|  | /* | 
|  | * Copyright 1996, 1997, 1998 Hans Reiser, see reiserfs/README for | 
|  | * licensing and copyright details | 
|  | */ | 
|  |  | 
|  | #include <linux/reiserfs_fs.h> | 
|  |  | 
|  | #include <linux/slab.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/bug.h> | 
|  | #include <linux/workqueue.h> | 
|  | #include <asm/unaligned.h> | 
|  | #include <linux/bitops.h> | 
|  | #include <linux/proc_fs.h> | 
|  | #include <linux/buffer_head.h> | 
|  |  | 
|  | /* the 32 bit compat definitions with int argument */ | 
|  | #define REISERFS_IOC32_UNPACK		_IOW(0xCD, 1, int) | 
|  | #define REISERFS_IOC32_GETFLAGS		FS_IOC32_GETFLAGS | 
|  | #define REISERFS_IOC32_SETFLAGS		FS_IOC32_SETFLAGS | 
|  | #define REISERFS_IOC32_GETVERSION	FS_IOC32_GETVERSION | 
|  | #define REISERFS_IOC32_SETVERSION	FS_IOC32_SETVERSION | 
|  |  | 
|  | struct reiserfs_journal_list; | 
|  |  | 
|  | /* bitmasks for i_flags field in reiserfs-specific part of inode */ | 
|  | typedef enum { | 
|  | /* | 
|  | * this says what format of key do all items (but stat data) of | 
|  | * an object have.  If this is set, that format is 3.6 otherwise - 3.5 | 
|  | */ | 
|  | i_item_key_version_mask = 0x0001, | 
|  |  | 
|  | /* | 
|  | * If this is unset, object has 3.5 stat data, otherwise, | 
|  | * it has 3.6 stat data with 64bit size, 32bit nlink etc. | 
|  | */ | 
|  | i_stat_data_version_mask = 0x0002, | 
|  |  | 
|  | /* file might need tail packing on close */ | 
|  | i_pack_on_close_mask = 0x0004, | 
|  |  | 
|  | /* don't pack tail of file */ | 
|  | i_nopack_mask = 0x0008, | 
|  |  | 
|  | /* | 
|  | * If either of these are set, "safe link" was created for this | 
|  | * file during truncate or unlink. Safe link is used to avoid | 
|  | * leakage of disk space on crash with some files open, but unlinked. | 
|  | */ | 
|  | i_link_saved_unlink_mask = 0x0010, | 
|  | i_link_saved_truncate_mask = 0x0020, | 
|  |  | 
|  | i_has_xattr_dir = 0x0040, | 
|  | i_data_log = 0x0080, | 
|  | } reiserfs_inode_flags; | 
|  |  | 
|  | struct reiserfs_inode_info { | 
|  | __u32 i_key[4];		/* key is still 4 32 bit integers */ | 
|  |  | 
|  | /* | 
|  | * transient inode flags that are never stored on disk. Bitmasks | 
|  | * for this field are defined above. | 
|  | */ | 
|  | __u32 i_flags; | 
|  |  | 
|  | /* offset of first byte stored in direct item. */ | 
|  | __u32 i_first_direct_byte; | 
|  |  | 
|  | /* copy of persistent inode flags read from sd_attrs. */ | 
|  | __u32 i_attrs; | 
|  |  | 
|  | /* first unused block of a sequence of unused blocks */ | 
|  | int i_prealloc_block; | 
|  | int i_prealloc_count;	/* length of that sequence */ | 
|  |  | 
|  | /* per-transaction list of inodes which  have preallocated blocks */ | 
|  | struct list_head i_prealloc_list; | 
|  |  | 
|  | /* | 
|  | * new_packing_locality is created; new blocks for the contents | 
|  | * of this directory should be displaced | 
|  | */ | 
|  | unsigned new_packing_locality:1; | 
|  |  | 
|  | /* | 
|  | * we use these for fsync or O_SYNC to decide which transaction | 
|  | * needs to be committed in order for this inode to be properly | 
|  | * flushed | 
|  | */ | 
|  | unsigned int i_trans_id; | 
|  |  | 
|  | struct reiserfs_journal_list *i_jl; | 
|  | atomic_t openers; | 
|  | struct mutex tailpack; | 
|  | #ifdef CONFIG_REISERFS_FS_XATTR | 
|  | struct rw_semaphore i_xattr_sem; | 
|  | #endif | 
|  | #ifdef CONFIG_QUOTA | 
|  | struct dquot *i_dquot[MAXQUOTAS]; | 
|  | #endif | 
|  |  | 
|  | struct inode vfs_inode; | 
|  | }; | 
|  |  | 
|  | typedef enum { | 
|  | reiserfs_attrs_cleared = 0x00000001, | 
|  | } reiserfs_super_block_flags; | 
|  |  | 
|  | /* | 
|  | * struct reiserfs_super_block accessors/mutators since this is a disk | 
|  | * structure, it will always be in little endian format. | 
|  | */ | 
|  | #define sb_block_count(sbp)         (le32_to_cpu((sbp)->s_v1.s_block_count)) | 
|  | #define set_sb_block_count(sbp,v)   ((sbp)->s_v1.s_block_count = cpu_to_le32(v)) | 
|  | #define sb_free_blocks(sbp)         (le32_to_cpu((sbp)->s_v1.s_free_blocks)) | 
|  | #define set_sb_free_blocks(sbp,v)   ((sbp)->s_v1.s_free_blocks = cpu_to_le32(v)) | 
|  | #define sb_root_block(sbp)          (le32_to_cpu((sbp)->s_v1.s_root_block)) | 
|  | #define set_sb_root_block(sbp,v)    ((sbp)->s_v1.s_root_block = cpu_to_le32(v)) | 
|  |  | 
|  | #define sb_jp_journal_1st_block(sbp)  \ | 
|  | (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_1st_block)) | 
|  | #define set_sb_jp_journal_1st_block(sbp,v) \ | 
|  | ((sbp)->s_v1.s_journal.jp_journal_1st_block = cpu_to_le32(v)) | 
|  | #define sb_jp_journal_dev(sbp) \ | 
|  | (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_dev)) | 
|  | #define set_sb_jp_journal_dev(sbp,v) \ | 
|  | ((sbp)->s_v1.s_journal.jp_journal_dev = cpu_to_le32(v)) | 
|  | #define sb_jp_journal_size(sbp) \ | 
|  | (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_size)) | 
|  | #define set_sb_jp_journal_size(sbp,v) \ | 
|  | ((sbp)->s_v1.s_journal.jp_journal_size = cpu_to_le32(v)) | 
|  | #define sb_jp_journal_trans_max(sbp) \ | 
|  | (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_trans_max)) | 
|  | #define set_sb_jp_journal_trans_max(sbp,v) \ | 
|  | ((sbp)->s_v1.s_journal.jp_journal_trans_max = cpu_to_le32(v)) | 
|  | #define sb_jp_journal_magic(sbp) \ | 
|  | (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_magic)) | 
|  | #define set_sb_jp_journal_magic(sbp,v) \ | 
|  | ((sbp)->s_v1.s_journal.jp_journal_magic = cpu_to_le32(v)) | 
|  | #define sb_jp_journal_max_batch(sbp) \ | 
|  | (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_max_batch)) | 
|  | #define set_sb_jp_journal_max_batch(sbp,v) \ | 
|  | ((sbp)->s_v1.s_journal.jp_journal_max_batch = cpu_to_le32(v)) | 
|  | #define sb_jp_jourmal_max_commit_age(sbp) \ | 
|  | (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_max_commit_age)) | 
|  | #define set_sb_jp_journal_max_commit_age(sbp,v) \ | 
|  | ((sbp)->s_v1.s_journal.jp_journal_max_commit_age = cpu_to_le32(v)) | 
|  |  | 
|  | #define sb_blocksize(sbp)          (le16_to_cpu((sbp)->s_v1.s_blocksize)) | 
|  | #define set_sb_blocksize(sbp,v)    ((sbp)->s_v1.s_blocksize = cpu_to_le16(v)) | 
|  | #define sb_oid_maxsize(sbp)        (le16_to_cpu((sbp)->s_v1.s_oid_maxsize)) | 
|  | #define set_sb_oid_maxsize(sbp,v)  ((sbp)->s_v1.s_oid_maxsize = cpu_to_le16(v)) | 
|  | #define sb_oid_cursize(sbp)        (le16_to_cpu((sbp)->s_v1.s_oid_cursize)) | 
|  | #define set_sb_oid_cursize(sbp,v)  ((sbp)->s_v1.s_oid_cursize = cpu_to_le16(v)) | 
|  | #define sb_umount_state(sbp)       (le16_to_cpu((sbp)->s_v1.s_umount_state)) | 
|  | #define set_sb_umount_state(sbp,v) ((sbp)->s_v1.s_umount_state = cpu_to_le16(v)) | 
|  | #define sb_fs_state(sbp)           (le16_to_cpu((sbp)->s_v1.s_fs_state)) | 
|  | #define set_sb_fs_state(sbp,v)     ((sbp)->s_v1.s_fs_state = cpu_to_le16(v)) | 
|  | #define sb_hash_function_code(sbp) \ | 
|  | (le32_to_cpu((sbp)->s_v1.s_hash_function_code)) | 
|  | #define set_sb_hash_function_code(sbp,v) \ | 
|  | ((sbp)->s_v1.s_hash_function_code = cpu_to_le32(v)) | 
|  | #define sb_tree_height(sbp)        (le16_to_cpu((sbp)->s_v1.s_tree_height)) | 
|  | #define set_sb_tree_height(sbp,v)  ((sbp)->s_v1.s_tree_height = cpu_to_le16(v)) | 
|  | #define sb_bmap_nr(sbp)            (le16_to_cpu((sbp)->s_v1.s_bmap_nr)) | 
|  | #define set_sb_bmap_nr(sbp,v)      ((sbp)->s_v1.s_bmap_nr = cpu_to_le16(v)) | 
|  | #define sb_version(sbp)            (le16_to_cpu((sbp)->s_v1.s_version)) | 
|  | #define set_sb_version(sbp,v)      ((sbp)->s_v1.s_version = cpu_to_le16(v)) | 
|  |  | 
|  | #define sb_mnt_count(sbp)	   (le16_to_cpu((sbp)->s_mnt_count)) | 
|  | #define set_sb_mnt_count(sbp, v)   ((sbp)->s_mnt_count = cpu_to_le16(v)) | 
|  |  | 
|  | #define sb_reserved_for_journal(sbp) \ | 
|  | (le16_to_cpu((sbp)->s_v1.s_reserved_for_journal)) | 
|  | #define set_sb_reserved_for_journal(sbp,v) \ | 
|  | ((sbp)->s_v1.s_reserved_for_journal = cpu_to_le16(v)) | 
|  |  | 
|  | /* LOGGING -- */ | 
|  |  | 
|  | /* | 
|  | * These all interelate for performance. | 
|  | * | 
|  | * If the journal block count is smaller than n transactions, you lose speed. | 
|  | * I don't know what n is yet, I'm guessing 8-16. | 
|  | * | 
|  | * typical transaction size depends on the application, how often fsync is | 
|  | * called, and how many metadata blocks you dirty in a 30 second period. | 
|  | * The more small files (<16k) you use, the larger your transactions will | 
|  | * be. | 
|  | * | 
|  | * If your journal fills faster than dirty buffers get flushed to disk, it | 
|  | * must flush them before allowing the journal to wrap, which slows things | 
|  | * down.  If you need high speed meta data updates, the journal should be | 
|  | * big enough to prevent wrapping before dirty meta blocks get to disk. | 
|  | * | 
|  | * If the batch max is smaller than the transaction max, you'll waste space | 
|  | * at the end of the journal because journal_end sets the next transaction | 
|  | * to start at 0 if the next transaction has any chance of wrapping. | 
|  | * | 
|  | * The large the batch max age, the better the speed, and the more meta | 
|  | * data changes you'll lose after a crash. | 
|  | */ | 
|  |  | 
|  | /* don't mess with these for a while */ | 
|  | /* we have a node size define somewhere in reiserfs_fs.h. -Hans */ | 
|  | #define JOURNAL_BLOCK_SIZE  4096	/* BUG gotta get rid of this */ | 
|  | #define JOURNAL_MAX_CNODE   1500	/* max cnodes to allocate. */ | 
|  | #define JOURNAL_HASH_SIZE 8192 | 
|  |  | 
|  | /* number of copies of the bitmaps to have floating.  Must be >= 2 */ | 
|  | #define JOURNAL_NUM_BITMAPS 5 | 
|  |  | 
|  | /* | 
|  | * One of these for every block in every transaction | 
|  | * Each one is in two hash tables.  First, a hash of the current transaction, | 
|  | * and after journal_end, a hash of all the in memory transactions. | 
|  | * next and prev are used by the current transaction (journal_hash). | 
|  | * hnext and hprev are used by journal_list_hash.  If a block is in more | 
|  | * than one transaction, the journal_list_hash links it in multiple times. | 
|  | * This allows flush_journal_list to remove just the cnode belonging to a | 
|  | * given transaction. | 
|  | */ | 
|  | struct reiserfs_journal_cnode { | 
|  | struct buffer_head *bh;	/* real buffer head */ | 
|  | struct super_block *sb;	/* dev of real buffer head */ | 
|  |  | 
|  | /* block number of real buffer head, == 0 when buffer on disk */ | 
|  | __u32 blocknr; | 
|  |  | 
|  | unsigned long state; | 
|  |  | 
|  | /* journal list this cnode lives in */ | 
|  | struct reiserfs_journal_list *jlist; | 
|  |  | 
|  | struct reiserfs_journal_cnode *next;	/* next in transaction list */ | 
|  | struct reiserfs_journal_cnode *prev;	/* prev in transaction list */ | 
|  | struct reiserfs_journal_cnode *hprev;	/* prev in hash list */ | 
|  | struct reiserfs_journal_cnode *hnext;	/* next in hash list */ | 
|  | }; | 
|  |  | 
|  | struct reiserfs_bitmap_node { | 
|  | int id; | 
|  | char *data; | 
|  | struct list_head list; | 
|  | }; | 
|  |  | 
|  | struct reiserfs_list_bitmap { | 
|  | struct reiserfs_journal_list *journal_list; | 
|  | struct reiserfs_bitmap_node **bitmaps; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * one of these for each transaction.  The most important part here is the | 
|  | * j_realblock.  this list of cnodes is used to hash all the blocks in all | 
|  | * the commits, to mark all the real buffer heads dirty once all the commits | 
|  | * hit the disk, and to make sure every real block in a transaction is on | 
|  | * disk before allowing the log area to be overwritten | 
|  | */ | 
|  | struct reiserfs_journal_list { | 
|  | unsigned long j_start; | 
|  | unsigned long j_state; | 
|  | unsigned long j_len; | 
|  | atomic_t j_nonzerolen; | 
|  | atomic_t j_commit_left; | 
|  |  | 
|  | /* all commits older than this on disk */ | 
|  | atomic_t j_older_commits_done; | 
|  |  | 
|  | struct mutex j_commit_mutex; | 
|  | unsigned int j_trans_id; | 
|  | time_t j_timestamp; | 
|  | struct reiserfs_list_bitmap *j_list_bitmap; | 
|  | struct buffer_head *j_commit_bh;	/* commit buffer head */ | 
|  | struct reiserfs_journal_cnode *j_realblock; | 
|  | struct reiserfs_journal_cnode *j_freedlist;	/* list of buffers that were freed during this trans.  free each of these on flush */ | 
|  | /* time ordered list of all active transactions */ | 
|  | struct list_head j_list; | 
|  |  | 
|  | /* | 
|  | * time ordered list of all transactions we haven't tried | 
|  | * to flush yet | 
|  | */ | 
|  | struct list_head j_working_list; | 
|  |  | 
|  | /* list of tail conversion targets in need of flush before commit */ | 
|  | struct list_head j_tail_bh_list; | 
|  |  | 
|  | /* list of data=ordered buffers in need of flush before commit */ | 
|  | struct list_head j_bh_list; | 
|  | int j_refcount; | 
|  | }; | 
|  |  | 
|  | struct reiserfs_journal { | 
|  | struct buffer_head **j_ap_blocks;	/* journal blocks on disk */ | 
|  | /* newest journal block */ | 
|  | struct reiserfs_journal_cnode *j_last; | 
|  |  | 
|  | /* oldest journal block.  start here for traverse */ | 
|  | struct reiserfs_journal_cnode *j_first; | 
|  |  | 
|  | struct block_device *j_dev_bd; | 
|  | fmode_t j_dev_mode; | 
|  |  | 
|  | /* first block on s_dev of reserved area journal */ | 
|  | int j_1st_reserved_block; | 
|  |  | 
|  | unsigned long j_state; | 
|  | unsigned int j_trans_id; | 
|  | unsigned long j_mount_id; | 
|  |  | 
|  | /* start of current waiting commit (index into j_ap_blocks) */ | 
|  | unsigned long j_start; | 
|  | unsigned long j_len;	/* length of current waiting commit */ | 
|  |  | 
|  | /* number of buffers requested by journal_begin() */ | 
|  | unsigned long j_len_alloc; | 
|  |  | 
|  | atomic_t j_wcount;	/* count of writers for current commit */ | 
|  |  | 
|  | /* batch count. allows turning X transactions into 1 */ | 
|  | unsigned long j_bcount; | 
|  |  | 
|  | /* first unflushed transactions offset */ | 
|  | unsigned long j_first_unflushed_offset; | 
|  |  | 
|  | /* last fully flushed journal timestamp */ | 
|  | unsigned j_last_flush_trans_id; | 
|  |  | 
|  | struct buffer_head *j_header_bh; | 
|  |  | 
|  | time_t j_trans_start_time;	/* time this transaction started */ | 
|  | struct mutex j_mutex; | 
|  | struct mutex j_flush_mutex; | 
|  |  | 
|  | /* wait for current transaction to finish before starting new one */ | 
|  | wait_queue_head_t j_join_wait; | 
|  |  | 
|  | atomic_t j_jlock;		/* lock for j_join_wait */ | 
|  | int j_list_bitmap_index;	/* number of next list bitmap to use */ | 
|  |  | 
|  | /* no more journal begins allowed. MUST sleep on j_join_wait */ | 
|  | int j_must_wait; | 
|  |  | 
|  | /* next journal_end will flush all journal list */ | 
|  | int j_next_full_flush; | 
|  |  | 
|  | /* next journal_end will flush all async commits */ | 
|  | int j_next_async_flush; | 
|  |  | 
|  | int j_cnode_used;	/* number of cnodes on the used list */ | 
|  | int j_cnode_free;	/* number of cnodes on the free list */ | 
|  |  | 
|  | /* max number of blocks in a transaction.  */ | 
|  | unsigned int j_trans_max; | 
|  |  | 
|  | /* max number of blocks to batch into a trans */ | 
|  | unsigned int j_max_batch; | 
|  |  | 
|  | /* in seconds, how old can an async commit be */ | 
|  | unsigned int j_max_commit_age; | 
|  |  | 
|  | /* in seconds, how old can a transaction be */ | 
|  | unsigned int j_max_trans_age; | 
|  |  | 
|  | /* the default for the max commit age */ | 
|  | unsigned int j_default_max_commit_age; | 
|  |  | 
|  | struct reiserfs_journal_cnode *j_cnode_free_list; | 
|  |  | 
|  | /* orig pointer returned from vmalloc */ | 
|  | struct reiserfs_journal_cnode *j_cnode_free_orig; | 
|  |  | 
|  | struct reiserfs_journal_list *j_current_jl; | 
|  | int j_free_bitmap_nodes; | 
|  | int j_used_bitmap_nodes; | 
|  |  | 
|  | int j_num_lists;	/* total number of active transactions */ | 
|  | int j_num_work_lists;	/* number that need attention from kreiserfsd */ | 
|  |  | 
|  | /* debugging to make sure things are flushed in order */ | 
|  | unsigned int j_last_flush_id; | 
|  |  | 
|  | /* debugging to make sure things are committed in order */ | 
|  | unsigned int j_last_commit_id; | 
|  |  | 
|  | struct list_head j_bitmap_nodes; | 
|  | struct list_head j_dirty_buffers; | 
|  | spinlock_t j_dirty_buffers_lock;	/* protects j_dirty_buffers */ | 
|  |  | 
|  | /* list of all active transactions */ | 
|  | struct list_head j_journal_list; | 
|  |  | 
|  | /* lists that haven't been touched by writeback attempts */ | 
|  | struct list_head j_working_list; | 
|  |  | 
|  | /* hash table for real buffer heads in current trans */ | 
|  | struct reiserfs_journal_cnode *j_hash_table[JOURNAL_HASH_SIZE]; | 
|  |  | 
|  | /* hash table for all the real buffer heads in all the transactions */ | 
|  | struct reiserfs_journal_cnode *j_list_hash_table[JOURNAL_HASH_SIZE]; | 
|  |  | 
|  | /* array of bitmaps to record the deleted blocks */ | 
|  | struct reiserfs_list_bitmap j_list_bitmap[JOURNAL_NUM_BITMAPS]; | 
|  |  | 
|  | /* list of inodes which have preallocated blocks */ | 
|  | struct list_head j_prealloc_list; | 
|  | int j_persistent_trans; | 
|  | unsigned long j_max_trans_size; | 
|  | unsigned long j_max_batch_size; | 
|  |  | 
|  | int j_errno; | 
|  |  | 
|  | /* when flushing ordered buffers, throttle new ordered writers */ | 
|  | struct delayed_work j_work; | 
|  | struct super_block *j_work_sb; | 
|  | atomic_t j_async_throttle; | 
|  | }; | 
|  |  | 
|  | enum journal_state_bits { | 
|  | J_WRITERS_BLOCKED = 1,	/* set when new writers not allowed */ | 
|  | J_WRITERS_QUEUED,    /* set when log is full due to too many writers */ | 
|  | J_ABORTED,           /* set when log is aborted */ | 
|  | }; | 
|  |  | 
|  | /* ick.  magic string to find desc blocks in the journal */ | 
