|  | // SPDX-License-Identifier: GPL-2.0+ | 
|  |  | 
|  | /* | 
|  | * NXP FlexSPI(FSPI) controller driver. | 
|  | * | 
|  | * Copyright 2019-2020 NXP | 
|  | * Copyright 2020 Puresoftware Ltd. | 
|  | * | 
|  | * FlexSPI is a flexsible SPI host controller which supports two SPI | 
|  | * channels and up to 4 external devices. Each channel supports | 
|  | * Single/Dual/Quad/Octal mode data transfer (1/2/4/8 bidirectional | 
|  | * data lines). | 
|  | * | 
|  | * FlexSPI controller is driven by the LUT(Look-up Table) registers | 
|  | * LUT registers are a look-up-table for sequences of instructions. | 
|  | * A valid sequence consists of four LUT registers. | 
|  | * Maximum 32 LUT sequences can be programmed simultaneously. | 
|  | * | 
|  | * LUTs are being created at run-time based on the commands passed | 
|  | * from the spi-mem framework, thus using single LUT index. | 
|  | * | 
|  | * Software triggered Flash read/write access by IP Bus. | 
|  | * | 
|  | * Memory mapped read access by AHB Bus. | 
|  | * | 
|  | * Based on SPI MEM interface and spi-fsl-qspi.c driver. | 
|  | * | 
|  | * Author: | 
|  | *     Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com> | 
|  | *     Boris Brezillon <bbrezillon@kernel.org> | 
|  | *     Frieder Schrempf <frieder.schrempf@kontron.de> | 
|  | */ | 
|  |  | 
|  | #include <linux/acpi.h> | 
|  | #include <linux/bitops.h> | 
|  | #include <linux/bitfield.h> | 
|  | #include <linux/clk.h> | 
|  | #include <linux/completion.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/err.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/io.h> | 
|  | #include <linux/iopoll.h> | 
|  | #include <linux/jiffies.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/mutex.h> | 
|  | #include <linux/of.h> | 
|  | #include <linux/platform_device.h> | 
|  | #include <linux/pinctrl/consumer.h> | 
|  | #include <linux/pm_runtime.h> | 
|  | #include <linux/pm_qos.h> | 
|  | #include <linux/regmap.h> | 
|  | #include <linux/sizes.h> | 
|  | #include <linux/sys_soc.h> | 
|  |  | 
|  | #include <linux/mfd/syscon.h> | 
|  | #include <linux/spi/spi.h> | 
|  | #include <linux/spi/spi-mem.h> | 
|  |  | 
|  | /* runtime pm timeout */ | 
|  | #define FSPI_RPM_TIMEOUT 50	/* 50ms */ | 
|  |  | 
|  | /* Registers used by the driver */ | 
|  | #define FSPI_MCR0			0x00 | 
|  | #define FSPI_MCR0_AHB_TIMEOUT(x)	((x) << 24) | 
|  | #define FSPI_MCR0_IP_TIMEOUT(x)		((x) << 16) | 
|  | #define FSPI_MCR0_LEARN_EN		BIT(15) | 
|  | #define FSPI_MCR0_SCRFRUN_EN		BIT(14) | 
|  | #define FSPI_MCR0_OCTCOMB_EN		BIT(13) | 
|  | #define FSPI_MCR0_DOZE_EN		BIT(12) | 
|  | #define FSPI_MCR0_HSEN			BIT(11) | 
|  | #define FSPI_MCR0_SERCLKDIV		BIT(8) | 
|  | #define FSPI_MCR0_ATDF_EN		BIT(7) | 
|  | #define FSPI_MCR0_ARDF_EN		BIT(6) | 
|  | #define FSPI_MCR0_RXCLKSRC(x)		((x) << 4) | 
|  | #define FSPI_MCR0_END_CFG(x)		((x) << 2) | 
|  | #define FSPI_MCR0_MDIS			BIT(1) | 
|  | #define FSPI_MCR0_SWRST			BIT(0) | 
|  |  | 
|  | #define FSPI_MCR1			0x04 | 
|  | #define FSPI_MCR1_SEQ_TIMEOUT(x)	((x) << 16) | 
|  | #define FSPI_MCR1_AHB_TIMEOUT(x)	(x) | 
|  |  | 
|  | #define FSPI_MCR2			0x08 | 
|  | #define FSPI_MCR2_IDLE_WAIT(x)		((x) << 24) | 
|  | #define FSPI_MCR2_SAMEDEVICEEN		BIT(15) | 
|  | #define FSPI_MCR2_CLRLRPHS		BIT(14) | 
|  | #define FSPI_MCR2_ABRDATSZ		BIT(8) | 
|  | #define FSPI_MCR2_ABRLEARN		BIT(7) | 
|  | #define FSPI_MCR2_ABR_READ		BIT(6) | 
|  | #define FSPI_MCR2_ABRWRITE		BIT(5) | 
|  | #define FSPI_MCR2_ABRDUMMY		BIT(4) | 
|  | #define FSPI_MCR2_ABR_MODE		BIT(3) | 
|  | #define FSPI_MCR2_ABRCADDR		BIT(2) | 
|  | #define FSPI_MCR2_ABRRADDR		BIT(1) | 
|  | #define FSPI_MCR2_ABR_CMD		BIT(0) | 
|  |  | 
|  | #define FSPI_AHBCR			0x0c | 
|  | #define FSPI_AHBCR_RDADDROPT		BIT(6) | 
|  | #define FSPI_AHBCR_PREF_EN		BIT(5) | 
|  | #define FSPI_AHBCR_BUFF_EN		BIT(4) | 
|  | #define FSPI_AHBCR_CACH_EN		BIT(3) | 
|  | #define FSPI_AHBCR_CLRTXBUF		BIT(2) | 
|  | #define FSPI_AHBCR_CLRRXBUF		BIT(1) | 
|  | #define FSPI_AHBCR_PAR_EN		BIT(0) | 
|  |  | 
|  | #define FSPI_INTEN			0x10 | 
|  | #define FSPI_INTEN_SCLKSBWR		BIT(9) | 
|  | #define FSPI_INTEN_SCLKSBRD		BIT(8) | 
|  | #define FSPI_INTEN_DATALRNFL		BIT(7) | 
|  | #define FSPI_INTEN_IPTXWE		BIT(6) | 
|  | #define FSPI_INTEN_IPRXWA		BIT(5) | 
|  | #define FSPI_INTEN_AHBCMDERR		BIT(4) | 
|  | #define FSPI_INTEN_IPCMDERR		BIT(3) | 
|  | #define FSPI_INTEN_AHBCMDGE		BIT(2) | 
|  | #define FSPI_INTEN_IPCMDGE		BIT(1) | 
|  | #define FSPI_INTEN_IPCMDDONE		BIT(0) | 
|  |  | 
|  | #define FSPI_INTR			0x14 | 
|  | #define FSPI_INTR_SCLKSBWR		BIT(9) | 
|  | #define FSPI_INTR_SCLKSBRD		BIT(8) | 
|  | #define FSPI_INTR_DATALRNFL		BIT(7) | 
|  | #define FSPI_INTR_IPTXWE		BIT(6) | 
|  | #define FSPI_INTR_IPRXWA		BIT(5) | 
|  | #define FSPI_INTR_AHBCMDERR		BIT(4) | 
|  | #define FSPI_INTR_IPCMDERR		BIT(3) | 
|  | #define FSPI_INTR_AHBCMDGE		BIT(2) | 
|  | #define FSPI_INTR_IPCMDGE		BIT(1) | 
|  | #define FSPI_INTR_IPCMDDONE		BIT(0) | 
|  |  | 
|  | #define FSPI_LUTKEY			0x18 | 
|  | #define FSPI_LUTKEY_VALUE		0x5AF05AF0 | 
|  |  | 
|  | #define FSPI_LCKCR			0x1C | 
|  |  | 
|  | #define FSPI_LCKER_LOCK			0x1 | 
|  | #define FSPI_LCKER_UNLOCK		0x2 | 
|  |  | 
|  | #define FSPI_BUFXCR_INVALID_MSTRID	0xE | 
|  | #define FSPI_AHBRX_BUF0CR0		0x20 | 
|  | #define FSPI_AHBRX_BUF1CR0		0x24 | 
|  | #define FSPI_AHBRX_BUF2CR0		0x28 | 
|  | #define FSPI_AHBRX_BUF3CR0		0x2C | 
|  | #define FSPI_AHBRX_BUF4CR0		0x30 | 
|  | #define FSPI_AHBRX_BUF5CR0		0x34 | 
|  | #define FSPI_AHBRX_BUF6CR0		0x38 | 
|  | #define FSPI_AHBRX_BUF7CR0		0x3C | 
|  | #define FSPI_AHBRXBUF0CR7_PREF		BIT(31) | 
|  |  | 
|  | #define FSPI_AHBRX_BUF0CR1		0x40 | 
|  | #define FSPI_AHBRX_BUF1CR1		0x44 | 
|  | #define FSPI_AHBRX_BUF2CR1		0x48 | 
|  | #define FSPI_AHBRX_BUF3CR1		0x4C | 
|  | #define FSPI_AHBRX_BUF4CR1		0x50 | 
|  | #define FSPI_AHBRX_BUF5CR1		0x54 | 
|  | #define FSPI_AHBRX_BUF6CR1		0x58 | 
|  | #define FSPI_AHBRX_BUF7CR1		0x5C | 
|  |  | 
