|  | /* | 
|  | *  linux/fs/nfs/file.c | 
|  | * | 
|  | *  Copyright (C) 1992  Rick Sladkey | 
|  | * | 
|  | *  Changes Copyright (C) 1994 by Florian La Roche | 
|  | *   - Do not copy data too often around in the kernel. | 
|  | *   - In nfs_file_read the return value of kmalloc wasn't checked. | 
|  | *   - Put in a better version of read look-ahead buffering. Original idea | 
|  | *     and implementation by Wai S Kok elekokws@ee.nus.sg. | 
|  | * | 
|  | *  Expire cache on write to a file by Wai S Kok (Oct 1994). | 
|  | * | 
|  | *  Total rewrite of read side for new NFS buffer cache.. Linus. | 
|  | * | 
|  | *  nfs regular file handling functions | 
|  | */ | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/time.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/fcntl.h> | 
|  | #include <linux/stat.h> | 
|  | #include <linux/nfs_fs.h> | 
|  | #include <linux/nfs_mount.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/gfp.h> | 
|  | #include <linux/swap.h> | 
|  |  | 
|  | #include <asm/uaccess.h> | 
|  |  | 
|  | #include "delegation.h" | 
|  | #include "internal.h" | 
|  | #include "iostat.h" | 
|  | #include "fscache.h" | 
|  | #include "pnfs.h" | 
|  |  | 
|  | #include "nfstrace.h" | 
|  |  | 
|  | #define NFSDBG_FACILITY		NFSDBG_FILE | 
|  |  | 
|  | static const struct vm_operations_struct nfs_file_vm_ops; | 
|  |  | 
|  | /* Hack for future NFS swap support */ | 
|  | #ifndef IS_SWAPFILE | 
|  | # define IS_SWAPFILE(inode)	(0) | 
|  | #endif | 
|  |  | 
|  | int nfs_check_flags(int flags) | 
|  | { | 
|  | if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT)) | 
|  | return -EINVAL; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(nfs_check_flags); | 
|  |  | 
|  | /* | 
|  | * Open file | 
|  | */ | 
|  | static int | 
|  | nfs_file_open(struct inode *inode, struct file *filp) | 
|  | { | 
|  | int res; | 
|  |  | 
|  | dprintk("NFS: open file(%pD2)\n", filp); | 
|  |  | 
|  | nfs_inc_stats(inode, NFSIOS_VFSOPEN); | 
|  | res = nfs_check_flags(filp->f_flags); | 
|  | if (res) | 
|  | return res; | 
|  |  | 
|  | res = nfs_open(inode, filp); | 
|  | return res; | 
|  | } | 
|  |  | 
|  | int | 
|  | nfs_file_release(struct inode *inode, struct file *filp) | 
|  | { | 
|  | dprintk("NFS: release(%pD2)\n", filp); | 
|  |  | 
|  | nfs_inc_stats(inode, NFSIOS_VFSRELEASE); | 
|  | nfs_file_clear_open_context(filp); | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(nfs_file_release); | 
|  |  | 
|  | /** | 
|  | * nfs_revalidate_size - Revalidate the file size | 
|  | * @inode - pointer to inode struct | 
|  | * @file - pointer to struct file | 
|  | * | 
|  | * Revalidates the file length. This is basically a wrapper around | 
|  | * nfs_revalidate_inode() that takes into account the fact that we may | 
|  | * have cached writes (in which case we don't care about the server's | 
|  | * idea of what the file length is), or O_DIRECT (in which case we | 
|  | * shouldn't trust the cache). | 
|  | */ | 
|  | static int nfs_revalidate_file_size(struct inode *inode, struct file *filp) | 
|  | { | 
|  | struct nfs_server *server = NFS_SERVER(inode); | 
|  | struct nfs_inode *nfsi = NFS_I(inode); | 
|  |  | 
|  | if (nfs_have_delegated_attributes(inode)) | 
|  | goto out_noreval; | 
|  |  | 
|  | if (filp->f_flags & O_DIRECT) | 
|  | goto force_reval; | 
|  | if (nfsi->cache_validity & NFS_INO_REVAL_PAGECACHE) | 
|  | goto force_reval; | 
|  | if (nfs_attribute_timeout(inode)) | 
|  | goto force_reval; | 
|  | out_noreval: | 
|  | return 0; | 
|  | force_reval: | 