|  | #define JOURNAL_DESC_MAGIC "ReIsErLB" | 
|  |  | 
|  | typedef __u32(*hashf_t) (const signed char *, int); | 
|  |  | 
|  | struct reiserfs_bitmap_info { | 
|  | __u32 free_count; | 
|  | }; | 
|  |  | 
|  | struct proc_dir_entry; | 
|  |  | 
|  | #if defined( CONFIG_PROC_FS ) && defined( CONFIG_REISERFS_PROC_INFO ) | 
|  | typedef unsigned long int stat_cnt_t; | 
|  | typedef struct reiserfs_proc_info_data { | 
|  | spinlock_t lock; | 
|  | int exiting; | 
|  | int max_hash_collisions; | 
|  |  | 
|  | stat_cnt_t breads; | 
|  | stat_cnt_t bread_miss; | 
|  | stat_cnt_t search_by_key; | 
|  | stat_cnt_t search_by_key_fs_changed; | 
|  | stat_cnt_t search_by_key_restarted; | 
|  |  | 
|  | stat_cnt_t insert_item_restarted; | 
|  | stat_cnt_t paste_into_item_restarted; | 
|  | stat_cnt_t cut_from_item_restarted; | 
|  | stat_cnt_t delete_solid_item_restarted; | 
|  | stat_cnt_t delete_item_restarted; | 
|  |  | 
|  | stat_cnt_t leaked_oid; | 
|  | stat_cnt_t leaves_removable; | 
|  |  | 
|  | /* | 
|  | * balances per level. | 
|  | * Use explicit 5 as MAX_HEIGHT is not visible yet. | 
|  | */ | 
|  | stat_cnt_t balance_at[5];	/* XXX */ | 
|  | /* sbk == search_by_key */ | 
|  | stat_cnt_t sbk_read_at[5];	/* XXX */ | 
|  | stat_cnt_t sbk_fs_changed[5]; | 
|  | stat_cnt_t sbk_restarted[5]; | 
|  | stat_cnt_t items_at[5];	/* XXX */ | 
|  | stat_cnt_t free_at[5];	/* XXX */ | 
|  | stat_cnt_t can_node_be_removed[5];	/* XXX */ | 
|  | long int lnum[5];	/* XXX */ | 
|  | long int rnum[5];	/* XXX */ | 
|  | long int lbytes[5];	/* XXX */ | 
|  | long int rbytes[5];	/* XXX */ | 
|  | stat_cnt_t get_neighbors[5]; | 
|  | stat_cnt_t get_neighbors_restart[5]; | 
|  | stat_cnt_t need_l_neighbor[5]; | 
|  | stat_cnt_t need_r_neighbor[5]; | 
|  |  | 
|  | stat_cnt_t free_block; | 
|  | struct __scan_bitmap_stats { | 
|  | stat_cnt_t call; | 
|  | stat_cnt_t wait; | 
|  | stat_cnt_t bmap; | 
|  | stat_cnt_t retry; | 
|  | stat_cnt_t in_journal_hint; | 
|  | stat_cnt_t in_journal_nohint; | 
|  | stat_cnt_t stolen; | 
|  | } scan_bitmap; | 
|  | struct __journal_stats { | 
|  | stat_cnt_t in_journal; | 
|  | stat_cnt_t in_journal_bitmap; | 
|  | stat_cnt_t in_journal_reusable; | 
|  | stat_cnt_t lock_journal; | 
|  | stat_cnt_t lock_journal_wait; | 
|  | stat_cnt_t journal_being; | 
|  | stat_cnt_t journal_relock_writers; | 
|  | stat_cnt_t journal_relock_wcount; | 
|  | stat_cnt_t mark_dirty; | 
|  | stat_cnt_t mark_dirty_already; | 
|  | stat_cnt_t mark_dirty_notjournal; | 
|  | stat_cnt_t restore_prepared; | 
|  | stat_cnt_t prepare; | 
|  | stat_cnt_t prepare_retry; | 
|  | } journal; | 
|  | } reiserfs_proc_info_data_t; | 
|  | #else | 
|  | typedef struct reiserfs_proc_info_data { | 
|  | } reiserfs_proc_info_data_t; | 
|  | #endif | 
|  |  | 
|  | /* Number of quota types we support */ | 
|  | #define REISERFS_MAXQUOTAS 2 | 
|  |  | 
|  | /* reiserfs union of in-core super block data */ | 
|  | struct reiserfs_sb_info { | 
|  | /* Buffer containing the super block */ | 
|  | struct buffer_head *s_sbh; | 
|  |  | 
|  | /* Pointer to the on-disk super block in the buffer */ | 
|  | struct reiserfs_super_block *s_rs; | 
|  | struct reiserfs_bitmap_info *s_ap_bitmap; | 
|  |  | 
|  | /* pointer to journal information */ | 
|  | struct reiserfs_journal *s_journal; | 
|  |  | 
|  | unsigned short s_mount_state;	/* reiserfs state (valid, invalid) */ | 
|  |  | 
|  | /* Serialize writers access, replace the old bkl */ | 
|  | struct mutex lock; | 
|  |  | 
|  | /* Owner of the lock (can be recursive) */ | 
|  | struct task_struct *lock_owner; | 
|  |  | 
|  | /* Depth of the lock, start from -1 like the bkl */ | 
|  | int lock_depth; | 
|  |  | 
|  | struct workqueue_struct *commit_wq; | 
|  |  | 
|  | /* Comment? -Hans */ | 
|  | void (*end_io_handler) (struct buffer_head *, int); | 
|  |  | 
|  | /* | 
|  | * pointer to function which is used to sort names in directory. | 
|  | * Set on mount | 
|  | */ | 
|  | hashf_t s_hash_function; | 
|  |  | 
|  | /* reiserfs's mount options are set here */ | 
|  | unsigned long s_mount_opt; | 
|  |  | 
|  | /* This is a structure that describes block allocator options */ | 
|  | struct { | 
|  | /* Bitfield for enable/disable kind of options */ | 
|  | unsigned long bits; | 
|  |  | 
|  | /* | 
|  | * size started from which we consider file | 
|  | * to be a large one (in blocks) | 
|  | */ | 
|  | unsigned long large_file_size; | 
|  |  | 
|  | int border;	/* percentage of disk, border takes */ | 
|  |  | 
|  | /* | 
|  | * Minimal file size (in blocks) starting | 
|  | * from which we do preallocations | 
|  | */ | 
|  | int preallocmin; | 
|  |  | 
|  | /* | 
|  | * Number of blocks we try to prealloc when file | 
|  | * reaches preallocmin size (in blocks) or prealloc_list | 
|  | is empty. | 
|  | */ | 
|  | int preallocsize; | 
|  | } s_alloc_options; | 
|  |  | 
|  | /* Comment? -Hans */ | 
|  | wait_queue_head_t s_wait; | 
|  | /* increased by one every time the  tree gets re-balanced */ | 
|  | atomic_t s_generation_counter; | 
|  |  | 
|  | /* File system properties. Currently holds on-disk FS format */ | 
|  | unsigned long s_properties; | 
|  |  | 
|  | /* session statistics */ | 
|  | int s_disk_reads; | 
|  | int s_disk_writes; | 
|  | int s_fix_nodes; | 
|  | int s_do_balance; | 
|  | int s_unneeded_left_neighbor; | 
|  | int s_good_search_by_key_reada; | 
|  | int s_bmaps; | 
|  | int s_bmaps_without_search; | 
|  | int s_direct2indirect; | 
|  | int s_indirect2direct; | 
|  |  | 
|  | /* | 
|  | * set up when it's ok for reiserfs_read_inode2() to read from | 
|  | * disk inode with nlink==0. Currently this is only used during | 
|  | * finish_unfinished() processing at mount time | 
|  | */ | 
|  | int s_is_unlinked_ok; | 
|  |  | 
|  | reiserfs_proc_info_data_t s_proc_info_data; | 
|  | struct proc_dir_entry *procdir; | 
|  |  | 
|  | /* amount of blocks reserved for further allocations */ | 
|  | int reserved_blocks; | 
|  |  | 
|  |  | 
|  | /* this lock on now only used to protect reserved_blocks variable */ | 
|  | spinlock_t bitmap_lock; | 
|  | struct dentry *priv_root;	/* root of /.reiserfs_priv */ | 
|  | struct dentry *xattr_root;	/* root of /.reiserfs_priv/xattrs */ | 
|  | int j_errno; | 
|  |  | 
|  | int work_queued;              /* non-zero delayed work is queued */ | 
|  | struct delayed_work old_work; /* old transactions flush delayed work */ | 
|  | spinlock_t old_work_lock;     /* protects old_work and work_queued */ | 
|  |  | 
|  | #ifdef CONFIG_QUOTA | 
|  | char *s_qf_names[REISERFS_MAXQUOTAS]; | 
|  | int s_jquota_fmt; | 
|  | #endif | 
|  | char *s_jdev;		/* Stored jdev for mount option showing */ | 
|  | #ifdef CONFIG_REISERFS_CHECK | 
|  |  | 
|  | /* | 
|  | * Detects whether more than one copy of tb exists per superblock | 
|  | * as a means of checking whether do_balance is executing | 
|  | * concurrently against another tree reader/writer on a same | 
|  | * mount point. | 
|  | */ | 
|  | struct tree_balance *cur_tb; | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | /* Definitions of reiserfs on-disk properties: */ | 
|  | #define REISERFS_3_5 0 | 
|  | #define REISERFS_3_6 1 | 
|  | #define REISERFS_OLD_FORMAT 2 | 
|  |  | 
|  | /* Mount options */ | 
|  | enum reiserfs_mount_options { | 
|  | /* large tails will be created in a session */ | 
|  | REISERFS_LARGETAIL, | 
|  | /* | 
|  | * small (for files less than block size) tails will | 
|  | * be created in a session | 
|  | */ | 
|  | REISERFS_SMALLTAIL, | 
|  |  | 
|  | /* replay journal and return 0. Use by fsck */ | 
|  | REPLAYONLY, | 
|  |  | 
|  | /* | 
|  | * -o conv: causes conversion of old format super block to the | 
|  | * new format. If not specified - old partition will be dealt | 
|  | * with in a manner of 3.5.x | 
|  | */ | 
|  | REISERFS_CONVERT, | 
|  |  | 
|  | /* | 
|  | * -o hash={tea, rupasov, r5, detect} is meant for properly mounting | 
|  | * reiserfs disks from 3.5.19 or earlier.  99% of the time, this | 
|  | * option is not required.  If the normal autodection code can't | 
|  | * determine which hash to use (because both hashes had the same | 
|  | * value for a file) use this option to force a specific hash. | 
|  | * It won't allow you to override the existing hash on the FS, so | 
|  | * if you have a tea hash disk, and mount with -o hash=rupasov, | 
|  | * the mount will fail. | 
|  | */ | 
|  | FORCE_TEA_HASH,		/* try to force tea hash on mount */ | 
|  | FORCE_RUPASOV_HASH,	/* try to force rupasov hash on mount */ | 
|  | FORCE_R5_HASH,		/* try to force rupasov hash on mount */ | 
|  | FORCE_HASH_DETECT,	/* try to detect hash function on mount */ | 
|  |  | 
|  | REISERFS_DATA_LOG, | 
|  | REISERFS_DATA_ORDERED, | 
|  | REISERFS_DATA_WRITEBACK, | 
|  |  | 
|  | /* | 
|  | * used for testing experimental features, makes benchmarking new | 
|  | * features with and without more convenient, should never be used by | 
|  | * users in any code shipped to users (ideally) | 
|  | */ | 
|  |  | 
|  | REISERFS_NO_BORDER, | 
|  | REISERFS_NO_UNHASHED_RELOCATION, | 
|  | REISERFS_HASHED_RELOCATION, | 
|  | REISERFS_ATTRS, | 
|  | REISERFS_XATTRS_USER, | 
|  | REISERFS_POSIXACL, | 
|  | REISERFS_EXPOSE_PRIVROOT, | 
|  | REISERFS_BARRIER_NONE, | 
|  | REISERFS_BARRIER_FLUSH, | 
|  |  | 
|  | /* Actions on error */ | 
|  | REISERFS_ERROR_PANIC, | 
|  | REISERFS_ERROR_RO, | 
|  | REISERFS_ERROR_CONTINUE, | 
|  |  | 
|  | REISERFS_USRQUOTA,	/* User quota option specified */ | 
|  | REISERFS_GRPQUOTA,	/* Group quota option specified */ | 
|  |  | 
|  | REISERFS_TEST1, | 
|  | REISERFS_TEST2, | 
|  | REISERFS_TEST3, | 
|  | REISERFS_TEST4, | 
|  | REISERFS_UNSUPPORTED_OPT, | 
|  | }; | 
|  |  | 
|  | #define reiserfs_r5_hash(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_R5_HASH)) | 
|  | #define reiserfs_rupasov_hash(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_RUPASOV_HASH)) | 
|  | #define reiserfs_tea_hash(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_TEA_HASH)) | 
|  | #define reiserfs_hash_detect(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_HASH_DETECT)) | 
|  | #define reiserfs_no_border(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_NO_BORDER)) | 
|  | #define reiserfs_no_unhashed_relocation(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_NO_UNHASHED_RELOCATION)) | 
|  | #define reiserfs_hashed_relocation(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_HASHED_RELOCATION)) | 
|  | #define reiserfs_test4(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_TEST4)) | 
|  |  | 
|  | #define have_large_tails(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_LARGETAIL)) | 
|  | #define have_small_tails(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_SMALLTAIL)) | 
|  | #define replay_only(s) (REISERFS_SB(s)->s_mount_opt & (1 << REPLAYONLY)) | 
|  | #define reiserfs_attrs(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_ATTRS)) | 
|  | #define old_format_only(s) (REISERFS_SB(s)->s_properties & (1 << REISERFS_3_5)) | 
|  | #define convert_reiserfs(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_CONVERT)) | 
|  | #define reiserfs_data_log(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_DATA_LOG)) | 
|  | #define reiserfs_data_ordered(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_DATA_ORDERED)) | 
|  | #define reiserfs_data_writeback(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_DATA_WRITEBACK)) | 
|  | #define reiserfs_xattrs_user(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_XATTRS_USER)) | 
|  | #define reiserfs_posixacl(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_POSIXACL)) | 
|  | #define reiserfs_expose_privroot(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_EXPOSE_PRIVROOT)) | 
|  | #define reiserfs_xattrs_optional(s) (reiserfs_xattrs_user(s) || reiserfs_posixacl(s)) | 
|  | #define reiserfs_barrier_none(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_BARRIER_NONE)) | 
|  | #define reiserfs_barrier_flush(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_BARRIER_FLUSH)) | 
|  |  | 
|  | #define reiserfs_error_panic(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_ERROR_PANIC)) | 
|  | #define reiserfs_error_ro(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_ERROR_RO)) | 
|  |  | 
|  | void reiserfs_file_buffer(struct buffer_head *bh, int list); | 
|  | extern struct file_system_type reiserfs_fs_type; | 
|  | int reiserfs_resize(struct super_block *, unsigned long); | 
|  |  | 
|  | #define CARRY_ON                0 | 
|  | #define SCHEDULE_OCCURRED       1 | 
|  |  | 
|  | #define SB_BUFFER_WITH_SB(s) (REISERFS_SB(s)->s_sbh) | 
|  | #define SB_JOURNAL(s) (REISERFS_SB(s)->s_journal) | 
|  | #define SB_JOURNAL_1st_RESERVED_BLOCK(s) (SB_JOURNAL(s)->j_1st_reserved_block) | 
|  | #define SB_JOURNAL_LEN_FREE(s) (SB_JOURNAL(s)->j_journal_len_free) | 
|  | #define SB_AP_BITMAP(s) (REISERFS_SB(s)->s_ap_bitmap) | 
|  |  | 
|  | #define SB_DISK_JOURNAL_HEAD(s) (SB_JOURNAL(s)->j_header_bh->) | 
|  |  | 
|  | #define reiserfs_is_journal_aborted(journal) (unlikely (__reiserfs_is_journal_aborted (journal))) | 
|  | static inline int __reiserfs_is_journal_aborted(struct reiserfs_journal | 
|  | *journal) | 
|  | { | 
|  | return test_bit(J_ABORTED, &journal->j_state); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Locking primitives. The write lock is a per superblock | 
|  | * special mutex that has properties close to the Big Kernel Lock | 
|  | * which was used in the previous locking scheme. | 
|  | */ | 
|  | void reiserfs_write_lock(struct super_block *s); | 
|  | void reiserfs_write_unlock(struct super_block *s); | 
|  | int __must_check reiserfs_write_unlock_nested(struct super_block *s); | 
|  | void reiserfs_write_lock_nested(struct super_block *s, int depth); | 
|  |  | 
|  | #ifdef CONFIG_REISERFS_CHECK | 
|  | void reiserfs_lock_check_recursive(struct super_block *s); | 
|  | #else | 
|  | static inline void reiserfs_lock_check_recursive(struct super_block *s) { } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Several mutexes depend on the write lock. | 
|  | * However sometimes we want to relax the write lock while we hold | 
|  | * these mutexes, according to the release/reacquire on schedule() | 
|  | * properties of the Bkl that were used. | 
|  | * Reiserfs performances and locking were based on this scheme. | 
|  | * Now that the write lock is a mutex and not the bkl anymore, doing so | 
|  | * may result in a deadlock: | 
|  | * | 
|  | * A acquire write_lock | 
|  | * A acquire j_commit_mutex | 
|  | * A release write_lock and wait for something | 
|  | * B acquire write_lock | 
|  | * B can't acquire j_commit_mutex and sleep | 
|  | * A can't acquire write lock anymore | 
|  | * deadlock | 
|  | * | 
|  | * What we do here is avoiding such deadlock by playing the same game | 
|  | * than the Bkl: if we can't acquire a mutex that depends on the write lock, | 
|  | * we release the write lock, wait a bit and then retry. | 
|  | * | 
|  | * The mutexes concerned by this hack are: | 
|  | * - The commit mutex of a journal list | 
|  | * - The flush mutex | 
|  | * - The journal lock | 
|  | * - The inode mutex | 
|  | */ | 
|  | static inline void reiserfs_mutex_lock_safe(struct mutex *m, | 
|  | struct super_block *s) | 
|  | { | 
|  | int depth; | 
|  |  | 
|  | depth = reiserfs_write_unlock_nested(s); | 
|  | mutex_lock(m); | 
|  | reiserfs_write_lock_nested(s, depth); | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | reiserfs_mutex_lock_nested_safe(struct mutex *m, unsigned int subclass, | 
|  | struct super_block *s) | 
|  | { | 
|  | int depth; | 
|  |  | 
|  | depth = reiserfs_write_unlock_nested(s); | 
|  | mutex_lock_nested(m, subclass); | 
|  | reiserfs_write_lock_nested(s, depth); | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | reiserfs_down_read_safe(struct rw_semaphore *sem, struct super_block *s) | 
|  | { | 
|  | int depth; | 
|  | depth = reiserfs_write_unlock_nested(s); | 
|  | down_read(sem); | 
|  | reiserfs_write_lock_nested(s, depth); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When we schedule, we usually want to also release the write lock, | 
|  | * according to the previous bkl based locking scheme of reiserfs. | 
|  | */ | 
|  | static inline void reiserfs_cond_resched(struct super_block *s) | 
|  | { | 
|  | if (need_resched()) { | 
|  | int depth; | 
|  |  | 
|  | depth = reiserfs_write_unlock_nested(s); | 
|  | schedule(); | 
|  | reiserfs_write_lock_nested(s, depth); | 
|  | } | 
|  | } | 
|  |  | 
|  | struct fid; | 
|  |  | 
|  | /* | 
|  | * in reading the #defines, it may help to understand that they employ | 
|  | *  the following abbreviations: | 
|  | * | 
|  | *  B = Buffer | 
|  | *  I = Item header | 
|  | *  H = Height within the tree (should be changed to LEV) | 
|  | *  N = Number of the item in the node | 
|  | *  STAT = stat data | 
|  | *  DEH = Directory Entry Header | 
|  | *  EC = Entry Count | 
|  | *  E = Entry number | 
|  | *  UL = Unsigned Long | 
|  | *  BLKH = BLocK Header | 
|  | *  UNFM = UNForMatted node | 
|  | *  DC = Disk Child | 
|  | *  P = Path | 
|  | * | 
|  | *  These #defines are named by concatenating these abbreviations, | 
|  | *  where first comes the arguments, and last comes the return value, | 
|  | *  of the macro. | 
|  | */ | 
|  |  | 
|  | #define USE_INODE_GENERATION_COUNTER | 
|  |  | 
|  | #define REISERFS_PREALLOCATE | 
|  | #define DISPLACE_NEW_PACKING_LOCALITIES | 
|  | #define PREALLOCATION_SIZE 9 | 
|  |  | 
|  | /* n must be power of 2 */ | 
|  | #define _ROUND_UP(x,n) (((x)+(n)-1u) & ~((n)-1u)) | 
|  |  | 
|  | /* | 
|  | * to be ok for alpha and others we have to align structures to 8 byte | 
|  | * boundary. | 
|  | * FIXME: do not change 4 by anything else: there is code which relies on that | 
|  | */ | 
|  | #define ROUND_UP(x) _ROUND_UP(x,8LL) | 
|  |  | 
|  | /* | 
|  | * debug levels.  Right now, CONFIG_REISERFS_CHECK means print all debug | 
