| // SPDX-License-Identifier: GPL-2.0-only | 
 | /* | 
 |  *  linux/mm/page_alloc.c | 
 |  * | 
 |  *  Manages the free list, the system allocates free pages here. | 
 |  *  Note that kmalloc() lives in slab.c | 
 |  * | 
 |  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds | 
 |  *  Swap reorganised 29.12.95, Stephen Tweedie | 
 |  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 | 
 |  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 | 
 |  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 | 
 |  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000 | 
 |  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 | 
 |  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton) | 
 |  */ | 
 |  | 
 | #include <linux/stddef.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/highmem.h> | 
 | #include <linux/swap.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/pagemap.h> | 
 | #include <linux/jiffies.h> | 
 | #include <linux/memblock.h> | 
 | #include <linux/compiler.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/kasan.h> | 
 | #include <linux/module.h> | 
 | #include <linux/suspend.h> | 
 | #include <linux/pagevec.h> | 
 | #include <linux/blkdev.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/ratelimit.h> | 
 | #include <linux/oom.h> | 
 | #include <linux/topology.h> | 
 | #include <linux/sysctl.h> | 
 | #include <linux/cpu.h> | 
 | #include <linux/cpuset.h> | 
 | #include <linux/memory_hotplug.h> | 
 | #include <linux/nodemask.h> | 
 | #include <linux/vmalloc.h> | 
 | #include <linux/vmstat.h> | 
 | #include <linux/mempolicy.h> | 
 | #include <linux/memremap.h> | 
 | #include <linux/stop_machine.h> | 
 | #include <linux/random.h> | 
 | #include <linux/sort.h> | 
 | #include <linux/pfn.h> | 
 | #include <linux/backing-dev.h> | 
 | #include <linux/fault-inject.h> | 
 | #include <linux/page-isolation.h> | 
 | #include <linux/debugobjects.h> | 
 | #include <linux/kmemleak.h> | 
 | #include <linux/compaction.h> | 
 | #include <trace/events/kmem.h> | 
 | #include <trace/events/oom.h> | 
 | #include <linux/prefetch.h> | 
 | #include <linux/mm_inline.h> | 
 | #include <linux/migrate.h> | 
 | #include <linux/hugetlb.h> | 
 | #include <linux/sched/rt.h> | 
 | #include <linux/sched/mm.h> | 
 | #include <linux/page_owner.h> | 
 | #include <linux/kthread.h> | 
 | #include <linux/memcontrol.h> | 
 | #include <linux/ftrace.h> | 
 | #include <linux/lockdep.h> | 
 | #include <linux/nmi.h> | 
 | #include <linux/psi.h> | 
 | #include <linux/padata.h> | 
 |  | 
 | #include <asm/sections.h> | 
 | #include <asm/tlbflush.h> | 
 | #include <asm/div64.h> | 
 | #include "internal.h" | 
 | #include "shuffle.h" | 
 | #include "page_reporting.h" | 
 |  | 
 | /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ | 
 | static DEFINE_MUTEX(pcp_batch_high_lock); | 
 | #define MIN_PERCPU_PAGELIST_FRACTION	(8) | 
 |  | 
 | #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID | 
 | DEFINE_PER_CPU(int, numa_node); | 
 | EXPORT_PER_CPU_SYMBOL(numa_node); | 
 | #endif | 
 |  | 
 | DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); | 
 |  | 
 | #ifdef CONFIG_HAVE_MEMORYLESS_NODES | 
 | /* | 
 |  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. | 
 |  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. | 
 |  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() | 
 |  * defined in <linux/topology.h>. | 
 |  */ | 
 | DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */ | 
 | EXPORT_PER_CPU_SYMBOL(_numa_mem_); | 
 | #endif | 
 |  | 
 | /* work_structs for global per-cpu drains */ | 
 | struct pcpu_drain { | 
 | 	struct zone *zone; | 
 | 	struct work_struct work; | 
 | }; | 
 | static DEFINE_MUTEX(pcpu_drain_mutex); | 
 | static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain); | 
 |  | 
 | #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY | 
 | volatile unsigned long latent_entropy __latent_entropy; | 
 | EXPORT_SYMBOL(latent_entropy); | 
 | #endif | 
 |  | 
 | /* | 
 |  * Array of node states. | 
 |  */ | 
 | nodemask_t node_states[NR_NODE_STATES] __read_mostly = { | 
 | 	[N_POSSIBLE] = NODE_MASK_ALL, | 
 | 	[N_ONLINE] = { { [0] = 1UL } }, | 
 | #ifndef CONFIG_NUMA | 
 | 	[N_NORMAL_MEMORY] = { { [0] = 1UL } }, | 
 | #ifdef CONFIG_HIGHMEM | 
 | 	[N_HIGH_MEMORY] = { { [0] = 1UL } }, | 
 | #endif | 
 | 	[N_MEMORY] = { { [0] = 1UL } }, | 
 | 	[N_CPU] = { { [0] = 1UL } }, | 
 | #endif	/* NUMA */ | 
 | }; | 
 | EXPORT_SYMBOL(node_states); | 
 |  | 
 | atomic_long_t _totalram_pages __read_mostly; | 
 | EXPORT_SYMBOL(_totalram_pages); | 
 | unsigned long totalreserve_pages __read_mostly; | 
 | unsigned long totalcma_pages __read_mostly; | 
 |  | 
 | int percpu_pagelist_fraction; | 
 | gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; | 
 | #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON | 
 | DEFINE_STATIC_KEY_TRUE(init_on_alloc); | 
 | #else | 
 | DEFINE_STATIC_KEY_FALSE(init_on_alloc); | 
 | #endif | 
 | EXPORT_SYMBOL(init_on_alloc); | 
 |  | 
 | #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON | 
 | DEFINE_STATIC_KEY_TRUE(init_on_free); | 
 | #else | 
 | DEFINE_STATIC_KEY_FALSE(init_on_free); | 
 | #endif | 
 | EXPORT_SYMBOL(init_on_free); | 
 |  | 
 | static int __init early_init_on_alloc(char *buf) | 
 | { | 
 | 	int ret; | 
 | 	bool bool_result; | 
 |  | 
 | 	if (!buf) | 
 | 		return -EINVAL; | 
 | 	ret = kstrtobool(buf, &bool_result); | 
 | 	if (bool_result && page_poisoning_enabled()) | 
 | 		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n"); | 
 | 	if (bool_result) | 
 | 		static_branch_enable(&init_on_alloc); | 
 | 	else | 
 | 		static_branch_disable(&init_on_alloc); | 
 | 	return ret; | 
 | } | 
 | early_param("init_on_alloc", early_init_on_alloc); | 
 |  | 
 | static int __init early_init_on_free(char *buf) | 
 | { | 
 | 	int ret; | 
 | 	bool bool_result; | 
 |  | 
 | 	if (!buf) | 
 | 		return -EINVAL; | 
 | 	ret = kstrtobool(buf, &bool_result); | 
 | 	if (bool_result && page_poisoning_enabled()) | 
 | 		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n"); | 
 | 	if (bool_result) | 
 | 		static_branch_enable(&init_on_free); | 
 | 	else | 
 | 		static_branch_disable(&init_on_free); | 
 | 	return ret; | 
 | } | 
 | early_param("init_on_free", early_init_on_free); | 
 |  | 
 | /* | 
 |  * A cached value of the page's pageblock's migratetype, used when the page is | 
 |  * put on a pcplist. Used to avoid the pageblock migratetype lookup when | 
 |  * freeing from pcplists in most cases, at the cost of possibly becoming stale. | 
 |  * Also the migratetype set in the page does not necessarily match the pcplist | 
 |  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any | 
 |  * other index - this ensures that it will be put on the correct CMA freelist. | 
 |  */ | 
 | static inline int get_pcppage_migratetype(struct page *page) | 
 | { | 
 | 	return page->index; | 
 | } | 
 |  | 
 | static inline void set_pcppage_migratetype(struct page *page, int migratetype) | 
 | { | 
 | 	page->index = migratetype; | 
 | } | 
 |  | 
 | #ifdef CONFIG_PM_SLEEP | 
 | /* | 
 |  * The following functions are used by the suspend/hibernate code to temporarily | 
 |  * change gfp_allowed_mask in order to avoid using I/O during memory allocations | 
 |  * while devices are suspended.  To avoid races with the suspend/hibernate code, | 
 |  * they should always be called with system_transition_mutex held | 
 |  * (gfp_allowed_mask also should only be modified with system_transition_mutex | 
 |  * held, unless the suspend/hibernate code is guaranteed not to run in parallel | 
 |  * with that modification). | 
 |  */ | 
 |  | 
 | static gfp_t saved_gfp_mask; | 
 |  | 
 | void pm_restore_gfp_mask(void) | 
 | { | 
 | 	WARN_ON(!mutex_is_locked(&system_transition_mutex)); | 
 | 	if (saved_gfp_mask) { | 
 | 		gfp_allowed_mask = saved_gfp_mask; | 
 | 		saved_gfp_mask = 0; | 
 | 	} | 
 | } | 
 |  | 
 | void pm_restrict_gfp_mask(void) | 
 | { | 
 | 	WARN_ON(!mutex_is_locked(&system_transition_mutex)); | 
 | 	WARN_ON(saved_gfp_mask); | 
 | 	saved_gfp_mask = gfp_allowed_mask; | 
 | 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS); | 
 | } | 
 |  | 
 | bool pm_suspended_storage(void) | 
 | { | 
 | 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) | 
 | 		return false; | 
 | 	return true; | 
 | } | 
 | #endif /* CONFIG_PM_SLEEP */ | 
 |  | 
 | #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE | 
 | unsigned int pageblock_order __read_mostly; | 
 | #endif | 
 |  | 
 | static void __free_pages_ok(struct page *page, unsigned int order); | 
 |  | 
 | /* | 
 |  * results with 256, 32 in the lowmem_reserve sysctl: | 
 |  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high) | 
 |  *	1G machine -> (16M dma, 784M normal, 224M high) | 
 |  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA | 
 |  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL | 
 |  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA | 
 |  * | 
 |  * TBD: should special case ZONE_DMA32 machines here - in those we normally | 
 |  * don't need any ZONE_NORMAL reservation | 
 |  */ | 
 | int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { | 
 | #ifdef CONFIG_ZONE_DMA | 
 | 	[ZONE_DMA] = 256, | 
 | #endif | 
 | #ifdef CONFIG_ZONE_DMA32 | 
 | 	[ZONE_DMA32] = 256, | 
 | #endif | 
 | 	[ZONE_NORMAL] = 32, | 
 | #ifdef CONFIG_HIGHMEM | 
 | 	[ZONE_HIGHMEM] = 0, | 
 | #endif | 
 | 	[ZONE_MOVABLE] = 0, | 
 | }; | 
 |  | 
 | static char * const zone_names[MAX_NR_ZONES] = { | 
 | #ifdef CONFIG_ZONE_DMA | 
 | 	 "DMA", | 
 | #endif | 
 | #ifdef CONFIG_ZONE_DMA32 | 
 | 	 "DMA32", | 
 | #endif | 
 | 	 "Normal", | 
 | #ifdef CONFIG_HIGHMEM | 
 | 	 "HighMem", | 
 | #endif | 
 | 	 "Movable", | 
 | #ifdef CONFIG_ZONE_DEVICE | 
 | 	 "Device", | 
 | #endif | 
 | }; | 
 |  | 
 | const char * const migratetype_names[MIGRATE_TYPES] = { | 
 | 	"Unmovable", | 
 | 	"Movable", | 
 | 	"Reclaimable", | 
 | 	"HighAtomic", | 
 | #ifdef CONFIG_CMA | 
 | 	"CMA", | 
 | #endif | 
 | #ifdef CONFIG_MEMORY_ISOLATION | 
 | 	"Isolate", | 
 | #endif | 
 | }; | 
 |  | 
 | compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = { | 
 | 	[NULL_COMPOUND_DTOR] = NULL, | 
 | 	[COMPOUND_PAGE_DTOR] = free_compound_page, | 
 | #ifdef CONFIG_HUGETLB_PAGE | 
 | 	[HUGETLB_PAGE_DTOR] = free_huge_page, | 
 | #endif | 
 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
 | 	[TRANSHUGE_PAGE_DTOR] = free_transhuge_page, | 
 | #endif | 
 | }; | 
 |  | 
 | int min_free_kbytes = 1024; | 
 | int user_min_free_kbytes = -1; | 
 | #ifdef CONFIG_DISCONTIGMEM | 
 | /* | 
 |  * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges | 
 |  * are not on separate NUMA nodes. Functionally this works but with | 
 |  * watermark_boost_factor, it can reclaim prematurely as the ranges can be | 
 |  * quite small. By default, do not boost watermarks on discontigmem as in | 
 |  * many cases very high-order allocations like THP are likely to be | 
 |  * unsupported and the premature reclaim offsets the advantage of long-term | 
 |  * fragmentation avoidance. | 
 |  */ | 
 | int watermark_boost_factor __read_mostly; | 
 | #else | 
 | int watermark_boost_factor __read_mostly = 15000; | 
 | #endif | 
 | int watermark_scale_factor = 10; | 
 |  | 
 | static unsigned long nr_kernel_pages __initdata; | 
 | static unsigned long nr_all_pages __initdata; | 
 | static unsigned long dma_reserve __initdata; | 
 |  | 
 | static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata; | 
 | static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata; | 
 | static unsigned long required_kernelcore __initdata; | 
 | static unsigned long required_kernelcore_percent __initdata; | 
 | static unsigned long required_movablecore __initdata; | 
 | static unsigned long required_movablecore_percent __initdata; | 
 | static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata; | 
 | static bool mirrored_kernelcore __meminitdata; | 
 |  | 
 | /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ | 
 | int movable_zone; | 
 | EXPORT_SYMBOL(movable_zone); | 
 |  | 
 | #if MAX_NUMNODES > 1 | 
 | unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; | 
 | unsigned int nr_online_nodes __read_mostly = 1; | 
 | EXPORT_SYMBOL(nr_node_ids); | 
 | EXPORT_SYMBOL(nr_online_nodes); | 
 | #endif | 
 |  | 
 | int page_group_by_mobility_disabled __read_mostly; | 
 |  | 
 | #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT | 
 | /* | 
 |  * During boot we initialize deferred pages on-demand, as needed, but once | 
 |  * page_alloc_init_late() has finished, the deferred pages are all initialized, | 
 |  * and we can permanently disable that path. | 
 |  */ | 
 | static DEFINE_STATIC_KEY_TRUE(deferred_pages); | 
 |  | 
 | /* | 
 |  * Calling kasan_free_pages() only after deferred memory initialization | 
 |  * has completed. Poisoning pages during deferred memory init will greatly | 
 |  * lengthen the process and cause problem in large memory systems as the | 
 |  * deferred pages initialization is done with interrupt disabled. | 
 |  * | 
 |  * Assuming that there will be no reference to those newly initialized | 
 |  * pages before they are ever allocated, this should have no effect on | 
 |  * KASAN memory tracking as the poison will be properly inserted at page | 
 |  * allocation time. The only corner case is when pages are allocated by | 
 |  * on-demand allocation and then freed again before the deferred pages | 
 |  * initialization is done, but this is not likely to happen. | 
 |  */ | 
 | static inline void kasan_free_nondeferred_pages(struct page *page, int order) | 
 | { | 
 | 	if (!static_branch_unlikely(&deferred_pages)) | 
 | 		kasan_free_pages(page, order); | 
 | } | 
 |  | 
 | /* Returns true if the struct page for the pfn is uninitialised */ | 
 | static inline bool __meminit early_page_uninitialised(unsigned long pfn) | 
 | { | 
 | 	int nid = early_pfn_to_nid(pfn); | 
 |  | 
 | 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) | 
 | 		return true; | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | /* | 
 |  * Returns true when the remaining initialisation should be deferred until | 
 |  * later in the boot cycle when it can be parallelised. | 
 |  */ | 
 | static bool __meminit | 
 | defer_init(int nid, unsigned long pfn, unsigned long end_pfn) | 
 | { | 
 | 	static unsigned long prev_end_pfn, nr_initialised; | 
 |  | 
 | 	/* | 
 | 	 * prev_end_pfn static that contains the end of previous zone | 
 | 	 * No need to protect because called very early in boot before smp_init. | 
 | 	 */ | 
 | 	if (prev_end_pfn != end_pfn) { | 
 | 		prev_end_pfn = end_pfn; | 
 | 		nr_initialised = 0; | 
 | 	} | 
 |  | 
 | 	/* Always populate low zones for address-constrained allocations */ | 
 | 	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid))) | 
 | 		return false; | 
 |  | 
 | 	/* | 
 | 	 * We start only with one section of pages, more pages are added as | 
 | 	 * needed until the rest of deferred pages are initialized. | 
 | 	 */ | 
 | 	nr_initialised++; | 
 | 	if ((nr_initialised > PAGES_PER_SECTION) && | 
 | 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) { | 
 | 		NODE_DATA(nid)->first_deferred_pfn = pfn; | 
 | 		return true; | 
 | 	} | 
 | 	return false; | 
 | } | 
 | #else | 
 | #define kasan_free_nondeferred_pages(p, o)	kasan_free_pages(p, o) | 
 |  | 
 | static inline bool early_page_uninitialised(unsigned long pfn) | 
 | { | 
 | 	return false; | 
 | } | 
 |  | 
 | static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn) | 
 | { | 
 | 	return false; | 
 | } | 
 | #endif | 
 |  | 
 | /* Return a pointer to the bitmap storing bits affecting a block of pages */ | 
 | static inline unsigned long *get_pageblock_bitmap(struct page *page, | 
 | 							unsigned long pfn) | 
 | { | 
 | #ifdef CONFIG_SPARSEMEM | 
 | 	return section_to_usemap(__pfn_to_section(pfn)); | 
 | #else | 
 | 	return page_zone(page)->pageblock_flags; | 
 | #endif /* CONFIG_SPARSEMEM */ | 
 | } | 
 |  | 
 | static inline int pfn_to_bitidx(struct page *page, unsigned long pfn) | 
 | { | 
 | #ifdef CONFIG_SPARSEMEM | 
 | 	pfn &= (PAGES_PER_SECTION-1); | 
 | 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; | 
 | #else | 
 | 	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages); | 
 | 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; | 
 | #endif /* CONFIG_SPARSEMEM */ | 
 | } | 
 |  | 
 | /** | 
 |  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages | 
 |  * @page: The page within the block of interest | 
 |  * @pfn: The target page frame number | 
 |  * @end_bitidx: The last bit of interest to retrieve | 
 |  * @mask: mask of bits that the caller is interested in | 
 |  * | 
 |  * Return: pageblock_bits flags | 
 |  */ | 
 | static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page, | 
 | 					unsigned long pfn, | 
 | 					unsigned long end_bitidx, | 
 | 					unsigned long mask) | 
 | { | 
 | 	unsigned long *bitmap; | 
 | 	unsigned long bitidx, word_bitidx; | 
 | 	unsigned long word; | 
 |  | 
 | 	bitmap = get_pageblock_bitmap(page, pfn); | 
 | 	bitidx = pfn_to_bitidx(page, pfn); | 
 | 	word_bitidx = bitidx / BITS_PER_LONG; | 
 | 	bitidx &= (BITS_PER_LONG-1); | 
 |  | 
 | 	word = bitmap[word_bitidx]; | 
 | 	bitidx += end_bitidx; | 
 | 	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask; | 
 | } | 
 |  | 
 | unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn, | 
 | 					unsigned long end_bitidx, | 
 | 					unsigned long mask) | 
 | { | 
 | 	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask); | 
 | } | 
 |  | 
 | static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn) | 
 | { | 
 | 	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK); | 
 | } | 
 |  | 
 | /** | 
 |  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages | 
 |  * @page: The page within the block of interest | 
 |  * @flags: The flags to set | 
 |  * @pfn: The target page frame number | 
 |  * @end_bitidx: The last bit of interest | 
 |  * @mask: mask of bits that the caller is interested in | 
 |  */ | 
 | void set_pfnblock_flags_mask(struct page *page, unsigned long flags, | 
 | 					unsigned long pfn, | 
 | 					unsigned long end_bitidx, | 
 | 					unsigned long mask) | 
 | { | 
 | 	unsigned long *bitmap; | 
 | 	unsigned long bitidx, word_bitidx; | 
 | 	unsigned long old_word, word; | 
 |  | 
 | 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); | 
 | 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits)); | 
 |  | 
 | 	bitmap = get_pageblock_bitmap(page, pfn); | 
 | 	bitidx = pfn_to_bitidx(page, pfn); | 
 | 	word_bitidx = bitidx / BITS_PER_LONG; | 
 | 	bitidx &= (BITS_PER_LONG-1); | 
 |  | 
 | 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); | 
 |  | 
 | 	bitidx += end_bitidx; | 
 | 	mask <<= (BITS_PER_LONG - bitidx - 1); | 
 | 	flags <<= (BITS_PER_LONG - bitidx - 1); | 
 |  | 
 | 	word = READ_ONCE(bitmap[word_bitidx]); | 
 | 	for (;;) { | 
 | 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags); | 
 | 		if (word == old_word) | 
 | 			break; | 
 | 		word = old_word; | 
 | 	} | 
 | } | 
 |  | 
 | void set_pageblock_migratetype(struct page *page, int migratetype) | 
 | { | 
 | 	if (unlikely(page_group_by_mobility_disabled && | 
 | 		     migratetype < MIGRATE_PCPTYPES)) | 
 | 		migratetype = MIGRATE_UNMOVABLE; | 
 |  | 
 | 	set_pageblock_flags_group(page, (unsigned long)migratetype, | 
 | 					PB_migrate, PB_migrate_end); | 
 | } | 
 |  | 
 | #ifdef CONFIG_DEBUG_VM | 
 | static int page_outside_zone_boundaries(struct zone *zone, struct page *page) | 
 | { | 
 | 	int ret = 0; | 
 | 	unsigned seq; | 
 | 	unsigned long pfn = page_to_pfn(page); | 
 | 	unsigned long sp, start_pfn; | 
 |  | 
 | 	do { | 
 | 		seq = zone_span_seqbegin(zone); | 
 | 		start_pfn = zone->zone_start_pfn; | 
 | 		sp = zone->spanned_pages; | 
 | 		if (!zone_spans_pfn(zone, pfn)) | 
 | 			ret = 1; | 
 | 	} while (zone_span_seqretry(zone, seq)); | 
 |  | 
 | 	if (ret) | 
 | 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", | 
 | 			pfn, zone_to_nid(zone), zone->name, | 
 | 			start_pfn, start_pfn + sp); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int page_is_consistent(struct zone *zone, struct page *page) | 
 | { | 
 | 	if (!pfn_valid_within(page_to_pfn(page))) | 
 | 		return 0; | 
 | 	if (zone != page_zone(page)) | 
 | 		return 0; | 
 |  | 
 | 	return 1; | 
 | } | 
 | /* | 
 |  * Temporary debugging check for pages not lying within a given zone. | 
 |  */ | 
 | static int __maybe_unused bad_range(struct zone *zone, struct page *page) | 
 | { | 
 | 	if (page_outside_zone_boundaries(zone, page)) | 
 | 		return 1; | 
 | 	if (!page_is_consistent(zone, page)) | 
 | 		return 1; | 
 |  | 
 | 	return 0; | 
 | } | 
 | #else | 
 | static inline int __maybe_unused bad_range(struct zone *zone, struct page *page) | 
 | { | 
 | 	return 0; | 
 | } | 
 | #endif | 
 |  | 
 | static void bad_page(struct page *page, const char *reason) | 
 | { | 
 | 	static unsigned long resume; | 
 | 	static unsigned long nr_shown; | 
 | 	static unsigned long nr_unshown; | 
 |  | 
 | 	/* | 
 | 	 * Allow a burst of 60 reports, then keep quiet for that minute; | 
 | 	 * or allow a steady drip of one report per second. | 
 | 	 */ | 
 | 	if (nr_shown == 60) { | 
 | 		if (time_before(jiffies, resume)) { | 
 | 			nr_unshown++; | 
 | 			goto out; | 
 | 		} | 
 | 		if (nr_unshown) { | 
 | 			pr_alert( | 
 | 			      "BUG: Bad page state: %lu messages suppressed\n", | 
 | 				nr_unshown); | 
 | 			nr_unshown = 0; | 
 | 		} | 
 | 		nr_shown = 0; | 
 | 	} | 
 | 	if (nr_shown++ == 0) | 
 | 		resume = jiffies + 60 * HZ; | 
 |  | 
 | 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n", | 
 | 		current->comm, page_to_pfn(page)); | 
 | 	__dump_page(page, reason); | 
 | 	dump_page_owner(page); | 
 |  | 
 | 	print_modules(); | 
 | 	dump_stack(); | 
 | out: | 
 | 	/* Leave bad fields for debug, except PageBuddy could make trouble */ | 
 | 	page_mapcount_reset(page); /* remove PageBuddy */ | 
 | 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); | 
 | } | 
 |  | 
 | /* | 
 |  * Higher-order pages are called "compound pages".  They are structured thusly: | 
 |  * | 
 |  * The first PAGE_SIZE page is called the "head page" and have PG_head set. | 
 |  * | 
 |  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded | 
 |  * in bit 0 of page->compound_head. The rest of bits is pointer to head page. | 
 |  * | 
 |  * The first tail page's ->compound_dtor holds the offset in array of compound | 
 |  * page destructors. See compound_page_dtors. | 
 |  * | 
 |  * The first tail page's ->compound_order holds the order of allocation. | 
 |  * This usage means that zero-order pages may not be compound. | 
 |  */ | 
 |  | 
 | void free_compound_page(struct page *page) | 
 | { | 
 | 	mem_cgroup_uncharge(page); | 
 | 	__free_pages_ok(page, compound_order(page)); | 
 | } | 
 |  | 
 | void prep_compound_page(struct page *page, unsigned int order) | 
 | { | 
 | 	int i; | 
 | 	int nr_pages = 1 << order; | 
 |  | 
 | 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); | 
 | 	set_compound_order(page, order); | 
 | 	__SetPageHead(page); | 
 | 	for (i = 1; i < nr_pages; i++) { | 
 | 		struct page *p = page + i; | 
 | 		set_page_count(p, 0); | 
 | 		p->mapping = TAIL_MAPPING; | 
 | 		set_compound_head(p, page); | 
 | 	} | 
 | 	atomic_set(compound_mapcount_ptr(page), -1); | 
 | 	if (hpage_pincount_available(page)) | 
 | 		atomic_set(compound_pincount_ptr(page), 0); | 
 | } | 
 |  | 
 | #ifdef CONFIG_DEBUG_PAGEALLOC | 
 | unsigned int _debug_guardpage_minorder; | 
 |  | 
 | bool _debug_pagealloc_enabled_early __read_mostly | 
 | 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT); | 
 | EXPORT_SYMBOL(_debug_pagealloc_enabled_early); | 
 | DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); | 
 | EXPORT_SYMBOL(_debug_pagealloc_enabled); | 
 |  | 
 | DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled); | 
 |  | 
 | static int __init early_debug_pagealloc(char *buf) | 
 | { | 
 | 	return kstrtobool(buf, &_debug_pagealloc_enabled_early); | 
 | } | 
 | early_param("debug_pagealloc", early_debug_pagealloc); | 
 |  | 
 | void init_debug_pagealloc(void) | 
 | { | 
 | 	if (!debug_pagealloc_enabled()) | 
 | 		return; | 
 |  | 
 | 	static_branch_enable(&_debug_pagealloc_enabled); | 
 |  | 
 | 	if (!debug_guardpage_minorder()) | 
 | 		return; | 
 |  | 
 | 	static_branch_enable(&_debug_guardpage_enabled); | 
 | } | 
 |  | 
 | static int __init debug_guardpage_minorder_setup(char *buf) | 
 | { | 
 | 	unsigned long res; | 
 |  | 
 | 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) { | 
 | 		pr_err("Bad debug_guardpage_minorder value\n"); | 
 | 		return 0; | 
 | 	} | 
 | 	_debug_guardpage_minorder = res; | 
 | 	pr_info("Setting debug_guardpage_minorder to %lu\n", res); | 
 | 	return 0; | 
 | } | 
 | early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup); | 
 |  | 
 | static inline bool set_page_guard(struct zone *zone, struct page *page, | 
 | 				unsigned int order, int migratetype) | 
 | { | 
 | 	if (!debug_guardpage_enabled()) | 
 | 		return false; | 
 |  | 
 | 	if (order >= debug_guardpage_minorder()) | 
 | 		return false; | 
 |  | 
 | 	__SetPageGuard(page); | 
 | 	INIT_LIST_HEAD(&page->lru); | 
 | 	set_page_private(page, order); | 
 | 	/* Guard pages are not available for any usage */ | 
 | 	__mod_zone_freepage_state(zone, -(1 << order), migratetype); | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static inline void clear_page_guard(struct zone *zone, struct page *page, | 
 | 				unsigned int order, int migratetype) | 
 | { | 
 | 	if (!debug_guardpage_enabled()) | 
 | 		return; | 
 |  | 
 | 	__ClearPageGuard(page); | 
