|  | /* | 
|  | * Copyright (C) 2007 Oracle.  All rights reserved. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU General Public | 
|  | * License v2 as published by the Free Software Foundation. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | * General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public | 
|  | * License along with this program; if not, write to the | 
|  | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | 
|  | * Boston, MA 021110-1307, USA. | 
|  | */ | 
|  |  | 
|  | #include <linux/blkdev.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/buffer_head.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/time.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/seq_file.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/backing-dev.h> | 
|  | #include <linux/mount.h> | 
|  | #include <linux/mpage.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/writeback.h> | 
|  | #include <linux/statfs.h> | 
|  | #include <linux/compat.h> | 
|  | #include <linux/parser.h> | 
|  | #include <linux/ctype.h> | 
|  | #include <linux/namei.h> | 
|  | #include <linux/miscdevice.h> | 
|  | #include <linux/magic.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/cleancache.h> | 
|  | #include <linux/ratelimit.h> | 
|  | #include <linux/btrfs.h> | 
|  | #include "delayed-inode.h" | 
|  | #include "ctree.h" | 
|  | #include "disk-io.h" | 
|  | #include "transaction.h" | 
|  | #include "btrfs_inode.h" | 
|  | #include "print-tree.h" | 
|  | #include "hash.h" | 
|  | #include "props.h" | 
|  | #include "xattr.h" | 
|  | #include "volumes.h" | 
|  | #include "export.h" | 
|  | #include "compression.h" | 
|  | #include "rcu-string.h" | 
|  | #include "dev-replace.h" | 
|  | #include "free-space-cache.h" | 
|  | #include "backref.h" | 
|  | #include "tests/btrfs-tests.h" | 
|  |  | 
|  | #include "qgroup.h" | 
|  | #define CREATE_TRACE_POINTS | 
|  | #include <trace/events/btrfs.h> | 
|  |  | 
|  | static const struct super_operations btrfs_super_ops; | 
|  | static struct file_system_type btrfs_fs_type; | 
|  |  | 
|  | static int btrfs_remount(struct super_block *sb, int *flags, char *data); | 
|  |  | 
|  | const char *btrfs_decode_error(int errno) | 
|  | { | 
|  | char *errstr = "unknown"; | 
|  |  | 
|  | switch (errno) { | 
|  | case -EIO: | 
|  | errstr = "IO failure"; | 
|  | break; | 
|  | case -ENOMEM: | 
|  | errstr = "Out of memory"; | 
|  | break; | 
|  | case -EROFS: | 
|  | errstr = "Readonly filesystem"; | 
|  | break; | 
|  | case -EEXIST: | 
|  | errstr = "Object already exists"; | 
|  | break; | 
|  | case -ENOSPC: | 
|  | errstr = "No space left"; | 
|  | break; | 
|  | case -ENOENT: | 
|  | errstr = "No such entry"; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return errstr; | 
|  | } | 
|  |  | 
|  | /* btrfs handle error by forcing the filesystem readonly */ | 
|  | static void btrfs_handle_error(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct super_block *sb = fs_info->sb; | 
|  |  | 
|  | if (sb->s_flags & MS_RDONLY) | 
|  | return; | 
|  |  | 
|  | if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { | 
|  | sb->s_flags |= MS_RDONLY; | 
|  | btrfs_info(fs_info, "forced readonly"); | 
|  | /* | 
|  | * Note that a running device replace operation is not | 
|  | * canceled here although there is no way to update | 
|  | * the progress. It would add the risk of a deadlock, | 
|  | * therefore the canceling is omitted. The only penalty | 
|  | * is that some I/O remains active until the procedure | 
|  | * completes. The next time when the filesystem is | 
|  | * mounted writeable again, the device replace | 
|  | * operation continues. | 
|  | */ | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * __btrfs_handle_fs_error decodes expected errors from the caller and | 
|  | * invokes the approciate error response. | 
|  | */ | 
|  | __cold | 
|  | void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function, | 
|  | unsigned int line, int errno, const char *fmt, ...) | 
|  | { | 
|  | struct super_block *sb = fs_info->sb; | 
|  | #ifdef CONFIG_PRINTK | 
|  | const char *errstr; | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Special case: if the error is EROFS, and we're already | 
|  | * under MS_RDONLY, then it is safe here. | 
|  | */ | 
|  | if (errno == -EROFS && (sb->s_flags & MS_RDONLY)) | 
|  | return; | 
|  |  | 
|  | #ifdef CONFIG_PRINTK | 
|  | errstr = btrfs_decode_error(errno); | 
|  | if (fmt) { | 
|  | struct va_format vaf; | 
|  | va_list args; | 
|  |  | 
|  | va_start(args, fmt); | 
|  | vaf.fmt = fmt; | 
|  | vaf.va = &args; | 
|  |  | 
|  | pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n", | 
|  | sb->s_id, function, line, errno, errstr, &vaf); | 
|  | va_end(args); | 
|  | } else { | 
|  | pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s\n", | 
|  | sb->s_id, function, line, errno, errstr); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Today we only save the error info to memory.  Long term we'll | 
|  | * also send it down to the disk | 
|  | */ | 
|  | set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); | 
|  |  | 
|  | /* Don't go through full error handling during mount */ | 
|  | if (sb->s_flags & MS_BORN) | 
|  | btrfs_handle_error(fs_info); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PRINTK | 
|  | static const char * const logtypes[] = { | 
|  | "emergency", | 
|  | "alert", | 
|  | "critical", | 
|  | "error", | 
|  | "warning", | 
|  | "notice", | 
|  | "info", | 
|  | "debug", | 
|  | }; | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Use one ratelimit state per log level so that a flood of less important | 
|  | * messages doesn't cause more important ones to be dropped. | 
|  | */ | 
|  | static struct ratelimit_state printk_limits[] = { | 
|  | RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100), | 
|  | RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100), | 
|  | RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100), | 
|  | RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100), | 
|  | RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100), | 
|  | RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100), | 
|  | RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100), | 
|  | RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100), | 
|  | }; | 
|  |  | 
|  | void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...) | 
|  | { | 
|  | struct super_block *sb = fs_info->sb; | 
|  | char lvl[4]; | 
|  | struct va_format vaf; | 
|  | va_list args; | 
|  | const char *type = logtypes[4]; | 
|  | int kern_level; | 
|  | struct ratelimit_state *ratelimit; | 
|  |  | 
|  | va_start(args, fmt); | 
|  |  | 
|  | kern_level = printk_get_level(fmt); | 
|  | if (kern_level) { | 
|  | size_t size = printk_skip_level(fmt) - fmt; | 
|  | memcpy(lvl, fmt,  size); | 
|  | lvl[size] = '\0'; | 
|  | fmt += size; | 
|  | type = logtypes[kern_level - '0']; | 
|  | ratelimit = &printk_limits[kern_level - '0']; | 
|  | } else { | 
|  | *lvl = '\0'; | 
|  | /* Default to debug output */ | 
|  | ratelimit = &printk_limits[7]; | 
|  | } | 
|  |  | 
|  | vaf.fmt = fmt; | 
|  | vaf.va = &args; | 
|  |  | 
|  | if (__ratelimit(ratelimit)) | 
|  | printk("%sBTRFS %s (device %s): %pV\n", lvl, type, sb->s_id, &vaf); | 
|  |  | 
|  | va_end(args); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * We only mark the transaction aborted and then set the file system read-only. | 
|  | * This will prevent new transactions from starting or trying to join this | 
|  | * one. | 
|  | * | 
|  | * This means that error recovery at the call site is limited to freeing | 
|  | * any local memory allocations and passing the error code up without | 
|  | * further cleanup. The transaction should complete as it normally would | 
|  | * in the call path but will return -EIO. | 
|  | * | 
|  | * We'll complete the cleanup in btrfs_end_transaction and | 
|  | * btrfs_commit_transaction. | 
|  | */ | 
|  | __cold | 
|  | void __btrfs_abort_transaction(struct btrfs_trans_handle *trans, | 
|  | const char *function, | 
|  | unsigned int line, int errno) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = trans->fs_info; | 
|  |  | 
|  | trans->aborted = errno; | 
|  | /* Nothing used. The other threads that have joined this | 
|  | * transaction may be able to continue. */ | 
|  | if (!trans->dirty && list_empty(&trans->new_bgs)) { | 
|  | const char *errstr; | 
|  |  | 
|  | errstr = btrfs_decode_error(errno); | 
|  | btrfs_warn(fs_info, | 
|  | "%s:%d: Aborting unused transaction(%s).", | 
|  | function, line, errstr); | 
|  | return; | 
|  | } | 
|  | ACCESS_ONCE(trans->transaction->aborted) = errno; | 
|  | /* Wake up anybody who may be waiting on this transaction */ | 
|  | wake_up(&fs_info->transaction_wait); | 
|  | wake_up(&fs_info->transaction_blocked_wait); | 
|  | __btrfs_handle_fs_error(fs_info, function, line, errno, NULL); | 
|  | } | 
|  | /* | 
|  | * __btrfs_panic decodes unexpected, fatal errors from the caller, | 
|  | * issues an alert, and either panics or BUGs, depending on mount options. | 
|  | */ | 
|  | __cold | 
|  | void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function, | 
|  | unsigned int line, int errno, const char *fmt, ...) | 
|  | { | 
|  | char *s_id = "<unknown>"; | 
|  | const char *errstr; | 
|  | struct va_format vaf = { .fmt = fmt }; | 
|  | va_list args; | 
|  |  | 
|  | if (fs_info) | 
|  | s_id = fs_info->sb->s_id; | 
|  |  | 
|  | va_start(args, fmt); | 
|  | vaf.va = &args; | 
|  |  | 
|  | errstr = btrfs_decode_error(errno); | 
|  | if (fs_info && (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR)) | 
|  | panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n", | 
|  | s_id, function, line, &vaf, errno, errstr); | 
|  |  | 
|  | btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)", | 
|  | function, line, &vaf, errno, errstr); | 
|  | va_end(args); | 
|  | /* Caller calls BUG() */ | 
|  | } | 
|  |  | 
|  | static void btrfs_put_super(struct super_block *sb) | 
|  | { | 