|  | return __nfs_revalidate_inode(server, inode); | 
|  | } | 
|  |  | 
|  | loff_t nfs_file_llseek(struct file *filp, loff_t offset, int whence) | 
|  | { | 
|  | dprintk("NFS: llseek file(%pD2, %lld, %d)\n", | 
|  | filp, offset, whence); | 
|  |  | 
|  | /* | 
|  | * whence == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate | 
|  | * the cached file length | 
|  | */ | 
|  | if (whence != SEEK_SET && whence != SEEK_CUR) { | 
|  | struct inode *inode = filp->f_mapping->host; | 
|  |  | 
|  | int retval = nfs_revalidate_file_size(inode, filp); | 
|  | if (retval < 0) | 
|  | return (loff_t)retval; | 
|  | } | 
|  |  | 
|  | return generic_file_llseek(filp, offset, whence); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(nfs_file_llseek); | 
|  |  | 
|  | /* | 
|  | * Flush all dirty pages, and check for write errors. | 
|  | */ | 
|  | static int | 
|  | nfs_file_flush(struct file *file, fl_owner_t id) | 
|  | { | 
|  | struct inode	*inode = file_inode(file); | 
|  |  | 
|  | dprintk("NFS: flush(%pD2)\n", file); | 
|  |  | 
|  | nfs_inc_stats(inode, NFSIOS_VFSFLUSH); | 
|  | if ((file->f_mode & FMODE_WRITE) == 0) | 
|  | return 0; | 
|  |  | 
|  | /* Flush writes to the server and return any errors */ | 
|  | return vfs_fsync(file, 0); | 
|  | } | 
|  |  | 
|  | ssize_t | 
|  | nfs_file_read(struct kiocb *iocb, struct iov_iter *to) | 
|  | { | 
|  | struct inode *inode = file_inode(iocb->ki_filp); | 
|  | ssize_t result; | 
|  |  | 
|  | if (iocb->ki_flags & IOCB_DIRECT) | 
|  | return nfs_file_direct_read(iocb, to); | 
|  |  | 
|  | dprintk("NFS: read(%pD2, %zu@%lu)\n", | 
|  | iocb->ki_filp, | 
|  | iov_iter_count(to), (unsigned long) iocb->ki_pos); | 
|  |  | 
|  | nfs_start_io_read(inode); | 
|  | result = nfs_revalidate_mapping(inode, iocb->ki_filp->f_mapping); | 
|  | if (!result) { | 
|  | result = generic_file_read_iter(iocb, to); | 
|  | if (result > 0) | 
|  | nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result); | 
|  | } | 
|  | nfs_end_io_read(inode); | 
|  | return result; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(nfs_file_read); | 
|  |  | 
|  | int | 
|  | nfs_file_mmap(struct file * file, struct vm_area_struct * vma) | 
|  | { | 
|  | struct inode *inode = file_inode(file); | 
|  | int	status; | 
|  |  | 
|  | dprintk("NFS: mmap(%pD2)\n", file); | 
|  |  | 
|  | /* Note: generic_file_mmap() returns ENOSYS on nommu systems | 
|  | *       so we call that before revalidating the mapping | 
|  | */ | 
|  | status = generic_file_mmap(file, vma); | 
|  | if (!status) { | 
|  | vma->vm_ops = &nfs_file_vm_ops; | 
|  | status = nfs_revalidate_mapping(inode, file->f_mapping); | 
|  | } | 
|  | return status; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(nfs_file_mmap); | 
|  |  | 
|  | /* | 
|  | * Flush any dirty pages for this process, and check for write errors. | 
|  | * The return status from this call provides a reliable indication of | 
|  | * whether any write errors occurred for this process. | 
|  | * | 
|  | * Notice that it clears the NFS_CONTEXT_ERROR_WRITE before synching to | 
|  | * disk, but it retrieves and clears ctx->error after synching, despite | 
|  | * the two being set at the same time in nfs_context_set_write_error(). | 
|  | * This is because the former is used to notify the _next_ call to | 
|  | * nfs_file_write() that a write error occurred, and hence cause it to | 
|  | * fall back to doing a synchronous write. | 
|  | */ | 
|  | static int | 
|  | nfs_file_fsync_commit(struct file *file, loff_t start, loff_t end, int datasync) | 