 |  | 
 | 	set_page_private(page, 0); | 
 | 	if (!is_migrate_isolate(migratetype)) | 
 | 		__mod_zone_freepage_state(zone, (1 << order), migratetype); | 
 | } | 
 | #else | 
 | static inline bool set_page_guard(struct zone *zone, struct page *page, | 
 | 			unsigned int order, int migratetype) { return false; } | 
 | static inline void clear_page_guard(struct zone *zone, struct page *page, | 
 | 				unsigned int order, int migratetype) {} | 
 | #endif | 
 |  | 
 | static inline void set_page_order(struct page *page, unsigned int order) | 
 | { | 
 | 	set_page_private(page, order); | 
 | 	__SetPageBuddy(page); | 
 | } | 
 |  | 
 | /* | 
 |  * This function checks whether a page is free && is the buddy | 
 |  * we can coalesce a page and its buddy if | 
 |  * (a) the buddy is not in a hole (check before calling!) && | 
 |  * (b) the buddy is in the buddy system && | 
 |  * (c) a page and its buddy have the same order && | 
 |  * (d) a page and its buddy are in the same zone. | 
 |  * | 
 |  * For recording whether a page is in the buddy system, we set PageBuddy. | 
 |  * Setting, clearing, and testing PageBuddy is serialized by zone->lock. | 
 |  * | 
 |  * For recording page's order, we use page_private(page). | 
 |  */ | 
 | static inline bool page_is_buddy(struct page *page, struct page *buddy, | 
 | 							unsigned int order) | 
 | { | 
 | 	if (!page_is_guard(buddy) && !PageBuddy(buddy)) | 
 | 		return false; | 
 |  | 
 | 	if (page_order(buddy) != order) | 
 | 		return false; | 
 |  | 
 | 	/* | 
 | 	 * zone check is done late to avoid uselessly calculating | 
 | 	 * zone/node ids for pages that could never merge. | 
 | 	 */ | 
 | 	if (page_zone_id(page) != page_zone_id(buddy)) | 
 | 		return false; | 
 |  | 
 | 	VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | #ifdef CONFIG_COMPACTION | 
 | static inline struct capture_control *task_capc(struct zone *zone) | 
 | { | 
 | 	struct capture_control *capc = current->capture_control; | 
 |  | 
 | 	return capc && | 
 | 		!(current->flags & PF_KTHREAD) && | 
 | 		!capc->page && | 
 | 		capc->cc->zone == zone && | 
 | 		capc->cc->direct_compaction ? capc : NULL; | 
 | } | 
 |  | 
 | static inline bool | 
 | compaction_capture(struct capture_control *capc, struct page *page, | 
 | 		   int order, int migratetype) | 
 | { | 
 | 	if (!capc || order != capc->cc->order) | 
 | 		return false; | 
 |  | 
 | 	/* Do not accidentally pollute CMA or isolated regions*/ | 
 | 	if (is_migrate_cma(migratetype) || | 
 | 	    is_migrate_isolate(migratetype)) | 
 | 		return false; | 
 |  | 
 | 	/* | 
 | 	 * Do not let lower order allocations polluate a movable pageblock. | 
 | 	 * This might let an unmovable request use a reclaimable pageblock | 
 | 	 * and vice-versa but no more than normal fallback logic which can | 
 | 	 * have trouble finding a high-order free page. | 
 | 	 */ | 
 | 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE) | 
 | 		return false; | 
 |  | 
 | 	capc->page = page; | 
 | 	return true; | 
 | } | 
 |  | 
 | #else | 
 | static inline struct capture_control *task_capc(struct zone *zone) | 
 | { | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static inline bool | 
 | compaction_capture(struct capture_control *capc, struct page *page, | 
 | 		   int order, int migratetype) | 
 | { | 
 | 	return false; | 
 | } | 
 | #endif /* CONFIG_COMPACTION */ | 
 |  | 
 | /* Used for pages not on another list */ | 
 | static inline void add_to_free_list(struct page *page, struct zone *zone, | 
 | 				    unsigned int order, int migratetype) | 
 | { | 
 | 	struct free_area *area = &zone->free_area[order]; | 
 |  | 
 | 	list_add(&page->lru, &area->free_list[migratetype]); | 
 | 	area->nr_free++; | 
 | } | 
 |  | 
 | /* Used for pages not on another list */ | 
 | static inline void add_to_free_list_tail(struct page *page, struct zone *zone, | 
 | 					 unsigned int order, int migratetype) | 
 | { | 
 | 	struct free_area *area = &zone->free_area[order]; | 
 |  | 
 | 	list_add_tail(&page->lru, &area->free_list[migratetype]); | 
 | 	area->nr_free++; | 
 | } | 
 |  | 
 | /* Used for pages which are on another list */ | 
 | static inline void move_to_free_list(struct page *page, struct zone *zone, | 
 | 				     unsigned int order, int migratetype) | 
 | { | 
 | 	struct free_area *area = &zone->free_area[order]; | 
 |  | 
 | 	list_move(&page->lru, &area->free_list[migratetype]); | 
 | } | 
 |  | 
 | static inline void del_page_from_free_list(struct page *page, struct zone *zone, | 
 | 					   unsigned int order) | 
 | { | 
 | 	/* clear reported state and update reported page count */ | 
 | 	if (page_reported(page)) | 
 | 		__ClearPageReported(page); | 
 |  | 
 | 	list_del(&page->lru); | 
 | 	__ClearPageBuddy(page); | 
 | 	set_page_private(page, 0); | 
 | 	zone->free_area[order].nr_free--; | 
 | } | 
 |  | 
 | /* | 
 |  * If this is not the largest possible page, check if the buddy | 
 |  * of the next-highest order is free. If it is, it's possible | 
 |  * that pages are being freed that will coalesce soon. In case, | 
 |  * that is happening, add the free page to the tail of the list | 
 |  * so it's less likely to be used soon and more likely to be merged | 
 |  * as a higher order page | 
 |  */ | 
 | static inline bool | 
 | buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn, | 
 | 		   struct page *page, unsigned int order) | 
 | { | 
 | 	struct page *higher_page, *higher_buddy; | 
 | 	unsigned long combined_pfn; | 
 |  | 
 | 	if (order >= MAX_ORDER - 2) | 
 | 		return false; | 
 |  | 
 | 	if (!pfn_valid_within(buddy_pfn)) | 
 | 		return false; | 
 |  | 
 | 	combined_pfn = buddy_pfn & pfn; | 
 | 	higher_page = page + (combined_pfn - pfn); | 
 | 	buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1); | 
 | 	higher_buddy = higher_page + (buddy_pfn - combined_pfn); | 
 |  | 
 | 	return pfn_valid_within(buddy_pfn) && | 
 | 	       page_is_buddy(higher_page, higher_buddy, order + 1); | 
 | } | 
 |  | 
 | /* | 
 |  * Freeing function for a buddy system allocator. | 
 |  * | 
 |  * The concept of a buddy system is to maintain direct-mapped table | 
 |  * (containing bit values) for memory blocks of various "orders". | 
 |  * The bottom level table contains the map for the smallest allocatable | 
 |  * units of memory (here, pages), and each level above it describes | 
 |  * pairs of units from the levels below, hence, "buddies". | 
 |  * At a high level, all that happens here is marking the table entry | 
 |  * at the bottom level available, and propagating the changes upward | 
 |  * as necessary, plus some accounting needed to play nicely with other | 
 |  * parts of the VM system. | 
 |  * At each level, we keep a list of pages, which are heads of continuous | 
 |  * free pages of length of (1 << order) and marked with PageBuddy. | 
 |  * Page's order is recorded in page_private(page) field. | 
 |  * So when we are allocating or freeing one, we can derive the state of the | 
 |  * other.  That is, if we allocate a small block, and both were | 
 |  * free, the remainder of the region must be split into blocks. | 
 |  * If a block is freed, and its buddy is also free, then this | 
 |  * triggers coalescing into a block of larger size. | 
 |  * | 
 |  * -- nyc | 
 |  */ | 
 |  | 
 | static inline void __free_one_page(struct page *page, | 
 | 		unsigned long pfn, | 
 | 		struct zone *zone, unsigned int order, | 
 | 		int migratetype, bool report) | 
 | { | 
 | 	struct capture_control *capc = task_capc(zone); | 
 | 	unsigned long uninitialized_var(buddy_pfn); | 
 | 	unsigned long combined_pfn; | 
 | 	unsigned int max_order; | 
 | 	struct page *buddy; | 
 | 	bool to_tail; | 
 |  | 
 | 	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1); | 
 |  | 
 | 	VM_BUG_ON(!zone_is_initialized(zone)); | 
 | 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); | 
 |  | 
 | 	VM_BUG_ON(migratetype == -1); | 
 | 	if (likely(!is_migrate_isolate(migratetype))) | 
 | 		__mod_zone_freepage_state(zone, 1 << order, migratetype); | 
 |  | 
 | 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); | 
 | 	VM_BUG_ON_PAGE(bad_range(zone, page), page); | 
 |  | 
 | continue_merging: | 
 | 	while (order < max_order - 1) { | 
 | 		if (compaction_capture(capc, page, order, migratetype)) { | 
 | 			__mod_zone_freepage_state(zone, -(1 << order), | 
 | 								migratetype); | 
 | 			return; | 
 | 		} | 
 | 		buddy_pfn = __find_buddy_pfn(pfn, order); | 
 | 		buddy = page + (buddy_pfn - pfn); | 
 |  | 
 | 		if (!pfn_valid_within(buddy_pfn)) | 
 | 			goto done_merging; | 
 | 		if (!page_is_buddy(page, buddy, order)) | 
 | 			goto done_merging; | 
 | 		/* | 
 | 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, | 
 | 		 * merge with it and move up one order. | 
 | 		 */ | 
 | 		if (page_is_guard(buddy)) | 
 | 			clear_page_guard(zone, buddy, order, migratetype); | 
 | 		else | 
 | 			del_page_from_free_list(buddy, zone, order); | 
 | 		combined_pfn = buddy_pfn & pfn; | 
 | 		page = page + (combined_pfn - pfn); | 
 | 		pfn = combined_pfn; | 
 | 		order++; | 
 | 	} | 
 | 	if (max_order < MAX_ORDER) { | 
 | 		/* If we are here, it means order is >= pageblock_order. | 
 | 		 * We want to prevent merge between freepages on isolate | 
 | 		 * pageblock and normal pageblock. Without this, pageblock | 
 | 		 * isolation could cause incorrect freepage or CMA accounting. | 
 | 		 * | 
 | 		 * We don't want to hit this code for the more frequent | 
 | 		 * low-order merging. | 
 | 		 */ | 
 | 		if (unlikely(has_isolate_pageblock(zone))) { | 
 | 			int buddy_mt; | 
 |  | 
 | 			buddy_pfn = __find_buddy_pfn(pfn, order); | 
 | 			buddy = page + (buddy_pfn - pfn); | 
 | 			buddy_mt = get_pageblock_migratetype(buddy); | 
 |  | 
 | 			if (migratetype != buddy_mt | 
 | 					&& (is_migrate_isolate(migratetype) || | 
 | 						is_migrate_isolate(buddy_mt))) | 
 | 				goto done_merging; | 
 | 		} | 
 | 		max_order++; | 
 | 		goto continue_merging; | 
 | 	} | 
 |  | 
 | done_merging: | 
 | 	set_page_order(page, order); | 
 |  | 
 | 	if (is_shuffle_order(order)) | 
 | 		to_tail = shuffle_pick_tail(); | 
 | 	else | 
 | 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order); | 
 |  | 
 | 	if (to_tail) | 
 | 		add_to_free_list_tail(page, zone, order, migratetype); | 
 | 	else | 
 | 		add_to_free_list(page, zone, order, migratetype); | 
 |  | 
 | 	/* Notify page reporting subsystem of freed page */ | 
 | 	if (report) | 
 | 		page_reporting_notify_free(order); | 
 | } | 
 |  | 
 | /* | 
 |  * A bad page could be due to a number of fields. Instead of multiple branches, | 
 |  * try and check multiple fields with one check. The caller must do a detailed | 
 |  * check if necessary. | 
 |  */ | 
 | static inline bool page_expected_state(struct page *page, | 
 | 					unsigned long check_flags) | 
 | { | 
 | 	if (unlikely(atomic_read(&page->_mapcount) != -1)) | 
 | 		return false; | 
 |  | 
 | 	if (unlikely((unsigned long)page->mapping | | 
 | 			page_ref_count(page) | | 
 | #ifdef CONFIG_MEMCG | 
 | 			(unsigned long)page->mem_cgroup | | 
 | #endif | 
 | 			(page->flags & check_flags))) | 
 | 		return false; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static const char *page_bad_reason(struct page *page, unsigned long flags) | 
 | { | 
 | 	const char *bad_reason = NULL; | 
 |  | 
 | 	if (unlikely(atomic_read(&page->_mapcount) != -1)) | 
 | 		bad_reason = "nonzero mapcount"; | 
 | 	if (unlikely(page->mapping != NULL)) | 
 | 		bad_reason = "non-NULL mapping"; | 
 | 	if (unlikely(page_ref_count(page) != 0)) | 
 | 		bad_reason = "nonzero _refcount"; | 
 | 	if (unlikely(page->flags & flags)) { | 
 | 		if (flags == PAGE_FLAGS_CHECK_AT_PREP) | 
 | 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set"; | 
 | 		else | 
 | 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; | 
 | 	} | 
 | #ifdef CONFIG_MEMCG | 
 | 	if (unlikely(page->mem_cgroup)) | 
 | 		bad_reason = "page still charged to cgroup"; | 
 | #endif | 
 | 	return bad_reason; | 
 | } | 
 |  | 
 | static void check_free_page_bad(struct page *page) | 
 | { | 
 | 	bad_page(page, | 
 | 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE)); | 
 | } | 
 |  | 
 | static inline int check_free_page(struct page *page) | 
 | { | 
 | 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) | 
 | 		return 0; | 
 |  | 
 | 	/* Something has gone sideways, find it */ | 
 | 	check_free_page_bad(page); | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int free_tail_pages_check(struct page *head_page, struct page *page) | 
 | { | 
 | 	int ret = 1; | 
 |  | 
 | 	/* | 
 | 	 * We rely page->lru.next never has bit 0 set, unless the page | 
 | 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru. | 
 | 	 */ | 
 | 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); | 
 |  | 
 | 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) { | 
 | 		ret = 0; | 
 | 		goto out; | 
 | 	} | 
 | 	switch (page - head_page) { | 
 | 	case 1: | 
 | 		/* the first tail page: ->mapping may be compound_mapcount() */ | 
 | 		if (unlikely(compound_mapcount(page))) { | 
 | 			bad_page(page, "nonzero compound_mapcount"); | 
 | 			goto out; | 
 | 		} | 
 | 		break; | 
 | 	case 2: | 
 | 		/* | 
 | 		 * the second tail page: ->mapping is | 
 | 		 * deferred_list.next -- ignore value. | 
 | 		 */ | 
 | 		break; | 
 | 	default: | 
 | 		if (page->mapping != TAIL_MAPPING) { | 
 | 			bad_page(page, "corrupted mapping in tail page"); | 
 | 			goto out; | 
 | 		} | 
 | 		break; | 
 | 	} | 
 | 	if (unlikely(!PageTail(page))) { | 
 | 		bad_page(page, "PageTail not set"); | 
 | 		goto out; | 
 | 	} | 
 | 	if (unlikely(compound_head(page) != head_page)) { | 
 | 		bad_page(page, "compound_head not consistent"); | 
 | 		goto out; | 
 | 	} | 
 | 	ret = 0; | 
 | out: | 
 | 	page->mapping = NULL; | 
 | 	clear_compound_head(page); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void kernel_init_free_pages(struct page *page, int numpages) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < numpages; i++) | 
 | 		clear_highpage(page + i); | 
 | } | 
 |  | 
 | static __always_inline bool free_pages_prepare(struct page *page, | 
 | 					unsigned int order, bool check_free) | 
 | { | 
 | 	int bad = 0; | 
 |  | 
 | 	VM_BUG_ON_PAGE(PageTail(page), page); | 
 |  | 
 | 	trace_mm_page_free(page, order); | 
 |  | 
 | 	/* | 
 | 	 * Check tail pages before head page information is cleared to | 
 | 	 * avoid checking PageCompound for order-0 pages. | 
 | 	 */ | 
 | 	if (unlikely(order)) { | 
 | 		bool compound = PageCompound(page); | 
 | 		int i; | 
 |  | 
 | 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); | 
 |  | 
 | 		if (compound) | 
 | 			ClearPageDoubleMap(page); | 
 | 		for (i = 1; i < (1 << order); i++) { | 
 | 			if (compound) | 
 | 				bad += free_tail_pages_check(page, page + i); | 
 | 			if (unlikely(check_free_page(page + i))) { | 
 | 				bad++; | 
 | 				continue; | 
 | 			} | 
 | 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; | 
 | 		} | 
 | 	} | 
 | 	if (PageMappingFlags(page)) | 
 | 		page->mapping = NULL; | 
 | 	if (memcg_kmem_enabled() && PageKmemcg(page)) | 
 | 		__memcg_kmem_uncharge_page(page, order); | 
 | 	if (check_free) | 
 | 		bad += check_free_page(page); | 
 | 	if (bad) | 
 | 		return false; | 
 |  | 
 | 	page_cpupid_reset_last(page); | 
 | 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; | 
 | 	reset_page_owner(page, order); | 
 |  | 
 | 	if (!PageHighMem(page)) { | 
 | 		debug_check_no_locks_freed(page_address(page), | 
 | 					   PAGE_SIZE << order); | 
 | 		debug_check_no_obj_freed(page_address(page), | 
 | 					   PAGE_SIZE << order); | 
 | 	} | 
 | 	if (want_init_on_free()) | 
 | 		kernel_init_free_pages(page, 1 << order); | 
 |  | 
 | 	kernel_poison_pages(page, 1 << order, 0); | 
 | 	/* | 
 | 	 * arch_free_page() can make the page's contents inaccessible.  s390 | 
 | 	 * does this.  So nothing which can access the page's contents should | 
 | 	 * happen after this. | 
 | 	 */ | 
 | 	arch_free_page(page, order); | 
 |  | 
 | 	if (debug_pagealloc_enabled_static()) | 
 | 		kernel_map_pages(page, 1 << order, 0); | 
 |  | 
 | 	kasan_free_nondeferred_pages(page, order); | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | #ifdef CONFIG_DEBUG_VM | 
 | /* | 
 |  * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed | 
 |  * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when | 
 |  * moved from pcp lists to free lists. | 
 |  */ | 
 | static bool free_pcp_prepare(struct page *page) | 
 | { | 
 | 	return free_pages_prepare(page, 0, true); | 
 | } | 
 |  | 
 | static bool bulkfree_pcp_prepare(struct page *page) | 
 | { | 
 | 	if (debug_pagealloc_enabled_static()) | 
 | 		return check_free_page(page); | 
 | 	else | 
 | 		return false; | 
 | } | 
 | #else | 
 | /* | 
 |  * With DEBUG_VM disabled, order-0 pages being freed are checked only when | 
 |  * moving from pcp lists to free list in order to reduce overhead. With | 
 |  * debug_pagealloc enabled, they are checked also immediately when being freed | 
 |  * to the pcp lists. | 
 |  */ | 
 | static bool free_pcp_prepare(struct page *page) | 
 | { | 
 | 	if (debug_pagealloc_enabled_static()) | 
 | 		return free_pages_prepare(page, 0, true); | 
 | 	else | 
 | 		return free_pages_prepare(page, 0, false); | 
 | } | 
 |  | 
 | static bool bulkfree_pcp_prepare(struct page *page) | 
 | { | 
 | 	return check_free_page(page); | 
 | } | 
 | #endif /* CONFIG_DEBUG_VM */ | 
 |  | 
 | static inline void prefetch_buddy(struct page *page) | 
 | { | 
 | 	unsigned long pfn = page_to_pfn(page); | 
 | 	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0); | 
 | 	struct page *buddy = page + (buddy_pfn - pfn); | 
 |  | 
 | 	prefetch(buddy); | 
 | } | 
 |  | 
 | /* | 
 |  * Frees a number of pages from the PCP lists | 
 |  * Assumes all pages on list are in same zone, and of same order. | 
 |  * count is the number of pages to free. | 
 |  * | 
 |  * If the zone was previously in an "all pages pinned" state then look to | 
 |  * see if this freeing clears that state. | 
 |  * | 
 |  * And clear the zone's pages_scanned counter, to hold off the "all pages are | 
 |  * pinned" detection logic. | 
 |  */ | 
 | static void free_pcppages_bulk(struct zone *zone, int count, | 
 | 					struct per_cpu_pages *pcp) | 
 | { | 
 | 	int migratetype = 0; | 
 | 	int batch_free = 0; | 
 | 	int prefetch_nr = 0; | 
 | 	bool isolated_pageblocks; | 
 | 	struct page *page, *tmp; | 
 | 	LIST_HEAD(head); | 
 |  | 
 | 	while (count) { | 
 | 		struct list_head *list; | 
 |  | 
 | 		/* | 
 | 		 * Remove pages from lists in a round-robin fashion. A | 
 | 		 * batch_free count is maintained that is incremented when an | 
 | 		 * empty list is encountered.  This is so more pages are freed | 
 | 		 * off fuller lists instead of spinning excessively around empty | 
 | 		 * lists | 
 | 		 */ | 
 | 		do { | 
 | 			batch_free++; | 
 | 			if (++migratetype == MIGRATE_PCPTYPES) | 
 | 				migratetype = 0; | 
 | 			list = &pcp->lists[migratetype]; | 
 | 		} while (list_empty(list)); | 
 |  | 
 | 		/* This is the only non-empty list. Free them all. */ | 
 | 		if (batch_free == MIGRATE_PCPTYPES) | 
 | 			batch_free = count; | 
 |  | 
 | 		do { | 
 | 			page = list_last_entry(list, struct page, lru); | 
 | 			/* must delete to avoid corrupting pcp list */ | 
 | 			list_del(&page->lru); | 
 | 			pcp->count--; | 
 |  | 
 | 			if (bulkfree_pcp_prepare(page)) | 
 | 				continue; | 
 |  | 
 | 			list_add_tail(&page->lru, &head); | 
 |  | 
 | 			/* | 
 | 			 * We are going to put the page back to the global | 
 | 			 * pool, prefetch its buddy to speed up later access | 
 | 			 * under zone->lock. It is believed the overhead of | 
 | 			 * an additional test and calculating buddy_pfn here | 
 | 			 * can be offset by reduced memory latency later. To | 
 | 			 * avoid excessive prefetching due to large count, only | 
 | 			 * prefetch buddy for the first pcp->batch nr of pages. | 
 | 			 */ | 
 | 			if (prefetch_nr++ < pcp->batch) | 
 | 				prefetch_buddy(page); | 
 | 		} while (--count && --batch_free && !list_empty(list)); | 
 | 	} | 
 |  | 
 | 	spin_lock(&zone->lock); | 
 | 	isolated_pageblocks = has_isolate_pageblock(zone); | 
 |  | 
 | 	/* | 
 | 	 * Use safe version since after __free_one_page(), | 
 | 	 * page->lru.next will not point to original list. | 
 | 	 */ | 
 | 	list_for_each_entry_safe(page, tmp, &head, lru) { | 
 | 		int mt = get_pcppage_migratetype(page); | 
 | 		/* MIGRATE_ISOLATE page should not go to pcplists */ | 
 | 		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); | 
 | 		/* Pageblock could have been isolated meanwhile */ | 
 | 		if (unlikely(isolated_pageblocks)) | 
 | 			mt = get_pageblock_migratetype(page); | 
 |  | 
 | 		__free_one_page(page, page_to_pfn(page), zone, 0, mt, true); | 
 | 		trace_mm_page_pcpu_drain(page, 0, mt); | 
 | 	} | 
 | 	spin_unlock(&zone->lock); | 
 | } | 
 |  | 
 | static void free_one_page(struct zone *zone, | 
 | 				struct page *page, unsigned long pfn, | 
 | 				unsigned int order, | 
 | 				int migratetype) | 
 | { | 
 | 	spin_lock(&zone->lock); | 
 | 	if (unlikely(has_isolate_pageblock(zone) || | 
 | 		is_migrate_isolate(migratetype))) { | 
 | 		migratetype = get_pfnblock_migratetype(page, pfn); | 
 | 	} | 
 | 	__free_one_page(page, pfn, zone, order, migratetype, true); | 
 | 	spin_unlock(&zone->lock); | 
 | } | 
 |  | 
 | static void __meminit __init_single_page(struct page *page, unsigned long pfn, | 
 | 				unsigned long zone, int nid) | 
 | { | 
 | 	mm_zero_struct_page(page); | 
 | 	set_page_links(page, zone, nid, pfn); | 
 | 	init_page_count(page); | 
 | 	page_mapcount_reset(page); | 
 | 	page_cpupid_reset_last(page); | 
 | 	page_kasan_tag_reset(page); | 
 |  | 
 | 	INIT_LIST_HEAD(&page->lru); | 
 | #ifdef WANT_PAGE_VIRTUAL | 
 | 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */ | 
 | 	if (!is_highmem_idx(zone)) | 
 | 		set_page_address(page, __va(pfn << PAGE_SHIFT)); | 
 | #endif | 
 | } | 
 |  | 
 | #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT | 
 | static void __meminit init_reserved_page(unsigned long pfn) | 
 | { | 
 | 	pg_data_t *pgdat; | 
 | 	int nid, zid; | 
 |  | 
 | 	if (!early_page_uninitialised(pfn)) | 
 | 		return; | 
 |  | 
 | 	nid = early_pfn_to_nid(pfn); | 
 | 	pgdat = NODE_DATA(nid); | 
 |  | 
 | 	for (zid = 0; zid < MAX_NR_ZONES; zid++) { | 
 | 		struct zone *zone = &pgdat->node_zones[zid]; | 
 |  | 
 | 		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone)) | 
 | 			break; | 
 | 	} | 
 | 	__init_single_page(pfn_to_page(pfn), pfn, zid, nid); | 
 | } | 
 | #else | 
 | static inline void init_reserved_page(unsigned long pfn) | 
 | { | 
 | } | 
 | #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ | 
 |  | 
 | /* | 
 |  * Initialised pages do not have PageReserved set. This function is | 
 |  * called for each range allocated by the bootmem allocator and | 
 |  * marks the pages PageReserved. The remaining valid pages are later | 
 |  * sent to the buddy page allocator. | 
 |  */ | 
 | void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end) | 
 | { | 
 | 	unsigned long start_pfn = PFN_DOWN(start); | 
 | 	unsigned long end_pfn = PFN_UP(end); | 
 |  | 
 | 	for (; start_pfn < end_pfn; start_pfn++) { | 
 | 		if (pfn_valid(start_pfn)) { | 
 | 			struct page *page = pfn_to_page(start_pfn); | 
 |  | 
 | 			init_reserved_page(start_pfn); | 
 |  | 
 | 			/* Avoid false-positive PageTail() */ | 
 | 			INIT_LIST_HEAD(&page->lru); | 
 |  | 
 | 			/* | 
 | 			 * no need for atomic set_bit because the struct | 
 | 			 * page is not visible yet so nobody should | 
 | 			 * access it yet. | 
 | 			 */ | 
 | 			__SetPageReserved(page); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static void __free_pages_ok(struct page *page, unsigned int order) | 
 | { | 
 | 	unsigned long flags; | 
 | 	int migratetype; | 
 | 	unsigned long pfn = page_to_pfn(page); | 
 |  | 
 | 	if (!free_pages_prepare(page, order, true)) | 
 | 		return; | 
 |  | 
 | 	migratetype = get_pfnblock_migratetype(page, pfn); | 
 | 	local_irq_save(flags); | 
 | 	__count_vm_events(PGFREE, 1 << order); | 
 | 	free_one_page(page_zone(page), page, pfn, order, migratetype); | 
 | 	local_irq_restore(flags); | 
 | } | 
 |  | 
 | void __free_pages_core(struct page *page, unsigned int order) | 
 | { | 
 | 	unsigned int nr_pages = 1 << order; | 
 | 	struct page *p = page; | 
 | 	unsigned int loop; | 
 |  | 
 | 	prefetchw(p); | 
 | 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) { | 
 | 		prefetchw(p + 1); | 
 | 		__ClearPageReserved(p); | 
 | 		set_page_count(p, 0); | 
 | 	} | 
 | 	__ClearPageReserved(p); | 
 | 	set_page_count(p, 0); | 
 |  | 
 | 	atomic_long_add(nr_pages, &page_zone(page)->managed_pages); | 
 | 	set_page_refcounted(page); | 
 | 	__free_pages(page, order); | 
 | } | 
 |  | 
 | #ifdef CONFIG_NEED_MULTIPLE_NODES | 
 |  | 
 | static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; | 
 |  | 
 | #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID | 
 |  | 
 | /* | 
 |  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. | 
 |  */ | 
 | int __meminit __early_pfn_to_nid(unsigned long pfn, | 
 | 					struct mminit_pfnnid_cache *state) | 
 | { | 
 | 	unsigned long start_pfn, end_pfn; | 
 | 	int nid; | 
 |  | 
 | 	if (state->last_start <= pfn && pfn < state->last_end) | 
 | 		return state->last_nid; | 
 |  | 
 | 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); | 
 | 	if (nid != NUMA_NO_NODE) { | 
 | 		state->last_start = start_pfn; | 
 | 		state->last_end = end_pfn; | 
 | 		state->last_nid = nid; | 
 | 	} | 
 |  | 
 | 	return nid; | 
 | } | 
 | #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ | 
 |  | 
