 | 			return -EINVAL; | 
 |  | 
 | 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) | 
 | { | 
 | 	if (kvm_check_tsc_unstable() && kvm->created_vcpus) | 
 | 		pr_warn_once("SMP vm created on host with unstable TSC; " | 
 | 			     "guest TSC will not be reliable\n"); | 
 |  | 
 | 	if (!kvm->arch.max_vcpu_ids) | 
 | 		kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS; | 
 |  | 
 | 	if (id >= kvm->arch.max_vcpu_ids) | 
 | 		return -EINVAL; | 
 |  | 
 | 	return kvm_x86_call(vcpu_precreate)(kvm); | 
 | } | 
 |  | 
 | int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct page *page; | 
 | 	int r; | 
 |  | 
 | 	vcpu->arch.last_vmentry_cpu = -1; | 
 | 	vcpu->arch.regs_avail = ~0; | 
 | 	vcpu->arch.regs_dirty = ~0; | 
 |  | 
 | 	kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm); | 
 |  | 
 | 	if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu)) | 
 | 		kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE); | 
 | 	else | 
 | 		kvm_set_mp_state(vcpu, KVM_MP_STATE_UNINITIALIZED); | 
 |  | 
 | 	r = kvm_mmu_create(vcpu); | 
 | 	if (r < 0) | 
 | 		return r; | 
 |  | 
 | 	r = kvm_create_lapic(vcpu); | 
 | 	if (r < 0) | 
 | 		goto fail_mmu_destroy; | 
 |  | 
 | 	r = -ENOMEM; | 
 |  | 
 | 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); | 
 | 	if (!page) | 
 | 		goto fail_free_lapic; | 
 | 	vcpu->arch.pio_data = page_address(page); | 
 |  | 
 | 	vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64), | 
 | 				       GFP_KERNEL_ACCOUNT); | 
 | 	vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64), | 
 | 					    GFP_KERNEL_ACCOUNT); | 
 | 	if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks) | 
 | 		goto fail_free_mce_banks; | 
 | 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; | 
 |  | 
 | 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, | 
 | 				GFP_KERNEL_ACCOUNT)) | 
 | 		goto fail_free_mce_banks; | 
 |  | 
 | 	if (!alloc_emulate_ctxt(vcpu)) | 
 | 		goto free_wbinvd_dirty_mask; | 
 |  | 
 | 	if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) { | 
 | 		pr_err("failed to allocate vcpu's fpu\n"); | 
 | 		goto free_emulate_ctxt; | 
 | 	} | 
 |  | 
 | 	kvm_async_pf_hash_reset(vcpu); | 
 |  | 
 | 	if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS)) { | 
 | 		vcpu->arch.arch_capabilities = kvm_get_arch_capabilities(); | 
 | 		vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT; | 
 | 		vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap; | 
 | 	} | 
 | 	kvm_pmu_init(vcpu); | 
 |  | 
 | 	vcpu->arch.pending_external_vector = -1; | 
 | 	vcpu->arch.preempted_in_kernel = false; | 
 |  | 
 | #if IS_ENABLED(CONFIG_HYPERV) | 
 | 	vcpu->arch.hv_root_tdp = INVALID_PAGE; | 
 | #endif | 
 |  | 
 | 	r = kvm_x86_call(vcpu_create)(vcpu); | 
 | 	if (r) | 
 | 		goto free_guest_fpu; | 
 |  | 
 | 	kvm_xen_init_vcpu(vcpu); | 
 | 	vcpu_load(vcpu); | 
 | 	kvm_vcpu_after_set_cpuid(vcpu); | 
 | 	kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz); | 
 | 	kvm_vcpu_reset(vcpu, false); | 
 | 	kvm_init_mmu(vcpu); | 
 | 	vcpu_put(vcpu); | 
 | 	return 0; | 
 |  | 
 | free_guest_fpu: | 
 | 	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); | 
 | free_emulate_ctxt: | 
 | 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); | 
 | free_wbinvd_dirty_mask: | 
 | 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); | 
 | fail_free_mce_banks: | 
 | 	kfree(vcpu->arch.mce_banks); | 
 | 	kfree(vcpu->arch.mci_ctl2_banks); | 
 | 	free_page((unsigned long)vcpu->arch.pio_data); | 
 | fail_free_lapic: | 
 | 	kvm_free_lapic(vcpu); | 
 | fail_mmu_destroy: | 
 | 	kvm_mmu_destroy(vcpu); | 
 | 	return r; | 
 | } | 
 |  | 
 | void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct kvm *kvm = vcpu->kvm; | 
 |  | 
 | 	if (mutex_lock_killable(&vcpu->mutex)) | 
 | 		return; | 
 | 	vcpu_load(vcpu); | 
 | 	kvm_synchronize_tsc(vcpu, NULL); | 
 | 	vcpu_put(vcpu); | 
 |  | 
 | 	/* poll control enabled by default */ | 
 | 	vcpu->arch.msr_kvm_poll_control = 1; | 
 |  | 
 | 	mutex_unlock(&vcpu->mutex); | 
 |  | 
 | 	if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0) | 
 | 		schedule_delayed_work(&kvm->arch.kvmclock_sync_work, | 
 | 						KVMCLOCK_SYNC_PERIOD); | 
 | } | 
 |  | 
 | void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	int idx, cpu; | 
 |  | 
 | 	kvm_clear_async_pf_completion_queue(vcpu); | 
 | 	kvm_mmu_unload(vcpu); | 
 |  | 
 | 	kvmclock_reset(vcpu); | 
 |  | 
 | 	for_each_possible_cpu(cpu) | 
 | 		cmpxchg(per_cpu_ptr(&last_vcpu, cpu), vcpu, NULL); | 
 |  | 
 | 	kvm_x86_call(vcpu_free)(vcpu); | 
 |  | 
 | 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); | 
 | 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); | 
 | 	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); | 
 |  | 
 | 	kvm_xen_destroy_vcpu(vcpu); | 
 | 	kvm_hv_vcpu_uninit(vcpu); | 
 | 	kvm_pmu_destroy(vcpu); | 
 | 	kfree(vcpu->arch.mce_banks); | 
 | 	kfree(vcpu->arch.mci_ctl2_banks); | 
 | 	kvm_free_lapic(vcpu); | 
 | 	idx = srcu_read_lock(&vcpu->kvm->srcu); | 
 | 	kvm_mmu_destroy(vcpu); | 
 | 	srcu_read_unlock(&vcpu->kvm->srcu, idx); | 
 | 	free_page((unsigned long)vcpu->arch.pio_data); | 
 | 	kvfree(vcpu->arch.cpuid_entries); | 
 | } | 
 |  | 
 | void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) | 
 | { | 
 | 	struct kvm_cpuid_entry2 *cpuid_0x1; | 
 | 	unsigned long old_cr0 = kvm_read_cr0(vcpu); | 
 | 	unsigned long new_cr0; | 
 |  | 
 | 	/* | 
 | 	 * Several of the "set" flows, e.g. ->set_cr0(), read other registers | 
 | 	 * to handle side effects.  RESET emulation hits those flows and relies | 
 | 	 * on emulated/virtualized registers, including those that are loaded | 
 | 	 * into hardware, to be zeroed at vCPU creation.  Use CRs as a sentinel | 
 | 	 * to detect improper or missing initialization. | 
 | 	 */ | 
 | 	WARN_ON_ONCE(!init_event && | 
 | 		     (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu))); | 
 |  | 
 | 	/* | 
 | 	 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's | 
 | 	 * possible to INIT the vCPU while L2 is active.  Force the vCPU back | 
 | 	 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER | 
 | 	 * bits), i.e. virtualization is disabled. | 
 | 	 */ | 
 | 	if (is_guest_mode(vcpu)) | 
 | 		kvm_leave_nested(vcpu); | 
 |  | 
 | 	kvm_lapic_reset(vcpu, init_event); | 
 |  | 
 | 	WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu)); | 
 | 	vcpu->arch.hflags = 0; | 
 |  | 
 | 	vcpu->arch.smi_pending = 0; | 
 | 	vcpu->arch.smi_count = 0; | 
 | 	atomic_set(&vcpu->arch.nmi_queued, 0); | 
 | 	vcpu->arch.nmi_pending = 0; | 
 | 	vcpu->arch.nmi_injected = false; | 
 | 	kvm_clear_interrupt_queue(vcpu); | 
 | 	kvm_clear_exception_queue(vcpu); | 
 |  | 
 | 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); | 
 | 	kvm_update_dr0123(vcpu); | 
 | 	vcpu->arch.dr6 = DR6_ACTIVE_LOW; | 
 | 	vcpu->arch.dr7 = DR7_FIXED_1; | 
 | 	kvm_update_dr7(vcpu); | 
 |  | 
 | 	vcpu->arch.cr2 = 0; | 
 |  | 
 | 	kvm_make_request(KVM_REQ_EVENT, vcpu); | 
 | 	vcpu->arch.apf.msr_en_val = 0; | 
 | 	vcpu->arch.apf.msr_int_val = 0; | 
 | 	vcpu->arch.st.msr_val = 0; | 
 |  | 
 | 	kvmclock_reset(vcpu); | 
 |  | 
 | 	kvm_clear_async_pf_completion_queue(vcpu); | 
 | 	kvm_async_pf_hash_reset(vcpu); | 
 | 	vcpu->arch.apf.halted = false; | 
 |  | 
 | 	if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) { | 