|  | close_ctree(btrfs_sb(sb)->tree_root); | 
|  | } | 
|  |  | 
|  | enum { | 
|  | Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum, | 
|  | Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd, | 
|  | Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress, | 
|  | Opt_compress_type, Opt_compress_force, Opt_compress_force_type, | 
|  | Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard, | 
|  | Opt_space_cache, Opt_space_cache_version, Opt_clear_cache, | 
|  | Opt_user_subvol_rm_allowed, Opt_enospc_debug, Opt_subvolrootid, | 
|  | Opt_defrag, Opt_inode_cache, Opt_no_space_cache, Opt_recovery, | 
|  | Opt_skip_balance, Opt_check_integrity, | 
|  | Opt_check_integrity_including_extent_data, | 
|  | Opt_check_integrity_print_mask, Opt_fatal_errors, Opt_rescan_uuid_tree, | 
|  | Opt_commit_interval, Opt_barrier, Opt_nodefrag, Opt_nodiscard, | 
|  | Opt_noenospc_debug, Opt_noflushoncommit, Opt_acl, Opt_datacow, | 
|  | Opt_datasum, Opt_treelog, Opt_noinode_cache, Opt_usebackuproot, | 
|  | Opt_nologreplay, Opt_norecovery, | 
|  | #ifdef CONFIG_BTRFS_DEBUG | 
|  | Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all, | 
|  | #endif | 
|  | Opt_err, | 
|  | }; | 
|  |  | 
|  | static const match_table_t tokens = { | 
|  | {Opt_degraded, "degraded"}, | 
|  | {Opt_subvol, "subvol=%s"}, | 
|  | {Opt_subvolid, "subvolid=%s"}, | 
|  | {Opt_device, "device=%s"}, | 
|  | {Opt_nodatasum, "nodatasum"}, | 
|  | {Opt_datasum, "datasum"}, | 
|  | {Opt_nodatacow, "nodatacow"}, | 
|  | {Opt_datacow, "datacow"}, | 
|  | {Opt_nobarrier, "nobarrier"}, | 
|  | {Opt_barrier, "barrier"}, | 
|  | {Opt_max_inline, "max_inline=%s"}, | 
|  | {Opt_alloc_start, "alloc_start=%s"}, | 
|  | {Opt_thread_pool, "thread_pool=%d"}, | 
|  | {Opt_compress, "compress"}, | 
|  | {Opt_compress_type, "compress=%s"}, | 
|  | {Opt_compress_force, "compress-force"}, | 
|  | {Opt_compress_force_type, "compress-force=%s"}, | 
|  | {Opt_ssd, "ssd"}, | 
|  | {Opt_ssd_spread, "ssd_spread"}, | 
|  | {Opt_nossd, "nossd"}, | 
|  | {Opt_acl, "acl"}, | 
|  | {Opt_noacl, "noacl"}, | 
|  | {Opt_notreelog, "notreelog"}, | 
|  | {Opt_treelog, "treelog"}, | 
|  | {Opt_nologreplay, "nologreplay"}, | 
|  | {Opt_norecovery, "norecovery"}, | 
|  | {Opt_flushoncommit, "flushoncommit"}, | 
|  | {Opt_noflushoncommit, "noflushoncommit"}, | 
|  | {Opt_ratio, "metadata_ratio=%d"}, | 
|  | {Opt_discard, "discard"}, | 
|  | {Opt_nodiscard, "nodiscard"}, | 
|  | {Opt_space_cache, "space_cache"}, | 
|  | {Opt_space_cache_version, "space_cache=%s"}, | 
|  | {Opt_clear_cache, "clear_cache"}, | 
|  | {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"}, | 
|  | {Opt_enospc_debug, "enospc_debug"}, | 
|  | {Opt_noenospc_debug, "noenospc_debug"}, | 
|  | {Opt_subvolrootid, "subvolrootid=%d"}, | 
|  | {Opt_defrag, "autodefrag"}, | 
|  | {Opt_nodefrag, "noautodefrag"}, | 
|  | {Opt_inode_cache, "inode_cache"}, | 
|  | {Opt_noinode_cache, "noinode_cache"}, | 
|  | {Opt_no_space_cache, "nospace_cache"}, | 
|  | {Opt_recovery, "recovery"}, /* deprecated */ | 
|  | {Opt_usebackuproot, "usebackuproot"}, | 
|  | {Opt_skip_balance, "skip_balance"}, | 
|  | {Opt_check_integrity, "check_int"}, | 
|  | {Opt_check_integrity_including_extent_data, "check_int_data"}, | 
|  | {Opt_check_integrity_print_mask, "check_int_print_mask=%d"}, | 
|  | {Opt_rescan_uuid_tree, "rescan_uuid_tree"}, | 
|  | {Opt_fatal_errors, "fatal_errors=%s"}, | 
|  | {Opt_commit_interval, "commit=%d"}, | 
|  | #ifdef CONFIG_BTRFS_DEBUG | 
|  | {Opt_fragment_data, "fragment=data"}, | 
|  | {Opt_fragment_metadata, "fragment=metadata"}, | 
|  | {Opt_fragment_all, "fragment=all"}, | 
|  | #endif | 
|  | {Opt_err, NULL}, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Regular mount options parser.  Everything that is needed only when | 
|  | * reading in a new superblock is parsed here. | 
|  | * XXX JDM: This needs to be cleaned up for remount. | 
|  | */ | 
|  | int btrfs_parse_options(struct btrfs_root *root, char *options, | 
|  | unsigned long new_flags) | 
|  | { | 
|  | struct btrfs_fs_info *info = root->fs_info; | 
|  | substring_t args[MAX_OPT_ARGS]; | 
|  | char *p, *num, *orig = NULL; | 
|  | u64 cache_gen; | 
|  | int intarg; | 
|  | int ret = 0; | 
|  | char *compress_type; | 
|  | bool compress_force = false; | 
|  | enum btrfs_compression_type saved_compress_type; | 
|  | bool saved_compress_force; | 
|  | int no_compress = 0; | 
|  |  | 
|  | cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy); | 
|  | if (btrfs_fs_compat_ro(root->fs_info, FREE_SPACE_TREE)) | 
|  | btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE); | 
|  | else if (cache_gen) | 
|  | btrfs_set_opt(info->mount_opt, SPACE_CACHE); | 
|  |  | 
|  | /* | 
|  | * Even the options are empty, we still need to do extra check | 
|  | * against new flags | 
|  | */ | 
|  | if (!options) | 
|  | goto check; | 
|  |  | 
|  | /* | 
|  | * strsep changes the string, duplicate it because parse_options | 
|  | * gets called twice | 
|  | */ | 
|  | options = kstrdup(options, GFP_NOFS); | 
|  | if (!options) | 
|  | return -ENOMEM; | 
|  |  | 
|  | orig = options; | 
|  |  | 
|  | while ((p = strsep(&options, ",")) != NULL) { | 
|  | int token; | 
|  | if (!*p) | 
|  | continue; | 
|  |  | 
|  | token = match_token(p, tokens, args); | 
|  | switch (token) { | 
|  | case Opt_degraded: | 
|  | btrfs_info(root->fs_info, "allowing degraded mounts"); | 
|  | btrfs_set_opt(info->mount_opt, DEGRADED); | 
|  | break; | 
|  | case Opt_subvol: | 
|  | case Opt_subvolid: | 
|  | case Opt_subvolrootid: | 
|  | case Opt_device: | 
|  | /* | 
|  | * These are parsed by btrfs_parse_early_options | 
|  | * and can be happily ignored here. | 
|  | */ | 
|  | break; | 
|  | case Opt_nodatasum: | 
|  | btrfs_set_and_info(info, NODATASUM, | 
|  | "setting nodatasum"); | 
|  | break; | 
|  | case Opt_datasum: | 
|  | if (btrfs_test_opt(info, NODATASUM)) { | 
|  | if (btrfs_test_opt(info, NODATACOW)) | 
|  | btrfs_info(root->fs_info, | 
|  | "setting datasum, datacow enabled"); | 
|  | else | 
|  | btrfs_info(root->fs_info, | 
|  | "setting datasum"); | 
|  | } | 
|  | btrfs_clear_opt(info->mount_opt, NODATACOW); | 
|  | btrfs_clear_opt(info->mount_opt, NODATASUM); | 
|  | break; | 
|  | case Opt_nodatacow: | 
|  | if (!btrfs_test_opt(info, NODATACOW)) { | 
|  | if (!btrfs_test_opt(info, COMPRESS) || | 
|  | !btrfs_test_opt(info, FORCE_COMPRESS)) { | 
|  | btrfs_info(root->fs_info, | 
|  | "setting nodatacow, compression disabled"); | 
|  | } else { | 
|  | btrfs_info(root->fs_info, | 
|  | "setting nodatacow"); | 
|  | } | 
|  | } | 
|  | btrfs_clear_opt(info->mount_opt, COMPRESS); | 
|  | btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); | 
|  | btrfs_set_opt(info->mount_opt, NODATACOW); | 
|  | btrfs_set_opt(info->mount_opt, NODATASUM); | 
|  | break; | 
|  | case Opt_datacow: | 
|  | btrfs_clear_and_info(info, NODATACOW, | 
|  | "setting datacow"); | 
|  | break; | 
|  | case Opt_compress_force: | 
|  | case Opt_compress_force_type: | 
|  | compress_force = true; | 
|  | /* Fallthrough */ | 
|  | case Opt_compress: | 
|  | case Opt_compress_type: | 
|  | saved_compress_type = btrfs_test_opt(info, | 
|  | COMPRESS) ? | 
|  | info->compress_type : BTRFS_COMPRESS_NONE; | 
|  | saved_compress_force = | 
|  | btrfs_test_opt(info, FORCE_COMPRESS); | 
|  | if (token == Opt_compress || | 
|  | token == Opt_compress_force || | 
|  | strcmp(args[0].from, "zlib") == 0) { | 
|  | compress_type = "zlib"; | 
|  | info->compress_type = BTRFS_COMPRESS_ZLIB; | 
|  | btrfs_set_opt(info->mount_opt, COMPRESS); | 
|  | btrfs_clear_opt(info->mount_opt, NODATACOW); | 
|  | btrfs_clear_opt(info->mount_opt, NODATASUM); | 
|  | no_compress = 0; | 
|  | } else if (strcmp(args[0].from, "lzo") == 0) { | 
|  | compress_type = "lzo"; | 
|  | info->compress_type = BTRFS_COMPRESS_LZO; | 
|  | btrfs_set_opt(info->mount_opt, COMPRESS); | 
|  | btrfs_clear_opt(info->mount_opt, NODATACOW); | 
|  | btrfs_clear_opt(info->mount_opt, NODATASUM); | 
|  | btrfs_set_fs_incompat(info, COMPRESS_LZO); | 
|  | no_compress = 0; | 
|  | } else if (strncmp(args[0].from, "no", 2) == 0) { | 
|  | compress_type = "no"; | 
|  | btrfs_clear_opt(info->mount_opt, COMPRESS); | 
|  | btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); | 
|  | compress_force = false; | 
|  | no_compress++; | 
|  | } else { | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (compress_force) { | 
|  | btrfs_set_opt(info->mount_opt, FORCE_COMPRESS); | 
|  | } else { | 
|  | /* | 
|  | * If we remount from compress-force=xxx to | 
|  | * compress=xxx, we need clear FORCE_COMPRESS | 
|  | * flag, otherwise, there is no way for users | 
|  | * to disable forcible compression separately. | 
|  | */ | 
|  | btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); | 
|  | } | 
|  | if ((btrfs_test_opt(info, COMPRESS) && | 
|  | (info->compress_type != saved_compress_type || | 
|  | compress_force != saved_compress_force)) || | 
|  | (!btrfs_test_opt(info, COMPRESS) && | 
|  | no_compress == 1)) { | 
|  | btrfs_info(root->fs_info, | 
|  | "%s %s compression", | 
|  | (compress_force) ? "force" : "use", | 
|  | compress_type); | 
|  | } | 
|  | compress_force = false; | 
|  | break; | 
|  | case Opt_ssd: | 
|  | btrfs_set_and_info(info, SSD, | 
|  | "use ssd allocation scheme"); | 
|  | break; | 
|  | case Opt_ssd_spread: | 
|  | btrfs_set_and_info(info, SSD_SPREAD, | 
|  | "use spread ssd allocation scheme"); | 
|  | btrfs_set_opt(info->mount_opt, SSD); | 
|  | break; | 
|  | case Opt_nossd: | 
|  | btrfs_set_and_info(info, NOSSD, | 
|  | "not using ssd allocation scheme"); | 
|  | btrfs_clear_opt(info->mount_opt, SSD); | 
|  | break; | 
|  | case Opt_barrier: | 
|  | btrfs_clear_and_info(info, NOBARRIER, | 
|  | "turning on barriers"); | 
|  | break; | 
|  | case Opt_nobarrier: | 
|  | btrfs_set_and_info(info, NOBARRIER, | 
|  | "turning off barriers"); | 
|  | break; | 
|  | case Opt_thread_pool: | 
|  | ret = match_int(&args[0], &intarg); | 
|  | if (ret) { | 
|  | goto out; | 
|  | } else if (intarg > 0) { | 
|  | info->thread_pool_size = intarg; | 