 | int __meminit early_pfn_to_nid(unsigned long pfn) | 
 | { | 
 | 	static DEFINE_SPINLOCK(early_pfn_lock); | 
 | 	int nid; | 
 |  | 
 | 	spin_lock(&early_pfn_lock); | 
 | 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); | 
 | 	if (nid < 0) | 
 | 		nid = first_online_node; | 
 | 	spin_unlock(&early_pfn_lock); | 
 |  | 
 | 	return nid; | 
 | } | 
 | #endif /* CONFIG_NEED_MULTIPLE_NODES */ | 
 |  | 
 | void __init memblock_free_pages(struct page *page, unsigned long pfn, | 
 | 							unsigned int order) | 
 | { | 
 | 	if (early_page_uninitialised(pfn)) | 
 | 		return; | 
 | 	__free_pages_core(page, order); | 
 | } | 
 |  | 
 | /* | 
 |  * Check that the whole (or subset of) a pageblock given by the interval of | 
 |  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it | 
 |  * with the migration of free compaction scanner. The scanners then need to | 
 |  * use only pfn_valid_within() check for arches that allow holes within | 
 |  * pageblocks. | 
 |  * | 
 |  * Return struct page pointer of start_pfn, or NULL if checks were not passed. | 
 |  * | 
 |  * It's possible on some configurations to have a setup like node0 node1 node0 | 
 |  * i.e. it's possible that all pages within a zones range of pages do not | 
 |  * belong to a single zone. We assume that a border between node0 and node1 | 
 |  * can occur within a single pageblock, but not a node0 node1 node0 | 
 |  * interleaving within a single pageblock. It is therefore sufficient to check | 
 |  * the first and last page of a pageblock and avoid checking each individual | 
 |  * page in a pageblock. | 
 |  */ | 
 | struct page *__pageblock_pfn_to_page(unsigned long start_pfn, | 
 | 				     unsigned long end_pfn, struct zone *zone) | 
 | { | 
 | 	struct page *start_page; | 
 | 	struct page *end_page; | 
 |  | 
 | 	/* end_pfn is one past the range we are checking */ | 
 | 	end_pfn--; | 
 |  | 
 | 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn)) | 
 | 		return NULL; | 
 |  | 
 | 	start_page = pfn_to_online_page(start_pfn); | 
 | 	if (!start_page) | 
 | 		return NULL; | 
 |  | 
 | 	if (page_zone(start_page) != zone) | 
 | 		return NULL; | 
 |  | 
 | 	end_page = pfn_to_page(end_pfn); | 
 |  | 
 | 	/* This gives a shorter code than deriving page_zone(end_page) */ | 
 | 	if (page_zone_id(start_page) != page_zone_id(end_page)) | 
 | 		return NULL; | 
 |  | 
 | 	return start_page; | 
 | } | 
 |  | 
 | void set_zone_contiguous(struct zone *zone) | 
 | { | 
 | 	unsigned long block_start_pfn = zone->zone_start_pfn; | 
 | 	unsigned long block_end_pfn; | 
 |  | 
 | 	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages); | 
 | 	for (; block_start_pfn < zone_end_pfn(zone); | 
 | 			block_start_pfn = block_end_pfn, | 
 | 			 block_end_pfn += pageblock_nr_pages) { | 
 |  | 
 | 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); | 
 |  | 
 | 		if (!__pageblock_pfn_to_page(block_start_pfn, | 
 | 					     block_end_pfn, zone)) | 
 | 			return; | 
 | 		cond_resched(); | 
 | 	} | 
 |  | 
 | 	/* We confirm that there is no hole */ | 
 | 	zone->contiguous = true; | 
 | } | 
 |  | 
 | void clear_zone_contiguous(struct zone *zone) | 
 | { | 
 | 	zone->contiguous = false; | 
 | } | 
 |  | 
 | #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT | 
 | static void __init deferred_free_range(unsigned long pfn, | 
 | 				       unsigned long nr_pages) | 
 | { | 
 | 	struct page *page; | 
 | 	unsigned long i; | 
 |  | 
 | 	if (!nr_pages) | 
 | 		return; | 
 |  | 
 | 	page = pfn_to_page(pfn); | 
 |  | 
 | 	/* Free a large naturally-aligned chunk if possible */ | 
 | 	if (nr_pages == pageblock_nr_pages && | 
 | 	    (pfn & (pageblock_nr_pages - 1)) == 0) { | 
 | 		set_pageblock_migratetype(page, MIGRATE_MOVABLE); | 
 | 		__free_pages_core(page, pageblock_order); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < nr_pages; i++, page++, pfn++) { | 
 | 		if ((pfn & (pageblock_nr_pages - 1)) == 0) | 
 | 			set_pageblock_migratetype(page, MIGRATE_MOVABLE); | 
 | 		__free_pages_core(page, 0); | 
 | 	} | 
 | } | 
 |  | 
 | /* Completion tracking for deferred_init_memmap() threads */ | 
 | static atomic_t pgdat_init_n_undone __initdata; | 
 | static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); | 
 |  | 
 | static inline void __init pgdat_init_report_one_done(void) | 
 | { | 
 | 	if (atomic_dec_and_test(&pgdat_init_n_undone)) | 
 | 		complete(&pgdat_init_all_done_comp); | 
 | } | 
 |  | 
 | /* | 
 |  * Returns true if page needs to be initialized or freed to buddy allocator. | 
 |  * | 
 |  * First we check if pfn is valid on architectures where it is possible to have | 
 |  * holes within pageblock_nr_pages. On systems where it is not possible, this | 
 |  * function is optimized out. | 
 |  * | 
 |  * Then, we check if a current large page is valid by only checking the validity | 
 |  * of the head pfn. | 
 |  */ | 
 | static inline bool __init deferred_pfn_valid(unsigned long pfn) | 
 | { | 
 | 	if (!pfn_valid_within(pfn)) | 
 | 		return false; | 
 | 	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn)) | 
 | 		return false; | 
 | 	return true; | 
 | } | 
 |  | 
 | /* | 
 |  * Free pages to buddy allocator. Try to free aligned pages in | 
 |  * pageblock_nr_pages sizes. | 
 |  */ | 
 | static void __init deferred_free_pages(unsigned long pfn, | 
 | 				       unsigned long end_pfn) | 
 | { | 
 | 	unsigned long nr_pgmask = pageblock_nr_pages - 1; | 
 | 	unsigned long nr_free = 0; | 
 |  | 
 | 	for (; pfn < end_pfn; pfn++) { | 
 | 		if (!deferred_pfn_valid(pfn)) { | 
 | 			deferred_free_range(pfn - nr_free, nr_free); | 
 | 			nr_free = 0; | 
 | 		} else if (!(pfn & nr_pgmask)) { | 
 | 			deferred_free_range(pfn - nr_free, nr_free); | 
 | 			nr_free = 1; | 
 | 		} else { | 
 | 			nr_free++; | 
 | 		} | 
 | 	} | 
 | 	/* Free the last block of pages to allocator */ | 
 | 	deferred_free_range(pfn - nr_free, nr_free); | 
 | } | 
 |  | 
 | /* | 
 |  * Initialize struct pages.  We minimize pfn page lookups and scheduler checks | 
 |  * by performing it only once every pageblock_nr_pages. | 
 |  * Return number of pages initialized. | 
 |  */ | 
 | static unsigned long  __init deferred_init_pages(struct zone *zone, | 
 | 						 unsigned long pfn, | 
 | 						 unsigned long end_pfn) | 
 | { | 
 | 	unsigned long nr_pgmask = pageblock_nr_pages - 1; | 
 | 	int nid = zone_to_nid(zone); | 
 | 	unsigned long nr_pages = 0; | 
 | 	int zid = zone_idx(zone); | 
 | 	struct page *page = NULL; | 
 |  | 
 | 	for (; pfn < end_pfn; pfn++) { | 
 | 		if (!deferred_pfn_valid(pfn)) { | 
 | 			page = NULL; | 
 | 			continue; | 
 | 		} else if (!page || !(pfn & nr_pgmask)) { | 
 | 			page = pfn_to_page(pfn); | 
 | 		} else { | 
 | 			page++; | 
 | 		} | 
 | 		__init_single_page(page, pfn, zid, nid); | 
 | 		nr_pages++; | 
 | 	} | 
 | 	return (nr_pages); | 
 | } | 
 |  | 
 | /* | 
 |  * This function is meant to pre-load the iterator for the zone init. | 
 |  * Specifically it walks through the ranges until we are caught up to the | 
 |  * first_init_pfn value and exits there. If we never encounter the value we | 
 |  * return false indicating there are no valid ranges left. | 
 |  */ | 
 | static bool __init | 
 | deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone, | 
 | 				    unsigned long *spfn, unsigned long *epfn, | 
 | 				    unsigned long first_init_pfn) | 
 | { | 
 | 	u64 j; | 
 |  | 
 | 	/* | 
 | 	 * Start out by walking through the ranges in this zone that have | 
 | 	 * already been initialized. We don't need to do anything with them | 
 | 	 * so we just need to flush them out of the system. | 
 | 	 */ | 
 | 	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) { | 
 | 		if (*epfn <= first_init_pfn) | 
 | 			continue; | 
 | 		if (*spfn < first_init_pfn) | 
 | 			*spfn = first_init_pfn; | 
 | 		*i = j; | 
 | 		return true; | 
 | 	} | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | /* | 
 |  * Initialize and free pages. We do it in two loops: first we initialize | 
 |  * struct page, then free to buddy allocator, because while we are | 
 |  * freeing pages we can access pages that are ahead (computing buddy | 
 |  * page in __free_one_page()). | 
 |  * | 
 |  * In order to try and keep some memory in the cache we have the loop | 
 |  * broken along max page order boundaries. This way we will not cause | 
 |  * any issues with the buddy page computation. | 
 |  */ | 
 | static unsigned long __init | 
 | deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn, | 
 | 		       unsigned long *end_pfn) | 
 | { | 
 | 	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES); | 
 | 	unsigned long spfn = *start_pfn, epfn = *end_pfn; | 
 | 	unsigned long nr_pages = 0; | 
 | 	u64 j = *i; | 
 |  | 
 | 	/* First we loop through and initialize the page values */ | 
 | 	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) { | 
 | 		unsigned long t; | 
 |  | 
 | 		if (mo_pfn <= *start_pfn) | 
 | 			break; | 
 |  | 
 | 		t = min(mo_pfn, *end_pfn); | 
 | 		nr_pages += deferred_init_pages(zone, *start_pfn, t); | 
 |  | 
 | 		if (mo_pfn < *end_pfn) { | 
 | 			*start_pfn = mo_pfn; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Reset values and now loop through freeing pages as needed */ | 
 | 	swap(j, *i); | 
 |  | 
 | 	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) { | 
 | 		unsigned long t; | 
 |  | 
 | 		if (mo_pfn <= spfn) | 
 | 			break; | 
 |  | 
 | 		t = min(mo_pfn, epfn); | 
 | 		deferred_free_pages(spfn, t); | 
 |  | 
 | 		if (mo_pfn <= epfn) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	return nr_pages; | 
 | } | 
 |  | 
 | static void __init | 
 | deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn, | 
 | 			   void *arg) | 
 | { | 
 | 	unsigned long spfn, epfn; | 
 | 	struct zone *zone = arg; | 
 | 	u64 i; | 
 |  | 
 | 	deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn); | 
 |  | 
 | 	/* | 
 | 	 * Initialize and free pages in MAX_ORDER sized increments so that we | 
 | 	 * can avoid introducing any issues with the buddy allocator. | 
 | 	 */ | 
 | 	while (spfn < end_pfn) { | 
 | 		deferred_init_maxorder(&i, zone, &spfn, &epfn); | 
 | 		cond_resched(); | 
 | 	} | 
 | } | 
 |  | 
 | /* An arch may override for more concurrency. */ | 
 | __weak int __init | 
 | deferred_page_init_max_threads(const struct cpumask *node_cpumask) | 
 | { | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* Initialise remaining memory on a node */ | 
 | static int __init deferred_init_memmap(void *data) | 
 | { | 
 | 	pg_data_t *pgdat = data; | 
 | 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); | 
 | 	unsigned long spfn = 0, epfn = 0; | 
 | 	unsigned long first_init_pfn, flags; | 
 | 	unsigned long start = jiffies; | 
 | 	struct zone *zone; | 
 | 	int zid, max_threads; | 
 | 	u64 i; | 
 |  | 
 | 	/* Bind memory initialisation thread to a local node if possible */ | 
 | 	if (!cpumask_empty(cpumask)) | 
 | 		set_cpus_allowed_ptr(current, cpumask); | 
 |  | 
 | 	pgdat_resize_lock(pgdat, &flags); | 
 | 	first_init_pfn = pgdat->first_deferred_pfn; | 
 | 	if (first_init_pfn == ULONG_MAX) { | 
 | 		pgdat_resize_unlock(pgdat, &flags); | 
 | 		pgdat_init_report_one_done(); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* Sanity check boundaries */ | 
 | 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); | 
 | 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); | 
 | 	pgdat->first_deferred_pfn = ULONG_MAX; | 
 |  | 
 | 	/* | 
 | 	 * Once we unlock here, the zone cannot be grown anymore, thus if an | 
 | 	 * interrupt thread must allocate this early in boot, zone must be | 
 | 	 * pre-grown prior to start of deferred page initialization. | 
 | 	 */ | 
 | 	pgdat_resize_unlock(pgdat, &flags); | 
 |  | 
 | 	/* Only the highest zone is deferred so find it */ | 
 | 	for (zid = 0; zid < MAX_NR_ZONES; zid++) { | 
 | 		zone = pgdat->node_zones + zid; | 
 | 		if (first_init_pfn < zone_end_pfn(zone)) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	/* If the zone is empty somebody else may have cleared out the zone */ | 
 | 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, | 
 | 						 first_init_pfn)) | 
 | 		goto zone_empty; | 
 |  | 
 | 	max_threads = deferred_page_init_max_threads(cpumask); | 
 |  | 
 | 	while (spfn < epfn) { | 
 | 		unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION); | 
 | 		struct padata_mt_job job = { | 
 | 			.thread_fn   = deferred_init_memmap_chunk, | 
 | 			.fn_arg      = zone, | 
 | 			.start       = spfn, | 
 | 			.size        = epfn_align - spfn, | 
 | 			.align       = PAGES_PER_SECTION, | 
 | 			.min_chunk   = PAGES_PER_SECTION, | 
 | 			.max_threads = max_threads, | 
 | 		}; | 
 |  | 
 | 		padata_do_multithreaded(&job); | 
 | 		deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, | 
 | 						    epfn_align); | 
 | 	} | 
 | zone_empty: | 
 | 	/* Sanity check that the next zone really is unpopulated */ | 
 | 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); | 
 |  | 
 | 	pr_info("node %d deferred pages initialised in %ums\n", | 
 | 		pgdat->node_id, jiffies_to_msecs(jiffies - start)); | 
 |  | 
 | 	pgdat_init_report_one_done(); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * If this zone has deferred pages, try to grow it by initializing enough | 
 |  * deferred pages to satisfy the allocation specified by order, rounded up to | 
 |  * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments | 
 |  * of SECTION_SIZE bytes by initializing struct pages in increments of | 
 |  * PAGES_PER_SECTION * sizeof(struct page) bytes. | 
 |  * | 
 |  * Return true when zone was grown, otherwise return false. We return true even | 
 |  * when we grow less than requested, to let the caller decide if there are | 
 |  * enough pages to satisfy the allocation. | 
 |  * | 
 |  * Note: We use noinline because this function is needed only during boot, and | 
 |  * it is called from a __ref function _deferred_grow_zone. This way we are | 
 |  * making sure that it is not inlined into permanent text section. | 
 |  */ | 
 | static noinline bool __init | 
 | deferred_grow_zone(struct zone *zone, unsigned int order) | 
 | { | 
 | 	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION); | 
 | 	pg_data_t *pgdat = zone->zone_pgdat; | 
 | 	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn; | 
 | 	unsigned long spfn, epfn, flags; | 
 | 	unsigned long nr_pages = 0; | 
 | 	u64 i; | 
 |  | 
 | 	/* Only the last zone may have deferred pages */ | 
 | 	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat)) | 
 | 		return false; | 
 |  | 
 | 	pgdat_resize_lock(pgdat, &flags); | 
 |  | 
 | 	/* | 
 | 	 * If someone grew this zone while we were waiting for spinlock, return | 
 | 	 * true, as there might be enough pages already. | 
 | 	 */ | 
 | 	if (first_deferred_pfn != pgdat->first_deferred_pfn) { | 
 | 		pgdat_resize_unlock(pgdat, &flags); | 
 | 		return true; | 
 | 	} | 
 |  | 
 | 	/* If the zone is empty somebody else may have cleared out the zone */ | 
 | 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, | 
 | 						 first_deferred_pfn)) { | 
 | 		pgdat->first_deferred_pfn = ULONG_MAX; | 
 | 		pgdat_resize_unlock(pgdat, &flags); | 
 | 		/* Retry only once. */ | 
 | 		return first_deferred_pfn != ULONG_MAX; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Initialize and free pages in MAX_ORDER sized increments so | 
 | 	 * that we can avoid introducing any issues with the buddy | 
 | 	 * allocator. | 
 | 	 */ | 
 | 	while (spfn < epfn) { | 
 | 		/* update our first deferred PFN for this section */ | 
 | 		first_deferred_pfn = spfn; | 
 |  | 
 | 		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn); | 
 | 		touch_nmi_watchdog(); | 
 |  | 
 | 		/* We should only stop along section boundaries */ | 
 | 		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION) | 
 | 			continue; | 
 |  | 
 | 		/* If our quota has been met we can stop here */ | 
 | 		if (nr_pages >= nr_pages_needed) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	pgdat->first_deferred_pfn = spfn; | 
 | 	pgdat_resize_unlock(pgdat, &flags); | 
 |  | 
 | 	return nr_pages > 0; | 
 | } | 
 |  | 
 | /* | 
 |  * deferred_grow_zone() is __init, but it is called from | 
 |  * get_page_from_freelist() during early boot until deferred_pages permanently | 
 |  * disables this call. This is why we have refdata wrapper to avoid warning, | 
 |  * and to ensure that the function body gets unloaded. | 
 |  */ | 
 | static bool __ref | 
 | _deferred_grow_zone(struct zone *zone, unsigned int order) | 
 | { | 
 | 	return deferred_grow_zone(zone, order); | 
 | } | 
 |  | 
 | #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ | 
 |  | 
 | void __init page_alloc_init_late(void) | 
 | { | 
 | 	struct zone *zone; | 
 | 	int nid; | 
 |  | 
 | #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT | 
 |  | 
 | 	/* There will be num_node_state(N_MEMORY) threads */ | 
 | 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); | 
 | 	for_each_node_state(nid, N_MEMORY) { | 
 | 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); | 
 | 	} | 
 |  | 
 | 	/* Block until all are initialised */ | 
 | 	wait_for_completion(&pgdat_init_all_done_comp); | 
 |  | 
 | 	/* | 
 | 	 * The number of managed pages has changed due to the initialisation | 
 | 	 * so the pcpu batch and high limits needs to be updated or the limits | 
 | 	 * will be artificially small. | 
 | 	 */ | 
 | 	for_each_populated_zone(zone) | 
 | 		zone_pcp_update(zone); | 
 |  | 
 | 	/* | 
 | 	 * We initialized the rest of the deferred pages.  Permanently disable | 
 | 	 * on-demand struct page initialization. | 
 | 	 */ | 
 | 	static_branch_disable(&deferred_pages); | 
 |  | 
 | 	/* Reinit limits that are based on free pages after the kernel is up */ | 
 | 	files_maxfiles_init(); | 
 | #endif | 
 |  | 
 | 	/* Discard memblock private memory */ | 
 | 	memblock_discard(); | 
 |  | 
 | 	for_each_node_state(nid, N_MEMORY) | 
 | 		shuffle_free_memory(NODE_DATA(nid)); | 
 |  | 
 | 	for_each_populated_zone(zone) | 
 | 		set_zone_contiguous(zone); | 
 | } | 
 |  | 
 | #ifdef CONFIG_CMA | 
 | /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ | 
 | void __init init_cma_reserved_pageblock(struct page *page) | 
 | { | 
 | 	unsigned i = pageblock_nr_pages; | 
 | 	struct page *p = page; | 
 |  | 
 | 	do { | 
 | 		__ClearPageReserved(p); | 
 | 		set_page_count(p, 0); | 
 | 	} while (++p, --i); | 
 |  | 
 | 	set_pageblock_migratetype(page, MIGRATE_CMA); | 
 |  | 
 | 	if (pageblock_order >= MAX_ORDER) { | 
 | 		i = pageblock_nr_pages; | 
 | 		p = page; | 
 | 		do { | 
 | 			set_page_refcounted(p); | 
 | 			__free_pages(p, MAX_ORDER - 1); | 
 | 			p += MAX_ORDER_NR_PAGES; | 
 | 		} while (i -= MAX_ORDER_NR_PAGES); | 
 | 	} else { | 
 | 		set_page_refcounted(page); | 
 | 		__free_pages(page, pageblock_order); | 
 | 	} | 
 |  | 
 | 	adjust_managed_page_count(page, pageblock_nr_pages); | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * The order of subdivision here is critical for the IO subsystem. | 
 |  * Please do not alter this order without good reasons and regression | 
 |  * testing. Specifically, as large blocks of memory are subdivided, | 
 |  * the order in which smaller blocks are delivered depends on the order | 
 |  * they're subdivided in this function. This is the primary factor | 
 |  * influencing the order in which pages are delivered to the IO | 
 |  * subsystem according to empirical testing, and this is also justified | 
 |  * by considering the behavior of a buddy system containing a single | 
 |  * large block of memory acted on by a series of small allocations. | 
 |  * This behavior is a critical factor in sglist merging's success. | 
 |  * | 
 |  * -- nyc | 
 |  */ | 
 | static inline void expand(struct zone *zone, struct page *page, | 
 | 	int low, int high, int migratetype) | 
 | { | 
 | 	unsigned long size = 1 << high; | 
 |  | 
 | 	while (high > low) { | 
 | 		high--; | 
 | 		size >>= 1; | 
 | 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); | 
 |  | 
 | 		/* | 
 | 		 * Mark as guard pages (or page), that will allow to | 
 | 		 * merge back to allocator when buddy will be freed. | 
 | 		 * Corresponding page table entries will not be touched, | 
 | 		 * pages will stay not present in virtual address space | 
 | 		 */ | 
 | 		if (set_page_guard(zone, &page[size], high, migratetype)) | 
 | 			continue; | 
 |  | 
 | 		add_to_free_list(&page[size], zone, high, migratetype); | 
 | 		set_page_order(&page[size], high); | 
 | 	} | 
 | } | 
 |  | 
 | static void check_new_page_bad(struct page *page) | 
 | { | 
 | 	if (unlikely(page->flags & __PG_HWPOISON)) { | 
 | 		/* Don't complain about hwpoisoned pages */ | 
 | 		page_mapcount_reset(page); /* remove PageBuddy */ | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	bad_page(page, | 
 | 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP)); | 
 | } | 
 |  | 
 | /* | 
 |  * This page is about to be returned from the page allocator | 
 |  */ | 
 | static inline int check_new_page(struct page *page) | 
 | { | 
 | 	if (likely(page_expected_state(page, | 
 | 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) | 
 | 		return 0; | 
 |  | 
 | 	check_new_page_bad(page); | 
 | 	return 1; | 
 | } | 
 |  | 
 | static inline bool free_pages_prezeroed(void) | 
 | { | 
 | 	return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) && | 
 | 		page_poisoning_enabled()) || want_init_on_free(); | 
 | } | 
 |  | 
 | #ifdef CONFIG_DEBUG_VM | 
 | /* | 
 |  * With DEBUG_VM enabled, order-0 pages are checked for expected state when | 
 |  * being allocated from pcp lists. With debug_pagealloc also enabled, they are | 
 |  * also checked when pcp lists are refilled from the free lists. | 
 |  */ | 
 | static inline bool check_pcp_refill(struct page *page) | 
 | { | 
 | 	if (debug_pagealloc_enabled_static()) | 
 | 		return check_new_page(page); | 
 | 	else | 
 | 		return false; | 
 | } | 
 |  | 
 | static inline bool check_new_pcp(struct page *page) | 
 | { | 
 | 	return check_new_page(page); | 
 | } | 
 | #else | 
 | /* | 
 |  * With DEBUG_VM disabled, free order-0 pages are checked for expected state | 
 |  * when pcp lists are being refilled from the free lists. With debug_pagealloc | 
 |  * enabled, they are also checked when being allocated from the pcp lists. | 
 |  */ | 
 | static inline bool check_pcp_refill(struct page *page) | 
 | { | 
 | 	return check_new_page(page); | 
 | } | 
 | static inline bool check_new_pcp(struct page *page) | 
 | { | 
 | 	if (debug_pagealloc_enabled_static()) | 
 | 		return check_new_page(page); | 
 | 	else | 
 | 		return false; | 
 | } | 
 | #endif /* CONFIG_DEBUG_VM */ | 
 |  | 
 | static bool check_new_pages(struct page *page, unsigned int order) | 
 | { | 
 | 	int i; | 
 | 	for (i = 0; i < (1 << order); i++) { | 
 | 		struct page *p = page + i; | 
 |  | 
 | 		if (unlikely(check_new_page(p))) | 
 | 			return true; | 
 | 	} | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | inline void post_alloc_hook(struct page *page, unsigned int order, | 
 | 				gfp_t gfp_flags) | 
 | { | 
 | 	set_page_private(page, 0); | 
 | 	set_page_refcounted(page); | 
 |  | 
 | 	arch_alloc_page(page, order); | 
 | 	if (debug_pagealloc_enabled_static()) | 
 | 		kernel_map_pages(page, 1 << order, 1); | 
 | 	kasan_alloc_pages(page, order); | 
 | 	kernel_poison_pages(page, 1 << order, 1); | 
 | 	set_page_owner(page, order, gfp_flags); | 
 | } | 
 |  | 
 | static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, | 
 | 							unsigned int alloc_flags) | 
 | { | 
 | 	post_alloc_hook(page, order, gfp_flags); | 
 |  | 
 | 	if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags)) | 
 | 		kernel_init_free_pages(page, 1 << order); | 
 |  | 
 | 	if (order && (gfp_flags & __GFP_COMP)) | 
 | 		prep_compound_page(page, order); | 
 |  | 
 | 	/* | 
 | 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to | 
 | 	 * allocate the page. The expectation is that the caller is taking | 
 | 	 * steps that will free more memory. The caller should avoid the page | 
 | 	 * being used for !PFMEMALLOC purposes. | 
 | 	 */ | 
 | 	if (alloc_flags & ALLOC_NO_WATERMARKS) | 
 | 		set_page_pfmemalloc(page); | 
 | 	else | 
 | 		clear_page_pfmemalloc(page); | 
 | } | 
 |  | 
 | /* | 
 |  * Go through the free lists for the given migratetype and remove | 
 |  * the smallest available page from the freelists | 
 |  */ | 
 | static __always_inline | 
 | struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, | 
 | 						int migratetype) | 
 | { | 
 | 	unsigned int current_order; | 
 | 	struct free_area *area; | 
 | 	struct page *page; | 
 |  | 
 | 	/* Find a page of the appropriate size in the preferred list */ | 
 | 	for (current_order = order; current_order < MAX_ORDER; ++current_order) { | 
 | 		area = &(zone->free_area[current_order]); | 
 | 		page = get_page_from_free_area(area, migratetype); | 
 | 		if (!page) | 
 | 			continue; | 
 | 		del_page_from_free_list(page, zone, current_order); | 
 | 		expand(zone, page, order, current_order, migratetype); | 
 | 		set_pcppage_migratetype(page, migratetype); | 
 | 		return page; | 
 | 	} | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * This array describes the order lists are fallen back to when | 
 |  * the free lists for the desirable migrate type are depleted | 
 |  */ | 
 | static int fallbacks[MIGRATE_TYPES][4] = { | 
 | 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES }, | 
 | 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES }, | 
 | 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES }, | 
 | #ifdef CONFIG_CMA | 
 | 	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */ | 
 | #endif | 
 | #ifdef CONFIG_MEMORY_ISOLATION | 
