|  | /** | 
|  | * eCryptfs: Linux filesystem encryption layer | 
|  | * | 
|  | * Copyright (C) 1997-2004 Erez Zadok | 
|  | * Copyright (C) 2001-2004 Stony Brook University | 
|  | * Copyright (C) 2004-2007 International Business Machines Corp. | 
|  | *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com> | 
|  | *   		Michael C. Thompson <mcthomps@us.ibm.com> | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU General Public License as | 
|  | * published by the Free Software Foundation; either version 2 of the | 
|  | * License, or (at your option) any later version. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, but | 
|  | * WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | * General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program; if not, write to the Free Software | 
|  | * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA | 
|  | * 02111-1307, USA. | 
|  | */ | 
|  |  | 
|  | #include <crypto/hash.h> | 
|  | #include <crypto/skcipher.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/mount.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/random.h> | 
|  | #include <linux/compiler.h> | 
|  | #include <linux/key.h> | 
|  | #include <linux/namei.h> | 
|  | #include <linux/file.h> | 
|  | #include <linux/scatterlist.h> | 
|  | #include <linux/slab.h> | 
|  | #include <asm/unaligned.h> | 
|  | #include "ecryptfs_kernel.h" | 
|  |  | 
|  | #define DECRYPT		0 | 
|  | #define ENCRYPT		1 | 
|  |  | 
|  | /** | 
|  | * ecryptfs_to_hex | 
|  | * @dst: Buffer to take hex character representation of contents of | 
|  | *       src; must be at least of size (src_size * 2) | 
|  | * @src: Buffer to be converted to a hex string representation | 
|  | * @src_size: number of bytes to convert | 
|  | */ | 
|  | void ecryptfs_to_hex(char *dst, char *src, size_t src_size) | 
|  | { | 
|  | int x; | 
|  |  | 
|  | for (x = 0; x < src_size; x++) | 
|  | sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ecryptfs_from_hex | 
|  | * @dst: Buffer to take the bytes from src hex; must be at least of | 
|  | *       size (src_size / 2) | 
|  | * @src: Buffer to be converted from a hex string representation to raw value | 
|  | * @dst_size: size of dst buffer, or number of hex characters pairs to convert | 
|  | */ | 
|  | void ecryptfs_from_hex(char *dst, char *src, int dst_size) | 
|  | { | 
|  | int x; | 
|  | char tmp[3] = { 0, }; | 
|  |  | 
|  | for (x = 0; x < dst_size; x++) { | 
|  | tmp[0] = src[x * 2]; | 
|  | tmp[1] = src[x * 2 + 1]; | 
|  | dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int ecryptfs_hash_digest(struct crypto_shash *tfm, | 
|  | char *src, int len, char *dst) | 
|  | { | 
|  | SHASH_DESC_ON_STACK(desc, tfm); | 
|  | int err; | 
|  |  | 
|  | desc->tfm = tfm; | 
|  | desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP; | 
|  | err = crypto_shash_digest(desc, src, len, dst); | 
|  | shash_desc_zero(desc); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ecryptfs_calculate_md5 - calculates the md5 of @src | 
|  | * @dst: Pointer to 16 bytes of allocated memory | 
|  | * @crypt_stat: Pointer to crypt_stat struct for the current inode | 
|  | * @src: Data to be md5'd | 
|  | * @len: Length of @src | 
|  | * | 
|  | * Uses the allocated crypto context that crypt_stat references to | 
|  | * generate the MD5 sum of the contents of src. | 
|  | */ | 
|  | static int ecryptfs_calculate_md5(char *dst, | 
|  | struct ecryptfs_crypt_stat *crypt_stat, | 
|  | char *src, int len) | 
|  | { | 
|  | struct crypto_shash *tfm; | 
|  | int rc = 0; | 
|  |  | 
|  | tfm = crypt_stat->hash_tfm; | 
|  | rc = ecryptfs_hash_digest(tfm, src, len, dst); | 
|  | if (rc) { | 
|  | printk(KERN_ERR | 
|  | "%s: Error computing crypto hash; rc = [%d]\n", | 
|  | __func__, rc); | 
|  | goto out; | 
|  | } | 
|  | out: | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name, | 
|  | char *cipher_name, | 
|  | char *chaining_modifier) | 
|  | { | 
|  | int cipher_name_len = strlen(cipher_name); | 
|  | int chaining_modifier_len = strlen(chaining_modifier); | 
|  | int algified_name_len; | 
|  | int rc; | 
|  |  | 
|  | algified_name_len = (chaining_modifier_len + cipher_name_len + 3); | 
|  | (*algified_name) = kmalloc(algified_name_len, GFP_KERNEL); | 
|  | if (!(*algified_name)) { | 
|  | rc = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  | snprintf((*algified_name), algified_name_len, "%s(%s)", | 
|  | chaining_modifier, cipher_name); | 
|  | rc = 0; | 
|  | out: | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ecryptfs_derive_iv | 
|  | * @iv: destination for the derived iv vale | 
|  | * @crypt_stat: Pointer to crypt_stat struct for the current inode | 
|  | * @offset: Offset of the extent whose IV we are to derive | 
|  | * | 
|  | * Generate the initialization vector from the given root IV and page | 
|  | * offset. | 
|  | * | 
|  | * Returns zero on success; non-zero on error. | 
|  | */ | 
|  | int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat, | 
|  | loff_t offset) | 
|  | { | 
|  | int rc = 0; | 
|  | char dst[MD5_DIGEST_SIZE]; | 
|  | char src[ECRYPTFS_MAX_IV_BYTES + 16]; | 
|  |  | 
|  | if (unlikely(ecryptfs_verbosity > 0)) { | 
|  | ecryptfs_printk(KERN_DEBUG, "root iv:\n"); | 
|  | ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes); | 
|  | } | 
|  | /* TODO: It is probably secure to just cast the least | 
|  | * significant bits of the root IV into an unsigned long and | 
|  | * add the offset to that rather than go through all this | 
|  | * hashing business. -Halcrow */ | 
|  | memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes); | 
|  | memset((src + crypt_stat->iv_bytes), 0, 16); | 
|  | snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset); | 
|  | if (unlikely(ecryptfs_verbosity > 0)) { | 
|  | ecryptfs_printk(KERN_DEBUG, "source:\n"); | 
|  | ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16)); | 
|  | } | 
|  | rc = ecryptfs_calculate_md5(dst, crypt_stat, src, | 
|  | (crypt_stat->iv_bytes + 16)); | 
|  | if (rc) { | 
|  | ecryptfs_printk(KERN_WARNING, "Error attempting to compute " | 
|  | "MD5 while generating IV for a page\n"); | 
|  | goto out; | 
|  | } | 
|  | memcpy(iv, dst, crypt_stat->iv_bytes); | 
|  | if (unlikely(ecryptfs_verbosity > 0)) { | 
|  | ecryptfs_printk(KERN_DEBUG, "derived iv:\n"); | 
|  | ecryptfs_dump_hex(iv, crypt_stat->iv_bytes); | 
|  | } | 
|  | out: | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ecryptfs_init_crypt_stat | 
|  | * @crypt_stat: Pointer to the crypt_stat struct to initialize. | 
|  | * | 
|  | * Initialize the crypt_stat structure. | 
|  | */ | 
|  | int ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat) | 
|  | { | 
|  | struct crypto_shash *tfm; | 
|  | int rc; | 
|  |  | 
|  | tfm = crypto_alloc_shash(ECRYPTFS_DEFAULT_HASH, 0, 0); | 
|  | if (IS_ERR(tfm)) { | 
|  | rc = PTR_ERR(tfm); | 
|  | ecryptfs_printk(KERN_ERR, "Error attempting to " | 
|  | "allocate crypto context; rc = [%d]\n", | 
|  | rc); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat)); | 
|  | INIT_LIST_HEAD(&crypt_stat->keysig_list); | 
|  | mutex_init(&crypt_stat->keysig_list_mutex); | 
|  | mutex_init(&crypt_stat->cs_mutex); | 
|  | mutex_init(&crypt_stat->cs_tfm_mutex); | 
|  | crypt_stat->hash_tfm = tfm; | 
|  | crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ecryptfs_destroy_crypt_stat | 
|  | * @crypt_stat: Pointer to the crypt_stat struct to initialize. | 
|  | * | 
|  | * Releases all memory associated with a crypt_stat struct. | 
|  | */ | 
|  | void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat) | 
|  | { | 
|  | struct ecryptfs_key_sig *key_sig, *key_sig_tmp; | 
|  |  | 
|  | crypto_free_skcipher(crypt_stat->tfm); | 
|  | crypto_free_shash(crypt_stat->hash_tfm); | 
|  | list_for_each_entry_safe(key_sig, key_sig_tmp, | 
|  | &crypt_stat->keysig_list, crypt_stat_list) { | 
|  | list_del(&key_sig->crypt_stat_list); | 
|  | kmem_cache_free(ecryptfs_key_sig_cache, key_sig); | 
|  | } | 
|  | memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat)); | 
|  | } | 
|  |  | 
|  | void ecryptfs_destroy_mount_crypt_stat( | 
|  | struct ecryptfs_mount_crypt_stat *mount_crypt_stat) | 
|  | { | 
|  | struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp; | 
|  |  | 
|  | if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED)) | 
|  | return; | 
|  | mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex); | 
|  | list_for_each_entry_safe(auth_tok, auth_tok_tmp, | 
|  | &mount_crypt_stat->global_auth_tok_list, | 
|  | mount_crypt_stat_list) { | 
|  | list_del(&auth_tok->mount_crypt_stat_list); | 
|  | if (!(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID)) | 
|  | key_put(auth_tok->global_auth_tok_key); | 
|  | kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok); | 
|  | } | 
|  | mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex); | 
|  | memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * virt_to_scatterlist | 
|  | * @addr: Virtual address | 
|  | * @size: Size of data; should be an even multiple of the block size | 
|  | * @sg: Pointer to scatterlist array; set to NULL to obtain only | 
|  | *      the number of scatterlist structs required in array | 
|  | * @sg_size: Max array size | 
|  | * | 
|  | * Fills in a scatterlist array with page references for a passed | 
|  | * virtual address. | 
|  | * | 
|  | * Returns the number of scatterlist structs in array used | 
|  | */ | 
|  | int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg, | 
|  | int sg_size) | 
|  | { | 
|  | int i = 0; | 
|  | struct page *pg; | 
|  | int offset; | 