|  | #define FSPI_FLSHA1CR0			0x60 | 
|  | #define FSPI_FLSHA2CR0			0x64 | 
|  | #define FSPI_FLSHB1CR0			0x68 | 
|  | #define FSPI_FLSHB2CR0			0x6C | 
|  | #define FSPI_FLSHXCR0_SZ_KB		10 | 
|  | #define FSPI_FLSHXCR0_SZ(x)		((x) >> FSPI_FLSHXCR0_SZ_KB) | 
|  |  | 
|  | #define FSPI_FLSHA1CR1			0x70 | 
|  | #define FSPI_FLSHA2CR1			0x74 | 
|  | #define FSPI_FLSHB1CR1			0x78 | 
|  | #define FSPI_FLSHB2CR1			0x7C | 
|  | #define FSPI_FLSHXCR1_CSINTR(x)		((x) << 16) | 
|  | #define FSPI_FLSHXCR1_CAS(x)		((x) << 11) | 
|  | #define FSPI_FLSHXCR1_WA		BIT(10) | 
|  | #define FSPI_FLSHXCR1_TCSH(x)		((x) << 5) | 
|  | #define FSPI_FLSHXCR1_TCSS(x)		(x) | 
|  |  | 
|  | #define FSPI_FLSHA1CR2			0x80 | 
|  | #define FSPI_FLSHA2CR2			0x84 | 
|  | #define FSPI_FLSHB1CR2			0x88 | 
|  | #define FSPI_FLSHB2CR2			0x8C | 
|  | #define FSPI_FLSHXCR2_CLRINSP		BIT(24) | 
|  | #define FSPI_FLSHXCR2_AWRWAIT		BIT(16) | 
|  | #define FSPI_FLSHXCR2_AWRSEQN_SHIFT	13 | 
|  | #define FSPI_FLSHXCR2_AWRSEQI_SHIFT	8 | 
|  | #define FSPI_FLSHXCR2_ARDSEQN_SHIFT	5 | 
|  | #define FSPI_FLSHXCR2_ARDSEQI_SHIFT	0 | 
|  |  | 
|  | #define FSPI_IPCR0			0xA0 | 
|  |  | 
|  | #define FSPI_IPCR1			0xA4 | 
|  | #define FSPI_IPCR1_IPAREN		BIT(31) | 
|  | #define FSPI_IPCR1_SEQNUM_SHIFT		24 | 
|  | #define FSPI_IPCR1_SEQID_SHIFT		16 | 
|  | #define FSPI_IPCR1_IDATSZ(x)		(x) | 
|  |  | 
|  | #define FSPI_IPCMD			0xB0 | 
|  | #define FSPI_IPCMD_TRG			BIT(0) | 
|  |  | 
|  | #define FSPI_DLPR			0xB4 | 
|  |  | 
|  | #define FSPI_IPRXFCR			0xB8 | 
|  | #define FSPI_IPRXFCR_CLR		BIT(0) | 
|  | #define FSPI_IPRXFCR_DMA_EN		BIT(1) | 
|  | #define FSPI_IPRXFCR_WMRK(x)		((x) << 2) | 
|  |  | 
|  | #define FSPI_IPTXFCR			0xBC | 
|  | #define FSPI_IPTXFCR_CLR		BIT(0) | 
|  | #define FSPI_IPTXFCR_DMA_EN		BIT(1) | 
|  | #define FSPI_IPTXFCR_WMRK(x)		((x) << 2) | 
|  |  | 
|  | #define FSPI_DLLACR			0xC0 | 
|  | #define FSPI_DLLACR_OVRDEN		BIT(8) | 
|  | #define FSPI_DLLACR_SLVDLY(x)		((x) << 3) | 
|  | #define FSPI_DLLACR_DLLRESET		BIT(1) | 
|  | #define FSPI_DLLACR_DLLEN		BIT(0) | 
|  |  | 
|  | #define FSPI_DLLBCR			0xC4 | 
|  | #define FSPI_DLLBCR_OVRDEN		BIT(8) | 
|  | #define FSPI_DLLBCR_SLVDLY(x)		((x) << 3) | 
|  | #define FSPI_DLLBCR_DLLRESET		BIT(1) | 
|  | #define FSPI_DLLBCR_DLLEN		BIT(0) | 
|  |  | 
|  | #define FSPI_STS0			0xE0 | 
|  | #define FSPI_STS0_DLPHB(x)		((x) << 8) | 
|  | #define FSPI_STS0_DLPHA(x)		((x) << 4) | 
|  | #define FSPI_STS0_CMD_SRC(x)		((x) << 2) | 
|  | #define FSPI_STS0_ARB_IDLE		BIT(1) | 
|  | #define FSPI_STS0_SEQ_IDLE		BIT(0) | 
|  |  | 
|  | #define FSPI_STS1			0xE4 | 
|  | #define FSPI_STS1_IP_ERRCD(x)		((x) << 24) | 
|  | #define FSPI_STS1_IP_ERRID(x)		((x) << 16) | 
|  | #define FSPI_STS1_AHB_ERRCD(x)		((x) << 8) | 
|  | #define FSPI_STS1_AHB_ERRID(x)		(x) | 
|  |  | 
|  | #define FSPI_STS2			0xE8 | 
|  | #define FSPI_STS2_BREFLOCK		BIT(17) | 
|  | #define FSPI_STS2_BSLVLOCK		BIT(16) | 
|  | #define FSPI_STS2_AREFLOCK		BIT(1) | 
|  | #define FSPI_STS2_ASLVLOCK		BIT(0) | 
|  | #define FSPI_STS2_AB_LOCK		(FSPI_STS2_BREFLOCK | \ | 
|  | FSPI_STS2_BSLVLOCK | \ | 
|  | FSPI_STS2_AREFLOCK | \ | 
|  | FSPI_STS2_ASLVLOCK) | 
|  |  | 
|  | #define FSPI_AHBSPNST			0xEC | 
|  | #define FSPI_AHBSPNST_DATLFT(x)		((x) << 16) | 
|  | #define FSPI_AHBSPNST_BUFID(x)		((x) << 1) | 
|  | #define FSPI_AHBSPNST_ACTIVE		BIT(0) | 
|  |  | 
|  | #define FSPI_IPRXFSTS			0xF0 | 
|  | #define FSPI_IPRXFSTS_RDCNTR(x)		((x) << 16) | 
|  | #define FSPI_IPRXFSTS_FILL(x)		(x) | 
|  |  | 
|  | #define FSPI_IPTXFSTS			0xF4 | 
|  | #define FSPI_IPTXFSTS_WRCNTR(x)		((x) << 16) | 
|  | #define FSPI_IPTXFSTS_FILL(x)		(x) | 
|  |  | 
|  | #define FSPI_RFDR			0x100 | 
|  | #define FSPI_TFDR			0x180 | 
|  |  | 
|  | #define FSPI_LUT_BASE			0x200 | 
|  |  | 
|  | /* register map end */ | 
|  |  | 
|  | /* Instruction set for the LUT register. */ | 
|  | #define LUT_STOP			0x00 | 
|  | #define LUT_CMD				0x01 | 
|  | #define LUT_ADDR			0x02 | 
|  | #define LUT_CADDR_SDR			0x03 | 
|  | #define LUT_MODE			0x04 | 
|  | #define LUT_MODE2			0x05 | 
|  | #define LUT_MODE4			0x06 | 
|  | #define LUT_MODE8			0x07 | 
|  | #define LUT_NXP_WRITE			0x08 | 
|  | #define LUT_NXP_READ			0x09 | 
|  | #define LUT_LEARN_SDR			0x0A | 
|  | #define LUT_DATSZ_SDR			0x0B | 
|  | #define LUT_DUMMY			0x0C | 
|  | #define LUT_DUMMY_RWDS_SDR		0x0D | 
|  | #define LUT_JMP_ON_CS			0x1F | 
|  | #define LUT_CMD_DDR			0x21 | 
|  | #define LUT_ADDR_DDR			0x22 | 
|  | #define LUT_CADDR_DDR			0x23 | 
|  | #define LUT_MODE_DDR			0x24 | 
|  | #define LUT_MODE2_DDR			0x25 | 
|  | #define LUT_MODE4_DDR			0x26 | 
|  | #define LUT_MODE8_DDR			0x27 | 
|  | #define LUT_WRITE_DDR			0x28 | 
|  | #define LUT_READ_DDR			0x29 | 
|  | #define LUT_LEARN_DDR			0x2A | 
|  | #define LUT_DATSZ_DDR			0x2B | 
|  | #define LUT_DUMMY_DDR			0x2C | 
|  | #define LUT_DUMMY_RWDS_DDR		0x2D | 
|  |  | 
|  | /* | 
|  | * Calculate number of required PAD bits for LUT register. | 
|  | * | 
|  | * The pad stands for the number of IO lines [0:7]. | 
|  | * For example, the octal read needs eight IO lines, | 
|  | * so you should use LUT_PAD(8). This macro | 
|  | * returns 3 i.e. use eight (2^3) IP lines for read. | 
|  | */ | 
|  | #define LUT_PAD(x) (fls(x) - 1) | 
|  |  | 
|  | /* | 
|  | * Macro for constructing the LUT entries with the following | 
|  | * register layout: | 
|  | * | 
|  | *  --------------------------------------------------- | 
|  | *  | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 | | 
|  | *  --------------------------------------------------- | 
|  | */ | 
|  | #define PAD_SHIFT		8 | 
|  | #define INSTR_SHIFT		10 | 
|  | #define OPRND_SHIFT		16 | 
|  |  | 
|  | /* Macros for constructing the LUT register. */ | 
|  | #define LUT_DEF(idx, ins, pad, opr)			  \ | 
|  | ((((ins) << INSTR_SHIFT) | ((pad) << PAD_SHIFT) | \ | 
|  | (opr)) << (((idx) % 2) * OPRND_SHIFT)) | 
|  |  | 
|  | #define POLL_TOUT		5000 | 
|  | #define NXP_FSPI_MAX_CHIPSELECT		4 | 
|  | #define NXP_FSPI_MIN_IOMAP	SZ_4M | 