 | 		struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate; | 
 |  | 
 | 		/* | 
 | 		 * All paths that lead to INIT are required to load the guest's | 
 | 		 * FPU state (because most paths are buried in KVM_RUN). | 
 | 		 */ | 
 | 		if (init_event) | 
 | 			kvm_put_guest_fpu(vcpu); | 
 |  | 
 | 		fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS); | 
 | 		fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR); | 
 |  | 
 | 		if (init_event) | 
 | 			kvm_load_guest_fpu(vcpu); | 
 | 	} | 
 |  | 
 | 	if (!init_event) { | 
 | 		vcpu->arch.smbase = 0x30000; | 
 |  | 
 | 		vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT; | 
 |  | 
 | 		vcpu->arch.msr_misc_features_enables = 0; | 
 | 		vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL | | 
 | 						  MSR_IA32_MISC_ENABLE_BTS_UNAVAIL; | 
 |  | 
 | 		__kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP); | 
 | 		__kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true); | 
 | 	} | 
 |  | 
 | 	/* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */ | 
 | 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); | 
 | 	kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP); | 
 |  | 
 | 	/* | 
 | 	 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon) | 
 | 	 * if no CPUID match is found.  Note, it's impossible to get a match at | 
 | 	 * RESET since KVM emulates RESET before exposing the vCPU to userspace, | 
 | 	 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry | 
 | 	 * on RESET.  But, go through the motions in case that's ever remedied. | 
 | 	 */ | 
 | 	cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1); | 
 | 	kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600); | 
 |  | 
 | 	kvm_x86_call(vcpu_reset)(vcpu, init_event); | 
 |  | 
 | 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); | 
 | 	kvm_rip_write(vcpu, 0xfff0); | 
 |  | 
 | 	vcpu->arch.cr3 = 0; | 
 | 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); | 
 |  | 
 | 	/* | 
 | 	 * CR0.CD/NW are set on RESET, preserved on INIT.  Note, some versions | 
 | 	 * of Intel's SDM list CD/NW as being set on INIT, but they contradict | 
 | 	 * (or qualify) that with a footnote stating that CD/NW are preserved. | 
 | 	 */ | 
 | 	new_cr0 = X86_CR0_ET; | 
 | 	if (init_event) | 
 | 		new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD)); | 
 | 	else | 
 | 		new_cr0 |= X86_CR0_NW | X86_CR0_CD; | 
 |  | 
 | 	kvm_x86_call(set_cr0)(vcpu, new_cr0); | 
 | 	kvm_x86_call(set_cr4)(vcpu, 0); | 
 | 	kvm_x86_call(set_efer)(vcpu, 0); | 
 | 	kvm_x86_call(update_exception_bitmap)(vcpu); | 
 |  | 
 | 	/* | 
 | 	 * On the standard CR0/CR4/EFER modification paths, there are several | 
 | 	 * complex conditions determining whether the MMU has to be reset and/or | 
 | 	 * which PCIDs have to be flushed.  However, CR0.WP and the paging-related | 
 | 	 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush | 
 | 	 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as | 
 | 	 * CR0 will be '0' prior to RESET).  So we only need to check CR0.PG here. | 
 | 	 */ | 
 | 	if (old_cr0 & X86_CR0_PG) { | 
 | 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); | 
 | 		kvm_mmu_reset_context(vcpu); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Intel's SDM states that all TLB entries are flushed on INIT.  AMD's | 
 | 	 * APM states the TLBs are untouched by INIT, but it also states that | 
 | 	 * the TLBs are flushed on "External initialization of the processor." | 
 | 	 * Flush the guest TLB regardless of vendor, there is no meaningful | 
 | 	 * benefit in relying on the guest to flush the TLB immediately after | 
 | 	 * INIT.  A spurious TLB flush is benign and likely negligible from a | 
 | 	 * performance perspective. | 
 | 	 */ | 
 | 	if (init_event) | 
 | 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_vcpu_reset); | 
 |  | 
 | void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) | 
 | { | 
 | 	struct kvm_segment cs; | 
 |  | 
 | 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); | 
 | 	cs.selector = vector << 8; | 
 | 	cs.base = vector << 12; | 
 | 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); | 
 | 	kvm_rip_write(vcpu, 0); | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector); | 
 |  | 
 | void kvm_arch_enable_virtualization(void) | 
 | { | 
 | 	cpu_emergency_register_virt_callback(kvm_x86_ops.emergency_disable_virtualization_cpu); | 
 | } | 
 |  | 
 | void kvm_arch_disable_virtualization(void) | 
 | { | 
 | 	cpu_emergency_unregister_virt_callback(kvm_x86_ops.emergency_disable_virtualization_cpu); | 
 | } | 
 |  | 
 | int kvm_arch_enable_virtualization_cpu(void) | 
 | { | 
 | 	struct kvm *kvm; | 
 | 	struct kvm_vcpu *vcpu; | 
 | 	unsigned long i; | 
 | 	int ret; | 
 | 	u64 local_tsc; | 
 | 	u64 max_tsc = 0; | 
 | 	bool stable, backwards_tsc = false; | 
 |  | 
 | 	kvm_user_return_msr_cpu_online(); | 
 |  | 
 | 	ret = kvm_x86_check_processor_compatibility(); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	ret = kvm_x86_call(enable_virtualization_cpu)(); | 
 | 	if (ret != 0) | 
 | 		return ret; | 
 |  | 
 | 	local_tsc = rdtsc(); | 
 | 	stable = !kvm_check_tsc_unstable(); | 
 | 	list_for_each_entry(kvm, &vm_list, vm_list) { | 
 | 		kvm_for_each_vcpu(i, vcpu, kvm) { | 
 | 			if (!stable && vcpu->cpu == smp_processor_id()) | 
 | 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); | 
 | 			if (stable && vcpu->arch.last_host_tsc > local_tsc) { | 
 | 				backwards_tsc = true; | 
 | 				if (vcpu->arch.last_host_tsc > max_tsc) | 
 | 					max_tsc = vcpu->arch.last_host_tsc; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Sometimes, even reliable TSCs go backwards.  This happens on | 
 | 	 * platforms that reset TSC during suspend or hibernate actions, but | 
 | 	 * maintain synchronization.  We must compensate.  Fortunately, we can | 
 | 	 * detect that condition here, which happens early in CPU bringup, | 
 | 	 * before any KVM threads can be running.  Unfortunately, we can't | 
 | 	 * bring the TSCs fully up to date with real time, as we aren't yet far | 
 | 	 * enough into CPU bringup that we know how much real time has actually | 
 | 	 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot | 
 | 	 * variables that haven't been updated yet. | 
 | 	 * | 
 | 	 * So we simply find the maximum observed TSC above, then record the | 
 | 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded, | 
 | 	 * the adjustment will be applied.  Note that we accumulate | 
 | 	 * adjustments, in case multiple suspend cycles happen before some VCPU | 
 | 	 * gets a chance to run again.  In the event that no KVM threads get a | 
 | 	 * chance to run, we will miss the entire elapsed period, as we'll have | 
 | 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may | 
 | 	 * loose cycle time.  This isn't too big a deal, since the loss will be | 
 | 	 * uniform across all VCPUs (not to mention the scenario is extremely | 
 | 	 * unlikely). It is possible that a second hibernate recovery happens | 
 | 	 * much faster than a first, causing the observed TSC here to be | 
 | 	 * smaller; this would require additional padding adjustment, which is | 
 | 	 * why we set last_host_tsc to the local tsc observed here. | 
 | 	 * | 
