blob: 02e52b742ee33730e94c42c4ca6741f9b17f5eaf [file] [log] [blame]
/*
* Small tool to check for dedupable blocks in a file or device. Basically
* just scans the filename for extents of the given size, checksums them,
* and orders them up.
*/
#include <fcntl.h>
#include <inttypes.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <sys/stat.h>
#include "../fio.h"
#include "../flist.h"
#include "../log.h"
#include "../fio_sem.h"
#include "../smalloc.h"
#include "../minmax.h"
#include "../crc/md5.h"
#include "../os/os.h"
#include "../gettime.h"
#include "../fio_time.h"
#include "../lib/rbtree.h"
#include "../lib/bloom.h"
#include "debug.h"
#include "zlib.h"
struct zlib_ctrl {
z_stream stream;
unsigned char *buf_in;
unsigned char *buf_out;
};
struct worker_thread {
struct zlib_ctrl zc;
pthread_t thread;
uint64_t cur_offset;
uint64_t size;
unsigned long long unique_capacity;
unsigned long items;
unsigned long dupes;
int err;
int fd;
volatile int done;
};
struct extent {
struct flist_head list;
uint64_t offset;
};
struct chunk {
struct fio_rb_node rb_node;
uint64_t count;
uint32_t hash[MD5_HASH_WORDS];
struct flist_head extent_list[0];
};
struct item {
uint64_t offset;
uint32_t hash[MD5_HASH_WORDS];
};
static struct rb_root rb_root;
static struct bloom *bloom;
static struct fio_sem *rb_lock;
static unsigned int blocksize = 4096;
static unsigned int num_threads;
static unsigned int chunk_size = 1048576;
static unsigned int dump_output;
static unsigned int odirect;
static unsigned int collision_check;
static unsigned int print_progress = 1;
static unsigned int use_bloom = 1;
static unsigned int compression = 0;
static uint64_t total_size;
static uint64_t cur_offset;
static struct fio_sem *size_lock;
static struct fio_file file;
static uint64_t get_size(struct fio_file *f, struct stat *sb)
{
uint64_t ret;
if (S_ISBLK(sb->st_mode)) {
unsigned long long bytes = 0;
if (blockdev_size(f, &bytes)) {
log_err("dedupe: failed getting bdev size\n");
return 0;
}
ret = bytes;
} else {
ret = sb->st_size;
}
return (ret & ~((uint64_t)blocksize - 1));
}
static int get_work(uint64_t *offset, uint64_t *size)
{
uint64_t this_chunk;
int ret = 1;
fio_sem_down(size_lock);
if (cur_offset < total_size) {
*offset = cur_offset;
this_chunk = min((uint64_t)chunk_size, total_size - cur_offset);
*size = this_chunk;
cur_offset += this_chunk;
ret = 0;
}
fio_sem_up(size_lock);
return ret;
}
static int __read_block(int fd, void *buf, off_t offset, size_t count)
{
ssize_t ret;
ret = pread(fd, buf, count, offset);
if (ret < 0) {
perror("pread");
return 1;
} else if (!ret) {
return 1;
} else if (ret != count) {
log_err("dedupe: short read on block\n");
return 1;
}
return 0;
}
static int read_block(int fd, void *buf, off_t offset)
{
return __read_block(fd, buf, offset, blocksize);
}
static int account_unique_capacity(uint64_t offset, uint64_t *unique_capacity,
struct zlib_ctrl *zc)
{
z_stream *stream = &zc->stream;
unsigned int compressed_len;
int ret;
if (read_block(file.fd, zc->buf_in, offset))
return 1;
stream->next_in = zc->buf_in;
stream->avail_in = blocksize;
stream->avail_out = deflateBound(stream, blocksize);
stream->next_out = zc->buf_out;
ret = deflate(stream, Z_FINISH);
if (ret == Z_STREAM_ERROR)
return 1;
compressed_len = blocksize - stream->avail_out;
if (dump_output)
printf("offset 0x%lx compressed to %d blocksize %d ratio %.2f \n",
(unsigned long) offset, compressed_len, blocksize,
(float)compressed_len / (float)blocksize);
*unique_capacity += compressed_len;
deflateReset(stream);
return 0;
}
static void add_item(struct chunk *c, struct item *i)
{
/*
* Save some memory and don't add extent items, if we don't
* use them.
