|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * bcache journalling code, for btree insertions | 
|  | * | 
|  | * Copyright 2012 Google, Inc. | 
|  | */ | 
|  |  | 
|  | #include "bcache.h" | 
|  | #include "btree.h" | 
|  | #include "debug.h" | 
|  | #include "extents.h" | 
|  |  | 
|  | #include <trace/events/bcache.h> | 
|  |  | 
|  | /* | 
|  | * Journal replay/recovery: | 
|  | * | 
|  | * This code is all driven from run_cache_set(); we first read the journal | 
|  | * entries, do some other stuff, then we mark all the keys in the journal | 
|  | * entries (same as garbage collection would), then we replay them - reinserting | 
|  | * them into the cache in precisely the same order as they appear in the | 
|  | * journal. | 
|  | * | 
|  | * We only journal keys that go in leaf nodes, which simplifies things quite a | 
|  | * bit. | 
|  | */ | 
|  |  | 
|  | static void journal_read_endio(struct bio *bio) | 
|  | { | 
|  | struct closure *cl = bio->bi_private; | 
|  |  | 
|  | closure_put(cl); | 
|  | } | 
|  |  | 
|  | static int journal_read_bucket(struct cache *ca, struct list_head *list, | 
|  | unsigned int bucket_index) | 
|  | { | 
|  | struct journal_device *ja = &ca->journal; | 
|  | struct bio *bio = &ja->bio; | 
|  |  | 
|  | struct journal_replay *i; | 
|  | struct jset *j, *data = ca->set->journal.w[0].data; | 
|  | struct closure cl; | 
|  | unsigned int len, left, offset = 0; | 
|  | int ret = 0; | 
|  | sector_t bucket = bucket_to_sector(ca->set, ca->sb.d[bucket_index]); | 
|  |  | 
|  | closure_init_stack(&cl); | 
|  |  | 
|  | pr_debug("reading %u\n", bucket_index); | 
|  |  | 
|  | while (offset < ca->sb.bucket_size) { | 
|  | reread:		left = ca->sb.bucket_size - offset; | 
|  | len = min_t(unsigned int, left, PAGE_SECTORS << JSET_BITS); | 
|  |  | 
|  | bio_reset(bio, ca->bdev, REQ_OP_READ); | 
|  | bio->bi_iter.bi_sector	= bucket + offset; | 
|  | bio->bi_iter.bi_size	= len << 9; | 
|  |  | 
|  | bio->bi_end_io	= journal_read_endio; | 
|  | bio->bi_private = &cl; | 
|  | bch_bio_map(bio, data); | 
|  |  | 
|  | closure_bio_submit(ca->set, bio, &cl); | 
|  | closure_sync(&cl); | 
|  |  | 
|  | /* This function could be simpler now since we no longer write | 
|  | * journal entries that overlap bucket boundaries; this means | 
|  | * the start of a bucket will always have a valid journal entry | 
|  | * if it has any journal entries at all. | 
|  | */ | 
|  |  | 
|  | j = data; | 
|  | while (len) { | 
|  | struct list_head *where; | 
|  | size_t blocks, bytes = set_bytes(j); | 
|  |  | 
|  | if (j->magic != jset_magic(&ca->sb)) { | 
|  | pr_debug("%u: bad magic\n", bucket_index); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (bytes > left << 9 || | 
|  | bytes > PAGE_SIZE << JSET_BITS) { | 
|  | pr_info("%u: too big, %zu bytes, offset %u\n", | 
|  | bucket_index, bytes, offset); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (bytes > len << 9) | 
|  | goto reread; | 
|  |  | 
|  | if (j->csum != csum_set(j)) { | 
|  | pr_info("%u: bad csum, %zu bytes, offset %u\n", | 
|  | bucket_index, bytes, offset); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | blocks = set_blocks(j, block_bytes(ca)); | 
|  |  | 
|  | /* | 
|  | * Nodes in 'list' are in linear increasing order of | 
|  | * i->j.seq, the node on head has the smallest (oldest) | 
|  | * journal seq, the node on tail has the biggest | 
|  | * (latest) journal seq. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Check from the oldest jset for last_seq. If | 
|  | * i->j.seq < j->last_seq, it means the oldest jset | 
|  | * in list is expired and useless, remove it from | 
|  | * this list. Otherwise, j is a candidate jset for | 
|  | * further following checks. | 
|  | */ | 
|  | while (!list_empty(list)) { | 
|  | i = list_first_entry(list, | 