 | 	 * N.B. - this code below runs only on platforms with reliable TSC, | 
 | 	 * as that is the only way backwards_tsc is set above.  Also note | 
 | 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should | 
 | 	 * have the same delta_cyc adjustment applied if backwards_tsc | 
 | 	 * is detected.  Note further, this adjustment is only done once, | 
 | 	 * as we reset last_host_tsc on all VCPUs to stop this from being | 
 | 	 * called multiple times (one for each physical CPU bringup). | 
 | 	 * | 
 | 	 * Platforms with unreliable TSCs don't have to deal with this, they | 
 | 	 * will be compensated by the logic in vcpu_load, which sets the TSC to | 
 | 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot | 
 | 	 * guarantee that they stay in perfect synchronization. | 
 | 	 */ | 
 | 	if (backwards_tsc) { | 
 | 		u64 delta_cyc = max_tsc - local_tsc; | 
 | 		list_for_each_entry(kvm, &vm_list, vm_list) { | 
 | 			kvm->arch.backwards_tsc_observed = true; | 
 | 			kvm_for_each_vcpu(i, vcpu, kvm) { | 
 | 				vcpu->arch.tsc_offset_adjustment += delta_cyc; | 
 | 				vcpu->arch.last_host_tsc = local_tsc; | 
 | 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); | 
 | 			} | 
 |  | 
 | 			/* | 
 | 			 * We have to disable TSC offset matching.. if you were | 
 | 			 * booting a VM while issuing an S4 host suspend.... | 
 | 			 * you may have some problem.  Solving this issue is | 
 | 			 * left as an exercise to the reader. | 
 | 			 */ | 
 | 			kvm->arch.last_tsc_nsec = 0; | 
 | 			kvm->arch.last_tsc_write = 0; | 
 | 		} | 
 |  | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | void kvm_arch_disable_virtualization_cpu(void) | 
 | { | 
 | 	kvm_x86_call(disable_virtualization_cpu)(); | 
 | 	drop_user_return_notifiers(); | 
 | } | 
 |  | 
 | bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp); | 
 |  | 
 | bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0; | 
 | } | 
 |  | 
 | void kvm_arch_free_vm(struct kvm *kvm) | 
 | { | 
 | #if IS_ENABLED(CONFIG_HYPERV) | 
 | 	kfree(kvm->arch.hv_pa_pg); | 
 | #endif | 
 | 	__kvm_arch_free_vm(kvm); | 
 | } | 
 |  | 
 |  | 
 | int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) | 
 | { | 
 | 	int ret; | 
 | 	unsigned long flags; | 
 |  | 
 | 	if (!kvm_is_vm_type_supported(type)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	kvm->arch.vm_type = type; | 
 | 	kvm->arch.has_private_mem = | 
 | 		(type == KVM_X86_SW_PROTECTED_VM); | 
 | 	/* Decided by the vendor code for other VM types.  */ | 
 | 	kvm->arch.pre_fault_allowed = | 
 | 		type == KVM_X86_DEFAULT_VM || type == KVM_X86_SW_PROTECTED_VM; | 
 | 	kvm->arch.disabled_quirks = kvm_caps.inapplicable_quirks & kvm_caps.supported_quirks; | 
 |  | 
 | 	ret = kvm_page_track_init(kvm); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	ret = kvm_mmu_init_vm(kvm); | 
 | 	if (ret) | 
 | 		goto out_cleanup_page_track; | 
 |  | 
 | 	ret = kvm_x86_call(vm_init)(kvm); | 
 | 	if (ret) | 
 | 		goto out_uninit_mmu; | 
 |  | 
 | 	atomic_set(&kvm->arch.noncoherent_dma_count, 0); | 
 |  | 
 | 	raw_spin_lock_init(&kvm->arch.tsc_write_lock); | 
 | 	mutex_init(&kvm->arch.apic_map_lock); | 
 | 	seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock); | 
 | 	kvm->arch.kvmclock_offset = -get_kvmclock_base_ns(); | 
 |  | 
 | 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); | 
 | 	pvclock_update_vm_gtod_copy(kvm); | 
 | 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); | 
 |  | 
 | 	kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz; | 
 | 	kvm->arch.apic_bus_cycle_ns = APIC_BUS_CYCLE_NS_DEFAULT; | 
 | 	kvm->arch.guest_can_read_msr_platform_info = true; | 
 | 	kvm->arch.enable_pmu = enable_pmu; | 
 |  | 
 | #if IS_ENABLED(CONFIG_HYPERV) | 
 | 	spin_lock_init(&kvm->arch.hv_root_tdp_lock); | 
 | 	kvm->arch.hv_root_tdp = INVALID_PAGE; | 
 | #endif | 
 |  | 
 | 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn); | 
 | 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn); | 
 |  | 
 | 	kvm_apicv_init(kvm); | 
 | 	kvm_hv_init_vm(kvm); | 
 | 	kvm_xen_init_vm(kvm); | 
 |  | 
 | 	if (ignore_msrs && !report_ignored_msrs) { | 
 | 		pr_warn_once("Running KVM with ignore_msrs=1 and report_ignored_msrs=0 is not a\n" | 
 | 			     "a supported configuration.  Lying to the guest about the existence of MSRs\n" | 
 | 			     "may cause the guest operating system to hang or produce errors.  If a guest\n" | 
 | 			     "does not run without ignore_msrs=1, please report it to kvm@vger.kernel.org.\n"); | 
 | 	} | 
 |  | 
 | 	once_init(&kvm->arch.nx_once); | 
 | 	return 0; | 
 |  | 
 | out_uninit_mmu: | 
 | 	kvm_mmu_uninit_vm(kvm); | 
 | out_cleanup_page_track: | 
 | 	kvm_page_track_cleanup(kvm); | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * __x86_set_memory_region: Setup KVM internal memory slot | 
 |  * | 
 |  * @kvm: the kvm pointer to the VM. | 
 |  * @id: the slot ID to setup. | 
 |  * @gpa: the GPA to install the slot (unused when @size == 0). | 
 |  * @size: the size of the slot. Set to zero to uninstall a slot. | 
 |  * | 
 |  * This function helps to setup a KVM internal memory slot.  Specify | 
 |  * @size > 0 to install a new slot, while @size == 0 to uninstall a | 
 |  * slot.  The return code can be one of the following: | 
 |  * | 
 |  *   HVA:           on success (uninstall will return a bogus HVA) | 
 |  *   -errno:        on error | 
 |  * | 
 |  * The caller should always use IS_ERR() to check the return value | 
 |  * before use.  Note, the KVM internal memory slots are guaranteed to | 
 |  * remain valid and unchanged until the VM is destroyed, i.e., the | 
 |  * GPA->HVA translation will not change.  However, the HVA is a user | 
 |  * address, i.e. its accessibility is not guaranteed, and must be | 
 |  * accessed via __copy_{to,from}_user(). | 
 |  */ | 
 | void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, | 
 | 				      u32 size) | 
 | { | 
 | 	int i, r; | 
 | 	unsigned long hva, old_npages; | 
 | 	struct kvm_memslots *slots = kvm_memslots(kvm); | 
 | 	struct kvm_memory_slot *slot; | 
 |  | 
 | 	lockdep_assert_held(&kvm->slots_lock); | 
 |  | 
 | 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM)) | 
 | 		return ERR_PTR_USR(-EINVAL); | 
 |  | 
 | 	slot = id_to_memslot(slots, id); | 
 | 	if (size) { | 
 | 		if (slot && slot->npages) | 
 | 			return ERR_PTR_USR(-EEXIST); | 
 |  | 
 | 		/* | 
 | 		 * MAP_SHARED to prevent internal slot pages from being moved | 
 | 		 * by fork()/COW. | 
 | 		 */ | 
 | 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE, | 
 | 			      MAP_SHARED | MAP_ANONYMOUS, 0); | 
 | 		if (IS_ERR_VALUE(hva)) | 
 | 			return (void __user *)hva; | 
 | 	} else { | 
 | 		if (!slot || !slot->npages) | 
 | 			return NULL; | 
 |  | 
 | 		old_npages = slot->npages; | 
 | 		hva = slot->userspace_addr; | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { | 
 | 		struct kvm_userspace_memory_region2 m; | 
 |  | 
 | 		m.slot = id | (i << 16); | 
 | 		m.flags = 0; | 
 | 		m.guest_phys_addr = gpa; | 
 | 		m.userspace_addr = hva; | 
 | 		m.memory_size = size; | 
 | 		r = kvm_set_internal_memslot(kvm, &m); | 
 | 		if (r < 0) | 
 | 			return ERR_PTR_USR(r); | 
 | 	} | 
 |  | 
 | 	if (!size) | 
 | 		vm_munmap(hva, old_npages * PAGE_SIZE); | 
 |  | 
 | 	return (void __user *)hva; | 
 | } | 