 | 	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */ | 
 | #endif | 
 | }; | 
 |  | 
 | #ifdef CONFIG_CMA | 
 | static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, | 
 | 					unsigned int order) | 
 | { | 
 | 	return __rmqueue_smallest(zone, order, MIGRATE_CMA); | 
 | } | 
 | #else | 
 | static inline struct page *__rmqueue_cma_fallback(struct zone *zone, | 
 | 					unsigned int order) { return NULL; } | 
 | #endif | 
 |  | 
 | /* | 
 |  * Move the free pages in a range to the free lists of the requested type. | 
 |  * Note that start_page and end_pages are not aligned on a pageblock | 
 |  * boundary. If alignment is required, use move_freepages_block() | 
 |  */ | 
 | static int move_freepages(struct zone *zone, | 
 | 			  struct page *start_page, struct page *end_page, | 
 | 			  int migratetype, int *num_movable) | 
 | { | 
 | 	struct page *page; | 
 | 	unsigned int order; | 
 | 	int pages_moved = 0; | 
 |  | 
 | 	for (page = start_page; page <= end_page;) { | 
 | 		if (!pfn_valid_within(page_to_pfn(page))) { | 
 | 			page++; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (!PageBuddy(page)) { | 
 | 			/* | 
 | 			 * We assume that pages that could be isolated for | 
 | 			 * migration are movable. But we don't actually try | 
 | 			 * isolating, as that would be expensive. | 
 | 			 */ | 
 | 			if (num_movable && | 
 | 					(PageLRU(page) || __PageMovable(page))) | 
 | 				(*num_movable)++; | 
 |  | 
 | 			page++; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* Make sure we are not inadvertently changing nodes */ | 
 | 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); | 
 | 		VM_BUG_ON_PAGE(page_zone(page) != zone, page); | 
 |  | 
 | 		order = page_order(page); | 
 | 		move_to_free_list(page, zone, order, migratetype); | 
 | 		page += 1 << order; | 
 | 		pages_moved += 1 << order; | 
 | 	} | 
 |  | 
 | 	return pages_moved; | 
 | } | 
 |  | 
 | int move_freepages_block(struct zone *zone, struct page *page, | 
 | 				int migratetype, int *num_movable) | 
 | { | 
 | 	unsigned long start_pfn, end_pfn; | 
 | 	struct page *start_page, *end_page; | 
 |  | 
 | 	if (num_movable) | 
 | 		*num_movable = 0; | 
 |  | 
 | 	start_pfn = page_to_pfn(page); | 
 | 	start_pfn = start_pfn & ~(pageblock_nr_pages-1); | 
 | 	start_page = pfn_to_page(start_pfn); | 
 | 	end_page = start_page + pageblock_nr_pages - 1; | 
 | 	end_pfn = start_pfn + pageblock_nr_pages - 1; | 
 |  | 
 | 	/* Do not cross zone boundaries */ | 
 | 	if (!zone_spans_pfn(zone, start_pfn)) | 
 | 		start_page = page; | 
 | 	if (!zone_spans_pfn(zone, end_pfn)) | 
 | 		return 0; | 
 |  | 
 | 	return move_freepages(zone, start_page, end_page, migratetype, | 
 | 								num_movable); | 
 | } | 
 |  | 
 | static void change_pageblock_range(struct page *pageblock_page, | 
 | 					int start_order, int migratetype) | 
 | { | 
 | 	int nr_pageblocks = 1 << (start_order - pageblock_order); | 
 |  | 
 | 	while (nr_pageblocks--) { | 
 | 		set_pageblock_migratetype(pageblock_page, migratetype); | 
 | 		pageblock_page += pageblock_nr_pages; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * When we are falling back to another migratetype during allocation, try to | 
 |  * steal extra free pages from the same pageblocks to satisfy further | 
 |  * allocations, instead of polluting multiple pageblocks. | 
 |  * | 
 |  * If we are stealing a relatively large buddy page, it is likely there will | 
 |  * be more free pages in the pageblock, so try to steal them all. For | 
 |  * reclaimable and unmovable allocations, we steal regardless of page size, | 
 |  * as fragmentation caused by those allocations polluting movable pageblocks | 
 |  * is worse than movable allocations stealing from unmovable and reclaimable | 
 |  * pageblocks. | 
 |  */ | 
 | static bool can_steal_fallback(unsigned int order, int start_mt) | 
 | { | 
 | 	/* | 
 | 	 * Leaving this order check is intended, although there is | 
 | 	 * relaxed order check in next check. The reason is that | 
 | 	 * we can actually steal whole pageblock if this condition met, | 
 | 	 * but, below check doesn't guarantee it and that is just heuristic | 
 | 	 * so could be changed anytime. | 
 | 	 */ | 
 | 	if (order >= pageblock_order) | 
 | 		return true; | 
 |  | 
 | 	if (order >= pageblock_order / 2 || | 
 | 		start_mt == MIGRATE_RECLAIMABLE || | 
 | 		start_mt == MIGRATE_UNMOVABLE || | 
 | 		page_group_by_mobility_disabled) | 
 | 		return true; | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | static inline void boost_watermark(struct zone *zone) | 
 | { | 
 | 	unsigned long max_boost; | 
 |  | 
 | 	if (!watermark_boost_factor) | 
 | 		return; | 
 | 	/* | 
 | 	 * Don't bother in zones that are unlikely to produce results. | 
 | 	 * On small machines, including kdump capture kernels running | 
 | 	 * in a small area, boosting the watermark can cause an out of | 
 | 	 * memory situation immediately. | 
 | 	 */ | 
 | 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone)) | 
 | 		return; | 
 |  | 
 | 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH], | 
 | 			watermark_boost_factor, 10000); | 
 |  | 
 | 	/* | 
 | 	 * high watermark may be uninitialised if fragmentation occurs | 
 | 	 * very early in boot so do not boost. We do not fall | 
 | 	 * through and boost by pageblock_nr_pages as failing | 
 | 	 * allocations that early means that reclaim is not going | 
 | 	 * to help and it may even be impossible to reclaim the | 
 | 	 * boosted watermark resulting in a hang. | 
 | 	 */ | 
 | 	if (!max_boost) | 
 | 		return; | 
 |  | 
 | 	max_boost = max(pageblock_nr_pages, max_boost); | 
 |  | 
 | 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, | 
 | 		max_boost); | 
 | } | 
 |  | 
 | /* | 
 |  * This function implements actual steal behaviour. If order is large enough, | 
 |  * we can steal whole pageblock. If not, we first move freepages in this | 
 |  * pageblock to our migratetype and determine how many already-allocated pages | 
 |  * are there in the pageblock with a compatible migratetype. If at least half | 
 |  * of pages are free or compatible, we can change migratetype of the pageblock | 
 |  * itself, so pages freed in the future will be put on the correct free list. | 
 |  */ | 
 | static void steal_suitable_fallback(struct zone *zone, struct page *page, | 
 | 		unsigned int alloc_flags, int start_type, bool whole_block) | 
 | { | 
 | 	unsigned int current_order = page_order(page); | 
 | 	int free_pages, movable_pages, alike_pages; | 
 | 	int old_block_type; | 
 |  | 
 | 	old_block_type = get_pageblock_migratetype(page); | 
 |  | 
 | 	/* | 
 | 	 * This can happen due to races and we want to prevent broken | 
 | 	 * highatomic accounting. | 
 | 	 */ | 
 | 	if (is_migrate_highatomic(old_block_type)) | 
 | 		goto single_page; | 
 |  | 
 | 	/* Take ownership for orders >= pageblock_order */ | 
 | 	if (current_order >= pageblock_order) { | 
 | 		change_pageblock_range(page, current_order, start_type); | 
 | 		goto single_page; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Boost watermarks to increase reclaim pressure to reduce the | 
 | 	 * likelihood of future fallbacks. Wake kswapd now as the node | 
 | 	 * may be balanced overall and kswapd will not wake naturally. | 
 | 	 */ | 
 | 	boost_watermark(zone); | 
 | 	if (alloc_flags & ALLOC_KSWAPD) | 
 | 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); | 
 |  | 
 | 	/* We are not allowed to try stealing from the whole block */ | 
 | 	if (!whole_block) | 
 | 		goto single_page; | 
 |  | 
 | 	free_pages = move_freepages_block(zone, page, start_type, | 
 | 						&movable_pages); | 
 | 	/* | 
 | 	 * Determine how many pages are compatible with our allocation. | 
 | 	 * For movable allocation, it's the number of movable pages which | 
 | 	 * we just obtained. For other types it's a bit more tricky. | 
 | 	 */ | 
 | 	if (start_type == MIGRATE_MOVABLE) { | 
 | 		alike_pages = movable_pages; | 
 | 	} else { | 
 | 		/* | 
 | 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation | 
 | 		 * to MOVABLE pageblock, consider all non-movable pages as | 
 | 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or | 
 | 		 * vice versa, be conservative since we can't distinguish the | 
 | 		 * exact migratetype of non-movable pages. | 
 | 		 */ | 
 | 		if (old_block_type == MIGRATE_MOVABLE) | 
 | 			alike_pages = pageblock_nr_pages | 
 | 						- (free_pages + movable_pages); | 
 | 		else | 
 | 			alike_pages = 0; | 
 | 	} | 
 |  | 
 | 	/* moving whole block can fail due to zone boundary conditions */ | 
 | 	if (!free_pages) | 
 | 		goto single_page; | 
 |  | 
 | 	/* | 
 | 	 * If a sufficient number of pages in the block are either free or of | 
 | 	 * comparable migratability as our allocation, claim the whole block. | 
 | 	 */ | 
 | 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || | 
 | 			page_group_by_mobility_disabled) | 
 | 		set_pageblock_migratetype(page, start_type); | 
 |  | 
 | 	return; | 
 |  | 
 | single_page: | 
 | 	move_to_free_list(page, zone, current_order, start_type); | 
 | } | 
 |  | 
 | /* | 
 |  * Check whether there is a suitable fallback freepage with requested order. | 
 |  * If only_stealable is true, this function returns fallback_mt only if | 
 |  * we can steal other freepages all together. This would help to reduce | 
 |  * fragmentation due to mixed migratetype pages in one pageblock. | 
 |  */ | 
 | int find_suitable_fallback(struct free_area *area, unsigned int order, | 
 | 			int migratetype, bool only_stealable, bool *can_steal) | 
 | { | 
 | 	int i; | 
 | 	int fallback_mt; | 
 |  | 
 | 	if (area->nr_free == 0) | 
 | 		return -1; | 
 |  | 
 | 	*can_steal = false; | 
 | 	for (i = 0;; i++) { | 
 | 		fallback_mt = fallbacks[migratetype][i]; | 
 | 		if (fallback_mt == MIGRATE_TYPES) | 
 | 			break; | 
 |  | 
 | 		if (free_area_empty(area, fallback_mt)) | 
 | 			continue; | 
 |  | 
 | 		if (can_steal_fallback(order, migratetype)) | 
 | 			*can_steal = true; | 
 |  | 
 | 		if (!only_stealable) | 
 | 			return fallback_mt; | 
 |  | 
 | 		if (*can_steal) | 
 | 			return fallback_mt; | 
 | 	} | 
 |  | 
 | 	return -1; | 
 | } | 
 |  | 
 | /* | 
 |  * Reserve a pageblock for exclusive use of high-order atomic allocations if | 
 |  * there are no empty page blocks that contain a page with a suitable order | 
 |  */ | 
 | static void reserve_highatomic_pageblock(struct page *page, struct zone *zone, | 
 | 				unsigned int alloc_order) | 
 | { | 
 | 	int mt; | 
 | 	unsigned long max_managed, flags; | 
 |  | 
 | 	/* | 
 | 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone. | 
 | 	 * Check is race-prone but harmless. | 
 | 	 */ | 
 | 	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages; | 
 | 	if (zone->nr_reserved_highatomic >= max_managed) | 
 | 		return; | 
 |  | 
 | 	spin_lock_irqsave(&zone->lock, flags); | 
 |  | 
 | 	/* Recheck the nr_reserved_highatomic limit under the lock */ | 
 | 	if (zone->nr_reserved_highatomic >= max_managed) | 
 | 		goto out_unlock; | 
 |  | 
 | 	/* Yoink! */ | 
 | 	mt = get_pageblock_migratetype(page); | 
 | 	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt) | 
 | 	    && !is_migrate_cma(mt)) { | 
 | 		zone->nr_reserved_highatomic += pageblock_nr_pages; | 
 | 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); | 
 | 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL); | 
 | 	} | 
 |  | 
 | out_unlock: | 
 | 	spin_unlock_irqrestore(&zone->lock, flags); | 
 | } | 
 |  | 
 | /* | 
 |  * Used when an allocation is about to fail under memory pressure. This | 
 |  * potentially hurts the reliability of high-order allocations when under | 
 |  * intense memory pressure but failed atomic allocations should be easier | 
 |  * to recover from than an OOM. | 
 |  * | 
 |  * If @force is true, try to unreserve a pageblock even though highatomic | 
 |  * pageblock is exhausted. | 
 |  */ | 
 | static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, | 
 | 						bool force) | 
 | { | 
 | 	struct zonelist *zonelist = ac->zonelist; | 
 | 	unsigned long flags; | 
 | 	struct zoneref *z; | 
 | 	struct zone *zone; | 
 | 	struct page *page; | 
 | 	int order; | 
 | 	bool ret; | 
 |  | 
 | 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx, | 
 | 								ac->nodemask) { | 
 | 		/* | 
 | 		 * Preserve at least one pageblock unless memory pressure | 
 | 		 * is really high. | 
 | 		 */ | 
 | 		if (!force && zone->nr_reserved_highatomic <= | 
 | 					pageblock_nr_pages) | 
 | 			continue; | 
 |  | 
 | 		spin_lock_irqsave(&zone->lock, flags); | 
 | 		for (order = 0; order < MAX_ORDER; order++) { | 
 | 			struct free_area *area = &(zone->free_area[order]); | 
 |  | 
 | 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC); | 
 | 			if (!page) | 
 | 				continue; | 
 |  | 
 | 			/* | 
 | 			 * In page freeing path, migratetype change is racy so | 
 | 			 * we can counter several free pages in a pageblock | 
 | 			 * in this loop althoug we changed the pageblock type | 
 | 			 * from highatomic to ac->migratetype. So we should | 
 | 			 * adjust the count once. | 
 | 			 */ | 
 | 			if (is_migrate_highatomic_page(page)) { | 
 | 				/* | 
 | 				 * It should never happen but changes to | 
 | 				 * locking could inadvertently allow a per-cpu | 
 | 				 * drain to add pages to MIGRATE_HIGHATOMIC | 
 | 				 * while unreserving so be safe and watch for | 
 | 				 * underflows. | 
 | 				 */ | 
 | 				zone->nr_reserved_highatomic -= min( | 
 | 						pageblock_nr_pages, | 
 | 						zone->nr_reserved_highatomic); | 
 | 			} | 
 |  | 
 | 			/* | 
 | 			 * Convert to ac->migratetype and avoid the normal | 
 | 			 * pageblock stealing heuristics. Minimally, the caller | 
 | 			 * is doing the work and needs the pages. More | 
 | 			 * importantly, if the block was always converted to | 
 | 			 * MIGRATE_UNMOVABLE or another type then the number | 
 | 			 * of pageblocks that cannot be completely freed | 
 | 			 * may increase. | 
 | 			 */ | 
 | 			set_pageblock_migratetype(page, ac->migratetype); | 
 | 			ret = move_freepages_block(zone, page, ac->migratetype, | 
 | 									NULL); | 
 | 			if (ret) { | 
 | 				spin_unlock_irqrestore(&zone->lock, flags); | 
 | 				return ret; | 
 | 			} | 
 | 		} | 
 | 		spin_unlock_irqrestore(&zone->lock, flags); | 
 | 	} | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | /* | 
 |  * Try finding a free buddy page on the fallback list and put it on the free | 
 |  * list of requested migratetype, possibly along with other pages from the same | 
 |  * block, depending on fragmentation avoidance heuristics. Returns true if | 
 |  * fallback was found so that __rmqueue_smallest() can grab it. | 
 |  * | 
 |  * The use of signed ints for order and current_order is a deliberate | 
 |  * deviation from the rest of this file, to make the for loop | 
 |  * condition simpler. | 
 |  */ | 
 | static __always_inline bool | 
 | __rmqueue_fallback(struct zone *zone, int order, int start_migratetype, | 
 | 						unsigned int alloc_flags) | 
 | { | 
 | 	struct free_area *area; | 
 | 	int current_order; | 
 | 	int min_order = order; | 
 | 	struct page *page; | 
 | 	int fallback_mt; | 
 | 	bool can_steal; | 
 |  | 
 | 	/* | 
 | 	 * Do not steal pages from freelists belonging to other pageblocks | 
 | 	 * i.e. orders < pageblock_order. If there are no local zones free, | 
 | 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT. | 
 | 	 */ | 
 | 	if (alloc_flags & ALLOC_NOFRAGMENT) | 
 | 		min_order = pageblock_order; | 
 |  | 
 | 	/* | 
 | 	 * Find the largest available free page in the other list. This roughly | 
 | 	 * approximates finding the pageblock with the most free pages, which | 
 | 	 * would be too costly to do exactly. | 
 | 	 */ | 
 | 	for (current_order = MAX_ORDER - 1; current_order >= min_order; | 
 | 				--current_order) { | 
 | 		area = &(zone->free_area[current_order]); | 
 | 		fallback_mt = find_suitable_fallback(area, current_order, | 
 | 				start_migratetype, false, &can_steal); | 
 | 		if (fallback_mt == -1) | 
 | 			continue; | 
 |  | 
 | 		/* | 
 | 		 * We cannot steal all free pages from the pageblock and the | 
 | 		 * requested migratetype is movable. In that case it's better to | 
 | 		 * steal and split the smallest available page instead of the | 
 | 		 * largest available page, because even if the next movable | 
 | 		 * allocation falls back into a different pageblock than this | 
 | 		 * one, it won't cause permanent fragmentation. | 
 | 		 */ | 
 | 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE | 
 | 					&& current_order > order) | 
 | 			goto find_smallest; | 
 |  | 
 | 		goto do_steal; | 
 | 	} | 
 |  | 
 | 	return false; | 
 |  | 
 | find_smallest: | 
 | 	for (current_order = order; current_order < MAX_ORDER; | 
 | 							current_order++) { | 
 | 		area = &(zone->free_area[current_order]); | 
 | 		fallback_mt = find_suitable_fallback(area, current_order, | 
 | 				start_migratetype, false, &can_steal); | 
 | 		if (fallback_mt != -1) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * This should not happen - we already found a suitable fallback | 
 | 	 * when looking for the largest page. | 
 | 	 */ | 
 | 	VM_BUG_ON(current_order == MAX_ORDER); | 
 |  | 
 | do_steal: | 
 | 	page = get_page_from_free_area(area, fallback_mt); | 
 |  | 
 | 	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype, | 
 | 								can_steal); | 
 |  | 
 | 	trace_mm_page_alloc_extfrag(page, order, current_order, | 
 | 		start_migratetype, fallback_mt); | 
 |  | 
 | 	return true; | 
 |  | 
 | } | 
 |  | 
 | /* | 
 |  * Do the hard work of removing an element from the buddy allocator. | 
 |  * Call me with the zone->lock already held. | 
 |  */ | 
 | static __always_inline struct page * | 
 | __rmqueue(struct zone *zone, unsigned int order, int migratetype, | 
 | 						unsigned int alloc_flags) | 
 | { | 
 | 	struct page *page; | 
 |  | 
 | #ifdef CONFIG_CMA | 
 | 	/* | 
 | 	 * Balance movable allocations between regular and CMA areas by | 
 | 	 * allocating from CMA when over half of the zone's free memory | 
 | 	 * is in the CMA area. | 
 | 	 */ | 
 | 	if (migratetype == MIGRATE_MOVABLE && | 
 | 	    zone_page_state(zone, NR_FREE_CMA_PAGES) > | 
 | 	    zone_page_state(zone, NR_FREE_PAGES) / 2) { | 
 | 		page = __rmqueue_cma_fallback(zone, order); | 
 | 		if (page) | 
 | 			return page; | 
 | 	} | 
 | #endif | 
 | retry: | 
 | 	page = __rmqueue_smallest(zone, order, migratetype); | 
 | 	if (unlikely(!page)) { | 
 | 		if (migratetype == MIGRATE_MOVABLE) | 
 | 			page = __rmqueue_cma_fallback(zone, order); | 
 |  | 
 | 		if (!page && __rmqueue_fallback(zone, order, migratetype, | 
 | 								alloc_flags)) | 
 | 			goto retry; | 
 | 	} | 
 |  | 
 | 	trace_mm_page_alloc_zone_locked(page, order, migratetype); | 
 | 	return page; | 
 | } | 
 |  | 
 | /* | 
 |  * Obtain a specified number of elements from the buddy allocator, all under | 
 |  * a single hold of the lock, for efficiency.  Add them to the supplied list. | 
 |  * Returns the number of new pages which were placed at *list. | 
 |  */ | 
 | static int rmqueue_bulk(struct zone *zone, unsigned int order, | 
 | 			unsigned long count, struct list_head *list, | 
 | 			int migratetype, unsigned int alloc_flags) | 
 | { | 
 | 	int i, alloced = 0; | 
 |  | 
 | 	spin_lock(&zone->lock); | 
 | 	for (i = 0; i < count; ++i) { | 
 | 		struct page *page = __rmqueue(zone, order, migratetype, | 
 | 								alloc_flags); | 
 | 		if (unlikely(page == NULL)) | 
 | 			break; | 
 |  | 
 | 		if (unlikely(check_pcp_refill(page))) | 
 | 			continue; | 
 |  | 
 | 		/* | 
 | 		 * Split buddy pages returned by expand() are received here in | 
 | 		 * physical page order. The page is added to the tail of | 
 | 		 * caller's list. From the callers perspective, the linked list | 
 | 		 * is ordered by page number under some conditions. This is | 
 | 		 * useful for IO devices that can forward direction from the | 
 | 		 * head, thus also in the physical page order. This is useful | 
 | 		 * for IO devices that can merge IO requests if the physical | 
 | 		 * pages are ordered properly. | 
 | 		 */ | 
 | 		list_add_tail(&page->lru, list); | 
 | 		alloced++; | 
 | 		if (is_migrate_cma(get_pcppage_migratetype(page))) | 
 | 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES, | 
 | 					      -(1 << order)); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * i pages were removed from the buddy list even if some leak due | 
 | 	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based | 
 | 	 * on i. Do not confuse with 'alloced' which is the number of | 
 | 	 * pages added to the pcp list. | 
 | 	 */ | 
 | 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); | 
 | 	spin_unlock(&zone->lock); | 
 | 	return alloced; | 
 | } | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | /* | 
 |  * Called from the vmstat counter updater to drain pagesets of this | 
 |  * currently executing processor on remote nodes after they have | 
 |  * expired. | 
 |  * | 
 |  * Note that this function must be called with the thread pinned to | 
 |  * a single processor. | 
 |  */ | 
 | void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) | 
 | { | 
 | 	unsigned long flags; | 
 | 	int to_drain, batch; | 
 |  | 
 | 	local_irq_save(flags); | 
 | 	batch = READ_ONCE(pcp->batch); | 
 | 	to_drain = min(pcp->count, batch); | 
 | 	if (to_drain > 0) | 
 | 		free_pcppages_bulk(zone, to_drain, pcp); | 
 | 	local_irq_restore(flags); | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * Drain pcplists of the indicated processor and zone. | 
 |  * | 
 |  * The processor must either be the current processor and the | 
 |  * thread pinned to the current processor or a processor that | 
 |  * is not online. | 
 |  */ | 
 | static void drain_pages_zone(unsigned int cpu, struct zone *zone) | 
 | { | 
 | 	unsigned long flags; | 
 | 	struct per_cpu_pageset *pset; | 
 | 	struct per_cpu_pages *pcp; | 
 |  | 
 | 	local_irq_save(flags); | 
 | 	pset = per_cpu_ptr(zone->pageset, cpu); | 
 |  | 
 | 	pcp = &pset->pcp; | 
 | 	if (pcp->count) | 
 | 		free_pcppages_bulk(zone, pcp->count, pcp); | 
 | 	local_irq_restore(flags); | 
 | } | 
 |  | 
 | /* | 
 |  * Drain pcplists of all zones on the indicated processor. | 
 |  * | 
 |  * The processor must either be the current processor and the | 
 |  * thread pinned to the current processor or a processor that | 
 |  * is not online. | 
 |  */ | 
 | static void drain_pages(unsigned int cpu) | 
 | { | 
 | 	struct zone *zone; | 
 |  | 
 | 	for_each_populated_zone(zone) { | 
 | 		drain_pages_zone(cpu, zone); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Spill all of this CPU's per-cpu pages back into the buddy allocator. | 
 |  * | 
 |  * The CPU has to be pinned. When zone parameter is non-NULL, spill just | 
 |  * the single zone's pages. | 
 |  */ | 
 | void drain_local_pages(struct zone *zone) | 
 | { | 
 | 	int cpu = smp_processor_id(); | 
 |  | 
 | 	if (zone) | 
 | 		drain_pages_zone(cpu, zone); | 
 | 	else | 
 | 		drain_pages(cpu); | 
 | } | 
 |  | 
 | static void drain_local_pages_wq(struct work_struct *work) | 
 | { | 
 | 	struct pcpu_drain *drain; | 
 |  | 
 | 	drain = container_of(work, struct pcpu_drain, work); | 
 |  | 
 | 	/* | 
 | 	 * drain_all_pages doesn't use proper cpu hotplug protection so | 
 | 	 * we can race with cpu offline when the WQ can move this from | 
 | 	 * a cpu pinned worker to an unbound one. We can operate on a different | 
 | 	 * cpu which is allright but we also have to make sure to not move to | 
 | 	 * a different one. | 
 | 	 */ | 
 | 	preempt_disable(); | 
 | 	drain_local_pages(drain->zone); | 
 | 	preempt_enable(); | 
 | } | 
 |  | 
 | /* | 
 |  * Spill all the per-cpu pages from all CPUs back into the buddy allocator. | 
 |  * | 
 |  * When zone parameter is non-NULL, spill just the single zone's pages. | 
 |  * | 
 |  * Note that this can be extremely slow as the draining happens in a workqueue. | 
 |  */ | 
 | void drain_all_pages(struct zone *zone) | 
 | { | 
 | 	int cpu; | 
 |  | 
 | 	/* | 
 | 	 * Allocate in the BSS so we wont require allocation in | 
 | 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y | 
 | 	 */ | 
 | 	static cpumask_t cpus_with_pcps; | 
 |  | 
 | 	/* | 
 | 	 * Make sure nobody triggers this path before mm_percpu_wq is fully | 
 | 	 * initialized. | 
 | 	 */ | 
 | 	if (WARN_ON_ONCE(!mm_percpu_wq)) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * Do not drain if one is already in progress unless it's specific to | 
 | 	 * a zone. Such callers are primarily CMA and memory hotplug and need | 
 | 	 * the drain to be complete when the call returns. | 
 | 	 */ | 
 | 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { | 
 | 		if (!zone) | 
 | 			return; | 
 | 		mutex_lock(&pcpu_drain_mutex); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We don't care about racing with CPU hotplug event | 
 | 	 * as offline notification will cause the notified | 
 | 	 * cpu to drain that CPU pcps and on_each_cpu_mask | 
 | 	 * disables preemption as part of its processing | 
 | 	 */ | 
 | 	for_each_online_cpu(cpu) { | 
 | 		struct per_cpu_pageset *pcp; | 
 | 		struct zone *z; | 
 | 		bool has_pcps = false; | 
 |  | 
 | 		if (zone) { | 
 | 			pcp = per_cpu_ptr(zone->pageset, cpu); | 
 | 			if (pcp->pcp.count) | 
 | 				has_pcps = true; | 
 | 		} else { | 
 | 			for_each_populated_zone(z) { | 
 | 				pcp = per_cpu_ptr(z->pageset, cpu); | 
 | 				if (pcp->pcp.count) { | 
 | 					has_pcps = true; | 
 | 					break; | 
 | 				} | 
 | 			} | 
 | 		} | 
 |  | 
 | 		if (has_pcps) | 
 | 			cpumask_set_cpu(cpu, &cpus_with_pcps); | 
 | 		else | 