|  | struct journal_replay, list); | 
|  | if (i->j.seq >= j->last_seq) | 
|  | break; | 
|  | list_del(&i->list); | 
|  | kfree(i); | 
|  | } | 
|  |  | 
|  | /* iterate list in reverse order (from latest jset) */ | 
|  | list_for_each_entry_reverse(i, list, list) { | 
|  | if (j->seq == i->j.seq) | 
|  | goto next_set; | 
|  |  | 
|  | /* | 
|  | * if j->seq is less than any i->j.last_seq | 
|  | * in list, j is an expired and useless jset. | 
|  | */ | 
|  | if (j->seq < i->j.last_seq) | 
|  | goto next_set; | 
|  |  | 
|  | /* | 
|  | * 'where' points to first jset in list which | 
|  | * is elder then j. | 
|  | */ | 
|  | if (j->seq > i->j.seq) { | 
|  | where = &i->list; | 
|  | goto add; | 
|  | } | 
|  | } | 
|  |  | 
|  | where = list; | 
|  | add: | 
|  | i = kmalloc(offsetof(struct journal_replay, j) + | 
|  | bytes, GFP_KERNEL); | 
|  | if (!i) | 
|  | return -ENOMEM; | 
|  | unsafe_memcpy(&i->j, j, bytes, | 
|  | /* "bytes" was calculated by set_bytes() above */); | 
|  | /* Add to the location after 'where' points to */ | 
|  | list_add(&i->list, where); | 
|  | ret = 1; | 
|  |  | 
|  | if (j->seq > ja->seq[bucket_index]) | 
|  | ja->seq[bucket_index] = j->seq; | 
|  | next_set: | 
|  | offset	+= blocks * ca->sb.block_size; | 
|  | len	-= blocks * ca->sb.block_size; | 
|  | j = ((void *) j) + blocks * block_bytes(ca); | 
|  | } | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int bch_journal_read(struct cache_set *c, struct list_head *list) | 
|  | { | 
|  | #define read_bucket(b)							\ | 
|  | ({								\ | 
|  | ret = journal_read_bucket(ca, list, b);			\ | 
|  | __set_bit(b, bitmap);					\ | 
|  | if (ret < 0)						\ | 
|  | return ret;					\ | 
|  | ret;							\ | 
|  | }) | 
|  |  | 
|  | struct cache *ca = c->cache; | 
|  | int ret = 0; | 
|  | struct journal_device *ja = &ca->journal; | 
|  | DECLARE_BITMAP(bitmap, SB_JOURNAL_BUCKETS); | 
|  | unsigned int i, l, r, m; | 
|  | uint64_t seq; | 
|  |  | 
|  | bitmap_zero(bitmap, SB_JOURNAL_BUCKETS); | 
|  | pr_debug("%u journal buckets\n", ca->sb.njournal_buckets); | 
|  |  | 
|  | /* | 
|  | * Read journal buckets ordered by golden ratio hash to quickly | 
|  | * find a sequence of buckets with valid journal entries | 
|  | */ | 
|  | for (i = 0; i < ca->sb.njournal_buckets; i++) { | 
|  | /* | 
|  | * We must try the index l with ZERO first for | 
|  | * correctness due to the scenario that the journal | 
|  | * bucket is circular buffer which might have wrapped | 
|  | */ | 
|  | l = (i * 2654435769U) % ca->sb.njournal_buckets; | 
|  |  | 
|  | if (test_bit(l, bitmap)) | 
|  | break; | 
|  |  | 
|  | if (read_bucket(l)) | 
|  | goto bsearch; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If that fails, check all the buckets we haven't checked | 
|  | * already | 
|  | */ | 
|  | pr_debug("falling back to linear search\n"); | 
|  |  | 
|  | for_each_clear_bit(l, bitmap, ca->sb.njournal_buckets) | 
|  | if (read_bucket(l)) | 
|  | goto bsearch; | 
|  |  | 
|  | /* no journal entries on this device? */ | 
|  | if (l == ca->sb.njournal_buckets) | 
|  | goto out; | 
|  | bsearch: | 
|  | BUG_ON(list_empty(list)); | 
|  |  | 
|  | /* Binary search */ | 
|  | m = l; | 
|  | r = find_next_bit(bitmap, ca->sb.njournal_buckets, l + 1); | 
|  | pr_debug("starting binary search, l %u r %u\n", l, r); | 
|  |  | 
|  | while (l + 1 < r) { | 
|  | seq = list_entry(list->prev, struct journal_replay, | 
|  | list)->j.seq; | 
|  |  | 
|  | m = (l + r) >> 1; | 
|  | read_bucket(m); | 
|  |  | 
|  | if (seq != list_entry(list->prev, struct journal_replay, | 
|  | list)->j.seq) | 
|  | l = m; | 
|  | else | 
|  | r = m; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Read buckets in reverse order until we stop finding more | 
|  | * journal entries | 
