| /* | 
 |  *  fs/userfaultfd.c | 
 |  * | 
 |  *  Copyright (C) 2007  Davide Libenzi <davidel@xmailserver.org> | 
 |  *  Copyright (C) 2008-2009 Red Hat, Inc. | 
 |  *  Copyright (C) 2015  Red Hat, Inc. | 
 |  * | 
 |  *  This work is licensed under the terms of the GNU GPL, version 2. See | 
 |  *  the COPYING file in the top-level directory. | 
 |  * | 
 |  *  Some part derived from fs/eventfd.c (anon inode setup) and | 
 |  *  mm/ksm.c (mm hashing). | 
 |  */ | 
 |  | 
 | #include <linux/hashtable.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/poll.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/seq_file.h> | 
 | #include <linux/file.h> | 
 | #include <linux/bug.h> | 
 | #include <linux/anon_inodes.h> | 
 | #include <linux/syscalls.h> | 
 | #include <linux/userfaultfd_k.h> | 
 | #include <linux/mempolicy.h> | 
 | #include <linux/ioctl.h> | 
 | #include <linux/security.h> | 
 |  | 
 | static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly; | 
 |  | 
 | enum userfaultfd_state { | 
 | 	UFFD_STATE_WAIT_API, | 
 | 	UFFD_STATE_RUNNING, | 
 | }; | 
 |  | 
 | /* | 
 |  * Start with fault_pending_wqh and fault_wqh so they're more likely | 
 |  * to be in the same cacheline. | 
 |  */ | 
 | struct userfaultfd_ctx { | 
 | 	/* waitqueue head for the pending (i.e. not read) userfaults */ | 
 | 	wait_queue_head_t fault_pending_wqh; | 
 | 	/* waitqueue head for the userfaults */ | 
 | 	wait_queue_head_t fault_wqh; | 
 | 	/* waitqueue head for the pseudo fd to wakeup poll/read */ | 
 | 	wait_queue_head_t fd_wqh; | 
 | 	/* a refile sequence protected by fault_pending_wqh lock */ | 
 | 	struct seqcount refile_seq; | 
 | 	/* pseudo fd refcounting */ | 
 | 	atomic_t refcount; | 
 | 	/* userfaultfd syscall flags */ | 
 | 	unsigned int flags; | 
 | 	/* state machine */ | 
 | 	enum userfaultfd_state state; | 
 | 	/* released */ | 
 | 	bool released; | 
 | 	/* mm with one ore more vmas attached to this userfaultfd_ctx */ | 
 | 	struct mm_struct *mm; | 
 | }; | 
 |  | 
 | struct userfaultfd_wait_queue { | 
 | 	struct uffd_msg msg; | 
 | 	wait_queue_t wq; | 
 | 	struct userfaultfd_ctx *ctx; | 
 | }; | 
 |  | 
 | struct userfaultfd_wake_range { | 
 | 	unsigned long start; | 
 | 	unsigned long len; | 
 | }; | 
 |  | 
 | static int userfaultfd_wake_function(wait_queue_t *wq, unsigned mode, | 
 | 				     int wake_flags, void *key) | 
 | { | 
 | 	struct userfaultfd_wake_range *range = key; | 
 | 	int ret; | 
 | 	struct userfaultfd_wait_queue *uwq; | 
 | 	unsigned long start, len; | 
 |  | 
 | 	uwq = container_of(wq, struct userfaultfd_wait_queue, wq); | 
 | 	ret = 0; | 
 | 	/* len == 0 means wake all */ | 
 | 	start = range->start; | 
 | 	len = range->len; | 
 | 	if (len && (start > uwq->msg.arg.pagefault.address || | 
 | 		    start + len <= uwq->msg.arg.pagefault.address)) | 
 | 		goto out; | 
 | 	ret = wake_up_state(wq->private, mode); | 
 | 	if (ret) | 
 | 		/* | 
 | 		 * Wake only once, autoremove behavior. | 
 | 		 * | 
 | 		 * After the effect of list_del_init is visible to the | 
 | 		 * other CPUs, the waitqueue may disappear from under | 
 | 		 * us, see the !list_empty_careful() in | 
 | 		 * handle_userfault(). try_to_wake_up() has an | 
 | 		 * implicit smp_mb__before_spinlock, and the | 
 | 		 * wq->private is read before calling the extern | 
 | 		 * function "wake_up_state" (which in turns calls | 
 | 		 * try_to_wake_up). While the spin_lock;spin_unlock; | 
 | 		 * wouldn't be enough, the smp_mb__before_spinlock is | 
 | 		 * enough to avoid an explicit smp_mb() here. | 
 | 		 */ | 
 | 		list_del_init(&wq->task_list); | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd | 
 |  * context. | 
 |  * @ctx: [in] Pointer to the userfaultfd context. | 
 |  * | 
 |  * Returns: In case of success, returns not zero. | 
 |  */ | 
 | static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx) | 
 | { | 
 | 	if (!atomic_inc_not_zero(&ctx->refcount)) | 
 | 		BUG(); | 
 | } | 
 |  | 
 | /** | 
 |  * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd | 
 |  * context. | 
 |  * @ctx: [in] Pointer to userfaultfd context. | 
 |  * | 
 |  * The userfaultfd context reference must have been previously acquired either | 
 |  * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget(). | 
 |  */ | 
 | static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx) | 
 | { | 
 | 	if (atomic_dec_and_test(&ctx->refcount)) { | 
 | 		VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock)); | 
 | 		VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh)); | 
 | 		VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock)); | 
 | 		VM_BUG_ON(waitqueue_active(&ctx->fault_wqh)); | 
 | 		VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock)); | 
 | 		VM_BUG_ON(waitqueue_active(&ctx->fd_wqh)); | 
 | 		mmdrop(ctx->mm); | 
 | 		kmem_cache_free(userfaultfd_ctx_cachep, ctx); | 
 | 	} | 
 | } | 
 |  | 
 | static inline void msg_init(struct uffd_msg *msg) | 
 | { | 
 | 	BUILD_BUG_ON(sizeof(struct uffd_msg) != 32); | 
 | 	/* | 
 | 	 * Must use memset to zero out the paddings or kernel data is | 
 | 	 * leaked to userland. | 
 | 	 */ | 
 | 	memset(msg, 0, sizeof(struct uffd_msg)); | 
 | } | 
 |  | 
 | static inline struct uffd_msg userfault_msg(unsigned long address, | 
 | 					    unsigned int flags, | 
 | 					    unsigned long reason) | 
 | { | 
 | 	struct uffd_msg msg; | 
 | 	msg_init(&msg); | 
 | 	msg.event = UFFD_EVENT_PAGEFAULT; | 
 | 	msg.arg.pagefault.address = address; | 
 | 	if (flags & FAULT_FLAG_WRITE) | 
 | 		/* | 