|  | int remainder_of_page; | 
|  |  | 
|  | sg_init_table(sg, sg_size); | 
|  |  | 
|  | while (size > 0 && i < sg_size) { | 
|  | pg = virt_to_page(addr); | 
|  | offset = offset_in_page(addr); | 
|  | sg_set_page(&sg[i], pg, 0, offset); | 
|  | remainder_of_page = PAGE_SIZE - offset; | 
|  | if (size >= remainder_of_page) { | 
|  | sg[i].length = remainder_of_page; | 
|  | addr += remainder_of_page; | 
|  | size -= remainder_of_page; | 
|  | } else { | 
|  | sg[i].length = size; | 
|  | addr += size; | 
|  | size = 0; | 
|  | } | 
|  | i++; | 
|  | } | 
|  | if (size > 0) | 
|  | return -ENOMEM; | 
|  | return i; | 
|  | } | 
|  |  | 
|  | struct extent_crypt_result { | 
|  | struct completion completion; | 
|  | int rc; | 
|  | }; | 
|  |  | 
|  | static void extent_crypt_complete(struct crypto_async_request *req, int rc) | 
|  | { | 
|  | struct extent_crypt_result *ecr = req->data; | 
|  |  | 
|  | if (rc == -EINPROGRESS) | 
|  | return; | 
|  |  | 
|  | ecr->rc = rc; | 
|  | complete(&ecr->completion); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * crypt_scatterlist | 
|  | * @crypt_stat: Pointer to the crypt_stat struct to initialize. | 
|  | * @dst_sg: Destination of the data after performing the crypto operation | 
|  | * @src_sg: Data to be encrypted or decrypted | 
|  | * @size: Length of data | 
|  | * @iv: IV to use | 
|  | * @op: ENCRYPT or DECRYPT to indicate the desired operation | 
|  | * | 
|  | * Returns the number of bytes encrypted or decrypted; negative value on error | 
|  | */ | 
|  | static int crypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat, | 
|  | struct scatterlist *dst_sg, | 
|  | struct scatterlist *src_sg, int size, | 
|  | unsigned char *iv, int op) | 
|  | { | 
|  | struct skcipher_request *req = NULL; | 
|  | struct extent_crypt_result ecr; | 
|  | int rc = 0; | 
|  |  | 
|  | BUG_ON(!crypt_stat || !crypt_stat->tfm | 
|  | || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED)); | 
|  | if (unlikely(ecryptfs_verbosity > 0)) { | 
|  | ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n", | 
|  | crypt_stat->key_size); | 
|  | ecryptfs_dump_hex(crypt_stat->key, | 
|  | crypt_stat->key_size); | 
|  | } | 
|  |  | 
|  | init_completion(&ecr.completion); | 
|  |  | 
|  | mutex_lock(&crypt_stat->cs_tfm_mutex); | 
|  | req = skcipher_request_alloc(crypt_stat->tfm, GFP_NOFS); | 
|  | if (!req) { | 
|  | mutex_unlock(&crypt_stat->cs_tfm_mutex); | 
|  | rc = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | skcipher_request_set_callback(req, | 
|  | CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP, | 
|  | extent_crypt_complete, &ecr); | 
|  | /* Consider doing this once, when the file is opened */ | 
|  | if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) { | 
|  | rc = crypto_skcipher_setkey(crypt_stat->tfm, crypt_stat->key, | 
|  | crypt_stat->key_size); | 
|  | if (rc) { | 
|  | ecryptfs_printk(KERN_ERR, | 
|  | "Error setting key; rc = [%d]\n", | 
|  | rc); | 
|  | mutex_unlock(&crypt_stat->cs_tfm_mutex); | 
|  | rc = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  | crypt_stat->flags |= ECRYPTFS_KEY_SET; | 
|  | } | 
|  | mutex_unlock(&crypt_stat->cs_tfm_mutex); | 
|  | skcipher_request_set_crypt(req, src_sg, dst_sg, size, iv); | 
|  | rc = op == ENCRYPT ? crypto_skcipher_encrypt(req) : | 
|  | crypto_skcipher_decrypt(req); | 
|  | if (rc == -EINPROGRESS || rc == -EBUSY) { | 
|  | struct extent_crypt_result *ecr = req->base.data; | 
|  |  | 
|  | wait_for_completion(&ecr->completion); | 
|  | rc = ecr->rc; | 
|  | reinit_completion(&ecr->completion); | 
|  | } | 
|  | out: | 
|  | skcipher_request_free(req); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * lower_offset_for_page | 
|  | * | 
|  | * Convert an eCryptfs page index into a lower byte offset | 
|  | */ | 
|  | static loff_t lower_offset_for_page(struct ecryptfs_crypt_stat *crypt_stat, | 
|  | struct page *page) | 
|  | { | 
|  | return ecryptfs_lower_header_size(crypt_stat) + | 
|  | ((loff_t)page->index << PAGE_SHIFT); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * crypt_extent | 
|  | * @crypt_stat: crypt_stat containing cryptographic context for the | 
|  | *              encryption operation | 
|  | * @dst_page: The page to write the result into | 
|  | * @src_page: The page to read from | 
|  | * @extent_offset: Page extent offset for use in generating IV | 
|  | * @op: ENCRYPT or DECRYPT to indicate the desired operation | 
|  | * | 
|  | * Encrypts or decrypts one extent of data. | 
|  | * | 
|  | * Return zero on success; non-zero otherwise | 
|  | */ | 
|  | static int crypt_extent(struct ecryptfs_crypt_stat *crypt_stat, | 
|  | struct page *dst_page, | 
|  | struct page *src_page, | 
|  | unsigned long extent_offset, int op) | 
|  | { | 
|  | pgoff_t page_index = op == ENCRYPT ? src_page->index : dst_page->index; | 
|  | loff_t extent_base; | 
|  | char extent_iv[ECRYPTFS_MAX_IV_BYTES]; | 
|  | struct scatterlist src_sg, dst_sg; | 
|  | size_t extent_size = crypt_stat->extent_size; | 
|  | int rc; | 
|  |  | 
|  | extent_base = (((loff_t)page_index) * (PAGE_SIZE / extent_size)); | 
|  | rc = ecryptfs_derive_iv(extent_iv, crypt_stat, | 
|  | (extent_base + extent_offset)); | 
|  | if (rc) { | 
|  | ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for " | 
|  | "extent [0x%.16llx]; rc = [%d]\n", | 
|  | (unsigned long long)(extent_base + extent_offset), rc); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | sg_init_table(&src_sg, 1); | 
|  | sg_init_table(&dst_sg, 1); | 
|  |  | 
|  | sg_set_page(&src_sg, src_page, extent_size, | 
|  | extent_offset * extent_size); | 
|  | sg_set_page(&dst_sg, dst_page, extent_size, | 
|  | extent_offset * extent_size); | 
|  |  | 
|  | rc = crypt_scatterlist(crypt_stat, &dst_sg, &src_sg, extent_size, | 
|  | extent_iv, op); | 
|  | if (rc < 0) { | 
|  | printk(KERN_ERR "%s: Error attempting to crypt page with " | 
|  | "page_index = [%ld], extent_offset = [%ld]; " | 
|  | "rc = [%d]\n", __func__, page_index, extent_offset, rc); | 
|  | goto out; | 
|  | } | 
|  | rc = 0; | 
|  | out: | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ecryptfs_encrypt_page | 
|  | * @page: Page mapped from the eCryptfs inode for the file; contains | 
|  | *        decrypted content that needs to be encrypted (to a temporary | 
|  | *        page; not in place) and written out to the lower file | 
|  | * | 
|  | * Encrypt an eCryptfs page. This is done on a per-extent basis. Note | 
|  | * that eCryptfs pages may straddle the lower pages -- for instance, | 
|  | * if the file was created on a machine with an 8K page size | 
|  | * (resulting in an 8K header), and then the file is copied onto a | 
|  | * host with a 32K page size, then when reading page 0 of the eCryptfs | 
|  | * file, 24K of page 0 of the lower file will be read and decrypted, | 
|  | * and then 8K of page 1 of the lower file will be read and decrypted. | 
|  | * | 
|  | * Returns zero on success; negative on error | 
|  | */ | 
|  | int ecryptfs_encrypt_page(struct page *page) | 
|  | { | 
|  | struct inode *ecryptfs_inode; | 
|  | struct ecryptfs_crypt_stat *crypt_stat; | 
|  | char *enc_extent_virt; | 
|  | struct page *enc_extent_page = NULL; | 
|  | loff_t extent_offset; | 
|  | loff_t lower_offset; | 
|  | int rc = 0; | 
|  |  | 
|  | ecryptfs_inode = page->mapping->host; | 
|  | crypt_stat = | 
|  | &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat); | 
|  | BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)); | 
|  | enc_extent_page = alloc_page(GFP_USER); | 
|  | if (!enc_extent_page) { | 
|  | rc = -ENOMEM; | 
|  | ecryptfs_printk(KERN_ERR, "Error allocating memory for " | 
|  | "encrypted extent\n"); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | for (extent_offset = 0; | 
|  | extent_offset < (PAGE_SIZE / crypt_stat->extent_size); | 
|  | extent_offset++) { | 
|  | rc = crypt_extent(crypt_stat, enc_extent_page, page, | 
|  | extent_offset, ENCRYPT); | 
|  | if (rc) { | 
|  | printk(KERN_ERR "%s: Error encrypting extent; " | 
|  | "rc = [%d]\n", __func__, rc); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | lower_offset = lower_offset_for_page(crypt_stat, page); | 
|  | enc_extent_virt = kmap(enc_extent_page); | 
|  | rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt, lower_offset, | 
|  | PAGE_SIZE); | 
|  | kunmap(enc_extent_page); | 
|  | if (rc < 0) { | 
|  | ecryptfs_printk(KERN_ERR, | 
|  | "Error attempting to write lower page; rc = [%d]\n", | 
|  | rc); | 
|  | goto out; | 
|  | } | 
|  | rc = 0; | 
|  | out: | 
|  | if (enc_extent_page) { | 
|  | __free_page(enc_extent_page); | 
|  | } | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ecryptfs_decrypt_page | 
|  | * @page: Page mapped from the eCryptfs inode for the file; data read | 
|  | *        and decrypted from the lower file will be written into this | 
|  | *        page | 
|  | * | 
|  | * Decrypt an eCryptfs page. This is done on a per-extent basis. Note | 
|  | * that eCryptfs pages may straddle the lower pages -- for instance, | 
|  | * if the file was created on a machine with an 8K page size | 
|  | * (resulting in an 8K header), and then the file is copied onto a | 
|  | * host with a 32K page size, then when reading page 0 of the eCryptfs | 
|  | * file, 24K of page 0 of the lower file will be read and decrypted, | 
|  | * and then 8K of page 1 of the lower file will be read and decrypted. | 
|  | * | 
|  | * Returns zero on success; negative on error | 
|  | */ | 
|  | int ecryptfs_decrypt_page(struct page *page) | 
|  | { | 
|  | struct inode *ecryptfs_inode; | 