|  | } else { | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  | break; | 
|  | case Opt_max_inline: | 
|  | num = match_strdup(&args[0]); | 
|  | if (num) { | 
|  | info->max_inline = memparse(num, NULL); | 
|  | kfree(num); | 
|  |  | 
|  | if (info->max_inline) { | 
|  | info->max_inline = min_t(u64, | 
|  | info->max_inline, | 
|  | root->sectorsize); | 
|  | } | 
|  | btrfs_info(root->fs_info, "max_inline at %llu", | 
|  | info->max_inline); | 
|  | } else { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  | break; | 
|  | case Opt_alloc_start: | 
|  | num = match_strdup(&args[0]); | 
|  | if (num) { | 
|  | mutex_lock(&info->chunk_mutex); | 
|  | info->alloc_start = memparse(num, NULL); | 
|  | mutex_unlock(&info->chunk_mutex); | 
|  | kfree(num); | 
|  | btrfs_info(root->fs_info, | 
|  | "allocations start at %llu", | 
|  | info->alloc_start); | 
|  | } else { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  | break; | 
|  | case Opt_acl: | 
|  | #ifdef CONFIG_BTRFS_FS_POSIX_ACL | 
|  | root->fs_info->sb->s_flags |= MS_POSIXACL; | 
|  | break; | 
|  | #else | 
|  | btrfs_err(root->fs_info, | 
|  | "support for ACL not compiled in!"); | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | #endif | 
|  | case Opt_noacl: | 
|  | root->fs_info->sb->s_flags &= ~MS_POSIXACL; | 
|  | break; | 
|  | case Opt_notreelog: | 
|  | btrfs_set_and_info(info, NOTREELOG, | 
|  | "disabling tree log"); | 
|  | break; | 
|  | case Opt_treelog: | 
|  | btrfs_clear_and_info(info, NOTREELOG, | 
|  | "enabling tree log"); | 
|  | break; | 
|  | case Opt_norecovery: | 
|  | case Opt_nologreplay: | 
|  | btrfs_set_and_info(info, NOLOGREPLAY, | 
|  | "disabling log replay at mount time"); | 
|  | break; | 
|  | case Opt_flushoncommit: | 
|  | btrfs_set_and_info(info, FLUSHONCOMMIT, | 
|  | "turning on flush-on-commit"); | 
|  | break; | 
|  | case Opt_noflushoncommit: | 
|  | btrfs_clear_and_info(info, FLUSHONCOMMIT, | 
|  | "turning off flush-on-commit"); | 
|  | break; | 
|  | case Opt_ratio: | 
|  | ret = match_int(&args[0], &intarg); | 
|  | if (ret) { | 
|  | goto out; | 
|  | } else if (intarg >= 0) { | 
|  | info->metadata_ratio = intarg; | 
|  | btrfs_info(root->fs_info, "metadata ratio %d", | 
|  | info->metadata_ratio); | 
|  | } else { | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  | break; | 
|  | case Opt_discard: | 
|  | btrfs_set_and_info(info, DISCARD, | 
|  | "turning on discard"); | 
|  | break; | 
|  | case Opt_nodiscard: | 
|  | btrfs_clear_and_info(info, DISCARD, | 
|  | "turning off discard"); | 
|  | break; | 
|  | case Opt_space_cache: | 
|  | case Opt_space_cache_version: | 
|  | if (token == Opt_space_cache || | 
|  | strcmp(args[0].from, "v1") == 0) { | 
|  | btrfs_clear_opt(root->fs_info->mount_opt, | 
|  | FREE_SPACE_TREE); | 
|  | btrfs_set_and_info(info, SPACE_CACHE, | 
|  | "enabling disk space caching"); | 
|  | } else if (strcmp(args[0].from, "v2") == 0) { | 
|  | btrfs_clear_opt(root->fs_info->mount_opt, | 
|  | SPACE_CACHE); | 
|  | btrfs_set_and_info(info, | 
|  | FREE_SPACE_TREE, | 
|  | "enabling free space tree"); | 
|  | } else { | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  | break; | 
|  | case Opt_rescan_uuid_tree: | 
|  | btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE); | 
|  | break; | 
|  | case Opt_no_space_cache: | 
|  | if (btrfs_test_opt(info, SPACE_CACHE)) { | 
|  | btrfs_clear_and_info(info, | 
|  | SPACE_CACHE, | 
|  | "disabling disk space caching"); | 
|  | } | 
|  | if (btrfs_test_opt(info, FREE_SPACE_TREE)) { | 
|  | btrfs_clear_and_info(info, | 
|  | FREE_SPACE_TREE, | 
|  | "disabling free space tree"); | 
|  | } | 
|  | break; | 
|  | case Opt_inode_cache: | 
|  | btrfs_set_pending_and_info(info, INODE_MAP_CACHE, | 
|  | "enabling inode map caching"); | 
|  | break; | 
|  | case Opt_noinode_cache: | 
|  | btrfs_clear_pending_and_info(info, INODE_MAP_CACHE, | 
|  | "disabling inode map caching"); | 
|  | break; | 
|  | case Opt_clear_cache: | 
|  | btrfs_set_and_info(info, CLEAR_CACHE, | 
|  | "force clearing of disk cache"); | 
|  | break; | 
|  | case Opt_user_subvol_rm_allowed: | 
|  | btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED); | 
|  | break; | 
|  | case Opt_enospc_debug: | 
|  | btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG); | 
|  | break; | 
|  | case Opt_noenospc_debug: | 
|  | btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG); | 
|  | break; | 
|  | case Opt_defrag: | 
|  | btrfs_set_and_info(info, AUTO_DEFRAG, | 
|  | "enabling auto defrag"); | 
|  | break; | 
|  | case Opt_nodefrag: | 
|  | btrfs_clear_and_info(info, AUTO_DEFRAG, | 
|  | "disabling auto defrag"); | 
|  | break; | 
|  | case Opt_recovery: | 
|  | btrfs_warn(root->fs_info, | 
|  | "'recovery' is deprecated, use 'usebackuproot' instead"); | 
|  | case Opt_usebackuproot: | 
|  | btrfs_info(root->fs_info, | 
|  | "trying to use backup root at mount time"); | 
|  | btrfs_set_opt(info->mount_opt, USEBACKUPROOT); | 
|  | break; | 
|  | case Opt_skip_balance: | 
|  | btrfs_set_opt(info->mount_opt, SKIP_BALANCE); | 
|  | break; | 
|  | #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY | 
|  | case Opt_check_integrity_including_extent_data: | 
|  | btrfs_info(root->fs_info, | 
|  | "enabling check integrity including extent data"); | 
|  | btrfs_set_opt(info->mount_opt, | 
|  | CHECK_INTEGRITY_INCLUDING_EXTENT_DATA); | 
|  | btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); | 
|  | break; | 
|  | case Opt_check_integrity: | 
|  | btrfs_info(root->fs_info, "enabling check integrity"); | 
|  | btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); | 
|  | break; | 
|  | case Opt_check_integrity_print_mask: | 
|  | ret = match_int(&args[0], &intarg); | 
|  | if (ret) { | 
|  | goto out; | 
|  | } else if (intarg >= 0) { | 
|  | info->check_integrity_print_mask = intarg; | 
|  | btrfs_info(root->fs_info, | 
|  | "check_integrity_print_mask 0x%x", | 
|  | info->check_integrity_print_mask); | 
|  | } else { | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  | break; | 
|  | #else | 
|  | case Opt_check_integrity_including_extent_data: | 
|  | case Opt_check_integrity: | 
|  | case Opt_check_integrity_print_mask: | 
|  | btrfs_err(root->fs_info, | 
|  | "support for check_integrity* not compiled in!"); | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | #endif | 
|  | case Opt_fatal_errors: | 
|  | if (strcmp(args[0].from, "panic") == 0) | 
|  | btrfs_set_opt(info->mount_opt, | 
|  | PANIC_ON_FATAL_ERROR); | 
|  | else if (strcmp(args[0].from, "bug") == 0) | 
|  | btrfs_clear_opt(info->mount_opt, | 
|  | PANIC_ON_FATAL_ERROR); | 
|  | else { | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  | break; | 
|  | case Opt_commit_interval: | 
|  | intarg = 0; | 
|  | ret = match_int(&args[0], &intarg); | 
|  | if (ret < 0) { | 
|  | btrfs_err(root->fs_info, | 
|  | "invalid commit interval"); | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  | if (intarg > 0) { | 
|  | if (intarg > 300) { | 
|  | btrfs_warn(root->fs_info, | 
|  | "excessive commit interval %d", | 
|  | intarg); | 
|  | } | 
|  | info->commit_interval = intarg; | 
|  | } else { | 
|  | btrfs_info(root->fs_info, | 
|  | "using default commit interval %ds", | 
|  | BTRFS_DEFAULT_COMMIT_INTERVAL); | 
|  | info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; | 
|  | } | 
|  | break; | 
|  | #ifdef CONFIG_BTRFS_DEBUG | 
|  | case Opt_fragment_all: | 
|  | btrfs_info(root->fs_info, "fragmenting all space"); | 
|  | btrfs_set_opt(info->mount_opt, FRAGMENT_DATA); | 
|  | btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA); | 
|  | break; | 
|  | case Opt_fragment_metadata: | 
|  | btrfs_info(root->fs_info, "fragmenting metadata"); | 
|  | btrfs_set_opt(info->mount_opt, | 
|  | FRAGMENT_METADATA); | 
|  | break; | 
|  | case Opt_fragment_data: | 
|  | btrfs_info(root->fs_info, "fragmenting data"); | 
|  | btrfs_set_opt(info->mount_opt, FRAGMENT_DATA); | 
|  | break; | 
|  | #endif | 
|  | case Opt_err: | 
|  | btrfs_info(root->fs_info, | 
|  | "unrecognized mount option '%s'", p); | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  | check: | 
|  | /* | 
|  | * Extra check for current option against current flag | 
|  | */ | 
|  | if (btrfs_test_opt(info, NOLOGREPLAY) && !(new_flags & MS_RDONLY)) { | 
|  | btrfs_err(root->fs_info, | 
|  | "nologreplay must be used with ro mount option"); | 
|  | ret = -EINVAL; | 
|  | } | 
|  | out: | 
|  | if (btrfs_fs_compat_ro(root->fs_info, FREE_SPACE_TREE) && | 
|  | !btrfs_test_opt(info, FREE_SPACE_TREE) && | 
|  | !btrfs_test_opt(info, CLEAR_CACHE)) { | 
|  | btrfs_err(root->fs_info, "cannot disable free space tree"); | 
|  | ret = -EINVAL; | 
|  |  | 
|  | } | 
|  | if (!ret && btrfs_test_opt(info, SPACE_CACHE)) | 
|  | btrfs_info(root->fs_info, "disk space caching is enabled"); | 
|  | if (!ret && btrfs_test_opt(info, FREE_SPACE_TREE)) | 
|  | btrfs_info(root->fs_info, "using free space tree"); | 
|  | kfree(orig); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Parse mount options that are required early in the mount process. | 
|  | * | 
|  | * All other options will be parsed on much later in the mount process and | 
|  | * only when we need to allocate a new super block. | 
|  | */ | 
|  | static int btrfs_parse_early_options(const char *options, fmode_t flags, | 
|  | void *holder, char **subvol_name, u64 *subvol_objectid, | 
|  | struct btrfs_fs_devices **fs_devices) | 
|  | { | 
|  | substring_t args[MAX_OPT_ARGS]; | 
|  | char *device_name, *opts, *orig, *p; | 
|  | char *num = NULL; | 
|  | int error = 0; | 
|  |  | 
|  | if (!options) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * strsep changes the string, duplicate it because parse_options | 
|  | * gets called twice | 
|  | */ | 
|  | opts = kstrdup(options, GFP_KERNEL); | 
|  | if (!opts) | 
|  | return -ENOMEM; | 
|  | orig = opts; | 
|  |  | 
|  | while ((p = strsep(&opts, ",")) != NULL) { | 
|  | int token; | 
|  | if (!*p) | 
|  | continue; | 
|  |  | 
|  | token = match_token(p, tokens, args); | 