|  | { | 
|  | struct nfs_open_context *ctx = nfs_file_open_context(file); | 
|  | struct inode *inode = file_inode(file); | 
|  | int have_error, do_resend, status; | 
|  | int ret = 0; | 
|  |  | 
|  | dprintk("NFS: fsync file(%pD2) datasync %d\n", file, datasync); | 
|  |  | 
|  | nfs_inc_stats(inode, NFSIOS_VFSFSYNC); | 
|  | do_resend = test_and_clear_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags); | 
|  | have_error = test_and_clear_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags); | 
|  | status = nfs_commit_inode(inode, FLUSH_SYNC); | 
|  | have_error |= test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags); | 
|  | if (have_error) { | 
|  | ret = xchg(&ctx->error, 0); | 
|  | if (ret) | 
|  | goto out; | 
|  | } | 
|  | if (status < 0) { | 
|  | ret = status; | 
|  | goto out; | 
|  | } | 
|  | do_resend |= test_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags); | 
|  | if (do_resend) | 
|  | ret = -EAGAIN; | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int | 
|  | nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync) | 
|  | { | 
|  | int ret; | 
|  | struct inode *inode = file_inode(file); | 
|  |  | 
|  | trace_nfs_fsync_enter(inode); | 
|  |  | 
|  | do { | 
|  | ret = filemap_write_and_wait_range(inode->i_mapping, start, end); | 
|  | if (ret != 0) | 
|  | break; | 
|  | ret = nfs_file_fsync_commit(file, start, end, datasync); | 
|  | if (!ret) | 
|  | ret = pnfs_sync_inode(inode, !!datasync); | 
|  | /* | 
|  | * If nfs_file_fsync_commit detected a server reboot, then | 
|  | * resend all dirty pages that might have been covered by | 
|  | * the NFS_CONTEXT_RESEND_WRITES flag | 
|  | */ | 
|  | start = 0; | 
|  | end = LLONG_MAX; | 
|  | } while (ret == -EAGAIN); | 
|  |  | 
|  | trace_nfs_fsync_exit(inode, ret); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(nfs_file_fsync); | 
|  |  | 
|  | /* | 
|  | * Decide whether a read/modify/write cycle may be more efficient | 
|  | * then a modify/write/read cycle when writing to a page in the | 
|  | * page cache. | 
|  | * | 
|  | * The modify/write/read cycle may occur if a page is read before | 
|  | * being completely filled by the writer.  In this situation, the | 
|  | * page must be completely written to stable storage on the server | 
|  | * before it can be refilled by reading in the page from the server. | 
|  | * This can lead to expensive, small, FILE_SYNC mode writes being | 
|  | * done. | 
|  | * | 
|  | * It may be more efficient to read the page first if the file is | 
|  | * open for reading in addition to writing, the page is not marked | 
|  | * as Uptodate, it is not dirty or waiting to be committed, | 
|  | * indicating that it was previously allocated and then modified, | 
|  | * that there were valid bytes of data in that range of the file, | 
|  | * and that the new data won't completely replace the old data in | 
|  | * that range of the file. | 
|  | */ | 
|  | static int nfs_want_read_modify_write(struct file *file, struct page *page, | 
|  | loff_t pos, unsigned len) | 
|  | { | 
|  | unsigned int pglen = nfs_page_length(page); | 
|  | unsigned int offset = pos & (PAGE_SIZE - 1); | 
|  | unsigned int end = offset + len; | 
|  |  | 
|  | if (pnfs_ld_read_whole_page(file->f_mapping->host)) { | 
|  | if (!PageUptodate(page)) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if ((file->f_mode & FMODE_READ) &&	/* open for read? */ | 
|  | !PageUptodate(page) &&		/* Uptodate? */ | 
|  | !PagePrivate(page) &&		/* i/o request already? */ | 