|  |  | 
|  | #define DCFG_RCWSR1		0x100 | 
|  | #define SYS_PLL_RAT		GENMASK(6, 2) | 
|  |  | 
|  | /* Access flash memory using IP bus only */ | 
|  | #define FSPI_QUIRK_USE_IP_ONLY	BIT(0) | 
|  |  | 
|  | struct nxp_fspi_devtype_data { | 
|  | unsigned int rxfifo; | 
|  | unsigned int txfifo; | 
|  | unsigned int ahb_buf_size; | 
|  | unsigned int quirks; | 
|  | unsigned int lut_num; | 
|  | bool little_endian; | 
|  | }; | 
|  |  | 
|  | static struct nxp_fspi_devtype_data lx2160a_data = { | 
|  | .rxfifo = SZ_512,       /* (64  * 64 bits)  */ | 
|  | .txfifo = SZ_1K,        /* (128 * 64 bits)  */ | 
|  | .ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */ | 
|  | .quirks = 0, | 
|  | .lut_num = 32, | 
|  | .little_endian = true,  /* little-endian    */ | 
|  | }; | 
|  |  | 
|  | static struct nxp_fspi_devtype_data imx8mm_data = { | 
|  | .rxfifo = SZ_512,       /* (64  * 64 bits)  */ | 
|  | .txfifo = SZ_1K,        /* (128 * 64 bits)  */ | 
|  | .ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */ | 
|  | .quirks = 0, | 
|  | .lut_num = 32, | 
|  | .little_endian = true,  /* little-endian    */ | 
|  | }; | 
|  |  | 
|  | static struct nxp_fspi_devtype_data imx8qxp_data = { | 
|  | .rxfifo = SZ_512,       /* (64  * 64 bits)  */ | 
|  | .txfifo = SZ_1K,        /* (128 * 64 bits)  */ | 
|  | .ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */ | 
|  | .quirks = 0, | 
|  | .lut_num = 32, | 
|  | .little_endian = true,  /* little-endian    */ | 
|  | }; | 
|  |  | 
|  | static struct nxp_fspi_devtype_data imx8dxl_data = { | 
|  | .rxfifo = SZ_512,       /* (64  * 64 bits)  */ | 
|  | .txfifo = SZ_1K,        /* (128 * 64 bits)  */ | 
|  | .ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */ | 
|  | .quirks = FSPI_QUIRK_USE_IP_ONLY, | 
|  | .lut_num = 32, | 
|  | .little_endian = true,  /* little-endian    */ | 
|  | }; | 
|  |  | 
|  | static struct nxp_fspi_devtype_data imx8ulp_data = { | 
|  | .rxfifo = SZ_512,       /* (64  * 64 bits)  */ | 
|  | .txfifo = SZ_1K,        /* (128 * 64 bits)  */ | 
|  | .ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */ | 
|  | .quirks = 0, | 
|  | .lut_num = 16, | 
|  | .little_endian = true,  /* little-endian    */ | 
|  | }; | 
|  |  | 
|  | struct nxp_fspi { | 
|  | void __iomem *iobase; | 
|  | void __iomem *ahb_addr; | 
|  | u32 memmap_phy; | 
|  | u32 memmap_phy_size; | 
|  | u32 memmap_start; | 
|  | u32 memmap_len; | 
|  | struct clk *clk, *clk_en; | 
|  | struct device *dev; | 
|  | struct completion c; | 
|  | struct nxp_fspi_devtype_data *devtype_data; | 
|  | struct mutex lock; | 
|  | struct pm_qos_request pm_qos_req; | 
|  | int selected; | 
|  | #define FSPI_NEED_INIT		(1 << 0) | 
|  | int flags; | 
|  | }; | 
|  |  | 
|  | static inline int needs_ip_only(struct nxp_fspi *f) | 
|  | { | 
|  | return f->devtype_data->quirks & FSPI_QUIRK_USE_IP_ONLY; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * R/W functions for big- or little-endian registers: | 
|  | * The FSPI controller's endianness is independent of | 
|  | * the CPU core's endianness. So far, although the CPU | 
|  | * core is little-endian the FSPI controller can use | 
|  | * big-endian or little-endian. | 
|  | */ | 
|  | static void fspi_writel(struct nxp_fspi *f, u32 val, void __iomem *addr) | 
|  | { | 
|  | if (f->devtype_data->little_endian) | 
|  | iowrite32(val, addr); | 
|  | else | 
|  | iowrite32be(val, addr); | 
|  | } | 
|  |  | 
|  | static u32 fspi_readl(struct nxp_fspi *f, void __iomem *addr) | 
|  | { | 
|  | if (f->devtype_data->little_endian) | 
|  | return ioread32(addr); | 
|  | else | 
|  | return ioread32be(addr); | 
|  | } | 
|  |  | 
|  | static irqreturn_t nxp_fspi_irq_handler(int irq, void *dev_id) | 
|  | { | 
|  | struct nxp_fspi *f = dev_id; | 
|  | u32 reg; | 
|  |  | 
|  | /* clear interrupt */ | 
|  | reg = fspi_readl(f, f->iobase + FSPI_INTR); | 
|  | fspi_writel(f, FSPI_INTR_IPCMDDONE, f->iobase + FSPI_INTR); | 
|  |  | 
|  | if (reg & FSPI_INTR_IPCMDDONE) | 
|  | complete(&f->c); | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | static int nxp_fspi_check_buswidth(struct nxp_fspi *f, u8 width) | 
|  | { | 
|  | switch (width) { | 
|  | case 1: | 
|  | case 2: | 
|  | case 4: | 
|  | case 8: | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return -ENOTSUPP; | 
|  | } | 
|  |  | 
|  | static bool nxp_fspi_supports_op(struct spi_mem *mem, | 
|  | const struct spi_mem_op *op) | 
|  | { | 
|  | struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->controller); | 
|  | int ret; | 
|  |  | 
|  | ret = nxp_fspi_check_buswidth(f, op->cmd.buswidth); | 
|  |  | 
|  | if (op->addr.nbytes) | 
|  | ret |= nxp_fspi_check_buswidth(f, op->addr.buswidth); | 
|  |  | 
|  | if (op->dummy.nbytes) | 
|  | ret |= nxp_fspi_check_buswidth(f, op->dummy.buswidth); | 
|  |  | 
|  | if (op->data.nbytes) | 
|  | ret |= nxp_fspi_check_buswidth(f, op->data.buswidth); | 
|  |  | 
|  | if (ret) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * The number of address bytes should be equal to or less than 4 bytes. | 
|  | */ | 
|  | if (op->addr.nbytes > 4) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * If requested address value is greater than controller assigned | 
|  | * memory mapped space, return error as it didn't fit in the range | 
|  | * of assigned address space. | 
|  | */ | 
|  | if (op->addr.val >= f->memmap_phy_size) | 
|  | return false; | 
|  |  | 
|  | /* Max 64 dummy clock cycles supported */ | 
|  | if (op->dummy.buswidth && | 
|  | (op->dummy.nbytes * 8 / op->dummy.buswidth > 64)) | 
|  | return false; | 
|  |  | 
|  | /* Max data length, check controller limits and alignment */ | 
|  | if (op->data.dir == SPI_MEM_DATA_IN && | 
|  | (op->data.nbytes > f->devtype_data->ahb_buf_size || | 
|  | (op->data.nbytes > f->devtype_data->rxfifo - 4 && | 
|  | !IS_ALIGNED(op->data.nbytes, 8)))) | 
|  | return false; | 
|  |  | 
|  | if (op->data.dir == SPI_MEM_DATA_OUT && | 