|  | struct ecryptfs_crypt_stat *crypt_stat; | 
|  | char *page_virt; | 
|  | unsigned long extent_offset; | 
|  | loff_t lower_offset; | 
|  | int rc = 0; | 
|  |  | 
|  | ecryptfs_inode = page->mapping->host; | 
|  | crypt_stat = | 
|  | &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat); | 
|  | BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)); | 
|  |  | 
|  | lower_offset = lower_offset_for_page(crypt_stat, page); | 
|  | page_virt = kmap(page); | 
|  | rc = ecryptfs_read_lower(page_virt, lower_offset, PAGE_SIZE, | 
|  | ecryptfs_inode); | 
|  | kunmap(page); | 
|  | if (rc < 0) { | 
|  | ecryptfs_printk(KERN_ERR, | 
|  | "Error attempting to read lower page; rc = [%d]\n", | 
|  | rc); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | for (extent_offset = 0; | 
|  | extent_offset < (PAGE_SIZE / crypt_stat->extent_size); | 
|  | extent_offset++) { | 
|  | rc = crypt_extent(crypt_stat, page, page, | 
|  | extent_offset, DECRYPT); | 
|  | if (rc) { | 
|  | printk(KERN_ERR "%s: Error encrypting extent; " | 
|  | "rc = [%d]\n", __func__, rc); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | out: | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | #define ECRYPTFS_MAX_SCATTERLIST_LEN 4 | 
|  |  | 
|  | /** | 
|  | * ecryptfs_init_crypt_ctx | 
|  | * @crypt_stat: Uninitialized crypt stats structure | 
|  | * | 
|  | * Initialize the crypto context. | 
|  | * | 
|  | * TODO: Performance: Keep a cache of initialized cipher contexts; | 
|  | * only init if needed | 
|  | */ | 
|  | int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat) | 
|  | { | 
|  | char *full_alg_name; | 
|  | int rc = -EINVAL; | 
|  |  | 
|  | ecryptfs_printk(KERN_DEBUG, | 
|  | "Initializing cipher [%s]; strlen = [%d]; " | 
|  | "key_size_bits = [%zd]\n", | 
|  | crypt_stat->cipher, (int)strlen(crypt_stat->cipher), | 
|  | crypt_stat->key_size << 3); | 
|  | mutex_lock(&crypt_stat->cs_tfm_mutex); | 
|  | if (crypt_stat->tfm) { | 
|  | rc = 0; | 
|  | goto out_unlock; | 
|  | } | 
|  | rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, | 
|  | crypt_stat->cipher, "cbc"); | 
|  | if (rc) | 
|  | goto out_unlock; | 
|  | crypt_stat->tfm = crypto_alloc_skcipher(full_alg_name, 0, 0); | 
|  | if (IS_ERR(crypt_stat->tfm)) { | 
|  | rc = PTR_ERR(crypt_stat->tfm); | 
|  | crypt_stat->tfm = NULL; | 
|  | ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): " | 
|  | "Error initializing cipher [%s]\n", | 
|  | full_alg_name); | 
|  | goto out_free; | 
|  | } | 
|  | crypto_skcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY); | 
|  | rc = 0; | 
|  | out_free: | 
|  | kfree(full_alg_name); | 
|  | out_unlock: | 
|  | mutex_unlock(&crypt_stat->cs_tfm_mutex); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat) | 
|  | { | 
|  | int extent_size_tmp; | 
|  |  | 
|  | crypt_stat->extent_mask = 0xFFFFFFFF; | 
|  | crypt_stat->extent_shift = 0; | 
|  | if (crypt_stat->extent_size == 0) | 
|  | return; | 
|  | extent_size_tmp = crypt_stat->extent_size; | 
|  | while ((extent_size_tmp & 0x01) == 0) { | 
|  | extent_size_tmp >>= 1; | 
|  | crypt_stat->extent_mask <<= 1; | 
|  | crypt_stat->extent_shift++; | 
|  | } | 
|  | } | 
|  |  | 
|  | void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat) | 
|  | { | 
|  | /* Default values; may be overwritten as we are parsing the | 
|  | * packets. */ | 
|  | crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE; | 
|  | set_extent_mask_and_shift(crypt_stat); | 
|  | crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES; | 
|  | if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR) | 
|  | crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE; | 
|  | else { | 
|  | if (PAGE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE) | 
|  | crypt_stat->metadata_size = | 
|  | ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE; | 
|  | else | 
|  | crypt_stat->metadata_size = PAGE_SIZE; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ecryptfs_compute_root_iv | 
|  | * @crypt_stats | 
|  | * | 
|  | * On error, sets the root IV to all 0's. | 
|  | */ | 
|  | int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat) | 
|  | { | 
|  | int rc = 0; | 
|  | char dst[MD5_DIGEST_SIZE]; | 
|  |  | 
|  | BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE); | 
|  | BUG_ON(crypt_stat->iv_bytes <= 0); | 
|  | if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) { | 
|  | rc = -EINVAL; | 
|  | ecryptfs_printk(KERN_WARNING, "Session key not valid; " | 
|  | "cannot generate root IV\n"); | 
|  | goto out; | 
|  | } | 
|  | rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key, | 
|  | crypt_stat->key_size); | 
|  | if (rc) { | 
|  | ecryptfs_printk(KERN_WARNING, "Error attempting to compute " | 
|  | "MD5 while generating root IV\n"); | 
|  | goto out; | 
|  | } | 
|  | memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes); | 
|  | out: | 
|  | if (rc) { | 
|  | memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes); | 
|  | crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING; | 
|  | } | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat) | 
|  | { | 
|  | get_random_bytes(crypt_stat->key, crypt_stat->key_size); | 
|  | crypt_stat->flags |= ECRYPTFS_KEY_VALID; | 
|  | ecryptfs_compute_root_iv(crypt_stat); | 
|  | if (unlikely(ecryptfs_verbosity > 0)) { | 
|  | ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n"); | 
|  | ecryptfs_dump_hex(crypt_stat->key, | 
|  | crypt_stat->key_size); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ecryptfs_copy_mount_wide_flags_to_inode_flags | 
|  | * @crypt_stat: The inode's cryptographic context | 
|  | * @mount_crypt_stat: The mount point's cryptographic context | 
|  | * | 
|  | * This function propagates the mount-wide flags to individual inode | 
|  | * flags. | 
|  | */ | 
|  | static void ecryptfs_copy_mount_wide_flags_to_inode_flags( | 
|  | struct ecryptfs_crypt_stat *crypt_stat, | 
|  | struct ecryptfs_mount_crypt_stat *mount_crypt_stat) | 
|  | { | 
|  | if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED) | 
|  | crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR; | 
|  | if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) | 
|  | crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED; | 
|  | if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) { | 
|  | crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES; | 
|  | if (mount_crypt_stat->flags | 
|  | & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK) | 
|  | crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK; | 
|  | else if (mount_crypt_stat->flags | 
|  | & ECRYPTFS_GLOBAL_ENCFN_USE_FEK) | 
|  | crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs( | 
|  | struct ecryptfs_crypt_stat *crypt_stat, | 
|  | struct ecryptfs_mount_crypt_stat *mount_crypt_stat) | 
|  | { | 
|  | struct ecryptfs_global_auth_tok *global_auth_tok; | 
|  | int rc = 0; | 
|  |  | 
|  | mutex_lock(&crypt_stat->keysig_list_mutex); | 
|  | mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex); | 
|  |  | 
|  | list_for_each_entry(global_auth_tok, | 
|  | &mount_crypt_stat->global_auth_tok_list, | 
|  | mount_crypt_stat_list) { | 
|  | if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK) | 
|  | continue; | 
|  | rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig); | 
|  | if (rc) { | 
|  | printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | out: | 
|  | mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex); | 
|  | mutex_unlock(&crypt_stat->keysig_list_mutex); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ecryptfs_set_default_crypt_stat_vals | 
|  | * @crypt_stat: The inode's cryptographic context | 
|  | * @mount_crypt_stat: The mount point's cryptographic context | 
|  | * | 
|  | * Default values in the event that policy does not override them. | 
|  | */ | 
|  | static void ecryptfs_set_default_crypt_stat_vals( | 
|  | struct ecryptfs_crypt_stat *crypt_stat, | 
|  | struct ecryptfs_mount_crypt_stat *mount_crypt_stat) | 
|  | { | 
|  | ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat, | 
|  | mount_crypt_stat); | 
|  | ecryptfs_set_default_sizes(crypt_stat); | 
|  | strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER); | 
|  | crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES; | 
|  | crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID); | 
|  | crypt_stat->file_version = ECRYPTFS_FILE_VERSION; | 
|  | crypt_stat->mount_crypt_stat = mount_crypt_stat; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ecryptfs_new_file_context | 
|  | * @ecryptfs_inode: The eCryptfs inode | 
|  | * | 
|  | * If the crypto context for the file has not yet been established, | 
|  | * this is where we do that.  Establishing a new crypto context | 
|  | * involves the following decisions: | 
|  | *  - What cipher to use? | 
|  | *  - What set of authentication tokens to use? | 
|  | * Here we just worry about getting enough information into the | 
|  | * authentication tokens so that we know that they are available. | 
|  | * We associate the available authentication tokens with the new file | 
|  | * via the set of signatures in the crypt_stat struct.  Later, when | 
|  | * the headers are actually written out, we may again defer to | 
|  | * userspace to perform the encryption of the session key; for the | 
|  | * foreseeable future, this will be the case with public key packets. | 
|  | * | 
|  | * Returns zero on success; non-zero otherwise | 
|  | */ | 
|  | int ecryptfs_new_file_context(struct inode *ecryptfs_inode) | 
|  | { | 
|  | struct ecryptfs_crypt_stat *crypt_stat = | 