|  | pglen &&				/* valid bytes of file? */ | 
|  | (end < pglen || offset))		/* replace all valid bytes? */ | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This does the "real" work of the write. We must allocate and lock the | 
|  | * page to be sent back to the generic routine, which then copies the | 
|  | * data from user space. | 
|  | * | 
|  | * If the writer ends up delaying the write, the writer needs to | 
|  | * increment the page use counts until he is done with the page. | 
|  | */ | 
|  | static int nfs_write_begin(struct file *file, struct address_space *mapping, | 
|  | loff_t pos, unsigned len, unsigned flags, | 
|  | struct page **pagep, void **fsdata) | 
|  | { | 
|  | int ret; | 
|  | pgoff_t index = pos >> PAGE_SHIFT; | 
|  | struct page *page; | 
|  | int once_thru = 0; | 
|  |  | 
|  | dfprintk(PAGECACHE, "NFS: write_begin(%pD2(%lu), %u@%lld)\n", | 
|  | file, mapping->host->i_ino, len, (long long) pos); | 
|  |  | 
|  | start: | 
|  | page = grab_cache_page_write_begin(mapping, index, flags); | 
|  | if (!page) | 
|  | return -ENOMEM; | 
|  | *pagep = page; | 
|  |  | 
|  | ret = nfs_flush_incompatible(file, page); | 
|  | if (ret) { | 
|  | unlock_page(page); | 
|  | put_page(page); | 
|  | } else if (!once_thru && | 
|  | nfs_want_read_modify_write(file, page, pos, len)) { | 
|  | once_thru = 1; | 
|  | ret = nfs_readpage(file, page); | 
|  | put_page(page); | 
|  | if (!ret) | 
|  | goto start; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int nfs_write_end(struct file *file, struct address_space *mapping, | 
|  | loff_t pos, unsigned len, unsigned copied, | 
|  | struct page *page, void *fsdata) | 
|  | { | 
|  | unsigned offset = pos & (PAGE_SIZE - 1); | 
|  | struct nfs_open_context *ctx = nfs_file_open_context(file); | 
|  | int status; | 
|  |  | 
|  | dfprintk(PAGECACHE, "NFS: write_end(%pD2(%lu), %u@%lld)\n", | 
|  | file, mapping->host->i_ino, len, (long long) pos); | 
|  |  | 
|  | /* | 
|  | * Zero any uninitialised parts of the page, and then mark the page | 
|  | * as up to date if it turns out that we're extending the file. | 
|  | */ | 
|  | if (!PageUptodate(page)) { | 
|  | unsigned pglen = nfs_page_length(page); | 
|  | unsigned end = offset + len; | 
|  |  | 
|  | if (pglen == 0) { | 
|  | zero_user_segments(page, 0, offset, | 
|  | end, PAGE_SIZE); | 
|  | SetPageUptodate(page); | 
|  | } else if (end >= pglen) { | 
|  | zero_user_segment(page, end, PAGE_SIZE); | 
|  | if (offset == 0) | 
|  | SetPageUptodate(page); | 
|  | } else | 
|  | zero_user_segment(page, pglen, PAGE_SIZE); | 
|  | } | 
|  |  | 
|  | status = nfs_updatepage(file, page, offset, copied); | 
|  |  | 
|  | unlock_page(page); | 
|  | put_page(page); | 
|  |  | 
|  | if (status < 0) | 
|  | return status; | 
|  | NFS_I(mapping->host)->write_io += copied; | 
|  |  | 
|  | if (nfs_ctx_key_to_expire(ctx, mapping->host)) { | 
|  | status = nfs_wb_all(mapping->host); | 
|  | if (status < 0) | 
|  | return status; | 
|  | } | 
|  |  | 
|  | return copied; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Partially or wholly invalidate a page | 
|  | * - Release the private state associated with a page if undergoing complete | 
|  | *   page invalidation | 
|  | * - Called if either PG_private or PG_fscache is set on the page | 
|  | * - Caller holds page lock | 
|  | */ | 
|  | static void nfs_invalidate_page(struct page *page, unsigned int offset, | 
|  | unsigned int length) | 
|  | { | 
|  | dfprintk(PAGECACHE, "NFS: invalidate_page(%p, %u, %u)\n", | 