 | 			cpumask_clear_cpu(cpu, &cpus_with_pcps); | 
 | 	} | 
 |  | 
 | 	for_each_cpu(cpu, &cpus_with_pcps) { | 
 | 		struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu); | 
 |  | 
 | 		drain->zone = zone; | 
 | 		INIT_WORK(&drain->work, drain_local_pages_wq); | 
 | 		queue_work_on(cpu, mm_percpu_wq, &drain->work); | 
 | 	} | 
 | 	for_each_cpu(cpu, &cpus_with_pcps) | 
 | 		flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work); | 
 |  | 
 | 	mutex_unlock(&pcpu_drain_mutex); | 
 | } | 
 |  | 
 | #ifdef CONFIG_HIBERNATION | 
 |  | 
 | /* | 
 |  * Touch the watchdog for every WD_PAGE_COUNT pages. | 
 |  */ | 
 | #define WD_PAGE_COUNT	(128*1024) | 
 |  | 
 | void mark_free_pages(struct zone *zone) | 
 | { | 
 | 	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT; | 
 | 	unsigned long flags; | 
 | 	unsigned int order, t; | 
 | 	struct page *page; | 
 |  | 
 | 	if (zone_is_empty(zone)) | 
 | 		return; | 
 |  | 
 | 	spin_lock_irqsave(&zone->lock, flags); | 
 |  | 
 | 	max_zone_pfn = zone_end_pfn(zone); | 
 | 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) | 
 | 		if (pfn_valid(pfn)) { | 
 | 			page = pfn_to_page(pfn); | 
 |  | 
 | 			if (!--page_count) { | 
 | 				touch_nmi_watchdog(); | 
 | 				page_count = WD_PAGE_COUNT; | 
 | 			} | 
 |  | 
 | 			if (page_zone(page) != zone) | 
 | 				continue; | 
 |  | 
 | 			if (!swsusp_page_is_forbidden(page)) | 
 | 				swsusp_unset_page_free(page); | 
 | 		} | 
 |  | 
 | 	for_each_migratetype_order(order, t) { | 
 | 		list_for_each_entry(page, | 
 | 				&zone->free_area[order].free_list[t], lru) { | 
 | 			unsigned long i; | 
 |  | 
 | 			pfn = page_to_pfn(page); | 
 | 			for (i = 0; i < (1UL << order); i++) { | 
 | 				if (!--page_count) { | 
 | 					touch_nmi_watchdog(); | 
 | 					page_count = WD_PAGE_COUNT; | 
 | 				} | 
 | 				swsusp_set_page_free(pfn_to_page(pfn + i)); | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	spin_unlock_irqrestore(&zone->lock, flags); | 
 | } | 
 | #endif /* CONFIG_PM */ | 
 |  | 
 | static bool free_unref_page_prepare(struct page *page, unsigned long pfn) | 
 | { | 
 | 	int migratetype; | 
 |  | 
 | 	if (!free_pcp_prepare(page)) | 
 | 		return false; | 
 |  | 
 | 	migratetype = get_pfnblock_migratetype(page, pfn); | 
 | 	set_pcppage_migratetype(page, migratetype); | 
 | 	return true; | 
 | } | 
 |  | 
 | static void free_unref_page_commit(struct page *page, unsigned long pfn) | 
 | { | 
 | 	struct zone *zone = page_zone(page); | 
 | 	struct per_cpu_pages *pcp; | 
 | 	int migratetype; | 
 |  | 
 | 	migratetype = get_pcppage_migratetype(page); | 
 | 	__count_vm_event(PGFREE); | 
 |  | 
 | 	/* | 
 | 	 * We only track unmovable, reclaimable and movable on pcp lists. | 
 | 	 * Free ISOLATE pages back to the allocator because they are being | 
 | 	 * offlined but treat HIGHATOMIC as movable pages so we can get those | 
 | 	 * areas back if necessary. Otherwise, we may have to free | 
 | 	 * excessively into the page allocator | 
 | 	 */ | 
 | 	if (migratetype >= MIGRATE_PCPTYPES) { | 
 | 		if (unlikely(is_migrate_isolate(migratetype))) { | 
 | 			free_one_page(zone, page, pfn, 0, migratetype); | 
 | 			return; | 
 | 		} | 
 | 		migratetype = MIGRATE_MOVABLE; | 
 | 	} | 
 |  | 
 | 	pcp = &this_cpu_ptr(zone->pageset)->pcp; | 
 | 	list_add(&page->lru, &pcp->lists[migratetype]); | 
 | 	pcp->count++; | 
 | 	if (pcp->count >= pcp->high) { | 
 | 		unsigned long batch = READ_ONCE(pcp->batch); | 
 | 		free_pcppages_bulk(zone, batch, pcp); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Free a 0-order page | 
 |  */ | 
 | void free_unref_page(struct page *page) | 
 | { | 
 | 	unsigned long flags; | 
 | 	unsigned long pfn = page_to_pfn(page); | 
 |  | 
 | 	if (!free_unref_page_prepare(page, pfn)) | 
 | 		return; | 
 |  | 
 | 	local_irq_save(flags); | 
 | 	free_unref_page_commit(page, pfn); | 
 | 	local_irq_restore(flags); | 
 | } | 
 |  | 
 | /* | 
 |  * Free a list of 0-order pages | 
 |  */ | 
 | void free_unref_page_list(struct list_head *list) | 
 | { | 
 | 	struct page *page, *next; | 
 | 	unsigned long flags, pfn; | 
 | 	int batch_count = 0; | 
 |  | 
 | 	/* Prepare pages for freeing */ | 
 | 	list_for_each_entry_safe(page, next, list, lru) { | 
 | 		pfn = page_to_pfn(page); | 
 | 		if (!free_unref_page_prepare(page, pfn)) | 
 | 			list_del(&page->lru); | 
 | 		set_page_private(page, pfn); | 
 | 	} | 
 |  | 
 | 	local_irq_save(flags); | 
 | 	list_for_each_entry_safe(page, next, list, lru) { | 
 | 		unsigned long pfn = page_private(page); | 
 |  | 
 | 		set_page_private(page, 0); | 
 | 		trace_mm_page_free_batched(page); | 
 | 		free_unref_page_commit(page, pfn); | 
 |  | 
 | 		/* | 
 | 		 * Guard against excessive IRQ disabled times when we get | 
 | 		 * a large list of pages to free. | 
 | 		 */ | 
 | 		if (++batch_count == SWAP_CLUSTER_MAX) { | 
 | 			local_irq_restore(flags); | 
 | 			batch_count = 0; | 
 | 			local_irq_save(flags); | 
 | 		} | 
 | 	} | 
 | 	local_irq_restore(flags); | 
 | } | 
 |  | 
 | /* | 
 |  * split_page takes a non-compound higher-order page, and splits it into | 
 |  * n (1<<order) sub-pages: page[0..n] | 
 |  * Each sub-page must be freed individually. | 
 |  * | 
 |  * Note: this is probably too low level an operation for use in drivers. | 
 |  * Please consult with lkml before using this in your driver. | 
 |  */ | 
 | void split_page(struct page *page, unsigned int order) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	VM_BUG_ON_PAGE(PageCompound(page), page); | 
 | 	VM_BUG_ON_PAGE(!page_count(page), page); | 
 |  | 
 | 	for (i = 1; i < (1 << order); i++) | 
 | 		set_page_refcounted(page + i); | 
 | 	split_page_owner(page, order); | 
 | } | 
 | EXPORT_SYMBOL_GPL(split_page); | 
 |  | 
 | int __isolate_free_page(struct page *page, unsigned int order) | 
 | { | 
 | 	unsigned long watermark; | 
 | 	struct zone *zone; | 
 | 	int mt; | 
 |  | 
 | 	BUG_ON(!PageBuddy(page)); | 
 |  | 
 | 	zone = page_zone(page); | 
 | 	mt = get_pageblock_migratetype(page); | 
 |  | 
 | 	if (!is_migrate_isolate(mt)) { | 
 | 		/* | 
 | 		 * Obey watermarks as if the page was being allocated. We can | 
 | 		 * emulate a high-order watermark check with a raised order-0 | 
 | 		 * watermark, because we already know our high-order page | 
 | 		 * exists. | 
 | 		 */ | 
 | 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order); | 
 | 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) | 
 | 			return 0; | 
 |  | 
 | 		__mod_zone_freepage_state(zone, -(1UL << order), mt); | 
 | 	} | 
 |  | 
 | 	/* Remove page from free list */ | 
 |  | 
 | 	del_page_from_free_list(page, zone, order); | 
 |  | 
 | 	/* | 
 | 	 * Set the pageblock if the isolated page is at least half of a | 
 | 	 * pageblock | 
 | 	 */ | 
 | 	if (order >= pageblock_order - 1) { | 
 | 		struct page *endpage = page + (1 << order) - 1; | 
 | 		for (; page < endpage; page += pageblock_nr_pages) { | 
 | 			int mt = get_pageblock_migratetype(page); | 
 | 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt) | 
 | 			    && !is_migrate_highatomic(mt)) | 
 | 				set_pageblock_migratetype(page, | 
 | 							  MIGRATE_MOVABLE); | 
 | 		} | 
 | 	} | 
 |  | 
 |  | 
 | 	return 1UL << order; | 
 | } | 
 |  | 
 | /** | 
 |  * __putback_isolated_page - Return a now-isolated page back where we got it | 
 |  * @page: Page that was isolated | 
 |  * @order: Order of the isolated page | 
 |  * @mt: The page's pageblock's migratetype | 
 |  * | 
 |  * This function is meant to return a page pulled from the free lists via | 
 |  * __isolate_free_page back to the free lists they were pulled from. | 
 |  */ | 
 | void __putback_isolated_page(struct page *page, unsigned int order, int mt) | 
 | { | 
 | 	struct zone *zone = page_zone(page); | 
 |  | 
 | 	/* zone lock should be held when this function is called */ | 
 | 	lockdep_assert_held(&zone->lock); | 
 |  | 
 | 	/* Return isolated page to tail of freelist. */ | 
 | 	__free_one_page(page, page_to_pfn(page), zone, order, mt, false); | 
 | } | 
 |  | 
 | /* | 
 |  * Update NUMA hit/miss statistics | 
 |  * | 
 |  * Must be called with interrupts disabled. | 
 |  */ | 
 | static inline void zone_statistics(struct zone *preferred_zone, struct zone *z) | 
 | { | 
 | #ifdef CONFIG_NUMA | 
 | 	enum numa_stat_item local_stat = NUMA_LOCAL; | 
 |  | 
 | 	/* skip numa counters update if numa stats is disabled */ | 
 | 	if (!static_branch_likely(&vm_numa_stat_key)) | 
 | 		return; | 
 |  | 
 | 	if (zone_to_nid(z) != numa_node_id()) | 
 | 		local_stat = NUMA_OTHER; | 
 |  | 
 | 	if (zone_to_nid(z) == zone_to_nid(preferred_zone)) | 
 | 		__inc_numa_state(z, NUMA_HIT); | 
 | 	else { | 
 | 		__inc_numa_state(z, NUMA_MISS); | 
 | 		__inc_numa_state(preferred_zone, NUMA_FOREIGN); | 
 | 	} | 
 | 	__inc_numa_state(z, local_stat); | 
 | #endif | 
 | } | 
 |  | 
 | /* Remove page from the per-cpu list, caller must protect the list */ | 
 | static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype, | 
 | 			unsigned int alloc_flags, | 
 | 			struct per_cpu_pages *pcp, | 
 | 			struct list_head *list) | 
 | { | 
 | 	struct page *page; | 
 |  | 
 | 	do { | 
 | 		if (list_empty(list)) { | 
 | 			pcp->count += rmqueue_bulk(zone, 0, | 
 | 					pcp->batch, list, | 
 | 					migratetype, alloc_flags); | 
 | 			if (unlikely(list_empty(list))) | 
 | 				return NULL; | 
 | 		} | 
 |  | 
 | 		page = list_first_entry(list, struct page, lru); | 
 | 		list_del(&page->lru); | 
 | 		pcp->count--; | 
 | 	} while (check_new_pcp(page)); | 
 |  | 
 | 	return page; | 
 | } | 
 |  | 
 | /* Lock and remove page from the per-cpu list */ | 
 | static struct page *rmqueue_pcplist(struct zone *preferred_zone, | 
 | 			struct zone *zone, gfp_t gfp_flags, | 
 | 			int migratetype, unsigned int alloc_flags) | 
 | { | 
 | 	struct per_cpu_pages *pcp; | 
 | 	struct list_head *list; | 
 | 	struct page *page; | 
 | 	unsigned long flags; | 
 |  | 
 | 	local_irq_save(flags); | 
 | 	pcp = &this_cpu_ptr(zone->pageset)->pcp; | 
 | 	list = &pcp->lists[migratetype]; | 
 | 	page = __rmqueue_pcplist(zone,  migratetype, alloc_flags, pcp, list); | 
 | 	if (page) { | 
 | 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1); | 
 | 		zone_statistics(preferred_zone, zone); | 
 | 	} | 
 | 	local_irq_restore(flags); | 
 | 	return page; | 
 | } | 
 |  | 
 | /* | 
 |  * Allocate a page from the given zone. Use pcplists for order-0 allocations. | 
 |  */ | 
 | static inline | 
 | struct page *rmqueue(struct zone *preferred_zone, | 
 | 			struct zone *zone, unsigned int order, | 
 | 			gfp_t gfp_flags, unsigned int alloc_flags, | 
 | 			int migratetype) | 
 | { | 
 | 	unsigned long flags; | 
 | 	struct page *page; | 
 |  | 
 | 	if (likely(order == 0)) { | 
 | 		page = rmqueue_pcplist(preferred_zone, zone, gfp_flags, | 
 | 					migratetype, alloc_flags); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We most definitely don't want callers attempting to | 
 | 	 * allocate greater than order-1 page units with __GFP_NOFAIL. | 
 | 	 */ | 
 | 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); | 
 | 	spin_lock_irqsave(&zone->lock, flags); | 
 |  | 
 | 	do { | 
 | 		page = NULL; | 
 | 		if (alloc_flags & ALLOC_HARDER) { | 
 | 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); | 
 | 			if (page) | 
 | 				trace_mm_page_alloc_zone_locked(page, order, migratetype); | 
 | 		} | 
 | 		if (!page) | 
 | 			page = __rmqueue(zone, order, migratetype, alloc_flags); | 
 | 	} while (page && check_new_pages(page, order)); | 
 | 	spin_unlock(&zone->lock); | 
 | 	if (!page) | 
 | 		goto failed; | 
 | 	__mod_zone_freepage_state(zone, -(1 << order), | 
 | 				  get_pcppage_migratetype(page)); | 
 |  | 
 | 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); | 
 | 	zone_statistics(preferred_zone, zone); | 
 | 	local_irq_restore(flags); | 
 |  | 
 | out: | 
 | 	/* Separate test+clear to avoid unnecessary atomics */ | 
 | 	if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) { | 
 | 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); | 
 | 		wakeup_kswapd(zone, 0, 0, zone_idx(zone)); | 
 | 	} | 
 |  | 
 | 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page); | 
 | 	return page; | 
 |  | 
 | failed: | 
 | 	local_irq_restore(flags); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | #ifdef CONFIG_FAIL_PAGE_ALLOC | 
 |  | 
 | static struct { | 
 | 	struct fault_attr attr; | 
 |  | 
 | 	bool ignore_gfp_highmem; | 
 | 	bool ignore_gfp_reclaim; | 
 | 	u32 min_order; | 
 | } fail_page_alloc = { | 
 | 	.attr = FAULT_ATTR_INITIALIZER, | 
 | 	.ignore_gfp_reclaim = true, | 
 | 	.ignore_gfp_highmem = true, | 
 | 	.min_order = 1, | 
 | }; | 
 |  | 
 | static int __init setup_fail_page_alloc(char *str) | 
 | { | 
 | 	return setup_fault_attr(&fail_page_alloc.attr, str); | 
 | } | 
 | __setup("fail_page_alloc=", setup_fail_page_alloc); | 
 |  | 
 | static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) | 
 | { | 
 | 	if (order < fail_page_alloc.min_order) | 
 | 		return false; | 
 | 	if (gfp_mask & __GFP_NOFAIL) | 
 | 		return false; | 
 | 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) | 
 | 		return false; | 
 | 	if (fail_page_alloc.ignore_gfp_reclaim && | 
 | 			(gfp_mask & __GFP_DIRECT_RECLAIM)) | 
 | 		return false; | 
 |  | 
 | 	return should_fail(&fail_page_alloc.attr, 1 << order); | 
 | } | 
 |  | 
 | #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS | 
 |  | 
 | static int __init fail_page_alloc_debugfs(void) | 
 | { | 
 | 	umode_t mode = S_IFREG | 0600; | 
 | 	struct dentry *dir; | 
 |  | 
 | 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL, | 
 | 					&fail_page_alloc.attr); | 
 |  | 
 | 	debugfs_create_bool("ignore-gfp-wait", mode, dir, | 
 | 			    &fail_page_alloc.ignore_gfp_reclaim); | 
 | 	debugfs_create_bool("ignore-gfp-highmem", mode, dir, | 
 | 			    &fail_page_alloc.ignore_gfp_highmem); | 
 | 	debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | late_initcall(fail_page_alloc_debugfs); | 
 |  | 
 | #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ | 
 |  | 
 | #else /* CONFIG_FAIL_PAGE_ALLOC */ | 
 |  | 
 | static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) | 
 | { | 
 | 	return false; | 
 | } | 
 |  | 
 | #endif /* CONFIG_FAIL_PAGE_ALLOC */ | 
 |  | 
 | static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) | 
 | { | 
 | 	return __should_fail_alloc_page(gfp_mask, order); | 
 | } | 
 | ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE); | 
 |  | 
 | /* | 
 |  * Return true if free base pages are above 'mark'. For high-order checks it | 
 |  * will return true of the order-0 watermark is reached and there is at least | 
 |  * one free page of a suitable size. Checking now avoids taking the zone lock | 
 |  * to check in the allocation paths if no pages are free. | 
 |  */ | 
 | bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, | 
 | 			 int highest_zoneidx, unsigned int alloc_flags, | 
 | 			 long free_pages) | 
 | { | 
 | 	long min = mark; | 
 | 	int o; | 
 | 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); | 
 |  | 
 | 	/* free_pages may go negative - that's OK */ | 
 | 	free_pages -= (1 << order) - 1; | 
 |  | 
 | 	if (alloc_flags & ALLOC_HIGH) | 
 | 		min -= min / 2; | 
 |  | 
 | 	/* | 
 | 	 * If the caller does not have rights to ALLOC_HARDER then subtract | 
 | 	 * the high-atomic reserves. This will over-estimate the size of the | 
 | 	 * atomic reserve but it avoids a search. | 
 | 	 */ | 
 | 	if (likely(!alloc_harder)) { | 
 | 		free_pages -= z->nr_reserved_highatomic; | 
 | 	} else { | 
 | 		/* | 
 | 		 * OOM victims can try even harder than normal ALLOC_HARDER | 
 | 		 * users on the grounds that it's definitely going to be in | 
 | 		 * the exit path shortly and free memory. Any allocation it | 
 | 		 * makes during the free path will be small and short-lived. | 
 | 		 */ | 
 | 		if (alloc_flags & ALLOC_OOM) | 
 | 			min -= min / 2; | 
 | 		else | 
 | 			min -= min / 4; | 
 | 	} | 
 |  | 
 |  | 
 | #ifdef CONFIG_CMA | 
 | 	/* If allocation can't use CMA areas don't use free CMA pages */ | 
 | 	if (!(alloc_flags & ALLOC_CMA)) | 
 | 		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES); | 
 | #endif | 
 |  | 
 | 	/* | 
 | 	 * Check watermarks for an order-0 allocation request. If these | 
 | 	 * are not met, then a high-order request also cannot go ahead | 
 | 	 * even if a suitable page happened to be free. | 
 | 	 */ | 
 | 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx]) | 
 | 		return false; | 
 |  | 
 | 	/* If this is an order-0 request then the watermark is fine */ | 
 | 	if (!order) | 
 | 		return true; | 
 |  | 
 | 	/* For a high-order request, check at least one suitable page is free */ | 
 | 	for (o = order; o < MAX_ORDER; o++) { | 
 | 		struct free_area *area = &z->free_area[o]; | 
 | 		int mt; | 
 |  | 
 | 		if (!area->nr_free) | 
 | 			continue; | 
 |  | 
 | 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { | 
 | 			if (!free_area_empty(area, mt)) | 
 | 				return true; | 
 | 		} | 
 |  | 
 | #ifdef CONFIG_CMA | 
 | 		if ((alloc_flags & ALLOC_CMA) && | 
 | 		    !free_area_empty(area, MIGRATE_CMA)) { | 
 | 			return true; | 
 | 		} | 
 | #endif | 
 | 		if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC)) | 
 | 			return true; | 
 | 	} | 
 | 	return false; | 
 | } | 
 |  | 
 | bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, | 
 | 		      int highest_zoneidx, unsigned int alloc_flags) | 
 | { | 
 | 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, | 
 | 					zone_page_state(z, NR_FREE_PAGES)); | 
 | } | 
 |  | 
 | static inline bool zone_watermark_fast(struct zone *z, unsigned int order, | 
 | 				unsigned long mark, int highest_zoneidx, | 
 | 				unsigned int alloc_flags) | 
 | { | 
 | 	long free_pages = zone_page_state(z, NR_FREE_PAGES); | 
 | 	long cma_pages = 0; | 
 |  | 
 | #ifdef CONFIG_CMA | 
 | 	/* If allocation can't use CMA areas don't use free CMA pages */ | 
 | 	if (!(alloc_flags & ALLOC_CMA)) | 
 | 		cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES); | 
 | #endif | 
 |  | 
 | 	/* | 
 | 	 * Fast check for order-0 only. If this fails then the reserves | 
 | 	 * need to be calculated. There is a corner case where the check | 
 | 	 * passes but only the high-order atomic reserve are free. If | 
 | 	 * the caller is !atomic then it'll uselessly search the free | 
 | 	 * list. That corner case is then slower but it is harmless. | 
 | 	 */ | 
 | 	if (!order && (free_pages - cma_pages) > | 
 | 				mark + z->lowmem_reserve[highest_zoneidx]) | 
 | 		return true; | 
 |  | 
 | 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, | 
 | 					free_pages); | 
 | } | 
 |  | 
 | bool zone_watermark_ok_safe(struct zone *z, unsigned int order, | 
 | 			unsigned long mark, int highest_zoneidx) | 
 | { | 
 | 	long free_pages = zone_page_state(z, NR_FREE_PAGES); | 
 |  | 
 | 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) | 
 | 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); | 
 |  | 
 | 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0, | 
 | 								free_pages); | 
 | } | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) | 
 | { | 
 | 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= | 
 | 				node_reclaim_distance; | 
 | } | 
 | #else	/* CONFIG_NUMA */ | 
 | static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) | 
 | { | 
 | 	return true; | 
 | } | 
 | #endif	/* CONFIG_NUMA */ | 
 |  | 
 | /* | 
 |  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid | 
 |  * fragmentation is subtle. If the preferred zone was HIGHMEM then | 
 |  * premature use of a lower zone may cause lowmem pressure problems that | 
 |  * are worse than fragmentation. If the next zone is ZONE_DMA then it is | 
 |  * probably too small. It only makes sense to spread allocations to avoid | 
 |  * fragmentation between the Normal and DMA32 zones. | 
 |  */ | 
 | static inline unsigned int | 
 | alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) | 
 | { | 
 | 	unsigned int alloc_flags; | 
 |  | 
 | 	/* | 
 | 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD | 
 | 	 * to save a branch. | 
 | 	 */ | 
 | 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM); | 
 |  | 
 | #ifdef CONFIG_ZONE_DMA32 | 
 | 	if (!zone) | 
 | 		return alloc_flags; | 
 |  | 
 | 	if (zone_idx(zone) != ZONE_NORMAL) | 
 | 		return alloc_flags; | 
 |  | 
 | 	/* | 
 | 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and | 
 | 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume | 
 | 	 * on UMA that if Normal is populated then so is DMA32. | 
 | 	 */ | 
 | 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); | 
 | 	if (nr_online_nodes > 1 && !populated_zone(--zone)) | 
 | 		return alloc_flags; | 
 |  | 
 | 	alloc_flags |= ALLOC_NOFRAGMENT; | 
 | #endif /* CONFIG_ZONE_DMA32 */ | 
 | 	return alloc_flags; | 
 | } | 
 |  | 
 | /* | 
 |  * get_page_from_freelist goes through the zonelist trying to allocate | 
 |  * a page. | 
 |  */ | 
 | static struct page * | 
 | get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, | 
 | 						const struct alloc_context *ac) | 
 | { | 
 | 	struct zoneref *z; | 
 | 	struct zone *zone; | 
 | 	struct pglist_data *last_pgdat_dirty_limit = NULL; | 
 | 	bool no_fallback; | 
 |  | 
 | retry: | 
 | 	/* | 
 | 	 * Scan zonelist, looking for a zone with enough free. | 
 | 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c. | 
 | 	 */ | 
 | 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT; | 
 | 	z = ac->preferred_zoneref; | 
 | 	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, | 
 | 					ac->highest_zoneidx, ac->nodemask) { | 
 | 		struct page *page; | 
 | 		unsigned long mark; | 
 |  | 
 | 		if (cpusets_enabled() && | 
 | 			(alloc_flags & ALLOC_CPUSET) && | 
 | 			!__cpuset_zone_allowed(zone, gfp_mask)) | 
 | 				continue; | 
 | 		/* | 
 | 		 * When allocating a page cache page for writing, we | 
 | 		 * want to get it from a node that is within its dirty | 
 | 		 * limit, such that no single node holds more than its | 
 | 		 * proportional share of globally allowed dirty pages. | 
 | 		 * The dirty limits take into account the node's | 
 | 		 * lowmem reserves and high watermark so that kswapd | 
 | 		 * should be able to balance it without having to | 
 | 		 * write pages from its LRU list. | 
 | 		 * | 
 | 		 * XXX: For now, allow allocations to potentially | 
 | 		 * exceed the per-node dirty limit in the slowpath | 
 | 		 * (spread_dirty_pages unset) before going into reclaim, | 
 | 		 * which is important when on a NUMA setup the allowed | 
 | 		 * nodes are together not big enough to reach the | 
 | 		 * global limit.  The proper fix for these situations | 
 | 		 * will require awareness of nodes in the | 
 | 		 * dirty-throttling and the flusher threads. | 
 | 		 */ | 
 | 		if (ac->spread_dirty_pages) { | 
 | 			if (last_pgdat_dirty_limit == zone->zone_pgdat) | 
 | 				continue; | 
 |  | 
 | 			if (!node_dirty_ok(zone->zone_pgdat)) { | 
 | 				last_pgdat_dirty_limit = zone->zone_pgdat; | 
 | 				continue; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		if (no_fallback && nr_online_nodes > 1 && | 
 | 		    zone != ac->preferred_zoneref->zone) { | 
 | 			int local_nid; | 
 |  | 
 | 			/* | 
 | 			 * If moving to a remote node, retry but allow | 
 | 			 * fragmenting fallbacks. Locality is more important | 
 | 			 * than fragmentation avoidance. | 
 | 			 */ | 
 | 			local_nid = zone_to_nid(ac->preferred_zoneref->zone); | 
 | 			if (zone_to_nid(zone) != local_nid) { | 
 | 				alloc_flags &= ~ALLOC_NOFRAGMENT; | 
 | 				goto retry; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); | 
 | 		if (!zone_watermark_fast(zone, order, mark, | 
 | 				       ac->highest_zoneidx, alloc_flags)) { | 
 | 			int ret; | 
 |  | 
 | #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT | 
 | 			/* | 
 | 			 * Watermark failed for this zone, but see if we can | 
 | 			 * grow this zone if it contains deferred pages. | 
 | 			 */ | 
 | 			if (static_branch_unlikely(&deferred_pages)) { | 
 | 				if (_deferred_grow_zone(zone, order)) | 
 | 					goto try_this_zone; | 
 | 			} | 
 | #endif | 
 | 			/* Checked here to keep the fast path fast */ | 
 | 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); | 
 | 			if (alloc_flags & ALLOC_NO_WATERMARKS) | 
 | 				goto try_this_zone; | 
 |  | 
 | 			if (node_reclaim_mode == 0 || | 
 | 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) | 
 | 				continue; | 
 |  | 
 | 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); | 
 | 			switch (ret) { | 
 | 			case NODE_RECLAIM_NOSCAN: | 
 | 				/* did not scan */ | 
 | 				continue; | 
 | 			case NODE_RECLAIM_FULL: | 
 | 				/* scanned but unreclaimable */ | 
 | 				continue; | 
 | 			default: | 
 | 				/* did we reclaim enough */ | 
 | 				if (zone_watermark_ok(zone, order, mark, | 
 | 					ac->highest_zoneidx, alloc_flags)) | 
 | 					goto try_this_zone; | 
 |  | 
 | 				continue; | 
 | 			} | 
 | 		} | 
 |  | 
 | try_this_zone: | 
 | 		page = rmqueue(ac->preferred_zoneref->zone, zone, order, | 
 | 				gfp_mask, alloc_flags, ac->migratetype); | 
 | 		if (page) { | 
 | 			prep_new_page(page, order, gfp_mask, alloc_flags); | 
 |  | 
 | 			/* | 
 | 			 * If this is a high-order atomic allocation then check | 
 | 			 * if the pageblock should be reserved for the future | 
 | 			 */ | 
 | 			if (unlikely(order && (alloc_flags & ALLOC_HARDER))) | 
 | 				reserve_highatomic_pageblock(page, zone, order); | 
 |  | 
 | 			return page; | 
 | 		} else { | 
 | #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT | 
 | 			/* Try again if zone has deferred pages */ | 
 | 			if (static_branch_unlikely(&deferred_pages)) { | 
 | 				if (_deferred_grow_zone(zone, order)) | 