|  | &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat; | 
|  | struct ecryptfs_mount_crypt_stat *mount_crypt_stat = | 
|  | &ecryptfs_superblock_to_private( | 
|  | ecryptfs_inode->i_sb)->mount_crypt_stat; | 
|  | int cipher_name_len; | 
|  | int rc = 0; | 
|  |  | 
|  | ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat); | 
|  | crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID); | 
|  | ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat, | 
|  | mount_crypt_stat); | 
|  | rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat, | 
|  | mount_crypt_stat); | 
|  | if (rc) { | 
|  | printk(KERN_ERR "Error attempting to copy mount-wide key sigs " | 
|  | "to the inode key sigs; rc = [%d]\n", rc); | 
|  | goto out; | 
|  | } | 
|  | cipher_name_len = | 
|  | strlen(mount_crypt_stat->global_default_cipher_name); | 
|  | memcpy(crypt_stat->cipher, | 
|  | mount_crypt_stat->global_default_cipher_name, | 
|  | cipher_name_len); | 
|  | crypt_stat->cipher[cipher_name_len] = '\0'; | 
|  | crypt_stat->key_size = | 
|  | mount_crypt_stat->global_default_cipher_key_size; | 
|  | ecryptfs_generate_new_key(crypt_stat); | 
|  | rc = ecryptfs_init_crypt_ctx(crypt_stat); | 
|  | if (rc) | 
|  | ecryptfs_printk(KERN_ERR, "Error initializing cryptographic " | 
|  | "context for cipher [%s]: rc = [%d]\n", | 
|  | crypt_stat->cipher, rc); | 
|  | out: | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ecryptfs_validate_marker - check for the ecryptfs marker | 
|  | * @data: The data block in which to check | 
|  | * | 
|  | * Returns zero if marker found; -EINVAL if not found | 
|  | */ | 
|  | static int ecryptfs_validate_marker(char *data) | 
|  | { | 
|  | u32 m_1, m_2; | 
|  |  | 
|  | m_1 = get_unaligned_be32(data); | 
|  | m_2 = get_unaligned_be32(data + 4); | 
|  | if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2) | 
|  | return 0; | 
|  | ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; " | 
|  | "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2, | 
|  | MAGIC_ECRYPTFS_MARKER); | 
|  | ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = " | 
|  | "[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER)); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | struct ecryptfs_flag_map_elem { | 
|  | u32 file_flag; | 
|  | u32 local_flag; | 
|  | }; | 
|  |  | 
|  | /* Add support for additional flags by adding elements here. */ | 
|  | static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = { | 
|  | {0x00000001, ECRYPTFS_ENABLE_HMAC}, | 
|  | {0x00000002, ECRYPTFS_ENCRYPTED}, | 
|  | {0x00000004, ECRYPTFS_METADATA_IN_XATTR}, | 
|  | {0x00000008, ECRYPTFS_ENCRYPT_FILENAMES} | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * ecryptfs_process_flags | 
|  | * @crypt_stat: The cryptographic context | 
|  | * @page_virt: Source data to be parsed | 
|  | * @bytes_read: Updated with the number of bytes read | 
|  | * | 
|  | * Returns zero on success; non-zero if the flag set is invalid | 
|  | */ | 
|  | static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat, | 
|  | char *page_virt, int *bytes_read) | 
|  | { | 
|  | int rc = 0; | 
|  | int i; | 
|  | u32 flags; | 
|  |  | 
|  | flags = get_unaligned_be32(page_virt); | 
|  | for (i = 0; i < ((sizeof(ecryptfs_flag_map) | 
|  | / sizeof(struct ecryptfs_flag_map_elem))); i++) | 
|  | if (flags & ecryptfs_flag_map[i].file_flag) { | 
|  | crypt_stat->flags |= ecryptfs_flag_map[i].local_flag; | 
|  | } else | 
|  | crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag); | 
|  | /* Version is in top 8 bits of the 32-bit flag vector */ | 
|  | crypt_stat->file_version = ((flags >> 24) & 0xFF); | 
|  | (*bytes_read) = 4; | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * write_ecryptfs_marker | 
|  | * @page_virt: The pointer to in a page to begin writing the marker | 
|  | * @written: Number of bytes written | 
|  | * | 
|  | * Marker = 0x3c81b7f5 | 
|  | */ | 
|  | static void write_ecryptfs_marker(char *page_virt, size_t *written) | 
|  | { | 
|  | u32 m_1, m_2; | 
|  |  | 
|  | get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2)); | 
|  | m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER); | 
|  | put_unaligned_be32(m_1, page_virt); | 
|  | page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2); | 
|  | put_unaligned_be32(m_2, page_virt); | 
|  | (*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES; | 
|  | } | 
|  |  | 
|  | void ecryptfs_write_crypt_stat_flags(char *page_virt, | 
|  | struct ecryptfs_crypt_stat *crypt_stat, | 
|  | size_t *written) | 
|  | { | 
|  | u32 flags = 0; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < ((sizeof(ecryptfs_flag_map) | 
|  | / sizeof(struct ecryptfs_flag_map_elem))); i++) | 
|  | if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag) | 
|  | flags |= ecryptfs_flag_map[i].file_flag; | 
|  | /* Version is in top 8 bits of the 32-bit flag vector */ | 
|  | flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000); | 
|  | put_unaligned_be32(flags, page_virt); | 
|  | (*written) = 4; | 
|  | } | 
|  |  | 
|  | struct ecryptfs_cipher_code_str_map_elem { | 
|  | char cipher_str[16]; | 
|  | u8 cipher_code; | 
|  | }; | 
|  |  | 
|  | /* Add support for additional ciphers by adding elements here. The | 
|  | * cipher_code is whatever OpenPGP applications use to identify the | 
|  | * ciphers. List in order of probability. */ | 
|  | static struct ecryptfs_cipher_code_str_map_elem | 
|  | ecryptfs_cipher_code_str_map[] = { | 
|  | {"aes",RFC2440_CIPHER_AES_128 }, | 
|  | {"blowfish", RFC2440_CIPHER_BLOWFISH}, | 
|  | {"des3_ede", RFC2440_CIPHER_DES3_EDE}, | 
|  | {"cast5", RFC2440_CIPHER_CAST_5}, | 
|  | {"twofish", RFC2440_CIPHER_TWOFISH}, | 
|  | {"cast6", RFC2440_CIPHER_CAST_6}, | 
|  | {"aes", RFC2440_CIPHER_AES_192}, | 
|  | {"aes", RFC2440_CIPHER_AES_256} | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * ecryptfs_code_for_cipher_string | 
|  | * @cipher_name: The string alias for the cipher | 
|  | * @key_bytes: Length of key in bytes; used for AES code selection | 
|  | * | 
|  | * Returns zero on no match, or the cipher code on match | 
|  | */ | 
|  | u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes) | 
|  | { | 
|  | int i; | 
|  | u8 code = 0; | 
|  | struct ecryptfs_cipher_code_str_map_elem *map = | 
|  | ecryptfs_cipher_code_str_map; | 
|  |  | 
|  | if (strcmp(cipher_name, "aes") == 0) { | 
|  | switch (key_bytes) { | 
|  | case 16: | 
|  | code = RFC2440_CIPHER_AES_128; | 
|  | break; | 
|  | case 24: | 
|  | code = RFC2440_CIPHER_AES_192; | 
|  | break; | 
|  | case 32: | 
|  | code = RFC2440_CIPHER_AES_256; | 
|  | } | 
|  | } else { | 
|  | for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++) | 
|  | if (strcmp(cipher_name, map[i].cipher_str) == 0) { | 
|  | code = map[i].cipher_code; | 
|  | break; | 
|  | } | 
|  | } | 
|  | return code; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ecryptfs_cipher_code_to_string | 
|  | * @str: Destination to write out the cipher name | 
|  | * @cipher_code: The code to convert to cipher name string | 
|  | * | 
|  | * Returns zero on success | 
|  | */ | 
|  | int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code) | 
|  | { | 
|  | int rc = 0; | 
|  | int i; | 
|  |  | 
|  | str[0] = '\0'; | 
|  | for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++) | 
|  | if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code) | 
|  | strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str); | 
|  | if (str[0] == '\0') { | 
|  | ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: " | 
|  | "[%d]\n", cipher_code); | 
|  | rc = -EINVAL; | 
|  | } | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | int ecryptfs_read_and_validate_header_region(struct inode *inode) | 
|  | { | 
|  | u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES]; | 
|  | u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES; | 
|  | int rc; | 
|  |  | 
|  | rc = ecryptfs_read_lower(file_size, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES, | 
|  | inode); | 
|  | if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES) | 
|  | return rc >= 0 ? -EINVAL : rc; | 
|  | rc = ecryptfs_validate_marker(marker); | 
|  | if (!rc) | 
|  | ecryptfs_i_size_init(file_size, inode); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | void | 
|  | ecryptfs_write_header_metadata(char *virt, | 
|  | struct ecryptfs_crypt_stat *crypt_stat, | 
|  | size_t *written) | 
|  | { | 
|  | u32 header_extent_size; | 
|  | u16 num_header_extents_at_front; | 
|  |  | 
|  | header_extent_size = (u32)crypt_stat->extent_size; | 
|  | num_header_extents_at_front = | 
|  | (u16)(crypt_stat->metadata_size / crypt_stat->extent_size); | 
|  | put_unaligned_be32(header_extent_size, virt); | 
|  | virt += 4; | 
|  | put_unaligned_be16(num_header_extents_at_front, virt); | 
|  | (*written) = 6; | 
|  | } | 
|  |  | 
|  | struct kmem_cache *ecryptfs_header_cache; | 
|  |  | 
|  | /** | 
|  | * ecryptfs_write_headers_virt | 
|  | * @page_virt: The virtual address to write the headers to | 
|  | * @max: The size of memory allocated at page_virt | 
|  | * @size: Set to the number of bytes written by this function | 
|  | * @crypt_stat: The cryptographic context | 
|  | * @ecryptfs_dentry: The eCryptfs dentry | 
|  | * | 
|  | * Format version: 1 | 
|  | * | 
|  | *   Header Extent: | 
|  | *     Octets 0-7:        Unencrypted file size (big-endian) | 
|  | *     Octets 8-15:       eCryptfs special marker | 
|  | *     Octets 16-19:      Flags | 
|  | *      Octet 16:         File format version number (between 0 and 255) | 