|  | */ | 
|  | pr_debug("finishing up: m %u njournal_buckets %u\n", | 
|  | m, ca->sb.njournal_buckets); | 
|  | l = m; | 
|  |  | 
|  | while (1) { | 
|  | if (!l--) | 
|  | l = ca->sb.njournal_buckets - 1; | 
|  |  | 
|  | if (l == m) | 
|  | break; | 
|  |  | 
|  | if (test_bit(l, bitmap)) | 
|  | continue; | 
|  |  | 
|  | if (!read_bucket(l)) | 
|  | break; | 
|  | } | 
|  |  | 
|  | seq = 0; | 
|  |  | 
|  | for (i = 0; i < ca->sb.njournal_buckets; i++) | 
|  | if (ja->seq[i] > seq) { | 
|  | seq = ja->seq[i]; | 
|  | /* | 
|  | * When journal_reclaim() goes to allocate for | 
|  | * the first time, it'll use the bucket after | 
|  | * ja->cur_idx | 
|  | */ | 
|  | ja->cur_idx = i; | 
|  | ja->last_idx = ja->discard_idx = (i + 1) % | 
|  | ca->sb.njournal_buckets; | 
|  |  | 
|  | } | 
|  |  | 
|  | out: | 
|  | if (!list_empty(list)) | 
|  | c->journal.seq = list_entry(list->prev, | 
|  | struct journal_replay, | 
|  | list)->j.seq; | 
|  |  | 
|  | return 0; | 
|  | #undef read_bucket | 
|  | } | 
|  |  | 
|  | void bch_journal_mark(struct cache_set *c, struct list_head *list) | 
|  | { | 
|  | atomic_t p = { 0 }; | 
|  | struct bkey *k; | 
|  | struct journal_replay *i; | 
|  | struct journal *j = &c->journal; | 
|  | uint64_t last = j->seq; | 
|  |  | 
|  | /* | 
|  | * journal.pin should never fill up - we never write a journal | 
|  | * entry when it would fill up. But if for some reason it does, we | 
|  | * iterate over the list in reverse order so that we can just skip that | 
|  | * refcount instead of bugging. | 
|  | */ | 
|  |  | 
|  | list_for_each_entry_reverse(i, list, list) { | 
|  | BUG_ON(last < i->j.seq); | 
|  | i->pin = NULL; | 
|  |  | 
|  | while (last-- != i->j.seq) | 
|  | if (fifo_free(&j->pin) > 1) { | 
|  | fifo_push_front(&j->pin, p); | 
|  | atomic_set(&fifo_front(&j->pin), 0); | 
|  | } | 
|  |  | 
|  | if (fifo_free(&j->pin) > 1) { | 
|  | fifo_push_front(&j->pin, p); | 
|  | i->pin = &fifo_front(&j->pin); | 
|  | atomic_set(i->pin, 1); | 
|  | } | 
|  |  | 
|  | for (k = i->j.start; | 
|  | k < bset_bkey_last(&i->j); | 
|  | k = bkey_next(k)) | 
|  | if (!__bch_extent_invalid(c, k)) { | 
|  | unsigned int j; | 
|  |  | 
|  | for (j = 0; j < KEY_PTRS(k); j++) | 
|  | if (ptr_available(c, k, j)) | 
|  | atomic_inc(&PTR_BUCKET(c, k, j)->pin); | 
|  |  | 
|  | bch_initial_mark_key(c, 0, k); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool is_discard_enabled(struct cache_set *s) | 
|  | { | 
|  | struct cache *ca = s->cache; | 
|  |  | 
|  | if (ca->discard) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | int bch_journal_replay(struct cache_set *s, struct list_head *list) | 
|  | { | 
|  | int ret = 0, keys = 0, entries = 0; | 
|  | struct bkey *k; | 
|  | struct journal_replay *i = | 
|  | list_entry(list->prev, struct journal_replay, list); | 
|  |  | 
|  | uint64_t start = i->j.last_seq, end = i->j.seq, n = start; | 
|  | struct keylist keylist; | 
|  |  | 
|  | list_for_each_entry(i, list, list) { | 
|  | BUG_ON(i->pin && atomic_read(i->pin) != 1); | 
|  |  | 
|  | if (n != i->j.seq) { | 
|  | if (n == start && is_discard_enabled(s)) | 
|  | pr_info("journal entries %llu-%llu may be discarded! (replaying %llu-%llu)\n", | 
|  | n, i->j.seq - 1, start, end); | 
|  | else { | 
|  | pr_err("journal entries %llu-%llu missing! (replaying %llu-%llu)\n", | 
|  | n, i->j.seq - 1, start, end); | 
|  | ret = -EIO; | 
|  | goto err; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (k = i->j.start; | 
|  | k < bset_bkey_last(&i->j); | 
|  | k = bkey_next(k)) { | 
|  | trace_bcache_journal_replay_key(k); | 
|  |  | 
|  | bch_keylist_init_single(&keylist, k); | 
|  |  | 
|  | ret = bch_btree_insert(s, &keylist, i->pin, NULL); | 
|  | if (ret) | 
|  | goto err; | 
|  |  | 