|  | page, offset, length); | 
|  |  | 
|  | if (offset != 0 || length < PAGE_SIZE) | 
|  | return; | 
|  | /* Cancel any unstarted writes on this page */ | 
|  | nfs_wb_page_cancel(page_file_mapping(page)->host, page); | 
|  |  | 
|  | nfs_fscache_invalidate_page(page, page->mapping->host); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Attempt to release the private state associated with a page | 
|  | * - Called if either PG_private or PG_fscache is set on the page | 
|  | * - Caller holds page lock | 
|  | * - Return true (may release page) or false (may not) | 
|  | */ | 
|  | static int nfs_release_page(struct page *page, gfp_t gfp) | 
|  | { | 
|  | dfprintk(PAGECACHE, "NFS: release_page(%p)\n", page); | 
|  |  | 
|  | /* If PagePrivate() is set, then the page is not freeable */ | 
|  | if (PagePrivate(page)) | 
|  | return 0; | 
|  | return nfs_fscache_release_page(page, gfp); | 
|  | } | 
|  |  | 
|  | static void nfs_check_dirty_writeback(struct page *page, | 
|  | bool *dirty, bool *writeback) | 
|  | { | 
|  | struct nfs_inode *nfsi; | 
|  | struct address_space *mapping = page_file_mapping(page); | 
|  |  | 
|  | if (!mapping || PageSwapCache(page)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Check if an unstable page is currently being committed and | 
|  | * if so, have the VM treat it as if the page is under writeback | 
|  | * so it will not block due to pages that will shortly be freeable. | 
|  | */ | 
|  | nfsi = NFS_I(mapping->host); | 
|  | if (atomic_read(&nfsi->commit_info.rpcs_out)) { | 
|  | *writeback = true; | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If PagePrivate() is set, then the page is not freeable and as the | 
|  | * inode is not being committed, it's not going to be cleaned in the | 
|  | * near future so treat it as dirty | 
|  | */ | 
|  | if (PagePrivate(page)) | 
|  | *dirty = true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Attempt to clear the private state associated with a page when an error | 
|  | * occurs that requires the cached contents of an inode to be written back or | 
|  | * destroyed | 
|  | * - Called if either PG_private or fscache is set on the page | 
|  | * - Caller holds page lock | 
|  | * - Return 0 if successful, -error otherwise | 
|  | */ | 
|  | static int nfs_launder_page(struct page *page) | 
|  | { | 
|  | struct inode *inode = page_file_mapping(page)->host; | 
|  | struct nfs_inode *nfsi = NFS_I(inode); | 
|  |  | 
|  | dfprintk(PAGECACHE, "NFS: launder_page(%ld, %llu)\n", | 
|  | inode->i_ino, (long long)page_offset(page)); | 
|  |  | 
|  | nfs_fscache_wait_on_page_write(nfsi, page); | 
|  | return nfs_wb_launder_page(inode, page); | 
|  | } | 
|  |  | 
|  | static int nfs_swap_activate(struct swap_info_struct *sis, struct file *file, | 
|  | sector_t *span) | 
|  | { | 
|  | struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host); | 
|  |  | 
|  | *span = sis->pages; | 
|  |  | 
|  | return rpc_clnt_swap_activate(clnt); | 
|  | } | 
|  |  | 
|  | static void nfs_swap_deactivate(struct file *file) | 
|  | { | 
|  | struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host); | 
|  |  | 
|  | rpc_clnt_swap_deactivate(clnt); | 
|  | } | 
|  |  | 
|  | const struct address_space_operations nfs_file_aops = { | 
|  | .readpage = nfs_readpage, | 
|  | .readpages = nfs_readpages, | 
|  | .set_page_dirty = __set_page_dirty_nobuffers, | 
|  | .writepage = nfs_writepage, | 
|  | .writepages = nfs_writepages, | 
|  | .write_begin = nfs_write_begin, | 
|  | .write_end = nfs_write_end, | 