 | 		 * If UFFD_FEATURE_PAGEFAULT_FLAG_WRITE was set in the | 
 | 		 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE | 
 | 		 * was not set in a UFFD_EVENT_PAGEFAULT, it means it | 
 | 		 * was a read fault, otherwise if set it means it's | 
 | 		 * a write fault. | 
 | 		 */ | 
 | 		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE; | 
 | 	if (reason & VM_UFFD_WP) | 
 | 		/* | 
 | 		 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the | 
 | 		 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was | 
 | 		 * not set in a UFFD_EVENT_PAGEFAULT, it means it was | 
 | 		 * a missing fault, otherwise if set it means it's a | 
 | 		 * write protect fault. | 
 | 		 */ | 
 | 		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP; | 
 | 	return msg; | 
 | } | 
 |  | 
 | /* | 
 |  * Verify the pagetables are still not ok after having reigstered into | 
 |  * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any | 
 |  * userfault that has already been resolved, if userfaultfd_read and | 
 |  * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different | 
 |  * threads. | 
 |  */ | 
 | static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx, | 
 | 					 unsigned long address, | 
 | 					 unsigned long flags, | 
 | 					 unsigned long reason) | 
 | { | 
 | 	struct mm_struct *mm = ctx->mm; | 
 | 	pgd_t *pgd; | 
 | 	pud_t *pud; | 
 | 	pmd_t *pmd, _pmd; | 
 | 	pte_t *pte; | 
 | 	bool ret = true; | 
 |  | 
 | 	VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem)); | 
 |  | 
 | 	pgd = pgd_offset(mm, address); | 
 | 	if (!pgd_present(*pgd)) | 
 | 		goto out; | 
 | 	pud = pud_offset(pgd, address); | 
 | 	if (!pud_present(*pud)) | 
 | 		goto out; | 
 | 	pmd = pmd_offset(pud, address); | 
 | 	/* | 
 | 	 * READ_ONCE must function as a barrier with narrower scope | 
 | 	 * and it must be equivalent to: | 
 | 	 *	_pmd = *pmd; barrier(); | 
 | 	 * | 
 | 	 * This is to deal with the instability (as in | 
 | 	 * pmd_trans_unstable) of the pmd. | 
 | 	 */ | 
 | 	_pmd = READ_ONCE(*pmd); | 
 | 	if (!pmd_present(_pmd)) | 
 | 		goto out; | 
 |  | 
 | 	ret = false; | 
 | 	if (pmd_trans_huge(_pmd)) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it | 
 | 	 * and use the standard pte_offset_map() instead of parsing _pmd. | 
 | 	 */ | 
 | 	pte = pte_offset_map(pmd, address); | 
 | 	/* | 
 | 	 * Lockless access: we're in a wait_event so it's ok if it | 
 | 	 * changes under us. | 
 | 	 */ | 
 | 	if (pte_none(*pte)) | 
 | 		ret = true; | 
 | 	pte_unmap(pte); | 
 |  | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * The locking rules involved in returning VM_FAULT_RETRY depending on | 
 |  * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and | 
 |  * FAULT_FLAG_KILLABLE are not straightforward. The "Caution" | 
 |  * recommendation in __lock_page_or_retry is not an understatement. | 
 |  * | 
 |  * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released | 
 |  * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is | 
 |  * not set. | 
 |  * | 
 |  * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not | 
 |  * set, VM_FAULT_RETRY can still be returned if and only if there are | 
 |  * fatal_signal_pending()s, and the mmap_sem must be released before | 
 |  * returning it. | 
 |  */ | 
 | int handle_userfault(struct vm_area_struct *vma, unsigned long address, | 
 | 		     unsigned int flags, unsigned long reason) | 
 | { | 
 | 	struct mm_struct *mm = vma->vm_mm; | 
 | 	struct userfaultfd_ctx *ctx; | 
 | 	struct userfaultfd_wait_queue uwq; | 
 | 	int ret; | 
 | 	bool must_wait, return_to_userland; | 
 |  | 
 | 	BUG_ON(!rwsem_is_locked(&mm->mmap_sem)); | 
 |  | 
 | 	ret = VM_FAULT_SIGBUS; | 
 | 	ctx = vma->vm_userfaultfd_ctx.ctx; | 
 | 	if (!ctx) | 
 | 		goto out; | 
 |  | 
 | 	BUG_ON(ctx->mm != mm); | 
 |  | 
 | 	VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP)); | 
 | 	VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP)); | 
 |  | 
 | 	/* | 
 | 	 * If it's already released don't get it. This avoids to loop | 
 | 	 * in __get_user_pages if userfaultfd_release waits on the | 
 | 	 * caller of handle_userfault to release the mmap_sem. | 
 | 	 */ | 
 | 	if (unlikely(ACCESS_ONCE(ctx->released))) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * We don't do userfault handling for the final child pid update. | 
 | 	 */ | 
 | 	if (current->flags & PF_EXITING) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * Check that we can return VM_FAULT_RETRY. | 
 | 	 * | 
 | 	 * NOTE: it should become possible to return VM_FAULT_RETRY | 
 | 	 * even if FAULT_FLAG_TRIED is set without leading to gup() | 
 | 	 * -EBUSY failures, if the userfaultfd is to be extended for | 
 | 	 * VM_UFFD_WP tracking and we intend to arm the userfault | 
 | 	 * without first stopping userland access to the memory. For | 
 | 	 * VM_UFFD_MISSING userfaults this is enough for now. | 
 | 	 */ | 
 | 	if (unlikely(!(flags & FAULT_FLAG_ALLOW_RETRY))) { | 
 | 		/* | 
 | 		 * Validate the invariant that nowait must allow retry | 
 | 		 * to be sure not to return SIGBUS erroneously on | 
 | 		 * nowait invocations. | 
 | 		 */ | 
 | 		BUG_ON(flags & FAULT_FLAG_RETRY_NOWAIT); | 
 | #ifdef CONFIG_DEBUG_VM | 
 | 		if (printk_ratelimit()) { | 
 | 			printk(KERN_WARNING | 
 | 			       "FAULT_FLAG_ALLOW_RETRY missing %x\n", flags); | 
 | 			dump_stack(); | 
 | 		} | 
 | #endif | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Handle nowait, not much to do other than tell it to retry | 
 | 	 * and wait. | 
 | 	 */ | 
 | 	ret = VM_FAULT_RETRY; | 