 | 					goto try_this_zone; | 
 | 			} | 
 | #endif | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * It's possible on a UMA machine to get through all zones that are | 
 | 	 * fragmented. If avoiding fragmentation, reset and try again. | 
 | 	 */ | 
 | 	if (no_fallback) { | 
 | 		alloc_flags &= ~ALLOC_NOFRAGMENT; | 
 | 		goto retry; | 
 | 	} | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) | 
 | { | 
 | 	unsigned int filter = SHOW_MEM_FILTER_NODES; | 
 |  | 
 | 	/* | 
 | 	 * This documents exceptions given to allocations in certain | 
 | 	 * contexts that are allowed to allocate outside current's set | 
 | 	 * of allowed nodes. | 
 | 	 */ | 
 | 	if (!(gfp_mask & __GFP_NOMEMALLOC)) | 
 | 		if (tsk_is_oom_victim(current) || | 
 | 		    (current->flags & (PF_MEMALLOC | PF_EXITING))) | 
 | 			filter &= ~SHOW_MEM_FILTER_NODES; | 
 | 	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) | 
 | 		filter &= ~SHOW_MEM_FILTER_NODES; | 
 |  | 
 | 	show_mem(filter, nodemask); | 
 | } | 
 |  | 
 | void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) | 
 | { | 
 | 	struct va_format vaf; | 
 | 	va_list args; | 
 | 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1); | 
 |  | 
 | 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs)) | 
 | 		return; | 
 |  | 
 | 	va_start(args, fmt); | 
 | 	vaf.fmt = fmt; | 
 | 	vaf.va = &args; | 
 | 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", | 
 | 			current->comm, &vaf, gfp_mask, &gfp_mask, | 
 | 			nodemask_pr_args(nodemask)); | 
 | 	va_end(args); | 
 |  | 
 | 	cpuset_print_current_mems_allowed(); | 
 | 	pr_cont("\n"); | 
 | 	dump_stack(); | 
 | 	warn_alloc_show_mem(gfp_mask, nodemask); | 
 | } | 
 |  | 
 | static inline struct page * | 
 | __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, | 
 | 			      unsigned int alloc_flags, | 
 | 			      const struct alloc_context *ac) | 
 | { | 
 | 	struct page *page; | 
 |  | 
 | 	page = get_page_from_freelist(gfp_mask, order, | 
 | 			alloc_flags|ALLOC_CPUSET, ac); | 
 | 	/* | 
 | 	 * fallback to ignore cpuset restriction if our nodes | 
 | 	 * are depleted | 
 | 	 */ | 
 | 	if (!page) | 
 | 		page = get_page_from_freelist(gfp_mask, order, | 
 | 				alloc_flags, ac); | 
 |  | 
 | 	return page; | 
 | } | 
 |  | 
 | static inline struct page * | 
 | __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, | 
 | 	const struct alloc_context *ac, unsigned long *did_some_progress) | 
 | { | 
 | 	struct oom_control oc = { | 
 | 		.zonelist = ac->zonelist, | 
 | 		.nodemask = ac->nodemask, | 
 | 		.memcg = NULL, | 
 | 		.gfp_mask = gfp_mask, | 
 | 		.order = order, | 
 | 	}; | 
 | 	struct page *page; | 
 |  | 
 | 	*did_some_progress = 0; | 
 |  | 
 | 	/* | 
 | 	 * Acquire the oom lock.  If that fails, somebody else is | 
 | 	 * making progress for us. | 
 | 	 */ | 
 | 	if (!mutex_trylock(&oom_lock)) { | 
 | 		*did_some_progress = 1; | 
 | 		schedule_timeout_uninterruptible(1); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Go through the zonelist yet one more time, keep very high watermark | 
 | 	 * here, this is only to catch a parallel oom killing, we must fail if | 
 | 	 * we're still under heavy pressure. But make sure that this reclaim | 
 | 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY | 
 | 	 * allocation which will never fail due to oom_lock already held. | 
 | 	 */ | 
 | 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & | 
 | 				      ~__GFP_DIRECT_RECLAIM, order, | 
 | 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); | 
 | 	if (page) | 
 | 		goto out; | 
 |  | 
 | 	/* Coredumps can quickly deplete all memory reserves */ | 
 | 	if (current->flags & PF_DUMPCORE) | 
 | 		goto out; | 
 | 	/* The OOM killer will not help higher order allocs */ | 
 | 	if (order > PAGE_ALLOC_COSTLY_ORDER) | 
 | 		goto out; | 
 | 	/* | 
 | 	 * We have already exhausted all our reclaim opportunities without any | 
 | 	 * success so it is time to admit defeat. We will skip the OOM killer | 
 | 	 * because it is very likely that the caller has a more reasonable | 
 | 	 * fallback than shooting a random task. | 
 | 	 */ | 
 | 	if (gfp_mask & __GFP_RETRY_MAYFAIL) | 
 | 		goto out; | 
 | 	/* The OOM killer does not needlessly kill tasks for lowmem */ | 
 | 	if (ac->highest_zoneidx < ZONE_NORMAL) | 
 | 		goto out; | 
 | 	if (pm_suspended_storage()) | 
 | 		goto out; | 
 | 	/* | 
 | 	 * XXX: GFP_NOFS allocations should rather fail than rely on | 
 | 	 * other request to make a forward progress. | 
 | 	 * We are in an unfortunate situation where out_of_memory cannot | 
 | 	 * do much for this context but let's try it to at least get | 
 | 	 * access to memory reserved if the current task is killed (see | 
 | 	 * out_of_memory). Once filesystems are ready to handle allocation | 
 | 	 * failures more gracefully we should just bail out here. | 
 | 	 */ | 
 |  | 
 | 	/* The OOM killer may not free memory on a specific node */ | 
 | 	if (gfp_mask & __GFP_THISNODE) | 
 | 		goto out; | 
 |  | 
 | 	/* Exhausted what can be done so it's blame time */ | 
 | 	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) { | 
 | 		*did_some_progress = 1; | 
 |  | 
 | 		/* | 
 | 		 * Help non-failing allocations by giving them access to memory | 
 | 		 * reserves | 
 | 		 */ | 
 | 		if (gfp_mask & __GFP_NOFAIL) | 
 | 			page = __alloc_pages_cpuset_fallback(gfp_mask, order, | 
 | 					ALLOC_NO_WATERMARKS, ac); | 
 | 	} | 
 | out: | 
 | 	mutex_unlock(&oom_lock); | 
 | 	return page; | 
 | } | 
 |  | 
 | /* | 
 |  * Maximum number of compaction retries wit a progress before OOM | 
 |  * killer is consider as the only way to move forward. | 
 |  */ | 
 | #define MAX_COMPACT_RETRIES 16 | 
 |  | 
 | #ifdef CONFIG_COMPACTION | 
 | /* Try memory compaction for high-order allocations before reclaim */ | 
 | static struct page * | 
 | __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, | 
 | 		unsigned int alloc_flags, const struct alloc_context *ac, | 
 | 		enum compact_priority prio, enum compact_result *compact_result) | 
 | { | 
 | 	struct page *page = NULL; | 
 | 	unsigned long pflags; | 
 | 	unsigned int noreclaim_flag; | 
 |  | 
 | 	if (!order) | 
 | 		return NULL; | 
 |  | 
 | 	psi_memstall_enter(&pflags); | 
 | 	noreclaim_flag = memalloc_noreclaim_save(); | 
 |  | 
 | 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, | 
 | 								prio, &page); | 
 |  | 
 | 	memalloc_noreclaim_restore(noreclaim_flag); | 
 | 	psi_memstall_leave(&pflags); | 
 |  | 
 | 	/* | 
 | 	 * At least in one zone compaction wasn't deferred or skipped, so let's | 
 | 	 * count a compaction stall | 
 | 	 */ | 
 | 	count_vm_event(COMPACTSTALL); | 
 |  | 
 | 	/* Prep a captured page if available */ | 
 | 	if (page) | 
 | 		prep_new_page(page, order, gfp_mask, alloc_flags); | 
 |  | 
 | 	/* Try get a page from the freelist if available */ | 
 | 	if (!page) | 
 | 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); | 
 |  | 
 | 	if (page) { | 
 | 		struct zone *zone = page_zone(page); | 
 |  | 
 | 		zone->compact_blockskip_flush = false; | 
 | 		compaction_defer_reset(zone, order, true); | 
 | 		count_vm_event(COMPACTSUCCESS); | 
 | 		return page; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * It's bad if compaction run occurs and fails. The most likely reason | 
 | 	 * is that pages exist, but not enough to satisfy watermarks. | 
 | 	 */ | 
 | 	count_vm_event(COMPACTFAIL); | 
 |  | 
 | 	cond_resched(); | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static inline bool | 
 | should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, | 
 | 		     enum compact_result compact_result, | 
 | 		     enum compact_priority *compact_priority, | 
 | 		     int *compaction_retries) | 
 | { | 
 | 	int max_retries = MAX_COMPACT_RETRIES; | 
 | 	int min_priority; | 
 | 	bool ret = false; | 
 | 	int retries = *compaction_retries; | 
 | 	enum compact_priority priority = *compact_priority; | 
 |  | 
 | 	if (!order) | 
 | 		return false; | 
 |  | 
 | 	if (compaction_made_progress(compact_result)) | 
 | 		(*compaction_retries)++; | 
 |  | 
 | 	/* | 
 | 	 * compaction considers all the zone as desperately out of memory | 
 | 	 * so it doesn't really make much sense to retry except when the | 
 | 	 * failure could be caused by insufficient priority | 
 | 	 */ | 
 | 	if (compaction_failed(compact_result)) | 
 | 		goto check_priority; | 
 |  | 
 | 	/* | 
 | 	 * compaction was skipped because there are not enough order-0 pages | 
 | 	 * to work with, so we retry only if it looks like reclaim can help. | 
 | 	 */ | 
 | 	if (compaction_needs_reclaim(compact_result)) { | 
 | 		ret = compaction_zonelist_suitable(ac, order, alloc_flags); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * make sure the compaction wasn't deferred or didn't bail out early | 
 | 	 * due to locks contention before we declare that we should give up. | 
 | 	 * But the next retry should use a higher priority if allowed, so | 
 | 	 * we don't just keep bailing out endlessly. | 
 | 	 */ | 
 | 	if (compaction_withdrawn(compact_result)) { | 
 | 		goto check_priority; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL | 
 | 	 * costly ones because they are de facto nofail and invoke OOM | 
 | 	 * killer to move on while costly can fail and users are ready | 
 | 	 * to cope with that. 1/4 retries is rather arbitrary but we | 
 | 	 * would need much more detailed feedback from compaction to | 
 | 	 * make a better decision. | 
 | 	 */ | 
 | 	if (order > PAGE_ALLOC_COSTLY_ORDER) | 
 | 		max_retries /= 4; | 
 | 	if (*compaction_retries <= max_retries) { | 
 | 		ret = true; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Make sure there are attempts at the highest priority if we exhausted | 
 | 	 * all retries or failed at the lower priorities. | 
 | 	 */ | 
 | check_priority: | 
 | 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? | 
 | 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; | 
 |  | 
 | 	if (*compact_priority > min_priority) { | 
 | 		(*compact_priority)--; | 
 | 		*compaction_retries = 0; | 
 | 		ret = true; | 
 | 	} | 
 | out: | 
 | 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); | 
 | 	return ret; | 
 | } | 
 | #else | 
 | static inline struct page * | 
 | __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, | 
 | 		unsigned int alloc_flags, const struct alloc_context *ac, | 
 | 		enum compact_priority prio, enum compact_result *compact_result) | 
 | { | 
 | 	*compact_result = COMPACT_SKIPPED; | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static inline bool | 
 | should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, | 
 | 		     enum compact_result compact_result, | 
 | 		     enum compact_priority *compact_priority, | 
 | 		     int *compaction_retries) | 
 | { | 
 | 	struct zone *zone; | 
 | 	struct zoneref *z; | 
 |  | 
 | 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER) | 
 | 		return false; | 
 |  | 
 | 	/* | 
 | 	 * There are setups with compaction disabled which would prefer to loop | 
 | 	 * inside the allocator rather than hit the oom killer prematurely. | 
 | 	 * Let's give them a good hope and keep retrying while the order-0 | 
 | 	 * watermarks are OK. | 
 | 	 */ | 
 | 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, | 
 | 				ac->highest_zoneidx, ac->nodemask) { | 
 | 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), | 
 | 					ac->highest_zoneidx, alloc_flags)) | 
 | 			return true; | 
 | 	} | 
 | 	return false; | 
 | } | 
 | #endif /* CONFIG_COMPACTION */ | 
 |  | 
 | #ifdef CONFIG_LOCKDEP | 
 | static struct lockdep_map __fs_reclaim_map = | 
 | 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); | 
 |  | 
 | static bool __need_fs_reclaim(gfp_t gfp_mask) | 
 | { | 
 | 	gfp_mask = current_gfp_context(gfp_mask); | 
 |  | 
 | 	/* no reclaim without waiting on it */ | 
 | 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) | 
 | 		return false; | 
 |  | 
 | 	/* this guy won't enter reclaim */ | 
 | 	if (current->flags & PF_MEMALLOC) | 
 | 		return false; | 
 |  | 
 | 	/* We're only interested __GFP_FS allocations for now */ | 
 | 	if (!(gfp_mask & __GFP_FS)) | 
 | 		return false; | 
 |  | 
 | 	if (gfp_mask & __GFP_NOLOCKDEP) | 
 | 		return false; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | void __fs_reclaim_acquire(void) | 
 | { | 
 | 	lock_map_acquire(&__fs_reclaim_map); | 
 | } | 
 |  | 
 | void __fs_reclaim_release(void) | 
 | { | 
 | 	lock_map_release(&__fs_reclaim_map); | 
 | } | 
 |  | 
 | void fs_reclaim_acquire(gfp_t gfp_mask) | 
 | { | 
 | 	if (__need_fs_reclaim(gfp_mask)) | 
 | 		__fs_reclaim_acquire(); | 
 | } | 
 | EXPORT_SYMBOL_GPL(fs_reclaim_acquire); | 
 |  | 
 | void fs_reclaim_release(gfp_t gfp_mask) | 
 | { | 
 | 	if (__need_fs_reclaim(gfp_mask)) | 
 | 		__fs_reclaim_release(); | 
 | } | 
 | EXPORT_SYMBOL_GPL(fs_reclaim_release); | 
 | #endif | 
 |  | 
 | /* Perform direct synchronous page reclaim */ | 
 | static int | 
 | __perform_reclaim(gfp_t gfp_mask, unsigned int order, | 
 | 					const struct alloc_context *ac) | 
 | { | 
 | 	int progress; | 
 | 	unsigned int noreclaim_flag; | 
 | 	unsigned long pflags; | 
 |  | 
 | 	cond_resched(); | 
 |  | 
 | 	/* We now go into synchronous reclaim */ | 
 | 	cpuset_memory_pressure_bump(); | 
 | 	psi_memstall_enter(&pflags); | 
 | 	fs_reclaim_acquire(gfp_mask); | 
 | 	noreclaim_flag = memalloc_noreclaim_save(); | 
 |  | 
 | 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask, | 
 | 								ac->nodemask); | 
 |  | 
 | 	memalloc_noreclaim_restore(noreclaim_flag); | 
 | 	fs_reclaim_release(gfp_mask); | 
 | 	psi_memstall_leave(&pflags); | 
 |  | 
 | 	cond_resched(); | 
 |  | 
 | 	return progress; | 
 | } | 
 |  | 
 | /* The really slow allocator path where we enter direct reclaim */ | 
 | static inline struct page * | 
 | __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, | 
 | 		unsigned int alloc_flags, const struct alloc_context *ac, | 
 | 		unsigned long *did_some_progress) | 
 | { | 
 | 	struct page *page = NULL; | 
 | 	bool drained = false; | 
 |  | 
 | 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac); | 
 | 	if (unlikely(!(*did_some_progress))) | 
 | 		return NULL; | 
 |  | 
 | retry: | 
 | 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); | 
 |  | 
 | 	/* | 
 | 	 * If an allocation failed after direct reclaim, it could be because | 
 | 	 * pages are pinned on the per-cpu lists or in high alloc reserves. | 
 | 	 * Shrink them them and try again | 
 | 	 */ | 
 | 	if (!page && !drained) { | 
 | 		unreserve_highatomic_pageblock(ac, false); | 
 | 		drain_all_pages(NULL); | 
 | 		drained = true; | 
 | 		goto retry; | 
 | 	} | 
 |  | 
 | 	return page; | 
 | } | 
 |  | 
 | static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, | 
 | 			     const struct alloc_context *ac) | 
 | { | 
 | 	struct zoneref *z; | 
 | 	struct zone *zone; | 
 | 	pg_data_t *last_pgdat = NULL; | 
 | 	enum zone_type highest_zoneidx = ac->highest_zoneidx; | 
 |  | 
 | 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx, | 
 | 					ac->nodemask) { | 
 | 		if (last_pgdat != zone->zone_pgdat) | 
 | 			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx); | 
 | 		last_pgdat = zone->zone_pgdat; | 
 | 	} | 
 | } | 
 |  | 
 | static inline unsigned int | 
 | gfp_to_alloc_flags(gfp_t gfp_mask) | 
 | { | 
 | 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; | 
 |  | 
 | 	/* | 
 | 	 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH | 
 | 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD | 
 | 	 * to save two branches. | 
 | 	 */ | 
 | 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); | 
 | 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD); | 
 |  | 
 | 	/* | 
 | 	 * The caller may dip into page reserves a bit more if the caller | 
 | 	 * cannot run direct reclaim, or if the caller has realtime scheduling | 
 | 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will | 
 | 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH). | 
 | 	 */ | 
 | 	alloc_flags |= (__force int) | 
 | 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM)); | 
 |  | 
 | 	if (gfp_mask & __GFP_ATOMIC) { | 
 | 		/* | 
 | 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even | 
 | 		 * if it can't schedule. | 
 | 		 */ | 
 | 		if (!(gfp_mask & __GFP_NOMEMALLOC)) | 
 | 			alloc_flags |= ALLOC_HARDER; | 
 | 		/* | 
 | 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the | 
 | 		 * comment for __cpuset_node_allowed(). | 
 | 		 */ | 
 | 		alloc_flags &= ~ALLOC_CPUSET; | 
 | 	} else if (unlikely(rt_task(current)) && !in_interrupt()) | 
 | 		alloc_flags |= ALLOC_HARDER; | 
 |  | 
 | #ifdef CONFIG_CMA | 
 | 	if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE) | 
 | 		alloc_flags |= ALLOC_CMA; | 
 | #endif | 
 | 	return alloc_flags; | 
 | } | 
 |  | 
 | static bool oom_reserves_allowed(struct task_struct *tsk) | 
 | { | 
 | 	if (!tsk_is_oom_victim(tsk)) | 
 | 		return false; | 
 |  | 
 | 	/* | 
 | 	 * !MMU doesn't have oom reaper so give access to memory reserves | 
 | 	 * only to the thread with TIF_MEMDIE set | 
 | 	 */ | 
 | 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) | 
 | 		return false; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | /* | 
 |  * Distinguish requests which really need access to full memory | 
 |  * reserves from oom victims which can live with a portion of it | 
 |  */ | 
 | static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) | 
 | { | 
 | 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) | 
 | 		return 0; | 
 | 	if (gfp_mask & __GFP_MEMALLOC) | 
 | 		return ALLOC_NO_WATERMARKS; | 
 | 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) | 
 | 		return ALLOC_NO_WATERMARKS; | 
 | 	if (!in_interrupt()) { | 
 | 		if (current->flags & PF_MEMALLOC) | 
 | 			return ALLOC_NO_WATERMARKS; | 
 | 		else if (oom_reserves_allowed(current)) | 
 | 			return ALLOC_OOM; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) | 
 | { | 
 | 	return !!__gfp_pfmemalloc_flags(gfp_mask); | 
 | } | 
 |  | 
 | /* | 
 |  * Checks whether it makes sense to retry the reclaim to make a forward progress | 
 |  * for the given allocation request. | 
 |  * | 
 |  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row | 
 |  * without success, or when we couldn't even meet the watermark if we | 
 |  * reclaimed all remaining pages on the LRU lists. | 
 |  * | 
 |  * Returns true if a retry is viable or false to enter the oom path. | 
 |  */ | 
 | static inline bool | 
 | should_reclaim_retry(gfp_t gfp_mask, unsigned order, | 
 | 		     struct alloc_context *ac, int alloc_flags, | 
 | 		     bool did_some_progress, int *no_progress_loops) | 
 | { | 
 | 	struct zone *zone; | 
 | 	struct zoneref *z; | 
 | 	bool ret = false; | 
 |  | 
 | 	/* | 
 | 	 * Costly allocations might have made a progress but this doesn't mean | 
 | 	 * their order will become available due to high fragmentation so | 
 | 	 * always increment the no progress counter for them | 
 | 	 */ | 
 | 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) | 
 | 		*no_progress_loops = 0; | 
 | 	else | 
 | 		(*no_progress_loops)++; | 
 |  | 
 | 	/* | 
 | 	 * Make sure we converge to OOM if we cannot make any progress | 
 | 	 * several times in the row. | 
 | 	 */ | 
 | 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) { | 
 | 		/* Before OOM, exhaust highatomic_reserve */ | 
 | 		return unreserve_highatomic_pageblock(ac, true); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Keep reclaiming pages while there is a chance this will lead | 
 | 	 * somewhere.  If none of the target zones can satisfy our allocation | 
 | 	 * request even if all reclaimable pages are considered then we are | 
 | 	 * screwed and have to go OOM. | 
 | 	 */ | 
 | 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, | 
 | 				ac->highest_zoneidx, ac->nodemask) { | 
 | 		unsigned long available; | 
 | 		unsigned long reclaimable; | 
 | 		unsigned long min_wmark = min_wmark_pages(zone); | 
 | 		bool wmark; | 
 |  | 
 | 		available = reclaimable = zone_reclaimable_pages(zone); | 
 | 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES); | 
 |  | 
 | 		/* | 
 | 		 * Would the allocation succeed if we reclaimed all | 
 | 		 * reclaimable pages? | 
 | 		 */ | 
 | 		wmark = __zone_watermark_ok(zone, order, min_wmark, | 
 | 				ac->highest_zoneidx, alloc_flags, available); | 
 | 		trace_reclaim_retry_zone(z, order, reclaimable, | 
 | 				available, min_wmark, *no_progress_loops, wmark); | 
 | 		if (wmark) { | 
 | 			/* | 
 | 			 * If we didn't make any progress and have a lot of | 
 | 			 * dirty + writeback pages then we should wait for | 
 | 			 * an IO to complete to slow down the reclaim and | 
 | 			 * prevent from pre mature OOM | 
 | 			 */ | 
 | 			if (!did_some_progress) { | 
 | 				unsigned long write_pending; | 
 |  | 
 | 				write_pending = zone_page_state_snapshot(zone, | 
 | 							NR_ZONE_WRITE_PENDING); | 
 |  | 
 | 				if (2 * write_pending > reclaimable) { | 
 | 					congestion_wait(BLK_RW_ASYNC, HZ/10); | 
 | 					return true; | 
 | 				} | 
 | 			} | 
 |  | 
 | 			ret = true; | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 |  | 
 | out: | 
 | 	/* | 
 | 	 * Memory allocation/reclaim might be called from a WQ context and the | 
 | 	 * current implementation of the WQ concurrency control doesn't | 
 | 	 * recognize that a particular WQ is congested if the worker thread is | 
 | 	 * looping without ever sleeping. Therefore we have to do a short sleep | 
 | 	 * here rather than calling cond_resched(). | 
 | 	 */ | 
 | 	if (current->flags & PF_WQ_WORKER) | 
 | 		schedule_timeout_uninterruptible(1); | 
 | 	else | 
 | 		cond_resched(); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static inline bool | 
 | check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) | 
 | { | 
 | 	/* | 
 | 	 * It's possible that cpuset's mems_allowed and the nodemask from | 
 | 	 * mempolicy don't intersect. This should be normally dealt with by | 
 | 	 * policy_nodemask(), but it's possible to race with cpuset update in | 
 | 	 * such a way the check therein was true, and then it became false | 
 | 	 * before we got our cpuset_mems_cookie here. | 
 | 	 * This assumes that for all allocations, ac->nodemask can come only | 
 | 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored | 
 | 	 * when it does not intersect with the cpuset restrictions) or the | 
 | 	 * caller can deal with a violated nodemask. | 
 | 	 */ | 
 | 	if (cpusets_enabled() && ac->nodemask && | 
 | 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { | 
 | 		ac->nodemask = NULL; | 
 | 		return true; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * When updating a task's mems_allowed or mempolicy nodemask, it is | 
 | 	 * possible to race with parallel threads in such a way that our | 
 | 	 * allocation can fail while the mask is being updated. If we are about | 
 | 	 * to fail, check if the cpuset changed during allocation and if so, | 
 | 	 * retry. | 
 | 	 */ | 
 | 	if (read_mems_allowed_retry(cpuset_mems_cookie)) | 
 | 		return true; | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | static inline struct page * | 
 | __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, | 
 | 						struct alloc_context *ac) | 
 | { | 
 | 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; | 
 | 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; | 
 | 	struct page *page = NULL; | 
 | 	unsigned int alloc_flags; | 
 | 	unsigned long did_some_progress; | 
 | 	enum compact_priority compact_priority; | 
 | 	enum compact_result compact_result; | 
 | 	int compaction_retries; | 
 | 	int no_progress_loops; | 
 | 	unsigned int cpuset_mems_cookie; | 
 | 	int reserve_flags; | 
 |  | 
 | 	/* | 
 | 	 * We also sanity check to catch abuse of atomic reserves being used by | 
 | 	 * callers that are not in atomic context. | 
 | 	 */ | 
 | 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) == | 
 | 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM))) | 
 | 		gfp_mask &= ~__GFP_ATOMIC; | 
 |  | 
 | retry_cpuset: | 
 | 	compaction_retries = 0; | 
 | 	no_progress_loops = 0; | 
 | 	compact_priority = DEF_COMPACT_PRIORITY; | 
 | 	cpuset_mems_cookie = read_mems_allowed_begin(); | 
 |  | 
 | 	/* | 
 | 	 * The fast path uses conservative alloc_flags to succeed only until | 
 | 	 * kswapd needs to be woken up, and to avoid the cost of setting up | 
 | 	 * alloc_flags precisely. So we do that now. | 
 | 	 */ | 
 | 	alloc_flags = gfp_to_alloc_flags(gfp_mask); | 
 |  | 
 | 	/* | 
 | 	 * We need to recalculate the starting point for the zonelist iterator | 
 | 	 * because we might have used different nodemask in the fast path, or | 
 | 	 * there was a cpuset modification and we are retrying - otherwise we | 
 | 	 * could end up iterating over non-eligible zones endlessly. | 
 | 	 */ | 
 | 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, | 
 | 					ac->highest_zoneidx, ac->nodemask); | 
 | 	if (!ac->preferred_zoneref->zone) | 
 | 		goto nopage; | 
 |  | 
 | 	if (alloc_flags & ALLOC_KSWAPD) | 
 | 		wake_all_kswapds(order, gfp_mask, ac); | 
 |  | 
 | 	/* | 
 | 	 * The adjusted alloc_flags might result in immediate success, so try | 
 | 	 * that first | 
 | 	 */ | 
 | 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); | 
 | 	if (page) | 
 | 		goto got_pg; | 
 |  | 
 | 	/* | 
 | 	 * For costly allocations, try direct compaction first, as it's likely | 
 | 	 * that we have enough base pages and don't need to reclaim. For non- | 
 | 	 * movable high-order allocations, do that as well, as compaction will | 
 | 	 * try prevent permanent fragmentation by migrating from blocks of the | 
 | 	 * same migratetype. | 
 | 	 * Don't try this for allocations that are allowed to ignore | 