|  | BUG_ON(!bch_keylist_empty(&keylist)); | 
|  | keys++; | 
|  |  | 
|  | cond_resched(); | 
|  | } | 
|  |  | 
|  | if (i->pin) | 
|  | atomic_dec(i->pin); | 
|  | n = i->j.seq + 1; | 
|  | entries++; | 
|  | } | 
|  |  | 
|  | pr_info("journal replay done, %i keys in %i entries, seq %llu\n", | 
|  | keys, entries, end); | 
|  | err: | 
|  | while (!list_empty(list)) { | 
|  | i = list_first_entry(list, struct journal_replay, list); | 
|  | list_del(&i->list); | 
|  | kfree(i); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void bch_journal_space_reserve(struct journal *j) | 
|  | { | 
|  | j->do_reserve = true; | 
|  | } | 
|  |  | 
|  | /* Journalling */ | 
|  |  | 
|  | static void btree_flush_write(struct cache_set *c) | 
|  | { | 
|  | struct btree *b, *t, *btree_nodes[BTREE_FLUSH_NR]; | 
|  | unsigned int i, nr; | 
|  | int ref_nr; | 
|  | atomic_t *fifo_front_p, *now_fifo_front_p; | 
|  | size_t mask; | 
|  |  | 
|  | if (c->journal.btree_flushing) | 
|  | return; | 
|  |  | 
|  | spin_lock(&c->journal.flush_write_lock); | 
|  | if (c->journal.btree_flushing) { | 
|  | spin_unlock(&c->journal.flush_write_lock); | 
|  | return; | 
|  | } | 
|  | c->journal.btree_flushing = true; | 
|  | spin_unlock(&c->journal.flush_write_lock); | 
|  |  | 
|  | /* get the oldest journal entry and check its refcount */ | 
|  | spin_lock(&c->journal.lock); | 
|  | fifo_front_p = &fifo_front(&c->journal.pin); | 
|  | ref_nr = atomic_read(fifo_front_p); | 
|  | if (ref_nr <= 0) { | 
|  | /* | 
|  | * do nothing if no btree node references | 
|  | * the oldest journal entry | 
|  | */ | 
|  | spin_unlock(&c->journal.lock); | 
|  | goto out; | 
|  | } | 
|  | spin_unlock(&c->journal.lock); | 
|  |  | 
|  | mask = c->journal.pin.mask; | 
|  | nr = 0; | 
|  | atomic_long_inc(&c->flush_write); | 
|  | memset(btree_nodes, 0, sizeof(btree_nodes)); | 
|  |  | 
|  | mutex_lock(&c->bucket_lock); | 
|  | list_for_each_entry_safe_reverse(b, t, &c->btree_cache, list) { | 
|  | /* | 
|  | * It is safe to get now_fifo_front_p without holding | 
|  | * c->journal.lock here, because we don't need to know | 
|  | * the exactly accurate value, just check whether the | 
|  | * front pointer of c->journal.pin is changed. | 
|  | */ | 
|  | now_fifo_front_p = &fifo_front(&c->journal.pin); | 
|  | /* | 
|  | * If the oldest journal entry is reclaimed and front | 
|  | * pointer of c->journal.pin changes, it is unnecessary | 
|  | * to scan c->btree_cache anymore, just quit the loop and | 
|  | * flush out what we have already. | 
|  | */ | 
|  | if (now_fifo_front_p != fifo_front_p) | 
|  | break; | 
|  | /* | 
|  | * quit this loop if all matching btree nodes are | 
|  | * scanned and record in btree_nodes[] already. | 
|  | */ | 
|  | ref_nr = atomic_read(fifo_front_p); | 
|  | if (nr >= ref_nr) | 
|  | break; | 
|  |  | 
|  | if (btree_node_journal_flush(b)) | 
|  | pr_err("BUG: flush_write bit should not be set here!\n"); | 
|  |  | 
|  | mutex_lock(&b->write_lock); | 
|  |  | 
|  | if (!btree_node_dirty(b)) { | 
|  | mutex_unlock(&b->write_lock); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (!btree_current_write(b)->journal) { | 
|  | mutex_unlock(&b->write_lock); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Only select the btree node which exactly references | 
|  | * the oldest journal entry. | 
|  | * | 
|  | * If the journal entry pointed by fifo_front_p is | 
|  | * reclaimed in parallel, don't worry: | 
|  | * - the list_for_each_xxx loop will quit when checking | 
|  | *   next now_fifo_front_p. | 
|  | * - If there are matched nodes recorded in btree_nodes[], | 
|  | *   they are clean now (this is why and how the oldest | 
|  | *   journal entry can be reclaimed). These selected nodes | 
|  | *   will be ignored and skipped in the following for-loop. | 