 | EXPORT_SYMBOL_GPL(__x86_set_memory_region); | 
 |  | 
 | void kvm_arch_pre_destroy_vm(struct kvm *kvm) | 
 | { | 
 | 	/* | 
 | 	 * Stop all background workers and kthreads before destroying vCPUs, as | 
 | 	 * iterating over vCPUs in a different task while vCPUs are being freed | 
 | 	 * is unsafe, i.e. will lead to use-after-free.  The PIT also needs to | 
 | 	 * be stopped before IRQ routing is freed. | 
 | 	 */ | 
 | 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work); | 
 | 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work); | 
 |  | 
 | #ifdef CONFIG_KVM_IOAPIC | 
 | 	kvm_free_pit(kvm); | 
 | #endif | 
 |  | 
 | 	kvm_mmu_pre_destroy_vm(kvm); | 
 | 	static_call_cond(kvm_x86_vm_pre_destroy)(kvm); | 
 | } | 
 |  | 
 | void kvm_arch_destroy_vm(struct kvm *kvm) | 
 | { | 
 | 	if (current->mm == kvm->mm) { | 
 | 		/* | 
 | 		 * Free memory regions allocated on behalf of userspace, | 
 | 		 * unless the memory map has changed due to process exit | 
 | 		 * or fd copying. | 
 | 		 */ | 
 | 		mutex_lock(&kvm->slots_lock); | 
 | 		__x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, | 
 | 					0, 0); | 
 | 		__x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, | 
 | 					0, 0); | 
 | 		__x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0); | 
 | 		mutex_unlock(&kvm->slots_lock); | 
 | 	} | 
 | 	kvm_destroy_vcpus(kvm); | 
 | 	kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1)); | 
 | #ifdef CONFIG_KVM_IOAPIC | 
 | 	kvm_pic_destroy(kvm); | 
 | 	kvm_ioapic_destroy(kvm); | 
 | #endif | 
 | 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1)); | 
 | 	kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1)); | 
 | 	kvm_mmu_uninit_vm(kvm); | 
 | 	kvm_page_track_cleanup(kvm); | 
 | 	kvm_xen_destroy_vm(kvm); | 
 | 	kvm_hv_destroy_vm(kvm); | 
 | 	kvm_x86_call(vm_destroy)(kvm); | 
 | } | 
 |  | 
 | static void memslot_rmap_free(struct kvm_memory_slot *slot) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { | 
 | 		vfree(slot->arch.rmap[i]); | 
 | 		slot->arch.rmap[i] = NULL; | 
 | 	} | 
 | } | 
 |  | 
 | void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	memslot_rmap_free(slot); | 
 |  | 
 | 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { | 
 | 		vfree(slot->arch.lpage_info[i - 1]); | 
 | 		slot->arch.lpage_info[i - 1] = NULL; | 
 | 	} | 
 |  | 
 | 	kvm_page_track_free_memslot(slot); | 
 | } | 
 |  | 
 | int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages) | 
 | { | 
 | 	const int sz = sizeof(*slot->arch.rmap[0]); | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { | 
 | 		int level = i + 1; | 
 | 		int lpages = __kvm_mmu_slot_lpages(slot, npages, level); | 
 |  | 
 | 		if (slot->arch.rmap[i]) | 
 | 			continue; | 
 |  | 
 | 		slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT); | 
 | 		if (!slot->arch.rmap[i]) { | 
 | 			memslot_rmap_free(slot); | 
 | 			return -ENOMEM; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int kvm_alloc_memslot_metadata(struct kvm *kvm, | 
 | 				      struct kvm_memory_slot *slot) | 
 | { | 
 | 	unsigned long npages = slot->npages; | 
 | 	int i, r; | 
 |  | 
 | 	/* | 
 | 	 * Clear out the previous array pointers for the KVM_MR_MOVE case.  The | 
 | 	 * old arrays will be freed by kvm_set_memory_region() if installing | 
 | 	 * the new memslot is successful. | 
 | 	 */ | 
 | 	memset(&slot->arch, 0, sizeof(slot->arch)); | 
 |  | 
 | 	if (kvm_memslots_have_rmaps(kvm)) { | 
 | 		r = memslot_rmap_alloc(slot, npages); | 
 | 		if (r) | 
 | 			return r; | 
 | 	} | 
 |  | 
 | 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { | 
 | 		struct kvm_lpage_info *linfo; | 
 | 		unsigned long ugfn; | 
 | 		int lpages; | 
 | 		int level = i + 1; | 
 |  | 
 | 		lpages = __kvm_mmu_slot_lpages(slot, npages, level); | 
 |  | 
 | 		linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT); | 
 | 		if (!linfo) | 
 | 			goto out_free; | 
 |  | 
 | 		slot->arch.lpage_info[i - 1] = linfo; | 
 |  | 
 | 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) | 
 | 			linfo[0].disallow_lpage = 1; | 
 | 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) | 
 | 			linfo[lpages - 1].disallow_lpage = 1; | 
 | 		ugfn = slot->userspace_addr >> PAGE_SHIFT; | 
 | 		/* | 
 | 		 * If the gfn and userspace address are not aligned wrt each | 
 | 		 * other, disable large page support for this slot. | 
 | 		 */ | 
 | 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) { | 
 | 			unsigned long j; | 
 |  | 
 | 			for (j = 0; j < lpages; ++j) | 
 | 				linfo[j].disallow_lpage = 1; | 
 | 		} | 
 | 	} | 
 |  | 
 | #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES | 
 | 	kvm_mmu_init_memslot_memory_attributes(kvm, slot); | 
 | #endif | 
 |  | 
 | 	if (kvm_page_track_create_memslot(kvm, slot, npages)) | 
 | 		goto out_free; | 
 |  | 
 | 	return 0; | 
 |  | 
 | out_free: | 
 | 	memslot_rmap_free(slot); | 
 |  | 
 | 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { | 
 | 		vfree(slot->arch.lpage_info[i - 1]); | 
 | 		slot->arch.lpage_info[i - 1] = NULL; | 
 | 	} | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) | 
 | { | 
 | 	struct kvm_vcpu *vcpu; | 
 | 	unsigned long i; | 
 |  | 
 | 	/* | 
 | 	 * memslots->generation has been incremented. | 
 | 	 * mmio generation may have reached its maximum value. | 
 | 	 */ | 
 | 	kvm_mmu_invalidate_mmio_sptes(kvm, gen); | 
 |  | 
 | 	/* Force re-initialization of steal_time cache */ | 
 | 	kvm_for_each_vcpu(i, vcpu, kvm) | 
 | 		kvm_vcpu_kick(vcpu); | 
 | } | 
 |  | 
 | int kvm_arch_prepare_memory_region(struct kvm *kvm, | 
 | 				   const struct kvm_memory_slot *old, | 
 | 				   struct kvm_memory_slot *new, | 
 | 				   enum kvm_mr_change change) | 
 | { | 
 | 	/* | 
 | 	 * KVM doesn't support moving memslots when there are external page | 
 | 	 * trackers attached to the VM, i.e. if KVMGT is in use. | 
 | 	 */ | 
 | 	if (change == KVM_MR_MOVE && kvm_page_track_has_external_user(kvm)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) { | 
 | 		if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn()) | 
 | 			return -EINVAL; | 
 |  | 
 | 		if (kvm_is_gfn_alias(kvm, new->base_gfn + new->npages - 1)) | 
 | 			return -EINVAL; | 
 |  | 
 | 		return kvm_alloc_memslot_metadata(kvm, new); | 
 | 	} | 
 |  | 
 | 	if (change == KVM_MR_FLAGS_ONLY) | 
 | 		memcpy(&new->arch, &old->arch, sizeof(old->arch)); | 
 | 	else if (WARN_ON_ONCE(change != KVM_MR_DELETE)) | 
 | 		return -EIO; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable) | 
 | { | 
 | 	int nr_slots; | 
 |  | 
 | 	if (!kvm->arch.cpu_dirty_log_size) | 
 | 		return; | 
 |  | 
 | 	nr_slots = atomic_read(&kvm->nr_memslots_dirty_logging); | 
 | 	if ((enable && nr_slots == 1) || !nr_slots) | 
 | 		kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING); | 
 | } | 
 |  | 
 | static void kvm_mmu_slot_apply_flags(struct kvm *kvm, | 
 | 				     struct kvm_memory_slot *old, | 
 | 				     const struct kvm_memory_slot *new, | 
 | 				     enum kvm_mr_change change) | 
 | { | 
 | 	u32 old_flags = old ? old->flags : 0; | 
 | 	u32 new_flags = new ? new->flags : 0; | 
 | 	bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES; | 
 |  | 
 | 	/* | 
 | 	 * Update CPU dirty logging if dirty logging is being toggled.  This | 
 | 	 * applies to all operations. | 
 | 	 */ | 