 | 	if (flags & FAULT_FLAG_RETRY_NOWAIT) | 
 | 		goto out; | 
 |  | 
 | 	/* take the reference before dropping the mmap_sem */ | 
 | 	userfaultfd_ctx_get(ctx); | 
 |  | 
 | 	init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function); | 
 | 	uwq.wq.private = current; | 
 | 	uwq.msg = userfault_msg(address, flags, reason); | 
 | 	uwq.ctx = ctx; | 
 |  | 
 | 	return_to_userland = (flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) == | 
 | 		(FAULT_FLAG_USER|FAULT_FLAG_KILLABLE); | 
 |  | 
 | 	spin_lock(&ctx->fault_pending_wqh.lock); | 
 | 	/* | 
 | 	 * After the __add_wait_queue the uwq is visible to userland | 
 | 	 * through poll/read(). | 
 | 	 */ | 
 | 	__add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq); | 
 | 	/* | 
 | 	 * The smp_mb() after __set_current_state prevents the reads | 
 | 	 * following the spin_unlock to happen before the list_add in | 
 | 	 * __add_wait_queue. | 
 | 	 */ | 
 | 	set_current_state(return_to_userland ? TASK_INTERRUPTIBLE : | 
 | 			  TASK_KILLABLE); | 
 | 	spin_unlock(&ctx->fault_pending_wqh.lock); | 
 |  | 
 | 	must_wait = userfaultfd_must_wait(ctx, address, flags, reason); | 
 | 	up_read(&mm->mmap_sem); | 
 |  | 
 | 	if (likely(must_wait && !ACCESS_ONCE(ctx->released) && | 
 | 		   (return_to_userland ? !signal_pending(current) : | 
 | 		    !fatal_signal_pending(current)))) { | 
 | 		wake_up_poll(&ctx->fd_wqh, POLLIN); | 
 | 		schedule(); | 
 | 		ret |= VM_FAULT_MAJOR; | 
 | 	} | 
 |  | 
 | 	__set_current_state(TASK_RUNNING); | 
 |  | 
 | 	if (return_to_userland) { | 
 | 		if (signal_pending(current) && | 
 | 		    !fatal_signal_pending(current)) { | 
 | 			/* | 
 | 			 * If we got a SIGSTOP or SIGCONT and this is | 
 | 			 * a normal userland page fault, just let | 
 | 			 * userland return so the signal will be | 
 | 			 * handled and gdb debugging works.  The page | 
 | 			 * fault code immediately after we return from | 
 | 			 * this function is going to release the | 
 | 			 * mmap_sem and it's not depending on it | 
 | 			 * (unlike gup would if we were not to return | 
 | 			 * VM_FAULT_RETRY). | 
 | 			 * | 
 | 			 * If a fatal signal is pending we still take | 
 | 			 * the streamlined VM_FAULT_RETRY failure path | 
 | 			 * and there's no need to retake the mmap_sem | 
 | 			 * in such case. | 
 | 			 */ | 
 | 			down_read(&mm->mmap_sem); | 
 | 			ret = 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Here we race with the list_del; list_add in | 
 | 	 * userfaultfd_ctx_read(), however because we don't ever run | 
 | 	 * list_del_init() to refile across the two lists, the prev | 
 | 	 * and next pointers will never point to self. list_add also | 
 | 	 * would never let any of the two pointers to point to | 
 | 	 * self. So list_empty_careful won't risk to see both pointers | 
 | 	 * pointing to self at any time during the list refile. The | 
 | 	 * only case where list_del_init() is called is the full | 
 | 	 * removal in the wake function and there we don't re-list_add | 
 | 	 * and it's fine not to block on the spinlock. The uwq on this | 
 | 	 * kernel stack can be released after the list_del_init. | 
 | 	 */ | 
 | 	if (!list_empty_careful(&uwq.wq.task_list)) { | 
 | 		spin_lock(&ctx->fault_pending_wqh.lock); | 
 | 		/* | 
 | 		 * No need of list_del_init(), the uwq on the stack | 
 | 		 * will be freed shortly anyway. | 
 | 		 */ | 
 | 		list_del(&uwq.wq.task_list); | 
 | 		spin_unlock(&ctx->fault_pending_wqh.lock); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * ctx may go away after this if the userfault pseudo fd is | 
 | 	 * already released. | 
 | 	 */ | 
 | 	userfaultfd_ctx_put(ctx); | 
 |  | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int userfaultfd_release(struct inode *inode, struct file *file) | 
 | { | 
 | 	struct userfaultfd_ctx *ctx = file->private_data; | 
 | 	struct mm_struct *mm = ctx->mm; | 
 | 	struct vm_area_struct *vma, *prev; | 
 | 	/* len == 0 means wake all */ | 
 | 	struct userfaultfd_wake_range range = { .len = 0, }; | 
 | 	unsigned long new_flags; | 
 |  | 
 | 	ACCESS_ONCE(ctx->released) = true; | 
 |  | 
 | 	if (!mmget_not_zero(mm)) | 
 | 		goto wakeup; | 
 |  | 
 | 	/* | 
 | 	 * Flush page faults out of all CPUs. NOTE: all page faults | 
 | 	 * must be retried without returning VM_FAULT_SIGBUS if | 
 | 	 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx | 
 | 	 * changes while handle_userfault released the mmap_sem. So | 
 | 	 * it's critical that released is set to true (above), before | 
 | 	 * taking the mmap_sem for writing. | 
 | 	 */ | 
 | 	down_write(&mm->mmap_sem); | 
 | 	prev = NULL; | 
 | 	for (vma = mm->mmap; vma; vma = vma->vm_next) { | 
 | 		cond_resched(); | 
 | 		BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^ | 
 | 		       !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); | 
 | 		if (vma->vm_userfaultfd_ctx.ctx != ctx) { | 
 | 			prev = vma; | 
 | 			continue; | 
 | 		} | 
 | 		new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP); | 
 | 		prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end, | 
 | 				 new_flags, vma->anon_vma, | 
 | 				 vma->vm_file, vma->vm_pgoff, | 
 | 				 vma_policy(vma), | 
 | 				 NULL_VM_UFFD_CTX); | 
 | 		if (prev) | 
 | 			vma = prev; | 
 | 		else | 
 | 			prev = vma; | 
 | 		vma->vm_flags = new_flags; | 
 | 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; | 
 | 	} | 
 | 	up_write(&mm->mmap_sem); | 
 | 	mmput(mm); | 
 | wakeup: | 
 | 	/* | 
 | 	 * After no new page faults can wait on this fault_*wqh, flush | 