|  | */ | 
|  | if (((btree_current_write(b)->journal - fifo_front_p) & | 
|  | mask) != 0) { | 
|  | mutex_unlock(&b->write_lock); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | set_btree_node_journal_flush(b); | 
|  |  | 
|  | mutex_unlock(&b->write_lock); | 
|  |  | 
|  | btree_nodes[nr++] = b; | 
|  | /* | 
|  | * To avoid holding c->bucket_lock too long time, | 
|  | * only scan for BTREE_FLUSH_NR matched btree nodes | 
|  | * at most. If there are more btree nodes reference | 
|  | * the oldest journal entry, try to flush them next | 
|  | * time when btree_flush_write() is called. | 
|  | */ | 
|  | if (nr == BTREE_FLUSH_NR) | 
|  | break; | 
|  | } | 
|  | mutex_unlock(&c->bucket_lock); | 
|  |  | 
|  | for (i = 0; i < nr; i++) { | 
|  | b = btree_nodes[i]; | 
|  | if (!b) { | 
|  | pr_err("BUG: btree_nodes[%d] is NULL\n", i); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* safe to check without holding b->write_lock */ | 
|  | if (!btree_node_journal_flush(b)) { | 
|  | pr_err("BUG: bnode %p: journal_flush bit cleaned\n", b); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | mutex_lock(&b->write_lock); | 
|  | if (!btree_current_write(b)->journal) { | 
|  | clear_bit(BTREE_NODE_journal_flush, &b->flags); | 
|  | mutex_unlock(&b->write_lock); | 
|  | pr_debug("bnode %p: written by others\n", b); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (!btree_node_dirty(b)) { | 
|  | clear_bit(BTREE_NODE_journal_flush, &b->flags); | 
|  | mutex_unlock(&b->write_lock); | 
|  | pr_debug("bnode %p: dirty bit cleaned by others\n", b); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | __bch_btree_node_write(b, NULL); | 
|  | clear_bit(BTREE_NODE_journal_flush, &b->flags); | 
|  | mutex_unlock(&b->write_lock); | 
|  | } | 
|  |  | 
|  | out: | 
|  | spin_lock(&c->journal.flush_write_lock); | 
|  | c->journal.btree_flushing = false; | 
|  | spin_unlock(&c->journal.flush_write_lock); | 
|  | } | 
|  |  | 
|  | #define last_seq(j)	((j)->seq - fifo_used(&(j)->pin) + 1) | 
|  |  | 
|  | static void journal_discard_endio(struct bio *bio) | 
|  | { | 
|  | struct journal_device *ja = | 
|  | container_of(bio, struct journal_device, discard_bio); | 
|  | struct cache *ca = container_of(ja, struct cache, journal); | 
|  |  | 
|  | atomic_set(&ja->discard_in_flight, DISCARD_DONE); | 
|  |  | 
|  | closure_wake_up(&ca->set->journal.wait); | 
|  | closure_put(&ca->set->cl); | 
|  | } | 
|  |  | 
|  | static void journal_discard_work(struct work_struct *work) | 
|  | { | 
|  | struct journal_device *ja = | 
|  | container_of(work, struct journal_device, discard_work); | 
|  |  | 
|  | submit_bio(&ja->discard_bio); | 
|  | } | 
|  |  | 
|  | static void do_journal_discard(struct cache *ca) | 
|  | { | 
|  | struct journal_device *ja = &ca->journal; | 
|  | struct bio *bio = &ja->discard_bio; | 
|  |  | 
|  | if (!ca->discard) { | 
|  | ja->discard_idx = ja->last_idx; | 
|  | return; | 
|  | } | 
|  |  | 
|  | switch (atomic_read(&ja->discard_in_flight)) { | 
|  | case DISCARD_IN_FLIGHT: | 
|  | return; | 
|  |  | 
|  | case DISCARD_DONE: | 
|  | ja->discard_idx = (ja->discard_idx + 1) % | 
|  | ca->sb.njournal_buckets; | 
|  |  | 
|  | atomic_set(&ja->discard_in_flight, DISCARD_READY); | 
|  | fallthrough; | 
|  |  | 
|  | case DISCARD_READY: | 
|  | if (ja->discard_idx == ja->last_idx) | 
|  | return; | 
|  |  | 
|  | atomic_set(&ja->discard_in_flight, DISCARD_IN_FLIGHT); | 
|  |  | 
|  | bio_init(bio, ca->bdev, bio->bi_inline_vecs, 1, REQ_OP_DISCARD); | 
|  | bio->bi_iter.bi_sector	= bucket_to_sector(ca->set, | 
|  | ca->sb.d[ja->discard_idx]); | 
|  | bio->bi_iter.bi_size	= bucket_bytes(ca); | 
|  | bio->bi_end_io		= journal_discard_endio; | 
|  |  | 
|  | closure_get(&ca->set->cl); | 
|  | INIT_WORK(&ja->discard_work, journal_discard_work); | 