 | 	if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) | 
 | 		kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages); | 
 |  | 
 | 	/* | 
 | 	 * Nothing more to do for RO slots (which can't be dirtied and can't be | 
 | 	 * made writable) or CREATE/MOVE/DELETE of a slot. | 
 | 	 * | 
 | 	 * For a memslot with dirty logging disabled: | 
 | 	 * CREATE:      No dirty mappings will already exist. | 
 | 	 * MOVE/DELETE: The old mappings will already have been cleaned up by | 
 | 	 *		kvm_arch_flush_shadow_memslot() | 
 | 	 * | 
 | 	 * For a memslot with dirty logging enabled: | 
 | 	 * CREATE:      No shadow pages exist, thus nothing to write-protect | 
 | 	 *		and no dirty bits to clear. | 
 | 	 * MOVE/DELETE: The old mappings will already have been cleaned up by | 
 | 	 *		kvm_arch_flush_shadow_memslot(). | 
 | 	 */ | 
 | 	if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY)) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * READONLY and non-flags changes were filtered out above, and the only | 
 | 	 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty | 
 | 	 * logging isn't being toggled on or off. | 
 | 	 */ | 
 | 	if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES))) | 
 | 		return; | 
 |  | 
 | 	if (!log_dirty_pages) { | 
 | 		/* | 
 | 		 * Recover huge page mappings in the slot now that dirty logging | 
 | 		 * is disabled, i.e. now that KVM does not have to track guest | 
 | 		 * writes at 4KiB granularity. | 
 | 		 * | 
 | 		 * Dirty logging might be disabled by userspace if an ongoing VM | 
 | 		 * live migration is cancelled and the VM must continue running | 
 | 		 * on the source. | 
 | 		 */ | 
 | 		kvm_mmu_recover_huge_pages(kvm, new); | 
 | 	} else { | 
 | 		/* | 
 | 		 * Initially-all-set does not require write protecting any page, | 
 | 		 * because they're all assumed to be dirty. | 
 | 		 */ | 
 | 		if (kvm_dirty_log_manual_protect_and_init_set(kvm)) | 
 | 			return; | 
 |  | 
 | 		if (READ_ONCE(eager_page_split)) | 
 | 			kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K); | 
 |  | 
 | 		if (kvm->arch.cpu_dirty_log_size) { | 
 | 			kvm_mmu_slot_leaf_clear_dirty(kvm, new); | 
 | 			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M); | 
 | 		} else { | 
 | 			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K); | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Unconditionally flush the TLBs after enabling dirty logging. | 
 | 		 * A flush is almost always going to be necessary (see below), | 
 | 		 * and unconditionally flushing allows the helpers to omit | 
 | 		 * the subtly complex checks when removing write access. | 
 | 		 * | 
 | 		 * Do the flush outside of mmu_lock to reduce the amount of | 
 | 		 * time mmu_lock is held.  Flushing after dropping mmu_lock is | 
 | 		 * safe as KVM only needs to guarantee the slot is fully | 
 | 		 * write-protected before returning to userspace, i.e. before | 
 | 		 * userspace can consume the dirty status. | 
 | 		 * | 
 | 		 * Flushing outside of mmu_lock requires KVM to be careful when | 
 | 		 * making decisions based on writable status of an SPTE, e.g. a | 
 | 		 * !writable SPTE doesn't guarantee a CPU can't perform writes. | 
 | 		 * | 
 | 		 * Specifically, KVM also write-protects guest page tables to | 
 | 		 * monitor changes when using shadow paging, and must guarantee | 
 | 		 * no CPUs can write to those page before mmu_lock is dropped. | 
 | 		 * Because CPUs may have stale TLB entries at this point, a | 
 | 		 * !writable SPTE doesn't guarantee CPUs can't perform writes. | 
 | 		 * | 
 | 		 * KVM also allows making SPTES writable outside of mmu_lock, | 
 | 		 * e.g. to allow dirty logging without taking mmu_lock. | 
 | 		 * | 
 | 		 * To handle these scenarios, KVM uses a separate software-only | 
 | 		 * bit (MMU-writable) to track if a SPTE is !writable due to | 
 | 		 * a guest page table being write-protected (KVM clears the | 
 | 		 * MMU-writable flag when write-protecting for shadow paging). | 
 | 		 * | 
 | 		 * The use of MMU-writable is also the primary motivation for | 
 | 		 * the unconditional flush.  Because KVM must guarantee that a | 
 | 		 * CPU doesn't contain stale, writable TLB entries for a | 
 | 		 * !MMU-writable SPTE, KVM must flush if it encounters any | 
 | 		 * MMU-writable SPTE regardless of whether the actual hardware | 
 | 		 * writable bit was set.  I.e. KVM is almost guaranteed to need | 
 | 		 * to flush, while unconditionally flushing allows the "remove | 
 | 		 * write access" helpers to ignore MMU-writable entirely. | 
 | 		 * | 
 | 		 * See is_writable_pte() for more details (the case involving | 
 | 		 * access-tracked SPTEs is particularly relevant). | 
 | 		 */ | 
 | 		kvm_flush_remote_tlbs_memslot(kvm, new); | 
 | 	} | 
 | } | 
 |  | 
 | void kvm_arch_commit_memory_region(struct kvm *kvm, | 
 | 				struct kvm_memory_slot *old, | 
 | 				const struct kvm_memory_slot *new, | 
 | 				enum kvm_mr_change change) | 
 | { | 
 | 	if (change == KVM_MR_DELETE) | 
 | 		kvm_page_track_delete_slot(kvm, old); | 
 |  | 
 | 	if (!kvm->arch.n_requested_mmu_pages && | 
 | 	    (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) { | 
 | 		unsigned long nr_mmu_pages; | 
 |  | 
 | 		nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO; | 
 | 		nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES); | 
 | 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); | 
 | 	} | 
 |  | 
 | 	kvm_mmu_slot_apply_flags(kvm, old, new, change); | 
 |  | 
 | 	/* Free the arrays associated with the old memslot. */ | 
 | 	if (change == KVM_MR_MOVE) | 
 | 		kvm_arch_free_memslot(kvm, old); | 
 | } | 
 |  | 
 | bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)); | 
 |  | 
 | 	if (vcpu->arch.guest_state_protected) | 
 | 		return true; | 
 |  | 
 | 	return kvm_x86_call(get_cpl)(vcpu) == 0; | 
 | } | 
 |  | 
 | unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)); | 
 |  | 
 | 	if (vcpu->arch.guest_state_protected) | 
 | 		return 0; | 
 |  | 
 | 	return kvm_rip_read(vcpu); | 
 | } | 
 |  | 
 | int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; | 
 | } | 
 |  | 
 | int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	return kvm_x86_call(interrupt_allowed)(vcpu, false); | 
 | } | 
 |  | 
 | unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	/* Can't read the RIP when guest state is protected, just return 0 */ | 
 | 	if (vcpu->arch.guest_state_protected) | 
 | 		return 0; | 
 |  | 
 | 	if (is_64_bit_mode(vcpu)) | 
 | 		return kvm_rip_read(vcpu); | 
 | 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) + | 
 | 		     kvm_rip_read(vcpu)); | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_get_linear_rip); | 
 |  | 
 | bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) | 
 | { | 
 | 	return kvm_get_linear_rip(vcpu) == linear_rip; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_is_linear_rip); | 
 |  | 
 | unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	unsigned long rflags; | 
 |  | 
 | 	rflags = kvm_x86_call(get_rflags)(vcpu); | 
 | 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) | 
 | 		rflags &= ~X86_EFLAGS_TF; | 
 | 	return rflags; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_get_rflags); | 
 |  | 
 | static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) | 