|  | * messages. | 
|  | */ | 
|  | #define REISERFS_DEBUG_CODE 5	/* extra messages to help find/debug errors */ | 
|  |  | 
|  | void __reiserfs_warning(struct super_block *s, const char *id, | 
|  | const char *func, const char *fmt, ...); | 
|  | #define reiserfs_warning(s, id, fmt, args...) \ | 
|  | __reiserfs_warning(s, id, __func__, fmt, ##args) | 
|  | /* assertions handling */ | 
|  |  | 
|  | /* always check a condition and panic if it's false. */ | 
|  | #define __RASSERT(cond, scond, format, args...)			\ | 
|  | do {									\ | 
|  | if (!(cond))							\ | 
|  | reiserfs_panic(NULL, "assertion failure", "(" #cond ") at " \ | 
|  | __FILE__ ":%i:%s: " format "\n",		\ | 
|  | __LINE__, __func__ , ##args);		\ | 
|  | } while (0) | 
|  |  | 
|  | #define RASSERT(cond, format, args...) __RASSERT(cond, #cond, format, ##args) | 
|  |  | 
|  | #if defined( CONFIG_REISERFS_CHECK ) | 
|  | #define RFALSE(cond, format, args...) __RASSERT(!(cond), "!(" #cond ")", format, ##args) | 
|  | #else | 
|  | #define RFALSE( cond, format, args... ) do {;} while( 0 ) | 
|  | #endif | 
|  |  | 
|  | #define CONSTF __attribute_const__ | 
|  | /* | 
|  | * Disk Data Structures | 
|  | */ | 
|  |  | 
|  | /*************************************************************************** | 
|  | *                             SUPER BLOCK                                 * | 
|  | ***************************************************************************/ | 
|  |  | 
|  | /* | 
|  | * Structure of super block on disk, a version of which in RAM is often | 
|  | * accessed as REISERFS_SB(s)->s_rs. The version in RAM is part of a larger | 
|  | * structure containing fields never written to disk. | 
|  | */ | 
|  | #define UNSET_HASH 0	/* Detect hash on disk */ | 
|  | #define TEA_HASH  1 | 
|  | #define YURA_HASH 2 | 
|  | #define R5_HASH   3 | 
|  | #define DEFAULT_HASH R5_HASH | 
|  |  | 
|  | struct journal_params { | 
|  | /* where does journal start from on its * device */ | 
|  | __le32 jp_journal_1st_block; | 
|  |  | 
|  | /* journal device st_rdev */ | 
|  | __le32 jp_journal_dev; | 
|  |  | 
|  | /* size of the journal */ | 
|  | __le32 jp_journal_size; | 
|  |  | 
|  | /* max number of blocks in a transaction. */ | 
|  | __le32 jp_journal_trans_max; | 
|  |  | 
|  | /* | 
|  | * random value made on fs creation | 
|  | * (this was sb_journal_block_count) | 
|  | */ | 
|  | __le32 jp_journal_magic; | 
|  |  | 
|  | /* max number of blocks to batch into a trans */ | 
|  | __le32 jp_journal_max_batch; | 
|  |  | 
|  | /* in seconds, how old can an async  commit be */ | 
|  | __le32 jp_journal_max_commit_age; | 
|  |  | 
|  | /* in seconds, how old can a transaction be */ | 
|  | __le32 jp_journal_max_trans_age; | 
|  | }; | 
|  |  | 
|  | /* this is the super from 3.5.X, where X >= 10 */ | 
|  | struct reiserfs_super_block_v1 { | 
|  | __le32 s_block_count;	/* blocks count         */ | 
|  | __le32 s_free_blocks;	/* free blocks count    */ | 
|  | __le32 s_root_block;	/* root block number    */ | 
|  | struct journal_params s_journal; | 
|  | __le16 s_blocksize;	/* block size */ | 
|  |  | 
|  | /* max size of object id array, see get_objectid() commentary  */ | 
|  | __le16 s_oid_maxsize; | 
|  | __le16 s_oid_cursize;	/* current size of object id array */ | 
|  |  | 
|  | /* this is set to 1 when filesystem was umounted, to 2 - when not */ | 
|  | __le16 s_umount_state; | 
|  |  | 
|  | /* | 
|  | * reiserfs magic string indicates that file system is reiserfs: | 
|  | * "ReIsErFs" or "ReIsEr2Fs" or "ReIsEr3Fs" | 
|  | */ | 
|  | char s_magic[10]; | 
|  |  | 
|  | /* | 
|  | * it is set to used by fsck to mark which | 
|  | * phase of rebuilding is done | 
|  | */ | 
|  | __le16 s_fs_state; | 
|  | /* | 
|  | * indicate, what hash function is being use | 
|  | * to sort names in a directory | 
|  | */ | 
|  | __le32 s_hash_function_code; | 
|  | __le16 s_tree_height;	/* height of disk tree */ | 
|  |  | 
|  | /* | 
|  | * amount of bitmap blocks needed to address | 
|  | * each block of file system | 
|  | */ | 
|  | __le16 s_bmap_nr; | 
|  |  | 
|  | /* | 
|  | * this field is only reliable on filesystem with non-standard journal | 
|  | */ | 
|  | __le16 s_version; | 
|  |  | 
|  | /* | 
|  | * size in blocks of journal area on main device, we need to | 
|  | * keep after making fs with non-standard journal | 
|  | */ | 
|  | __le16 s_reserved_for_journal; | 
|  | } __attribute__ ((__packed__)); | 
|  |  | 
|  | #define SB_SIZE_V1 (sizeof(struct reiserfs_super_block_v1)) | 
|  |  | 
|  | /* this is the on disk super block */ | 
|  | struct reiserfs_super_block { | 
|  | struct reiserfs_super_block_v1 s_v1; | 
|  | __le32 s_inode_generation; | 
|  |  | 
|  | /* Right now used only by inode-attributes, if enabled */ | 
|  | __le32 s_flags; | 
|  |  | 
|  | unsigned char s_uuid[16];	/* filesystem unique identifier */ | 
|  | unsigned char s_label[16];	/* filesystem volume label */ | 
|  | __le16 s_mnt_count;		/* Count of mounts since last fsck */ | 
|  | __le16 s_max_mnt_count;		/* Maximum mounts before check */ | 
|  | __le32 s_lastcheck;		/* Timestamp of last fsck */ | 
|  | __le32 s_check_interval;	/* Interval between checks */ | 
|  |  | 
|  | /* | 
|  | * zero filled by mkreiserfs and reiserfs_convert_objectid_map_v1() | 
|  | * so any additions must be updated there as well. */ | 
|  | char s_unused[76]; | 
|  | } __attribute__ ((__packed__)); | 
|  |  | 
|  | #define SB_SIZE (sizeof(struct reiserfs_super_block)) | 
|  |  | 
|  | #define REISERFS_VERSION_1 0 | 
|  | #define REISERFS_VERSION_2 2 | 
|  |  | 
|  | /* on-disk super block fields converted to cpu form */ | 
|  | #define SB_DISK_SUPER_BLOCK(s) (REISERFS_SB(s)->s_rs) | 
|  | #define SB_V1_DISK_SUPER_BLOCK(s) (&(SB_DISK_SUPER_BLOCK(s)->s_v1)) | 
|  | #define SB_BLOCKSIZE(s) \ | 
|  | le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_blocksize)) | 
|  | #define SB_BLOCK_COUNT(s) \ | 
|  | le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_block_count)) | 
|  | #define SB_FREE_BLOCKS(s) \ | 
|  | le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks)) | 
|  | #define SB_REISERFS_MAGIC(s) \ | 
|  | (SB_V1_DISK_SUPER_BLOCK(s)->s_magic) | 
|  | #define SB_ROOT_BLOCK(s) \ | 
|  | le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_root_block)) | 
|  | #define SB_TREE_HEIGHT(s) \ | 
|  | le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height)) | 
|  | #define SB_REISERFS_STATE(s) \ | 
|  | le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state)) | 
|  | #define SB_VERSION(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_version)) | 
|  | #define SB_BMAP_NR(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr)) | 
|  |  | 
|  | #define PUT_SB_BLOCK_COUNT(s, val) \ | 
|  | do { SB_V1_DISK_SUPER_BLOCK(s)->s_block_count = cpu_to_le32(val); } while (0) | 
|  | #define PUT_SB_FREE_BLOCKS(s, val) \ | 
|  | do { SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks = cpu_to_le32(val); } while (0) | 
|  | #define PUT_SB_ROOT_BLOCK(s, val) \ | 
|  | do { SB_V1_DISK_SUPER_BLOCK(s)->s_root_block = cpu_to_le32(val); } while (0) | 
|  | #define PUT_SB_TREE_HEIGHT(s, val) \ | 
|  | do { SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height = cpu_to_le16(val); } while (0) | 
|  | #define PUT_SB_REISERFS_STATE(s, val) \ | 
|  | do { SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state = cpu_to_le16(val); } while (0) | 
|  | #define PUT_SB_VERSION(s, val) \ | 
|  | do { SB_V1_DISK_SUPER_BLOCK(s)->s_version = cpu_to_le16(val); } while (0) | 
|  | #define PUT_SB_BMAP_NR(s, val) \ | 
|  | do { SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr = cpu_to_le16 (val); } while (0) | 
|  |  | 
|  | #define SB_ONDISK_JP(s) (&SB_V1_DISK_SUPER_BLOCK(s)->s_journal) | 
|  | #define SB_ONDISK_JOURNAL_SIZE(s) \ | 
|  | le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_size)) | 
|  | #define SB_ONDISK_JOURNAL_1st_BLOCK(s) \ | 
|  | le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_1st_block)) | 
|  | #define SB_ONDISK_JOURNAL_DEVICE(s) \ | 
|  | le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_dev)) | 
|  | #define SB_ONDISK_RESERVED_FOR_JOURNAL(s) \ | 
|  | le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_reserved_for_journal)) | 
|  |  | 
|  | #define is_block_in_log_or_reserved_area(s, block) \ | 
|  | block >= SB_JOURNAL_1st_RESERVED_BLOCK(s) \ | 
|  | && block < SB_JOURNAL_1st_RESERVED_BLOCK(s) +  \ | 
|  | ((!is_reiserfs_jr(SB_DISK_SUPER_BLOCK(s)) ? \ | 
|  | SB_ONDISK_JOURNAL_SIZE(s) + 1 : SB_ONDISK_RESERVED_FOR_JOURNAL(s))) | 
|  |  | 
|  | int is_reiserfs_3_5(struct reiserfs_super_block *rs); | 
|  | int is_reiserfs_3_6(struct reiserfs_super_block *rs); | 
|  | int is_reiserfs_jr(struct reiserfs_super_block *rs); | 
|  |  | 
|  | /* | 
|  | * ReiserFS leaves the first 64k unused, so that partition labels have | 
|  | * enough space.  If someone wants to write a fancy bootloader that | 
|  | * needs more than 64k, let us know, and this will be increased in size. | 
|  | * This number must be larger than than the largest block size on any | 
|  | * platform, or code will break.  -Hans | 
|  | */ | 
|  | #define REISERFS_DISK_OFFSET_IN_BYTES (64 * 1024) | 
|  | #define REISERFS_FIRST_BLOCK unused_define | 
|  | #define REISERFS_JOURNAL_OFFSET_IN_BYTES REISERFS_DISK_OFFSET_IN_BYTES | 
|  |  | 
|  | /* the spot for the super in versions 3.5 - 3.5.10 (inclusive) */ | 
|  | #define REISERFS_OLD_DISK_OFFSET_IN_BYTES (8 * 1024) | 
|  |  | 
|  | /* reiserfs internal error code (used by search_by_key and fix_nodes)) */ | 
|  | #define CARRY_ON      0 | 
|  | #define REPEAT_SEARCH -1 | 
|  | #define IO_ERROR      -2 | 
|  | #define NO_DISK_SPACE -3 | 
|  | #define NO_BALANCING_NEEDED  (-4) | 
|  | #define NO_MORE_UNUSED_CONTIGUOUS_BLOCKS (-5) | 
|  | #define QUOTA_EXCEEDED -6 | 
|  |  | 
|  | typedef __u32 b_blocknr_t; | 
|  | typedef __le32 unp_t; | 
|  |  | 
|  | struct unfm_nodeinfo { | 
|  | unp_t unfm_nodenum; | 
|  | unsigned short unfm_freespace; | 
|  | }; | 
|  |  | 
|  | /* there are two formats of keys: 3.5 and 3.6 */ | 
|  | #define KEY_FORMAT_3_5 0 | 
|  | #define KEY_FORMAT_3_6 1 | 
|  |  | 
|  | /* there are two stat datas */ | 
|  | #define STAT_DATA_V1 0 | 
|  | #define STAT_DATA_V2 1 | 
|  |  | 
|  | static inline struct reiserfs_inode_info *REISERFS_I(const struct inode *inode) | 
|  | { | 
|  | return container_of(inode, struct reiserfs_inode_info, vfs_inode); | 
|  | } | 
|  |  | 
|  | static inline struct reiserfs_sb_info *REISERFS_SB(const struct super_block *sb) | 
|  | { | 
|  | return sb->s_fs_info; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Don't trust REISERFS_SB(sb)->s_bmap_nr, it's a u16 | 
|  | * which overflows on large file systems. | 
|  | */ | 
|  | static inline __u32 reiserfs_bmap_count(struct super_block *sb) | 
|  | { | 
|  | return (SB_BLOCK_COUNT(sb) - 1) / (sb->s_blocksize * 8) + 1; | 
|  | } | 
|  |  | 
|  | static inline int bmap_would_wrap(unsigned bmap_nr) | 
|  | { | 
|  | return bmap_nr > ((1LL << 16) - 1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * this says about version of key of all items (but stat data) the | 
|  | * object consists of | 
|  | */ | 
|  | #define get_inode_item_key_version( inode )                                    \ | 
|  | ((REISERFS_I(inode)->i_flags & i_item_key_version_mask) ? KEY_FORMAT_3_6 : KEY_FORMAT_3_5) | 
|  |  | 
|  | #define set_inode_item_key_version( inode, version )                           \ | 
|  | ({ if((version)==KEY_FORMAT_3_6)                                      \ | 
|  | REISERFS_I(inode)->i_flags |= i_item_key_version_mask;      \ | 
|  | else                                                               \ | 
|  | REISERFS_I(inode)->i_flags &= ~i_item_key_version_mask; }) | 
|  |  | 
|  | #define get_inode_sd_version(inode)                                            \ | 
|  | ((REISERFS_I(inode)->i_flags & i_stat_data_version_mask) ? STAT_DATA_V2 : STAT_DATA_V1) | 
|  |  | 
|  | #define set_inode_sd_version(inode, version)                                   \ | 
|  | ({ if((version)==STAT_DATA_V2)                                        \ | 
|  | REISERFS_I(inode)->i_flags |= i_stat_data_version_mask;     \ | 
|  | else                                                               \ | 
|  | REISERFS_I(inode)->i_flags &= ~i_stat_data_version_mask; }) | 
|  |  | 
|  | /* | 
|  | * This is an aggressive tail suppression policy, I am hoping it | 
|  | * improves our benchmarks. The principle behind it is that percentage | 
|  | * space saving is what matters, not absolute space saving.  This is | 
|  | * non-intuitive, but it helps to understand it if you consider that the | 
|  | * cost to access 4 blocks is not much more than the cost to access 1 | 
|  | * block, if you have to do a seek and rotate.  A tail risks a | 
|  | * non-linear disk access that is significant as a percentage of total | 
|  | * time cost for a 4 block file and saves an amount of space that is | 
|  | * less significant as a percentage of space, or so goes the hypothesis. | 
|  | * -Hans | 
|  | */ | 
|  | #define STORE_TAIL_IN_UNFM_S1(n_file_size,n_tail_size,n_block_size) \ | 
|  | (\ | 
|  | (!(n_tail_size)) || \ | 
|  | (((n_tail_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) || \ | 
|  | ( (n_file_size) >= (n_block_size) * 4 ) || \ | 
|  | ( ( (n_file_size) >= (n_block_size) * 3 ) && \ | 
|  | ( (n_tail_size) >=   (MAX_DIRECT_ITEM_LEN(n_block_size))/4) ) || \ | 
|  | ( ( (n_file_size) >= (n_block_size) * 2 ) && \ | 
|  | ( (n_tail_size) >=   (MAX_DIRECT_ITEM_LEN(n_block_size))/2) ) || \ | 
|  | ( ( (n_file_size) >= (n_block_size) ) && \ | 
|  | ( (n_tail_size) >=   (MAX_DIRECT_ITEM_LEN(n_block_size) * 3)/4) ) ) \ | 
|  | ) | 
|  |  | 
|  | /* | 
|  | * Another strategy for tails, this one means only create a tail if all the | 
|  | * file would fit into one DIRECT item. | 
|  | * Primary intention for this one is to increase performance by decreasing | 
|  | * seeking. | 
|  | */ | 
|  | #define STORE_TAIL_IN_UNFM_S2(n_file_size,n_tail_size,n_block_size) \ | 
|  | (\ | 
|  | (!(n_tail_size)) || \ | 
|  | (((n_file_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) ) \ | 
|  | ) | 
|  |  | 
|  | /* | 
|  | * values for s_umount_state field | 
|  | */ | 
|  | #define REISERFS_VALID_FS    1 | 
|  | #define REISERFS_ERROR_FS    2 | 
|  |  | 
|  | /* | 
|  | * there are 5 item types currently | 
|  | */ | 
|  | #define TYPE_STAT_DATA 0 | 
|  | #define TYPE_INDIRECT 1 | 
|  | #define TYPE_DIRECT 2 | 
|  | #define TYPE_DIRENTRY 3 | 
|  | #define TYPE_MAXTYPE 3 | 
|  | #define TYPE_ANY 15		/* FIXME: comment is required */ | 
|  |  | 
|  | /*************************************************************************** | 
|  | *                       KEY & ITEM HEAD                                   * | 
|  | ***************************************************************************/ | 
|  |  | 
|  | /* * directories use this key as well as old files */ | 
|  | struct offset_v1 { | 
|  | __le32 k_offset; | 
|  | __le32 k_uniqueness; | 
|  | } __attribute__ ((__packed__)); | 
|  |  | 
|  | struct offset_v2 { | 
|  | __le64 v; | 
|  | } __attribute__ ((__packed__)); | 
|  |  | 
|  | static inline __u16 offset_v2_k_type(const struct offset_v2 *v2) | 
|  | { | 
|  | __u8 type = le64_to_cpu(v2->v) >> 60; | 
|  | return (type <= TYPE_MAXTYPE) ? type : TYPE_ANY; | 
|  | } | 
|  |  | 
|  | static inline void set_offset_v2_k_type(struct offset_v2 *v2, int type) | 
|  | { | 
|  | v2->v = | 
|  | (v2->v & cpu_to_le64(~0ULL >> 4)) | cpu_to_le64((__u64) type << 60); | 
|  | } | 
|  |  | 
|  | static inline loff_t offset_v2_k_offset(const struct offset_v2 *v2) | 
|  | { | 
|  | return le64_to_cpu(v2->v) & (~0ULL >> 4); | 
|  | } | 
|  |  | 
|  | static inline void set_offset_v2_k_offset(struct offset_v2 *v2, loff_t offset) | 
|  | { | 
|  | offset &= (~0ULL >> 4); | 
|  | v2->v = (v2->v & cpu_to_le64(15ULL << 60)) | cpu_to_le64(offset); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Key of an item determines its location in the S+tree, and | 
|  | * is composed of 4 components | 
|  | */ | 
|  | struct reiserfs_key { | 
|  | /* packing locality: by default parent directory object id */ | 
|  | __le32 k_dir_id; | 
|  |  | 
|  | __le32 k_objectid;	/* object identifier */ | 
|  | union { | 
|  | struct offset_v1 k_offset_v1; | 
|  | struct offset_v2 k_offset_v2; | 
|  | } __attribute__ ((__packed__)) u; | 
|  | } __attribute__ ((__packed__)); | 
|  |  | 
|  | struct in_core_key { | 
|  | /* packing locality: by default parent directory object id */ | 
|  | __u32 k_dir_id; | 
|  | __u32 k_objectid;	/* object identifier */ | 
|  | __u64 k_offset; | 
|  | __u8 k_type; | 
|  | }; | 
|  |  | 
|  | struct cpu_key { | 
|  | struct in_core_key on_disk_key; | 
|  | int version; | 
|  | /* 3 in all cases but direct2indirect and indirect2direct conversion */ | 
|  | int key_length; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Our function for comparing keys can compare keys of different | 
|  | * lengths.  It takes as a parameter the length of the keys it is to | 
|  | * compare.  These defines are used in determining what is to be passed | 
|  | * to it as that parameter. | 
|  | */ | 
|  | #define REISERFS_FULL_KEY_LEN     4 | 
|  | #define REISERFS_SHORT_KEY_LEN    2 | 
|  |  | 
|  | /* The result of the key compare */ | 
|  | #define FIRST_GREATER 1 | 
|  | #define SECOND_GREATER -1 | 
|  | #define KEYS_IDENTICAL 0 | 
|  | #define KEY_FOUND 1 | 
|  | #define KEY_NOT_FOUND 0 | 
|  |  | 
|  | #define KEY_SIZE (sizeof(struct reiserfs_key)) | 
|  | #define SHORT_KEY_SIZE (sizeof (__u32) + sizeof (__u32)) | 
|  |  | 
|  | /* return values for search_by_key and clones */ | 
|  | #define ITEM_FOUND 1 | 
|  | #define ITEM_NOT_FOUND 0 | 
|  | #define ENTRY_FOUND 1 | 
|  | #define ENTRY_NOT_FOUND 0 | 
|  | #define DIRECTORY_NOT_FOUND -1 | 
|  | #define REGULAR_FILE_FOUND -2 | 