|  | *      Octets 17-18:     Reserved | 
|  | *      Octet 19:         Bit 1 (lsb): Reserved | 
|  | *                        Bit 2: Encrypted? | 
|  | *                        Bits 3-8: Reserved | 
|  | *     Octets 20-23:      Header extent size (big-endian) | 
|  | *     Octets 24-25:      Number of header extents at front of file | 
|  | *                        (big-endian) | 
|  | *     Octet  26:         Begin RFC 2440 authentication token packet set | 
|  | *   Data Extent 0: | 
|  | *     Lower data (CBC encrypted) | 
|  | *   Data Extent 1: | 
|  | *     Lower data (CBC encrypted) | 
|  | *   ... | 
|  | * | 
|  | * Returns zero on success | 
|  | */ | 
|  | static int ecryptfs_write_headers_virt(char *page_virt, size_t max, | 
|  | size_t *size, | 
|  | struct ecryptfs_crypt_stat *crypt_stat, | 
|  | struct dentry *ecryptfs_dentry) | 
|  | { | 
|  | int rc; | 
|  | size_t written; | 
|  | size_t offset; | 
|  |  | 
|  | offset = ECRYPTFS_FILE_SIZE_BYTES; | 
|  | write_ecryptfs_marker((page_virt + offset), &written); | 
|  | offset += written; | 
|  | ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat, | 
|  | &written); | 
|  | offset += written; | 
|  | ecryptfs_write_header_metadata((page_virt + offset), crypt_stat, | 
|  | &written); | 
|  | offset += written; | 
|  | rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat, | 
|  | ecryptfs_dentry, &written, | 
|  | max - offset); | 
|  | if (rc) | 
|  | ecryptfs_printk(KERN_WARNING, "Error generating key packet " | 
|  | "set; rc = [%d]\n", rc); | 
|  | if (size) { | 
|  | offset += written; | 
|  | *size = offset; | 
|  | } | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static int | 
|  | ecryptfs_write_metadata_to_contents(struct inode *ecryptfs_inode, | 
|  | char *virt, size_t virt_len) | 
|  | { | 
|  | int rc; | 
|  |  | 
|  | rc = ecryptfs_write_lower(ecryptfs_inode, virt, | 
|  | 0, virt_len); | 
|  | if (rc < 0) | 
|  | printk(KERN_ERR "%s: Error attempting to write header " | 
|  | "information to lower file; rc = [%d]\n", __func__, rc); | 
|  | else | 
|  | rc = 0; | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static int | 
|  | ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry, | 
|  | struct inode *ecryptfs_inode, | 
|  | char *page_virt, size_t size) | 
|  | { | 
|  | int rc; | 
|  |  | 
|  | rc = ecryptfs_setxattr(ecryptfs_dentry, ecryptfs_inode, | 
|  | ECRYPTFS_XATTR_NAME, page_virt, size, 0); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask, | 
|  | unsigned int order) | 
|  | { | 
|  | struct page *page; | 
|  |  | 
|  | page = alloc_pages(gfp_mask | __GFP_ZERO, order); | 
|  | if (page) | 
|  | return (unsigned long) page_address(page); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ecryptfs_write_metadata | 
|  | * @ecryptfs_dentry: The eCryptfs dentry, which should be negative | 
|  | * @ecryptfs_inode: The newly created eCryptfs inode | 
|  | * | 
|  | * Write the file headers out.  This will likely involve a userspace | 
|  | * callout, in which the session key is encrypted with one or more | 
|  | * public keys and/or the passphrase necessary to do the encryption is | 
|  | * retrieved via a prompt.  Exactly what happens at this point should | 
|  | * be policy-dependent. | 
|  | * | 
|  | * Returns zero on success; non-zero on error | 
|  | */ | 
|  | int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry, | 
|  | struct inode *ecryptfs_inode) | 
|  | { | 
|  | struct ecryptfs_crypt_stat *crypt_stat = | 
|  | &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat; | 
|  | unsigned int order; | 
|  | char *virt; | 
|  | size_t virt_len; | 
|  | size_t size = 0; | 
|  | int rc = 0; | 
|  |  | 
|  | if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) { | 
|  | if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) { | 
|  | printk(KERN_ERR "Key is invalid; bailing out\n"); | 
|  | rc = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  | } else { | 
|  | printk(KERN_WARNING "%s: Encrypted flag not set\n", | 
|  | __func__); | 
|  | rc = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  | virt_len = crypt_stat->metadata_size; | 
|  | order = get_order(virt_len); | 
|  | /* Released in this function */ | 
|  | virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order); | 
|  | if (!virt) { | 
|  | printk(KERN_ERR "%s: Out of memory\n", __func__); | 
|  | rc = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  | /* Zeroed page ensures the in-header unencrypted i_size is set to 0 */ | 
|  | rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat, | 
|  | ecryptfs_dentry); | 
|  | if (unlikely(rc)) { | 
|  | printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n", | 
|  | __func__, rc); | 
|  | goto out_free; | 
|  | } | 
|  | if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR) | 
|  | rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, ecryptfs_inode, | 
|  | virt, size); | 
|  | else | 
|  | rc = ecryptfs_write_metadata_to_contents(ecryptfs_inode, virt, | 
|  | virt_len); | 
|  | if (rc) { | 
|  | printk(KERN_ERR "%s: Error writing metadata out to lower file; " | 
|  | "rc = [%d]\n", __func__, rc); | 
|  | goto out_free; | 
|  | } | 
|  | out_free: | 
|  | free_pages((unsigned long)virt, order); | 
|  | out: | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0 | 
|  | #define ECRYPTFS_VALIDATE_HEADER_SIZE 1 | 
|  | static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat, | 
|  | char *virt, int *bytes_read, | 
|  | int validate_header_size) | 
|  | { | 
|  | int rc = 0; | 
|  | u32 header_extent_size; | 
|  | u16 num_header_extents_at_front; | 
|  |  | 
|  | header_extent_size = get_unaligned_be32(virt); | 
|  | virt += sizeof(__be32); | 
|  | num_header_extents_at_front = get_unaligned_be16(virt); | 
|  | crypt_stat->metadata_size = (((size_t)num_header_extents_at_front | 
|  | * (size_t)header_extent_size)); | 
|  | (*bytes_read) = (sizeof(__be32) + sizeof(__be16)); | 
|  | if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE) | 
|  | && (crypt_stat->metadata_size | 
|  | < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) { | 
|  | rc = -EINVAL; | 
|  | printk(KERN_WARNING "Invalid header size: [%zd]\n", | 
|  | crypt_stat->metadata_size); | 
|  | } | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * set_default_header_data | 
|  | * @crypt_stat: The cryptographic context | 
|  | * | 
|  | * For version 0 file format; this function is only for backwards | 
|  | * compatibility for files created with the prior versions of | 
|  | * eCryptfs. | 
|  | */ | 
|  | static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat) | 
|  | { | 
|  | crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE; | 
|  | } | 
|  |  | 
|  | void ecryptfs_i_size_init(const char *page_virt, struct inode *inode) | 
|  | { | 
|  | struct ecryptfs_mount_crypt_stat *mount_crypt_stat; | 
|  | struct ecryptfs_crypt_stat *crypt_stat; | 
|  | u64 file_size; | 
|  |  | 
|  | crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat; | 
|  | mount_crypt_stat = | 
|  | &ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat; | 
|  | if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) { | 
|  | file_size = i_size_read(ecryptfs_inode_to_lower(inode)); | 
|  | if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR) | 
|  | file_size += crypt_stat->metadata_size; | 
|  | } else | 
|  | file_size = get_unaligned_be64(page_virt); | 
|  | i_size_write(inode, (loff_t)file_size); | 
|  | crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ecryptfs_read_headers_virt | 
|  | * @page_virt: The virtual address into which to read the headers | 
|  | * @crypt_stat: The cryptographic context | 
|  | * @ecryptfs_dentry: The eCryptfs dentry | 
|  | * @validate_header_size: Whether to validate the header size while reading | 
|  | * | 
|  | * Read/parse the header data. The header format is detailed in the | 
|  | * comment block for the ecryptfs_write_headers_virt() function. | 
|  | * | 
|  | * Returns zero on success | 
|  | */ | 
|  | static int ecryptfs_read_headers_virt(char *page_virt, | 
|  | struct ecryptfs_crypt_stat *crypt_stat, | 
|  | struct dentry *ecryptfs_dentry, | 
|  | int validate_header_size) | 
|  | { | 
|  | int rc = 0; | 
|  | int offset; | 
|  | int bytes_read; | 
|  |  | 
|  | ecryptfs_set_default_sizes(crypt_stat); | 
|  | crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private( | 
|  | ecryptfs_dentry->d_sb)->mount_crypt_stat; | 
|  | offset = ECRYPTFS_FILE_SIZE_BYTES; | 
|  | rc = ecryptfs_validate_marker(page_virt + offset); | 
|  | if (rc) | 
|  | goto out; | 
|  | if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED)) | 
|  | ecryptfs_i_size_init(page_virt, d_inode(ecryptfs_dentry)); | 
|  | offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES; | 
|  | rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset), | 
|  | &bytes_read); | 
|  | if (rc) { | 
|  | ecryptfs_printk(KERN_WARNING, "Error processing flags\n"); | 
|  | goto out; | 
|  | } | 
|  | if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) { | 
|  | ecryptfs_printk(KERN_WARNING, "File version is [%d]; only " | 
|  | "file version [%d] is supported by this " | 
|  | "version of eCryptfs\n", | 
|  | crypt_stat->file_version, | 
|  | ECRYPTFS_SUPPORTED_FILE_VERSION); | 
|  | rc = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  | offset += bytes_read; | 
|  | if (crypt_stat->file_version >= 1) { | 
|  | rc = parse_header_metadata(crypt_stat, (page_virt + offset), | 
|  | &bytes_read, validate_header_size); | 
|  | if (rc) { | 
|  | ecryptfs_printk(KERN_WARNING, "Error reading header " | 