 | { | 
 | 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && | 
 | 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) | 
 | 		rflags |= X86_EFLAGS_TF; | 
 | 	kvm_x86_call(set_rflags)(vcpu, rflags); | 
 | } | 
 |  | 
 | void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) | 
 | { | 
 | 	__kvm_set_rflags(vcpu, rflags); | 
 | 	kvm_make_request(KVM_REQ_EVENT, vcpu); | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_set_rflags); | 
 |  | 
 | static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) | 
 | { | 
 | 	BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU)); | 
 |  | 
 | 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); | 
 | } | 
 |  | 
 | static inline u32 kvm_async_pf_next_probe(u32 key) | 
 | { | 
 | 	return (key + 1) & (ASYNC_PF_PER_VCPU - 1); | 
 | } | 
 |  | 
 | static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) | 
 | { | 
 | 	u32 key = kvm_async_pf_hash_fn(gfn); | 
 |  | 
 | 	while (vcpu->arch.apf.gfns[key] != ~0) | 
 | 		key = kvm_async_pf_next_probe(key); | 
 |  | 
 | 	vcpu->arch.apf.gfns[key] = gfn; | 
 | } | 
 |  | 
 | static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) | 
 | { | 
 | 	int i; | 
 | 	u32 key = kvm_async_pf_hash_fn(gfn); | 
 |  | 
 | 	for (i = 0; i < ASYNC_PF_PER_VCPU && | 
 | 		     (vcpu->arch.apf.gfns[key] != gfn && | 
 | 		      vcpu->arch.apf.gfns[key] != ~0); i++) | 
 | 		key = kvm_async_pf_next_probe(key); | 
 |  | 
 | 	return key; | 
 | } | 
 |  | 
 | bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) | 
 | { | 
 | 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; | 
 | } | 
 |  | 
 | static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) | 
 | { | 
 | 	u32 i, j, k; | 
 |  | 
 | 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn); | 
 |  | 
 | 	if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn)) | 
 | 		return; | 
 |  | 
 | 	while (true) { | 
 | 		vcpu->arch.apf.gfns[i] = ~0; | 
 | 		do { | 
 | 			j = kvm_async_pf_next_probe(j); | 
 | 			if (vcpu->arch.apf.gfns[j] == ~0) | 
 | 				return; | 
 | 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); | 
 | 			/* | 
 | 			 * k lies cyclically in ]i,j] | 
 | 			 * |    i.k.j | | 
 | 			 * |....j i.k.| or  |.k..j i...| | 
 | 			 */ | 
 | 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); | 
 | 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; | 
 | 		i = j; | 
 | 	} | 
 | } | 
 |  | 
 | static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT; | 
 |  | 
 | 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason, | 
 | 				      sizeof(reason)); | 
 | } | 
 |  | 
 | static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token) | 
 | { | 
 | 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); | 
 |  | 
 | 	return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, | 
 | 					     &token, offset, sizeof(token)); | 
 | } | 
 |  | 
 | static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); | 
 | 	u32 val; | 
 |  | 
 | 	if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, | 
 | 					 &val, offset, sizeof(val))) | 
 | 		return false; | 
 |  | 
 | 	return !val; | 
 | } | 
 |  | 
 | static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu) | 
 | { | 
 |  | 
 | 	if (!kvm_pv_async_pf_enabled(vcpu)) | 
 | 		return false; | 
 |  | 
 | 	if (!vcpu->arch.apf.send_always && | 
 | 	    (vcpu->arch.guest_state_protected || !kvm_x86_call(get_cpl)(vcpu))) | 
 | 		return false; | 
 |  | 
 | 	if (is_guest_mode(vcpu)) { | 
 | 		/* | 
 | 		 * L1 needs to opt into the special #PF vmexits that are | 
 | 		 * used to deliver async page faults. | 
 | 		 */ | 
 | 		return vcpu->arch.apf.delivery_as_pf_vmexit; | 
 | 	} else { | 
 | 		/* | 
 | 		 * Play it safe in case the guest temporarily disables paging. | 
 | 		 * The real mode IDT in particular is unlikely to have a #PF | 
 | 		 * exception setup. | 
 | 		 */ | 
 | 		return is_paging(vcpu); | 
 | 	} | 
 | } | 
 |  | 
 | bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	if (unlikely(!lapic_in_kernel(vcpu) || | 
 | 		     kvm_event_needs_reinjection(vcpu) || | 
 | 		     kvm_is_exception_pending(vcpu))) | 
 | 		return false; | 
 |  | 
 | 	if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu)) | 
 | 		return false; | 
 |  | 
 | 	/* | 
 | 	 * If interrupts are off we cannot even use an artificial | 
 | 	 * halt state. | 
 | 	 */ | 
 | 	return kvm_arch_interrupt_allowed(vcpu); | 
 | } | 
 |  | 
 | bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, | 
 | 				     struct kvm_async_pf *work) | 
 | { | 
 | 	struct x86_exception fault; | 
 |  | 
 | 	trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa); | 
 | 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn); | 
 |  | 
 | 	if (kvm_can_deliver_async_pf(vcpu) && | 
 | 	    !apf_put_user_notpresent(vcpu)) { | 
 | 		fault.vector = PF_VECTOR; | 
 | 		fault.error_code_valid = true; | 
 | 		fault.error_code = 0; | 
 | 		fault.nested_page_fault = false; | 
 | 		fault.address = work->arch.token; | 
 | 		fault.async_page_fault = true; | 
 | 		kvm_inject_page_fault(vcpu, &fault); | 
 | 		return true; | 
 | 	} else { | 
 | 		/* | 
 | 		 * It is not possible to deliver a paravirtualized asynchronous | 
 | 		 * page fault, but putting the guest in an artificial halt state | 
 | 		 * can be beneficial nevertheless: if an interrupt arrives, we | 
 | 		 * can deliver it timely and perhaps the guest will schedule | 
 | 		 * another process.  When the instruction that triggered a page | 
 | 		 * fault is retried, hopefully the page will be ready in the host. | 
 | 		 */ | 
 | 		kvm_make_request(KVM_REQ_APF_HALT, vcpu); | 
 | 		return false; | 
 | 	} | 
 | } | 
 |  | 
 | void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, | 
 | 				 struct kvm_async_pf *work) | 
 | { | 
 | 	struct kvm_lapic_irq irq = { | 
 | 		.delivery_mode = APIC_DM_FIXED, | 
 | 		.vector = vcpu->arch.apf.vec | 
 | 	}; | 
 |  | 
 | 	if (work->wakeup_all) | 
 | 		work->arch.token = ~0; /* broadcast wakeup */ | 
 | 	else | 
 | 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn); | 
 | 	trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa); | 
 |  | 
 | 	if ((work->wakeup_all || work->notpresent_injected) && | 
 | 	    kvm_pv_async_pf_enabled(vcpu) && | 
 | 	    !apf_put_user_ready(vcpu, work->arch.token)) { | 
 | 		vcpu->arch.apf.pageready_pending = true; | 
 | 		kvm_apic_set_irq(vcpu, &irq, NULL); | 
 | 	} | 
 |  | 
 | 	vcpu->arch.apf.halted = false; | 
 | 	kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE); | 
 | } | 
 |  | 
 | void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	kvm_make_request(KVM_REQ_APF_READY, vcpu); | 
 | 	if (!vcpu->arch.apf.pageready_pending) | 
 | 		kvm_vcpu_kick(vcpu); | 
 | } | 
 |  | 
 | bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	if (!kvm_pv_async_pf_enabled(vcpu)) | 
 | 		return true; | 
 | 	else | 
 | 		return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu); | 
 | } | 
 |  | 
 | static void kvm_noncoherent_dma_assignment_start_or_stop(struct kvm *kvm) | 
 | { | 
 | 	/* | 
 | 	 * Non-coherent DMA assignment and de-assignment may affect whether or | 
 | 	 * not KVM honors guest PAT, and thus may cause changes in EPT SPTEs | 
 | 	 * due to toggling the "ignore PAT" bit.  Zap all SPTEs when the first | 