|  | #define DIRECTORY_FOUND -3 | 
|  | #define BYTE_FOUND 1 | 
|  | #define BYTE_NOT_FOUND 0 | 
|  | #define FILE_NOT_FOUND -1 | 
|  |  | 
|  | #define POSITION_FOUND 1 | 
|  | #define POSITION_NOT_FOUND 0 | 
|  |  | 
|  | /* return values for reiserfs_find_entry and search_by_entry_key */ | 
|  | #define NAME_FOUND 1 | 
|  | #define NAME_NOT_FOUND 0 | 
|  | #define GOTO_PREVIOUS_ITEM 2 | 
|  | #define NAME_FOUND_INVISIBLE 3 | 
|  |  | 
|  | /* | 
|  | * Everything in the filesystem is stored as a set of items.  The | 
|  | * item head contains the key of the item, its free space (for | 
|  | * indirect items) and specifies the location of the item itself | 
|  | * within the block. | 
|  | */ | 
|  |  | 
|  | struct item_head { | 
|  | /* | 
|  | * Everything in the tree is found by searching for it based on | 
|  | * its key. | 
|  | */ | 
|  | struct reiserfs_key ih_key; | 
|  | union { | 
|  | /* | 
|  | * The free space in the last unformatted node of an | 
|  | * indirect item if this is an indirect item.  This | 
|  | * equals 0xFFFF iff this is a direct item or stat data | 
|  | * item. Note that the key, not this field, is used to | 
|  | * determine the item type, and thus which field this | 
|  | * union contains. | 
|  | */ | 
|  | __le16 ih_free_space_reserved; | 
|  |  | 
|  | /* | 
|  | * Iff this is a directory item, this field equals the | 
|  | * number of directory entries in the directory item. | 
|  | */ | 
|  | __le16 ih_entry_count; | 
|  | } __attribute__ ((__packed__)) u; | 
|  | __le16 ih_item_len;	/* total size of the item body */ | 
|  |  | 
|  | /* an offset to the item body within the block */ | 
|  | __le16 ih_item_location; | 
|  |  | 
|  | /* | 
|  | * 0 for all old items, 2 for new ones. Highest bit is set by fsck | 
|  | * temporary, cleaned after all done | 
|  | */ | 
|  | __le16 ih_version; | 
|  | } __attribute__ ((__packed__)); | 
|  | /* size of item header     */ | 
|  | #define IH_SIZE (sizeof(struct item_head)) | 
|  |  | 
|  | #define ih_free_space(ih)            le16_to_cpu((ih)->u.ih_free_space_reserved) | 
|  | #define ih_version(ih)               le16_to_cpu((ih)->ih_version) | 
|  | #define ih_entry_count(ih)           le16_to_cpu((ih)->u.ih_entry_count) | 
|  | #define ih_location(ih)              le16_to_cpu((ih)->ih_item_location) | 
|  | #define ih_item_len(ih)              le16_to_cpu((ih)->ih_item_len) | 
|  |  | 
|  | #define put_ih_free_space(ih, val)   do { (ih)->u.ih_free_space_reserved = cpu_to_le16(val); } while(0) | 
|  | #define put_ih_version(ih, val)      do { (ih)->ih_version = cpu_to_le16(val); } while (0) | 
|  | #define put_ih_entry_count(ih, val)  do { (ih)->u.ih_entry_count = cpu_to_le16(val); } while (0) | 
|  | #define put_ih_location(ih, val)     do { (ih)->ih_item_location = cpu_to_le16(val); } while (0) | 
|  | #define put_ih_item_len(ih, val)     do { (ih)->ih_item_len = cpu_to_le16(val); } while (0) | 
|  |  | 
|  | #define unreachable_item(ih) (ih_version(ih) & (1 << 15)) | 
|  |  | 
|  | #define get_ih_free_space(ih) (ih_version (ih) == KEY_FORMAT_3_6 ? 0 : ih_free_space (ih)) | 
|  | #define set_ih_free_space(ih,val) put_ih_free_space((ih), ((ih_version(ih) == KEY_FORMAT_3_6) ? 0 : (val))) | 
|  |  | 
|  | /* | 
|  | * these operate on indirect items, where you've got an array of ints | 
|  | * at a possibly unaligned location.  These are a noop on ia32 | 
|  | * | 
|  | * p is the array of __u32, i is the index into the array, v is the value | 
|  | * to store there. | 
|  | */ | 
|  | #define get_block_num(p, i) get_unaligned_le32((p) + (i)) | 
|  | #define put_block_num(p, i, v) put_unaligned_le32((v), (p) + (i)) | 
|  |  | 
|  | /* * in old version uniqueness field shows key type */ | 
|  | #define V1_SD_UNIQUENESS 0 | 
|  | #define V1_INDIRECT_UNIQUENESS 0xfffffffe | 
|  | #define V1_DIRECT_UNIQUENESS 0xffffffff | 
|  | #define V1_DIRENTRY_UNIQUENESS 500 | 
|  | #define V1_ANY_UNIQUENESS 555	/* FIXME: comment is required */ | 
|  |  | 
|  | /* here are conversion routines */ | 
|  | static inline int uniqueness2type(__u32 uniqueness) CONSTF; | 
|  | static inline int uniqueness2type(__u32 uniqueness) | 
|  | { | 
|  | switch ((int)uniqueness) { | 
|  | case V1_SD_UNIQUENESS: | 
|  | return TYPE_STAT_DATA; | 
|  | case V1_INDIRECT_UNIQUENESS: | 
|  | return TYPE_INDIRECT; | 
|  | case V1_DIRECT_UNIQUENESS: | 
|  | return TYPE_DIRECT; | 
|  | case V1_DIRENTRY_UNIQUENESS: | 
|  | return TYPE_DIRENTRY; | 
|  | case V1_ANY_UNIQUENESS: | 
|  | default: | 
|  | return TYPE_ANY; | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline __u32 type2uniqueness(int type) CONSTF; | 
|  | static inline __u32 type2uniqueness(int type) | 
|  | { | 
|  | switch (type) { | 
|  | case TYPE_STAT_DATA: | 
|  | return V1_SD_UNIQUENESS; | 
|  | case TYPE_INDIRECT: | 
|  | return V1_INDIRECT_UNIQUENESS; | 
|  | case TYPE_DIRECT: | 
|  | return V1_DIRECT_UNIQUENESS; | 
|  | case TYPE_DIRENTRY: | 
|  | return V1_DIRENTRY_UNIQUENESS; | 
|  | case TYPE_ANY: | 
|  | default: | 
|  | return V1_ANY_UNIQUENESS; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * key is pointer to on disk key which is stored in le, result is cpu, | 
|  | * there is no way to get version of object from key, so, provide | 
|  | * version to these defines | 
|  | */ | 
|  | static inline loff_t le_key_k_offset(int version, | 
|  | const struct reiserfs_key *key) | 
|  | { | 
|  | return (version == KEY_FORMAT_3_5) ? | 
|  | le32_to_cpu(key->u.k_offset_v1.k_offset) : | 
|  | offset_v2_k_offset(&(key->u.k_offset_v2)); | 
|  | } | 
|  |  | 
|  | static inline loff_t le_ih_k_offset(const struct item_head *ih) | 
|  | { | 
|  | return le_key_k_offset(ih_version(ih), &(ih->ih_key)); | 
|  | } | 
|  |  | 
|  | static inline loff_t le_key_k_type(int version, const struct reiserfs_key *key) | 
|  | { | 
|  | if (version == KEY_FORMAT_3_5) { | 
|  | loff_t val = le32_to_cpu(key->u.k_offset_v1.k_uniqueness); | 
|  | return uniqueness2type(val); | 
|  | } else | 
|  | return offset_v2_k_type(&(key->u.k_offset_v2)); | 
|  | } | 
|  |  | 
|  | static inline loff_t le_ih_k_type(const struct item_head *ih) | 
|  | { | 
|  | return le_key_k_type(ih_version(ih), &(ih->ih_key)); | 
|  | } | 
|  |  | 
|  | static inline void set_le_key_k_offset(int version, struct reiserfs_key *key, | 
|  | loff_t offset) | 
|  | { | 
|  | if (version == KEY_FORMAT_3_5) | 
|  | key->u.k_offset_v1.k_offset = cpu_to_le32(offset); | 
|  | else | 
|  | set_offset_v2_k_offset(&key->u.k_offset_v2, offset); | 
|  | } | 
|  |  | 
|  | static inline void add_le_key_k_offset(int version, struct reiserfs_key *key, | 
|  | loff_t offset) | 
|  | { | 
|  | set_le_key_k_offset(version, key, | 
|  | le_key_k_offset(version, key) + offset); | 
|  | } | 
|  |  | 
|  | static inline void add_le_ih_k_offset(struct item_head *ih, loff_t offset) | 
|  | { | 
|  | add_le_key_k_offset(ih_version(ih), &(ih->ih_key), offset); | 
|  | } | 
|  |  | 
|  | static inline void set_le_ih_k_offset(struct item_head *ih, loff_t offset) | 
|  | { | 
|  | set_le_key_k_offset(ih_version(ih), &(ih->ih_key), offset); | 
|  | } | 
|  |  | 
|  | static inline void set_le_key_k_type(int version, struct reiserfs_key *key, | 
|  | int type) | 
|  | { | 
|  | if (version == KEY_FORMAT_3_5) { | 
|  | type = type2uniqueness(type); | 
|  | key->u.k_offset_v1.k_uniqueness = cpu_to_le32(type); | 
|  | } else | 
|  | set_offset_v2_k_type(&key->u.k_offset_v2, type); | 
|  | } | 
|  |  | 
|  | static inline void set_le_ih_k_type(struct item_head *ih, int type) | 
|  | { | 
|  | set_le_key_k_type(ih_version(ih), &(ih->ih_key), type); | 
|  | } | 
|  |  | 
|  | static inline int is_direntry_le_key(int version, struct reiserfs_key *key) | 
|  | { | 
|  | return le_key_k_type(version, key) == TYPE_DIRENTRY; | 
|  | } | 
|  |  | 
|  | static inline int is_direct_le_key(int version, struct reiserfs_key *key) | 
|  | { | 
|  | return le_key_k_type(version, key) == TYPE_DIRECT; | 
|  | } | 
|  |  | 
|  | static inline int is_indirect_le_key(int version, struct reiserfs_key *key) | 
|  | { | 
|  | return le_key_k_type(version, key) == TYPE_INDIRECT; | 
|  | } | 
|  |  | 
|  | static inline int is_statdata_le_key(int version, struct reiserfs_key *key) | 
|  | { | 
|  | return le_key_k_type(version, key) == TYPE_STAT_DATA; | 
|  | } | 
|  |  | 
|  | /* item header has version.  */ | 
|  | static inline int is_direntry_le_ih(struct item_head *ih) | 
|  | { | 
|  | return is_direntry_le_key(ih_version(ih), &ih->ih_key); | 
|  | } | 
|  |  | 
|  | static inline int is_direct_le_ih(struct item_head *ih) | 
|  | { | 
|  | return is_direct_le_key(ih_version(ih), &ih->ih_key); | 
|  | } | 
|  |  | 
|  | static inline int is_indirect_le_ih(struct item_head *ih) | 
|  | { | 
|  | return is_indirect_le_key(ih_version(ih), &ih->ih_key); | 
|  | } | 
|  |  | 
|  | static inline int is_statdata_le_ih(struct item_head *ih) | 
|  | { | 
|  | return is_statdata_le_key(ih_version(ih), &ih->ih_key); | 
|  | } | 
|  |  | 
|  | /* key is pointer to cpu key, result is cpu */ | 
|  | static inline loff_t cpu_key_k_offset(const struct cpu_key *key) | 
|  | { | 
|  | return key->on_disk_key.k_offset; | 
|  | } | 
|  |  | 
|  | static inline loff_t cpu_key_k_type(const struct cpu_key *key) | 
|  | { | 
|  | return key->on_disk_key.k_type; | 
|  | } | 
|  |  | 
|  | static inline void set_cpu_key_k_offset(struct cpu_key *key, loff_t offset) | 
|  | { | 
|  | key->on_disk_key.k_offset = offset; | 
|  | } | 
|  |  | 
|  | static inline void set_cpu_key_k_type(struct cpu_key *key, int type) | 
|  | { | 
|  | key->on_disk_key.k_type = type; | 
|  | } | 
|  |  | 
|  | static inline void cpu_key_k_offset_dec(struct cpu_key *key) | 
|  | { | 
|  | key->on_disk_key.k_offset--; | 
|  | } | 
|  |  | 
|  | #define is_direntry_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRENTRY) | 
|  | #define is_direct_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRECT) | 
|  | #define is_indirect_cpu_key(key) (cpu_key_k_type (key) == TYPE_INDIRECT) | 
|  | #define is_statdata_cpu_key(key) (cpu_key_k_type (key) == TYPE_STAT_DATA) | 
|  |  | 
|  | /* are these used ? */ | 
|  | #define is_direntry_cpu_ih(ih) (is_direntry_cpu_key (&((ih)->ih_key))) | 
|  | #define is_direct_cpu_ih(ih) (is_direct_cpu_key (&((ih)->ih_key))) | 
|  | #define is_indirect_cpu_ih(ih) (is_indirect_cpu_key (&((ih)->ih_key))) | 
|  | #define is_statdata_cpu_ih(ih) (is_statdata_cpu_key (&((ih)->ih_key))) | 
|  |  | 
|  | #define I_K_KEY_IN_ITEM(ih, key, n_blocksize) \ | 
|  | (!COMP_SHORT_KEYS(ih, key) && \ | 
|  | I_OFF_BYTE_IN_ITEM(ih, k_offset(key), n_blocksize)) | 
|  |  | 
|  | /* maximal length of item */ | 
|  | #define MAX_ITEM_LEN(block_size) (block_size - BLKH_SIZE - IH_SIZE) | 
|  | #define MIN_ITEM_LEN 1 | 
|  |  | 
|  | /* object identifier for root dir */ | 
|  | #define REISERFS_ROOT_OBJECTID 2 | 
|  | #define REISERFS_ROOT_PARENT_OBJECTID 1 | 
|  |  | 
|  | extern struct reiserfs_key root_key; | 
|  |  | 
|  | /* | 
|  | * Picture represents a leaf of the S+tree | 
|  | *  ______________________________________________________ | 
|  | * |      |  Array of     |                   |           | | 
|  | * |Block |  Object-Item  |      F r e e      |  Objects- | | 
|  | * | head |  Headers      |     S p a c e     |   Items   | | 
|  | * |______|_______________|___________________|___________| | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Header of a disk block.  More precisely, header of a formatted leaf | 
|  | * or internal node, and not the header of an unformatted node. | 
|  | */ | 
|  | struct block_head { | 
|  | __le16 blk_level;	/* Level of a block in the tree. */ | 
|  | __le16 blk_nr_item;	/* Number of keys/items in a block. */ | 
|  | __le16 blk_free_space;	/* Block free space in bytes. */ | 
|  | __le16 blk_reserved; | 
|  | /* dump this in v4/planA */ | 
|  |  | 
|  | /* kept only for compatibility */ | 
|  | struct reiserfs_key blk_right_delim_key; | 
|  | }; | 
|  |  | 
|  | #define BLKH_SIZE                     (sizeof(struct block_head)) | 
|  | #define blkh_level(p_blkh)            (le16_to_cpu((p_blkh)->blk_level)) | 
|  | #define blkh_nr_item(p_blkh)          (le16_to_cpu((p_blkh)->blk_nr_item)) | 
|  | #define blkh_free_space(p_blkh)       (le16_to_cpu((p_blkh)->blk_free_space)) | 
|  | #define blkh_reserved(p_blkh)         (le16_to_cpu((p_blkh)->blk_reserved)) | 
|  | #define set_blkh_level(p_blkh,val)    ((p_blkh)->blk_level = cpu_to_le16(val)) | 
|  | #define set_blkh_nr_item(p_blkh,val)  ((p_blkh)->blk_nr_item = cpu_to_le16(val)) | 
|  | #define set_blkh_free_space(p_blkh,val) ((p_blkh)->blk_free_space = cpu_to_le16(val)) | 
|  | #define set_blkh_reserved(p_blkh,val) ((p_blkh)->blk_reserved = cpu_to_le16(val)) | 
|  | #define blkh_right_delim_key(p_blkh)  ((p_blkh)->blk_right_delim_key) | 
|  | #define set_blkh_right_delim_key(p_blkh,val)  ((p_blkh)->blk_right_delim_key = val) | 
|  |  | 
|  | /* values for blk_level field of the struct block_head */ | 
|  |  | 
|  | /* | 
|  | * When node gets removed from the tree its blk_level is set to FREE_LEVEL. | 
|  | * It is then  used to see whether the node is still in the tree | 
|  | */ | 
|  | #define FREE_LEVEL 0 | 
|  |  | 
|  | #define DISK_LEAF_NODE_LEVEL  1	/* Leaf node level. */ | 
|  |  | 
|  | /* | 
|  | * Given the buffer head of a formatted node, resolve to the | 
|  | * block head of that node. | 
|  | */ | 
|  | #define B_BLK_HEAD(bh)			((struct block_head *)((bh)->b_data)) | 
|  | /* Number of items that are in buffer. */ | 
|  | #define B_NR_ITEMS(bh)			(blkh_nr_item(B_BLK_HEAD(bh))) | 
|  | #define B_LEVEL(bh)			(blkh_level(B_BLK_HEAD(bh))) | 
|  | #define B_FREE_SPACE(bh)		(blkh_free_space(B_BLK_HEAD(bh))) | 
|  |  | 
|  | #define PUT_B_NR_ITEMS(bh, val)		do { set_blkh_nr_item(B_BLK_HEAD(bh), val); } while (0) | 
|  | #define PUT_B_LEVEL(bh, val)		do { set_blkh_level(B_BLK_HEAD(bh), val); } while (0) | 
|  | #define PUT_B_FREE_SPACE(bh, val)	do { set_blkh_free_space(B_BLK_HEAD(bh), val); } while (0) | 
|  |  | 
|  | /* Get right delimiting key. -- little endian */ | 
|  | #define B_PRIGHT_DELIM_KEY(bh)		(&(blk_right_delim_key(B_BLK_HEAD(bh)))) | 
|  |  | 
|  | /* Does the buffer contain a disk leaf. */ | 
|  | #define B_IS_ITEMS_LEVEL(bh)		(B_LEVEL(bh) == DISK_LEAF_NODE_LEVEL) | 
|  |  | 
|  | /* Does the buffer contain a disk internal node */ | 
|  | #define B_IS_KEYS_LEVEL(bh)      (B_LEVEL(bh) > DISK_LEAF_NODE_LEVEL \ | 
|  | && B_LEVEL(bh) <= MAX_HEIGHT) | 
|  |  | 
|  | /*************************************************************************** | 
|  | *                             STAT DATA                                   * | 
|  | ***************************************************************************/ | 
|  |  | 
|  | /* | 
|  | * old stat data is 32 bytes long. We are going to distinguish new one by | 
|  | * different size | 
|  | */ | 
|  | struct stat_data_v1 { | 
|  | __le16 sd_mode;		/* file type, permissions */ | 
|  | __le16 sd_nlink;	/* number of hard links */ | 
|  | __le16 sd_uid;		/* owner */ | 
|  | __le16 sd_gid;		/* group */ | 
|  | __le32 sd_size;		/* file size */ | 
|  | __le32 sd_atime;	/* time of last access */ | 
|  | __le32 sd_mtime;	/* time file was last modified  */ | 
|  |  | 
|  | /* | 
|  | * time inode (stat data) was last changed | 
|  | * (except changes to sd_atime and sd_mtime) | 
|  | */ | 
|  | __le32 sd_ctime; | 
|  | union { | 
|  | __le32 sd_rdev; | 
|  | __le32 sd_blocks;	/* number of blocks file uses */ | 
|  | } __attribute__ ((__packed__)) u; | 
|  |  | 
|  | /* | 
|  | * first byte of file which is stored in a direct item: except that if | 
|  | * it equals 1 it is a symlink and if it equals ~(__u32)0 there is no | 
|  | * direct item.  The existence of this field really grates on me. | 
|  | * Let's replace it with a macro based on sd_size and our tail | 
|  | * suppression policy.  Someday.  -Hans | 
|  | */ | 
|  | __le32 sd_first_direct_byte; | 
|  | } __attribute__ ((__packed__)); | 
|  |  | 
|  | #define SD_V1_SIZE              (sizeof(struct stat_data_v1)) | 
|  | #define stat_data_v1(ih)        (ih_version (ih) == KEY_FORMAT_3_5) | 
|  | #define sd_v1_mode(sdp)         (le16_to_cpu((sdp)->sd_mode)) | 
|  | #define set_sd_v1_mode(sdp,v)   ((sdp)->sd_mode = cpu_to_le16(v)) | 
|  | #define sd_v1_nlink(sdp)        (le16_to_cpu((sdp)->sd_nlink)) | 
|  | #define set_sd_v1_nlink(sdp,v)  ((sdp)->sd_nlink = cpu_to_le16(v)) | 
|  | #define sd_v1_uid(sdp)          (le16_to_cpu((sdp)->sd_uid)) | 
|  | #define set_sd_v1_uid(sdp,v)    ((sdp)->sd_uid = cpu_to_le16(v)) | 
|  | #define sd_v1_gid(sdp)          (le16_to_cpu((sdp)->sd_gid)) | 
|  | #define set_sd_v1_gid(sdp,v)    ((sdp)->sd_gid = cpu_to_le16(v)) | 
|  | #define sd_v1_size(sdp)         (le32_to_cpu((sdp)->sd_size)) | 
|  | #define set_sd_v1_size(sdp,v)   ((sdp)->sd_size = cpu_to_le32(v)) | 
|  | #define sd_v1_atime(sdp)        (le32_to_cpu((sdp)->sd_atime)) | 
|  | #define set_sd_v1_atime(sdp,v)  ((sdp)->sd_atime = cpu_to_le32(v)) | 
|  | #define sd_v1_mtime(sdp)        (le32_to_cpu((sdp)->sd_mtime)) | 
|  | #define set_sd_v1_mtime(sdp,v)  ((sdp)->sd_mtime = cpu_to_le32(v)) | 
|  | #define sd_v1_ctime(sdp)        (le32_to_cpu((sdp)->sd_ctime)) | 
|  | #define set_sd_v1_ctime(sdp,v)  ((sdp)->sd_ctime = cpu_to_le32(v)) | 
|  | #define sd_v1_rdev(sdp)         (le32_to_cpu((sdp)->u.sd_rdev)) | 
|  | #define set_sd_v1_rdev(sdp,v)   ((sdp)->u.sd_rdev = cpu_to_le32(v)) | 
|  | #define sd_v1_blocks(sdp)       (le32_to_cpu((sdp)->u.sd_blocks)) | 
|  | #define set_sd_v1_blocks(sdp,v) ((sdp)->u.sd_blocks = cpu_to_le32(v)) | 
|  | #define sd_v1_first_direct_byte(sdp) \ | 
|  | (le32_to_cpu((sdp)->sd_first_direct_byte)) | 
|  | #define set_sd_v1_first_direct_byte(sdp,v) \ | 
|  | ((sdp)->sd_first_direct_byte = cpu_to_le32(v)) | 
|  |  | 
|  | /* inode flags stored in sd_attrs (nee sd_reserved) */ | 
|  |  | 
|  | /* | 
|  | * we want common flags to have the same values as in ext2, | 