 | 	 * the last page faults that may have been already waiting on | 
 | 	 * the fault_*wqh. | 
 | 	 */ | 
 | 	spin_lock(&ctx->fault_pending_wqh.lock); | 
 | 	__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range); | 
 | 	__wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, &range); | 
 | 	spin_unlock(&ctx->fault_pending_wqh.lock); | 
 |  | 
 | 	wake_up_poll(&ctx->fd_wqh, POLLHUP); | 
 | 	userfaultfd_ctx_put(ctx); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* fault_pending_wqh.lock must be hold by the caller */ | 
 | static inline struct userfaultfd_wait_queue *find_userfault( | 
 | 	struct userfaultfd_ctx *ctx) | 
 | { | 
 | 	wait_queue_t *wq; | 
 | 	struct userfaultfd_wait_queue *uwq; | 
 |  | 
 | 	VM_BUG_ON(!spin_is_locked(&ctx->fault_pending_wqh.lock)); | 
 |  | 
 | 	uwq = NULL; | 
 | 	if (!waitqueue_active(&ctx->fault_pending_wqh)) | 
 | 		goto out; | 
 | 	/* walk in reverse to provide FIFO behavior to read userfaults */ | 
 | 	wq = list_last_entry(&ctx->fault_pending_wqh.task_list, | 
 | 			     typeof(*wq), task_list); | 
 | 	uwq = container_of(wq, struct userfaultfd_wait_queue, wq); | 
 | out: | 
 | 	return uwq; | 
 | } | 
 |  | 
 | static unsigned int userfaultfd_poll(struct file *file, poll_table *wait) | 
 | { | 
 | 	struct userfaultfd_ctx *ctx = file->private_data; | 
 | 	unsigned int ret; | 
 |  | 
 | 	poll_wait(file, &ctx->fd_wqh, wait); | 
 |  | 
 | 	switch (ctx->state) { | 
 | 	case UFFD_STATE_WAIT_API: | 
 | 		return POLLERR; | 
 | 	case UFFD_STATE_RUNNING: | 
 | 		/* | 
 | 		 * poll() never guarantees that read won't block. | 
 | 		 * userfaults can be waken before they're read(). | 
 | 		 */ | 
 | 		if (unlikely(!(file->f_flags & O_NONBLOCK))) | 
 | 			return POLLERR; | 
 | 		/* | 
 | 		 * lockless access to see if there are pending faults | 
 | 		 * __pollwait last action is the add_wait_queue but | 
 | 		 * the spin_unlock would allow the waitqueue_active to | 
 | 		 * pass above the actual list_add inside | 
 | 		 * add_wait_queue critical section. So use a full | 
 | 		 * memory barrier to serialize the list_add write of | 
 | 		 * add_wait_queue() with the waitqueue_active read | 
 | 		 * below. | 
 | 		 */ | 
 | 		ret = 0; | 
 | 		smp_mb(); | 
 | 		if (waitqueue_active(&ctx->fault_pending_wqh)) | 
 | 			ret = POLLIN; | 
 | 		return ret; | 
 | 	default: | 
 | 		BUG(); | 
 | 	} | 
 | } | 
 |  | 
 | static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait, | 
 | 				    struct uffd_msg *msg) | 
 | { | 
 | 	ssize_t ret; | 
 | 	DECLARE_WAITQUEUE(wait, current); | 
 | 	struct userfaultfd_wait_queue *uwq; | 
 |  | 
 | 	/* always take the fd_wqh lock before the fault_pending_wqh lock */ | 
 | 	spin_lock(&ctx->fd_wqh.lock); | 
 | 	__add_wait_queue(&ctx->fd_wqh, &wait); | 
 | 	for (;;) { | 
 | 		set_current_state(TASK_INTERRUPTIBLE); | 
 | 		spin_lock(&ctx->fault_pending_wqh.lock); | 
 | 		uwq = find_userfault(ctx); | 
 | 		if (uwq) { | 
 | 			/* | 
 | 			 * Use a seqcount to repeat the lockless check | 
 | 			 * in wake_userfault() to avoid missing | 
 | 			 * wakeups because during the refile both | 
 | 			 * waitqueue could become empty if this is the | 
 | 			 * only userfault. | 
 | 			 */ | 
 | 			write_seqcount_begin(&ctx->refile_seq); | 
 |  | 
 | 			/* | 
 | 			 * The fault_pending_wqh.lock prevents the uwq | 
 | 			 * to disappear from under us. | 
 | 			 * | 
 | 			 * Refile this userfault from | 
 | 			 * fault_pending_wqh to fault_wqh, it's not | 
 | 			 * pending anymore after we read it. | 
 | 			 * | 
 | 			 * Use list_del() by hand (as | 
 | 			 * userfaultfd_wake_function also uses | 
 | 			 * list_del_init() by hand) to be sure nobody | 
 | 			 * changes __remove_wait_queue() to use | 
 | 			 * list_del_init() in turn breaking the | 
 | 			 * !list_empty_careful() check in | 
 | 			 * handle_userfault(). The uwq->wq.task_list | 
 | 			 * must never be empty at any time during the | 
 | 			 * refile, or the waitqueue could disappear | 
 | 			 * from under us. The "wait_queue_head_t" | 
 | 			 * parameter of __remove_wait_queue() is unused | 
 | 			 * anyway. | 
 | 			 */ | 
 | 			list_del(&uwq->wq.task_list); | 
 | 			__add_wait_queue(&ctx->fault_wqh, &uwq->wq); | 
 |  | 
 | 			write_seqcount_end(&ctx->refile_seq); | 
 |  | 
 | 			/* careful to always initialize msg if ret == 0 */ | 
 | 			*msg = uwq->msg; | 
 | 			spin_unlock(&ctx->fault_pending_wqh.lock); | 
 | 			ret = 0; | 
 | 			break; | 
 | 		} | 
 | 		spin_unlock(&ctx->fault_pending_wqh.lock); | 
 | 		if (signal_pending(current)) { | 
 | 			ret = -ERESTARTSYS; | 
 | 			break; | 
 | 		} | 
 | 		if (no_wait) { | 
 | 			ret = -EAGAIN; | 
 | 			break; | 
 | 		} | 
 | 		spin_unlock(&ctx->fd_wqh.lock); | 
 | 		schedule(); | 
 | 		spin_lock(&ctx->fd_wqh.lock); | 
 | 	} | 
 | 	__remove_wait_queue(&ctx->fd_wqh, &wait); | 
 | 	__set_current_state(TASK_RUNNING); | 
 | 	spin_unlock(&ctx->fd_wqh.lock); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static ssize_t userfaultfd_read(struct file *file, char __user *buf, | 
 | 				size_t count, loff_t *ppos) | 
 | { | 
 | 	struct userfaultfd_ctx *ctx = file->private_data; | 
 | 	ssize_t _ret, ret = 0; | 
 | 	struct uffd_msg msg; | 
 | 	int no_wait = file->f_flags & O_NONBLOCK; | 
 |  | 
 | 	if (ctx->state == UFFD_STATE_WAIT_API) | 
 | 		return -EINVAL; | 
 |  | 
 | 	for (;;) { | 
 | 		if (count < sizeof(msg)) | 
 | 			return ret ? ret : -EINVAL; | 
 | 		_ret = userfaultfd_ctx_read(ctx, no_wait, &msg); | 
 | 		if (_ret < 0) | 
 | 			return ret ? ret : _ret; | 
 | 		if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg))) | 