 | 	 * (or last) non-coherent device is (un)registered to so that new SPTEs | 
 | 	 * with the correct "ignore guest PAT" setting are created. | 
 | 	 * | 
 | 	 * If KVM always honors guest PAT, however, there is nothing to do. | 
 | 	 */ | 
 | 	if (kvm_check_has_quirk(kvm, KVM_X86_QUIRK_IGNORE_GUEST_PAT)) | 
 | 		kvm_zap_gfn_range(kvm, gpa_to_gfn(0), gpa_to_gfn(~0ULL)); | 
 | } | 
 |  | 
 | void kvm_arch_register_noncoherent_dma(struct kvm *kvm) | 
 | { | 
 | 	if (atomic_inc_return(&kvm->arch.noncoherent_dma_count) == 1) | 
 | 		kvm_noncoherent_dma_assignment_start_or_stop(kvm); | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); | 
 |  | 
 | void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) | 
 | { | 
 | 	if (!atomic_dec_return(&kvm->arch.noncoherent_dma_count)) | 
 | 		kvm_noncoherent_dma_assignment_start_or_stop(kvm); | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); | 
 |  | 
 | bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) | 
 | { | 
 | 	return atomic_read(&kvm->arch.noncoherent_dma_count); | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma); | 
 |  | 
 | bool kvm_vector_hashing_enabled(void) | 
 | { | 
 | 	return vector_hashing; | 
 | } | 
 |  | 
 | bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	return (vcpu->arch.msr_kvm_poll_control & 1) == 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_arch_no_poll); | 
 |  | 
 | #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_PREPARE | 
 | int kvm_arch_gmem_prepare(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, int max_order) | 
 | { | 
 | 	return kvm_x86_call(gmem_prepare)(kvm, pfn, gfn, max_order); | 
 | } | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_INVALIDATE | 
 | void kvm_arch_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end) | 
 | { | 
 | 	kvm_x86_call(gmem_invalidate)(start, end); | 
 | } | 
 | #endif | 
 |  | 
 | int kvm_spec_ctrl_test_value(u64 value) | 
 | { | 
 | 	/* | 
 | 	 * test that setting IA32_SPEC_CTRL to given value | 
 | 	 * is allowed by the host processor | 
 | 	 */ | 
 |  | 
 | 	u64 saved_value; | 
 | 	unsigned long flags; | 
 | 	int ret = 0; | 
 |  | 
 | 	local_irq_save(flags); | 
 |  | 
 | 	if (rdmsrq_safe(MSR_IA32_SPEC_CTRL, &saved_value)) | 
 | 		ret = 1; | 
 | 	else if (wrmsrq_safe(MSR_IA32_SPEC_CTRL, value)) | 
 | 		ret = 1; | 
 | 	else | 
 | 		wrmsrq(MSR_IA32_SPEC_CTRL, saved_value); | 
 |  | 
 | 	local_irq_restore(flags); | 
 |  | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value); | 
 |  | 
 | void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code) | 
 | { | 
 | 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu; | 
 | 	struct x86_exception fault; | 
 | 	u64 access = error_code & | 
 | 		(PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK); | 
 |  | 
 | 	if (!(error_code & PFERR_PRESENT_MASK) || | 
 | 	    mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) { | 
 | 		/* | 
 | 		 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page | 
 | 		 * tables probably do not match the TLB.  Just proceed | 
 | 		 * with the error code that the processor gave. | 
 | 		 */ | 
 | 		fault.vector = PF_VECTOR; | 
 | 		fault.error_code_valid = true; | 
 | 		fault.error_code = error_code; | 
 | 		fault.nested_page_fault = false; | 
 | 		fault.address = gva; | 
 | 		fault.async_page_fault = false; | 
 | 	} | 
 | 	vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault); | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error); | 
 |  | 
 | /* | 
 |  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns | 
 |  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value | 
 |  * indicates whether exit to userspace is needed. | 
 |  */ | 
 | int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r, | 
 | 			      struct x86_exception *e) | 
 | { | 
 | 	if (r == X86EMUL_PROPAGATE_FAULT) { | 
 | 		if (KVM_BUG_ON(!e, vcpu->kvm)) | 
 | 			return -EIO; | 
 |  | 
 | 		kvm_inject_emulated_page_fault(vcpu, e); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED | 
 | 	 * while handling a VMX instruction KVM could've handled the request | 
 | 	 * correctly by exiting to userspace and performing I/O but there | 
 | 	 * doesn't seem to be a real use-case behind such requests, just return | 
 | 	 * KVM_EXIT_INTERNAL_ERROR for now. | 
 | 	 */ | 
 | 	kvm_prepare_emulation_failure_exit(vcpu); | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_handle_memory_failure); | 
 |  | 
 | int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva) | 
 | { | 
 | 	bool pcid_enabled; | 
 | 	struct x86_exception e; | 
 | 	struct { | 
 | 		u64 pcid; | 
 | 		u64 gla; | 
 | 	} operand; | 
 | 	int r; | 
 |  | 
 | 	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e); | 
 | 	if (r != X86EMUL_CONTINUE) | 
 | 		return kvm_handle_memory_failure(vcpu, r, &e); | 
 |  | 
 | 	if (operand.pcid >> 12 != 0) { | 
 | 		kvm_inject_gp(vcpu, 0); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	pcid_enabled = kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE); | 
 |  | 
 | 	switch (type) { | 
 | 	case INVPCID_TYPE_INDIV_ADDR: | 
 | 		/* | 
 | 		 * LAM doesn't apply to addresses that are inputs to TLB | 
 | 		 * invalidation. | 
 | 		 */ | 
 | 		if ((!pcid_enabled && (operand.pcid != 0)) || | 
 | 		    is_noncanonical_invlpg_address(operand.gla, vcpu)) { | 
 | 			kvm_inject_gp(vcpu, 0); | 
 | 			return 1; | 
 | 		} | 
 | 		kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid); | 
 | 		return kvm_skip_emulated_instruction(vcpu); | 
 |  | 
 | 	case INVPCID_TYPE_SINGLE_CTXT: | 
 | 		if (!pcid_enabled && (operand.pcid != 0)) { | 
 | 			kvm_inject_gp(vcpu, 0); | 
 | 			return 1; | 
 | 		} | 
 |  | 
 | 		kvm_invalidate_pcid(vcpu, operand.pcid); | 
 | 		return kvm_skip_emulated_instruction(vcpu); | 
 |  | 
 | 	case INVPCID_TYPE_ALL_NON_GLOBAL: | 
 | 		/* | 
 | 		 * Currently, KVM doesn't mark global entries in the shadow | 
 | 		 * page tables, so a non-global flush just degenerates to a | 
 | 		 * global flush. If needed, we could optimize this later by | 
 | 		 * keeping track of global entries in shadow page tables. | 
 | 		 */ | 
 |  | 
 | 		fallthrough; | 
 | 	case INVPCID_TYPE_ALL_INCL_GLOBAL: | 
 | 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); | 
 | 		return kvm_skip_emulated_instruction(vcpu); | 
 |  | 
 | 	default: | 
 | 		kvm_inject_gp(vcpu, 0); | 
 | 		return 1; | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_handle_invpcid); | 
 |  | 
 | static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct kvm_run *run = vcpu->run; | 
 | 	struct kvm_mmio_fragment *frag; | 
 | 	unsigned int len; | 
 |  | 
 | 	BUG_ON(!vcpu->mmio_needed); | 
 |  | 
 | 	/* Complete previous fragment */ | 
 | 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; | 
 | 	len = min(8u, frag->len); | 
 | 	if (!vcpu->mmio_is_write) | 
 | 		memcpy(frag->data, run->mmio.data, len); | 
 |  | 
 | 	if (frag->len <= 8) { | 
 | 		/* Switch to the next fragment. */ | 
 | 		frag++; | 
 | 		vcpu->mmio_cur_fragment++; | 
 | 	} else { | 
 | 		/* Go forward to the next mmio piece. */ | 
 | 		frag->data += len; | 
 | 		frag->gpa += len; | 
 | 		frag->len -= len; | 
 | 	} | 
 |  | 
 | 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { | 
 | 		vcpu->mmio_needed = 0; | 
 |  | 
 | 		// VMG change, at this point, we're always done | 