|  | op->data.nbytes > f->devtype_data->txfifo) | 
|  | return false; | 
|  |  | 
|  | return spi_mem_default_supports_op(mem, op); | 
|  | } | 
|  |  | 
|  | /* Instead of busy looping invoke readl_poll_timeout functionality. */ | 
|  | static int fspi_readl_poll_tout(struct nxp_fspi *f, void __iomem *base, | 
|  | u32 mask, u32 delay_us, | 
|  | u32 timeout_us, bool c) | 
|  | { | 
|  | u32 reg; | 
|  |  | 
|  | if (!f->devtype_data->little_endian) | 
|  | mask = (u32)cpu_to_be32(mask); | 
|  |  | 
|  | if (c) | 
|  | return readl_poll_timeout(base, reg, (reg & mask), | 
|  | delay_us, timeout_us); | 
|  | else | 
|  | return readl_poll_timeout(base, reg, !(reg & mask), | 
|  | delay_us, timeout_us); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the target device content being changed by Write/Erase, need to | 
|  | * invalidate the AHB buffer. This can be achieved by doing the reset | 
|  | * of controller after setting MCR0[SWRESET] bit. | 
|  | */ | 
|  | static inline void nxp_fspi_invalid(struct nxp_fspi *f) | 
|  | { | 
|  | u32 reg; | 
|  | int ret; | 
|  |  | 
|  | reg = fspi_readl(f, f->iobase + FSPI_MCR0); | 
|  | fspi_writel(f, reg | FSPI_MCR0_SWRST, f->iobase + FSPI_MCR0); | 
|  |  | 
|  | /* w1c register, wait unit clear */ | 
|  | ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0, | 
|  | FSPI_MCR0_SWRST, 0, POLL_TOUT, false); | 
|  | WARN_ON(ret); | 
|  | } | 
|  |  | 
|  | static void nxp_fspi_prepare_lut(struct nxp_fspi *f, | 
|  | const struct spi_mem_op *op) | 
|  | { | 
|  | void __iomem *base = f->iobase; | 
|  | u32 lutval[4] = {}; | 
|  | int lutidx = 1, i; | 
|  | u32 lut_offset = (f->devtype_data->lut_num - 1) * 4 * 4; | 
|  | u32 target_lut_reg; | 
|  |  | 
|  | /* cmd */ | 
|  | lutval[0] |= LUT_DEF(0, LUT_CMD, LUT_PAD(op->cmd.buswidth), | 
|  | op->cmd.opcode); | 
|  |  | 
|  | /* addr bytes */ | 
|  | if (op->addr.nbytes) { | 
|  | lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_ADDR, | 
|  | LUT_PAD(op->addr.buswidth), | 
|  | op->addr.nbytes * 8); | 
|  | lutidx++; | 
|  | } | 
|  |  | 
|  | /* dummy bytes, if needed */ | 
|  | if (op->dummy.nbytes) { | 
|  | lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_DUMMY, | 
|  | /* | 
|  | * Due to FlexSPI controller limitation number of PAD for dummy | 
|  | * buswidth needs to be programmed as equal to data buswidth. | 
|  | */ | 
|  | LUT_PAD(op->data.buswidth), | 
|  | op->dummy.nbytes * 8 / | 
|  | op->dummy.buswidth); | 
|  | lutidx++; | 
|  | } | 
|  |  | 
|  | /* read/write data bytes */ | 
|  | if (op->data.nbytes) { | 
|  | lutval[lutidx / 2] |= LUT_DEF(lutidx, | 
|  | op->data.dir == SPI_MEM_DATA_IN ? | 
|  | LUT_NXP_READ : LUT_NXP_WRITE, | 
|  | LUT_PAD(op->data.buswidth), | 
|  | 0); | 
|  | lutidx++; | 
|  | } | 
|  |  | 
|  | /* stop condition. */ | 
|  | lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_STOP, 0, 0); | 
|  |  | 
|  | /* unlock LUT */ | 
|  | fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY); | 
|  | fspi_writel(f, FSPI_LCKER_UNLOCK, f->iobase + FSPI_LCKCR); | 
|  |  | 
|  | /* fill LUT */ | 
|  | for (i = 0; i < ARRAY_SIZE(lutval); i++) { | 
|  | target_lut_reg = FSPI_LUT_BASE + lut_offset + i * 4; | 
|  | fspi_writel(f, lutval[i], base + target_lut_reg); | 
|  | } | 
|  |  | 
|  | dev_dbg(f->dev, "CMD[%02x] lutval[0:%08x 1:%08x 2:%08x 3:%08x], size: 0x%08x\n", | 
|  | op->cmd.opcode, lutval[0], lutval[1], lutval[2], lutval[3], op->data.nbytes); | 
|  |  | 
|  | /* lock LUT */ | 
|  | fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY); | 
|  | fspi_writel(f, FSPI_LCKER_LOCK, f->iobase + FSPI_LCKCR); | 
|  | } | 
|  |  | 
|  | static int nxp_fspi_clk_prep_enable(struct nxp_fspi *f) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (is_acpi_node(dev_fwnode(f->dev))) | 
|  | return 0; | 
|  |  | 
|  | ret = clk_prepare_enable(f->clk_en); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = clk_prepare_enable(f->clk); | 
|  | if (ret) { | 
|  | clk_disable_unprepare(f->clk_en); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void nxp_fspi_clk_disable_unprep(struct nxp_fspi *f) | 
|  | { | 
|  | if (is_acpi_node(dev_fwnode(f->dev))) | 
|  | return; | 
|  |  | 
|  | clk_disable_unprepare(f->clk); | 
|  | clk_disable_unprepare(f->clk_en); | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | static void nxp_fspi_dll_calibration(struct nxp_fspi *f) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | /* Reset the DLL, set the DLLRESET to 1 and then set to 0 */ | 
|  | fspi_writel(f, FSPI_DLLACR_DLLRESET, f->iobase + FSPI_DLLACR); | 
|  | fspi_writel(f, FSPI_DLLBCR_DLLRESET, f->iobase + FSPI_DLLBCR); | 
|  | fspi_writel(f, 0, f->iobase + FSPI_DLLACR); | 
|  | fspi_writel(f, 0, f->iobase + FSPI_DLLBCR); | 
|  |  | 
|  | /* | 
|  | * Enable the DLL calibration mode. | 
|  | * The delay target for slave delay line is: | 
|  | *   ((SLVDLYTARGET+1) * 1/32 * clock cycle of reference clock. | 
|  | * When clock rate > 100MHz, recommend SLVDLYTARGET is 0xF, which | 
|  | * means half of clock cycle of reference clock. | 
|  | */ | 
|  | fspi_writel(f, FSPI_DLLACR_DLLEN | FSPI_DLLACR_SLVDLY(0xF), | 
|  | f->iobase + FSPI_DLLACR); | 
|  | fspi_writel(f, FSPI_DLLBCR_DLLEN | FSPI_DLLBCR_SLVDLY(0xF), | 
|  | f->iobase + FSPI_DLLBCR); | 
|  |  | 
|  | /* Wait to get REF/SLV lock */ | 
|  | ret = fspi_readl_poll_tout(f, f->iobase + FSPI_STS2, FSPI_STS2_AB_LOCK, | 
|  | 0, POLL_TOUT, true); | 
|  | if (ret) | 
|  | dev_warn(f->dev, "DLL lock failed, please fix it!\n"); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * In FlexSPI controller, flash access is based on value of FSPI_FLSHXXCR0 | 
|  | * register and start base address of the target device. | 
|  | * | 
|  | *							    (Higher address) | 
|  | *				--------    <-- FLSHB2CR0 | 
|  | *				|  B2  | | 
|  | *				|      | | 
|  | *	B2 start address -->	--------    <-- FLSHB1CR0 | 
|  | *				|  B1  | | 
|  | *				|      | | 
|  | *	B1 start address -->	--------    <-- FLSHA2CR0 | 
|  | *				|  A2  | | 