|  | "metadata; rc = [%d]\n", rc); | 
|  | } | 
|  | offset += bytes_read; | 
|  | } else | 
|  | set_default_header_data(crypt_stat); | 
|  | rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset), | 
|  | ecryptfs_dentry); | 
|  | out: | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ecryptfs_read_xattr_region | 
|  | * @page_virt: The vitual address into which to read the xattr data | 
|  | * @ecryptfs_inode: The eCryptfs inode | 
|  | * | 
|  | * Attempts to read the crypto metadata from the extended attribute | 
|  | * region of the lower file. | 
|  | * | 
|  | * Returns zero on success; non-zero on error | 
|  | */ | 
|  | int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode) | 
|  | { | 
|  | struct dentry *lower_dentry = | 
|  | ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_path.dentry; | 
|  | ssize_t size; | 
|  | int rc = 0; | 
|  |  | 
|  | size = ecryptfs_getxattr_lower(lower_dentry, | 
|  | ecryptfs_inode_to_lower(ecryptfs_inode), | 
|  | ECRYPTFS_XATTR_NAME, | 
|  | page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE); | 
|  | if (size < 0) { | 
|  | if (unlikely(ecryptfs_verbosity > 0)) | 
|  | printk(KERN_INFO "Error attempting to read the [%s] " | 
|  | "xattr from the lower file; return value = " | 
|  | "[%zd]\n", ECRYPTFS_XATTR_NAME, size); | 
|  | rc = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  | out: | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | int ecryptfs_read_and_validate_xattr_region(struct dentry *dentry, | 
|  | struct inode *inode) | 
|  | { | 
|  | u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES]; | 
|  | u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES; | 
|  | int rc; | 
|  |  | 
|  | rc = ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry), | 
|  | ecryptfs_inode_to_lower(inode), | 
|  | ECRYPTFS_XATTR_NAME, file_size, | 
|  | ECRYPTFS_SIZE_AND_MARKER_BYTES); | 
|  | if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES) | 
|  | return rc >= 0 ? -EINVAL : rc; | 
|  | rc = ecryptfs_validate_marker(marker); | 
|  | if (!rc) | 
|  | ecryptfs_i_size_init(file_size, inode); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ecryptfs_read_metadata | 
|  | * | 
|  | * Common entry point for reading file metadata. From here, we could | 
|  | * retrieve the header information from the header region of the file, | 
|  | * the xattr region of the file, or some other repository that is | 
|  | * stored separately from the file itself. The current implementation | 
|  | * supports retrieving the metadata information from the file contents | 
|  | * and from the xattr region. | 
|  | * | 
|  | * Returns zero if valid headers found and parsed; non-zero otherwise | 
|  | */ | 
|  | int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry) | 
|  | { | 
|  | int rc; | 
|  | char *page_virt; | 
|  | struct inode *ecryptfs_inode = d_inode(ecryptfs_dentry); | 
|  | struct ecryptfs_crypt_stat *crypt_stat = | 
|  | &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat; | 
|  | struct ecryptfs_mount_crypt_stat *mount_crypt_stat = | 
|  | &ecryptfs_superblock_to_private( | 
|  | ecryptfs_dentry->d_sb)->mount_crypt_stat; | 
|  |  | 
|  | ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat, | 
|  | mount_crypt_stat); | 
|  | /* Read the first page from the underlying file */ | 
|  | page_virt = kmem_cache_alloc(ecryptfs_header_cache, GFP_USER); | 
|  | if (!page_virt) { | 
|  | rc = -ENOMEM; | 
|  | printk(KERN_ERR "%s: Unable to allocate page_virt\n", | 
|  | __func__); | 
|  | goto out; | 
|  | } | 
|  | rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size, | 
|  | ecryptfs_inode); | 
|  | if (rc >= 0) | 
|  | rc = ecryptfs_read_headers_virt(page_virt, crypt_stat, | 
|  | ecryptfs_dentry, | 
|  | ECRYPTFS_VALIDATE_HEADER_SIZE); | 
|  | if (rc) { | 
|  | /* metadata is not in the file header, so try xattrs */ | 
|  | memset(page_virt, 0, PAGE_SIZE); | 
|  | rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode); | 
|  | if (rc) { | 
|  | printk(KERN_DEBUG "Valid eCryptfs headers not found in " | 
|  | "file header region or xattr region, inode %lu\n", | 
|  | ecryptfs_inode->i_ino); | 
|  | rc = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  | rc = ecryptfs_read_headers_virt(page_virt, crypt_stat, | 
|  | ecryptfs_dentry, | 
|  | ECRYPTFS_DONT_VALIDATE_HEADER_SIZE); | 
|  | if (rc) { | 
|  | printk(KERN_DEBUG "Valid eCryptfs headers not found in " | 
|  | "file xattr region either, inode %lu\n", | 
|  | ecryptfs_inode->i_ino); | 
|  | rc = -EINVAL; | 
|  | } | 
|  | if (crypt_stat->mount_crypt_stat->flags | 
|  | & ECRYPTFS_XATTR_METADATA_ENABLED) { | 
|  | crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR; | 
|  | } else { | 
|  | printk(KERN_WARNING "Attempt to access file with " | 
|  | "crypto metadata only in the extended attribute " | 
|  | "region, but eCryptfs was mounted without " | 
|  | "xattr support enabled. eCryptfs will not treat " | 
|  | "this like an encrypted file, inode %lu\n", | 
|  | ecryptfs_inode->i_ino); | 
|  | rc = -EINVAL; | 
|  | } | 
|  | } | 
|  | out: | 
|  | if (page_virt) { | 
|  | memset(page_virt, 0, PAGE_SIZE); | 
|  | kmem_cache_free(ecryptfs_header_cache, page_virt); | 
|  | } | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ecryptfs_encrypt_filename - encrypt filename | 
|  | * | 
|  | * CBC-encrypts the filename. We do not want to encrypt the same | 
|  | * filename with the same key and IV, which may happen with hard | 
|  | * links, so we prepend random bits to each filename. | 
|  | * | 
|  | * Returns zero on success; non-zero otherwise | 
|  | */ | 
|  | static int | 
|  | ecryptfs_encrypt_filename(struct ecryptfs_filename *filename, | 
|  | struct ecryptfs_mount_crypt_stat *mount_crypt_stat) | 
|  | { | 
|  | int rc = 0; | 
|  |  | 
|  | filename->encrypted_filename = NULL; | 
|  | filename->encrypted_filename_size = 0; | 
|  | if (mount_crypt_stat && (mount_crypt_stat->flags | 
|  | & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) { | 
|  | size_t packet_size; | 
|  | size_t remaining_bytes; | 
|  |  | 
|  | rc = ecryptfs_write_tag_70_packet( | 
|  | NULL, NULL, | 
|  | &filename->encrypted_filename_size, | 
|  | mount_crypt_stat, NULL, | 
|  | filename->filename_size); | 
|  | if (rc) { | 
|  | printk(KERN_ERR "%s: Error attempting to get packet " | 
|  | "size for tag 72; rc = [%d]\n", __func__, | 
|  | rc); | 
|  | filename->encrypted_filename_size = 0; | 
|  | goto out; | 
|  | } | 
|  | filename->encrypted_filename = | 
|  | kmalloc(filename->encrypted_filename_size, GFP_KERNEL); | 
|  | if (!filename->encrypted_filename) { | 
|  | printk(KERN_ERR "%s: Out of memory whilst attempting " | 
|  | "to kmalloc [%zd] bytes\n", __func__, | 
|  | filename->encrypted_filename_size); | 
|  | rc = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  | remaining_bytes = filename->encrypted_filename_size; | 
|  | rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename, | 
|  | &remaining_bytes, | 
|  | &packet_size, | 
|  | mount_crypt_stat, | 
|  | filename->filename, | 
|  | filename->filename_size); | 
|  | if (rc) { | 
|  | printk(KERN_ERR "%s: Error attempting to generate " | 
|  | "tag 70 packet; rc = [%d]\n", __func__, | 
|  | rc); | 
|  | kfree(filename->encrypted_filename); | 
|  | filename->encrypted_filename = NULL; | 
|  | filename->encrypted_filename_size = 0; | 
|  | goto out; | 
|  | } | 
|  | filename->encrypted_filename_size = packet_size; | 
|  | } else { | 
|  | printk(KERN_ERR "%s: No support for requested filename " | 
|  | "encryption method in this release\n", __func__); | 
|  | rc = -EOPNOTSUPP; | 
|  | goto out; | 
|  | } | 
|  | out: | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size, | 
|  | const char *name, size_t name_size) | 
|  | { | 
|  | int rc = 0; | 
|  |  | 
|  | (*copied_name) = kmalloc((name_size + 1), GFP_KERNEL); | 
|  | if (!(*copied_name)) { | 
|  | rc = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  | memcpy((void *)(*copied_name), (void *)name, name_size); | 
|  | (*copied_name)[(name_size)] = '\0';	/* Only for convenience | 
|  | * in printing out the | 
|  | * string in debug | 
|  | * messages */ | 
|  | (*copied_name_size) = name_size; | 
|  | out: | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ecryptfs_process_key_cipher - Perform key cipher initialization. | 
|  | * @key_tfm: Crypto context for key material, set by this function | 
|  | * @cipher_name: Name of the cipher | 
|  | * @key_size: Size of the key in bytes | 
|  | * | 
|  | * Returns zero on success. Any crypto_tfm structs allocated here | 
|  | * should be released by other functions, such as on a superblock put | 
|  | * event, regardless of whether this function succeeds for fails. | 
|  | */ | 
|  | static int | 
|  | ecryptfs_process_key_cipher(struct crypto_skcipher **key_tfm, | 
|  | char *cipher_name, size_t *key_size) | 
|  | { | 
|  | char dummy_key[ECRYPTFS_MAX_KEY_BYTES]; | 
|  | char *full_alg_name = NULL; | 
|  | int rc; | 
|  |  | 
|  | *key_tfm = NULL; | 
|  | if (*key_size > ECRYPTFS_MAX_KEY_BYTES) { | 
|  | rc = -EINVAL; | 
|  | printk(KERN_ERR "Requested key size is [%zd] bytes; maximum " | 
|  | "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES); | 
|  | goto out; | 
|  | } | 
|  | rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name, | 
|  | "ecb"); | 
|  | if (rc) | 
|  | goto out; | 
|  | *key_tfm = crypto_alloc_skcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC); | 
|  | if (IS_ERR(*key_tfm)) { | 
|  | rc = PTR_ERR(*key_tfm); | 
|  | printk(KERN_ERR "Unable to allocate crypto cipher with name " | 