|  | queue_work(bch_journal_wq, &ja->discard_work); | 
|  | } | 
|  | } | 
|  |  | 
|  | static unsigned int free_journal_buckets(struct cache_set *c) | 
|  | { | 
|  | struct journal *j = &c->journal; | 
|  | struct cache *ca = c->cache; | 
|  | struct journal_device *ja = &c->cache->journal; | 
|  | unsigned int n; | 
|  |  | 
|  | /* In case njournal_buckets is not power of 2 */ | 
|  | if (ja->cur_idx >= ja->discard_idx) | 
|  | n = ca->sb.njournal_buckets +  ja->discard_idx - ja->cur_idx; | 
|  | else | 
|  | n = ja->discard_idx - ja->cur_idx; | 
|  |  | 
|  | if (n > (1 + j->do_reserve)) | 
|  | return n - (1 + j->do_reserve); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void journal_reclaim(struct cache_set *c) | 
|  | { | 
|  | struct bkey *k = &c->journal.key; | 
|  | struct cache *ca = c->cache; | 
|  | uint64_t last_seq; | 
|  | struct journal_device *ja = &ca->journal; | 
|  | atomic_t p __maybe_unused; | 
|  |  | 
|  | atomic_long_inc(&c->reclaim); | 
|  |  | 
|  | while (!atomic_read(&fifo_front(&c->journal.pin))) | 
|  | fifo_pop(&c->journal.pin, p); | 
|  |  | 
|  | last_seq = last_seq(&c->journal); | 
|  |  | 
|  | /* Update last_idx */ | 
|  |  | 
|  | while (ja->last_idx != ja->cur_idx && | 
|  | ja->seq[ja->last_idx] < last_seq) | 
|  | ja->last_idx = (ja->last_idx + 1) % | 
|  | ca->sb.njournal_buckets; | 
|  |  | 
|  | do_journal_discard(ca); | 
|  |  | 
|  | if (c->journal.blocks_free) | 
|  | goto out; | 
|  |  | 
|  | if (!free_journal_buckets(c)) | 
|  | goto out; | 
|  |  | 
|  | ja->cur_idx = (ja->cur_idx + 1) % ca->sb.njournal_buckets; | 
|  | k->ptr[0] = MAKE_PTR(0, | 
|  | bucket_to_sector(c, ca->sb.d[ja->cur_idx]), | 
|  | ca->sb.nr_this_dev); | 
|  | atomic_long_inc(&c->reclaimed_journal_buckets); | 
|  |  | 
|  | bkey_init(k); | 
|  | SET_KEY_PTRS(k, 1); | 
|  | c->journal.blocks_free = ca->sb.bucket_size >> c->block_bits; | 
|  |  | 
|  | out: | 
|  | if (!journal_full(&c->journal)) | 
|  | __closure_wake_up(&c->journal.wait); | 
|  | } | 
|  |  | 
|  | void bch_journal_next(struct journal *j) | 
|  | { | 
|  | atomic_t p = { 1 }; | 
|  |  | 
|  | j->cur = (j->cur == j->w) | 
|  | ? &j->w[1] | 
|  | : &j->w[0]; | 
|  |  | 
|  | /* | 
|  | * The fifo_push() needs to happen at the same time as j->seq is | 
|  | * incremented for last_seq() to be calculated correctly | 
|  | */ | 
|  | BUG_ON(!fifo_push(&j->pin, p)); | 
|  | atomic_set(&fifo_back(&j->pin), 1); | 
|  |  | 
|  | j->cur->data->seq	= ++j->seq; | 
|  | j->cur->dirty		= false; | 
|  | j->cur->need_write	= false; | 
|  | j->cur->data->keys	= 0; | 
|  |  | 
|  | if (fifo_full(&j->pin)) | 
|  | pr_debug("journal_pin full (%zu)\n", fifo_used(&j->pin)); | 
|  | } | 
|  |  | 
|  | static void journal_write_endio(struct bio *bio) | 
|  | { | 
|  | struct journal_write *w = bio->bi_private; | 
|  |  | 
|  | cache_set_err_on(bio->bi_status, w->c, "journal io error"); | 
|  | closure_put(&w->c->journal.io); | 
|  | } | 
|  |  | 
|  | static CLOSURE_CALLBACK(journal_write); | 
|  |  | 
|  | static CLOSURE_CALLBACK(journal_write_done) | 
|  | { | 
|  | closure_type(j, struct journal, io); | 
|  | struct journal_write *w = (j->cur == j->w) | 
|  | ? &j->w[1] | 
|  | : &j->w[0]; | 
|  |  | 
|  | __closure_wake_up(&w->wait); | 
|  | continue_at_nobarrier(cl, journal_write, bch_journal_wq); | 
|  | } | 
|  |  | 
|  | static CLOSURE_CALLBACK(journal_write_unlock) | 
|  | __releases(&c->journal.lock) | 
|  | { | 
|  | closure_type(c, struct cache_set, journal.io); | 
|  |  | 
|  | c->journal.io_in_flight = 0; | 
|  | spin_unlock(&c->journal.lock); | 
|  | } | 
|  |  | 
|  | static CLOSURE_CALLBACK(journal_write_unlocked) | 
|  | __releases(c->journal.lock) | 
|  | { | 
|  | closure_type(c, struct cache_set, journal.io); | 