|  | *				|      | | 
|  | *	A2 start address -->	--------    <-- FLSHA1CR0 | 
|  | *				|  A1  | | 
|  | *				|      | | 
|  | *	A1 start address -->	--------		    (Lower address) | 
|  | * | 
|  | * | 
|  | * Start base address defines the starting address range for given CS and | 
|  | * FSPI_FLSHXXCR0 defines the size of the target device connected at given CS. | 
|  | * | 
|  | * But, different targets are having different combinations of number of CS, | 
|  | * some targets only have single CS or two CS covering controller's full | 
|  | * memory mapped space area. | 
|  | * Thus, implementation is being done as independent of the size and number | 
|  | * of the connected target device. | 
|  | * Assign controller memory mapped space size as the size to the connected | 
|  | * target device. | 
|  | * Mark FLSHxxCR0 as zero initially and then assign value only to the selected | 
|  | * chip-select Flash configuration register. | 
|  | * | 
|  | * For e.g. to access CS2 (B1), FLSHB1CR0 register would be equal to the | 
|  | * memory mapped size of the controller. | 
|  | * Value for rest of the CS FLSHxxCR0 register would be zero. | 
|  | * | 
|  | */ | 
|  | static void nxp_fspi_select_mem(struct nxp_fspi *f, struct spi_device *spi, | 
|  | const struct spi_mem_op *op) | 
|  | { | 
|  | unsigned long rate = op->max_freq; | 
|  | int ret; | 
|  | uint64_t size_kb; | 
|  |  | 
|  | /* | 
|  | * Return, if previously selected target device is same as current | 
|  | * requested target device. | 
|  | */ | 
|  | if (f->selected == spi_get_chipselect(spi, 0)) | 
|  | return; | 
|  |  | 
|  | /* Reset FLSHxxCR0 registers */ | 
|  | fspi_writel(f, 0, f->iobase + FSPI_FLSHA1CR0); | 
|  | fspi_writel(f, 0, f->iobase + FSPI_FLSHA2CR0); | 
|  | fspi_writel(f, 0, f->iobase + FSPI_FLSHB1CR0); | 
|  | fspi_writel(f, 0, f->iobase + FSPI_FLSHB2CR0); | 
|  |  | 
|  | /* Assign controller memory mapped space as size, KBytes, of flash. */ | 
|  | size_kb = FSPI_FLSHXCR0_SZ(f->memmap_phy_size); | 
|  |  | 
|  | fspi_writel(f, size_kb, f->iobase + FSPI_FLSHA1CR0 + | 
|  | 4 * spi_get_chipselect(spi, 0)); | 
|  |  | 
|  | dev_dbg(f->dev, "Target device [CS:%x] selected\n", spi_get_chipselect(spi, 0)); | 
|  |  | 
|  | nxp_fspi_clk_disable_unprep(f); | 
|  |  | 
|  | ret = clk_set_rate(f->clk, rate); | 
|  | if (ret) | 
|  | return; | 
|  |  | 
|  | ret = nxp_fspi_clk_prep_enable(f); | 
|  | if (ret) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * If clock rate > 100MHz, then switch from DLL override mode to | 
|  | * DLL calibration mode. | 
|  | */ | 
|  | if (rate > 100000000) | 
|  | nxp_fspi_dll_calibration(f); | 
|  |  | 
|  | f->selected = spi_get_chipselect(spi, 0); | 
|  | } | 
|  |  | 
|  | static int nxp_fspi_read_ahb(struct nxp_fspi *f, const struct spi_mem_op *op) | 
|  | { | 
|  | u32 start = op->addr.val; | 
|  | u32 len = op->data.nbytes; | 
|  |  | 
|  | /* if necessary, ioremap before AHB read */ | 
|  | if ((!f->ahb_addr) || start < f->memmap_start || | 
|  | start + len > f->memmap_start + f->memmap_len) { | 
|  | if (f->ahb_addr) | 
|  | iounmap(f->ahb_addr); | 
|  |  | 
|  | f->memmap_start = start; | 
|  | f->memmap_len = max_t(u32, len, NXP_FSPI_MIN_IOMAP); | 
|  |  | 
|  | f->ahb_addr = ioremap(f->memmap_phy + f->memmap_start, | 
|  | f->memmap_len); | 
|  |  | 
|  | if (!f->ahb_addr) { | 
|  | dev_err(f->dev, "failed to alloc memory\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Read out the data directly from the AHB buffer. */ | 
|  | memcpy_fromio(op->data.buf.in, | 
|  | f->ahb_addr + start - f->memmap_start, len); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void nxp_fspi_fill_txfifo(struct nxp_fspi *f, | 
|  | const struct spi_mem_op *op) | 
|  | { | 
|  | void __iomem *base = f->iobase; | 
|  | int i, ret; | 
|  | u8 *buf = (u8 *) op->data.buf.out; | 
|  |  | 
|  | /* clear the TX FIFO. */ | 
|  | fspi_writel(f, FSPI_IPTXFCR_CLR, base + FSPI_IPTXFCR); | 
|  |  | 
|  | /* | 
|  | * Default value of water mark level is 8 bytes, hence in single | 
|  | * write request controller can write max 8 bytes of data. | 
|  | */ | 
|  |  | 
|  | for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 8); i += 8) { | 
|  | /* Wait for TXFIFO empty */ | 
|  | ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR, | 
|  | FSPI_INTR_IPTXWE, 0, | 
|  | POLL_TOUT, true); | 
|  | WARN_ON(ret); | 
|  |  | 
|  | fspi_writel(f, *(u32 *) (buf + i), base + FSPI_TFDR); | 
|  | fspi_writel(f, *(u32 *) (buf + i + 4), base + FSPI_TFDR + 4); | 
|  | fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR); | 
|  | } | 
|  |  | 
|  | if (i < op->data.nbytes) { | 
|  | u32 data = 0; | 
|  | int j; | 
|  | int remaining = op->data.nbytes - i; | 
|  | /* Wait for TXFIFO empty */ | 
|  | ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR, | 
|  | FSPI_INTR_IPTXWE, 0, | 
|  | POLL_TOUT, true); | 
|  | WARN_ON(ret); | 
|  |  | 
|  | for (j = 0; j < ALIGN(remaining, 4); j += 4) { | 
|  | memcpy(&data, buf + i + j, min_t(int, 4, remaining - j)); | 
|  | fspi_writel(f, data, base + FSPI_TFDR + j); | 
|  | } | 
|  | fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void nxp_fspi_read_rxfifo(struct nxp_fspi *f, | 
|  | const struct spi_mem_op *op) | 
|  | { | 
|  | void __iomem *base = f->iobase; | 
|  | int i, ret; | 
|  | int len = op->data.nbytes; | 
|  | u8 *buf = (u8 *) op->data.buf.in; | 
|  |  | 
|  | /* | 
|  | * Default value of water mark level is 8 bytes, hence in single | 
|  | * read request controller can read max 8 bytes of data. | 
|  | */ | 
|  | for (i = 0; i < ALIGN_DOWN(len, 8); i += 8) { | 
|  | /* Wait for RXFIFO available */ | 
|  | ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR, | 
|  | FSPI_INTR_IPRXWA, 0, | 
|  | POLL_TOUT, true); | 
|  | WARN_ON(ret); | 
|  |  | 
|  | *(u32 *)(buf + i) = fspi_readl(f, base + FSPI_RFDR); | 
|  | *(u32 *)(buf + i + 4) = fspi_readl(f, base + FSPI_RFDR + 4); | 
|  | /* move the FIFO pointer */ | 