 | 			return ret ? ret : -EFAULT; | 
 | 		ret += sizeof(msg); | 
 | 		buf += sizeof(msg); | 
 | 		count -= sizeof(msg); | 
 | 		/* | 
 | 		 * Allow to read more than one fault at time but only | 
 | 		 * block if waiting for the very first one. | 
 | 		 */ | 
 | 		no_wait = O_NONBLOCK; | 
 | 	} | 
 | } | 
 |  | 
 | static void __wake_userfault(struct userfaultfd_ctx *ctx, | 
 | 			     struct userfaultfd_wake_range *range) | 
 | { | 
 | 	unsigned long start, end; | 
 |  | 
 | 	start = range->start; | 
 | 	end = range->start + range->len; | 
 |  | 
 | 	spin_lock(&ctx->fault_pending_wqh.lock); | 
 | 	/* wake all in the range and autoremove */ | 
 | 	if (waitqueue_active(&ctx->fault_pending_wqh)) | 
 | 		__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, | 
 | 				     range); | 
 | 	if (waitqueue_active(&ctx->fault_wqh)) | 
 | 		__wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, range); | 
 | 	spin_unlock(&ctx->fault_pending_wqh.lock); | 
 | } | 
 |  | 
 | static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx, | 
 | 					   struct userfaultfd_wake_range *range) | 
 | { | 
 | 	unsigned seq; | 
 | 	bool need_wakeup; | 
 |  | 
 | 	/* | 
 | 	 * To be sure waitqueue_active() is not reordered by the CPU | 
 | 	 * before the pagetable update, use an explicit SMP memory | 
 | 	 * barrier here. PT lock release or up_read(mmap_sem) still | 
 | 	 * have release semantics that can allow the | 
 | 	 * waitqueue_active() to be reordered before the pte update. | 
 | 	 */ | 
 | 	smp_mb(); | 
 |  | 
 | 	/* | 
 | 	 * Use waitqueue_active because it's very frequent to | 
 | 	 * change the address space atomically even if there are no | 
 | 	 * userfaults yet. So we take the spinlock only when we're | 
 | 	 * sure we've userfaults to wake. | 
 | 	 */ | 
 | 	do { | 
 | 		seq = read_seqcount_begin(&ctx->refile_seq); | 
 | 		need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) || | 
 | 			waitqueue_active(&ctx->fault_wqh); | 
 | 		cond_resched(); | 
 | 	} while (read_seqcount_retry(&ctx->refile_seq, seq)); | 
 | 	if (need_wakeup) | 
 | 		__wake_userfault(ctx, range); | 
 | } | 
 |  | 
 | static __always_inline int validate_range(struct mm_struct *mm, | 
 | 					  __u64 start, __u64 len) | 
 | { | 
 | 	__u64 task_size = mm->task_size; | 
 |  | 
 | 	if (start & ~PAGE_MASK) | 
 | 		return -EINVAL; | 
 | 	if (len & ~PAGE_MASK) | 
 | 		return -EINVAL; | 
 | 	if (!len) | 
 | 		return -EINVAL; | 
 | 	if (start < mmap_min_addr) | 
 | 		return -EINVAL; | 
 | 	if (start >= task_size) | 
 | 		return -EINVAL; | 
 | 	if (len > task_size - start) | 
 | 		return -EINVAL; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int userfaultfd_register(struct userfaultfd_ctx *ctx, | 
 | 				unsigned long arg) | 
 | { | 
 | 	struct mm_struct *mm = ctx->mm; | 
 | 	struct vm_area_struct *vma, *prev, *cur; | 
 | 	int ret; | 
 | 	struct uffdio_register uffdio_register; | 
 | 	struct uffdio_register __user *user_uffdio_register; | 
 | 	unsigned long vm_flags, new_flags; | 
 | 	bool found; | 
 | 	unsigned long start, end, vma_end; | 
 |  | 
 | 	user_uffdio_register = (struct uffdio_register __user *) arg; | 
 |  | 
 | 	ret = -EFAULT; | 
 | 	if (copy_from_user(&uffdio_register, user_uffdio_register, | 
 | 			   sizeof(uffdio_register)-sizeof(__u64))) | 
 | 		goto out; | 
 |  | 
 | 	ret = -EINVAL; | 
 | 	if (!uffdio_register.mode) | 
 | 		goto out; | 
 | 	if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING| | 
 | 				     UFFDIO_REGISTER_MODE_WP)) | 
 | 		goto out; | 
 | 	vm_flags = 0; | 
 | 	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING) | 
 | 		vm_flags |= VM_UFFD_MISSING; | 
 | 	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) { | 
 | 		vm_flags |= VM_UFFD_WP; | 
 | 		/* | 
 | 		 * FIXME: remove the below error constraint by | 
 | 		 * implementing the wprotect tracking mode. | 
 | 		 */ | 
 | 		ret = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	ret = validate_range(mm, uffdio_register.range.start, | 
 | 			     uffdio_register.range.len); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	start = uffdio_register.range.start; | 
 | 	end = start + uffdio_register.range.len; | 
 |  | 
 | 	ret = -ENOMEM; | 
 | 	if (!mmget_not_zero(mm)) | 
 | 		goto out; | 
 |  | 
 | 	down_write(&mm->mmap_sem); | 
 | 	vma = find_vma_prev(mm, start, &prev); | 
 | 	if (!vma) | 
 | 		goto out_unlock; | 
 |  | 
 | 	/* check that there's at least one vma in the range */ | 
 | 	ret = -EINVAL; | 
 | 	if (vma->vm_start >= end) | 
 | 		goto out_unlock; | 
 |  | 
 | 	/* | 
 | 	 * Search for not compatible vmas. | 
 | 	 * | 
 | 	 * FIXME: this shall be relaxed later so that it doesn't fail | 
 | 	 * on tmpfs backed vmas (in addition to the current allowance | 
 | 	 * on anonymous vmas). | 
 | 	 */ | 
 | 	found = false; | 
 | 	for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) { | 
 | 		cond_resched(); | 
 |  | 
 | 		BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ | 
 | 		       !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); | 
 |  | 
 | 		/* check not compatible vmas */ | 
 | 		ret = -EINVAL; | 
 | 		if (cur->vm_ops) | 
 | 			goto out_unlock; | 
 |  | 
 | 		/* | 
 | 		 * Check that this vma isn't already owned by a | 
 | 		 * different userfaultfd. We can't allow more than one | 
 | 		 * userfaultfd to own a single vma simultaneously or we | 
 | 		 * wouldn't know which one to deliver the userfaults to. | 
 | 		 */ | 
 | 		ret = -EBUSY; | 
 | 		if (cur->vm_userfaultfd_ctx.ctx && | 