|  | struct cache *ca = c->cache; | 
|  | struct journal_write *w = c->journal.cur; | 
|  | struct bkey *k = &c->journal.key; | 
|  | unsigned int i, sectors = set_blocks(w->data, block_bytes(ca)) * | 
|  | ca->sb.block_size; | 
|  |  | 
|  | struct bio *bio; | 
|  | struct bio_list list; | 
|  |  | 
|  | bio_list_init(&list); | 
|  |  | 
|  | if (!w->need_write) { | 
|  | closure_return_with_destructor(cl, journal_write_unlock); | 
|  | return; | 
|  | } else if (journal_full(&c->journal)) { | 
|  | journal_reclaim(c); | 
|  | spin_unlock(&c->journal.lock); | 
|  |  | 
|  | btree_flush_write(c); | 
|  | continue_at(cl, journal_write, bch_journal_wq); | 
|  | return; | 
|  | } | 
|  |  | 
|  | c->journal.blocks_free -= set_blocks(w->data, block_bytes(ca)); | 
|  |  | 
|  | w->data->btree_level = c->root->level; | 
|  |  | 
|  | bkey_copy(&w->data->btree_root, &c->root->key); | 
|  | bkey_copy(&w->data->uuid_bucket, &c->uuid_bucket); | 
|  |  | 
|  | w->data->prio_bucket[ca->sb.nr_this_dev] = ca->prio_buckets[0]; | 
|  | w->data->magic		= jset_magic(&ca->sb); | 
|  | w->data->version	= BCACHE_JSET_VERSION; | 
|  | w->data->last_seq	= last_seq(&c->journal); | 
|  | w->data->csum		= csum_set(w->data); | 
|  |  | 
|  | for (i = 0; i < KEY_PTRS(k); i++) { | 
|  | ca = c->cache; | 
|  | bio = &ca->journal.bio; | 
|  |  | 
|  | atomic_long_add(sectors, &ca->meta_sectors_written); | 
|  |  | 
|  | bio_reset(bio, ca->bdev, REQ_OP_WRITE | | 
|  | REQ_SYNC | REQ_META | REQ_PREFLUSH | REQ_FUA); | 
|  | bio->bi_iter.bi_sector	= PTR_OFFSET(k, i); | 
|  | bio->bi_iter.bi_size = sectors << 9; | 
|  |  | 
|  | bio->bi_end_io	= journal_write_endio; | 
|  | bio->bi_private = w; | 
|  | bch_bio_map(bio, w->data); | 
|  |  | 
|  | trace_bcache_journal_write(bio, w->data->keys); | 
|  | bio_list_add(&list, bio); | 
|  |  | 
|  | SET_PTR_OFFSET(k, i, PTR_OFFSET(k, i) + sectors); | 
|  |  | 
|  | ca->journal.seq[ca->journal.cur_idx] = w->data->seq; | 
|  | } | 
|  |  | 
|  | /* If KEY_PTRS(k) == 0, this jset gets lost in air */ | 
|  | BUG_ON(i == 0); | 
|  |  | 
|  | atomic_dec_bug(&fifo_back(&c->journal.pin)); | 
|  | bch_journal_next(&c->journal); | 
|  | journal_reclaim(c); | 
|  |  | 
|  | spin_unlock(&c->journal.lock); | 
|  |  | 
|  | while ((bio = bio_list_pop(&list))) | 
|  | closure_bio_submit(c, bio, cl); | 
|  |  | 
|  | continue_at(cl, journal_write_done, NULL); | 
|  | } | 
|  |  | 
|  | static CLOSURE_CALLBACK(journal_write) | 
|  | { | 
|  | closure_type(c, struct cache_set, journal.io); | 
|  |  | 
|  | spin_lock(&c->journal.lock); | 
|  | journal_write_unlocked(&cl->work); | 
|  | } | 
|  |  | 
|  | static void journal_try_write(struct cache_set *c) | 
|  | __releases(c->journal.lock) | 
|  | { | 
|  | struct closure *cl = &c->journal.io; | 
|  | struct journal_write *w = c->journal.cur; | 
|  |  | 
|  | w->need_write = true; | 
|  |  | 
|  | if (!c->journal.io_in_flight) { | 
|  | c->journal.io_in_flight = 1; | 
|  | closure_call(cl, journal_write_unlocked, NULL, &c->cl); | 
|  | } else { | 
|  | spin_unlock(&c->journal.lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | static struct journal_write *journal_wait_for_write(struct cache_set *c, | 
|  | unsigned int nkeys) | 
|  | __acquires(&c->journal.lock) | 
|  | { | 
|  | size_t sectors; | 
|  | struct closure cl; | 
|  | bool wait = false; | 
|  | struct cache *ca = c->cache; | 
|  |  | 
|  | closure_init_stack(&cl); | 
|  |  | 
|  | spin_lock(&c->journal.lock); | 
|  |  | 
|  | while (1) { | 
|  | struct journal_write *w = c->journal.cur; | 
|  |  | 
|  | sectors = __set_blocks(w->data, w->data->keys + nkeys, | 
|  | block_bytes(ca)) * ca->sb.block_size; | 
|  |  | 
|  | if (sectors <= min_t(size_t, | 
|  | c->journal.blocks_free * ca->sb.block_size, | 
|  | PAGE_SECTORS << JSET_BITS)) | 