|  | switch (token) { | 
|  | case Opt_subvol: | 
|  | kfree(*subvol_name); | 
|  | *subvol_name = match_strdup(&args[0]); | 
|  | if (!*subvol_name) { | 
|  | error = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  | break; | 
|  | case Opt_subvolid: | 
|  | num = match_strdup(&args[0]); | 
|  | if (num) { | 
|  | *subvol_objectid = memparse(num, NULL); | 
|  | kfree(num); | 
|  | /* we want the original fs_tree */ | 
|  | if (!*subvol_objectid) | 
|  | *subvol_objectid = | 
|  | BTRFS_FS_TREE_OBJECTID; | 
|  | } else { | 
|  | error = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  | break; | 
|  | case Opt_subvolrootid: | 
|  | pr_warn("BTRFS: 'subvolrootid' mount option is deprecated and has no effect\n"); | 
|  | break; | 
|  | case Opt_device: | 
|  | device_name = match_strdup(&args[0]); | 
|  | if (!device_name) { | 
|  | error = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  | error = btrfs_scan_one_device(device_name, | 
|  | flags, holder, fs_devices); | 
|  | kfree(device_name); | 
|  | if (error) | 
|  | goto out; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | out: | 
|  | kfree(orig); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | static char *get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info, | 
|  | u64 subvol_objectid) | 
|  | { | 
|  | struct btrfs_root *root = fs_info->tree_root; | 
|  | struct btrfs_root *fs_root; | 
|  | struct btrfs_root_ref *root_ref; | 
|  | struct btrfs_inode_ref *inode_ref; | 
|  | struct btrfs_key key; | 
|  | struct btrfs_path *path = NULL; | 
|  | char *name = NULL, *ptr; | 
|  | u64 dirid; | 
|  | int len; | 
|  | int ret; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) { | 
|  | ret = -ENOMEM; | 
|  | goto err; | 
|  | } | 
|  | path->leave_spinning = 1; | 
|  |  | 
|  | name = kmalloc(PATH_MAX, GFP_NOFS); | 
|  | if (!name) { | 
|  | ret = -ENOMEM; | 
|  | goto err; | 
|  | } | 
|  | ptr = name + PATH_MAX - 1; | 
|  | ptr[0] = '\0'; | 
|  |  | 
|  | /* | 
|  | * Walk up the subvolume trees in the tree of tree roots by root | 
|  | * backrefs until we hit the top-level subvolume. | 
|  | */ | 
|  | while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) { | 
|  | key.objectid = subvol_objectid; | 
|  | key.type = BTRFS_ROOT_BACKREF_KEY; | 
|  | key.offset = (u64)-1; | 
|  |  | 
|  | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
|  | if (ret < 0) { | 
|  | goto err; | 
|  | } else if (ret > 0) { | 
|  | ret = btrfs_previous_item(root, path, subvol_objectid, | 
|  | BTRFS_ROOT_BACKREF_KEY); | 
|  | if (ret < 0) { | 
|  | goto err; | 
|  | } else if (ret > 0) { | 
|  | ret = -ENOENT; | 
|  | goto err; | 
|  | } | 
|  | } | 
|  |  | 
|  | btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); | 
|  | subvol_objectid = key.offset; | 
|  |  | 
|  | root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0], | 
|  | struct btrfs_root_ref); | 
|  | len = btrfs_root_ref_name_len(path->nodes[0], root_ref); | 
|  | ptr -= len + 1; | 
|  | if (ptr < name) { | 
|  | ret = -ENAMETOOLONG; | 
|  | goto err; | 
|  | } | 
|  | read_extent_buffer(path->nodes[0], ptr + 1, | 
|  | (unsigned long)(root_ref + 1), len); | 
|  | ptr[0] = '/'; | 
|  | dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref); | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | key.objectid = subvol_objectid; | 
|  | key.type = BTRFS_ROOT_ITEM_KEY; | 
|  | key.offset = (u64)-1; | 
|  | fs_root = btrfs_read_fs_root_no_name(fs_info, &key); | 
|  | if (IS_ERR(fs_root)) { | 
|  | ret = PTR_ERR(fs_root); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Walk up the filesystem tree by inode refs until we hit the | 
|  | * root directory. | 
|  | */ | 
|  | while (dirid != BTRFS_FIRST_FREE_OBJECTID) { | 
|  | key.objectid = dirid; | 
|  | key.type = BTRFS_INODE_REF_KEY; | 
|  | key.offset = (u64)-1; | 
|  |  | 
|  | ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0); | 
|  | if (ret < 0) { | 
|  | goto err; | 
|  | } else if (ret > 0) { | 
|  | ret = btrfs_previous_item(fs_root, path, dirid, | 
|  | BTRFS_INODE_REF_KEY); | 
|  | if (ret < 0) { | 
|  | goto err; | 
|  | } else if (ret > 0) { | 
|  | ret = -ENOENT; | 
|  | goto err; | 
|  | } | 
|  | } | 
|  |  | 
|  | btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); | 
|  | dirid = key.offset; | 
|  |  | 
|  | inode_ref = btrfs_item_ptr(path->nodes[0], | 
|  | path->slots[0], | 
|  | struct btrfs_inode_ref); | 
|  | len = btrfs_inode_ref_name_len(path->nodes[0], | 
|  | inode_ref); | 
|  | ptr -= len + 1; | 
|  | if (ptr < name) { | 
|  | ret = -ENAMETOOLONG; | 
|  | goto err; | 
|  | } | 
|  | read_extent_buffer(path->nodes[0], ptr + 1, | 
|  | (unsigned long)(inode_ref + 1), len); | 
|  | ptr[0] = '/'; | 
|  | btrfs_release_path(path); | 
|  | } | 
|  | } | 
|  |  | 
|  | btrfs_free_path(path); | 
|  | if (ptr == name + PATH_MAX - 1) { | 
|  | name[0] = '/'; | 
|  | name[1] = '\0'; | 
|  | } else { | 
|  | memmove(name, ptr, name + PATH_MAX - ptr); | 
|  | } | 
|  | return name; | 
|  |  | 
|  | err: | 
|  | btrfs_free_path(path); | 
|  | kfree(name); | 
|  | return ERR_PTR(ret); | 
|  | } | 
|  |  | 
|  | static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid) | 
|  | { | 
|  | struct btrfs_root *root = fs_info->tree_root; | 
|  | struct btrfs_dir_item *di; | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_key location; | 
|  | u64 dir_id; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  | path->leave_spinning = 1; | 
|  |  | 
|  | /* | 
|  | * Find the "default" dir item which points to the root item that we | 
|  | * will mount by default if we haven't been given a specific subvolume | 
|  | * to mount. | 
|  | */ | 
|  | dir_id = btrfs_super_root_dir(fs_info->super_copy); | 
|  | di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0); | 
|  | if (IS_ERR(di)) { | 
|  | btrfs_free_path(path); | 
|  | return PTR_ERR(di); | 
|  | } | 
|  | if (!di) { | 
|  | /* | 
|  | * Ok the default dir item isn't there.  This is weird since | 
|  | * it's always been there, but don't freak out, just try and | 
|  | * mount the top-level subvolume. | 
|  | */ | 
|  | btrfs_free_path(path); | 
|  | *objectid = BTRFS_FS_TREE_OBJECTID; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); | 
|  | btrfs_free_path(path); | 
|  | *objectid = location.objectid; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int btrfs_fill_super(struct super_block *sb, | 
|  | struct btrfs_fs_devices *fs_devices, | 
|  | void *data, int silent) | 
|  | { | 
|  | struct inode *inode; | 
|  | struct btrfs_fs_info *fs_info = btrfs_sb(sb); | 
|  | struct btrfs_key key; | 
|  | int err; | 
|  |  | 
|  | sb->s_maxbytes = MAX_LFS_FILESIZE; | 
|  | sb->s_magic = BTRFS_SUPER_MAGIC; | 
|  | sb->s_op = &btrfs_super_ops; | 
|  | sb->s_d_op = &btrfs_dentry_operations; | 
|  | sb->s_export_op = &btrfs_export_ops; | 
|  | sb->s_xattr = btrfs_xattr_handlers; | 
|  | sb->s_time_gran = 1; | 
|  | #ifdef CONFIG_BTRFS_FS_POSIX_ACL | 
|  | sb->s_flags |= MS_POSIXACL; | 
|  | #endif | 
|  | sb->s_flags |= MS_I_VERSION; | 
|  | sb->s_iflags |= SB_I_CGROUPWB; | 
|  | err = open_ctree(sb, fs_devices, (char *)data); | 
|  | if (err) { | 
|  | btrfs_err(fs_info, "open_ctree failed"); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | key.objectid = BTRFS_FIRST_FREE_OBJECTID; | 
|  | key.type = BTRFS_INODE_ITEM_KEY; | 
|  | key.offset = 0; | 
|  | inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL); | 
|  | if (IS_ERR(inode)) { | 
|  | err = PTR_ERR(inode); | 
|  | goto fail_close; | 
|  | } | 
|  |  | 
|  | sb->s_root = d_make_root(inode); | 
|  | if (!sb->s_root) { | 
|  | err = -ENOMEM; | 
|  | goto fail_close; | 
|  | } | 
|  |  | 
|  | save_mount_options(sb, data); | 
|  | cleancache_init_fs(sb); | 
|  | sb->s_flags |= MS_ACTIVE; | 
|  | return 0; | 
|  |  | 
|  | fail_close: | 
|  | close_ctree(fs_info->tree_root); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | int btrfs_sync_fs(struct super_block *sb, int wait) | 
|  | { | 
|  | struct btrfs_trans_handle *trans; | 
|  | struct btrfs_fs_info *fs_info = btrfs_sb(sb); | 
|  | struct btrfs_root *root = fs_info->tree_root; | 
|  |  | 
|  | trace_btrfs_sync_fs(fs_info, wait); | 
|  |  | 
|  | if (!wait) { | 
|  | filemap_flush(fs_info->btree_inode->i_mapping); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | btrfs_wait_ordered_roots(fs_info, -1, 0, (u64)-1); | 
|  |  | 
|  | trans = btrfs_attach_transaction_barrier(root); | 
|  | if (IS_ERR(trans)) { | 
|  | /* no transaction, don't bother */ | 
|  | if (PTR_ERR(trans) == -ENOENT) { | 
|  | /* | 
|  | * Exit unless we have some pending changes | 
|  | * that need to go through commit | 
|  | */ | 
|  | if (fs_info->pending_changes == 0) | 
|  | return 0; | 
|  | /* | 
|  | * A non-blocking test if the fs is frozen. We must not | 
|  | * start a new transaction here otherwise a deadlock | 
|  | * happens. The pending operations are delayed to the | 
|  | * next commit after thawing. | 
|  | */ | 
|  | if (__sb_start_write(sb, SB_FREEZE_WRITE, false)) | 
|  | __sb_end_write(sb, SB_FREEZE_WRITE); | 
|  | else | 
|  | return 0; | 
|  | trans = btrfs_start_transaction(root, 0); | 
|  | } | 
|  | if (IS_ERR(trans)) | 
|  | return PTR_ERR(trans); | 
|  | } | 
|  | return btrfs_commit_transaction(trans, root); | 
|  | } | 
|  |  | 
|  | static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry) | 
|  | { | 
|  | struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb); | 
|  | struct btrfs_root *root = info->tree_root; | 
|  | char *compress_type; | 
|  |  | 
|  | if (btrfs_test_opt(info, DEGRADED)) | 
|  | seq_puts(seq, ",degraded"); | 
|  | if (btrfs_test_opt(info, NODATASUM)) | 
|  | seq_puts(seq, ",nodatasum"); | 
|  | if (btrfs_test_opt(info, NODATACOW)) | 
|  | seq_puts(seq, ",nodatacow"); | 
|  | if (btrfs_test_opt(info, NOBARRIER)) | 
|  | seq_puts(seq, ",nobarrier"); | 
|  | if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE) | 
|  | seq_printf(seq, ",max_inline=%llu", info->max_inline); | 
|  | if (info->alloc_start != 0) | 
|  | seq_printf(seq, ",alloc_start=%llu", info->alloc_start); | 