|  | * so chattr(1) will work without problems | 
|  | */ | 
|  | #define REISERFS_IMMUTABLE_FL FS_IMMUTABLE_FL | 
|  | #define REISERFS_APPEND_FL    FS_APPEND_FL | 
|  | #define REISERFS_SYNC_FL      FS_SYNC_FL | 
|  | #define REISERFS_NOATIME_FL   FS_NOATIME_FL | 
|  | #define REISERFS_NODUMP_FL    FS_NODUMP_FL | 
|  | #define REISERFS_SECRM_FL     FS_SECRM_FL | 
|  | #define REISERFS_UNRM_FL      FS_UNRM_FL | 
|  | #define REISERFS_COMPR_FL     FS_COMPR_FL | 
|  | #define REISERFS_NOTAIL_FL    FS_NOTAIL_FL | 
|  |  | 
|  | /* persistent flags that file inherits from the parent directory */ | 
|  | #define REISERFS_INHERIT_MASK ( REISERFS_IMMUTABLE_FL |	\ | 
|  | REISERFS_SYNC_FL |	\ | 
|  | REISERFS_NOATIME_FL |	\ | 
|  | REISERFS_NODUMP_FL |	\ | 
|  | REISERFS_SECRM_FL |	\ | 
|  | REISERFS_COMPR_FL |	\ | 
|  | REISERFS_NOTAIL_FL ) | 
|  |  | 
|  | /* | 
|  | * Stat Data on disk (reiserfs version of UFS disk inode minus the | 
|  | * address blocks) | 
|  | */ | 
|  | struct stat_data { | 
|  | __le16 sd_mode;		/* file type, permissions */ | 
|  | __le16 sd_attrs;	/* persistent inode flags */ | 
|  | __le32 sd_nlink;	/* number of hard links */ | 
|  | __le64 sd_size;		/* file size */ | 
|  | __le32 sd_uid;		/* owner */ | 
|  | __le32 sd_gid;		/* group */ | 
|  | __le32 sd_atime;	/* time of last access */ | 
|  | __le32 sd_mtime;	/* time file was last modified  */ | 
|  |  | 
|  | /* | 
|  | * time inode (stat data) was last changed | 
|  | * (except changes to sd_atime and sd_mtime) | 
|  | */ | 
|  | __le32 sd_ctime; | 
|  | __le32 sd_blocks; | 
|  | union { | 
|  | __le32 sd_rdev; | 
|  | __le32 sd_generation; | 
|  | } __attribute__ ((__packed__)) u; | 
|  | } __attribute__ ((__packed__)); | 
|  |  | 
|  | /* this is 44 bytes long */ | 
|  | #define SD_SIZE (sizeof(struct stat_data)) | 
|  | #define SD_V2_SIZE              SD_SIZE | 
|  | #define stat_data_v2(ih)        (ih_version (ih) == KEY_FORMAT_3_6) | 
|  | #define sd_v2_mode(sdp)         (le16_to_cpu((sdp)->sd_mode)) | 
|  | #define set_sd_v2_mode(sdp,v)   ((sdp)->sd_mode = cpu_to_le16(v)) | 
|  | /* sd_reserved */ | 
|  | /* set_sd_reserved */ | 
|  | #define sd_v2_nlink(sdp)        (le32_to_cpu((sdp)->sd_nlink)) | 
|  | #define set_sd_v2_nlink(sdp,v)  ((sdp)->sd_nlink = cpu_to_le32(v)) | 
|  | #define sd_v2_size(sdp)         (le64_to_cpu((sdp)->sd_size)) | 
|  | #define set_sd_v2_size(sdp,v)   ((sdp)->sd_size = cpu_to_le64(v)) | 
|  | #define sd_v2_uid(sdp)          (le32_to_cpu((sdp)->sd_uid)) | 
|  | #define set_sd_v2_uid(sdp,v)    ((sdp)->sd_uid = cpu_to_le32(v)) | 
|  | #define sd_v2_gid(sdp)          (le32_to_cpu((sdp)->sd_gid)) | 
|  | #define set_sd_v2_gid(sdp,v)    ((sdp)->sd_gid = cpu_to_le32(v)) | 
|  | #define sd_v2_atime(sdp)        (le32_to_cpu((sdp)->sd_atime)) | 
|  | #define set_sd_v2_atime(sdp,v)  ((sdp)->sd_atime = cpu_to_le32(v)) | 
|  | #define sd_v2_mtime(sdp)        (le32_to_cpu((sdp)->sd_mtime)) | 
|  | #define set_sd_v2_mtime(sdp,v)  ((sdp)->sd_mtime = cpu_to_le32(v)) | 
|  | #define sd_v2_ctime(sdp)        (le32_to_cpu((sdp)->sd_ctime)) | 
|  | #define set_sd_v2_ctime(sdp,v)  ((sdp)->sd_ctime = cpu_to_le32(v)) | 
|  | #define sd_v2_blocks(sdp)       (le32_to_cpu((sdp)->sd_blocks)) | 
|  | #define set_sd_v2_blocks(sdp,v) ((sdp)->sd_blocks = cpu_to_le32(v)) | 
|  | #define sd_v2_rdev(sdp)         (le32_to_cpu((sdp)->u.sd_rdev)) | 
|  | #define set_sd_v2_rdev(sdp,v)   ((sdp)->u.sd_rdev = cpu_to_le32(v)) | 
|  | #define sd_v2_generation(sdp)   (le32_to_cpu((sdp)->u.sd_generation)) | 
|  | #define set_sd_v2_generation(sdp,v) ((sdp)->u.sd_generation = cpu_to_le32(v)) | 
|  | #define sd_v2_attrs(sdp)         (le16_to_cpu((sdp)->sd_attrs)) | 
|  | #define set_sd_v2_attrs(sdp,v)   ((sdp)->sd_attrs = cpu_to_le16(v)) | 
|  |  | 
|  | /*************************************************************************** | 
|  | *                      DIRECTORY STRUCTURE                                * | 
|  | ***************************************************************************/ | 
|  | /* | 
|  | * Picture represents the structure of directory items | 
|  | * ________________________________________________ | 
|  | * |  Array of     |   |     |        |       |   | | 
|  | * | directory     |N-1| N-2 | ....   |   1st |0th| | 
|  | * | entry headers |   |     |        |       |   | | 
|  | * |_______________|___|_____|________|_______|___| | 
|  | *                  <----   directory entries         ------> | 
|  | * | 
|  | * First directory item has k_offset component 1. We store "." and ".." | 
|  | * in one item, always, we never split "." and ".." into differing | 
|  | * items.  This makes, among other things, the code for removing | 
|  | * directories simpler. | 
|  | */ | 
|  | #define SD_OFFSET  0 | 
|  | #define SD_UNIQUENESS 0 | 
|  | #define DOT_OFFSET 1 | 
|  | #define DOT_DOT_OFFSET 2 | 
|  | #define DIRENTRY_UNIQUENESS 500 | 
|  |  | 
|  | #define FIRST_ITEM_OFFSET 1 | 
|  |  | 
|  | /* | 
|  | * Q: How to get key of object pointed to by entry from entry? | 
|  | * | 
|  | * A: Each directory entry has its header. This header has deh_dir_id | 
|  | *    and deh_objectid fields, those are key of object, entry points to | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * NOT IMPLEMENTED: | 
|  | * Directory will someday contain stat data of object | 
|  | */ | 
|  |  | 
|  | struct reiserfs_de_head { | 
|  | __le32 deh_offset;	/* third component of the directory entry key */ | 
|  |  | 
|  | /* | 
|  | * objectid of the parent directory of the object, that is referenced | 
|  | * by directory entry | 
|  | */ | 
|  | __le32 deh_dir_id; | 
|  |  | 
|  | /* objectid of the object, that is referenced by directory entry */ | 
|  | __le32 deh_objectid; | 
|  | __le16 deh_location;	/* offset of name in the whole item */ | 
|  |  | 
|  | /* | 
|  | * whether 1) entry contains stat data (for future), and | 
|  | * 2) whether entry is hidden (unlinked) | 
|  | */ | 
|  | __le16 deh_state; | 
|  | } __attribute__ ((__packed__)); | 
|  | #define DEH_SIZE                  sizeof(struct reiserfs_de_head) | 
|  | #define deh_offset(p_deh)         (le32_to_cpu((p_deh)->deh_offset)) | 
|  | #define deh_dir_id(p_deh)         (le32_to_cpu((p_deh)->deh_dir_id)) | 
|  | #define deh_objectid(p_deh)       (le32_to_cpu((p_deh)->deh_objectid)) | 
|  | #define deh_location(p_deh)       (le16_to_cpu((p_deh)->deh_location)) | 
|  | #define deh_state(p_deh)          (le16_to_cpu((p_deh)->deh_state)) | 
|  |  | 
|  | #define put_deh_offset(p_deh,v)   ((p_deh)->deh_offset = cpu_to_le32((v))) | 
|  | #define put_deh_dir_id(p_deh,v)   ((p_deh)->deh_dir_id = cpu_to_le32((v))) | 
|  | #define put_deh_objectid(p_deh,v) ((p_deh)->deh_objectid = cpu_to_le32((v))) | 
|  | #define put_deh_location(p_deh,v) ((p_deh)->deh_location = cpu_to_le16((v))) | 
|  | #define put_deh_state(p_deh,v)    ((p_deh)->deh_state = cpu_to_le16((v))) | 
|  |  | 
|  | /* empty directory contains two entries "." and ".." and their headers */ | 
|  | #define EMPTY_DIR_SIZE \ | 
|  | (DEH_SIZE * 2 + ROUND_UP (strlen (".")) + ROUND_UP (strlen (".."))) | 
|  |  | 
|  | /* old format directories have this size when empty */ | 
|  | #define EMPTY_DIR_SIZE_V1 (DEH_SIZE * 2 + 3) | 
|  |  | 
|  | #define DEH_Statdata 0		/* not used now */ | 
|  | #define DEH_Visible 2 | 
|  |  | 
|  | /* 64 bit systems (and the S/390) need to be aligned explicitly -jdm */ | 
|  | #if BITS_PER_LONG == 64 || defined(__s390__) || defined(__hppa__) | 
|  | #   define ADDR_UNALIGNED_BITS  (3) | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * These are only used to manipulate deh_state. | 
|  | * Because of this, we'll use the ext2_ bit routines, | 
|  | * since they are little endian | 
|  | */ | 
|  | #ifdef ADDR_UNALIGNED_BITS | 
|  |  | 
|  | #   define aligned_address(addr)           ((void *)((long)(addr) & ~((1UL << ADDR_UNALIGNED_BITS) - 1))) | 
|  | #   define unaligned_offset(addr)          (((int)((long)(addr) & ((1 << ADDR_UNALIGNED_BITS) - 1))) << 3) | 
|  |  | 
|  | #   define set_bit_unaligned(nr, addr)	\ | 
|  | __test_and_set_bit_le((nr) + unaligned_offset(addr), aligned_address(addr)) | 
|  | #   define clear_bit_unaligned(nr, addr)	\ | 
|  | __test_and_clear_bit_le((nr) + unaligned_offset(addr), aligned_address(addr)) | 
|  | #   define test_bit_unaligned(nr, addr)	\ | 
|  | test_bit_le((nr) + unaligned_offset(addr), aligned_address(addr)) | 
|  |  | 
|  | #else | 
|  |  | 
|  | #   define set_bit_unaligned(nr, addr)	__test_and_set_bit_le(nr, addr) | 
|  | #   define clear_bit_unaligned(nr, addr)	__test_and_clear_bit_le(nr, addr) | 
|  | #   define test_bit_unaligned(nr, addr)	test_bit_le(nr, addr) | 
|  |  | 
|  | #endif | 
|  |  | 
|  | #define mark_de_with_sd(deh)        set_bit_unaligned (DEH_Statdata, &((deh)->deh_state)) | 
|  | #define mark_de_without_sd(deh)     clear_bit_unaligned (DEH_Statdata, &((deh)->deh_state)) | 
|  | #define mark_de_visible(deh)	    set_bit_unaligned (DEH_Visible, &((deh)->deh_state)) | 
|  | #define mark_de_hidden(deh)	    clear_bit_unaligned (DEH_Visible, &((deh)->deh_state)) | 
|  |  | 
|  | #define de_with_sd(deh)		    test_bit_unaligned (DEH_Statdata, &((deh)->deh_state)) | 
|  | #define de_visible(deh)	    	    test_bit_unaligned (DEH_Visible, &((deh)->deh_state)) | 
|  | #define de_hidden(deh)	    	    !test_bit_unaligned (DEH_Visible, &((deh)->deh_state)) | 
|  |  | 
|  | extern void make_empty_dir_item_v1(char *body, __le32 dirid, __le32 objid, | 
|  | __le32 par_dirid, __le32 par_objid); | 
|  | extern void make_empty_dir_item(char *body, __le32 dirid, __le32 objid, | 
|  | __le32 par_dirid, __le32 par_objid); | 
|  |  | 
|  | /* two entries per block (at least) */ | 
|  | #define REISERFS_MAX_NAME(block_size) 255 | 
|  |  | 
|  | /* | 
|  | * this structure is used for operations on directory entries. It is | 
|  | * not a disk structure. | 
|  | * | 
|  | * When reiserfs_find_entry or search_by_entry_key find directory | 
|  | * entry, they return filled reiserfs_dir_entry structure | 
|  | */ | 
|  | struct reiserfs_dir_entry { | 
|  | struct buffer_head *de_bh; | 
|  | int de_item_num; | 
|  | struct item_head *de_ih; | 
|  | int de_entry_num; | 
|  | struct reiserfs_de_head *de_deh; | 
|  | int de_entrylen; | 
|  | int de_namelen; | 
|  | char *de_name; | 
|  | unsigned long *de_gen_number_bit_string; | 
|  |  | 
|  | __u32 de_dir_id; | 
|  | __u32 de_objectid; | 
|  |  | 
|  | struct cpu_key de_entry_key; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * these defines are useful when a particular member of | 
|  | * a reiserfs_dir_entry is needed | 
|  | */ | 
|  |  | 
|  | /* pointer to file name, stored in entry */ | 
|  | #define B_I_DEH_ENTRY_FILE_NAME(bh, ih, deh) \ | 
|  | (ih_item_body(bh, ih) + deh_location(deh)) | 
|  |  | 
|  | /* length of name */ | 
|  | #define I_DEH_N_ENTRY_FILE_NAME_LENGTH(ih,deh,entry_num) \ | 
|  | (I_DEH_N_ENTRY_LENGTH (ih, deh, entry_num) - (de_with_sd (deh) ? SD_SIZE : 0)) | 
|  |  | 
|  | /* hash value occupies bits from 7 up to 30 */ | 
|  | #define GET_HASH_VALUE(offset) ((offset) & 0x7fffff80LL) | 
|  | /* generation number occupies 7 bits starting from 0 up to 6 */ | 
|  | #define GET_GENERATION_NUMBER(offset) ((offset) & 0x7fLL) | 
|  | #define MAX_GENERATION_NUMBER  127 | 
|  |  | 
|  | #define SET_GENERATION_NUMBER(offset,gen_number) (GET_HASH_VALUE(offset)|(gen_number)) | 
|  |  | 
|  | /* | 
|  | * Picture represents an internal node of the reiserfs tree | 
|  | *  ______________________________________________________ | 
|  | * |      |  Array of     |  Array of         |  Free     | | 
|  | * |block |    keys       |  pointers         | space     | | 
|  | * | head |      N        |      N+1          |           | | 
|  | * |______|_______________|___________________|___________| | 
|  | */ | 
|  |  | 
|  | /*************************************************************************** | 
|  | *                      DISK CHILD                                         * | 
|  | ***************************************************************************/ | 
|  | /* | 
|  | * Disk child pointer: | 
|  | * The pointer from an internal node of the tree to a node that is on disk. | 
|  | */ | 
|  | struct disk_child { | 
|  | __le32 dc_block_number;	/* Disk child's block number. */ | 
|  | __le16 dc_size;		/* Disk child's used space.   */ | 
|  | __le16 dc_reserved; | 
|  | }; | 
|  |  | 
|  | #define DC_SIZE (sizeof(struct disk_child)) | 
|  | #define dc_block_number(dc_p)	(le32_to_cpu((dc_p)->dc_block_number)) | 
|  | #define dc_size(dc_p)		(le16_to_cpu((dc_p)->dc_size)) | 
|  | #define put_dc_block_number(dc_p, val)   do { (dc_p)->dc_block_number = cpu_to_le32(val); } while(0) | 
|  | #define put_dc_size(dc_p, val)   do { (dc_p)->dc_size = cpu_to_le16(val); } while(0) | 
|  |  | 
|  | /* Get disk child by buffer header and position in the tree node. */ | 
|  | #define B_N_CHILD(bh, n_pos)  ((struct disk_child *)\ | 
|  | ((bh)->b_data + BLKH_SIZE + B_NR_ITEMS(bh) * KEY_SIZE + DC_SIZE * (n_pos))) | 
|  |  | 
|  | /* Get disk child number by buffer header and position in the tree node. */ | 
|  | #define B_N_CHILD_NUM(bh, n_pos) (dc_block_number(B_N_CHILD(bh, n_pos))) | 
|  | #define PUT_B_N_CHILD_NUM(bh, n_pos, val) \ | 
|  | (put_dc_block_number(B_N_CHILD(bh, n_pos), val)) | 
|  |  | 
|  | /* maximal value of field child_size in structure disk_child */ | 
|  | /* child size is the combined size of all items and their headers */ | 
|  | #define MAX_CHILD_SIZE(bh) ((int)( (bh)->b_size - BLKH_SIZE )) | 
|  |  | 
|  | /* amount of used space in buffer (not including block head) */ | 
|  | #define B_CHILD_SIZE(cur) (MAX_CHILD_SIZE(cur)-(B_FREE_SPACE(cur))) | 
|  |  | 
|  | /* max and min number of keys in internal node */ | 
|  | #define MAX_NR_KEY(bh) ( (MAX_CHILD_SIZE(bh)-DC_SIZE)/(KEY_SIZE+DC_SIZE) ) | 
|  | #define MIN_NR_KEY(bh)    (MAX_NR_KEY(bh)/2) | 
|  |  | 
|  | /*************************************************************************** | 
|  | *                      PATH STRUCTURES AND DEFINES                        * | 
|  | ***************************************************************************/ | 
|  |  | 
|  | /* | 
|  | * search_by_key fills up the path from the root to the leaf as it descends | 
|  | * the tree looking for the key.  It uses reiserfs_bread to try to find | 
|  | * buffers in the cache given their block number.  If it does not find | 
|  | * them in the cache it reads them from disk.  For each node search_by_key | 
|  | * finds using reiserfs_bread it then uses bin_search to look through that | 
|  | * node.  bin_search will find the position of the block_number of the next | 
|  | * node if it is looking through an internal node.  If it is looking through | 
|  | * a leaf node bin_search will find the position of the item which has key | 
|  | * either equal to given key, or which is the maximal key less than the | 
|  | * given key. | 
|  | */ | 
|  |  | 
|  | struct path_element { | 
|  | /* Pointer to the buffer at the path in the tree. */ | 
|  | struct buffer_head *pe_buffer; | 
|  | /* Position in the tree node which is placed in the buffer above. */ | 
|  | int pe_position; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * maximal height of a tree. don't change this without | 
|  | * changing JOURNAL_PER_BALANCE_CNT | 
|  | */ | 
|  | #define MAX_HEIGHT 5 | 
|  |  | 
|  | /* Must be equals MAX_HEIGHT + FIRST_PATH_ELEMENT_OFFSET */ | 
|  | #define EXTENDED_MAX_HEIGHT         7 | 
|  |  | 
|  | /* Must be equal to at least 2. */ | 
|  | #define FIRST_PATH_ELEMENT_OFFSET   2 | 
|  |  | 
|  | /* Must be equal to FIRST_PATH_ELEMENT_OFFSET - 1 */ | 
|  | #define ILLEGAL_PATH_ELEMENT_OFFSET 1 | 
|  |  | 
|  | /* this MUST be MAX_HEIGHT + 1. See about FEB below */ | 
|  | #define MAX_FEB_SIZE 6 | 
|  |  | 
|  | /* | 
|  | * We need to keep track of who the ancestors of nodes are.  When we | 
|  | * perform a search we record which nodes were visited while | 
|  | * descending the tree looking for the node we searched for. This list | 
|  | * of nodes is called the path.  This information is used while | 
|  | * performing balancing.  Note that this path information may become | 
|  | * invalid, and this means we must check it when using it to see if it | 
|  | * is still valid. You'll need to read search_by_key and the comments | 
|  | * in it, especially about decrement_counters_in_path(), to understand | 
|  | * this structure. | 
|  | * | 
|  | * Paths make the code so much harder to work with and debug.... An | 
|  | * enormous number of bugs are due to them, and trying to write or modify | 
|  | * code that uses them just makes my head hurt.  They are based on an | 
|  | * excessive effort to avoid disturbing the precious VFS code.:-( The | 
|  | * gods only know how we are going to SMP the code that uses them. | 
|  | * znodes are the way! | 
|  | */ | 
|  |  | 
|  | #define PATH_READA	0x1	/* do read ahead */ | 
|  | #define PATH_READA_BACK 0x2	/* read backwards */ | 
|  |  | 
|  | struct treepath { | 
|  | int path_length;	/* Length of the array above.   */ | 
|  | int reada; | 
|  | /* Array of the path elements.  */ | 
|  | struct path_element path_elements[EXTENDED_MAX_HEIGHT]; | 
|  | int pos_in_item; | 
|  | }; | 
|  |  | 
|  | #define pos_in_item(path) ((path)->pos_in_item) | 
|  |  | 
|  | #define INITIALIZE_PATH(var) \ | 
|  | struct treepath var = {.path_length = ILLEGAL_PATH_ELEMENT_OFFSET, .reada = 0,} | 
|  |  | 
|  | /* Get path element by path and path position. */ | 
|  | #define PATH_OFFSET_PELEMENT(path, n_offset)  ((path)->path_elements + (n_offset)) | 
|  |  | 
|  | /* Get buffer header at the path by path and path position. */ | 
|  | #define PATH_OFFSET_PBUFFER(path, n_offset)   (PATH_OFFSET_PELEMENT(path, n_offset)->pe_buffer) | 
|  |  | 
|  | /* Get position in the element at the path by path and path position. */ | 