|  | .invalidatepage = nfs_invalidate_page, | 
|  | .releasepage = nfs_release_page, | 
|  | .direct_IO = nfs_direct_IO, | 
|  | #ifdef CONFIG_MIGRATION | 
|  | .migratepage = nfs_migrate_page, | 
|  | #endif | 
|  | .launder_page = nfs_launder_page, | 
|  | .is_dirty_writeback = nfs_check_dirty_writeback, | 
|  | .error_remove_page = generic_error_remove_page, | 
|  | .swap_activate = nfs_swap_activate, | 
|  | .swap_deactivate = nfs_swap_deactivate, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Notification that a PTE pointing to an NFS page is about to be made | 
|  | * writable, implying that someone is about to modify the page through a | 
|  | * shared-writable mapping | 
|  | */ | 
|  | static int nfs_vm_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) | 
|  | { | 
|  | struct page *page = vmf->page; | 
|  | struct file *filp = vma->vm_file; | 
|  | struct inode *inode = file_inode(filp); | 
|  | unsigned pagelen; | 
|  | int ret = VM_FAULT_NOPAGE; | 
|  | struct address_space *mapping; | 
|  |  | 
|  | dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%pD2(%lu), offset %lld)\n", | 
|  | filp, filp->f_mapping->host->i_ino, | 
|  | (long long)page_offset(page)); | 
|  |  | 
|  | sb_start_pagefault(inode->i_sb); | 
|  |  | 
|  | /* make sure the cache has finished storing the page */ | 
|  | nfs_fscache_wait_on_page_write(NFS_I(inode), page); | 
|  |  | 
|  | wait_on_bit_action(&NFS_I(inode)->flags, NFS_INO_INVALIDATING, | 
|  | nfs_wait_bit_killable, TASK_KILLABLE); | 
|  |  | 
|  | lock_page(page); | 
|  | mapping = page_file_mapping(page); | 
|  | if (mapping != inode->i_mapping) | 
|  | goto out_unlock; | 
|  |  | 
|  | wait_on_page_writeback(page); | 
|  |  | 
|  | pagelen = nfs_page_length(page); | 
|  | if (pagelen == 0) | 
|  | goto out_unlock; | 
|  |  | 
|  | ret = VM_FAULT_LOCKED; | 
|  | if (nfs_flush_incompatible(filp, page) == 0 && | 
|  | nfs_updatepage(filp, page, 0, pagelen) == 0) | 
|  | goto out; | 
|  |  | 
|  | ret = VM_FAULT_SIGBUS; | 
|  | out_unlock: | 
|  | unlock_page(page); | 
|  | out: | 
|  | sb_end_pagefault(inode->i_sb); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static const struct vm_operations_struct nfs_file_vm_ops = { | 
|  | .fault = filemap_fault, | 
|  | .map_pages = filemap_map_pages, | 
|  | .page_mkwrite = nfs_vm_page_mkwrite, | 
|  | }; | 
|  |  | 
|  | static int nfs_need_check_write(struct file *filp, struct inode *inode) | 
|  | { | 
|  | struct nfs_open_context *ctx; | 
|  |  | 
|  | ctx = nfs_file_open_context(filp); | 
|  | if (test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags) || | 
|  | nfs_ctx_key_to_expire(ctx, inode)) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | ssize_t nfs_file_write(struct kiocb *iocb, struct iov_iter *from) | 
|  | { | 
|  | struct file *file = iocb->ki_filp; | 
|  | struct inode *inode = file_inode(file); | 
|  | unsigned long written = 0; | 
|  | ssize_t result; | 
|  |  | 
|  | result = nfs_key_timeout_notify(file, inode); | 
|  | if (result) | 
|  | return result; | 
|  |  | 
|  | if (iocb->ki_flags & IOCB_DIRECT) | 
|  | return nfs_file_direct_write(iocb, from); | 
|  |  | 
|  | dprintk("NFS: write(%pD2, %zu@%Ld)\n", | 
|  | file, iov_iter_count(from), (long long) iocb->ki_pos); | 
|  |  | 
|  | if (IS_SWAPFILE(inode)) | 
|  | goto out_swapfile; | 
|  | /* | 
|  | * O_APPEND implies that we must revalidate the file length. | 
|  | */ | 
|  | if (iocb->ki_flags & IOCB_APPEND) { | 
|  | result = nfs_revalidate_file_size(inode, file); | 