|  | if (info->thread_pool_size !=  min_t(unsigned long, | 
|  | num_online_cpus() + 2, 8)) | 
|  | seq_printf(seq, ",thread_pool=%d", info->thread_pool_size); | 
|  | if (btrfs_test_opt(info, COMPRESS)) { | 
|  | if (info->compress_type == BTRFS_COMPRESS_ZLIB) | 
|  | compress_type = "zlib"; | 
|  | else | 
|  | compress_type = "lzo"; | 
|  | if (btrfs_test_opt(info, FORCE_COMPRESS)) | 
|  | seq_printf(seq, ",compress-force=%s", compress_type); | 
|  | else | 
|  | seq_printf(seq, ",compress=%s", compress_type); | 
|  | } | 
|  | if (btrfs_test_opt(info, NOSSD)) | 
|  | seq_puts(seq, ",nossd"); | 
|  | if (btrfs_test_opt(info, SSD_SPREAD)) | 
|  | seq_puts(seq, ",ssd_spread"); | 
|  | else if (btrfs_test_opt(info, SSD)) | 
|  | seq_puts(seq, ",ssd"); | 
|  | if (btrfs_test_opt(info, NOTREELOG)) | 
|  | seq_puts(seq, ",notreelog"); | 
|  | if (btrfs_test_opt(info, NOLOGREPLAY)) | 
|  | seq_puts(seq, ",nologreplay"); | 
|  | if (btrfs_test_opt(info, FLUSHONCOMMIT)) | 
|  | seq_puts(seq, ",flushoncommit"); | 
|  | if (btrfs_test_opt(info, DISCARD)) | 
|  | seq_puts(seq, ",discard"); | 
|  | if (!(root->fs_info->sb->s_flags & MS_POSIXACL)) | 
|  | seq_puts(seq, ",noacl"); | 
|  | if (btrfs_test_opt(info, SPACE_CACHE)) | 
|  | seq_puts(seq, ",space_cache"); | 
|  | else if (btrfs_test_opt(info, FREE_SPACE_TREE)) | 
|  | seq_puts(seq, ",space_cache=v2"); | 
|  | else | 
|  | seq_puts(seq, ",nospace_cache"); | 
|  | if (btrfs_test_opt(info, RESCAN_UUID_TREE)) | 
|  | seq_puts(seq, ",rescan_uuid_tree"); | 
|  | if (btrfs_test_opt(info, CLEAR_CACHE)) | 
|  | seq_puts(seq, ",clear_cache"); | 
|  | if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED)) | 
|  | seq_puts(seq, ",user_subvol_rm_allowed"); | 
|  | if (btrfs_test_opt(info, ENOSPC_DEBUG)) | 
|  | seq_puts(seq, ",enospc_debug"); | 
|  | if (btrfs_test_opt(info, AUTO_DEFRAG)) | 
|  | seq_puts(seq, ",autodefrag"); | 
|  | if (btrfs_test_opt(info, INODE_MAP_CACHE)) | 
|  | seq_puts(seq, ",inode_cache"); | 
|  | if (btrfs_test_opt(info, SKIP_BALANCE)) | 
|  | seq_puts(seq, ",skip_balance"); | 
|  | #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY | 
|  | if (btrfs_test_opt(info, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA)) | 
|  | seq_puts(seq, ",check_int_data"); | 
|  | else if (btrfs_test_opt(info, CHECK_INTEGRITY)) | 
|  | seq_puts(seq, ",check_int"); | 
|  | if (info->check_integrity_print_mask) | 
|  | seq_printf(seq, ",check_int_print_mask=%d", | 
|  | info->check_integrity_print_mask); | 
|  | #endif | 
|  | if (info->metadata_ratio) | 
|  | seq_printf(seq, ",metadata_ratio=%d", | 
|  | info->metadata_ratio); | 
|  | if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR)) | 
|  | seq_puts(seq, ",fatal_errors=panic"); | 
|  | if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL) | 
|  | seq_printf(seq, ",commit=%d", info->commit_interval); | 
|  | #ifdef CONFIG_BTRFS_DEBUG | 
|  | if (btrfs_test_opt(info, FRAGMENT_DATA)) | 
|  | seq_puts(seq, ",fragment=data"); | 
|  | if (btrfs_test_opt(info, FRAGMENT_METADATA)) | 
|  | seq_puts(seq, ",fragment=metadata"); | 
|  | #endif | 
|  | seq_printf(seq, ",subvolid=%llu", | 
|  | BTRFS_I(d_inode(dentry))->root->root_key.objectid); | 
|  | seq_puts(seq, ",subvol="); | 
|  | seq_dentry(seq, dentry, " \t\n\\"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int btrfs_test_super(struct super_block *s, void *data) | 
|  | { | 
|  | struct btrfs_fs_info *p = data; | 
|  | struct btrfs_fs_info *fs_info = btrfs_sb(s); | 
|  |  | 
|  | return fs_info->fs_devices == p->fs_devices; | 
|  | } | 
|  |  | 
|  | static int btrfs_set_super(struct super_block *s, void *data) | 
|  | { | 
|  | int err = set_anon_super(s, data); | 
|  | if (!err) | 
|  | s->s_fs_info = data; | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * subvolumes are identified by ino 256 | 
|  | */ | 
|  | static inline int is_subvolume_inode(struct inode *inode) | 
|  | { | 
|  | if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This will add subvolid=0 to the argument string while removing any subvol= | 
|  | * and subvolid= arguments to make sure we get the top-level root for path | 
|  | * walking to the subvol we want. | 
|  | */ | 
|  | static char *setup_root_args(char *args) | 
|  | { | 
|  | char *buf, *dst, *sep; | 
|  |  | 
|  | if (!args) | 
|  | return kstrdup("subvolid=0", GFP_NOFS); | 
|  |  | 
|  | /* The worst case is that we add ",subvolid=0" to the end. */ | 
|  | buf = dst = kmalloc(strlen(args) + strlen(",subvolid=0") + 1, GFP_NOFS); | 
|  | if (!buf) | 
|  | return NULL; | 
|  |  | 
|  | while (1) { | 
|  | sep = strchrnul(args, ','); | 
|  | if (!strstarts(args, "subvol=") && | 
|  | !strstarts(args, "subvolid=")) { | 
|  | memcpy(dst, args, sep - args); | 
|  | dst += sep - args; | 
|  | *dst++ = ','; | 
|  | } | 
|  | if (*sep) | 
|  | args = sep + 1; | 
|  | else | 
|  | break; | 
|  | } | 
|  | strcpy(dst, "subvolid=0"); | 
|  |  | 
|  | return buf; | 
|  | } | 
|  |  | 
|  | static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid, | 
|  | int flags, const char *device_name, | 
|  | char *data) | 
|  | { | 
|  | struct dentry *root; | 
|  | struct vfsmount *mnt = NULL; | 
|  | char *newargs; | 
|  | int ret; | 
|  |  | 
|  | newargs = setup_root_args(data); | 
|  | if (!newargs) { | 
|  | root = ERR_PTR(-ENOMEM); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name, newargs); | 
|  | if (PTR_ERR_OR_ZERO(mnt) == -EBUSY) { | 
|  | if (flags & MS_RDONLY) { | 
|  | mnt = vfs_kern_mount(&btrfs_fs_type, flags & ~MS_RDONLY, | 
|  | device_name, newargs); | 
|  | } else { | 
|  | mnt = vfs_kern_mount(&btrfs_fs_type, flags | MS_RDONLY, | 
|  | device_name, newargs); | 
|  | if (IS_ERR(mnt)) { | 
|  | root = ERR_CAST(mnt); | 
|  | mnt = NULL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | down_write(&mnt->mnt_sb->s_umount); | 
|  | ret = btrfs_remount(mnt->mnt_sb, &flags, NULL); | 
|  | up_write(&mnt->mnt_sb->s_umount); | 
|  | if (ret < 0) { | 
|  | root = ERR_PTR(ret); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (IS_ERR(mnt)) { | 
|  | root = ERR_CAST(mnt); | 
|  | mnt = NULL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (!subvol_name) { | 
|  | if (!subvol_objectid) { | 
|  | ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb), | 
|  | &subvol_objectid); | 
|  | if (ret) { | 
|  | root = ERR_PTR(ret); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | subvol_name = get_subvol_name_from_objectid(btrfs_sb(mnt->mnt_sb), | 
|  | subvol_objectid); | 
|  | if (IS_ERR(subvol_name)) { | 
|  | root = ERR_CAST(subvol_name); | 
|  | subvol_name = NULL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | root = mount_subtree(mnt, subvol_name); | 
|  | /* mount_subtree() drops our reference on the vfsmount. */ | 
|  | mnt = NULL; | 
|  |  | 
|  | if (!IS_ERR(root)) { | 
|  | struct super_block *s = root->d_sb; | 
|  | struct btrfs_fs_info *fs_info = btrfs_sb(s); | 
|  | struct inode *root_inode = d_inode(root); | 
|  | u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid; | 
|  |  | 
|  | ret = 0; | 
|  | if (!is_subvolume_inode(root_inode)) { | 
|  | btrfs_err(fs_info, "'%s' is not a valid subvolume", | 
|  | subvol_name); | 
|  | ret = -EINVAL; | 
|  | } | 
|  | if (subvol_objectid && root_objectid != subvol_objectid) { | 
|  | /* | 
|  | * This will also catch a race condition where a | 
|  | * subvolume which was passed by ID is renamed and | 
|  | * another subvolume is renamed over the old location. | 
|  | */ | 
|  | btrfs_err(fs_info, | 
|  | "subvol '%s' does not match subvolid %llu", | 
|  | subvol_name, subvol_objectid); | 
|  | ret = -EINVAL; | 
|  | } | 
|  | if (ret) { | 
|  | dput(root); | 
|  | root = ERR_PTR(ret); | 
|  | deactivate_locked_super(s); | 
|  | } | 
|  | } | 
|  |  | 
|  | out: | 
|  | mntput(mnt); | 
|  | kfree(newargs); | 
|  | kfree(subvol_name); | 
|  | return root; | 
|  | } | 
|  |  | 
|  | static int parse_security_options(char *orig_opts, | 
|  | struct security_mnt_opts *sec_opts) | 
|  | { | 
|  | char *secdata = NULL; | 
|  | int ret = 0; | 
|  |  | 
|  | secdata = alloc_secdata(); | 
|  | if (!secdata) | 
|  | return -ENOMEM; | 
|  | ret = security_sb_copy_data(orig_opts, secdata); | 
|  | if (ret) { | 
|  | free_secdata(secdata); | 
|  | return ret; | 
|  | } | 
|  | ret = security_sb_parse_opts_str(secdata, sec_opts); | 
|  | free_secdata(secdata); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int setup_security_options(struct btrfs_fs_info *fs_info, | 
|  | struct super_block *sb, | 
|  | struct security_mnt_opts *sec_opts) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | /* | 
|  | * Call security_sb_set_mnt_opts() to check whether new sec_opts | 
|  | * is valid. | 
|  | */ | 
|  | ret = security_sb_set_mnt_opts(sb, sec_opts, 0, NULL); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | #ifdef CONFIG_SECURITY | 
|  | if (!fs_info->security_opts.num_mnt_opts) { | 
|  | /* first time security setup, copy sec_opts to fs_info */ | 
|  | memcpy(&fs_info->security_opts, sec_opts, sizeof(*sec_opts)); | 
|  | } else { | 
|  | /* | 
|  | * Since SELinux (the only one supporting security_mnt_opts) | 
|  | * does NOT support changing context during remount/mount of | 
|  | * the same sb, this must be the same or part of the same | 
|  | * security options, just free it. | 
|  | */ | 
|  | security_free_mnt_opts(sec_opts); | 
|  | } | 
|  | #endif | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find a superblock for the given device / mount point. | 
|  | * | 
|  | * Note:  This is based on get_sb_bdev from fs/super.c with a few additions | 
|  | *	  for multiple device setup.  Make sure to keep it in sync. | 
|  | */ | 
|  | static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags, | 
|  | const char *device_name, void *data) | 
|  | { | 
|  | struct block_device *bdev = NULL; | 
|  | struct super_block *s; | 
|  | struct btrfs_fs_devices *fs_devices = NULL; | 
|  | struct btrfs_fs_info *fs_info = NULL; | 
|  | struct security_mnt_opts new_sec_opts; | 
|  | fmode_t mode = FMODE_READ; | 