 | 		// RIP has already been advanced | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	// More MMIO is needed | 
 | 	run->mmio.phys_addr = frag->gpa; | 
 | 	run->mmio.len = min(8u, frag->len); | 
 | 	run->mmio.is_write = vcpu->mmio_is_write; | 
 | 	if (run->mmio.is_write) | 
 | 		memcpy(run->mmio.data, frag->data, min(8u, frag->len)); | 
 | 	run->exit_reason = KVM_EXIT_MMIO; | 
 |  | 
 | 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, | 
 | 			  void *data) | 
 | { | 
 | 	int handled; | 
 | 	struct kvm_mmio_fragment *frag; | 
 |  | 
 | 	if (!data) | 
 | 		return -EINVAL; | 
 |  | 
 | 	handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data); | 
 | 	if (handled == bytes) | 
 | 		return 1; | 
 |  | 
 | 	bytes -= handled; | 
 | 	gpa += handled; | 
 | 	data += handled; | 
 |  | 
 | 	/*TODO: Check if need to increment number of frags */ | 
 | 	frag = vcpu->mmio_fragments; | 
 | 	vcpu->mmio_nr_fragments = 1; | 
 | 	frag->len = bytes; | 
 | 	frag->gpa = gpa; | 
 | 	frag->data = data; | 
 |  | 
 | 	vcpu->mmio_needed = 1; | 
 | 	vcpu->mmio_cur_fragment = 0; | 
 |  | 
 | 	vcpu->run->mmio.phys_addr = gpa; | 
 | 	vcpu->run->mmio.len = min(8u, frag->len); | 
 | 	vcpu->run->mmio.is_write = 1; | 
 | 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); | 
 | 	vcpu->run->exit_reason = KVM_EXIT_MMIO; | 
 |  | 
 | 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write); | 
 |  | 
 | int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, | 
 | 			 void *data) | 
 | { | 
 | 	int handled; | 
 | 	struct kvm_mmio_fragment *frag; | 
 |  | 
 | 	if (!data) | 
 | 		return -EINVAL; | 
 |  | 
 | 	handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data); | 
 | 	if (handled == bytes) | 
 | 		return 1; | 
 |  | 
 | 	bytes -= handled; | 
 | 	gpa += handled; | 
 | 	data += handled; | 
 |  | 
 | 	/*TODO: Check if need to increment number of frags */ | 
 | 	frag = vcpu->mmio_fragments; | 
 | 	vcpu->mmio_nr_fragments = 1; | 
 | 	frag->len = bytes; | 
 | 	frag->gpa = gpa; | 
 | 	frag->data = data; | 
 |  | 
 | 	vcpu->mmio_needed = 1; | 
 | 	vcpu->mmio_cur_fragment = 0; | 
 |  | 
 | 	vcpu->run->mmio.phys_addr = gpa; | 
 | 	vcpu->run->mmio.len = min(8u, frag->len); | 
 | 	vcpu->run->mmio.is_write = 0; | 
 | 	vcpu->run->exit_reason = KVM_EXIT_MMIO; | 
 |  | 
 | 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read); | 
 |  | 
 | static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size) | 
 | { | 
 | 	vcpu->arch.sev_pio_count -= count; | 
 | 	vcpu->arch.sev_pio_data += count * size; | 
 | } | 
 |  | 
 | static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, | 
 | 			   unsigned int port); | 
 |  | 
 | static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	int size = vcpu->arch.pio.size; | 
 | 	int port = vcpu->arch.pio.port; | 
 |  | 
 | 	vcpu->arch.pio.count = 0; | 
 | 	if (vcpu->arch.sev_pio_count) | 
 | 		return kvm_sev_es_outs(vcpu, size, port); | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, | 
 | 			   unsigned int port) | 
 | { | 
 | 	for (;;) { | 
 | 		unsigned int count = | 
 | 			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); | 
 | 		int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count); | 
 |  | 
 | 		/* memcpy done already by emulator_pio_out.  */ | 
 | 		advance_sev_es_emulated_pio(vcpu, count, size); | 
 | 		if (!ret) | 
 | 			break; | 
 |  | 
 | 		/* Emulation done by the kernel.  */ | 
 | 		if (!vcpu->arch.sev_pio_count) | 
 | 			return 1; | 
 | 	} | 
 |  | 
 | 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, | 
 | 			  unsigned int port); | 
 |  | 
 | static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	unsigned count = vcpu->arch.pio.count; | 
 | 	int size = vcpu->arch.pio.size; | 
 | 	int port = vcpu->arch.pio.port; | 
 |  | 
 | 	complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data); | 
 | 	advance_sev_es_emulated_pio(vcpu, count, size); | 
 | 	if (vcpu->arch.sev_pio_count) | 
 | 		return kvm_sev_es_ins(vcpu, size, port); | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, | 
 | 			  unsigned int port) | 
 | { | 
 | 	for (;;) { | 
 | 		unsigned int count = | 
 | 			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); | 
 | 		if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count)) | 
 | 			break; | 
 |  | 
 | 		/* Emulation done by the kernel.  */ | 
 | 		advance_sev_es_emulated_pio(vcpu, count, size); | 
 | 		if (!vcpu->arch.sev_pio_count) | 
 | 			return 1; | 
 | 	} | 
 |  | 
 | 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins; | 
 | 	return 0; | 
 | } | 
 |  | 
 | int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size, | 
 | 			 unsigned int port, void *data,  unsigned int count, | 
 | 			 int in) | 
 | { | 
 | 	vcpu->arch.sev_pio_data = data; | 
 | 	vcpu->arch.sev_pio_count = count; | 
 | 	return in ? kvm_sev_es_ins(vcpu, size, port) | 
 | 		  : kvm_sev_es_outs(vcpu, size, port); | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_sev_es_string_io); | 
 |  | 
 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry); | 
 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); | 
 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_mmio); | 
 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio); | 
 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); | 
 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); | 
 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); | 
 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); | 
 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter); | 
 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); | 
 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); | 
 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); | 
 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed); | 
 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); | 
 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); | 
 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); | 
 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); | 
 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update); | 
 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full); | 
 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access); | 
 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi); | 
 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log); | 
 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath); | 
 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell); | 
 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq); | 
 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter); | 
 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit); | 
 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter); | 
 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit); | 
 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_rmp_fault); | 
 |  | 
 | static int __init kvm_x86_init(void) | 
 | { | 
 | 	kvm_init_xstate_sizes(); | 
 |  | 
 | 	kvm_mmu_x86_module_init(); | 
 | 	mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible(); | 
 | 	return 0; | 
 | } | 
 | module_init(kvm_x86_init); | 
 |  | 
 | static void __exit kvm_x86_exit(void) | 
 | { | 
 | 	WARN_ON_ONCE(static_branch_unlikely(&kvm_has_noapic_vcpu)); | 
 | } | 
 | module_exit(kvm_x86_exit); |