|  | fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR); | 
|  | } | 
|  |  | 
|  | if (i < len) { | 
|  | u32 tmp; | 
|  | int size, j; | 
|  |  | 
|  | buf = op->data.buf.in + i; | 
|  | /* Wait for RXFIFO available */ | 
|  | ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR, | 
|  | FSPI_INTR_IPRXWA, 0, | 
|  | POLL_TOUT, true); | 
|  | WARN_ON(ret); | 
|  |  | 
|  | len = op->data.nbytes - i; | 
|  | for (j = 0; j < op->data.nbytes - i; j += 4) { | 
|  | tmp = fspi_readl(f, base + FSPI_RFDR + j); | 
|  | size = min(len, 4); | 
|  | memcpy(buf + j, &tmp, size); | 
|  | len -= size; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* invalid the RXFIFO */ | 
|  | fspi_writel(f, FSPI_IPRXFCR_CLR, base + FSPI_IPRXFCR); | 
|  | /* move the FIFO pointer */ | 
|  | fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR); | 
|  | } | 
|  |  | 
|  | static int nxp_fspi_do_op(struct nxp_fspi *f, const struct spi_mem_op *op) | 
|  | { | 
|  | void __iomem *base = f->iobase; | 
|  | int seqnum = 0; | 
|  | int err = 0; | 
|  | u32 reg, seqid_lut; | 
|  |  | 
|  | reg = fspi_readl(f, base + FSPI_IPRXFCR); | 
|  | /* invalid RXFIFO first */ | 
|  | reg &= ~FSPI_IPRXFCR_DMA_EN; | 
|  | reg = reg | FSPI_IPRXFCR_CLR; | 
|  | fspi_writel(f, reg, base + FSPI_IPRXFCR); | 
|  |  | 
|  | init_completion(&f->c); | 
|  |  | 
|  | fspi_writel(f, op->addr.val, base + FSPI_IPCR0); | 
|  | /* | 
|  | * Always start the sequence at the same index since we update | 
|  | * the LUT at each exec_op() call. And also specify the DATA | 
|  | * length, since it's has not been specified in the LUT. | 
|  | */ | 
|  | seqid_lut = f->devtype_data->lut_num - 1; | 
|  | fspi_writel(f, op->data.nbytes | | 
|  | (seqid_lut << FSPI_IPCR1_SEQID_SHIFT) | | 
|  | (seqnum << FSPI_IPCR1_SEQNUM_SHIFT), | 
|  | base + FSPI_IPCR1); | 
|  |  | 
|  | /* Trigger the LUT now. */ | 
|  | fspi_writel(f, FSPI_IPCMD_TRG, base + FSPI_IPCMD); | 
|  |  | 
|  | /* Wait for the interrupt. */ | 
|  | if (!wait_for_completion_timeout(&f->c, msecs_to_jiffies(1000))) | 
|  | err = -ETIMEDOUT; | 
|  |  | 
|  | /* Invoke IP data read, if request is of data read. */ | 
|  | if (!err && op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN) | 
|  | nxp_fspi_read_rxfifo(f, op); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int nxp_fspi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op) | 
|  | { | 
|  | struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->controller); | 
|  | int err = 0; | 
|  |  | 
|  | guard(mutex)(&f->lock); | 
|  |  | 
|  | err = pm_runtime_get_sync(f->dev); | 
|  | if (err < 0) { | 
|  | dev_err(f->dev, "Failed to enable clock %d\n", __LINE__); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* Wait for controller being ready. */ | 
|  | err = fspi_readl_poll_tout(f, f->iobase + FSPI_STS0, | 
|  | FSPI_STS0_ARB_IDLE, 1, POLL_TOUT, true); | 
|  | WARN_ON(err); | 
|  |  | 
|  | nxp_fspi_select_mem(f, mem->spi, op); | 
|  |  | 
|  | nxp_fspi_prepare_lut(f, op); | 
|  | /* | 
|  | * If we have large chunks of data, we read them through the AHB bus by | 
|  | * accessing the mapped memory. In all other cases we use IP commands | 
|  | * to access the flash. Read via AHB bus may be corrupted due to | 
|  | * existence of an errata and therefore discard AHB read in such cases. | 
|  | */ | 
|  | if (op->data.nbytes > (f->devtype_data->rxfifo - 4) && | 
|  | op->data.dir == SPI_MEM_DATA_IN && | 
|  | !needs_ip_only(f)) { | 
|  | err = nxp_fspi_read_ahb(f, op); | 
|  | } else { | 
|  | if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT) | 
|  | nxp_fspi_fill_txfifo(f, op); | 
|  |  | 
|  | err = nxp_fspi_do_op(f, op); | 
|  | } | 
|  |  | 
|  | /* Invalidate the data in the AHB buffer. */ | 
|  | nxp_fspi_invalid(f); | 
|  |  | 
|  | pm_runtime_put_autosuspend(f->dev); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int nxp_fspi_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op) | 
|  | { | 
|  | struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->controller); | 
|  |  | 
|  | if (op->data.dir == SPI_MEM_DATA_OUT) { | 
|  | if (op->data.nbytes > f->devtype_data->txfifo) | 
|  | op->data.nbytes = f->devtype_data->txfifo; | 
|  | } else { | 
|  | if (op->data.nbytes > f->devtype_data->ahb_buf_size) | 
|  | op->data.nbytes = f->devtype_data->ahb_buf_size; | 
|  | else if (op->data.nbytes > (f->devtype_data->rxfifo - 4)) | 
|  | op->data.nbytes = ALIGN_DOWN(op->data.nbytes, 8); | 
|  | } | 
|  |  | 
|  | /* Limit data bytes to RX FIFO in case of IP read only */ | 
|  | if (op->data.dir == SPI_MEM_DATA_IN && | 
|  | needs_ip_only(f) && | 
|  | op->data.nbytes > f->devtype_data->rxfifo) | 
|  | op->data.nbytes = f->devtype_data->rxfifo; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void erratum_err050568(struct nxp_fspi *f) | 
|  | { | 
|  | static const struct soc_device_attribute ls1028a_soc_attr[] = { | 
|  | { .family = "QorIQ LS1028A" }, | 
|  | { /* sentinel */ } | 
|  | }; | 
|  | struct regmap *map; | 
|  | u32 val, sys_pll_ratio; | 
|  | int ret; | 
|  |  | 
|  | /* Check for LS1028A family */ | 
|  | if (!soc_device_match(ls1028a_soc_attr)) { | 
|  | dev_dbg(f->dev, "Errata applicable only for LS1028A\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | map = syscon_regmap_lookup_by_compatible("fsl,ls1028a-dcfg"); | 
|  | if (IS_ERR(map)) { | 
|  | dev_err(f->dev, "No syscon regmap\n"); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | ret = regmap_read(map, DCFG_RCWSR1, &val); | 
|  | if (ret < 0) | 
|  | goto err; | 
|  |  | 
|  | sys_pll_ratio = FIELD_GET(SYS_PLL_RAT, val); | 
|  | dev_dbg(f->dev, "val: 0x%08x, sys_pll_ratio: %d\n", val, sys_pll_ratio); | 
|  |  | 
|  | /* Use IP bus only if platform clock is 300MHz */ | 
|  | if (sys_pll_ratio == 3) | 
|  | f->devtype_data->quirks |= FSPI_QUIRK_USE_IP_ONLY; | 
|  |  | 
|  | return; | 
|  |  | 
|  | err: | 
|  | dev_err(f->dev, "Errata cannot be executed. Read via IP bus may not work\n"); | 
|  | } | 
|  |  | 