|  | char *subvol_name = NULL; | 
|  | u64 subvol_objectid = 0; | 
|  | int error = 0; | 
|  |  | 
|  | if (!(flags & MS_RDONLY)) | 
|  | mode |= FMODE_WRITE; | 
|  |  | 
|  | error = btrfs_parse_early_options(data, mode, fs_type, | 
|  | &subvol_name, &subvol_objectid, | 
|  | &fs_devices); | 
|  | if (error) { | 
|  | kfree(subvol_name); | 
|  | return ERR_PTR(error); | 
|  | } | 
|  |  | 
|  | if (subvol_name || subvol_objectid != BTRFS_FS_TREE_OBJECTID) { | 
|  | /* mount_subvol() will free subvol_name. */ | 
|  | return mount_subvol(subvol_name, subvol_objectid, flags, | 
|  | device_name, data); | 
|  | } | 
|  |  | 
|  | security_init_mnt_opts(&new_sec_opts); | 
|  | if (data) { | 
|  | error = parse_security_options(data, &new_sec_opts); | 
|  | if (error) | 
|  | return ERR_PTR(error); | 
|  | } | 
|  |  | 
|  | error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices); | 
|  | if (error) | 
|  | goto error_sec_opts; | 
|  |  | 
|  | /* | 
|  | * Setup a dummy root and fs_info for test/set super.  This is because | 
|  | * we don't actually fill this stuff out until open_ctree, but we need | 
|  | * it for searching for existing supers, so this lets us do that and | 
|  | * then open_ctree will properly initialize everything later. | 
|  | */ | 
|  | fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS); | 
|  | if (!fs_info) { | 
|  | error = -ENOMEM; | 
|  | goto error_sec_opts; | 
|  | } | 
|  |  | 
|  | fs_info->fs_devices = fs_devices; | 
|  |  | 
|  | fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS); | 
|  | fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS); | 
|  | security_init_mnt_opts(&fs_info->security_opts); | 
|  | if (!fs_info->super_copy || !fs_info->super_for_commit) { | 
|  | error = -ENOMEM; | 
|  | goto error_fs_info; | 
|  | } | 
|  |  | 
|  | error = btrfs_open_devices(fs_devices, mode, fs_type); | 
|  | if (error) | 
|  | goto error_fs_info; | 
|  |  | 
|  | if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) { | 
|  | error = -EACCES; | 
|  | goto error_close_devices; | 
|  | } | 
|  |  | 
|  | bdev = fs_devices->latest_bdev; | 
|  | s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC, | 
|  | fs_info); | 
|  | if (IS_ERR(s)) { | 
|  | error = PTR_ERR(s); | 
|  | goto error_close_devices; | 
|  | } | 
|  |  | 
|  | if (s->s_root) { | 
|  | btrfs_close_devices(fs_devices); | 
|  | free_fs_info(fs_info); | 
|  | if ((flags ^ s->s_flags) & MS_RDONLY) | 
|  | error = -EBUSY; | 
|  | } else { | 
|  | snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev); | 
|  | btrfs_sb(s)->bdev_holder = fs_type; | 
|  | error = btrfs_fill_super(s, fs_devices, data, | 
|  | flags & MS_SILENT ? 1 : 0); | 
|  | } | 
|  | if (error) { | 
|  | deactivate_locked_super(s); | 
|  | goto error_sec_opts; | 
|  | } | 
|  |  | 
|  | fs_info = btrfs_sb(s); | 
|  | error = setup_security_options(fs_info, s, &new_sec_opts); | 
|  | if (error) { | 
|  | deactivate_locked_super(s); | 
|  | goto error_sec_opts; | 
|  | } | 
|  |  | 
|  | return dget(s->s_root); | 
|  |  | 
|  | error_close_devices: | 
|  | btrfs_close_devices(fs_devices); | 
|  | error_fs_info: | 
|  | free_fs_info(fs_info); | 
|  | error_sec_opts: | 
|  | security_free_mnt_opts(&new_sec_opts); | 
|  | return ERR_PTR(error); | 
|  | } | 
|  |  | 
|  | static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info, | 
|  | int new_pool_size, int old_pool_size) | 
|  | { | 
|  | if (new_pool_size == old_pool_size) | 
|  | return; | 
|  |  | 
|  | fs_info->thread_pool_size = new_pool_size; | 
|  |  | 
|  | btrfs_info(fs_info, "resize thread pool %d -> %d", | 
|  | old_pool_size, new_pool_size); | 
|  |  | 
|  | btrfs_workqueue_set_max(fs_info->workers, new_pool_size); | 
|  | btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size); | 
|  | btrfs_workqueue_set_max(fs_info->submit_workers, new_pool_size); | 
|  | btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size); | 
|  | btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size); | 
|  | btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size); | 
|  | btrfs_workqueue_set_max(fs_info->endio_meta_write_workers, | 
|  | new_pool_size); | 
|  | btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size); | 
|  | btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size); | 
|  | btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size); | 
|  | btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size); | 
|  | btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers, | 
|  | new_pool_size); | 
|  | } | 
|  |  | 
|  | static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); | 
|  | } | 
|  |  | 
|  | static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info, | 
|  | unsigned long old_opts, int flags) | 
|  | { | 
|  | if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && | 
|  | (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || | 
|  | (flags & MS_RDONLY))) { | 
|  | /* wait for any defraggers to finish */ | 
|  | wait_event(fs_info->transaction_wait, | 
|  | (atomic_read(&fs_info->defrag_running) == 0)); | 
|  | if (flags & MS_RDONLY) | 
|  | sync_filesystem(fs_info->sb); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info, | 
|  | unsigned long old_opts) | 
|  | { | 
|  | /* | 
|  | * We need to cleanup all defragable inodes if the autodefragment is | 
|  | * close or the filesystem is read only. | 
|  | */ | 
|  | if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && | 
|  | (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || | 
|  | (fs_info->sb->s_flags & MS_RDONLY))) { | 
|  | btrfs_cleanup_defrag_inodes(fs_info); | 
|  | } | 
|  |  | 
|  | clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); | 
|  | } | 
|  |  | 
|  | static int btrfs_remount(struct super_block *sb, int *flags, char *data) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = btrfs_sb(sb); | 
|  | struct btrfs_root *root = fs_info->tree_root; | 
|  | unsigned old_flags = sb->s_flags; | 
|  | unsigned long old_opts = fs_info->mount_opt; | 
|  | unsigned long old_compress_type = fs_info->compress_type; | 
|  | u64 old_max_inline = fs_info->max_inline; | 
|  | u64 old_alloc_start = fs_info->alloc_start; | 
|  | int old_thread_pool_size = fs_info->thread_pool_size; | 
|  | unsigned int old_metadata_ratio = fs_info->metadata_ratio; | 
|  | int ret; | 
|  |  | 
|  | sync_filesystem(sb); | 
|  | btrfs_remount_prepare(fs_info); | 
|  |  | 
|  | if (data) { | 
|  | struct security_mnt_opts new_sec_opts; | 
|  |  | 
|  | security_init_mnt_opts(&new_sec_opts); | 
|  | ret = parse_security_options(data, &new_sec_opts); | 
|  | if (ret) | 
|  | goto restore; | 
|  | ret = setup_security_options(fs_info, sb, | 
|  | &new_sec_opts); | 
|  | if (ret) { | 
|  | security_free_mnt_opts(&new_sec_opts); | 
|  | goto restore; | 
|  | } | 
|  | } | 
|  |  | 
|  | ret = btrfs_parse_options(root, data, *flags); | 
|  | if (ret) { | 
|  | ret = -EINVAL; | 
|  | goto restore; | 
|  | } | 
|  |  | 
|  | btrfs_remount_begin(fs_info, old_opts, *flags); | 
|  | btrfs_resize_thread_pool(fs_info, | 
|  | fs_info->thread_pool_size, old_thread_pool_size); | 
|  |  | 
|  | if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY)) | 
|  | goto out; | 
|  |  | 
|  | if (*flags & MS_RDONLY) { | 
|  | /* | 
|  | * this also happens on 'umount -rf' or on shutdown, when | 
|  | * the filesystem is busy. | 
|  | */ | 
|  | cancel_work_sync(&fs_info->async_reclaim_work); | 
|  |  | 
|  | /* wait for the uuid_scan task to finish */ | 
|  | down(&fs_info->uuid_tree_rescan_sem); | 
|  | /* avoid complains from lockdep et al. */ | 
|  | up(&fs_info->uuid_tree_rescan_sem); | 
|  |  | 
|  | sb->s_flags |= MS_RDONLY; | 
|  |  | 
|  | /* | 
|  | * Setting MS_RDONLY will put the cleaner thread to | 
|  | * sleep at the next loop if it's already active. | 
|  | * If it's already asleep, we'll leave unused block | 
|  | * groups on disk until we're mounted read-write again | 
|  | * unless we clean them up here. | 
|  | */ | 
|  | btrfs_delete_unused_bgs(fs_info); | 
|  |  | 
|  | btrfs_dev_replace_suspend_for_unmount(fs_info); | 
|  | btrfs_scrub_cancel(fs_info); | 
|  | btrfs_pause_balance(fs_info); | 
|  |  | 
|  | ret = btrfs_commit_super(root); | 
|  | if (ret) | 
|  | goto restore; | 
|  | } else { | 
|  | if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) { | 
|  | btrfs_err(fs_info, | 
|  | "Remounting read-write after error is not allowed"); | 
|  | ret = -EINVAL; | 
|  | goto restore; | 
|  | } | 
|  | if (fs_info->fs_devices->rw_devices == 0) { | 
|  | ret = -EACCES; | 
|  | goto restore; | 
|  | } | 
|  |  | 
|  | if (fs_info->fs_devices->missing_devices > | 
|  | fs_info->num_tolerated_disk_barrier_failures && | 
|  | !(*flags & MS_RDONLY)) { | 
|  | btrfs_warn(fs_info, | 
|  | "too many missing devices, writeable remount is not allowed"); | 
|  | ret = -EACCES; | 
|  | goto restore; | 
|  | } | 
|  |  | 
|  | if (btrfs_super_log_root(fs_info->super_copy) != 0) { | 
|  | ret = -EINVAL; | 
|  | goto restore; | 
|  | } | 
|  |  | 
|  | ret = btrfs_cleanup_fs_roots(fs_info); | 
|  | if (ret) | 
|  | goto restore; | 
|  |  | 
|  | /* recover relocation */ | 
|  | mutex_lock(&fs_info->cleaner_mutex); | 
|  | ret = btrfs_recover_relocation(root); | 
|  | mutex_unlock(&fs_info->cleaner_mutex); | 
|  | if (ret) | 
|  | goto restore; | 
|  |  | 
|  | ret = btrfs_resume_balance_async(fs_info); | 
|  | if (ret) | 
|  | goto restore; | 
|  |  | 
|  | ret = btrfs_resume_dev_replace_async(fs_info); | 
|  | if (ret) { | 
|  | btrfs_warn(fs_info, "failed to resume dev_replace"); | 
|  | goto restore; | 
|  | } | 
|  |  | 
|  | if (!fs_info->uuid_root) { | 
|  | btrfs_info(fs_info, "creating UUID tree"); | 
|  | ret = btrfs_create_uuid_tree(fs_info); | 
|  | if (ret) { | 
|  | btrfs_warn(fs_info, | 
|  | "failed to create the UUID tree %d", | 
|  | ret); | 
|  | goto restore; | 
|  | } | 
|  | } | 
|  | sb->s_flags &= ~MS_RDONLY; | 
|  |  | 
|  | set_bit(BTRFS_FS_OPEN, &fs_info->flags); | 
|  | } | 
|  | out: | 
|  | wake_up_process(fs_info->transaction_kthread); | 