*/
if (dump_output || collision_check) {
struct extent *e;
e = malloc(sizeof(*e));
e->offset = i->offset;
flist_add_tail(&e->list, &c->extent_list[0]);
}
c->count++;
}
static int col_check(struct chunk *c, struct item *i)
{
struct extent *e;
char *cbuf, *ibuf;
int ret = 1;
cbuf = fio_memalign(blocksize, blocksize, false);
ibuf = fio_memalign(blocksize, blocksize, false);
e = flist_entry(c->extent_list[0].next, struct extent, list);
if (read_block(file.fd, cbuf, e->offset))
goto out;
if (read_block(file.fd, ibuf, i->offset))
goto out;
ret = memcmp(ibuf, cbuf, blocksize);
out:
fio_memfree(cbuf, blocksize, false);
fio_memfree(ibuf, blocksize, false);
return ret;
}
static struct chunk *alloc_chunk(void)
{
struct chunk *c;
if (collision_check || dump_output) {
c = malloc(sizeof(struct chunk) + sizeof(struct flist_head));
INIT_FLIST_HEAD(&c->extent_list[0]);
} else {
c = malloc(sizeof(struct chunk));
}
return c;
}
static int insert_chunk(struct item *i, uint64_t *unique_capacity,
struct zlib_ctrl *zc)
{
struct fio_rb_node **p, *parent;
struct chunk *c;
int ret, diff;
p = &rb_root.rb_node;
parent = NULL;
while (*p) {
parent = *p;
c = rb_entry(parent, struct chunk, rb_node);
diff = memcmp(i->hash, c->hash, sizeof(i->hash));
if (diff < 0) {
p = &(*p)->rb_left;
} else if (diff > 0) {
p = &(*p)->rb_right;
} else {
if (!collision_check)
goto add;
fio_sem_up(rb_lock);
ret = col_check(c, i);
fio_sem_down(rb_lock);
if (!ret)
goto add;
p = &(*p)->rb_right;
}
}
c = alloc_chunk();
RB_CLEAR_NODE(&c->rb_node);
c->count = 0;
memcpy(c->hash, i->hash, sizeof(i->hash));
rb_link_node(&c->rb_node, parent, p);
rb_insert_color(&c->rb_node, &rb_root);
if (compression) {
ret = account_unique_capacity(i->offset, unique_capacity, zc);
if (ret)
return ret;
}
add:
add_item(c, i);
return 0;
}
static int insert_chunks(struct item *items, unsigned int nitems,
uint64_t *ndupes, uint64_t *unique_capacity,
struct zlib_ctrl *zc)
{
int i, ret = 0;
fio_sem_down(rb_lock);
for (i = 0; i < nitems; i++) {
if (bloom) {
unsigned int s;
int r;
s = sizeof(items[i].hash) / sizeof(uint32_t);
r = bloom_set(bloom, items[i].hash, s);
*ndupes += r;
} else {
ret = insert_chunk(&items[i], unique_capacity, zc);
if (ret)
break;
}
}
fio_sem_up(rb_lock);
return ret;
}
static void crc_buf(void *buf, uint32_t *hash)
{
struct fio_md5_ctx ctx = { .hash = hash };
fio_md5_init(&ctx);
fio_md5_update(&ctx, buf, blocksize);
fio_md5_final(&ctx);
}
static unsigned int read_blocks(int fd, void *buf, off_t offset, size_t size)
{
if (__read_block(fd, buf, offset, size))
return 0;
return size / blocksize;
}
static int do_work(struct worker_thread *thread, void *buf)
{
unsigned int nblocks, i;
off_t offset;
int nitems = 0;
uint64_t ndupes = 0;
uint64_t unique_capacity = 0;
struct item *items;
int ret;
offset = thread->cur_offset;
nblocks = read_blocks(thread->fd, buf, offset,
min(thread->size, (uint64_t) chunk_size));
if (!nblocks)
return 1;
items = malloc(sizeof(*items) * nblocks);
for (i = 0; i < nblocks; i++) {
void *thisptr = buf + (i * blocksize);
items[i].offset = offset;
crc_buf(thisptr, items[i].hash);
offset += blocksize;
nitems++;
}
ret = insert_chunks(items, nitems, &ndupes, &unique_capacity, &thread->zc);
free(items);
if (!ret) {
thread->items += nitems;
thread->dupes += ndupes;
thread->unique_capacity += unique_capacity;
return 0;
}
return ret;
}
static void thread_init_zlib_control(struct worker_thread *thread)
{
size_t sz;
z_stream *stream = &thread->zc.stream;
stream->zalloc = Z_NULL;
stream->zfree = Z_NULL;