 | 		    cur->vm_userfaultfd_ctx.ctx != ctx) | 
 | 			goto out_unlock; | 
 |  | 
 | 		found = true; | 
 | 	} | 
 | 	BUG_ON(!found); | 
 |  | 
 | 	if (vma->vm_start < start) | 
 | 		prev = vma; | 
 |  | 
 | 	ret = 0; | 
 | 	do { | 
 | 		cond_resched(); | 
 |  | 
 | 		BUG_ON(vma->vm_ops); | 
 | 		BUG_ON(vma->vm_userfaultfd_ctx.ctx && | 
 | 		       vma->vm_userfaultfd_ctx.ctx != ctx); | 
 |  | 
 | 		/* | 
 | 		 * Nothing to do: this vma is already registered into this | 
 | 		 * userfaultfd and with the right tracking mode too. | 
 | 		 */ | 
 | 		if (vma->vm_userfaultfd_ctx.ctx == ctx && | 
 | 		    (vma->vm_flags & vm_flags) == vm_flags) | 
 | 			goto skip; | 
 |  | 
 | 		if (vma->vm_start > start) | 
 | 			start = vma->vm_start; | 
 | 		vma_end = min(end, vma->vm_end); | 
 |  | 
 | 		new_flags = (vma->vm_flags & ~vm_flags) | vm_flags; | 
 | 		prev = vma_merge(mm, prev, start, vma_end, new_flags, | 
 | 				 vma->anon_vma, vma->vm_file, vma->vm_pgoff, | 
 | 				 vma_policy(vma), | 
 | 				 ((struct vm_userfaultfd_ctx){ ctx })); | 
 | 		if (prev) { | 
 | 			vma = prev; | 
 | 			goto next; | 
 | 		} | 
 | 		if (vma->vm_start < start) { | 
 | 			ret = split_vma(mm, vma, start, 1); | 
 | 			if (ret) | 
 | 				break; | 
 | 		} | 
 | 		if (vma->vm_end > end) { | 
 | 			ret = split_vma(mm, vma, end, 0); | 
 | 			if (ret) | 
 | 				break; | 
 | 		} | 
 | 	next: | 
 | 		/* | 
 | 		 * In the vma_merge() successful mprotect-like case 8: | 
 | 		 * the next vma was merged into the current one and | 
 | 		 * the current one has not been updated yet. | 
 | 		 */ | 
 | 		vma->vm_flags = new_flags; | 
 | 		vma->vm_userfaultfd_ctx.ctx = ctx; | 
 |  | 
 | 	skip: | 
 | 		prev = vma; | 
 | 		start = vma->vm_end; | 
 | 		vma = vma->vm_next; | 
 | 	} while (vma && vma->vm_start < end); | 
 | out_unlock: | 
 | 	up_write(&mm->mmap_sem); | 
 | 	mmput(mm); | 
 | 	if (!ret) { | 
 | 		/* | 
 | 		 * Now that we scanned all vmas we can already tell | 
 | 		 * userland which ioctls methods are guaranteed to | 
 | 		 * succeed on this range. | 
 | 		 */ | 
 | 		if (put_user(UFFD_API_RANGE_IOCTLS, | 
 | 			     &user_uffdio_register->ioctls)) | 
 | 			ret = -EFAULT; | 
 | 	} | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int userfaultfd_unregister(struct userfaultfd_ctx *ctx, | 
 | 				  unsigned long arg) | 
 | { | 
 | 	struct mm_struct *mm = ctx->mm; | 
 | 	struct vm_area_struct *vma, *prev, *cur; | 
 | 	int ret; | 
 | 	struct uffdio_range uffdio_unregister; | 
 | 	unsigned long new_flags; | 
 | 	bool found; | 
 | 	unsigned long start, end, vma_end; | 
 | 	const void __user *buf = (void __user *)arg; | 
 |  | 
 | 	ret = -EFAULT; | 
 | 	if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister))) | 
 | 		goto out; | 
 |  | 
 | 	ret = validate_range(mm, uffdio_unregister.start, | 
 | 			     uffdio_unregister.len); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	start = uffdio_unregister.start; | 
 | 	end = start + uffdio_unregister.len; | 
 |  | 
 | 	ret = -ENOMEM; | 
 | 	if (!mmget_not_zero(mm)) | 
 | 		goto out; | 
 |  | 
 | 	down_write(&mm->mmap_sem); | 
 | 	vma = find_vma_prev(mm, start, &prev); | 
 | 	if (!vma) | 
 | 		goto out_unlock; | 
 |  | 
 | 	/* check that there's at least one vma in the range */ | 
 | 	ret = -EINVAL; | 
 | 	if (vma->vm_start >= end) | 
 | 		goto out_unlock; | 
 |  | 
 | 	/* | 
 | 	 * Search for not compatible vmas. | 
 | 	 * | 
 | 	 * FIXME: this shall be relaxed later so that it doesn't fail | 
 | 	 * on tmpfs backed vmas (in addition to the current allowance | 
 | 	 * on anonymous vmas). | 
 | 	 */ | 
 | 	found = false; | 
 | 	ret = -EINVAL; | 
 | 	for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) { | 
 | 		cond_resched(); | 
 |  | 
 | 		BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ | 
 | 		       !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); | 
 |  | 
 | 		/* | 
 | 		 * Check not compatible vmas, not strictly required | 
 | 		 * here as not compatible vmas cannot have an | 
 | 		 * userfaultfd_ctx registered on them, but this | 
 | 		 * provides for more strict behavior to notice | 
 | 		 * unregistration errors. | 
 | 		 */ | 
 | 		if (cur->vm_ops) | 
 | 			goto out_unlock; | 
 |  | 
 | 		found = true; | 
 | 	} | 
 | 	BUG_ON(!found); | 
 |  | 
 | 	if (vma->vm_start < start) | 
 | 		prev = vma; | 
 |  | 
 | 	ret = 0; | 
 | 	do { | 
 | 		cond_resched(); | 
 |  | 
 | 		BUG_ON(vma->vm_ops); | 
 |  | 
 | 		/* | 
 | 		 * Nothing to do: this vma is already registered into this | 
 | 		 * userfaultfd and with the right tracking mode too. | 
 | 		 */ | 
 | 		if (!vma->vm_userfaultfd_ctx.ctx) | 
 | 			goto skip; | 
 |  | 
 | 		if (vma->vm_start > start) | 
 | 			start = vma->vm_start; | 
 | 		vma_end = min(end, vma->vm_end); | 
 |  | 
 | 		new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP); | 
 | 		prev = vma_merge(mm, prev, start, vma_end, new_flags, | 
 | 				 vma->anon_vma, vma->vm_file, vma->vm_pgoff, | 
 | 				 vma_policy(vma), | 
 | 				 NULL_VM_UFFD_CTX); | 
 | 		if (prev) { | 
 | 			vma = prev; | 
 | 			goto next; | 
 | 		} | 
 | 		if (vma->vm_start < start) { | 
 | 			ret = split_vma(mm, vma, start, 1); | 
 | 			if (ret) | 
 | 				break; | 
 | 		} | 
 | 		if (vma->vm_end > end) { | 
 | 			ret = split_vma(mm, vma, end, 0); | 
 | 			if (ret) | 
 | 				break; | 
 | 		} | 
 | 	next: | 
 | 		/* | 
 | 		 * In the vma_merge() successful mprotect-like case 8: | 
 | 		 * the next vma was merged into the current one and | 
 | 		 * the current one has not been updated yet. | 
 | 		 */ | 