|  | btrfs_remount_cleanup(fs_info, old_opts); | 
|  | return 0; | 
|  |  | 
|  | restore: | 
|  | /* We've hit an error - don't reset MS_RDONLY */ | 
|  | if (sb->s_flags & MS_RDONLY) | 
|  | old_flags |= MS_RDONLY; | 
|  | sb->s_flags = old_flags; | 
|  | fs_info->mount_opt = old_opts; | 
|  | fs_info->compress_type = old_compress_type; | 
|  | fs_info->max_inline = old_max_inline; | 
|  | mutex_lock(&fs_info->chunk_mutex); | 
|  | fs_info->alloc_start = old_alloc_start; | 
|  | mutex_unlock(&fs_info->chunk_mutex); | 
|  | btrfs_resize_thread_pool(fs_info, | 
|  | old_thread_pool_size, fs_info->thread_pool_size); | 
|  | fs_info->metadata_ratio = old_metadata_ratio; | 
|  | btrfs_remount_cleanup(fs_info, old_opts); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Used to sort the devices by max_avail(descending sort) */ | 
|  | static int btrfs_cmp_device_free_bytes(const void *dev_info1, | 
|  | const void *dev_info2) | 
|  | { | 
|  | if (((struct btrfs_device_info *)dev_info1)->max_avail > | 
|  | ((struct btrfs_device_info *)dev_info2)->max_avail) | 
|  | return -1; | 
|  | else if (((struct btrfs_device_info *)dev_info1)->max_avail < | 
|  | ((struct btrfs_device_info *)dev_info2)->max_avail) | 
|  | return 1; | 
|  | else | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * sort the devices by max_avail, in which max free extent size of each device | 
|  | * is stored.(Descending Sort) | 
|  | */ | 
|  | static inline void btrfs_descending_sort_devices( | 
|  | struct btrfs_device_info *devices, | 
|  | size_t nr_devices) | 
|  | { | 
|  | sort(devices, nr_devices, sizeof(struct btrfs_device_info), | 
|  | btrfs_cmp_device_free_bytes, NULL); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The helper to calc the free space on the devices that can be used to store | 
|  | * file data. | 
|  | */ | 
|  | static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct btrfs_device_info *devices_info; | 
|  | struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; | 
|  | struct btrfs_device *device; | 
|  | u64 skip_space; | 
|  | u64 type; | 
|  | u64 avail_space; | 
|  | u64 used_space; | 
|  | u64 min_stripe_size; | 
|  | int min_stripes = 1, num_stripes = 1; | 
|  | int i = 0, nr_devices; | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * We aren't under the device list lock, so this is racy-ish, but good | 
|  | * enough for our purposes. | 
|  | */ | 
|  | nr_devices = fs_info->fs_devices->open_devices; | 
|  | if (!nr_devices) { | 
|  | smp_mb(); | 
|  | nr_devices = fs_info->fs_devices->open_devices; | 
|  | ASSERT(nr_devices); | 
|  | if (!nr_devices) { | 
|  | *free_bytes = 0; | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | devices_info = kmalloc_array(nr_devices, sizeof(*devices_info), | 
|  | GFP_NOFS); | 
|  | if (!devices_info) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* calc min stripe number for data space allocation */ | 
|  | type = btrfs_get_alloc_profile(root, 1); | 
|  | if (type & BTRFS_BLOCK_GROUP_RAID0) { | 
|  | min_stripes = 2; | 
|  | num_stripes = nr_devices; | 
|  | } else if (type & BTRFS_BLOCK_GROUP_RAID1) { | 
|  | min_stripes = 2; | 
|  | num_stripes = 2; | 
|  | } else if (type & BTRFS_BLOCK_GROUP_RAID10) { | 
|  | min_stripes = 4; | 
|  | num_stripes = 4; | 
|  | } | 
|  |  | 
|  | if (type & BTRFS_BLOCK_GROUP_DUP) | 
|  | min_stripe_size = 2 * BTRFS_STRIPE_LEN; | 
|  | else | 
|  | min_stripe_size = BTRFS_STRIPE_LEN; | 
|  |  | 
|  | if (fs_info->alloc_start) | 
|  | mutex_lock(&fs_devices->device_list_mutex); | 
|  | rcu_read_lock(); | 
|  | list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { | 
|  | if (!device->in_fs_metadata || !device->bdev || | 
|  | device->is_tgtdev_for_dev_replace) | 
|  | continue; | 
|  |  | 
|  | if (i >= nr_devices) | 
|  | break; | 
|  |  | 
|  | avail_space = device->total_bytes - device->bytes_used; | 
|  |  | 
|  | /* align with stripe_len */ | 
|  | avail_space = div_u64(avail_space, BTRFS_STRIPE_LEN); | 
|  | avail_space *= BTRFS_STRIPE_LEN; | 
|  |  | 
|  | /* | 
|  | * In order to avoid overwriting the superblock on the drive, | 
|  | * btrfs starts at an offset of at least 1MB when doing chunk | 
|  | * allocation. | 
|  | */ | 
|  | skip_space = SZ_1M; | 
|  |  | 
|  | /* user can set the offset in fs_info->alloc_start. */ | 
|  | if (fs_info->alloc_start && | 
|  | fs_info->alloc_start + BTRFS_STRIPE_LEN <= | 
|  | device->total_bytes) { | 
|  | rcu_read_unlock(); | 
|  | skip_space = max(fs_info->alloc_start, skip_space); | 
|  |  | 
|  | /* | 
|  | * btrfs can not use the free space in | 
|  | * [0, skip_space - 1], we must subtract it from the | 
|  | * total. In order to implement it, we account the used | 
|  | * space in this range first. | 
|  | */ | 
|  | ret = btrfs_account_dev_extents_size(device, 0, | 
|  | skip_space - 1, | 
|  | &used_space); | 
|  | if (ret) { | 
|  | kfree(devices_info); | 
|  | mutex_unlock(&fs_devices->device_list_mutex); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | rcu_read_lock(); | 
|  |  | 
|  | /* calc the free space in [0, skip_space - 1] */ | 
|  | skip_space -= used_space; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * we can use the free space in [0, skip_space - 1], subtract | 
|  | * it from the total. | 
|  | */ | 
|  | if (avail_space && avail_space >= skip_space) | 
|  | avail_space -= skip_space; | 
|  | else | 
|  | avail_space = 0; | 
|  |  | 
|  | if (avail_space < min_stripe_size) | 
|  | continue; | 
|  |  | 
|  | devices_info[i].dev = device; | 
|  | devices_info[i].max_avail = avail_space; | 
|  |  | 
|  | i++; | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | if (fs_info->alloc_start) | 
|  | mutex_unlock(&fs_devices->device_list_mutex); | 
|  |  | 
|  | nr_devices = i; | 
|  |  | 
|  | btrfs_descending_sort_devices(devices_info, nr_devices); | 
|  |  | 
|  | i = nr_devices - 1; | 
|  | avail_space = 0; | 
|  | while (nr_devices >= min_stripes) { | 
|  | if (num_stripes > nr_devices) | 
|  | num_stripes = nr_devices; | 
|  |  | 
|  | if (devices_info[i].max_avail >= min_stripe_size) { | 
|  | int j; | 
|  | u64 alloc_size; | 
|  |  | 
|  | avail_space += devices_info[i].max_avail * num_stripes; | 
|  | alloc_size = devices_info[i].max_avail; | 
|  | for (j = i + 1 - num_stripes; j <= i; j++) | 
|  | devices_info[j].max_avail -= alloc_size; | 
|  | } | 
|  | i--; | 
|  | nr_devices--; | 
|  | } | 
|  |  | 
|  | kfree(devices_info); | 
|  | *free_bytes = avail_space; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Calculate numbers for 'df', pessimistic in case of mixed raid profiles. | 
|  | * | 
|  | * If there's a redundant raid level at DATA block groups, use the respective | 
|  | * multiplier to scale the sizes. | 
|  | * | 
|  | * Unused device space usage is based on simulating the chunk allocator | 
|  | * algorithm that respects the device sizes, order of allocations and the | 
|  | * 'alloc_start' value, this is a close approximation of the actual use but | 
|  | * there are other factors that may change the result (like a new metadata | 
|  | * chunk). | 
|  | * | 
|  | * If metadata is exhausted, f_bavail will be 0. | 
|  | */ | 
|  | static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); | 
|  | struct btrfs_super_block *disk_super = fs_info->super_copy; | 
|  | struct list_head *head = &fs_info->space_info; | 
|  | struct btrfs_space_info *found; | 
|  | u64 total_used = 0; | 
|  | u64 total_free_data = 0; | 
|  | u64 total_free_meta = 0; | 
|  | int bits = dentry->d_sb->s_blocksize_bits; | 
|  | __be32 *fsid = (__be32 *)fs_info->fsid; | 
|  | unsigned factor = 1; | 
|  | struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; | 
|  | int ret; | 
|  | u64 thresh = 0; | 
|  | int mixed = 0; | 
|  |  | 
|  | /* | 
|  | * holding chunk_mutex to avoid allocating new chunks, holding | 
|  | * device_list_mutex to avoid the device being removed | 
|  | */ | 
|  | rcu_read_lock(); | 
|  | list_for_each_entry_rcu(found, head, list) { | 
|  | if (found->flags & BTRFS_BLOCK_GROUP_DATA) { | 
|  | int i; | 
|  |  | 
|  | total_free_data += found->disk_total - found->disk_used; | 
|  | total_free_data -= | 
|  | btrfs_account_ro_block_groups_free_space(found); | 
|  |  | 
|  | for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { | 
|  | if (!list_empty(&found->block_groups[i])) { | 
|  | switch (i) { | 
|  | case BTRFS_RAID_DUP: | 
|  | case BTRFS_RAID_RAID1: | 
|  | case BTRFS_RAID_RAID10: | 
|  | factor = 2; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Metadata in mixed block goup profiles are accounted in data | 
|  | */ | 
|  | if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) { | 
|  | if (found->flags & BTRFS_BLOCK_GROUP_DATA) | 
|  | mixed = 1; | 
|  | else | 
|  | total_free_meta += found->disk_total - | 
|  | found->disk_used; | 
|  | } | 
|  |  | 
|  | total_used += found->disk_used; | 
|  | } | 
|  |  | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor); | 
|  | buf->f_blocks >>= bits; | 
|  | buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits); | 
|  |  | 
|  | /* Account global block reserve as used, it's in logical size already */ | 
|  | spin_lock(&block_rsv->lock); | 
|  | /* Mixed block groups accounting is not byte-accurate, avoid overflow */ | 
|  | if (buf->f_bfree >= block_rsv->size >> bits) | 
|  | buf->f_bfree -= block_rsv->size >> bits; | 
|  | else | 
|  | buf->f_bfree = 0; | 
|  | spin_unlock(&block_rsv->lock); | 
|  |  | 
|  | buf->f_bavail = div_u64(total_free_data, factor); | 
|  | ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data); | 
|  | if (ret) | 
|  | return ret; | 
|  | buf->f_bavail += div_u64(total_free_data, factor); | 
|  | buf->f_bavail = buf->f_bavail >> bits; | 
|  |  | 
|  | /* | 
|  | * We calculate the remaining metadata space minus global reserve. If | 
|  | * this is (supposedly) smaller than zero, there's no space. But this | 
|  | * does not hold in practice, the exhausted state happens where's still | 
|  | * some positive delta. So we apply some guesswork and compare the | 
|  | * delta to a 4M threshold.  (Practically observed delta was ~2M.) | 