|  | #define PATH_OFFSET_POSITION(path, n_offset) (PATH_OFFSET_PELEMENT(path, n_offset)->pe_position) | 
|  |  | 
|  | #define PATH_PLAST_BUFFER(path) (PATH_OFFSET_PBUFFER((path), (path)->path_length)) | 
|  |  | 
|  | /* | 
|  | * you know, to the person who didn't write this the macro name does not | 
|  | * at first suggest what it does.  Maybe POSITION_FROM_PATH_END? Or | 
|  | * maybe we should just focus on dumping paths... -Hans | 
|  | */ | 
|  | #define PATH_LAST_POSITION(path) (PATH_OFFSET_POSITION((path), (path)->path_length)) | 
|  |  | 
|  | /* | 
|  | * in do_balance leaf has h == 0 in contrast with path structure, | 
|  | * where root has level == 0. That is why we need these defines | 
|  | */ | 
|  |  | 
|  | /* tb->S[h] */ | 
|  | #define PATH_H_PBUFFER(path, h) \ | 
|  | PATH_OFFSET_PBUFFER(path, path->path_length - (h)) | 
|  |  | 
|  | /* tb->F[h] or tb->S[0]->b_parent */ | 
|  | #define PATH_H_PPARENT(path, h) PATH_H_PBUFFER(path, (h) + 1) | 
|  |  | 
|  | #define PATH_H_POSITION(path, h) \ | 
|  | PATH_OFFSET_POSITION(path, path->path_length - (h)) | 
|  |  | 
|  | /* tb->S[h]->b_item_order */ | 
|  | #define PATH_H_B_ITEM_ORDER(path, h) PATH_H_POSITION(path, h + 1) | 
|  |  | 
|  | #define PATH_H_PATH_OFFSET(path, n_h) ((path)->path_length - (n_h)) | 
|  |  | 
|  | static inline void *reiserfs_node_data(const struct buffer_head *bh) | 
|  | { | 
|  | return bh->b_data + sizeof(struct block_head); | 
|  | } | 
|  |  | 
|  | /* get key from internal node */ | 
|  | static inline struct reiserfs_key *internal_key(struct buffer_head *bh, | 
|  | int item_num) | 
|  | { | 
|  | struct reiserfs_key *key = reiserfs_node_data(bh); | 
|  |  | 
|  | return &key[item_num]; | 
|  | } | 
|  |  | 
|  | /* get the item header from leaf node */ | 
|  | static inline struct item_head *item_head(const struct buffer_head *bh, | 
|  | int item_num) | 
|  | { | 
|  | struct item_head *ih = reiserfs_node_data(bh); | 
|  |  | 
|  | return &ih[item_num]; | 
|  | } | 
|  |  | 
|  | /* get the key from leaf node */ | 
|  | static inline struct reiserfs_key *leaf_key(const struct buffer_head *bh, | 
|  | int item_num) | 
|  | { | 
|  | return &item_head(bh, item_num)->ih_key; | 
|  | } | 
|  |  | 
|  | static inline void *ih_item_body(const struct buffer_head *bh, | 
|  | const struct item_head *ih) | 
|  | { | 
|  | return bh->b_data + ih_location(ih); | 
|  | } | 
|  |  | 
|  | /* get item body from leaf node */ | 
|  | static inline void *item_body(const struct buffer_head *bh, int item_num) | 
|  | { | 
|  | return ih_item_body(bh, item_head(bh, item_num)); | 
|  | } | 
|  |  | 
|  | static inline struct item_head *tp_item_head(const struct treepath *path) | 
|  | { | 
|  | return item_head(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION(path)); | 
|  | } | 
|  |  | 
|  | static inline void *tp_item_body(const struct treepath *path) | 
|  | { | 
|  | return item_body(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION(path)); | 
|  | } | 
|  |  | 
|  | #define get_last_bh(path) PATH_PLAST_BUFFER(path) | 
|  | #define get_item_pos(path) PATH_LAST_POSITION(path) | 
|  | #define item_moved(ih,path) comp_items(ih, path) | 
|  | #define path_changed(ih,path) comp_items (ih, path) | 
|  |  | 
|  | /* array of the entry headers */ | 
|  | /* get item body */ | 
|  | #define B_I_DEH(bh, ih) ((struct reiserfs_de_head *)(ih_item_body(bh, ih))) | 
|  |  | 
|  | /* | 
|  | * length of the directory entry in directory item. This define | 
|  | * calculates length of i-th directory entry using directory entry | 
|  | * locations from dir entry head. When it calculates length of 0-th | 
|  | * directory entry, it uses length of whole item in place of entry | 
|  | * location of the non-existent following entry in the calculation. | 
|  | * See picture above. | 
|  | */ | 
|  | static inline int entry_length(const struct buffer_head *bh, | 
|  | const struct item_head *ih, int pos_in_item) | 
|  | { | 
|  | struct reiserfs_de_head *deh; | 
|  |  | 
|  | deh = B_I_DEH(bh, ih) + pos_in_item; | 
|  | if (pos_in_item) | 
|  | return deh_location(deh - 1) - deh_location(deh); | 
|  |  | 
|  | return ih_item_len(ih) - deh_location(deh); | 
|  | } | 
|  |  | 
|  | /*************************************************************************** | 
|  | *                       MISC                                              * | 
|  | ***************************************************************************/ | 
|  |  | 
|  | /* Size of pointer to the unformatted node. */ | 
|  | #define UNFM_P_SIZE (sizeof(unp_t)) | 
|  | #define UNFM_P_SHIFT 2 | 
|  |  | 
|  | /* in in-core inode key is stored on le form */ | 
|  | #define INODE_PKEY(inode) ((struct reiserfs_key *)(REISERFS_I(inode)->i_key)) | 
|  |  | 
|  | #define MAX_UL_INT 0xffffffff | 
|  | #define MAX_INT    0x7ffffff | 
|  | #define MAX_US_INT 0xffff | 
|  |  | 
|  | // reiserfs version 2 has max offset 60 bits. Version 1 - 32 bit offset | 
|  | static inline loff_t max_reiserfs_offset(struct inode *inode) | 
|  | { | 
|  | if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5) | 
|  | return (loff_t) U32_MAX; | 
|  |  | 
|  | return (loff_t) ((~(__u64) 0) >> 4); | 
|  | } | 
|  |  | 
|  | #define MAX_KEY_OBJECTID	MAX_UL_INT | 
|  |  | 
|  | #define MAX_B_NUM  MAX_UL_INT | 
|  | #define MAX_FC_NUM MAX_US_INT | 
|  |  | 
|  | /* the purpose is to detect overflow of an unsigned short */ | 
|  | #define REISERFS_LINK_MAX (MAX_US_INT - 1000) | 
|  |  | 
|  | /* | 
|  | * The following defines are used in reiserfs_insert_item | 
|  | * and reiserfs_append_item | 
|  | */ | 
|  | #define REISERFS_KERNEL_MEM		0	/* kernel memory mode */ | 
|  | #define REISERFS_USER_MEM		1	/* user memory mode */ | 
|  |  | 
|  | #define fs_generation(s) (REISERFS_SB(s)->s_generation_counter) | 
|  | #define get_generation(s) atomic_read (&fs_generation(s)) | 
|  | #define FILESYSTEM_CHANGED_TB(tb)  (get_generation((tb)->tb_sb) != (tb)->fs_gen) | 
|  | #define __fs_changed(gen,s) (gen != get_generation (s)) | 
|  | #define fs_changed(gen,s)		\ | 
|  | ({					\ | 
|  | reiserfs_cond_resched(s);	\ | 
|  | __fs_changed(gen, s);		\ | 
|  | }) | 
|  |  | 
|  | /*************************************************************************** | 
|  | *                  FIXATE NODES                                           * | 
|  | ***************************************************************************/ | 
|  |  | 
|  | #define VI_TYPE_LEFT_MERGEABLE 1 | 
|  | #define VI_TYPE_RIGHT_MERGEABLE 2 | 
|  |  | 
|  | /* | 
|  | * To make any changes in the tree we always first find node, that | 
|  | * contains item to be changed/deleted or place to insert a new | 
|  | * item. We call this node S. To do balancing we need to decide what | 
|  | * we will shift to left/right neighbor, or to a new node, where new | 
|  | * item will be etc. To make this analysis simpler we build virtual | 
|  | * node. Virtual node is an array of items, that will replace items of | 
|  | * node S. (For instance if we are going to delete an item, virtual | 
|  | * node does not contain it). Virtual node keeps information about | 
|  | * item sizes and types, mergeability of first and last items, sizes | 
|  | * of all entries in directory item. We use this array of items when | 
|  | * calculating what we can shift to neighbors and how many nodes we | 
|  | * have to have if we do not any shiftings, if we shift to left/right | 
|  | * neighbor or to both. | 
|  | */ | 
|  | struct virtual_item { | 
|  | int vi_index;		/* index in the array of item operations */ | 
|  | unsigned short vi_type;	/* left/right mergeability */ | 
|  |  | 
|  | /* length of item that it will have after balancing */ | 
|  | unsigned short vi_item_len; | 
|  |  | 
|  | struct item_head *vi_ih; | 
|  | const char *vi_item;	/* body of item (old or new) */ | 
|  | const void *vi_new_data;	/* 0 always but paste mode */ | 
|  | void *vi_uarea;		/* item specific area */ | 
|  | }; | 
|  |  | 
|  | struct virtual_node { | 
|  | /* this is a pointer to the free space in the buffer */ | 
|  | char *vn_free_ptr; | 
|  |  | 
|  | unsigned short vn_nr_item;	/* number of items in virtual node */ | 
|  |  | 
|  | /* | 
|  | * size of node , that node would have if it has | 
|  | * unlimited size and no balancing is performed | 
|  | */ | 
|  | short vn_size; | 
|  |  | 
|  | /* mode of balancing (paste, insert, delete, cut) */ | 
|  | short vn_mode; | 
|  |  | 
|  | short vn_affected_item_num; | 
|  | short vn_pos_in_item; | 
|  |  | 
|  | /* item header of inserted item, 0 for other modes */ | 
|  | struct item_head *vn_ins_ih; | 
|  | const void *vn_data; | 
|  |  | 
|  | /* array of items (including a new one, excluding item to be deleted) */ | 
|  | struct virtual_item *vn_vi; | 
|  | }; | 
|  |  | 
|  | /* used by directory items when creating virtual nodes */ | 
|  | struct direntry_uarea { | 
|  | int flags; | 
|  | __u16 entry_count; | 
|  | __u16 entry_sizes[1]; | 
|  | } __attribute__ ((__packed__)); | 
|  |  | 
|  | /*************************************************************************** | 
|  | *                  TREE BALANCE                                           * | 
|  | ***************************************************************************/ | 
|  |  | 
|  | /* | 
|  | * This temporary structure is used in tree balance algorithms, and | 
|  | * constructed as we go to the extent that its various parts are | 
|  | * needed.  It contains arrays of nodes that can potentially be | 
|  | * involved in the balancing of node S, and parameters that define how | 
|  | * each of the nodes must be balanced.  Note that in these algorithms | 
|  | * for balancing the worst case is to need to balance the current node | 
|  | * S and the left and right neighbors and all of their parents plus | 
|  | * create a new node.  We implement S1 balancing for the leaf nodes | 
|  | * and S0 balancing for the internal nodes (S1 and S0 are defined in | 
|  | * our papers.) | 
|  | */ | 
|  |  | 
|  | /* size of the array of buffers to free at end of do_balance */ | 
|  | #define MAX_FREE_BLOCK 7 | 
|  |  | 
|  | /* maximum number of FEB blocknrs on a single level */ | 
|  | #define MAX_AMOUNT_NEEDED 2 | 
|  |  | 
|  | /* someday somebody will prefix every field in this struct with tb_ */ | 
|  | struct tree_balance { | 
|  | int tb_mode; | 
|  | int need_balance_dirty; | 
|  | struct super_block *tb_sb; | 
|  | struct reiserfs_transaction_handle *transaction_handle; | 
|  | struct treepath *tb_path; | 
|  |  | 
|  | /* array of left neighbors of nodes in the path */ | 
|  | struct buffer_head *L[MAX_HEIGHT]; | 
|  |  | 
|  | /* array of right neighbors of nodes in the path */ | 
|  | struct buffer_head *R[MAX_HEIGHT]; | 
|  |  | 
|  | /* array of fathers of the left neighbors */ | 
|  | struct buffer_head *FL[MAX_HEIGHT]; | 
|  |  | 
|  | /* array of fathers of the right neighbors */ | 
|  | struct buffer_head *FR[MAX_HEIGHT]; | 
|  | /* array of common parents of center node and its left neighbor */ | 
|  | struct buffer_head *CFL[MAX_HEIGHT]; | 
|  |  | 
|  | /* array of common parents of center node and its right neighbor */ | 
|  | struct buffer_head *CFR[MAX_HEIGHT]; | 
|  |  | 
|  | /* | 
|  | * array of empty buffers. Number of buffers in array equals | 
|  | * cur_blknum. | 
|  | */ | 
|  | struct buffer_head *FEB[MAX_FEB_SIZE]; | 
|  | struct buffer_head *used[MAX_FEB_SIZE]; | 
|  | struct buffer_head *thrown[MAX_FEB_SIZE]; | 
|  |  | 
|  | /* | 
|  | * array of number of items which must be shifted to the left in | 
|  | * order to balance the current node; for leaves includes item that | 
|  | * will be partially shifted; for internal nodes, it is the number | 
|  | * of child pointers rather than items. It includes the new item | 
|  | * being created. The code sometimes subtracts one to get the | 
|  | * number of wholly shifted items for other purposes. | 
|  | */ | 
|  | int lnum[MAX_HEIGHT]; | 
|  |  | 
|  | /* substitute right for left in comment above */ | 
|  | int rnum[MAX_HEIGHT]; | 
|  |  | 
|  | /* | 
|  | * array indexed by height h mapping the key delimiting L[h] and | 
|  | * S[h] to its item number within the node CFL[h] | 
|  | */ | 
|  | int lkey[MAX_HEIGHT]; | 
|  |  | 
|  | /* substitute r for l in comment above */ | 
|  | int rkey[MAX_HEIGHT]; | 
|  |  | 
|  | /* | 
|  | * the number of bytes by we are trying to add or remove from | 
|  | * S[h]. A negative value means removing. | 
|  | */ | 
|  | int insert_size[MAX_HEIGHT]; | 
|  |  | 
|  | /* | 
|  | * number of nodes that will replace node S[h] after balancing | 
|  | * on the level h of the tree.  If 0 then S is being deleted, | 
|  | * if 1 then S is remaining and no new nodes are being created, | 
|  | * if 2 or 3 then 1 or 2 new nodes is being created | 
|  | */ | 
|  | int blknum[MAX_HEIGHT]; | 
|  |  | 
|  | /* fields that are used only for balancing leaves of the tree */ | 
|  |  | 
|  | /* number of empty blocks having been already allocated */ | 
|  | int cur_blknum; | 
|  |  | 
|  | /* number of items that fall into left most node when S[0] splits */ | 
|  | int s0num; | 
|  |  | 
|  | /* | 
|  | * number of bytes which can flow to the left neighbor from the left | 
|  | * most liquid item that cannot be shifted from S[0] entirely | 
|  | * if -1 then nothing will be partially shifted | 
|  | */ | 
|  | int lbytes; | 
|  |  | 
|  | /* | 
|  | * number of bytes which will flow to the right neighbor from the right | 
|  | * most liquid item that cannot be shifted from S[0] entirely | 
|  | * if -1 then nothing will be partially shifted | 
|  | */ | 
|  | int rbytes; | 
|  |  | 
|  |  | 
|  | /* | 
|  | * index into the array of item headers in | 
|  | * S[0] of the affected item | 
|  | */ | 
|  | int item_pos; | 
|  |  | 
|  | /* new nodes allocated to hold what could not fit into S */ | 
|  | struct buffer_head *S_new[2]; | 
|  |  | 
|  | /* | 
|  | * number of items that will be placed into nodes in S_new | 
|  | * when S[0] splits | 
|  | */ | 
|  | int snum[2]; | 
|  |  | 
|  | /* | 
|  | * number of bytes which flow to nodes in S_new when S[0] splits | 
|  | * note: if S[0] splits into 3 nodes, then items do not need to be cut | 
|  | */ | 
|  | int sbytes[2]; | 
|  |  | 
|  | int pos_in_item; | 
|  | int zeroes_num; | 
|  |  | 
|  | /* | 
|  | * buffers which are to be freed after do_balance finishes | 
|  | * by unfix_nodes | 
|  | */ | 
|  | struct buffer_head *buf_to_free[MAX_FREE_BLOCK]; | 
|  |  | 
|  | /* | 
|  | * kmalloced memory. Used to create virtual node and keep | 
|  | * map of dirtied bitmap blocks | 
|  | */ | 
|  | char *vn_buf; | 
|  |  | 
|  | int vn_buf_size;	/* size of the vn_buf */ | 
|  |  | 
|  | /* VN starts after bitmap of bitmap blocks */ | 
|  | struct virtual_node *tb_vn; | 
|  |  | 
|  | /* | 
|  | * saved value of `reiserfs_generation' counter see | 
|  | * FILESYSTEM_CHANGED() macro in reiserfs_fs.h | 
|  | */ | 
|  | int fs_gen; | 
|  |  | 
|  | #ifdef DISPLACE_NEW_PACKING_LOCALITIES | 
|  | /* | 
|  | * key pointer, to pass to block allocator or | 
|  | * another low-level subsystem | 
|  | */ | 
|  | struct in_core_key key; | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | /* These are modes of balancing */ | 
|  |  | 
|  | /* When inserting an item. */ | 
|  | #define M_INSERT	'i' | 
|  | /* | 
|  | * When inserting into (directories only) or appending onto an already | 
|  | * existent item. | 
|  | */ | 
|  | #define M_PASTE		'p' | 
|  | /* When deleting an item. */ | 
|  | #define M_DELETE	'd' | 
|  | /* When truncating an item or removing an entry from a (directory) item. */ | 
|  | #define M_CUT		'c' | 
|  |  | 
|  | /* used when balancing on leaf level skipped (in reiserfsck) */ | 
|  | #define M_INTERNAL	'n' | 
|  |  | 
|  | /* | 
|  | * When further balancing is not needed, then do_balance does not need | 
|  | * to be called. | 
|  | */ | 
|  | #define M_SKIP_BALANCING		's' | 
|  | #define M_CONVERT	'v' | 
|  |  | 
|  | /* modes of leaf_move_items */ | 
|  | #define LEAF_FROM_S_TO_L 0 | 
|  | #define LEAF_FROM_S_TO_R 1 | 
|  | #define LEAF_FROM_R_TO_L 2 | 
|  | #define LEAF_FROM_L_TO_R 3 | 
|  | #define LEAF_FROM_S_TO_SNEW 4 | 
|  |  | 
|  | #define FIRST_TO_LAST 0 | 
|  | #define LAST_TO_FIRST 1 | 
|  |  | 
|  | /* | 
|  | * used in do_balance for passing parent of node information that has | 
|  | * been gotten from tb struct | 
|  | */ | 
|  | struct buffer_info { | 
|  | struct tree_balance *tb; | 
|  | struct buffer_head *bi_bh; | 
|  | struct buffer_head *bi_parent; | 
|  | int bi_position; | 
|  | }; | 
|  |  | 
|  | static inline struct super_block *sb_from_tb(struct tree_balance *tb) | 
|  | { | 
|  | return tb ? tb->tb_sb : NULL; | 
|  | } | 
|  |  | 
|  | static inline struct super_block *sb_from_bi(struct buffer_info *bi) | 
|  | { | 
|  | return bi ? sb_from_tb(bi->tb) : NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * there are 4 types of items: stat data, directory item, indirect, direct. | 
|  | * +-------------------+------------+--------------+------------+ | 
|  | * |                   |  k_offset  | k_uniqueness | mergeable? | | 
|  | * +-------------------+------------+--------------+------------+ | 
|  | * |     stat data     |     0      |      0       |   no       | | 
|  | * +-------------------+------------+--------------+------------+ | 
|  | * | 1st directory item| DOT_OFFSET | DIRENTRY_ .. |   no       | | 
|  | * | non 1st directory | hash value | UNIQUENESS   |   yes      | | 
|  | * |     item          |            |              |            | | 
|  | * +-------------------+------------+--------------+------------+ | 
|  | * | indirect item     | offset + 1 |TYPE_INDIRECT |    [1]	| | 
|  | * +-------------------+------------+--------------+------------+ | 
|  | * | direct item       | offset + 1 |TYPE_DIRECT   |    [2]     | | 
|  | * +-------------------+------------+--------------+------------+ | 
|  | * | 