|  | static int nxp_fspi_default_setup(struct nxp_fspi *f) | 
|  | { | 
|  | void __iomem *base = f->iobase; | 
|  | int ret, i; | 
|  | u32 reg, seqid_lut; | 
|  |  | 
|  | /* disable and unprepare clock to avoid glitch pass to controller */ | 
|  | nxp_fspi_clk_disable_unprep(f); | 
|  |  | 
|  | /* the default frequency, we will change it later if necessary. */ | 
|  | ret = clk_set_rate(f->clk, 20000000); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = nxp_fspi_clk_prep_enable(f); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* | 
|  | * ERR050568: Flash access by FlexSPI AHB command may not work with | 
|  | * platform frequency equal to 300 MHz on LS1028A. | 
|  | * LS1028A reuses LX2160A compatible entry. Make errata applicable for | 
|  | * Layerscape LS1028A platform. | 
|  | */ | 
|  | if (of_device_is_compatible(f->dev->of_node, "nxp,lx2160a-fspi")) | 
|  | erratum_err050568(f); | 
|  |  | 
|  | /* Reset the module */ | 
|  | /* w1c register, wait unit clear */ | 
|  | ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0, | 
|  | FSPI_MCR0_SWRST, 0, POLL_TOUT, false); | 
|  | WARN_ON(ret); | 
|  |  | 
|  | /* Disable the module */ | 
|  | fspi_writel(f, FSPI_MCR0_MDIS, base + FSPI_MCR0); | 
|  |  | 
|  | /* | 
|  | * Config the DLL register to default value, enable the target clock delay | 
|  | * line delay cell override mode, and use 1 fixed delay cell in DLL delay | 
|  | * chain, this is the suggested setting when clock rate < 100MHz. | 
|  | */ | 
|  | fspi_writel(f, FSPI_DLLACR_OVRDEN, base + FSPI_DLLACR); | 
|  | fspi_writel(f, FSPI_DLLBCR_OVRDEN, base + FSPI_DLLBCR); | 
|  |  | 
|  | /* enable module */ | 
|  | fspi_writel(f, FSPI_MCR0_AHB_TIMEOUT(0xFF) | | 
|  | FSPI_MCR0_IP_TIMEOUT(0xFF) | (u32) FSPI_MCR0_OCTCOMB_EN, | 
|  | base + FSPI_MCR0); | 
|  |  | 
|  | /* | 
|  | * Disable same device enable bit and configure all target devices | 
|  | * independently. | 
|  | */ | 
|  | reg = fspi_readl(f, f->iobase + FSPI_MCR2); | 
|  | reg = reg & ~(FSPI_MCR2_SAMEDEVICEEN); | 
|  | fspi_writel(f, reg, base + FSPI_MCR2); | 
|  |  | 
|  | /* AHB configuration for access buffer 0~7. */ | 
|  | for (i = 0; i < 7; i++) | 
|  | fspi_writel(f, 0, base + FSPI_AHBRX_BUF0CR0 + 4 * i); | 
|  |  | 
|  | /* | 
|  | * Set ADATSZ with the maximum AHB buffer size to improve the read | 
|  | * performance. | 
|  | */ | 
|  | fspi_writel(f, (f->devtype_data->ahb_buf_size / 8 | | 
|  | FSPI_AHBRXBUF0CR7_PREF), base + FSPI_AHBRX_BUF7CR0); | 
|  |  | 
|  | /* prefetch and no start address alignment limitation */ | 
|  | fspi_writel(f, FSPI_AHBCR_PREF_EN | FSPI_AHBCR_RDADDROPT, | 
|  | base + FSPI_AHBCR); | 
|  |  | 
|  | /* Reset the FLSHxCR1 registers. */ | 
|  | reg = FSPI_FLSHXCR1_TCSH(0x3) | FSPI_FLSHXCR1_TCSS(0x3); | 
|  | fspi_writel(f, reg, base + FSPI_FLSHA1CR1); | 
|  | fspi_writel(f, reg, base + FSPI_FLSHA2CR1); | 
|  | fspi_writel(f, reg, base + FSPI_FLSHB1CR1); | 
|  | fspi_writel(f, reg, base + FSPI_FLSHB2CR1); | 
|  |  | 
|  | /* | 
|  | * The driver only uses one single LUT entry, that is updated on | 
|  | * each call of exec_op(). Index 0 is preset at boot with a basic | 
|  | * read operation, so let's use the last entry. | 
|  | */ | 
|  | seqid_lut = f->devtype_data->lut_num - 1; | 
|  | /* AHB Read - Set lut sequence ID for all CS. */ | 
|  | fspi_writel(f, seqid_lut, base + FSPI_FLSHA1CR2); | 
|  | fspi_writel(f, seqid_lut, base + FSPI_FLSHA2CR2); | 
|  | fspi_writel(f, seqid_lut, base + FSPI_FLSHB1CR2); | 
|  | fspi_writel(f, seqid_lut, base + FSPI_FLSHB2CR2); | 
|  |  | 
|  | f->selected = -1; | 
|  |  | 
|  | /* enable the interrupt */ | 
|  | fspi_writel(f, FSPI_INTEN_IPCMDDONE, base + FSPI_INTEN); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const char *nxp_fspi_get_name(struct spi_mem *mem) | 
|  | { | 
|  | struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->controller); | 
|  | struct device *dev = &mem->spi->dev; | 
|  | const char *name; | 
|  |  | 
|  | // Set custom name derived from the platform_device of the controller. | 
|  | if (of_get_available_child_count(f->dev->of_node) == 1) | 
|  | return dev_name(f->dev); | 
|  |  | 
|  | name = devm_kasprintf(dev, GFP_KERNEL, | 
|  | "%s-%d", dev_name(f->dev), | 
|  | spi_get_chipselect(mem->spi, 0)); | 
|  |  | 
|  | if (!name) { | 
|  | dev_err(dev, "failed to get memory for custom flash name\n"); | 
|  | return ERR_PTR(-ENOMEM); | 
|  | } | 
|  |  | 
|  | return name; | 
|  | } | 
|  |  | 
|  | static const struct spi_controller_mem_ops nxp_fspi_mem_ops = { | 
|  | .adjust_op_size = nxp_fspi_adjust_op_size, | 
|  | .supports_op = nxp_fspi_supports_op, | 
|  | .exec_op = nxp_fspi_exec_op, | 
|  | .get_name = nxp_fspi_get_name, | 
|  | }; | 
|  |  | 
|  | static const struct spi_controller_mem_caps nxp_fspi_mem_caps = { | 
|  | .per_op_freq = true, | 
|  | }; | 
|  |  | 
|  | static void nxp_fspi_cleanup(void *data) | 
|  | { | 
|  | struct nxp_fspi *f = data; | 
|  |  | 
|  | /* enable clock first since there is register access */ | 
|  | pm_runtime_get_sync(f->dev); | 
|  |  | 
|  | /* disable the hardware */ | 
|  | fspi_writel(f, FSPI_MCR0_MDIS, f->iobase + FSPI_MCR0); | 
|  |  | 
|  | pm_runtime_disable(f->dev); | 
|  | pm_runtime_put_noidle(f->dev); | 
|  | nxp_fspi_clk_disable_unprep(f); | 
|  |  | 
|  | if (f->ahb_addr) | 
|  | iounmap(f->ahb_addr); | 
|  | } | 
|  |  | 
|  | static int nxp_fspi_probe(struct platform_device *pdev) | 
|  | { | 
|  | struct spi_controller *ctlr; | 
|  | struct device *dev = &pdev->dev; | 
|  | struct device_node *np = dev->of_node; | 
|  | struct resource *res; | 
|  | struct nxp_fspi *f; | 
|  | int ret, irq; | 
|  | u32 reg; | 
|  |  | 
|  | ctlr = devm_spi_alloc_host(&pdev->dev, sizeof(*f)); | 
|  | if (!ctlr) | 
|  | return -ENOMEM; | 
|  |  | 
|  | ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL | | 
|  | SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL; | 
|  |  | 
|  | f = spi_controller_get_devdata(ctlr); | 