 | 		vma->vm_flags = new_flags; | 
 | 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; | 
 |  | 
 | 	skip: | 
 | 		prev = vma; | 
 | 		start = vma->vm_end; | 
 | 		vma = vma->vm_next; | 
 | 	} while (vma && vma->vm_start < end); | 
 | out_unlock: | 
 | 	up_write(&mm->mmap_sem); | 
 | 	mmput(mm); | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * userfaultfd_wake may be used in combination with the | 
 |  * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches. | 
 |  */ | 
 | static int userfaultfd_wake(struct userfaultfd_ctx *ctx, | 
 | 			    unsigned long arg) | 
 | { | 
 | 	int ret; | 
 | 	struct uffdio_range uffdio_wake; | 
 | 	struct userfaultfd_wake_range range; | 
 | 	const void __user *buf = (void __user *)arg; | 
 |  | 
 | 	ret = -EFAULT; | 
 | 	if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake))) | 
 | 		goto out; | 
 |  | 
 | 	ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	range.start = uffdio_wake.start; | 
 | 	range.len = uffdio_wake.len; | 
 |  | 
 | 	/* | 
 | 	 * len == 0 means wake all and we don't want to wake all here, | 
 | 	 * so check it again to be sure. | 
 | 	 */ | 
 | 	VM_BUG_ON(!range.len); | 
 |  | 
 | 	wake_userfault(ctx, &range); | 
 | 	ret = 0; | 
 |  | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int userfaultfd_copy(struct userfaultfd_ctx *ctx, | 
 | 			    unsigned long arg) | 
 | { | 
 | 	__s64 ret; | 
 | 	struct uffdio_copy uffdio_copy; | 
 | 	struct uffdio_copy __user *user_uffdio_copy; | 
 | 	struct userfaultfd_wake_range range; | 
 |  | 
 | 	user_uffdio_copy = (struct uffdio_copy __user *) arg; | 
 |  | 
 | 	ret = -EFAULT; | 
 | 	if (copy_from_user(&uffdio_copy, user_uffdio_copy, | 
 | 			   /* don't copy "copy" last field */ | 
 | 			   sizeof(uffdio_copy)-sizeof(__s64))) | 
 | 		goto out; | 
 |  | 
 | 	ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len); | 
 | 	if (ret) | 
 | 		goto out; | 
 | 	/* | 
 | 	 * double check for wraparound just in case. copy_from_user() | 
 | 	 * will later check uffdio_copy.src + uffdio_copy.len to fit | 
 | 	 * in the userland range. | 
 | 	 */ | 
 | 	ret = -EINVAL; | 
 | 	if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src) | 
 | 		goto out; | 
 | 	if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE) | 
 | 		goto out; | 
 | 	if (mmget_not_zero(ctx->mm)) { | 
 | 		ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src, | 
 | 				   uffdio_copy.len); | 
 | 		mmput(ctx->mm); | 
 | 	} | 
 | 	if (unlikely(put_user(ret, &user_uffdio_copy->copy))) | 
 | 		return -EFAULT; | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 | 	BUG_ON(!ret); | 
 | 	/* len == 0 would wake all */ | 
 | 	range.len = ret; | 
 | 	if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) { | 
 | 		range.start = uffdio_copy.dst; | 
 | 		wake_userfault(ctx, &range); | 
 | 	} | 
 | 	ret = range.len == uffdio_copy.len ? 0 : -EAGAIN; | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx, | 
 | 				unsigned long arg) | 
 | { | 
 | 	__s64 ret; | 
 | 	struct uffdio_zeropage uffdio_zeropage; | 
 | 	struct uffdio_zeropage __user *user_uffdio_zeropage; | 
 | 	struct userfaultfd_wake_range range; | 
 |  | 
 | 	user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg; | 
 |  | 
 | 	ret = -EFAULT; | 
 | 	if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage, | 
 | 			   /* don't copy "zeropage" last field */ | 
 | 			   sizeof(uffdio_zeropage)-sizeof(__s64))) | 
 | 		goto out; | 
 |  | 
 | 	ret = validate_range(ctx->mm, uffdio_zeropage.range.start, | 
 | 			     uffdio_zeropage.range.len); | 
 | 	if (ret) | 
 | 		goto out; | 
 | 	ret = -EINVAL; | 
 | 	if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE) | 
 | 		goto out; | 
 |  | 
 | 	if (mmget_not_zero(ctx->mm)) { | 
 | 		ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start, | 
 | 				     uffdio_zeropage.range.len); | 
 | 		mmput(ctx->mm); | 
 | 	} | 
 | 	if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage))) | 
 | 		return -EFAULT; | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 | 	/* len == 0 would wake all */ | 
 | 	BUG_ON(!ret); | 
 | 	range.len = ret; | 
 | 	if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) { | 
 | 		range.start = uffdio_zeropage.range.start; | 
 | 		wake_userfault(ctx, &range); | 
 | 	} | 
 | 	ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN; | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * userland asks for a certain API version and we return which bits | 
 |  * and ioctl commands are implemented in this kernel for such API | 
 |  * version or -EINVAL if unknown. | 
 |  */ | 
 | static int userfaultfd_api(struct userfaultfd_ctx *ctx, | 
 | 			   unsigned long arg) | 
 | { | 
 | 	struct uffdio_api uffdio_api; | 
 | 	void __user *buf = (void __user *)arg; | 
 | 	int ret; | 
 |  | 
 | 	ret = -EINVAL; | 
 | 	if (ctx->state != UFFD_STATE_WAIT_API) | 
 | 		goto out; | 
 | 	ret = -EFAULT; | 
 | 	if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api))) | 
 | 		goto out; | 
 | 	if (uffdio_api.api != UFFD_API || uffdio_api.features) { | 
 | 		memset(&uffdio_api, 0, sizeof(uffdio_api)); | 
 | 		if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) | 
 | 			goto out; | 
 | 		ret = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 | 	uffdio_api.features = UFFD_API_FEATURES; | 
 | 	uffdio_api.ioctls = UFFD_API_IOCTLS; | 
 | 	ret = -EFAULT; | 
 | 	if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) | 
 | 		goto out; | 
 | 	ctx->state = UFFD_STATE_RUNNING; | 