|  | return w; | 
|  |  | 
|  | if (wait) | 
|  | closure_wait(&c->journal.wait, &cl); | 
|  |  | 
|  | if (!journal_full(&c->journal)) { | 
|  | if (wait) | 
|  | trace_bcache_journal_entry_full(c); | 
|  |  | 
|  | /* | 
|  | * XXX: If we were inserting so many keys that they | 
|  | * won't fit in an _empty_ journal write, we'll | 
|  | * deadlock. For now, handle this in | 
|  | * bch_keylist_realloc() - but something to think about. | 
|  | */ | 
|  | BUG_ON(!w->data->keys); | 
|  |  | 
|  | journal_try_write(c); /* unlocks */ | 
|  | } else { | 
|  | if (wait) | 
|  | trace_bcache_journal_full(c); | 
|  |  | 
|  | journal_reclaim(c); | 
|  | spin_unlock(&c->journal.lock); | 
|  |  | 
|  | btree_flush_write(c); | 
|  | } | 
|  |  | 
|  | closure_sync(&cl); | 
|  | spin_lock(&c->journal.lock); | 
|  | wait = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void journal_write_work(struct work_struct *work) | 
|  | { | 
|  | struct cache_set *c = container_of(to_delayed_work(work), | 
|  | struct cache_set, | 
|  | journal.work); | 
|  | spin_lock(&c->journal.lock); | 
|  | if (c->journal.cur->dirty) | 
|  | journal_try_write(c); | 
|  | else | 
|  | spin_unlock(&c->journal.lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Entry point to the journalling code - bio_insert() and btree_invalidate() | 
|  | * pass bch_journal() a list of keys to be journalled, and then | 
|  | * bch_journal() hands those same keys off to btree_insert_async() | 
|  | */ | 
|  |  | 
|  | atomic_t *bch_journal(struct cache_set *c, | 
|  | struct keylist *keys, | 
|  | struct closure *parent) | 
|  | { | 
|  | struct journal_write *w; | 
|  | atomic_t *ret; | 
|  |  | 
|  | /* No journaling if CACHE_SET_IO_DISABLE set already */ | 
|  | if (unlikely(test_bit(CACHE_SET_IO_DISABLE, &c->flags))) | 
|  | return NULL; | 
|  |  | 
|  | if (!CACHE_SYNC(&c->cache->sb)) | 
|  | return NULL; | 
|  |  | 
|  | w = journal_wait_for_write(c, bch_keylist_nkeys(keys)); | 
|  |  | 
|  | memcpy(bset_bkey_last(w->data), keys->keys, bch_keylist_bytes(keys)); | 
|  | w->data->keys += bch_keylist_nkeys(keys); | 
|  |  | 
|  | ret = &fifo_back(&c->journal.pin); | 
|  | atomic_inc(ret); | 
|  |  | 
|  | if (parent) { | 
|  | closure_wait(&w->wait, parent); | 
|  | journal_try_write(c); | 
|  | } else if (!w->dirty) { | 
|  | w->dirty = true; | 
|  | queue_delayed_work(bch_flush_wq, &c->journal.work, | 
|  | msecs_to_jiffies(c->journal_delay_ms)); | 
|  | spin_unlock(&c->journal.lock); | 
|  | } else { | 
|  | spin_unlock(&c->journal.lock); | 
|  | } | 
|  |  | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void bch_journal_meta(struct cache_set *c, struct closure *cl) | 
|  | { | 
|  | struct keylist keys; | 
|  | atomic_t *ref; | 
|  |  | 
|  | bch_keylist_init(&keys); | 
|  |  | 
|  | ref = bch_journal(c, &keys, cl); | 
|  | if (ref) | 
|  | atomic_dec_bug(ref); | 
|  | } | 
|  |  | 
|  | void bch_journal_free(struct cache_set *c) | 
|  | { | 
|  | free_pages((unsigned long) c->journal.w[1].data, JSET_BITS); | 
|  | free_pages((unsigned long) c->journal.w[0].data, JSET_BITS); | 
|  | free_fifo(&c->journal.pin); | 
|  | } | 
|  |  | 
|  | int bch_journal_alloc(struct cache_set *c) | 
|  | { | 
|  | struct journal *j = &c->journal; | 
|  |  | 
|  | spin_lock_init(&j->lock); | 
|  | spin_lock_init(&j->flush_write_lock); | 
|  | INIT_DELAYED_WORK(&j->work, journal_write_work); | 
|  |  | 
|  | c->journal_delay_ms = 100; | 
|  |  | 
|  | j->w[0].c = c; | 
|  | j->w[1].c = c; | 
|  |  | 
|  | if (!(init_fifo(&j->pin, JOURNAL_PIN, GFP_KERNEL)) || | 
|  | !(j->w[0].data = (void *) __get_free_pages(GFP_KERNEL|__GFP_COMP, JSET_BITS)) || | 
|  | !(j->w[1].data = (void *) __get_free_pages(GFP_KERNEL|__GFP_COMP, JSET_BITS))) | 
|  | return -ENOMEM; | 
|  |  | 
|  | return 0; | 
|  | } |