|  | f->dev = dev; | 
|  | f->devtype_data = (struct nxp_fspi_devtype_data *)device_get_match_data(dev); | 
|  | if (!f->devtype_data) | 
|  | return -ENODEV; | 
|  |  | 
|  | platform_set_drvdata(pdev, f); | 
|  |  | 
|  | /* find the resources - configuration register address space */ | 
|  | if (is_acpi_node(dev_fwnode(f->dev))) | 
|  | f->iobase = devm_platform_ioremap_resource(pdev, 0); | 
|  | else | 
|  | f->iobase = devm_platform_ioremap_resource_byname(pdev, "fspi_base"); | 
|  | if (IS_ERR(f->iobase)) | 
|  | return PTR_ERR(f->iobase); | 
|  |  | 
|  | /* find the resources - controller memory mapped space */ | 
|  | if (is_acpi_node(dev_fwnode(f->dev))) | 
|  | res = platform_get_resource(pdev, IORESOURCE_MEM, 1); | 
|  | else | 
|  | res = platform_get_resource_byname(pdev, | 
|  | IORESOURCE_MEM, "fspi_mmap"); | 
|  | if (!res) | 
|  | return -ENODEV; | 
|  |  | 
|  | /* assign memory mapped starting address and mapped size. */ | 
|  | f->memmap_phy = res->start; | 
|  | f->memmap_phy_size = resource_size(res); | 
|  |  | 
|  | /* find the clocks */ | 
|  | if (dev_of_node(&pdev->dev)) { | 
|  | f->clk_en = devm_clk_get(dev, "fspi_en"); | 
|  | if (IS_ERR(f->clk_en)) | 
|  | return PTR_ERR(f->clk_en); | 
|  |  | 
|  | f->clk = devm_clk_get(dev, "fspi"); | 
|  | if (IS_ERR(f->clk)) | 
|  | return PTR_ERR(f->clk); | 
|  | } | 
|  |  | 
|  | /* find the irq */ | 
|  | irq = platform_get_irq(pdev, 0); | 
|  | if (irq < 0) | 
|  | return dev_err_probe(dev, irq, "Failed to get irq source"); | 
|  |  | 
|  | pm_runtime_enable(dev); | 
|  | pm_runtime_set_autosuspend_delay(dev, FSPI_RPM_TIMEOUT); | 
|  | pm_runtime_use_autosuspend(dev); | 
|  |  | 
|  | /* enable clock */ | 
|  | ret = pm_runtime_get_sync(f->dev); | 
|  | if (ret < 0) | 
|  | return dev_err_probe(dev, ret, "Failed to enable clock"); | 
|  |  | 
|  | /* Clear potential interrupts */ | 
|  | reg = fspi_readl(f, f->iobase + FSPI_INTR); | 
|  | if (reg) | 
|  | fspi_writel(f, reg, f->iobase + FSPI_INTR); | 
|  |  | 
|  | nxp_fspi_default_setup(f); | 
|  |  | 
|  | ret = pm_runtime_put_sync(dev); | 
|  | if (ret < 0) | 
|  | return dev_err_probe(dev, ret, "Failed to disable clock"); | 
|  |  | 
|  | ret = devm_request_irq(dev, irq, | 
|  | nxp_fspi_irq_handler, 0, pdev->name, f); | 
|  | if (ret) | 
|  | return dev_err_probe(dev, ret, "Failed to request irq\n"); | 
|  |  | 
|  | ret = devm_mutex_init(dev, &f->lock); | 
|  | if (ret) | 
|  | return dev_err_probe(dev, ret, "Failed to initialize lock\n"); | 
|  |  | 
|  | ctlr->bus_num = -1; | 
|  | ctlr->num_chipselect = NXP_FSPI_MAX_CHIPSELECT; | 
|  | ctlr->mem_ops = &nxp_fspi_mem_ops; | 
|  | ctlr->mem_caps = &nxp_fspi_mem_caps; | 
|  | ctlr->dev.of_node = np; | 
|  |  | 
|  | ret = devm_add_action_or_reset(dev, nxp_fspi_cleanup, f); | 
|  | if (ret) | 
|  | return dev_err_probe(dev, ret, "Failed to register nxp_fspi_cleanup\n"); | 
|  |  | 
|  | return devm_spi_register_controller(&pdev->dev, ctlr); | 
|  | } | 
|  |  | 
|  | static int nxp_fspi_runtime_suspend(struct device *dev) | 
|  | { | 
|  | struct nxp_fspi *f = dev_get_drvdata(dev); | 
|  |  | 
|  | nxp_fspi_clk_disable_unprep(f); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int nxp_fspi_runtime_resume(struct device *dev) | 
|  | { | 
|  | struct nxp_fspi *f = dev_get_drvdata(dev); | 
|  | int ret; | 
|  |  | 
|  | ret = nxp_fspi_clk_prep_enable(f); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (f->flags & FSPI_NEED_INIT) { | 
|  | nxp_fspi_default_setup(f); | 
|  | ret = pinctrl_pm_select_default_state(dev); | 
|  | if (ret) | 
|  | dev_err(dev, "select flexspi default pinctrl failed!\n"); | 
|  | f->flags &= ~FSPI_NEED_INIT; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int nxp_fspi_suspend(struct device *dev) | 
|  | { | 
|  | struct nxp_fspi *f = dev_get_drvdata(dev); | 
|  | int ret; | 
|  |  | 
|  | ret = pinctrl_pm_select_sleep_state(dev); | 
|  | if (ret) { | 
|  | dev_err(dev, "select flexspi sleep pinctrl failed!\n"); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | f->flags |= FSPI_NEED_INIT; | 
|  |  | 
|  | return pm_runtime_force_suspend(dev); | 
|  | } | 
|  |  | 
|  | static const struct dev_pm_ops nxp_fspi_pm_ops = { | 
|  | RUNTIME_PM_OPS(nxp_fspi_runtime_suspend, nxp_fspi_runtime_resume, NULL) | 
|  | SYSTEM_SLEEP_PM_OPS(nxp_fspi_suspend, pm_runtime_force_resume) | 
|  | }; | 
|  |  | 
|  | static const struct of_device_id nxp_fspi_dt_ids[] = { | 
|  | { .compatible = "nxp,lx2160a-fspi", .data = (void *)&lx2160a_data, }, | 
|  | { .compatible = "nxp,imx8mm-fspi", .data = (void *)&imx8mm_data, }, | 
|  | { .compatible = "nxp,imx8mp-fspi", .data = (void *)&imx8mm_data, }, | 
|  | { .compatible = "nxp,imx8qxp-fspi", .data = (void *)&imx8qxp_data, }, | 
|  | { .compatible = "nxp,imx8dxl-fspi", .data = (void *)&imx8dxl_data, }, | 
|  | { .compatible = "nxp,imx8ulp-fspi", .data = (void *)&imx8ulp_data, }, | 
|  | { /* sentinel */ } | 
|  | }; | 
|  | MODULE_DEVICE_TABLE(of, nxp_fspi_dt_ids); | 
|  |  | 
|  | #ifdef CONFIG_ACPI | 
|  | static const struct acpi_device_id nxp_fspi_acpi_ids[] = { | 
|  | { "NXP0009", .driver_data = (kernel_ulong_t)&lx2160a_data, }, | 
|  | {} | 
|  | }; | 
|  | MODULE_DEVICE_TABLE(acpi, nxp_fspi_acpi_ids); | 
|  | #endif | 
|  |  | 
|  | static struct platform_driver nxp_fspi_driver = { | 
|  | .driver = { | 
|  | .name	= "nxp-fspi", | 
|  | .of_match_table = nxp_fspi_dt_ids, | 
|  | .acpi_match_table = ACPI_PTR(nxp_fspi_acpi_ids), | 
|  | .pm = pm_ptr(&nxp_fspi_pm_ops), | 
|  | }, | 
|  | .probe          = nxp_fspi_probe, | 
|  | }; | 
|  | module_platform_driver(nxp_fspi_driver); | 
|  |  | 
|  | MODULE_DESCRIPTION("NXP FSPI Controller Driver"); | 
|  | MODULE_AUTHOR("NXP Semiconductor"); | 
|  | MODULE_AUTHOR("Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>"); | 
|  | MODULE_AUTHOR("Boris Brezillon <bbrezillon@kernel.org>"); | 
|  | MODULE_AUTHOR("Frieder Schrempf <frieder.schrempf@kontron.de>"); | 
|  | MODULE_LICENSE("GPL v2"); |