|  | "[%s]; rc = [%d]\n", full_alg_name, rc); | 
|  | goto out; | 
|  | } | 
|  | crypto_skcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY); | 
|  | if (*key_size == 0) | 
|  | *key_size = crypto_skcipher_default_keysize(*key_tfm); | 
|  | get_random_bytes(dummy_key, *key_size); | 
|  | rc = crypto_skcipher_setkey(*key_tfm, dummy_key, *key_size); | 
|  | if (rc) { | 
|  | printk(KERN_ERR "Error attempting to set key of size [%zd] for " | 
|  | "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name, | 
|  | rc); | 
|  | rc = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  | out: | 
|  | kfree(full_alg_name); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | struct kmem_cache *ecryptfs_key_tfm_cache; | 
|  | static struct list_head key_tfm_list; | 
|  | struct mutex key_tfm_list_mutex; | 
|  |  | 
|  | int __init ecryptfs_init_crypto(void) | 
|  | { | 
|  | mutex_init(&key_tfm_list_mutex); | 
|  | INIT_LIST_HEAD(&key_tfm_list); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list | 
|  | * | 
|  | * Called only at module unload time | 
|  | */ | 
|  | int ecryptfs_destroy_crypto(void) | 
|  | { | 
|  | struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp; | 
|  |  | 
|  | mutex_lock(&key_tfm_list_mutex); | 
|  | list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list, | 
|  | key_tfm_list) { | 
|  | list_del(&key_tfm->key_tfm_list); | 
|  | crypto_free_skcipher(key_tfm->key_tfm); | 
|  | kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm); | 
|  | } | 
|  | mutex_unlock(&key_tfm_list_mutex); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int | 
|  | ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name, | 
|  | size_t key_size) | 
|  | { | 
|  | struct ecryptfs_key_tfm *tmp_tfm; | 
|  | int rc = 0; | 
|  |  | 
|  | BUG_ON(!mutex_is_locked(&key_tfm_list_mutex)); | 
|  |  | 
|  | tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL); | 
|  | if (key_tfm != NULL) | 
|  | (*key_tfm) = tmp_tfm; | 
|  | if (!tmp_tfm) { | 
|  | rc = -ENOMEM; | 
|  | printk(KERN_ERR "Error attempting to allocate from " | 
|  | "ecryptfs_key_tfm_cache\n"); | 
|  | goto out; | 
|  | } | 
|  | mutex_init(&tmp_tfm->key_tfm_mutex); | 
|  | strncpy(tmp_tfm->cipher_name, cipher_name, | 
|  | ECRYPTFS_MAX_CIPHER_NAME_SIZE); | 
|  | tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0'; | 
|  | tmp_tfm->key_size = key_size; | 
|  | rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm, | 
|  | tmp_tfm->cipher_name, | 
|  | &tmp_tfm->key_size); | 
|  | if (rc) { | 
|  | printk(KERN_ERR "Error attempting to initialize key TFM " | 
|  | "cipher with name = [%s]; rc = [%d]\n", | 
|  | tmp_tfm->cipher_name, rc); | 
|  | kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm); | 
|  | if (key_tfm != NULL) | 
|  | (*key_tfm) = NULL; | 
|  | goto out; | 
|  | } | 
|  | list_add(&tmp_tfm->key_tfm_list, &key_tfm_list); | 
|  | out: | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ecryptfs_tfm_exists - Search for existing tfm for cipher_name. | 
|  | * @cipher_name: the name of the cipher to search for | 
|  | * @key_tfm: set to corresponding tfm if found | 
|  | * | 
|  | * Searches for cached key_tfm matching @cipher_name | 
|  | * Must be called with &key_tfm_list_mutex held | 
|  | * Returns 1 if found, with @key_tfm set | 
|  | * Returns 0 if not found, with @key_tfm set to NULL | 
|  | */ | 
|  | int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm) | 
|  | { | 
|  | struct ecryptfs_key_tfm *tmp_key_tfm; | 
|  |  | 
|  | BUG_ON(!mutex_is_locked(&key_tfm_list_mutex)); | 
|  |  | 
|  | list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) { | 
|  | if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) { | 
|  | if (key_tfm) | 
|  | (*key_tfm) = tmp_key_tfm; | 
|  | return 1; | 
|  | } | 
|  | } | 
|  | if (key_tfm) | 
|  | (*key_tfm) = NULL; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ecryptfs_get_tfm_and_mutex_for_cipher_name | 
|  | * | 
|  | * @tfm: set to cached tfm found, or new tfm created | 
|  | * @tfm_mutex: set to mutex for cached tfm found, or new tfm created | 
|  | * @cipher_name: the name of the cipher to search for and/or add | 
|  | * | 
|  | * Sets pointers to @tfm & @tfm_mutex matching @cipher_name. | 
|  | * Searches for cached item first, and creates new if not found. | 
|  | * Returns 0 on success, non-zero if adding new cipher failed | 
|  | */ | 
|  | int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_skcipher **tfm, | 
|  | struct mutex **tfm_mutex, | 
|  | char *cipher_name) | 
|  | { | 
|  | struct ecryptfs_key_tfm *key_tfm; | 
|  | int rc = 0; | 
|  |  | 
|  | (*tfm) = NULL; | 
|  | (*tfm_mutex) = NULL; | 
|  |  | 
|  | mutex_lock(&key_tfm_list_mutex); | 
|  | if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) { | 
|  | rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0); | 
|  | if (rc) { | 
|  | printk(KERN_ERR "Error adding new key_tfm to list; " | 
|  | "rc = [%d]\n", rc); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | (*tfm) = key_tfm->key_tfm; | 
|  | (*tfm_mutex) = &key_tfm->key_tfm_mutex; | 
|  | out: | 
|  | mutex_unlock(&key_tfm_list_mutex); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* 64 characters forming a 6-bit target field */ | 
|  | static unsigned char *portable_filename_chars = ("-.0123456789ABCD" | 
|  | "EFGHIJKLMNOPQRST" | 
|  | "UVWXYZabcdefghij" | 
|  | "klmnopqrstuvwxyz"); | 
|  |  | 
|  | /* We could either offset on every reverse map or just pad some 0x00's | 
|  | * at the front here */ | 
|  | static const unsigned char filename_rev_map[256] = { | 
|  | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */ | 
|  | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */ | 
|  | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */ | 
|  | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */ | 
|  | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */ | 
|  | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */ | 
|  | 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */ | 
|  | 0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */ | 
|  | 0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */ | 
|  | 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */ | 
|  | 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */ | 
|  | 0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */ | 
|  | 0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */ | 
|  | 0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */ | 
|  | 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */ | 
|  | 0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */ | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * ecryptfs_encode_for_filename | 
|  | * @dst: Destination location for encoded filename | 
|  | * @dst_size: Size of the encoded filename in bytes | 
|  | * @src: Source location for the filename to encode | 
|  | * @src_size: Size of the source in bytes | 
|  | */ | 
|  | static void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size, | 
|  | unsigned char *src, size_t src_size) | 
|  | { | 
|  | size_t num_blocks; | 
|  | size_t block_num = 0; | 
|  | size_t dst_offset = 0; | 
|  | unsigned char last_block[3]; | 
|  |  | 
|  | if (src_size == 0) { | 
|  | (*dst_size) = 0; | 
|  | goto out; | 
|  | } | 
|  | num_blocks = (src_size / 3); | 
|  | if ((src_size % 3) == 0) { | 
|  | memcpy(last_block, (&src[src_size - 3]), 3); | 
|  | } else { | 
|  | num_blocks++; | 
|  | last_block[2] = 0x00; | 
|  | switch (src_size % 3) { | 
|  | case 1: | 
|  | last_block[0] = src[src_size - 1]; | 
|  | last_block[1] = 0x00; | 
|  | break; | 
|  | case 2: | 
|  | last_block[0] = src[src_size - 2]; | 
|  | last_block[1] = src[src_size - 1]; | 
|  | } | 
|  | } | 
|  | (*dst_size) = (num_blocks * 4); | 
|  | if (!dst) | 
|  | goto out; | 
|  | while (block_num < num_blocks) { | 
|  | unsigned char *src_block; | 
|  | unsigned char dst_block[4]; | 
|  |  | 
|  | if (block_num == (num_blocks - 1)) | 
|  | src_block = last_block; | 
|  | else | 
|  | src_block = &src[block_num * 3]; | 
|  | dst_block[0] = ((src_block[0] >> 2) & 0x3F); | 
|  | dst_block[1] = (((src_block[0] << 4) & 0x30) | 
|  | | ((src_block[1] >> 4) & 0x0F)); | 
|  | dst_block[2] = (((src_block[1] << 2) & 0x3C) | 
|  | | ((src_block[2] >> 6) & 0x03)); | 
|  | dst_block[3] = (src_block[2] & 0x3F); | 
|  | dst[dst_offset++] = portable_filename_chars[dst_block[0]]; | 
|  | dst[dst_offset++] = portable_filename_chars[dst_block[1]]; | 
|  | dst[dst_offset++] = portable_filename_chars[dst_block[2]]; | 
|  | dst[dst_offset++] = portable_filename_chars[dst_block[3]]; | 
|  | block_num++; | 
|  | } | 
|  | out: | 
|  | return; | 
|  | } | 
|  |  | 
|  | static size_t ecryptfs_max_decoded_size(size_t encoded_size) | 
|  | { | 
|  | /* Not exact; conservatively long. Every block of 4 | 
|  | * encoded characters decodes into a block of 3 | 
|  | * decoded characters. This segment of code provides | 
|  | * the caller with the maximum amount of allocated | 
|  | * space that @dst will need to point to in a | 
|  | * subsequent call. */ | 
|  | return ((encoded_size + 1) * 3) / 4; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ecryptfs_decode_from_filename | 
|  | * @dst: If NULL, this function only sets @dst_size and returns. If | 
|  | *       non-NULL, this function decodes the encoded octets in @src | 
|  | *       into the memory that @dst points to. | 
|  | * @dst_size: Set to the size of the decoded string. | 
|  | * @src: The encoded set of octets to decode. | 
|  | * @src_size: The size of the encoded set of octets to decode. | 
|  | */ | 