 | 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. | 
 | 	 */ | 
 | 	if (can_direct_reclaim && | 
 | 			(costly_order || | 
 | 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) | 
 | 			&& !gfp_pfmemalloc_allowed(gfp_mask)) { | 
 | 		page = __alloc_pages_direct_compact(gfp_mask, order, | 
 | 						alloc_flags, ac, | 
 | 						INIT_COMPACT_PRIORITY, | 
 | 						&compact_result); | 
 | 		if (page) | 
 | 			goto got_pg; | 
 |  | 
 | 		/* | 
 | 		 * Checks for costly allocations with __GFP_NORETRY, which | 
 | 		 * includes some THP page fault allocations | 
 | 		 */ | 
 | 		if (costly_order && (gfp_mask & __GFP_NORETRY)) { | 
 | 			/* | 
 | 			 * If allocating entire pageblock(s) and compaction | 
 | 			 * failed because all zones are below low watermarks | 
 | 			 * or is prohibited because it recently failed at this | 
 | 			 * order, fail immediately unless the allocator has | 
 | 			 * requested compaction and reclaim retry. | 
 | 			 * | 
 | 			 * Reclaim is | 
 | 			 *  - potentially very expensive because zones are far | 
 | 			 *    below their low watermarks or this is part of very | 
 | 			 *    bursty high order allocations, | 
 | 			 *  - not guaranteed to help because isolate_freepages() | 
 | 			 *    may not iterate over freed pages as part of its | 
 | 			 *    linear scan, and | 
 | 			 *  - unlikely to make entire pageblocks free on its | 
 | 			 *    own. | 
 | 			 */ | 
 | 			if (compact_result == COMPACT_SKIPPED || | 
 | 			    compact_result == COMPACT_DEFERRED) | 
 | 				goto nopage; | 
 |  | 
 | 			/* | 
 | 			 * Looks like reclaim/compaction is worth trying, but | 
 | 			 * sync compaction could be very expensive, so keep | 
 | 			 * using async compaction. | 
 | 			 */ | 
 | 			compact_priority = INIT_COMPACT_PRIORITY; | 
 | 		} | 
 | 	} | 
 |  | 
 | retry: | 
 | 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ | 
 | 	if (alloc_flags & ALLOC_KSWAPD) | 
 | 		wake_all_kswapds(order, gfp_mask, ac); | 
 |  | 
 | 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); | 
 | 	if (reserve_flags) | 
 | 		alloc_flags = reserve_flags; | 
 |  | 
 | 	/* | 
 | 	 * Reset the nodemask and zonelist iterators if memory policies can be | 
 | 	 * ignored. These allocations are high priority and system rather than | 
 | 	 * user oriented. | 
 | 	 */ | 
 | 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { | 
 | 		ac->nodemask = NULL; | 
 | 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, | 
 | 					ac->highest_zoneidx, ac->nodemask); | 
 | 	} | 
 |  | 
 | 	/* Attempt with potentially adjusted zonelist and alloc_flags */ | 
 | 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); | 
 | 	if (page) | 
 | 		goto got_pg; | 
 |  | 
 | 	/* Caller is not willing to reclaim, we can't balance anything */ | 
 | 	if (!can_direct_reclaim) | 
 | 		goto nopage; | 
 |  | 
 | 	/* Avoid recursion of direct reclaim */ | 
 | 	if (current->flags & PF_MEMALLOC) | 
 | 		goto nopage; | 
 |  | 
 | 	/* Try direct reclaim and then allocating */ | 
 | 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, | 
 | 							&did_some_progress); | 
 | 	if (page) | 
 | 		goto got_pg; | 
 |  | 
 | 	/* Try direct compaction and then allocating */ | 
 | 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, | 
 | 					compact_priority, &compact_result); | 
 | 	if (page) | 
 | 		goto got_pg; | 
 |  | 
 | 	/* Do not loop if specifically requested */ | 
 | 	if (gfp_mask & __GFP_NORETRY) | 
 | 		goto nopage; | 
 |  | 
 | 	/* | 
 | 	 * Do not retry costly high order allocations unless they are | 
 | 	 * __GFP_RETRY_MAYFAIL | 
 | 	 */ | 
 | 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL)) | 
 | 		goto nopage; | 
 |  | 
 | 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, | 
 | 				 did_some_progress > 0, &no_progress_loops)) | 
 | 		goto retry; | 
 |  | 
 | 	/* | 
 | 	 * It doesn't make any sense to retry for the compaction if the order-0 | 
 | 	 * reclaim is not able to make any progress because the current | 
 | 	 * implementation of the compaction depends on the sufficient amount | 
 | 	 * of free memory (see __compaction_suitable) | 
 | 	 */ | 
 | 	if (did_some_progress > 0 && | 
 | 			should_compact_retry(ac, order, alloc_flags, | 
 | 				compact_result, &compact_priority, | 
 | 				&compaction_retries)) | 
 | 		goto retry; | 
 |  | 
 |  | 
 | 	/* Deal with possible cpuset update races before we start OOM killing */ | 
 | 	if (check_retry_cpuset(cpuset_mems_cookie, ac)) | 
 | 		goto retry_cpuset; | 
 |  | 
 | 	/* Reclaim has failed us, start killing things */ | 
 | 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); | 
 | 	if (page) | 
 | 		goto got_pg; | 
 |  | 
 | 	/* Avoid allocations with no watermarks from looping endlessly */ | 
 | 	if (tsk_is_oom_victim(current) && | 
 | 	    (alloc_flags == ALLOC_OOM || | 
 | 	     (gfp_mask & __GFP_NOMEMALLOC))) | 
 | 		goto nopage; | 
 |  | 
 | 	/* Retry as long as the OOM killer is making progress */ | 
 | 	if (did_some_progress) { | 
 | 		no_progress_loops = 0; | 
 | 		goto retry; | 
 | 	} | 
 |  | 
 | nopage: | 
 | 	/* Deal with possible cpuset update races before we fail */ | 
 | 	if (check_retry_cpuset(cpuset_mems_cookie, ac)) | 
 | 		goto retry_cpuset; | 
 |  | 
 | 	/* | 
 | 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure | 
 | 	 * we always retry | 
 | 	 */ | 
 | 	if (gfp_mask & __GFP_NOFAIL) { | 
 | 		/* | 
 | 		 * All existing users of the __GFP_NOFAIL are blockable, so warn | 
 | 		 * of any new users that actually require GFP_NOWAIT | 
 | 		 */ | 
 | 		if (WARN_ON_ONCE(!can_direct_reclaim)) | 
 | 			goto fail; | 
 |  | 
 | 		/* | 
 | 		 * PF_MEMALLOC request from this context is rather bizarre | 
 | 		 * because we cannot reclaim anything and only can loop waiting | 
 | 		 * for somebody to do a work for us | 
 | 		 */ | 
 | 		WARN_ON_ONCE(current->flags & PF_MEMALLOC); | 
 |  | 
 | 		/* | 
 | 		 * non failing costly orders are a hard requirement which we | 
 | 		 * are not prepared for much so let's warn about these users | 
 | 		 * so that we can identify them and convert them to something | 
 | 		 * else. | 
 | 		 */ | 
 | 		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER); | 
 |  | 
 | 		/* | 
 | 		 * Help non-failing allocations by giving them access to memory | 
 | 		 * reserves but do not use ALLOC_NO_WATERMARKS because this | 
 | 		 * could deplete whole memory reserves which would just make | 
 | 		 * the situation worse | 
 | 		 */ | 
 | 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac); | 
 | 		if (page) | 
 | 			goto got_pg; | 
 |  | 
 | 		cond_resched(); | 
 | 		goto retry; | 
 | 	} | 
 | fail: | 
 | 	warn_alloc(gfp_mask, ac->nodemask, | 
 | 			"page allocation failure: order:%u", order); | 
 | got_pg: | 
 | 	return page; | 
 | } | 
 |  | 
 | static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, | 
 | 		int preferred_nid, nodemask_t *nodemask, | 
 | 		struct alloc_context *ac, gfp_t *alloc_mask, | 
 | 		unsigned int *alloc_flags) | 
 | { | 
 | 	ac->highest_zoneidx = gfp_zone(gfp_mask); | 
 | 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask); | 
 | 	ac->nodemask = nodemask; | 
 | 	ac->migratetype = gfp_migratetype(gfp_mask); | 
 |  | 
 | 	if (cpusets_enabled()) { | 
 | 		*alloc_mask |= __GFP_HARDWALL; | 
 | 		if (!ac->nodemask) | 
 | 			ac->nodemask = &cpuset_current_mems_allowed; | 
 | 		else | 
 | 			*alloc_flags |= ALLOC_CPUSET; | 
 | 	} | 
 |  | 
 | 	fs_reclaim_acquire(gfp_mask); | 
 | 	fs_reclaim_release(gfp_mask); | 
 |  | 
 | 	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM); | 
 |  | 
 | 	if (should_fail_alloc_page(gfp_mask, order)) | 
 | 		return false; | 
 |  | 
 | 	if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE) | 
 | 		*alloc_flags |= ALLOC_CMA; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | /* Determine whether to spread dirty pages and what the first usable zone */ | 
 | static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac) | 
 | { | 
 | 	/* Dirty zone balancing only done in the fast path */ | 
 | 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); | 
 |  | 
 | 	/* | 
 | 	 * The preferred zone is used for statistics but crucially it is | 
 | 	 * also used as the starting point for the zonelist iterator. It | 
 | 	 * may get reset for allocations that ignore memory policies. | 
 | 	 */ | 
 | 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, | 
 | 					ac->highest_zoneidx, ac->nodemask); | 
 | } | 
 |  | 
 | /* | 
 |  * This is the 'heart' of the zoned buddy allocator. | 
 |  */ | 
 | struct page * | 
 | __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid, | 
 | 							nodemask_t *nodemask) | 
 | { | 
 | 	struct page *page; | 
 | 	unsigned int alloc_flags = ALLOC_WMARK_LOW; | 
 | 	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */ | 
 | 	struct alloc_context ac = { }; | 
 |  | 
 | 	/* | 
 | 	 * There are several places where we assume that the order value is sane | 
 | 	 * so bail out early if the request is out of bound. | 
 | 	 */ | 
 | 	if (unlikely(order >= MAX_ORDER)) { | 
 | 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	gfp_mask &= gfp_allowed_mask; | 
 | 	alloc_mask = gfp_mask; | 
 | 	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags)) | 
 | 		return NULL; | 
 |  | 
 | 	finalise_ac(gfp_mask, &ac); | 
 |  | 
 | 	/* | 
 | 	 * Forbid the first pass from falling back to types that fragment | 
 | 	 * memory until all local zones are considered. | 
 | 	 */ | 
 | 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask); | 
 |  | 
 | 	/* First allocation attempt */ | 
 | 	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac); | 
 | 	if (likely(page)) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS | 
 | 	 * resp. GFP_NOIO which has to be inherited for all allocation requests | 
 | 	 * from a particular context which has been marked by | 
 | 	 * memalloc_no{fs,io}_{save,restore}. | 
 | 	 */ | 
 | 	alloc_mask = current_gfp_context(gfp_mask); | 
 | 	ac.spread_dirty_pages = false; | 
 |  | 
 | 	/* | 
 | 	 * Restore the original nodemask if it was potentially replaced with | 
 | 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt. | 
 | 	 */ | 
 | 	ac.nodemask = nodemask; | 
 |  | 
 | 	page = __alloc_pages_slowpath(alloc_mask, order, &ac); | 
 |  | 
 | out: | 
 | 	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page && | 
 | 	    unlikely(__memcg_kmem_charge_page(page, gfp_mask, order) != 0)) { | 
 | 		__free_pages(page, order); | 
 | 		page = NULL; | 
 | 	} | 
 |  | 
 | 	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype); | 
 |  | 
 | 	return page; | 
 | } | 
 | EXPORT_SYMBOL(__alloc_pages_nodemask); | 
 |  | 
 | /* | 
 |  * Common helper functions. Never use with __GFP_HIGHMEM because the returned | 
 |  * address cannot represent highmem pages. Use alloc_pages and then kmap if | 
 |  * you need to access high mem. | 
 |  */ | 
 | unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) | 
 | { | 
 | 	struct page *page; | 
 |  | 
 | 	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order); | 
 | 	if (!page) | 
 | 		return 0; | 
 | 	return (unsigned long) page_address(page); | 
 | } | 
 | EXPORT_SYMBOL(__get_free_pages); | 
 |  | 
 | unsigned long get_zeroed_page(gfp_t gfp_mask) | 
 | { | 
 | 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0); | 
 | } | 
 | EXPORT_SYMBOL(get_zeroed_page); | 
 |  | 
 | static inline void free_the_page(struct page *page, unsigned int order) | 
 | { | 
 | 	if (order == 0)		/* Via pcp? */ | 
 | 		free_unref_page(page); | 
 | 	else | 
 | 		__free_pages_ok(page, order); | 
 | } | 
 |  | 
 | void __free_pages(struct page *page, unsigned int order) | 
 | { | 
 | 	if (put_page_testzero(page)) | 
 | 		free_the_page(page, order); | 
 | } | 
 | EXPORT_SYMBOL(__free_pages); | 
 |  | 
 | void free_pages(unsigned long addr, unsigned int order) | 
 | { | 
 | 	if (addr != 0) { | 
 | 		VM_BUG_ON(!virt_addr_valid((void *)addr)); | 
 | 		__free_pages(virt_to_page((void *)addr), order); | 
 | 	} | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(free_pages); | 
 |  | 
 | /* | 
 |  * Page Fragment: | 
 |  *  An arbitrary-length arbitrary-offset area of memory which resides | 
 |  *  within a 0 or higher order page.  Multiple fragments within that page | 
 |  *  are individually refcounted, in the page's reference counter. | 
 |  * | 
 |  * The page_frag functions below provide a simple allocation framework for | 
 |  * page fragments.  This is used by the network stack and network device | 
 |  * drivers to provide a backing region of memory for use as either an | 
 |  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. | 
 |  */ | 
 | static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, | 
 | 					     gfp_t gfp_mask) | 
 | { | 
 | 	struct page *page = NULL; | 
 | 	gfp_t gfp = gfp_mask; | 
 |  | 
 | #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) | 
 | 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | | 
 | 		    __GFP_NOMEMALLOC; | 
 | 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, | 
 | 				PAGE_FRAG_CACHE_MAX_ORDER); | 
 | 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; | 
 | #endif | 
 | 	if (unlikely(!page)) | 
 | 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); | 
 |  | 
 | 	nc->va = page ? page_address(page) : NULL; | 
 |  | 
 | 	return page; | 
 | } | 
 |  | 
 | void __page_frag_cache_drain(struct page *page, unsigned int count) | 
 | { | 
 | 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); | 
 |  | 
 | 	if (page_ref_sub_and_test(page, count)) | 
 | 		free_the_page(page, compound_order(page)); | 
 | } | 
 | EXPORT_SYMBOL(__page_frag_cache_drain); | 
 |  | 
 | void *page_frag_alloc(struct page_frag_cache *nc, | 
 | 		      unsigned int fragsz, gfp_t gfp_mask) | 
 | { | 
 | 	unsigned int size = PAGE_SIZE; | 
 | 	struct page *page; | 
 | 	int offset; | 
 |  | 
 | 	if (unlikely(!nc->va)) { | 
 | refill: | 
 | 		page = __page_frag_cache_refill(nc, gfp_mask); | 
 | 		if (!page) | 
 | 			return NULL; | 
 |  | 
 | #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) | 
 | 		/* if size can vary use size else just use PAGE_SIZE */ | 
 | 		size = nc->size; | 
 | #endif | 
 | 		/* Even if we own the page, we do not use atomic_set(). | 
 | 		 * This would break get_page_unless_zero() users. | 
 | 		 */ | 
 | 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE); | 
 |  | 
 | 		/* reset page count bias and offset to start of new frag */ | 
 | 		nc->pfmemalloc = page_is_pfmemalloc(page); | 
 | 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; | 
 | 		nc->offset = size; | 
 | 	} | 
 |  | 
 | 	offset = nc->offset - fragsz; | 
 | 	if (unlikely(offset < 0)) { | 
 | 		page = virt_to_page(nc->va); | 
 |  | 
 | 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) | 
 | 			goto refill; | 
 |  | 
 | #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) | 
 | 		/* if size can vary use size else just use PAGE_SIZE */ | 
 | 		size = nc->size; | 
 | #endif | 
 | 		/* OK, page count is 0, we can safely set it */ | 
 | 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1); | 
 |  | 
 | 		/* reset page count bias and offset to start of new frag */ | 
 | 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; | 
 | 		offset = size - fragsz; | 
 | 	} | 
 |  | 
 | 	nc->pagecnt_bias--; | 
 | 	nc->offset = offset; | 
 |  | 
 | 	return nc->va + offset; | 
 | } | 
 | EXPORT_SYMBOL(page_frag_alloc); | 
 |  | 
 | /* | 
 |  * Frees a page fragment allocated out of either a compound or order 0 page. | 
 |  */ | 
 | void page_frag_free(void *addr) | 
 | { | 
 | 	struct page *page = virt_to_head_page(addr); | 
 |  | 
 | 	if (unlikely(put_page_testzero(page))) | 
 | 		free_the_page(page, compound_order(page)); | 
 | } | 
 | EXPORT_SYMBOL(page_frag_free); | 
 |  | 
 | static void *make_alloc_exact(unsigned long addr, unsigned int order, | 
 | 		size_t size) | 
 | { | 
 | 	if (addr) { | 
 | 		unsigned long alloc_end = addr + (PAGE_SIZE << order); | 
 | 		unsigned long used = addr + PAGE_ALIGN(size); | 
 |  | 
 | 		split_page(virt_to_page((void *)addr), order); | 
 | 		while (used < alloc_end) { | 
 | 			free_page(used); | 
 | 			used += PAGE_SIZE; | 
 | 		} | 
 | 	} | 
 | 	return (void *)addr; | 
 | } | 
 |  | 
 | /** | 
 |  * alloc_pages_exact - allocate an exact number physically-contiguous pages. | 
 |  * @size: the number of bytes to allocate | 
 |  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP | 
 |  * | 
 |  * This function is similar to alloc_pages(), except that it allocates the | 
 |  * minimum number of pages to satisfy the request.  alloc_pages() can only | 
 |  * allocate memory in power-of-two pages. | 
 |  * | 
 |  * This function is also limited by MAX_ORDER. | 
 |  * | 
 |  * Memory allocated by this function must be released by free_pages_exact(). | 
 |  * | 
 |  * Return: pointer to the allocated area or %NULL in case of error. | 
 |  */ | 
 | void *alloc_pages_exact(size_t size, gfp_t gfp_mask) | 
 | { | 
 | 	unsigned int order = get_order(size); | 
 | 	unsigned long addr; | 
 |  | 
 | 	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP)) | 
 | 		gfp_mask &= ~__GFP_COMP; | 
 |  | 
 | 	addr = __get_free_pages(gfp_mask, order); | 
 | 	return make_alloc_exact(addr, order, size); | 
 | } | 
 | EXPORT_SYMBOL(alloc_pages_exact); | 
 |  | 
 | /** | 
 |  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous | 
 |  *			   pages on a node. | 
 |  * @nid: the preferred node ID where memory should be allocated | 
 |  * @size: the number of bytes to allocate | 
 |  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP | 
 |  * | 
 |  * Like alloc_pages_exact(), but try to allocate on node nid first before falling | 
 |  * back. | 
 |  * | 
 |  * Return: pointer to the allocated area or %NULL in case of error. | 
 |  */ | 
 | void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) | 
 | { | 
 | 	unsigned int order = get_order(size); | 
 | 	struct page *p; | 
 |  | 
 | 	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP)) | 
 | 		gfp_mask &= ~__GFP_COMP; | 
 |  | 
 | 	p = alloc_pages_node(nid, gfp_mask, order); | 
 | 	if (!p) | 
 | 		return NULL; | 
 | 	return make_alloc_exact((unsigned long)page_address(p), order, size); | 
 | } | 
 |  | 
 | /** | 
 |  * free_pages_exact - release memory allocated via alloc_pages_exact() | 
 |  * @virt: the value returned by alloc_pages_exact. | 
 |  * @size: size of allocation, same value as passed to alloc_pages_exact(). | 
 |  * | 
 |  * Release the memory allocated by a previous call to alloc_pages_exact. | 
 |  */ | 
 | void free_pages_exact(void *virt, size_t size) | 
 | { | 
 | 	unsigned long addr = (unsigned long)virt; | 
 | 	unsigned long end = addr + PAGE_ALIGN(size); | 
 |  | 
 | 	while (addr < end) { | 
 | 		free_page(addr); | 
 | 		addr += PAGE_SIZE; | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL(free_pages_exact); | 
 |  | 
 | /** | 
 |  * nr_free_zone_pages - count number of pages beyond high watermark | 
 |  * @offset: The zone index of the highest zone | 
 |  * | 
 |  * nr_free_zone_pages() counts the number of pages which are beyond the | 
 |  * high watermark within all zones at or below a given zone index.  For each | 
 |  * zone, the number of pages is calculated as: | 
 |  * | 
 |  *     nr_free_zone_pages = managed_pages - high_pages | 
 |  * | 
 |  * Return: number of pages beyond high watermark. | 
 |  */ | 
 | static unsigned long nr_free_zone_pages(int offset) | 
 | { | 
 | 	struct zoneref *z; | 
 | 	struct zone *zone; | 
 |  | 
 | 	/* Just pick one node, since fallback list is circular */ | 
 | 	unsigned long sum = 0; | 
 |  | 
 | 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); | 
 |  | 
 | 	for_each_zone_zonelist(zone, z, zonelist, offset) { | 
 | 		unsigned long size = zone_managed_pages(zone); | 
 | 		unsigned long high = high_wmark_pages(zone); | 
 | 		if (size > high) | 
 | 			sum += size - high; | 
 | 	} | 
 |  | 
 | 	return sum; | 
 | } | 
 |  | 
 | /** | 
 |  * nr_free_buffer_pages - count number of pages beyond high watermark | 
 |  * | 
 |  * nr_free_buffer_pages() counts the number of pages which are beyond the high | 
 |  * watermark within ZONE_DMA and ZONE_NORMAL. | 
 |  * | 
 |  * Return: number of pages beyond high watermark within ZONE_DMA and | 
 |  * ZONE_NORMAL. | 
 |  */ | 
 | unsigned long nr_free_buffer_pages(void) | 
 | { | 
 | 	return nr_free_zone_pages(gfp_zone(GFP_USER)); | 
 | } | 
 | EXPORT_SYMBOL_GPL(nr_free_buffer_pages); | 
 |  | 
 | /** | 
 |  * nr_free_pagecache_pages - count number of pages beyond high watermark | 
 |  * | 
 |  * nr_free_pagecache_pages() counts the number of pages which are beyond the | 
 |  * high watermark within all zones. | 
 |  * | 
 |  * Return: number of pages beyond high watermark within all zones. | 
 |  */ | 
 | unsigned long nr_free_pagecache_pages(void) | 
 | { | 
 | 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); | 
 | } | 
 |  | 
 | static inline void show_node(struct zone *zone) | 
 | { | 
 | 	if (IS_ENABLED(CONFIG_NUMA)) | 
 | 		printk("Node %d ", zone_to_nid(zone)); | 
 | } | 
 |  | 
 | long si_mem_available(void) | 
 | { | 
 | 	long available; | 
 | 	unsigned long pagecache; | 
 | 	unsigned long wmark_low = 0; | 
 | 	unsigned long pages[NR_LRU_LISTS]; | 
 | 	unsigned long reclaimable; | 
 | 	struct zone *zone; | 
 | 	int lru; | 
 |  | 
 | 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++) | 
 | 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru); | 
 |  | 
 | 	for_each_zone(zone) | 
 | 		wmark_low += low_wmark_pages(zone); | 
 |  | 
 | 	/* | 
 | 	 * Estimate the amount of memory available for userspace allocations, | 
 | 	 * without causing swapping. | 
 | 	 */ | 
 | 	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages; | 
 |  | 
 | 	/* | 
 | 	 * Not all the page cache can be freed, otherwise the system will | 
 | 	 * start swapping. Assume at least half of the page cache, or the | 
 | 	 * low watermark worth of cache, needs to stay. | 
 | 	 */ | 
 | 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE]; | 
 | 	pagecache -= min(pagecache / 2, wmark_low); | 
 | 	available += pagecache; | 
 |  | 
 | 	/* | 
 | 	 * Part of the reclaimable slab and other kernel memory consists of | 
 | 	 * items that are in use, and cannot be freed. Cap this estimate at the | 
 | 	 * low watermark. | 
 | 	 */ | 
 | 	reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) + | 
 | 			global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE); | 
 | 	available += reclaimable - min(reclaimable / 2, wmark_low); | 
 |  | 
 | 	if (available < 0) | 
 | 		available = 0; | 
 | 	return available; | 
 | } | 
 | EXPORT_SYMBOL_GPL(si_mem_available); | 
 |  | 
 | void si_meminfo(struct sysinfo *val) | 
 | { | 
 | 	val->totalram = totalram_pages(); | 
 | 	val->sharedram = global_node_page_state(NR_SHMEM); | 
 | 	val->freeram = global_zone_page_state(NR_FREE_PAGES); | 
 | 	val->bufferram = nr_blockdev_pages(); | 
 | 	val->totalhigh = totalhigh_pages(); | 
 | 	val->freehigh = nr_free_highpages(); | 
 | 	val->mem_unit = PAGE_SIZE; | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(si_meminfo); | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | void si_meminfo_node(struct sysinfo *val, int nid) | 
 | { | 
 | 	int zone_type;		/* needs to be signed */ | 
 | 	unsigned long managed_pages = 0; | 
 | 	unsigned long managed_highpages = 0; | 
 | 	unsigned long free_highpages = 0; | 
 | 	pg_data_t *pgdat = NODE_DATA(nid); | 
 |  | 
 | 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) | 
 | 		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]); | 
 | 	val->totalram = managed_pages; | 
 | 	val->sharedram = node_page_state(pgdat, NR_SHMEM); | 
 | 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES); | 
 | #ifdef CONFIG_HIGHMEM | 
 | 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { | 
 | 		struct zone *zone = &pgdat->node_zones[zone_type]; | 
 |  | 
 | 		if (is_highmem(zone)) { | 
 | 			managed_highpages += zone_managed_pages(zone); | 
 | 			free_highpages += zone_page_state(zone, NR_FREE_PAGES); | 
 | 		} | 
 | 	} | 
 | 	val->totalhigh = managed_highpages; | 
 | 	val->freehigh = free_highpages; | 
 | #else | 
 | 	val->totalhigh = managed_highpages; | 
 | 	val->freehigh = free_highpages; | 
 | #endif | 
 | 	val->mem_unit = PAGE_SIZE; | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * Determine whether the node should be displayed or not, depending on whether | 
 |  * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). | 
 |  */ | 
 | static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask) | 
 | { | 
 | 	if (!(flags & SHOW_MEM_FILTER_NODES)) | 
 | 		return false; | 
 |  | 
 | 	/* | 
 | 	 * no node mask - aka implicit memory numa policy. Do not bother with | 
 | 	 * the synchronization - read_mems_allowed_begin - because we do not | 
 | 	 * have to be precise here. | 
 | 	 */ | 
 | 	if (!nodemask) | 
 | 		nodemask = &cpuset_current_mems_allowed; | 
 |  | 
 | 	return !node_isset(nid, *nodemask); | 
 | } | 
 |  | 
 | #define K(x) ((x) << (PAGE_SHIFT-10)) | 
 |  | 
 | static void show_migration_types(unsigned char type) | 
 | { | 
 | 	static const char types[MIGRATE_TYPES] = { | 
 | 		[MIGRATE_UNMOVABLE]	= 'U', | 
 | 		[MIGRATE_MOVABLE]	= 'M', | 
 | 		[MIGRATE_RECLAIMABLE]	= 'E', | 
 | 		[MIGRATE_HIGHATOMIC]	= 'H', | 
 | #ifdef CONFIG_CMA | 
 | 		[MIGRATE_CMA]		= 'C', | 
 | #endif | 
 | #ifdef CONFIG_MEMORY_ISOLATION | 
 | 		[MIGRATE_ISOLATE]	= 'I', | 
 | #endif | 
 | 	}; | 
 | 	char tmp[MIGRATE_TYPES + 1]; | 
 | 	char *p = tmp; | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < MIGRATE_TYPES; i++) { | 
 | 		if (type & (1 << i)) | 
 | 			*p++ = types[i]; | 