|  | if (result) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | nfs_start_io_write(inode); | 
|  | result = generic_write_checks(iocb, from); | 
|  | if (result > 0) { | 
|  | current->backing_dev_info = inode_to_bdi(inode); | 
|  | result = generic_perform_write(file, from, iocb->ki_pos); | 
|  | current->backing_dev_info = NULL; | 
|  | } | 
|  | nfs_end_io_write(inode); | 
|  | if (result <= 0) | 
|  | goto out; | 
|  |  | 
|  | result = generic_write_sync(iocb, result); | 
|  | if (result < 0) | 
|  | goto out; | 
|  | written = result; | 
|  | iocb->ki_pos += written; | 
|  |  | 
|  | /* Return error values */ | 
|  | if (nfs_need_check_write(file, inode)) { | 
|  | int err = vfs_fsync(file, 0); | 
|  | if (err < 0) | 
|  | result = err; | 
|  | } | 
|  | nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written); | 
|  | out: | 
|  | return result; | 
|  |  | 
|  | out_swapfile: | 
|  | printk(KERN_INFO "NFS: attempt to write to active swap file!\n"); | 
|  | return -EBUSY; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(nfs_file_write); | 
|  |  | 
|  | static int | 
|  | do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local) | 
|  | { | 
|  | struct inode *inode = filp->f_mapping->host; | 
|  | int status = 0; | 
|  | unsigned int saved_type = fl->fl_type; | 
|  |  | 
|  | /* Try local locking first */ | 
|  | posix_test_lock(filp, fl); | 
|  | if (fl->fl_type != F_UNLCK) { | 
|  | /* found a conflict */ | 
|  | goto out; | 
|  | } | 
|  | fl->fl_type = saved_type; | 
|  |  | 
|  | if (NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) | 
|  | goto out_noconflict; | 
|  |  | 
|  | if (is_local) | 
|  | goto out_noconflict; | 
|  |  | 
|  | status = NFS_PROTO(inode)->lock(filp, cmd, fl); | 
|  | out: | 
|  | return status; | 
|  | out_noconflict: | 
|  | fl->fl_type = F_UNLCK; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | static int | 
|  | do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local) | 
|  | { | 
|  | struct inode *inode = filp->f_mapping->host; | 
|  | struct nfs_lock_context *l_ctx; | 
|  | int status; | 
|  |  | 
|  | /* | 
|  | * Flush all pending writes before doing anything | 
|  | * with locks.. | 
|  | */ | 
|  | vfs_fsync(filp, 0); | 
|  |  | 
|  | l_ctx = nfs_get_lock_context(nfs_file_open_context(filp)); | 
|  | if (!IS_ERR(l_ctx)) { | 
|  | status = nfs_iocounter_wait(l_ctx); | 
|  | nfs_put_lock_context(l_ctx); | 
|  | if (status < 0) | 
|  | return status; | 
|  | } | 
|  |  | 
|  | /* NOTE: special case | 
|  | * 	If we're signalled while cleaning up locks on process exit, we | 
|  | * 	still need to complete the unlock. | 
|  | */ | 
|  | /* | 
|  | * Use local locking if mounted with "-onolock" or with appropriate | 
|  | * "-olocal_lock=" | 
|  | */ | 
|  | if (!is_local) | 
|  | status = NFS_PROTO(inode)->lock(filp, cmd, fl); | 
|  | else | 
|  | status = locks_lock_file_wait(filp, fl); | 
|  | return status; | 
|  | } | 
|  |  | 
|  | static int | 
|  | do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local) | 
|  | { | 
|  | struct inode *inode = filp->f_mapping->host; | 
|  | int status; | 
|  |  | 
|  | /* | 
|  | * Flush all pending writes before doing anything | 
|  | * with locks.. | 
|  | */ | 
|  | status = nfs_sync_mapping(filp->f_mapping); | 
|  | if (status != 0) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * Use local locking if mounted with "-onolock" or with appropriate | 
|  | * "-olocal_lock=" | 
|  | */ | 
|  | if (!is_local) | 
|  | status = NFS_PROTO(inode)->lock(filp, cmd, fl); | 
|  | else | 