|  | static void | 
|  | ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size, | 
|  | const unsigned char *src, size_t src_size) | 
|  | { | 
|  | u8 current_bit_offset = 0; | 
|  | size_t src_byte_offset = 0; | 
|  | size_t dst_byte_offset = 0; | 
|  |  | 
|  | if (dst == NULL) { | 
|  | (*dst_size) = ecryptfs_max_decoded_size(src_size); | 
|  | goto out; | 
|  | } | 
|  | while (src_byte_offset < src_size) { | 
|  | unsigned char src_byte = | 
|  | filename_rev_map[(int)src[src_byte_offset]]; | 
|  |  | 
|  | switch (current_bit_offset) { | 
|  | case 0: | 
|  | dst[dst_byte_offset] = (src_byte << 2); | 
|  | current_bit_offset = 6; | 
|  | break; | 
|  | case 6: | 
|  | dst[dst_byte_offset++] |= (src_byte >> 4); | 
|  | dst[dst_byte_offset] = ((src_byte & 0xF) | 
|  | << 4); | 
|  | current_bit_offset = 4; | 
|  | break; | 
|  | case 4: | 
|  | dst[dst_byte_offset++] |= (src_byte >> 2); | 
|  | dst[dst_byte_offset] = (src_byte << 6); | 
|  | current_bit_offset = 2; | 
|  | break; | 
|  | case 2: | 
|  | dst[dst_byte_offset++] |= (src_byte); | 
|  | current_bit_offset = 0; | 
|  | break; | 
|  | } | 
|  | src_byte_offset++; | 
|  | } | 
|  | (*dst_size) = dst_byte_offset; | 
|  | out: | 
|  | return; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text | 
|  | * @crypt_stat: The crypt_stat struct associated with the file anem to encode | 
|  | * @name: The plaintext name | 
|  | * @length: The length of the plaintext | 
|  | * @encoded_name: The encypted name | 
|  | * | 
|  | * Encrypts and encodes a filename into something that constitutes a | 
|  | * valid filename for a filesystem, with printable characters. | 
|  | * | 
|  | * We assume that we have a properly initialized crypto context, | 
|  | * pointed to by crypt_stat->tfm. | 
|  | * | 
|  | * Returns zero on success; non-zero on otherwise | 
|  | */ | 
|  | int ecryptfs_encrypt_and_encode_filename( | 
|  | char **encoded_name, | 
|  | size_t *encoded_name_size, | 
|  | struct ecryptfs_mount_crypt_stat *mount_crypt_stat, | 
|  | const char *name, size_t name_size) | 
|  | { | 
|  | size_t encoded_name_no_prefix_size; | 
|  | int rc = 0; | 
|  |  | 
|  | (*encoded_name) = NULL; | 
|  | (*encoded_name_size) = 0; | 
|  | if (mount_crypt_stat && (mount_crypt_stat->flags | 
|  | & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) { | 
|  | struct ecryptfs_filename *filename; | 
|  |  | 
|  | filename = kzalloc(sizeof(*filename), GFP_KERNEL); | 
|  | if (!filename) { | 
|  | printk(KERN_ERR "%s: Out of memory whilst attempting " | 
|  | "to kzalloc [%zd] bytes\n", __func__, | 
|  | sizeof(*filename)); | 
|  | rc = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  | filename->filename = (char *)name; | 
|  | filename->filename_size = name_size; | 
|  | rc = ecryptfs_encrypt_filename(filename, mount_crypt_stat); | 
|  | if (rc) { | 
|  | printk(KERN_ERR "%s: Error attempting to encrypt " | 
|  | "filename; rc = [%d]\n", __func__, rc); | 
|  | kfree(filename); | 
|  | goto out; | 
|  | } | 
|  | ecryptfs_encode_for_filename( | 
|  | NULL, &encoded_name_no_prefix_size, | 
|  | filename->encrypted_filename, | 
|  | filename->encrypted_filename_size); | 
|  | if (mount_crypt_stat | 
|  | && (mount_crypt_stat->flags | 
|  | & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) | 
|  | (*encoded_name_size) = | 
|  | (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE | 
|  | + encoded_name_no_prefix_size); | 
|  | else | 
|  | (*encoded_name_size) = | 
|  | (ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE | 
|  | + encoded_name_no_prefix_size); | 
|  | (*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL); | 
|  | if (!(*encoded_name)) { | 
|  | printk(KERN_ERR "%s: Out of memory whilst attempting " | 
|  | "to kzalloc [%zd] bytes\n", __func__, | 
|  | (*encoded_name_size)); | 
|  | rc = -ENOMEM; | 
|  | kfree(filename->encrypted_filename); | 
|  | kfree(filename); | 
|  | goto out; | 
|  | } | 
|  | if (mount_crypt_stat | 
|  | && (mount_crypt_stat->flags | 
|  | & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) { | 
|  | memcpy((*encoded_name), | 
|  | ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX, | 
|  | ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE); | 
|  | ecryptfs_encode_for_filename( | 
|  | ((*encoded_name) | 
|  | + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE), | 
|  | &encoded_name_no_prefix_size, | 
|  | filename->encrypted_filename, | 
|  | filename->encrypted_filename_size); | 
|  | (*encoded_name_size) = | 
|  | (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE | 
|  | + encoded_name_no_prefix_size); | 
|  | (*encoded_name)[(*encoded_name_size)] = '\0'; | 
|  | } else { | 
|  | rc = -EOPNOTSUPP; | 
|  | } | 
|  | if (rc) { | 
|  | printk(KERN_ERR "%s: Error attempting to encode " | 
|  | "encrypted filename; rc = [%d]\n", __func__, | 
|  | rc); | 
|  | kfree((*encoded_name)); | 
|  | (*encoded_name) = NULL; | 
|  | (*encoded_name_size) = 0; | 
|  | } | 
|  | kfree(filename->encrypted_filename); | 
|  | kfree(filename); | 
|  | } else { | 
|  | rc = ecryptfs_copy_filename(encoded_name, | 
|  | encoded_name_size, | 
|  | name, name_size); | 
|  | } | 
|  | out: | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext | 
|  | * @plaintext_name: The plaintext name | 
|  | * @plaintext_name_size: The plaintext name size | 
|  | * @ecryptfs_dir_dentry: eCryptfs directory dentry | 
|  | * @name: The filename in cipher text | 
|  | * @name_size: The cipher text name size | 
|  | * | 
|  | * Decrypts and decodes the filename. | 
|  | * | 
|  | * Returns zero on error; non-zero otherwise | 
|  | */ | 
|  | int ecryptfs_decode_and_decrypt_filename(char **plaintext_name, | 
|  | size_t *plaintext_name_size, | 
|  | struct super_block *sb, | 
|  | const char *name, size_t name_size) | 
|  | { | 
|  | struct ecryptfs_mount_crypt_stat *mount_crypt_stat = | 
|  | &ecryptfs_superblock_to_private(sb)->mount_crypt_stat; | 
|  | char *decoded_name; | 
|  | size_t decoded_name_size; | 
|  | size_t packet_size; | 
|  | int rc = 0; | 
|  |  | 
|  | if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) | 
|  | && !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) | 
|  | && (name_size > ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE) | 
|  | && (strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX, | 
|  | ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE) == 0)) { | 
|  | const char *orig_name = name; | 
|  | size_t orig_name_size = name_size; | 
|  |  | 
|  | name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE; | 
|  | name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE; | 
|  | ecryptfs_decode_from_filename(NULL, &decoded_name_size, | 
|  | name, name_size); | 
|  | decoded_name = kmalloc(decoded_name_size, GFP_KERNEL); | 
|  | if (!decoded_name) { | 
|  | printk(KERN_ERR "%s: Out of memory whilst attempting " | 
|  | "to kmalloc [%zd] bytes\n", __func__, | 
|  | decoded_name_size); | 
|  | rc = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  | ecryptfs_decode_from_filename(decoded_name, &decoded_name_size, | 
|  | name, name_size); | 
|  | rc = ecryptfs_parse_tag_70_packet(plaintext_name, | 
|  | plaintext_name_size, | 
|  | &packet_size, | 
|  | mount_crypt_stat, | 
|  | decoded_name, | 
|  | decoded_name_size); | 
|  | if (rc) { | 
|  | printk(KERN_INFO "%s: Could not parse tag 70 packet " | 
|  | "from filename; copying through filename " | 
|  | "as-is\n", __func__); | 
|  | rc = ecryptfs_copy_filename(plaintext_name, | 
|  | plaintext_name_size, | 
|  | orig_name, orig_name_size); | 
|  | goto out_free; | 
|  | } | 
|  | } else { | 
|  | rc = ecryptfs_copy_filename(plaintext_name, | 
|  | plaintext_name_size, | 
|  | name, name_size); | 
|  | goto out; | 
|  | } | 
|  | out_free: | 
|  | kfree(decoded_name); | 
|  | out: | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | #define ENC_NAME_MAX_BLOCKLEN_8_OR_16	143 | 
|  |  | 
|  | int ecryptfs_set_f_namelen(long *namelen, long lower_namelen, | 
|  | struct ecryptfs_mount_crypt_stat *mount_crypt_stat) | 
|  | { | 
|  | struct crypto_skcipher *tfm; | 
|  | struct mutex *tfm_mutex; | 
|  | size_t cipher_blocksize; | 
|  | int rc; | 
|  |  | 
|  | if (!(mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) { | 
|  | (*namelen) = lower_namelen; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&tfm, &tfm_mutex, | 
|  | mount_crypt_stat->global_default_fn_cipher_name); | 
|  | if (unlikely(rc)) { | 
|  | (*namelen) = 0; | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | mutex_lock(tfm_mutex); | 
|  | cipher_blocksize = crypto_skcipher_blocksize(tfm); | 
|  | mutex_unlock(tfm_mutex); | 
|  |  | 
|  | /* Return an exact amount for the common cases */ | 
|  | if (lower_namelen == NAME_MAX | 
|  | && (cipher_blocksize == 8 || cipher_blocksize == 16)) { | 
|  | (*namelen) = ENC_NAME_MAX_BLOCKLEN_8_OR_16; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Return a safe estimate for the uncommon cases */ | 
|  | (*namelen) = lower_namelen; | 
|  | (*namelen) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE; | 
|  | /* Since this is the max decoded size, subtract 1 "decoded block" len */ | 
|  | (*namelen) = ecryptfs_max_decoded_size(*namelen) - 3; | 
|  | (*namelen) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE; | 
|  | (*namelen) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES; | 
|  | /* Worst case is that the filename is padded nearly a full block size */ | 
|  | (*namelen) -= cipher_blocksize - 1; | 
|  |  | 
|  | if ((*namelen) < 0) | 
|  | (*namelen) = 0; | 
|  |  | 
|  | return 0; | 
|  | } |