stream->opaque = Z_NULL;
if (deflateInit(stream, Z_DEFAULT_COMPRESSION) != Z_OK)
return;
thread->zc.buf_in = fio_memalign(blocksize, blocksize, false);
sz = deflateBound(stream, blocksize);
thread->zc.buf_out = fio_memalign(blocksize, sz, false);
}
static void *thread_fn(void *data)
{
struct worker_thread *thread = data;
void *buf;
buf = fio_memalign(blocksize, chunk_size, false);
thread_init_zlib_control(thread);
do {
if (get_work(&thread->cur_offset, &thread->size)) {
thread->err = 1;
break;
}
if (do_work(thread, buf)) {
thread->err = 1;
break;
}
} while (1);
thread->done = 1;
fio_memfree(buf, chunk_size, false);
return NULL;
}
static void show_progress(struct worker_thread *threads, unsigned long total)
{
unsigned long last_nitems = 0;
struct timespec last_tv;
fio_gettime(&last_tv, NULL);
while (print_progress) {
unsigned long this_items;
unsigned long nitems = 0;
uint64_t tdiff;
float perc;
int some_done = 0;
int i;
for (i = 0; i < num_threads; i++) {
nitems += threads[i].items;
some_done = threads[i].done;
if (some_done)
break;
}
if (some_done)
break;
perc = (float) nitems / (float) total;
perc *= 100.0;
this_items = nitems - last_nitems;
this_items *= blocksize;
tdiff = mtime_since_now(&last_tv);
if (tdiff) {
this_items = (this_items * 1000) / (tdiff * 1024);
printf("%3.2f%% done (%luKiB/sec)\r", perc, this_items);
last_nitems = nitems;
fio_gettime(&last_tv, NULL);
} else {
printf("%3.2f%% done\r", perc);
}
fflush(stdout);
usleep(250000);
};
}
static int run_dedupe_threads(struct fio_file *f, uint64_t dev_size,
uint64_t *nextents, uint64_t *nchunks,
uint64_t *unique_capacity)
{
struct worker_thread *threads;
unsigned long nitems, total_items;
int i, err = 0;
total_size = dev_size;
total_items = dev_size / blocksize;
cur_offset = 0;
size_lock = fio_sem_init(FIO_SEM_UNLOCKED);
threads = malloc(num_threads * sizeof(struct worker_thread));
for (i = 0; i < num_threads; i++) {
memset(&threads[i], 0, sizeof(struct worker_thread));
threads[i].fd = f->fd;
err = pthread_create(&threads[i].thread, NULL, thread_fn, &threads[i]);
if (err) {
log_err("fio: thread startup failed\n");
break;
}
}
show_progress(threads, total_items);
nitems = 0;
*nextents = 0;
*nchunks = 1;
*unique_capacity = 0;
for (i = 0; i < num_threads; i++) {
void *ret;
pthread_join(threads[i].thread, &ret);
nitems += threads[i].items;
*nchunks += threads[i].dupes;
*unique_capacity += threads[i].unique_capacity;
}
printf("Threads(%u): %lu items processed\n", num_threads, nitems);
*nextents = nitems;
*nchunks = nitems - *nchunks;
fio_sem_remove(size_lock);
free(threads);
return err;
}
static int dedupe_check(const char *filename, uint64_t *nextents,
uint64_t *nchunks, uint64_t *unique_capacity)
{
uint64_t dev_size;
struct stat sb;
int flags;
flags = O_RDONLY;
if (odirect)
flags |= OS_O_DIRECT;
memset(&file, 0, sizeof(file));
file.file_name = strdup(filename);
file.fd = open(filename, flags);
if (file.fd == -1) {
perror("open");
goto err;
}
if (fstat(file.fd, &sb) < 0) {
perror("fstat");
goto err;
}
dev_size = get_size(&file, &sb);
if (!dev_size)
goto err;
if (use_bloom) {
uint64_t bloom_entries;
bloom_entries = 8 * (dev_size / blocksize);
bloom = bloom_new(bloom_entries);
}
printf("Will check <%s>, size <%llu>, using %u threads\n", filename,
(unsigned long long) dev_size, num_threads);
return run_dedupe_threads(&file, dev_size, nextents, nchunks,
unique_capacity);
err:
if (file.fd != -1)
close(file.fd);
free(file.file_name);
return 1;
}
static void show_chunk(struct chunk *c)
{
struct flist_head *n;