 | 	ret = 0; | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | static long userfaultfd_ioctl(struct file *file, unsigned cmd, | 
 | 			      unsigned long arg) | 
 | { | 
 | 	int ret = -EINVAL; | 
 | 	struct userfaultfd_ctx *ctx = file->private_data; | 
 |  | 
 | 	if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API) | 
 | 		return -EINVAL; | 
 |  | 
 | 	switch(cmd) { | 
 | 	case UFFDIO_API: | 
 | 		ret = userfaultfd_api(ctx, arg); | 
 | 		break; | 
 | 	case UFFDIO_REGISTER: | 
 | 		ret = userfaultfd_register(ctx, arg); | 
 | 		break; | 
 | 	case UFFDIO_UNREGISTER: | 
 | 		ret = userfaultfd_unregister(ctx, arg); | 
 | 		break; | 
 | 	case UFFDIO_WAKE: | 
 | 		ret = userfaultfd_wake(ctx, arg); | 
 | 		break; | 
 | 	case UFFDIO_COPY: | 
 | 		ret = userfaultfd_copy(ctx, arg); | 
 | 		break; | 
 | 	case UFFDIO_ZEROPAGE: | 
 | 		ret = userfaultfd_zeropage(ctx, arg); | 
 | 		break; | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | #ifdef CONFIG_PROC_FS | 
 | static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f) | 
 | { | 
 | 	struct userfaultfd_ctx *ctx = f->private_data; | 
 | 	wait_queue_t *wq; | 
 | 	struct userfaultfd_wait_queue *uwq; | 
 | 	unsigned long pending = 0, total = 0; | 
 |  | 
 | 	spin_lock(&ctx->fault_pending_wqh.lock); | 
 | 	list_for_each_entry(wq, &ctx->fault_pending_wqh.task_list, task_list) { | 
 | 		uwq = container_of(wq, struct userfaultfd_wait_queue, wq); | 
 | 		pending++; | 
 | 		total++; | 
 | 	} | 
 | 	list_for_each_entry(wq, &ctx->fault_wqh.task_list, task_list) { | 
 | 		uwq = container_of(wq, struct userfaultfd_wait_queue, wq); | 
 | 		total++; | 
 | 	} | 
 | 	spin_unlock(&ctx->fault_pending_wqh.lock); | 
 |  | 
 | 	/* | 
 | 	 * If more protocols will be added, there will be all shown | 
 | 	 * separated by a space. Like this: | 
 | 	 *	protocols: aa:... bb:... | 
 | 	 */ | 
 | 	seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n", | 
 | 		   pending, total, UFFD_API, UFFD_API_FEATURES, | 
 | 		   UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS); | 
 | } | 
 | #endif | 
 |  | 
 | static const struct file_operations userfaultfd_fops = { | 
 | #ifdef CONFIG_PROC_FS | 
 | 	.show_fdinfo	= userfaultfd_show_fdinfo, | 
 | #endif | 
 | 	.release	= userfaultfd_release, | 
 | 	.poll		= userfaultfd_poll, | 
 | 	.read		= userfaultfd_read, | 
 | 	.unlocked_ioctl = userfaultfd_ioctl, | 
 | 	.compat_ioctl	= userfaultfd_ioctl, | 
 | 	.llseek		= noop_llseek, | 
 | }; | 
 |  | 
 | static void init_once_userfaultfd_ctx(void *mem) | 
 | { | 
 | 	struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem; | 
 |  | 
 | 	init_waitqueue_head(&ctx->fault_pending_wqh); | 
 | 	init_waitqueue_head(&ctx->fault_wqh); | 
 | 	init_waitqueue_head(&ctx->fd_wqh); | 
 | 	seqcount_init(&ctx->refile_seq); | 
 | } | 
 |  | 
 | /** | 
 |  * userfaultfd_file_create - Creates an userfaultfd file pointer. | 
 |  * @flags: Flags for the userfaultfd file. | 
 |  * | 
 |  * This function creates an userfaultfd file pointer, w/out installing | 
 |  * it into the fd table. This is useful when the userfaultfd file is | 
 |  * used during the initialization of data structures that require | 
 |  * extra setup after the userfaultfd creation. So the userfaultfd | 
 |  * creation is split into the file pointer creation phase, and the | 
 |  * file descriptor installation phase.  In this way races with | 
 |  * userspace closing the newly installed file descriptor can be | 
 |  * avoided.  Returns an userfaultfd file pointer, or a proper error | 
 |  * pointer. | 
 |  */ | 
 | static struct file *userfaultfd_file_create(int flags) | 
 | { | 
 | 	struct file *file; | 
 | 	struct userfaultfd_ctx *ctx; | 
 |  | 
 | 	BUG_ON(!current->mm); | 
 |  | 
 | 	/* Check the UFFD_* constants for consistency.  */ | 
 | 	BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC); | 
 | 	BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK); | 
 |  | 
 | 	file = ERR_PTR(-EINVAL); | 
 | 	if (flags & ~UFFD_SHARED_FCNTL_FLAGS) | 
 | 		goto out; | 
 |  | 
 | 	file = ERR_PTR(-ENOMEM); | 
 | 	ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); | 
 | 	if (!ctx) | 
 | 		goto out; | 
 |  | 
 | 	atomic_set(&ctx->refcount, 1); | 
 | 	ctx->flags = flags; | 
 | 	ctx->state = UFFD_STATE_WAIT_API; | 
 | 	ctx->released = false; | 
 | 	ctx->mm = current->mm; | 
 | 	/* prevent the mm struct to be freed */ | 
 | 	atomic_inc(&ctx->mm->mm_count); | 
 |  | 
 | 	file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, ctx, | 
 | 				  O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS)); | 
 | 	if (IS_ERR(file)) { | 
 | 		mmdrop(ctx->mm); | 
 | 		kmem_cache_free(userfaultfd_ctx_cachep, ctx); | 
 | 	} | 
 | out: | 
 | 	return file; | 
 | } | 
 |  | 
 | SYSCALL_DEFINE1(userfaultfd, int, flags) | 
 | { | 
 | 	int fd, error; | 
 | 	struct file *file; | 
 |  | 
 | 	error = get_unused_fd_flags(flags & UFFD_SHARED_FCNTL_FLAGS); | 
 | 	if (error < 0) | 
 | 		return error; | 
 | 	fd = error; | 
 |  | 
 | 	file = userfaultfd_file_create(flags); | 
 | 	if (IS_ERR(file)) { | 
 | 		error = PTR_ERR(file); | 
 | 		goto err_put_unused_fd; | 
 | 	} | 
 | 	fd_install(fd, file); | 
 |  | 
 | 	return fd; | 
 |  | 
 | err_put_unused_fd: | 
 | 	put_unused_fd(fd); | 
 |  | 
 | 	return error; | 
 | } | 
 |  | 
 | static int __init userfaultfd_init(void) | 
 | { | 
 | 	userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache", | 
 | 						sizeof(struct userfaultfd_ctx), | 
 | 						0, | 
 | 						SLAB_HWCACHE_ALIGN|SLAB_PANIC, | 
 | 						init_once_userfaultfd_ctx); | 
 | 	return 0; | 
 | } | 
 | __initcall(userfaultfd_init); |