|  | * [1] if this is not the first indirect item of the object | 
|  | * [2] if this is not the first direct item of the object | 
|  | */ | 
|  |  | 
|  | struct item_operations { | 
|  | int (*bytes_number) (struct item_head * ih, int block_size); | 
|  | void (*decrement_key) (struct cpu_key *); | 
|  | int (*is_left_mergeable) (struct reiserfs_key * ih, | 
|  | unsigned long bsize); | 
|  | void (*print_item) (struct item_head *, char *item); | 
|  | void (*check_item) (struct item_head *, char *item); | 
|  |  | 
|  | int (*create_vi) (struct virtual_node * vn, struct virtual_item * vi, | 
|  | int is_affected, int insert_size); | 
|  | int (*check_left) (struct virtual_item * vi, int free, | 
|  | int start_skip, int end_skip); | 
|  | int (*check_right) (struct virtual_item * vi, int free); | 
|  | int (*part_size) (struct virtual_item * vi, int from, int to); | 
|  | int (*unit_num) (struct virtual_item * vi); | 
|  | void (*print_vi) (struct virtual_item * vi); | 
|  | }; | 
|  |  | 
|  | extern struct item_operations *item_ops[TYPE_ANY + 1]; | 
|  |  | 
|  | #define op_bytes_number(ih,bsize)                    item_ops[le_ih_k_type (ih)]->bytes_number (ih, bsize) | 
|  | #define op_is_left_mergeable(key,bsize)              item_ops[le_key_k_type (le_key_version (key), key)]->is_left_mergeable (key, bsize) | 
|  | #define op_print_item(ih,item)                       item_ops[le_ih_k_type (ih)]->print_item (ih, item) | 
|  | #define op_check_item(ih,item)                       item_ops[le_ih_k_type (ih)]->check_item (ih, item) | 
|  | #define op_create_vi(vn,vi,is_affected,insert_size)  item_ops[le_ih_k_type ((vi)->vi_ih)]->create_vi (vn,vi,is_affected,insert_size) | 
|  | #define op_check_left(vi,free,start_skip,end_skip) item_ops[(vi)->vi_index]->check_left (vi, free, start_skip, end_skip) | 
|  | #define op_check_right(vi,free)                      item_ops[(vi)->vi_index]->check_right (vi, free) | 
|  | #define op_part_size(vi,from,to)                     item_ops[(vi)->vi_index]->part_size (vi, from, to) | 
|  | #define op_unit_num(vi)				     item_ops[(vi)->vi_index]->unit_num (vi) | 
|  | #define op_print_vi(vi)                              item_ops[(vi)->vi_index]->print_vi (vi) | 
|  |  | 
|  | #define COMP_SHORT_KEYS comp_short_keys | 
|  |  | 
|  | /* number of blocks pointed to by the indirect item */ | 
|  | #define I_UNFM_NUM(ih)	(ih_item_len(ih) / UNFM_P_SIZE) | 
|  |  | 
|  | /* | 
|  | * the used space within the unformatted node corresponding | 
|  | * to pos within the item pointed to by ih | 
|  | */ | 
|  | #define I_POS_UNFM_SIZE(ih,pos,size) (((pos) == I_UNFM_NUM(ih) - 1 ) ? (size) - ih_free_space(ih) : (size)) | 
|  |  | 
|  | /* | 
|  | * number of bytes contained by the direct item or the | 
|  | * unformatted nodes the indirect item points to | 
|  | */ | 
|  |  | 
|  | /* following defines use reiserfs buffer header and item header */ | 
|  |  | 
|  | /* get stat-data */ | 
|  | #define B_I_STAT_DATA(bh, ih) ( (struct stat_data * )((bh)->b_data + ih_location(ih)) ) | 
|  |  | 
|  | /* this is 3976 for size==4096 */ | 
|  | #define MAX_DIRECT_ITEM_LEN(size) ((size) - BLKH_SIZE - 2*IH_SIZE - SD_SIZE - UNFM_P_SIZE) | 
|  |  | 
|  | /* | 
|  | * indirect items consist of entries which contain blocknrs, pos | 
|  | * indicates which entry, and B_I_POS_UNFM_POINTER resolves to the | 
|  | * blocknr contained by the entry pos points to | 
|  | */ | 
|  | #define B_I_POS_UNFM_POINTER(bh, ih, pos)				\ | 
|  | le32_to_cpu(*(((unp_t *)ih_item_body(bh, ih)) + (pos))) | 
|  | #define PUT_B_I_POS_UNFM_POINTER(bh, ih, pos, val)			\ | 
|  | (*(((unp_t *)ih_item_body(bh, ih)) + (pos)) = cpu_to_le32(val)) | 
|  |  | 
|  | struct reiserfs_iget_args { | 
|  | __u32 objectid; | 
|  | __u32 dirid; | 
|  | }; | 
|  |  | 
|  | /*************************************************************************** | 
|  | *                    FUNCTION DECLARATIONS                                * | 
|  | ***************************************************************************/ | 
|  |  | 
|  | #define get_journal_desc_magic(bh) (bh->b_data + bh->b_size - 12) | 
|  |  | 
|  | #define journal_trans_half(blocksize) \ | 
|  | ((blocksize - sizeof (struct reiserfs_journal_desc) + sizeof (__u32) - 12) / sizeof (__u32)) | 
|  |  | 
|  | /* journal.c see journal.c for all the comments here */ | 
|  |  | 
|  | /* first block written in a commit.  */ | 
|  | struct reiserfs_journal_desc { | 
|  | __le32 j_trans_id;	/* id of commit */ | 
|  |  | 
|  | /* length of commit. len +1 is the commit block */ | 
|  | __le32 j_len; | 
|  |  | 
|  | __le32 j_mount_id;	/* mount id of this trans */ | 
|  | __le32 j_realblock[1];	/* real locations for each block */ | 
|  | }; | 
|  |  | 
|  | #define get_desc_trans_id(d)   le32_to_cpu((d)->j_trans_id) | 
|  | #define get_desc_trans_len(d)  le32_to_cpu((d)->j_len) | 
|  | #define get_desc_mount_id(d)   le32_to_cpu((d)->j_mount_id) | 
|  |  | 
|  | #define set_desc_trans_id(d,val)       do { (d)->j_trans_id = cpu_to_le32 (val); } while (0) | 
|  | #define set_desc_trans_len(d,val)      do { (d)->j_len = cpu_to_le32 (val); } while (0) | 
|  | #define set_desc_mount_id(d,val)       do { (d)->j_mount_id = cpu_to_le32 (val); } while (0) | 
|  |  | 
|  | /* last block written in a commit */ | 
|  | struct reiserfs_journal_commit { | 
|  | __le32 j_trans_id;	/* must match j_trans_id from the desc block */ | 
|  | __le32 j_len;		/* ditto */ | 
|  | __le32 j_realblock[1];	/* real locations for each block */ | 
|  | }; | 
|  |  | 
|  | #define get_commit_trans_id(c) le32_to_cpu((c)->j_trans_id) | 
|  | #define get_commit_trans_len(c)        le32_to_cpu((c)->j_len) | 
|  | #define get_commit_mount_id(c) le32_to_cpu((c)->j_mount_id) | 
|  |  | 
|  | #define set_commit_trans_id(c,val)     do { (c)->j_trans_id = cpu_to_le32 (val); } while (0) | 
|  | #define set_commit_trans_len(c,val)    do { (c)->j_len = cpu_to_le32 (val); } while (0) | 
|  |  | 
|  | /* | 
|  | * this header block gets written whenever a transaction is considered | 
|  | * fully flushed, and is more recent than the last fully flushed transaction. | 
|  | * fully flushed means all the log blocks and all the real blocks are on | 
|  | * disk, and this transaction does not need to be replayed. | 
|  | */ | 
|  | struct reiserfs_journal_header { | 
|  | /* id of last fully flushed transaction */ | 
|  | __le32 j_last_flush_trans_id; | 
|  |  | 
|  | /* offset in the log of where to start replay after a crash */ | 
|  | __le32 j_first_unflushed_offset; | 
|  |  | 
|  | __le32 j_mount_id; | 
|  | /* 12 */ struct journal_params jh_journal; | 
|  | }; | 
|  |  | 
|  | /* biggest tunable defines are right here */ | 
|  | #define JOURNAL_BLOCK_COUNT 8192	/* number of blocks in the journal */ | 
|  |  | 
|  | /* biggest possible single transaction, don't change for now (8/3/99) */ | 
|  | #define JOURNAL_TRANS_MAX_DEFAULT 1024 | 
|  | #define JOURNAL_TRANS_MIN_DEFAULT 256 | 
|  |  | 
|  | /* | 
|  | * max blocks to batch into one transaction, | 
|  | * don't make this any bigger than 900 | 
|  | */ | 
|  | #define JOURNAL_MAX_BATCH_DEFAULT   900 | 
|  | #define JOURNAL_MIN_RATIO 2 | 
|  | #define JOURNAL_MAX_COMMIT_AGE 30 | 
|  | #define JOURNAL_MAX_TRANS_AGE 30 | 
|  | #define JOURNAL_PER_BALANCE_CNT (3 * (MAX_HEIGHT-2) + 9) | 
|  | #define JOURNAL_BLOCKS_PER_OBJECT(sb)  (JOURNAL_PER_BALANCE_CNT * 3 + \ | 
|  | 2 * (REISERFS_QUOTA_INIT_BLOCKS(sb) + \ | 
|  | REISERFS_QUOTA_TRANS_BLOCKS(sb))) | 
|  |  | 
|  | #ifdef CONFIG_QUOTA | 
|  | #define REISERFS_QUOTA_OPTS ((1 << REISERFS_USRQUOTA) | (1 << REISERFS_GRPQUOTA)) | 
|  | /* We need to update data and inode (atime) */ | 
|  | #define REISERFS_QUOTA_TRANS_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & REISERFS_QUOTA_OPTS ? 2 : 0) | 
|  | /* 1 balancing, 1 bitmap, 1 data per write + stat data update */ | 
|  | #define REISERFS_QUOTA_INIT_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & REISERFS_QUOTA_OPTS ? \ | 
|  | (DQUOT_INIT_ALLOC*(JOURNAL_PER_BALANCE_CNT+2)+DQUOT_INIT_REWRITE+1) : 0) | 
|  | /* same as with INIT */ | 
|  | #define REISERFS_QUOTA_DEL_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & REISERFS_QUOTA_OPTS ? \ | 
|  | (DQUOT_DEL_ALLOC*(JOURNAL_PER_BALANCE_CNT+2)+DQUOT_DEL_REWRITE+1) : 0) | 
|  | #else | 
|  | #define REISERFS_QUOTA_TRANS_BLOCKS(s) 0 | 
|  | #define REISERFS_QUOTA_INIT_BLOCKS(s) 0 | 
|  | #define REISERFS_QUOTA_DEL_BLOCKS(s) 0 | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * both of these can be as low as 1, or as high as you want.  The min is the | 
|  | * number of 4k bitmap nodes preallocated on mount. New nodes are allocated | 
|  | * as needed, and released when transactions are committed.  On release, if | 
|  | * the current number of nodes is > max, the node is freed, otherwise, | 
|  | * it is put on a free list for faster use later. | 
|  | */ | 
|  | #define REISERFS_MIN_BITMAP_NODES 10 | 
|  | #define REISERFS_MAX_BITMAP_NODES 100 | 
|  |  | 
|  | /* these are based on journal hash size of 8192 */ | 
|  | #define JBH_HASH_SHIFT 13 | 
|  | #define JBH_HASH_MASK 8191 | 
|  |  | 
|  | #define _jhashfn(sb,block)	\ | 
|  | (((unsigned long)sb>>L1_CACHE_SHIFT) ^ \ | 
|  | (((block)<<(JBH_HASH_SHIFT - 6)) ^ ((block) >> 13) ^ ((block) << (JBH_HASH_SHIFT - 12)))) | 
|  | #define journal_hash(t,sb,block) ((t)[_jhashfn((sb),(block)) & JBH_HASH_MASK]) | 
|  |  | 
|  | /* We need these to make journal.c code more readable */ | 
|  | #define journal_find_get_block(s, block) __find_get_block(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize) | 
|  | #define journal_getblk(s, block) __getblk(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize) | 
|  | #define journal_bread(s, block) __bread(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize) | 
|  |  | 
|  | enum reiserfs_bh_state_bits { | 
|  | BH_JDirty = BH_PrivateStart,	/* buffer is in current transaction */ | 
|  | BH_JDirty_wait, | 
|  | /* | 
|  | * disk block was taken off free list before being in a | 
|  | * finished transaction, or written to disk. Can be reused immed. | 
|  | */ | 
|  | BH_JNew, | 
|  | BH_JPrepared, | 
|  | BH_JRestore_dirty, | 
|  | BH_JTest,		/* debugging only will go away */ | 
|  | }; | 
|  |  | 
|  | BUFFER_FNS(JDirty, journaled); | 
|  | TAS_BUFFER_FNS(JDirty, journaled); | 
|  | BUFFER_FNS(JDirty_wait, journal_dirty); | 
|  | TAS_BUFFER_FNS(JDirty_wait, journal_dirty); | 
|  | BUFFER_FNS(JNew, journal_new); | 
|  | TAS_BUFFER_FNS(JNew, journal_new); | 
|  | BUFFER_FNS(JPrepared, journal_prepared); | 
|  | TAS_BUFFER_FNS(JPrepared, journal_prepared); | 
|  | BUFFER_FNS(JRestore_dirty, journal_restore_dirty); | 
|  | TAS_BUFFER_FNS(JRestore_dirty, journal_restore_dirty); | 
|  | BUFFER_FNS(JTest, journal_test); | 
|  | TAS_BUFFER_FNS(JTest, journal_test); | 
|  |  | 
|  | /* transaction handle which is passed around for all journal calls */ | 
|  | struct reiserfs_transaction_handle { | 
|  | /* | 
|  | * super for this FS when journal_begin was called. saves calls to | 
|  | * reiserfs_get_super also used by nested transactions to make | 
|  | * sure they are nesting on the right FS _must_ be first | 
|  | * in the handle | 
|  | */ | 
|  | struct super_block *t_super; | 
|  |  | 
|  | int t_refcount; | 
|  | int t_blocks_logged;	/* number of blocks this writer has logged */ | 
|  | int t_blocks_allocated;	/* number of blocks this writer allocated */ | 
|  |  | 
|  | /* sanity check, equals the current trans id */ | 
|  | unsigned int t_trans_id; | 
|  |  | 
|  | void *t_handle_save;	/* save existing current->journal_info */ | 
|  |  | 
|  | /* | 
|  | * if new block allocation occurres, that block | 
|  | * should be displaced from others | 
|  | */ | 
|  | unsigned displace_new_blocks:1; | 
|  |  | 
|  | struct list_head t_list; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * used to keep track of ordered and tail writes, attached to the buffer | 
|  | * head through b_journal_head. | 
|  | */ | 
|  | struct reiserfs_jh { | 
|  | struct reiserfs_journal_list *jl; | 
|  | struct buffer_head *bh; | 
|  | struct list_head list; | 
|  | }; | 
|  |  | 
|  | void reiserfs_free_jh(struct buffer_head *bh); | 
|  | int reiserfs_add_tail_list(struct inode *inode, struct buffer_head *bh); | 
|  | int reiserfs_add_ordered_list(struct inode *inode, struct buffer_head *bh); | 
|  | int journal_mark_dirty(struct reiserfs_transaction_handle *, | 
|  | struct buffer_head *bh); | 
|  |  | 
|  | static inline int reiserfs_file_data_log(struct inode *inode) | 
|  | { | 
|  | if (reiserfs_data_log(inode->i_sb) || | 
|  | (REISERFS_I(inode)->i_flags & i_data_log)) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int reiserfs_transaction_running(struct super_block *s) | 
|  | { | 
|  | struct reiserfs_transaction_handle *th = current->journal_info; | 
|  | if (th && th->t_super == s) | 
|  | return 1; | 
|  | if (th && th->t_super == NULL) | 
|  | BUG(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int reiserfs_transaction_free_space(struct reiserfs_transaction_handle *th) | 
|  | { | 
|  | return th->t_blocks_allocated - th->t_blocks_logged; | 
|  | } | 
|  |  | 
|  | struct reiserfs_transaction_handle *reiserfs_persistent_transaction(struct | 
|  | super_block | 
|  | *, | 
|  | int count); | 
|  | int reiserfs_end_persistent_transaction(struct reiserfs_transaction_handle *); | 
|  | void reiserfs_vfs_truncate_file(struct inode *inode); | 
|  | int reiserfs_commit_page(struct inode *inode, struct page *page, | 
|  | unsigned from, unsigned to); | 
|  | void reiserfs_flush_old_commits(struct super_block *); | 
|  | int reiserfs_commit_for_inode(struct inode *); | 
|  | int reiserfs_inode_needs_commit(struct inode *); | 
|  | void reiserfs_update_inode_transaction(struct inode *); | 
|  | void reiserfs_wait_on_write_block(struct super_block *s); | 
|  | void reiserfs_block_writes(struct reiserfs_transaction_handle *th); | 
|  | void reiserfs_allow_writes(struct super_block *s); | 
|  | void reiserfs_check_lock_depth(struct super_block *s, char *caller); | 
|  | int reiserfs_prepare_for_journal(struct super_block *, struct buffer_head *bh, | 
|  | int wait); | 
|  | void reiserfs_restore_prepared_buffer(struct super_block *, | 
|  | struct buffer_head *bh); | 
|  | int journal_init(struct super_block *, const char *j_dev_name, int old_format, | 
|  | unsigned int); | 
|  | int journal_release(struct reiserfs_transaction_handle *, struct super_block *); | 
|  | int journal_release_error(struct reiserfs_transaction_handle *, | 
|  | struct super_block *); | 
|  | int journal_end(struct reiserfs_transaction_handle *); | 
|  | int journal_end_sync(struct reiserfs_transaction_handle *); | 
|  | int journal_mark_freed(struct reiserfs_transaction_handle *, | 
|  | struct super_block *, b_blocknr_t blocknr); | 
|  | int journal_transaction_should_end(struct reiserfs_transaction_handle *, int); | 
|  | int reiserfs_in_journal(struct super_block *sb, unsigned int bmap_nr, | 
|  | int bit_nr, int searchall, b_blocknr_t *next); | 
|  | int journal_begin(struct reiserfs_transaction_handle *, | 
|  | struct super_block *sb, unsigned long); | 
|  | int journal_join_abort(struct reiserfs_transaction_handle *, | 
|  | struct super_block *sb); | 
|  | void reiserfs_abort_journal(struct super_block *sb, int errno); | 
|  | void reiserfs_abort(struct super_block *sb, int errno, const char *fmt, ...); | 
|  | int reiserfs_allocate_list_bitmaps(struct super_block *s, | 
|  | struct reiserfs_list_bitmap *, unsigned int); | 
|  |  | 
|  | void reiserfs_schedule_old_flush(struct super_block *s); | 
|  | void add_save_link(struct reiserfs_transaction_handle *th, | 
|  | struct inode *inode, int truncate); | 
|  | int remove_save_link(struct inode *inode, int truncate); | 
|  |  | 
|  | /* objectid.c */ | 
|  | __u32 reiserfs_get_unused_objectid(struct reiserfs_transaction_handle *th); | 
|  | void reiserfs_release_objectid(struct reiserfs_transaction_handle *th, | 
|  | __u32 objectid_to_release); | 
|  | int reiserfs_convert_objectid_map_v1(struct super_block *); | 
|  |  | 
|  | /* stree.c */ | 
|  | int B_IS_IN_TREE(const struct buffer_head *); | 
|  | extern void copy_item_head(struct item_head *to, | 
|  | const struct item_head *from); | 
|  |  | 
|  | /* first key is in cpu form, second - le */ | 
|  | extern int comp_short_keys(const struct reiserfs_key *le_key, | 
|  | const struct cpu_key *cpu_key); | 
|  | extern void le_key2cpu_key(struct cpu_key *to, const struct reiserfs_key *from); | 
|  |  | 
|  | /* both are in le form */ | 
|  | extern int comp_le_keys(const struct reiserfs_key *, | 
|  | const struct reiserfs_key *); | 
|  | extern int comp_short_le_keys(const struct reiserfs_key *, | 
|  | const struct reiserfs_key *); | 
|  |  | 
|  | /* * get key version from on disk key - kludge */ | 
|  | static inline int le_key_version(const struct reiserfs_key *key) | 
|  | { | 
|  | int type; | 
|  |  | 
|  | type = offset_v2_k_type(&(key->u.k_offset_v2)); | 
|  | if (type != TYPE_DIRECT && type != TYPE_INDIRECT | 
|  | && type != TYPE_DIRENTRY) | 
|  | return KEY_FORMAT_3_5; | 
|  |  | 
|  | return KEY_FORMAT_3_6; | 
|  |  | 
|  | } | 
|  |  | 
|  | static inline void copy_key(struct reiserfs_key *to, | 
|  | const struct reiserfs_key *from) | 
|  | { | 
|  | memcpy(to, from, KEY_SIZE); | 
|  | } | 
|  |  | 
|  | int comp_items(const struct item_head *stored_ih, const struct treepath *path); | 
|  | const struct reiserfs_key *get_rkey(const struct treepath *chk_path, | 
|  | const struct super_block *sb); | 
|  | int search_by_key(struct super_block *, const struct cpu_key *, | 
|  | struct treepath *, int); | 
|  | #define search_item(s,key,path) search_by_key (s, key, path, DISK_LEAF_NODE_LEVEL) | 
|  | int search_for_position_by_key(struct super_block *sb, | 
|  | const struct cpu_key *cpu_key, | 
|  | struct treepath *search_path); | 
|  | extern void decrement_bcount(struct buffer_head *bh); | 