struct extent *e;
printf("c hash %8x %8x %8x %8x, count %lu\n", c->hash[0], c->hash[1],
c->hash[2], c->hash[3], (unsigned long) c->count);
flist_for_each(n, &c->extent_list[0]) {
e = flist_entry(n, struct extent, list);
printf("\toffset %llu\n", (unsigned long long) e->offset);
}
}
static const char *capacity_unit[] = {"b","KB", "MB", "GB", "TB", "PB", "EB"};
static uint64_t bytes_to_human_readable_unit(uint64_t n, const char **unit_out)
{
uint8_t i = 0;
while (n >= 1024) {
i++;
n /= 1024;
}
*unit_out = capacity_unit[i];
return n;
}
static void show_stat(uint64_t nextents, uint64_t nchunks, uint64_t ndupextents,
uint64_t unique_capacity)
{
double perc, ratio;
const char *unit;
uint64_t uc_human;
printf("Extents=%lu, Unique extents=%lu", (unsigned long) nextents,
(unsigned long) nchunks);
if (!bloom)
printf(" Duplicated extents=%lu", (unsigned long) ndupextents);
printf("\n");
if (nchunks) {
ratio = (double) nextents / (double) nchunks;
printf("De-dupe ratio: 1:%3.2f\n", ratio - 1.0);
} else {
printf("De-dupe ratio: 1:infinite\n");
}
if (ndupextents) {
printf("De-dupe working set at least: %3.2f%%\n",
100.0 * (double) ndupextents / (double) nextents);
}
perc = 1.00 - ((double) nchunks / (double) nextents);
perc *= 100.0;
printf("Fio setting: dedupe_percentage=%u\n", (int) (perc + 0.50));
if (compression) {
uc_human = bytes_to_human_readable_unit(unique_capacity, &unit);
printf("Unique capacity %lu%s\n", (unsigned long) uc_human, unit);
}
}
static void iter_rb_tree(uint64_t *nextents, uint64_t *nchunks, uint64_t *ndupextents)
{
struct fio_rb_node *n;
*nchunks = *nextents = *ndupextents = 0;
n = rb_first(&rb_root);
if (!n)
return;
do {
struct chunk *c;
c = rb_entry(n, struct chunk, rb_node);
(*nchunks)++;
*nextents += c->count;
*ndupextents += (c->count > 1);
if (dump_output)
show_chunk(c);
} while ((n = rb_next(n)) != NULL);
}
static int usage(char *argv[])
{
log_err("Check for dedupable blocks on a device/file\n\n");
log_err("%s: [options] <device or file>\n", argv[0]);
log_err("\t-b\tChunk size to use\n");
log_err("\t-t\tNumber of threads to use\n");
log_err("\t-d\tFull extent/chunk debug output\n");
log_err("\t-o\tUse O_DIRECT\n");
log_err("\t-c\tFull collision check\n");
log_err("\t-B\tUse probabilistic bloom filter\n");
log_err("\t-p\tPrint progress indicator\n");
log_err("\t-C\tCalculate compressible size\n");
return 1;
}
int main(int argc, char *argv[])
{
uint64_t nextents = 0, nchunks = 0, ndupextents = 0, unique_capacity;
int c, ret;
arch_init(argv);
debug_init();
while ((c = getopt(argc, argv, "b:t:d:o:c:p:B:C:")) != -1) {
switch (c) {
case 'b':
blocksize = atoi(optarg);
break;
case 't':
num_threads = atoi(optarg);
break;
case 'd':
dump_output = atoi(optarg);
break;
case 'o':
odirect = atoi(optarg);
break;
case 'c':
collision_check = atoi(optarg);
break;
case 'p':
print_progress = atoi(optarg);
break;
case 'B':
use_bloom = atoi(optarg);
break;
case 'C':
compression = atoi(optarg);
break;
case '?':
default:
return usage(argv);
}
}
if (collision_check || dump_output || compression)
use_bloom = 0;
if (!num_threads)
num_threads = cpus_configured();
if (argc == optind)
return usage(argv);
sinit();
rb_root = RB_ROOT;
rb_lock = fio_sem_init(FIO_SEM_UNLOCKED);
ret = dedupe_check(argv[optind], &nextents, &nchunks, &unique_capacity);
if (!ret) {
if (!bloom)
iter_rb_tree(&nextents, &nchunks, &ndupextents);
show_stat(nextents, nchunks, ndupextents, unique_capacity);
}
fio_sem_remove(rb_lock);
if (bloom)
bloom_free(bloom);
scleanup();
return ret;
}