|  | status = locks_lock_file_wait(filp, fl); | 
|  | if (status < 0) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * Revalidate the cache if the server has time stamps granular | 
|  | * enough to detect subsecond changes.  Otherwise, clear the | 
|  | * cache to prevent missing any changes. | 
|  | * | 
|  | * This makes locking act as a cache coherency point. | 
|  | */ | 
|  | nfs_sync_mapping(filp->f_mapping); | 
|  | if (!NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) | 
|  | nfs_zap_mapping(inode, filp->f_mapping); | 
|  | out: | 
|  | return status; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Lock a (portion of) a file | 
|  | */ | 
|  | int nfs_lock(struct file *filp, int cmd, struct file_lock *fl) | 
|  | { | 
|  | struct inode *inode = filp->f_mapping->host; | 
|  | int ret = -ENOLCK; | 
|  | int is_local = 0; | 
|  |  | 
|  | dprintk("NFS: lock(%pD2, t=%x, fl=%x, r=%lld:%lld)\n", | 
|  | filp, fl->fl_type, fl->fl_flags, | 
|  | (long long)fl->fl_start, (long long)fl->fl_end); | 
|  |  | 
|  | nfs_inc_stats(inode, NFSIOS_VFSLOCK); | 
|  |  | 
|  | /* No mandatory locks over NFS */ | 
|  | if (__mandatory_lock(inode) && fl->fl_type != F_UNLCK) | 
|  | goto out_err; | 
|  |  | 
|  | if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL) | 
|  | is_local = 1; | 
|  |  | 
|  | if (NFS_PROTO(inode)->lock_check_bounds != NULL) { | 
|  | ret = NFS_PROTO(inode)->lock_check_bounds(fl); | 
|  | if (ret < 0) | 
|  | goto out_err; | 
|  | } | 
|  |  | 
|  | if (IS_GETLK(cmd)) | 
|  | ret = do_getlk(filp, cmd, fl, is_local); | 
|  | else if (fl->fl_type == F_UNLCK) | 
|  | ret = do_unlk(filp, cmd, fl, is_local); | 
|  | else | 
|  | ret = do_setlk(filp, cmd, fl, is_local); | 
|  | out_err: | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(nfs_lock); | 
|  |  | 
|  | /* | 
|  | * Lock a (portion of) a file | 
|  | */ | 
|  | int nfs_flock(struct file *filp, int cmd, struct file_lock *fl) | 
|  | { | 
|  | struct inode *inode = filp->f_mapping->host; | 
|  | int is_local = 0; | 
|  |  | 
|  | dprintk("NFS: flock(%pD2, t=%x, fl=%x)\n", | 
|  | filp, fl->fl_type, fl->fl_flags); | 
|  |  | 
|  | if (!(fl->fl_flags & FL_FLOCK)) | 
|  | return -ENOLCK; | 
|  |  | 
|  | /* | 
|  | * The NFSv4 protocol doesn't support LOCK_MAND, which is not part of | 
|  | * any standard. In principle we might be able to support LOCK_MAND | 
|  | * on NFSv2/3 since NLMv3/4 support DOS share modes, but for now the | 
|  | * NFS code is not set up for it. | 
|  | */ | 
|  | if (fl->fl_type & LOCK_MAND) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK) | 
|  | is_local = 1; | 
|  |  | 
|  | /* We're simulating flock() locks using posix locks on the server */ | 
|  | if (fl->fl_type == F_UNLCK) | 
|  | return do_unlk(filp, cmd, fl, is_local); | 
|  | return do_setlk(filp, cmd, fl, is_local); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(nfs_flock); | 
|  |  | 
|  | const struct file_operations nfs_file_operations = { | 
|  | .llseek		= nfs_file_llseek, | 
|  | .read_iter	= nfs_file_read, | 
|  | .write_iter	= nfs_file_write, | 
|  | .mmap		= nfs_file_mmap, | 
|  | .open		= nfs_file_open, | 
|  | .flush		= nfs_file_flush, | 
|  | .release	= nfs_file_release, | 
|  | .fsync		= nfs_file_fsync, | 
|  | .lock		= nfs_lock, | 
|  | .flock		= nfs_flock, | 
|  | .splice_read	= generic_file_splice_read, | 
|  | .splice_write	= iter_file_splice_write, | 
|  | .check_flags	= nfs_check_flags, | 
|  | .setlease	= simple_nosetlease, | 
|  | }; | 
|  | EXPORT_SYMBOL_GPL(nfs_file_operations); |