|  | void decrement_counters_in_path(struct treepath *search_path); | 
|  | void pathrelse(struct treepath *search_path); | 
|  | int reiserfs_check_path(struct treepath *p); | 
|  | void pathrelse_and_restore(struct super_block *s, struct treepath *search_path); | 
|  |  | 
|  | int reiserfs_insert_item(struct reiserfs_transaction_handle *th, | 
|  | struct treepath *path, | 
|  | const struct cpu_key *key, | 
|  | struct item_head *ih, | 
|  | struct inode *inode, const char *body); | 
|  |  | 
|  | int reiserfs_paste_into_item(struct reiserfs_transaction_handle *th, | 
|  | struct treepath *path, | 
|  | const struct cpu_key *key, | 
|  | struct inode *inode, | 
|  | const char *body, int paste_size); | 
|  |  | 
|  | int reiserfs_cut_from_item(struct reiserfs_transaction_handle *th, | 
|  | struct treepath *path, | 
|  | struct cpu_key *key, | 
|  | struct inode *inode, | 
|  | struct page *page, loff_t new_file_size); | 
|  |  | 
|  | int reiserfs_delete_item(struct reiserfs_transaction_handle *th, | 
|  | struct treepath *path, | 
|  | const struct cpu_key *key, | 
|  | struct inode *inode, struct buffer_head *un_bh); | 
|  |  | 
|  | void reiserfs_delete_solid_item(struct reiserfs_transaction_handle *th, | 
|  | struct inode *inode, struct reiserfs_key *key); | 
|  | int reiserfs_delete_object(struct reiserfs_transaction_handle *th, | 
|  | struct inode *inode); | 
|  | int reiserfs_do_truncate(struct reiserfs_transaction_handle *th, | 
|  | struct inode *inode, struct page *, | 
|  | int update_timestamps); | 
|  |  | 
|  | #define i_block_size(inode) ((inode)->i_sb->s_blocksize) | 
|  | #define file_size(inode) ((inode)->i_size) | 
|  | #define tail_size(inode) (file_size (inode) & (i_block_size (inode) - 1)) | 
|  |  | 
|  | #define tail_has_to_be_packed(inode) (have_large_tails ((inode)->i_sb)?\ | 
|  | !STORE_TAIL_IN_UNFM_S1(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):have_small_tails ((inode)->i_sb)?!STORE_TAIL_IN_UNFM_S2(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):0 ) | 
|  |  | 
|  | void padd_item(char *item, int total_length, int length); | 
|  |  | 
|  | /* inode.c */ | 
|  | /* args for the create parameter of reiserfs_get_block */ | 
|  | #define GET_BLOCK_NO_CREATE 0	 /* don't create new blocks or convert tails */ | 
|  | #define GET_BLOCK_CREATE 1	 /* add anything you need to find block */ | 
|  | #define GET_BLOCK_NO_HOLE 2	 /* return -ENOENT for file holes */ | 
|  | #define GET_BLOCK_READ_DIRECT 4	 /* read the tail if indirect item not found */ | 
|  | #define GET_BLOCK_NO_IMUX     8	 /* i_mutex is not held, don't preallocate */ | 
|  | #define GET_BLOCK_NO_DANGLE   16 /* don't leave any transactions running */ | 
|  |  | 
|  | void reiserfs_read_locked_inode(struct inode *inode, | 
|  | struct reiserfs_iget_args *args); | 
|  | int reiserfs_find_actor(struct inode *inode, void *p); | 
|  | int reiserfs_init_locked_inode(struct inode *inode, void *p); | 
|  | void reiserfs_evict_inode(struct inode *inode); | 
|  | int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc); | 
|  | int reiserfs_get_block(struct inode *inode, sector_t block, | 
|  | struct buffer_head *bh_result, int create); | 
|  | struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid, | 
|  | int fh_len, int fh_type); | 
|  | struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid, | 
|  | int fh_len, int fh_type); | 
|  | int reiserfs_encode_fh(struct inode *inode, __u32 * data, int *lenp, | 
|  | struct inode *parent); | 
|  |  | 
|  | int reiserfs_truncate_file(struct inode *, int update_timestamps); | 
|  | void make_cpu_key(struct cpu_key *cpu_key, struct inode *inode, loff_t offset, | 
|  | int type, int key_length); | 
|  | void make_le_item_head(struct item_head *ih, const struct cpu_key *key, | 
|  | int version, | 
|  | loff_t offset, int type, int length, int entry_count); | 
|  | struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key); | 
|  |  | 
|  | struct reiserfs_security_handle; | 
|  | int reiserfs_new_inode(struct reiserfs_transaction_handle *th, | 
|  | struct inode *dir, umode_t mode, | 
|  | const char *symname, loff_t i_size, | 
|  | struct dentry *dentry, struct inode *inode, | 
|  | struct reiserfs_security_handle *security); | 
|  |  | 
|  | void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th, | 
|  | struct inode *inode, loff_t size); | 
|  |  | 
|  | static inline void reiserfs_update_sd(struct reiserfs_transaction_handle *th, | 
|  | struct inode *inode) | 
|  | { | 
|  | reiserfs_update_sd_size(th, inode, inode->i_size); | 
|  | } | 
|  |  | 
|  | void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode); | 
|  | void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs); | 
|  | int reiserfs_setattr(struct dentry *dentry, struct iattr *attr); | 
|  |  | 
|  | int __reiserfs_write_begin(struct page *page, unsigned from, unsigned len); | 
|  |  | 
|  | /* namei.c */ | 
|  | void set_de_name_and_namelen(struct reiserfs_dir_entry *de); | 
|  | int search_by_entry_key(struct super_block *sb, const struct cpu_key *key, | 
|  | struct treepath *path, struct reiserfs_dir_entry *de); | 
|  | struct dentry *reiserfs_get_parent(struct dentry *); | 
|  |  | 
|  | #ifdef CONFIG_REISERFS_PROC_INFO | 
|  | int reiserfs_proc_info_init(struct super_block *sb); | 
|  | int reiserfs_proc_info_done(struct super_block *sb); | 
|  | int reiserfs_proc_info_global_init(void); | 
|  | int reiserfs_proc_info_global_done(void); | 
|  |  | 
|  | #define PROC_EXP( e )   e | 
|  |  | 
|  | #define __PINFO( sb ) REISERFS_SB(sb) -> s_proc_info_data | 
|  | #define PROC_INFO_MAX( sb, field, value )								\ | 
|  | __PINFO( sb ).field =												\ | 
|  | max( REISERFS_SB( sb ) -> s_proc_info_data.field, value ) | 
|  | #define PROC_INFO_INC( sb, field ) ( ++ ( __PINFO( sb ).field ) ) | 
|  | #define PROC_INFO_ADD( sb, field, val ) ( __PINFO( sb ).field += ( val ) ) | 
|  | #define PROC_INFO_BH_STAT( sb, bh, level )							\ | 
|  | PROC_INFO_INC( sb, sbk_read_at[ ( level ) ] );						\ | 
|  | PROC_INFO_ADD( sb, free_at[ ( level ) ], B_FREE_SPACE( bh ) );	\ | 
|  | PROC_INFO_ADD( sb, items_at[ ( level ) ], B_NR_ITEMS( bh ) ) | 
|  | #else | 
|  | static inline int reiserfs_proc_info_init(struct super_block *sb) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int reiserfs_proc_info_done(struct super_block *sb) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int reiserfs_proc_info_global_init(void) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int reiserfs_proc_info_global_done(void) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #define PROC_EXP( e ) | 
|  | #define VOID_V ( ( void ) 0 ) | 
|  | #define PROC_INFO_MAX( sb, field, value ) VOID_V | 
|  | #define PROC_INFO_INC( sb, field ) VOID_V | 
|  | #define PROC_INFO_ADD( sb, field, val ) VOID_V | 
|  | #define PROC_INFO_BH_STAT(sb, bh, n_node_level) VOID_V | 
|  | #endif | 
|  |  | 
|  | /* dir.c */ | 
|  | extern const struct inode_operations reiserfs_dir_inode_operations; | 
|  | extern const struct inode_operations reiserfs_symlink_inode_operations; | 
|  | extern const struct inode_operations reiserfs_special_inode_operations; | 
|  | extern const struct file_operations reiserfs_dir_operations; | 
|  | int reiserfs_readdir_inode(struct inode *, struct dir_context *); | 
|  |  | 
|  | /* tail_conversion.c */ | 
|  | int direct2indirect(struct reiserfs_transaction_handle *, struct inode *, | 
|  | struct treepath *, struct buffer_head *, loff_t); | 
|  | int indirect2direct(struct reiserfs_transaction_handle *, struct inode *, | 
|  | struct page *, struct treepath *, const struct cpu_key *, | 
|  | loff_t, char *); | 
|  | void reiserfs_unmap_buffer(struct buffer_head *); | 
|  |  | 
|  | /* file.c */ | 
|  | extern const struct inode_operations reiserfs_file_inode_operations; | 
|  | extern const struct file_operations reiserfs_file_operations; | 
|  | extern const struct address_space_operations reiserfs_address_space_operations; | 
|  |  | 
|  | /* fix_nodes.c */ | 
|  |  | 
|  | int fix_nodes(int n_op_mode, struct tree_balance *tb, | 
|  | struct item_head *ins_ih, const void *); | 
|  | void unfix_nodes(struct tree_balance *); | 
|  |  | 
|  | /* prints.c */ | 
|  | void __reiserfs_panic(struct super_block *s, const char *id, | 
|  | const char *function, const char *fmt, ...) | 
|  | __attribute__ ((noreturn)); | 
|  | #define reiserfs_panic(s, id, fmt, args...) \ | 
|  | __reiserfs_panic(s, id, __func__, fmt, ##args) | 
|  | void __reiserfs_error(struct super_block *s, const char *id, | 
|  | const char *function, const char *fmt, ...); | 
|  | #define reiserfs_error(s, id, fmt, args...) \ | 
|  | __reiserfs_error(s, id, __func__, fmt, ##args) | 
|  | void reiserfs_info(struct super_block *s, const char *fmt, ...); | 
|  | void reiserfs_debug(struct super_block *s, int level, const char *fmt, ...); | 
|  | void print_indirect_item(struct buffer_head *bh, int item_num); | 
|  | void store_print_tb(struct tree_balance *tb); | 
|  | void print_cur_tb(char *mes); | 
|  | void print_de(struct reiserfs_dir_entry *de); | 
|  | void print_bi(struct buffer_info *bi, char *mes); | 
|  | #define PRINT_LEAF_ITEMS 1	/* print all items */ | 
|  | #define PRINT_DIRECTORY_ITEMS 2	/* print directory items */ | 
|  | #define PRINT_DIRECT_ITEMS 4	/* print contents of direct items */ | 
|  | void print_block(struct buffer_head *bh, ...); | 
|  | void print_bmap(struct super_block *s, int silent); | 
|  | void print_bmap_block(int i, char *data, int size, int silent); | 
|  | /*void print_super_block (struct super_block * s, char * mes);*/ | 
|  | void print_objectid_map(struct super_block *s); | 
|  | void print_block_head(struct buffer_head *bh, char *mes); | 
|  | void check_leaf(struct buffer_head *bh); | 
|  | void check_internal(struct buffer_head *bh); | 
|  | void print_statistics(struct super_block *s); | 
|  | char *reiserfs_hashname(int code); | 
|  |  | 
|  | /* lbalance.c */ | 
|  | int leaf_move_items(int shift_mode, struct tree_balance *tb, int mov_num, | 
|  | int mov_bytes, struct buffer_head *Snew); | 
|  | int leaf_shift_left(struct tree_balance *tb, int shift_num, int shift_bytes); | 
|  | int leaf_shift_right(struct tree_balance *tb, int shift_num, int shift_bytes); | 
|  | void leaf_delete_items(struct buffer_info *cur_bi, int last_first, int first, | 
|  | int del_num, int del_bytes); | 
|  | void leaf_insert_into_buf(struct buffer_info *bi, int before, | 
|  | struct item_head * const inserted_item_ih, | 
|  | const char * const inserted_item_body, | 
|  | int zeros_number); | 
|  | void leaf_paste_in_buffer(struct buffer_info *bi, int pasted_item_num, | 
|  | int pos_in_item, int paste_size, | 
|  | const char * const body, int zeros_number); | 
|  | void leaf_cut_from_buffer(struct buffer_info *bi, int cut_item_num, | 
|  | int pos_in_item, int cut_size); | 
|  | void leaf_paste_entries(struct buffer_info *bi, int item_num, int before, | 
|  | int new_entry_count, struct reiserfs_de_head *new_dehs, | 
|  | const char *records, int paste_size); | 
|  | /* ibalance.c */ | 
|  | int balance_internal(struct tree_balance *, int, int, struct item_head *, | 
|  | struct buffer_head **); | 
|  |  | 
|  | /* do_balance.c */ | 
|  | void do_balance_mark_leaf_dirty(struct tree_balance *tb, | 
|  | struct buffer_head *bh, int flag); | 
|  | #define do_balance_mark_internal_dirty do_balance_mark_leaf_dirty | 
|  | #define do_balance_mark_sb_dirty do_balance_mark_leaf_dirty | 
|  |  | 
|  | void do_balance(struct tree_balance *tb, struct item_head *ih, | 
|  | const char *body, int flag); | 
|  | void reiserfs_invalidate_buffer(struct tree_balance *tb, | 
|  | struct buffer_head *bh); | 
|  |  | 
|  | int get_left_neighbor_position(struct tree_balance *tb, int h); | 
|  | int get_right_neighbor_position(struct tree_balance *tb, int h); | 
|  | void replace_key(struct tree_balance *tb, struct buffer_head *, int, | 
|  | struct buffer_head *, int); | 
|  | void make_empty_node(struct buffer_info *); | 
|  | struct buffer_head *get_FEB(struct tree_balance *); | 
|  |  | 
|  | /* bitmap.c */ | 
|  |  | 
|  | /* | 
|  | * structure contains hints for block allocator, and it is a container for | 
|  | * arguments, such as node, search path, transaction_handle, etc. | 
|  | */ | 
|  | struct __reiserfs_blocknr_hint { | 
|  | /* inode passed to allocator, if we allocate unf. nodes */ | 
|  | struct inode *inode; | 
|  |  | 
|  | sector_t block;		/* file offset, in blocks */ | 
|  | struct in_core_key key; | 
|  |  | 
|  | /* | 
|  | * search path, used by allocator to deternine search_start by | 
|  | * various ways | 
|  | */ | 
|  | struct treepath *path; | 
|  |  | 
|  | /* | 
|  | * transaction handle is needed to log super blocks | 
|  | * and bitmap blocks changes | 
|  | */ | 
|  | struct reiserfs_transaction_handle *th; | 
|  |  | 
|  | b_blocknr_t beg, end; | 
|  |  | 
|  | /* | 
|  | * a field used to transfer search start value (block number) | 
|  | * between different block allocator procedures | 
|  | * (determine_search_start() and others) | 
|  | */ | 
|  | b_blocknr_t search_start; | 
|  |  | 
|  | /* | 
|  | * is set in determine_prealloc_size() function, | 
|  | * used by underlayed function that do actual allocation | 
|  | */ | 
|  | int prealloc_size; | 
|  |  | 
|  | /* | 
|  | * the allocator uses different polices for getting disk | 
|  | * space for formatted/unformatted blocks with/without preallocation | 
|  | */ | 
|  | unsigned formatted_node:1; | 
|  | unsigned preallocate:1; | 
|  | }; | 
|  |  | 
|  | typedef struct __reiserfs_blocknr_hint reiserfs_blocknr_hint_t; | 
|  |  | 
|  | int reiserfs_parse_alloc_options(struct super_block *, char *); | 
|  | void reiserfs_init_alloc_options(struct super_block *s); | 
|  |  | 
|  | /* | 
|  | * given a directory, this will tell you what packing locality | 
|  | * to use for a new object underneat it.  The locality is returned | 
|  | * in disk byte order (le). | 
|  | */ | 
|  | __le32 reiserfs_choose_packing(struct inode *dir); | 
|  |  | 
|  | void show_alloc_options(struct seq_file *seq, struct super_block *s); | 
|  | int reiserfs_init_bitmap_cache(struct super_block *sb); | 
|  | void reiserfs_free_bitmap_cache(struct super_block *sb); | 
|  | void reiserfs_cache_bitmap_metadata(struct super_block *sb, struct buffer_head *bh, struct reiserfs_bitmap_info *info); | 
|  | struct buffer_head *reiserfs_read_bitmap_block(struct super_block *sb, unsigned int bitmap); | 
|  | int is_reusable(struct super_block *s, b_blocknr_t block, int bit_value); | 
|  | void reiserfs_free_block(struct reiserfs_transaction_handle *th, struct inode *, | 
|  | b_blocknr_t, int for_unformatted); | 
|  | int reiserfs_allocate_blocknrs(reiserfs_blocknr_hint_t *, b_blocknr_t *, int, | 
|  | int); | 
|  | static inline int reiserfs_new_form_blocknrs(struct tree_balance *tb, | 
|  | b_blocknr_t * new_blocknrs, | 
|  | int amount_needed) | 
|  | { | 
|  | reiserfs_blocknr_hint_t hint = { | 
|  | .th = tb->transaction_handle, | 
|  | .path = tb->tb_path, | 
|  | .inode = NULL, | 
|  | .key = tb->key, | 
|  | .block = 0, | 
|  | .formatted_node = 1 | 
|  | }; | 
|  | return reiserfs_allocate_blocknrs(&hint, new_blocknrs, amount_needed, | 
|  | 0); | 
|  | } | 
|  |  | 
|  | static inline int reiserfs_new_unf_blocknrs(struct reiserfs_transaction_handle | 
|  | *th, struct inode *inode, | 
|  | b_blocknr_t * new_blocknrs, | 
|  | struct treepath *path, | 
|  | sector_t block) | 
|  | { | 
|  | reiserfs_blocknr_hint_t hint = { | 
|  | .th = th, | 
|  | .path = path, | 
|  | .inode = inode, | 
|  | .block = block, | 
|  | .formatted_node = 0, | 
|  | .preallocate = 0 | 
|  | }; | 
|  | return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0); | 
|  | } | 
|  |  | 
|  | #ifdef REISERFS_PREALLOCATE | 
|  | static inline int reiserfs_new_unf_blocknrs2(struct reiserfs_transaction_handle | 
|  | *th, struct inode *inode, | 
|  | b_blocknr_t * new_blocknrs, | 
|  | struct treepath *path, | 
|  | sector_t block) | 
|  | { | 
|  | reiserfs_blocknr_hint_t hint = { | 
|  | .th = th, | 
|  | .path = path, | 
|  | .inode = inode, | 
|  | .block = block, | 
|  | .formatted_node = 0, | 
|  | .preallocate = 1 | 
|  | }; | 
|  | return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0); | 
|  | } | 
|  |  | 
|  | void reiserfs_discard_prealloc(struct reiserfs_transaction_handle *th, | 
|  | struct inode *inode); | 
|  | void reiserfs_discard_all_prealloc(struct reiserfs_transaction_handle *th); | 
|  | #endif | 
|  |  | 
|  | /* hashes.c */ | 
|  | __u32 keyed_hash(const signed char *msg, int len); | 
|  | __u32 yura_hash(const signed char *msg, int len); | 
|  | __u32 r5_hash(const signed char *msg, int len); | 
|  |  | 
|  | #define reiserfs_set_le_bit		__set_bit_le | 
|  | #define reiserfs_test_and_set_le_bit	__test_and_set_bit_le | 
|  | #define reiserfs_clear_le_bit		__clear_bit_le | 
|  | #define reiserfs_test_and_clear_le_bit	__test_and_clear_bit_le | 
|  | #define reiserfs_test_le_bit		test_bit_le | 
|  | #define reiserfs_find_next_zero_le_bit	find_next_zero_bit_le | 
|  |  | 
|  | /* | 
|  | * sometimes reiserfs_truncate may require to allocate few new blocks | 
|  | * to perform indirect2direct conversion. People probably used to | 
|  | * think, that truncate should work without problems on a filesystem | 
|  | * without free disk space. They may complain that they can not | 
|  | * truncate due to lack of free disk space. This spare space allows us | 
|  | * to not worry about it. 500 is probably too much, but it should be | 
|  | * absolutely safe | 
|  | */ | 
|  | #define SPARE_SPACE 500 | 
|  |  | 
|  | /* prototypes from ioctl.c */ | 
|  | long reiserfs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg); | 
|  | long reiserfs_compat_ioctl(struct file *filp, | 
|  | unsigned int cmd, unsigned long arg); | 
|  | int reiserfs_unpack(struct inode *inode, struct file *filp); |