|  | * | 
|  | * We probably cannot calculate the exact threshold value because this | 
|  | * depends on the internal reservations requested by various | 
|  | * operations, so some operations that consume a few metadata will | 
|  | * succeed even if the Avail is zero. But this is better than the other | 
|  | * way around. | 
|  | */ | 
|  | thresh = 4 * 1024 * 1024; | 
|  |  | 
|  | if (!mixed && total_free_meta - thresh < block_rsv->size) | 
|  | buf->f_bavail = 0; | 
|  |  | 
|  | buf->f_type = BTRFS_SUPER_MAGIC; | 
|  | buf->f_bsize = dentry->d_sb->s_blocksize; | 
|  | buf->f_namelen = BTRFS_NAME_LEN; | 
|  |  | 
|  | /* We treat it as constant endianness (it doesn't matter _which_) | 
|  | because we want the fsid to come out the same whether mounted | 
|  | on a big-endian or little-endian host */ | 
|  | buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]); | 
|  | buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]); | 
|  | /* Mask in the root object ID too, to disambiguate subvols */ | 
|  | buf->f_fsid.val[0] ^= BTRFS_I(d_inode(dentry))->root->objectid >> 32; | 
|  | buf->f_fsid.val[1] ^= BTRFS_I(d_inode(dentry))->root->objectid; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void btrfs_kill_super(struct super_block *sb) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = btrfs_sb(sb); | 
|  | kill_anon_super(sb); | 
|  | free_fs_info(fs_info); | 
|  | } | 
|  |  | 
|  | static struct file_system_type btrfs_fs_type = { | 
|  | .owner		= THIS_MODULE, | 
|  | .name		= "btrfs", | 
|  | .mount		= btrfs_mount, | 
|  | .kill_sb	= btrfs_kill_super, | 
|  | .fs_flags	= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA, | 
|  | }; | 
|  | MODULE_ALIAS_FS("btrfs"); | 
|  |  | 
|  | static int btrfs_control_open(struct inode *inode, struct file *file) | 
|  | { | 
|  | /* | 
|  | * The control file's private_data is used to hold the | 
|  | * transaction when it is started and is used to keep | 
|  | * track of whether a transaction is already in progress. | 
|  | */ | 
|  | file->private_data = NULL; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * used by btrfsctl to scan devices when no FS is mounted | 
|  | */ | 
|  | static long btrfs_control_ioctl(struct file *file, unsigned int cmd, | 
|  | unsigned long arg) | 
|  | { | 
|  | struct btrfs_ioctl_vol_args *vol; | 
|  | struct btrfs_fs_devices *fs_devices; | 
|  | int ret = -ENOTTY; | 
|  |  | 
|  | if (!capable(CAP_SYS_ADMIN)) | 
|  | return -EPERM; | 
|  |  | 
|  | vol = memdup_user((void __user *)arg, sizeof(*vol)); | 
|  | if (IS_ERR(vol)) | 
|  | return PTR_ERR(vol); | 
|  |  | 
|  | switch (cmd) { | 
|  | case BTRFS_IOC_SCAN_DEV: | 
|  | ret = btrfs_scan_one_device(vol->name, FMODE_READ, | 
|  | &btrfs_fs_type, &fs_devices); | 
|  | break; | 
|  | case BTRFS_IOC_DEVICES_READY: | 
|  | ret = btrfs_scan_one_device(vol->name, FMODE_READ, | 
|  | &btrfs_fs_type, &fs_devices); | 
|  | if (ret) | 
|  | break; | 
|  | ret = !(fs_devices->num_devices == fs_devices->total_devices); | 
|  | break; | 
|  | case BTRFS_IOC_GET_SUPPORTED_FEATURES: | 
|  | ret = btrfs_ioctl_get_supported_features((void __user*)arg); | 
|  | break; | 
|  | } | 
|  |  | 
|  | kfree(vol); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int btrfs_freeze(struct super_block *sb) | 
|  | { | 
|  | struct btrfs_trans_handle *trans; | 
|  | struct btrfs_root *root = btrfs_sb(sb)->tree_root; | 
|  |  | 
|  | root->fs_info->fs_frozen = 1; | 
|  | /* | 
|  | * We don't need a barrier here, we'll wait for any transaction that | 
|  | * could be in progress on other threads (and do delayed iputs that | 
|  | * we want to avoid on a frozen filesystem), or do the commit | 
|  | * ourselves. | 
|  | */ | 
|  | trans = btrfs_attach_transaction_barrier(root); | 
|  | if (IS_ERR(trans)) { | 
|  | /* no transaction, don't bother */ | 
|  | if (PTR_ERR(trans) == -ENOENT) | 
|  | return 0; | 
|  | return PTR_ERR(trans); | 
|  | } | 
|  | return btrfs_commit_transaction(trans, root); | 
|  | } | 
|  |  | 
|  | static int btrfs_unfreeze(struct super_block *sb) | 
|  | { | 
|  | struct btrfs_root *root = btrfs_sb(sb)->tree_root; | 
|  |  | 
|  | root->fs_info->fs_frozen = 0; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int btrfs_show_devname(struct seq_file *m, struct dentry *root) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb); | 
|  | struct btrfs_fs_devices *cur_devices; | 
|  | struct btrfs_device *dev, *first_dev = NULL; | 
|  | struct list_head *head; | 
|  | struct rcu_string *name; | 
|  |  | 
|  | mutex_lock(&fs_info->fs_devices->device_list_mutex); | 
|  | cur_devices = fs_info->fs_devices; | 
|  | while (cur_devices) { | 
|  | head = &cur_devices->devices; | 
|  | list_for_each_entry(dev, head, dev_list) { | 
|  | if (dev->missing) | 
|  | continue; | 
|  | if (!dev->name) | 
|  | continue; | 
|  | if (!first_dev || dev->devid < first_dev->devid) | 
|  | first_dev = dev; | 
|  | } | 
|  | cur_devices = cur_devices->seed; | 
|  | } | 
|  |  | 
|  | if (first_dev) { | 
|  | rcu_read_lock(); | 
|  | name = rcu_dereference(first_dev->name); | 
|  | seq_escape(m, name->str, " \t\n\\"); | 
|  | rcu_read_unlock(); | 
|  | } else { | 
|  | WARN_ON(1); | 
|  | } | 
|  | mutex_unlock(&fs_info->fs_devices->device_list_mutex); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct super_operations btrfs_super_ops = { | 
|  | .drop_inode	= btrfs_drop_inode, | 
|  | .evict_inode	= btrfs_evict_inode, | 
|  | .put_super	= btrfs_put_super, | 
|  | .sync_fs	= btrfs_sync_fs, | 
|  | .show_options	= btrfs_show_options, | 
|  | .show_devname	= btrfs_show_devname, | 
|  | .write_inode	= btrfs_write_inode, | 
|  | .alloc_inode	= btrfs_alloc_inode, | 
|  | .destroy_inode	= btrfs_destroy_inode, | 
|  | .statfs		= btrfs_statfs, | 
|  | .remount_fs	= btrfs_remount, | 
|  | .freeze_fs	= btrfs_freeze, | 
|  | .unfreeze_fs	= btrfs_unfreeze, | 
|  | }; | 
|  |  | 
|  | static const struct file_operations btrfs_ctl_fops = { | 
|  | .open = btrfs_control_open, | 
|  | .unlocked_ioctl	 = btrfs_control_ioctl, | 
|  | .compat_ioctl = btrfs_control_ioctl, | 
|  | .owner	 = THIS_MODULE, | 
|  | .llseek = noop_llseek, | 
|  | }; | 
|  |  | 
|  | static struct miscdevice btrfs_misc = { | 
|  | .minor		= BTRFS_MINOR, | 
|  | .name		= "btrfs-control", | 
|  | .fops		= &btrfs_ctl_fops | 
|  | }; | 
|  |  | 
|  | MODULE_ALIAS_MISCDEV(BTRFS_MINOR); | 
|  | MODULE_ALIAS("devname:btrfs-control"); | 
|  |  | 
|  | static int btrfs_interface_init(void) | 
|  | { | 
|  | return misc_register(&btrfs_misc); | 
|  | } | 
|  |  | 
|  | static void btrfs_interface_exit(void) | 
|  | { | 
|  | misc_deregister(&btrfs_misc); | 
|  | } | 
|  |  | 
|  | static void btrfs_print_mod_info(void) | 
|  | { | 
|  | pr_info("Btrfs loaded, crc32c=%s" | 
|  | #ifdef CONFIG_BTRFS_DEBUG | 
|  | ", debug=on" | 
|  | #endif | 
|  | #ifdef CONFIG_BTRFS_ASSERT | 
|  | ", assert=on" | 
|  | #endif | 
|  | #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY | 
|  | ", integrity-checker=on" | 
|  | #endif | 
|  | "\n", | 
|  | btrfs_crc32c_impl()); | 
|  | } | 
|  |  | 
|  | static int __init init_btrfs_fs(void) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | err = btrfs_hash_init(); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | btrfs_props_init(); | 
|  |  | 
|  | err = btrfs_init_sysfs(); | 
|  | if (err) | 
|  | goto free_hash; | 
|  |  | 
|  | btrfs_init_compress(); | 
|  |  | 
|  | err = btrfs_init_cachep(); | 
|  | if (err) | 
|  | goto free_compress; | 
|  |  | 
|  | err = extent_io_init(); | 
|  | if (err) | 
|  | goto free_cachep; | 
|  |  | 
|  | err = extent_map_init(); | 
|  | if (err) | 
|  | goto free_extent_io; | 
|  |  | 
|  | err = ordered_data_init(); | 
|  | if (err) | 
|  | goto free_extent_map; | 
|  |  | 
|  | err = btrfs_delayed_inode_init(); | 
|  | if (err) | 
|  | goto free_ordered_data; | 
|  |  | 
|  | err = btrfs_auto_defrag_init(); | 
|  | if (err) | 
|  | goto free_delayed_inode; | 
|  |  | 
|  | err = btrfs_delayed_ref_init(); | 
|  | if (err) | 
|  | goto free_auto_defrag; | 
|  |  | 
|  | err = btrfs_prelim_ref_init(); | 
|  | if (err) | 
|  | goto free_delayed_ref; | 
|  |  | 
|  | err = btrfs_end_io_wq_init(); | 
|  | if (err) | 
|  | goto free_prelim_ref; | 
|  |  | 
|  | err = btrfs_interface_init(); | 
|  | if (err) | 
|  | goto free_end_io_wq; | 
|  |  | 
|  | btrfs_init_lockdep(); | 
|  |  | 
|  | btrfs_print_mod_info(); | 
|  |  | 
|  | err = btrfs_run_sanity_tests(); | 
|  | if (err) | 
|  | goto unregister_ioctl; | 
|  |  | 
|  | err = register_filesystem(&btrfs_fs_type); | 
|  | if (err) | 
|  | goto unregister_ioctl; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | unregister_ioctl: | 
|  | btrfs_interface_exit(); | 
|  | free_end_io_wq: | 
|  | btrfs_end_io_wq_exit(); | 
|  | free_prelim_ref: | 
|  | btrfs_prelim_ref_exit(); | 
|  | free_delayed_ref: | 
|  | btrfs_delayed_ref_exit(); | 
|  | free_auto_defrag: | 
|  | btrfs_auto_defrag_exit(); | 
|  | free_delayed_inode: | 
|  | btrfs_delayed_inode_exit(); | 
|  | free_ordered_data: | 
|  | ordered_data_exit(); | 
|  | free_extent_map: | 
|  | extent_map_exit(); | 
|  | free_extent_io: | 
|  | extent_io_exit(); | 
|  | free_cachep: | 
|  | btrfs_destroy_cachep(); | 
|  | free_compress: | 
|  | btrfs_exit_compress(); | 
|  | btrfs_exit_sysfs(); | 
|  | free_hash: | 
|  | btrfs_hash_exit(); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void __exit exit_btrfs_fs(void) | 
|  | { | 
|  | btrfs_destroy_cachep(); | 
|  | btrfs_delayed_ref_exit(); | 
|  | btrfs_auto_defrag_exit(); | 
|  | btrfs_delayed_inode_exit(); | 
|  | btrfs_prelim_ref_exit(); | 
|  | ordered_data_exit(); | 
|  | extent_map_exit(); | 
|  | extent_io_exit(); | 
|  | btrfs_interface_exit(); | 
|  | btrfs_end_io_wq_exit(); | 
|  | unregister_filesystem(&btrfs_fs_type); | 
|  | btrfs_exit_sysfs(); | 
|  | btrfs_cleanup_fs_uuids(); | 
|  | btrfs_exit_compress(); | 
|  | btrfs_hash_exit(); | 
|  | } | 
|  |  | 
|  | late_initcall(init_btrfs_fs); | 
|  | module_exit(exit_btrfs_fs) | 
|  |  | 
|  | MODULE_LICENSE("GPL"); |