 | 	} | 
 |  | 
 | 	*p = '\0'; | 
 | 	printk(KERN_CONT "(%s) ", tmp); | 
 | } | 
 |  | 
 | /* | 
 |  * Show free area list (used inside shift_scroll-lock stuff) | 
 |  * We also calculate the percentage fragmentation. We do this by counting the | 
 |  * memory on each free list with the exception of the first item on the list. | 
 |  * | 
 |  * Bits in @filter: | 
 |  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's | 
 |  *   cpuset. | 
 |  */ | 
 | void show_free_areas(unsigned int filter, nodemask_t *nodemask) | 
 | { | 
 | 	unsigned long free_pcp = 0; | 
 | 	int cpu; | 
 | 	struct zone *zone; | 
 | 	pg_data_t *pgdat; | 
 |  | 
 | 	for_each_populated_zone(zone) { | 
 | 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) | 
 | 			continue; | 
 |  | 
 | 		for_each_online_cpu(cpu) | 
 | 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; | 
 | 	} | 
 |  | 
 | 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" | 
 | 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n" | 
 | 		" unevictable:%lu dirty:%lu writeback:%lu\n" | 
 | 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n" | 
 | 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" | 
 | 		" free:%lu free_pcp:%lu free_cma:%lu\n", | 
 | 		global_node_page_state(NR_ACTIVE_ANON), | 
 | 		global_node_page_state(NR_INACTIVE_ANON), | 
 | 		global_node_page_state(NR_ISOLATED_ANON), | 
 | 		global_node_page_state(NR_ACTIVE_FILE), | 
 | 		global_node_page_state(NR_INACTIVE_FILE), | 
 | 		global_node_page_state(NR_ISOLATED_FILE), | 
 | 		global_node_page_state(NR_UNEVICTABLE), | 
 | 		global_node_page_state(NR_FILE_DIRTY), | 
 | 		global_node_page_state(NR_WRITEBACK), | 
 | 		global_node_page_state(NR_SLAB_RECLAIMABLE), | 
 | 		global_node_page_state(NR_SLAB_UNRECLAIMABLE), | 
 | 		global_node_page_state(NR_FILE_MAPPED), | 
 | 		global_node_page_state(NR_SHMEM), | 
 | 		global_zone_page_state(NR_PAGETABLE), | 
 | 		global_zone_page_state(NR_BOUNCE), | 
 | 		global_zone_page_state(NR_FREE_PAGES), | 
 | 		free_pcp, | 
 | 		global_zone_page_state(NR_FREE_CMA_PAGES)); | 
 |  | 
 | 	for_each_online_pgdat(pgdat) { | 
 | 		if (show_mem_node_skip(filter, pgdat->node_id, nodemask)) | 
 | 			continue; | 
 |  | 
 | 		printk("Node %d" | 
 | 			" active_anon:%lukB" | 
 | 			" inactive_anon:%lukB" | 
 | 			" active_file:%lukB" | 
 | 			" inactive_file:%lukB" | 
 | 			" unevictable:%lukB" | 
 | 			" isolated(anon):%lukB" | 
 | 			" isolated(file):%lukB" | 
 | 			" mapped:%lukB" | 
 | 			" dirty:%lukB" | 
 | 			" writeback:%lukB" | 
 | 			" shmem:%lukB" | 
 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
 | 			" shmem_thp: %lukB" | 
 | 			" shmem_pmdmapped: %lukB" | 
 | 			" anon_thp: %lukB" | 
 | #endif | 
 | 			" writeback_tmp:%lukB" | 
 | 			" all_unreclaimable? %s" | 
 | 			"\n", | 
 | 			pgdat->node_id, | 
 | 			K(node_page_state(pgdat, NR_ACTIVE_ANON)), | 
 | 			K(node_page_state(pgdat, NR_INACTIVE_ANON)), | 
 | 			K(node_page_state(pgdat, NR_ACTIVE_FILE)), | 
 | 			K(node_page_state(pgdat, NR_INACTIVE_FILE)), | 
 | 			K(node_page_state(pgdat, NR_UNEVICTABLE)), | 
 | 			K(node_page_state(pgdat, NR_ISOLATED_ANON)), | 
 | 			K(node_page_state(pgdat, NR_ISOLATED_FILE)), | 
 | 			K(node_page_state(pgdat, NR_FILE_MAPPED)), | 
 | 			K(node_page_state(pgdat, NR_FILE_DIRTY)), | 
 | 			K(node_page_state(pgdat, NR_WRITEBACK)), | 
 | 			K(node_page_state(pgdat, NR_SHMEM)), | 
 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
 | 			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR), | 
 | 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED) | 
 | 					* HPAGE_PMD_NR), | 
 | 			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR), | 
 | #endif | 
 | 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)), | 
 | 			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ? | 
 | 				"yes" : "no"); | 
 | 	} | 
 |  | 
 | 	for_each_populated_zone(zone) { | 
 | 		int i; | 
 |  | 
 | 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) | 
 | 			continue; | 
 |  | 
 | 		free_pcp = 0; | 
 | 		for_each_online_cpu(cpu) | 
 | 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; | 
 |  | 
 | 		show_node(zone); | 
 | 		printk(KERN_CONT | 
 | 			"%s" | 
 | 			" free:%lukB" | 
 | 			" min:%lukB" | 
 | 			" low:%lukB" | 
 | 			" high:%lukB" | 
 | 			" reserved_highatomic:%luKB" | 
 | 			" active_anon:%lukB" | 
 | 			" inactive_anon:%lukB" | 
 | 			" active_file:%lukB" | 
 | 			" inactive_file:%lukB" | 
 | 			" unevictable:%lukB" | 
 | 			" writepending:%lukB" | 
 | 			" present:%lukB" | 
 | 			" managed:%lukB" | 
 | 			" mlocked:%lukB" | 
 | 			" kernel_stack:%lukB" | 
 | #ifdef CONFIG_SHADOW_CALL_STACK | 
 | 			" shadow_call_stack:%lukB" | 
 | #endif | 
 | 			" pagetables:%lukB" | 
 | 			" bounce:%lukB" | 
 | 			" free_pcp:%lukB" | 
 | 			" local_pcp:%ukB" | 
 | 			" free_cma:%lukB" | 
 | 			"\n", | 
 | 			zone->name, | 
 | 			K(zone_page_state(zone, NR_FREE_PAGES)), | 
 | 			K(min_wmark_pages(zone)), | 
 | 			K(low_wmark_pages(zone)), | 
 | 			K(high_wmark_pages(zone)), | 
 | 			K(zone->nr_reserved_highatomic), | 
 | 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)), | 
 | 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)), | 
 | 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)), | 
 | 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)), | 
 | 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)), | 
 | 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)), | 
 | 			K(zone->present_pages), | 
 | 			K(zone_managed_pages(zone)), | 
 | 			K(zone_page_state(zone, NR_MLOCK)), | 
 | 			zone_page_state(zone, NR_KERNEL_STACK_KB), | 
 | #ifdef CONFIG_SHADOW_CALL_STACK | 
 | 			zone_page_state(zone, NR_KERNEL_SCS_KB), | 
 | #endif | 
 | 			K(zone_page_state(zone, NR_PAGETABLE)), | 
 | 			K(zone_page_state(zone, NR_BOUNCE)), | 
 | 			K(free_pcp), | 
 | 			K(this_cpu_read(zone->pageset->pcp.count)), | 
 | 			K(zone_page_state(zone, NR_FREE_CMA_PAGES))); | 
 | 		printk("lowmem_reserve[]:"); | 
 | 		for (i = 0; i < MAX_NR_ZONES; i++) | 
 | 			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]); | 
 | 		printk(KERN_CONT "\n"); | 
 | 	} | 
 |  | 
 | 	for_each_populated_zone(zone) { | 
 | 		unsigned int order; | 
 | 		unsigned long nr[MAX_ORDER], flags, total = 0; | 
 | 		unsigned char types[MAX_ORDER]; | 
 |  | 
 | 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) | 
 | 			continue; | 
 | 		show_node(zone); | 
 | 		printk(KERN_CONT "%s: ", zone->name); | 
 |  | 
 | 		spin_lock_irqsave(&zone->lock, flags); | 
 | 		for (order = 0; order < MAX_ORDER; order++) { | 
 | 			struct free_area *area = &zone->free_area[order]; | 
 | 			int type; | 
 |  | 
 | 			nr[order] = area->nr_free; | 
 | 			total += nr[order] << order; | 
 |  | 
 | 			types[order] = 0; | 
 | 			for (type = 0; type < MIGRATE_TYPES; type++) { | 
 | 				if (!free_area_empty(area, type)) | 
 | 					types[order] |= 1 << type; | 
 | 			} | 
 | 		} | 
 | 		spin_unlock_irqrestore(&zone->lock, flags); | 
 | 		for (order = 0; order < MAX_ORDER; order++) { | 
 | 			printk(KERN_CONT "%lu*%lukB ", | 
 | 			       nr[order], K(1UL) << order); | 
 | 			if (nr[order]) | 
 | 				show_migration_types(types[order]); | 
 | 		} | 
 | 		printk(KERN_CONT "= %lukB\n", K(total)); | 
 | 	} | 
 |  | 
 | 	hugetlb_show_meminfo(); | 
 |  | 
 | 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES)); | 
 |  | 
 | 	show_swap_cache_info(); | 
 | } | 
 |  | 
 | static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) | 
 | { | 
 | 	zoneref->zone = zone; | 
 | 	zoneref->zone_idx = zone_idx(zone); | 
 | } | 
 |  | 
 | /* | 
 |  * Builds allocation fallback zone lists. | 
 |  * | 
 |  * Add all populated zones of a node to the zonelist. | 
 |  */ | 
 | static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) | 
 | { | 
 | 	struct zone *zone; | 
 | 	enum zone_type zone_type = MAX_NR_ZONES; | 
 | 	int nr_zones = 0; | 
 |  | 
 | 	do { | 
 | 		zone_type--; | 
 | 		zone = pgdat->node_zones + zone_type; | 
 | 		if (managed_zone(zone)) { | 
 | 			zoneref_set_zone(zone, &zonerefs[nr_zones++]); | 
 | 			check_highest_zone(zone_type); | 
 | 		} | 
 | 	} while (zone_type); | 
 |  | 
 | 	return nr_zones; | 
 | } | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 |  | 
 | static int __parse_numa_zonelist_order(char *s) | 
 | { | 
 | 	/* | 
 | 	 * We used to support different zonlists modes but they turned | 
 | 	 * out to be just not useful. Let's keep the warning in place | 
 | 	 * if somebody still use the cmd line parameter so that we do | 
 | 	 * not fail it silently | 
 | 	 */ | 
 | 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { | 
 | 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | char numa_zonelist_order[] = "Node"; | 
 |  | 
 | /* | 
 |  * sysctl handler for numa_zonelist_order | 
 |  */ | 
 | int numa_zonelist_order_handler(struct ctl_table *table, int write, | 
 | 		void *buffer, size_t *length, loff_t *ppos) | 
 | { | 
 | 	if (write) | 
 | 		return __parse_numa_zonelist_order(buffer); | 
 | 	return proc_dostring(table, write, buffer, length, ppos); | 
 | } | 
 |  | 
 |  | 
 | #define MAX_NODE_LOAD (nr_online_nodes) | 
 | static int node_load[MAX_NUMNODES]; | 
 |  | 
 | /** | 
 |  * find_next_best_node - find the next node that should appear in a given node's fallback list | 
 |  * @node: node whose fallback list we're appending | 
 |  * @used_node_mask: nodemask_t of already used nodes | 
 |  * | 
 |  * We use a number of factors to determine which is the next node that should | 
 |  * appear on a given node's fallback list.  The node should not have appeared | 
 |  * already in @node's fallback list, and it should be the next closest node | 
 |  * according to the distance array (which contains arbitrary distance values | 
 |  * from each node to each node in the system), and should also prefer nodes | 
 |  * with no CPUs, since presumably they'll have very little allocation pressure | 
 |  * on them otherwise. | 
 |  * | 
 |  * Return: node id of the found node or %NUMA_NO_NODE if no node is found. | 
 |  */ | 
 | static int find_next_best_node(int node, nodemask_t *used_node_mask) | 
 | { | 
 | 	int n, val; | 
 | 	int min_val = INT_MAX; | 
 | 	int best_node = NUMA_NO_NODE; | 
 | 	const struct cpumask *tmp = cpumask_of_node(0); | 
 |  | 
 | 	/* Use the local node if we haven't already */ | 
 | 	if (!node_isset(node, *used_node_mask)) { | 
 | 		node_set(node, *used_node_mask); | 
 | 		return node; | 
 | 	} | 
 |  | 
 | 	for_each_node_state(n, N_MEMORY) { | 
 |  | 
 | 		/* Don't want a node to appear more than once */ | 
 | 		if (node_isset(n, *used_node_mask)) | 
 | 			continue; | 
 |  | 
 | 		/* Use the distance array to find the distance */ | 
 | 		val = node_distance(node, n); | 
 |  | 
 | 		/* Penalize nodes under us ("prefer the next node") */ | 
 | 		val += (n < node); | 
 |  | 
 | 		/* Give preference to headless and unused nodes */ | 
 | 		tmp = cpumask_of_node(n); | 
 | 		if (!cpumask_empty(tmp)) | 
 | 			val += PENALTY_FOR_NODE_WITH_CPUS; | 
 |  | 
 | 		/* Slight preference for less loaded node */ | 
 | 		val *= (MAX_NODE_LOAD*MAX_NUMNODES); | 
 | 		val += node_load[n]; | 
 |  | 
 | 		if (val < min_val) { | 
 | 			min_val = val; | 
 | 			best_node = n; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (best_node >= 0) | 
 | 		node_set(best_node, *used_node_mask); | 
 |  | 
 | 	return best_node; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Build zonelists ordered by node and zones within node. | 
 |  * This results in maximum locality--normal zone overflows into local | 
 |  * DMA zone, if any--but risks exhausting DMA zone. | 
 |  */ | 
 | static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, | 
 | 		unsigned nr_nodes) | 
 | { | 
 | 	struct zoneref *zonerefs; | 
 | 	int i; | 
 |  | 
 | 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; | 
 |  | 
 | 	for (i = 0; i < nr_nodes; i++) { | 
 | 		int nr_zones; | 
 |  | 
 | 		pg_data_t *node = NODE_DATA(node_order[i]); | 
 |  | 
 | 		nr_zones = build_zonerefs_node(node, zonerefs); | 
 | 		zonerefs += nr_zones; | 
 | 	} | 
 | 	zonerefs->zone = NULL; | 
 | 	zonerefs->zone_idx = 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Build gfp_thisnode zonelists | 
 |  */ | 
 | static void build_thisnode_zonelists(pg_data_t *pgdat) | 
 | { | 
 | 	struct zoneref *zonerefs; | 
 | 	int nr_zones; | 
 |  | 
 | 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; | 
 | 	nr_zones = build_zonerefs_node(pgdat, zonerefs); | 
 | 	zonerefs += nr_zones; | 
 | 	zonerefs->zone = NULL; | 
 | 	zonerefs->zone_idx = 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Build zonelists ordered by zone and nodes within zones. | 
 |  * This results in conserving DMA zone[s] until all Normal memory is | 
 |  * exhausted, but results in overflowing to remote node while memory | 
 |  * may still exist in local DMA zone. | 
 |  */ | 
 |  | 
 | static void build_zonelists(pg_data_t *pgdat) | 
 | { | 
 | 	static int node_order[MAX_NUMNODES]; | 
 | 	int node, load, nr_nodes = 0; | 
 | 	nodemask_t used_mask = NODE_MASK_NONE; | 
 | 	int local_node, prev_node; | 
 |  | 
 | 	/* NUMA-aware ordering of nodes */ | 
 | 	local_node = pgdat->node_id; | 
 | 	load = nr_online_nodes; | 
 | 	prev_node = local_node; | 
 |  | 
 | 	memset(node_order, 0, sizeof(node_order)); | 
 | 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { | 
 | 		/* | 
 | 		 * We don't want to pressure a particular node. | 
 | 		 * So adding penalty to the first node in same | 
 | 		 * distance group to make it round-robin. | 
 | 		 */ | 
 | 		if (node_distance(local_node, node) != | 
 | 		    node_distance(local_node, prev_node)) | 
 | 			node_load[node] = load; | 
 |  | 
 | 		node_order[nr_nodes++] = node; | 
 | 		prev_node = node; | 
 | 		load--; | 
 | 	} | 
 |  | 
 | 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes); | 
 | 	build_thisnode_zonelists(pgdat); | 
 | } | 
 |  | 
 | #ifdef CONFIG_HAVE_MEMORYLESS_NODES | 
 | /* | 
 |  * Return node id of node used for "local" allocations. | 
 |  * I.e., first node id of first zone in arg node's generic zonelist. | 
 |  * Used for initializing percpu 'numa_mem', which is used primarily | 
 |  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. | 
 |  */ | 
 | int local_memory_node(int node) | 
 | { | 
 | 	struct zoneref *z; | 
 |  | 
 | 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), | 
 | 				   gfp_zone(GFP_KERNEL), | 
 | 				   NULL); | 
 | 	return zone_to_nid(z->zone); | 
 | } | 
 | #endif | 
 |  | 
 | static void setup_min_unmapped_ratio(void); | 
 | static void setup_min_slab_ratio(void); | 
 | #else	/* CONFIG_NUMA */ | 
 |  | 
 | static void build_zonelists(pg_data_t *pgdat) | 
 | { | 
 | 	int node, local_node; | 
 | 	struct zoneref *zonerefs; | 
 | 	int nr_zones; | 
 |  | 
 | 	local_node = pgdat->node_id; | 
 |  | 
 | 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; | 
 | 	nr_zones = build_zonerefs_node(pgdat, zonerefs); | 
 | 	zonerefs += nr_zones; | 
 |  | 
 | 	/* | 
 | 	 * Now we build the zonelist so that it contains the zones | 
 | 	 * of all the other nodes. | 
 | 	 * We don't want to pressure a particular node, so when | 
 | 	 * building the zones for node N, we make sure that the | 
 | 	 * zones coming right after the local ones are those from | 
 | 	 * node N+1 (modulo N) | 
 | 	 */ | 
 | 	for (node = local_node + 1; node < MAX_NUMNODES; node++) { | 
 | 		if (!node_online(node)) | 
 | 			continue; | 
 | 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); | 
 | 		zonerefs += nr_zones; | 
 | 	} | 
 | 	for (node = 0; node < local_node; node++) { | 
 | 		if (!node_online(node)) | 
 | 			continue; | 
 | 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); | 
 | 		zonerefs += nr_zones; | 
 | 	} | 
 |  | 
 | 	zonerefs->zone = NULL; | 
 | 	zonerefs->zone_idx = 0; | 
 | } | 
 |  | 
 | #endif	/* CONFIG_NUMA */ | 
 |  | 
 | /* | 
 |  * Boot pageset table. One per cpu which is going to be used for all | 
 |  * zones and all nodes. The parameters will be set in such a way | 
 |  * that an item put on a list will immediately be handed over to | 
 |  * the buddy list. This is safe since pageset manipulation is done | 
 |  * with interrupts disabled. | 
 |  * | 
 |  * The boot_pagesets must be kept even after bootup is complete for | 
 |  * unused processors and/or zones. They do play a role for bootstrapping | 
 |  * hotplugged processors. | 
 |  * | 
 |  * zoneinfo_show() and maybe other functions do | 
 |  * not check if the processor is online before following the pageset pointer. | 
 |  * Other parts of the kernel may not check if the zone is available. | 
 |  */ | 
 | static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); | 
 | static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); | 
 | static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats); | 
 |  | 
 | static void __build_all_zonelists(void *data) | 
 | { | 
 | 	int nid; | 
 | 	int __maybe_unused cpu; | 
 | 	pg_data_t *self = data; | 
 | 	static DEFINE_SPINLOCK(lock); | 
 |  | 
 | 	spin_lock(&lock); | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | 	memset(node_load, 0, sizeof(node_load)); | 
 | #endif | 
 |  | 
 | 	/* | 
 | 	 * This node is hotadded and no memory is yet present.   So just | 
 | 	 * building zonelists is fine - no need to touch other nodes. | 
 | 	 */ | 
 | 	if (self && !node_online(self->node_id)) { | 
 | 		build_zonelists(self); | 
 | 	} else { | 
 | 		for_each_online_node(nid) { | 
 | 			pg_data_t *pgdat = NODE_DATA(nid); | 
 |  | 
 | 			build_zonelists(pgdat); | 
 | 		} | 
 |  | 
 | #ifdef CONFIG_HAVE_MEMORYLESS_NODES | 
 | 		/* | 
 | 		 * We now know the "local memory node" for each node-- | 
 | 		 * i.e., the node of the first zone in the generic zonelist. | 
 | 		 * Set up numa_mem percpu variable for on-line cpus.  During | 
 | 		 * boot, only the boot cpu should be on-line;  we'll init the | 
 | 		 * secondary cpus' numa_mem as they come on-line.  During | 
 | 		 * node/memory hotplug, we'll fixup all on-line cpus. | 
 | 		 */ | 
 | 		for_each_online_cpu(cpu) | 
 | 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); | 
 | #endif | 
 | 	} | 
 |  | 
 | 	spin_unlock(&lock); | 
 | } | 
 |  | 
 | static noinline void __init | 
 | build_all_zonelists_init(void) | 
 | { | 
 | 	int cpu; | 
 |  | 
 | 	__build_all_zonelists(NULL); | 
 |  | 
 | 	/* | 
 | 	 * Initialize the boot_pagesets that are going to be used | 
 | 	 * for bootstrapping processors. The real pagesets for | 
 | 	 * each zone will be allocated later when the per cpu | 
 | 	 * allocator is available. | 
 | 	 * | 
 | 	 * boot_pagesets are used also for bootstrapping offline | 
 | 	 * cpus if the system is already booted because the pagesets | 
 | 	 * are needed to initialize allocators on a specific cpu too. | 
 | 	 * F.e. the percpu allocator needs the page allocator which | 
 | 	 * needs the percpu allocator in order to allocate its pagesets | 
 | 	 * (a chicken-egg dilemma). | 
 | 	 */ | 
 | 	for_each_possible_cpu(cpu) | 
 | 		setup_pageset(&per_cpu(boot_pageset, cpu), 0); | 
 |  | 
 | 	mminit_verify_zonelist(); | 
 | 	cpuset_init_current_mems_allowed(); | 
 | } | 
 |  | 
 | /* | 
 |  * unless system_state == SYSTEM_BOOTING. | 
 |  * | 
 |  * __ref due to call of __init annotated helper build_all_zonelists_init | 
 |  * [protected by SYSTEM_BOOTING]. | 
 |  */ | 
 | void __ref build_all_zonelists(pg_data_t *pgdat) | 
 | { | 
 | 	if (system_state == SYSTEM_BOOTING) { | 
 | 		build_all_zonelists_init(); | 
 | 	} else { | 
 | 		__build_all_zonelists(pgdat); | 
 | 		/* cpuset refresh routine should be here */ | 
 | 	} | 
 | 	vm_total_pages = nr_free_pagecache_pages(); | 
 | 	/* | 
 | 	 * Disable grouping by mobility if the number of pages in the | 
 | 	 * system is too low to allow the mechanism to work. It would be | 
 | 	 * more accurate, but expensive to check per-zone. This check is | 
 | 	 * made on memory-hotadd so a system can start with mobility | 
 | 	 * disabled and enable it later | 
 | 	 */ | 
 | 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) | 
 | 		page_group_by_mobility_disabled = 1; | 
 | 	else | 
 | 		page_group_by_mobility_disabled = 0; | 
 |  | 
 | 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n", | 
 | 		nr_online_nodes, | 
 | 		page_group_by_mobility_disabled ? "off" : "on", | 
 | 		vm_total_pages); | 
 | #ifdef CONFIG_NUMA | 
 | 	pr_info("Policy zone: %s\n", zone_names[policy_zone]); | 
 | #endif | 
 | } | 
 |  | 
 | /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */ | 
 | static bool __meminit | 
 | overlap_memmap_init(unsigned long zone, unsigned long *pfn) | 
 | { | 
 | 	static struct memblock_region *r; | 
 |  | 
 | 	if (mirrored_kernelcore && zone == ZONE_MOVABLE) { | 
 | 		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) { | 
 | 			for_each_memblock(memory, r) { | 
 | 				if (*pfn < memblock_region_memory_end_pfn(r)) | 
 | 					break; | 
 | 			} | 
 | 		} | 
 | 		if (*pfn >= memblock_region_memory_base_pfn(r) && | 
 | 		    memblock_is_mirror(r)) { | 
 | 			*pfn = memblock_region_memory_end_pfn(r); | 
 | 			return true; | 
 | 		} | 
 | 	} | 
 | 	return false; | 
 | } | 
 |  | 
 | /* | 
 |  * Initially all pages are reserved - free ones are freed | 
 |  * up by memblock_free_all() once the early boot process is | 
 |  * done. Non-atomic initialization, single-pass. | 
 |  */ | 
 | void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, | 
 | 		unsigned long start_pfn, enum memmap_context context, | 
 | 		struct vmem_altmap *altmap) | 
 | { | 
 | 	unsigned long pfn, end_pfn = start_pfn + size; | 
 | 	struct page *page; | 
 |  | 
 | 	if (highest_memmap_pfn < end_pfn - 1) | 
 | 		highest_memmap_pfn = end_pfn - 1; | 
 |  | 
 | #ifdef CONFIG_ZONE_DEVICE | 
 | 	/* | 
 | 	 * Honor reservation requested by the driver for this ZONE_DEVICE | 
 | 	 * memory. We limit the total number of pages to initialize to just | 
 | 	 * those that might contain the memory mapping. We will defer the | 
 | 	 * ZONE_DEVICE page initialization until after we have released | 
 | 	 * the hotplug lock. | 
 | 	 */ | 
 | 	if (zone == ZONE_DEVICE) { | 
 | 		if (!altmap) | 
 | 			return; | 
 |  | 
 | 		if (start_pfn == altmap->base_pfn) | 
 | 			start_pfn += altmap->reserve; | 
 | 		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); | 
 | 	} | 
 | #endif | 
 |  | 
 | 	for (pfn = start_pfn; pfn < end_pfn; ) { | 
 | 		/* | 
 | 		 * There can be holes in boot-time mem_map[]s handed to this | 
 | 		 * function.  They do not exist on hotplugged memory. | 
 | 		 */ | 
 | 		if (context == MEMMAP_EARLY) { | 
 | 			if (overlap_memmap_init(zone, &pfn)) | 
 | 				continue; | 
 | 			if (defer_init(nid, pfn, end_pfn)) | 
 | 				break; | 
 | 		} | 
 |  | 
 | 		page = pfn_to_page(pfn); | 
 | 		__init_single_page(page, pfn, zone, nid); | 
 | 		if (context == MEMMAP_HOTPLUG) | 
 | 			__SetPageReserved(page); | 
 |  | 
 | 		/* | 
 | 		 * Mark the block movable so that blocks are reserved for | 
 | 		 * movable at startup. This will force kernel allocations | 
 | 		 * to reserve their blocks rather than leaking throughout | 
 | 		 * the address space during boot when many long-lived | 
 | 		 * kernel allocations are made. | 
 | 		 * | 
 | 		 * bitmap is created for zone's valid pfn range. but memmap | 
 | 		 * can be created for invalid pages (for alignment) | 
 | 		 * check here not to call set_pageblock_migratetype() against | 
 | 		 * pfn out of zone. | 
 | 		 */ | 
 | 		if (!(pfn & (pageblock_nr_pages - 1))) { | 
 | 			set_pageblock_migratetype(page, MIGRATE_MOVABLE); | 
 | 			cond_resched(); | 
 | 		} | 
 | 		pfn++; | 
 | 	} | 
 | } | 
 |  | 
 | #ifdef CONFIG_ZONE_DEVICE | 
 | void __ref memmap_init_zone_device(struct zone *zone, | 
 | 				   unsigned long start_pfn, | 
 | 				   unsigned long nr_pages, | 
 | 				   struct dev_pagemap *pgmap) | 
 | { | 
 | 	unsigned long pfn, end_pfn = start_pfn + nr_pages; | 
 | 	struct pglist_data *pgdat = zone->zone_pgdat; | 
 | 	struct vmem_altmap *altmap = pgmap_altmap(pgmap); | 
 | 	unsigned long zone_idx = zone_idx(zone); | 
 | 	unsigned long start = jiffies; | 
 | 	int nid = pgdat->node_id; | 
 |  | 
 | 	if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE)) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * The call to memmap_init_zone should have already taken care | 
 | 	 * of the pages reserved for the memmap, so we can just jump to | 
 | 	 * the end of that region and start processing the device pages. | 
 | 	 */ | 
 | 	if (altmap) { | 
 | 		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); | 
 | 		nr_pages = end_pfn - start_pfn; | 
 | 	} | 
 |  | 
 | 	for (pfn = start_pfn; pfn < end_pfn; pfn++) { | 
 | 		struct page *page = pfn_to_page(pfn); | 
 |  | 
 | 		__init_single_page(page, pfn, zone_idx, nid); | 
 |  | 
 | 		/* | 
 | 		 * Mark page reserved as it will need to wait for onlining | 
 | 		 * phase for it to be fully associated with a zone. | 
 | 		 * | 
 | 		 * We can use the non-atomic __set_bit operation for setting | 
 | 		 * the flag as we are still initializing the pages. | 
 | 		 */ | 
 | 		__SetPageReserved(page); | 
 |  | 
 | 		/* | 
 | 		 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer | 
 | 		 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is | 
 | 		 * ever freed or placed on a driver-private list. | 
 | 		 */ | 
 | 		page->pgmap = pgmap; | 
 | 		page->zone_device_data = NULL; | 
 |  | 
 | 		/* | 
 | 		 * Mark the block movable so that blocks are reserved for | 
 | 		 * movable at startup. This will force kernel allocations | 
 | 		 * to reserve their blocks rather than leaking throughout | 
 | 		 * the address space during boot when many long-lived | 
 | 		 * kernel allocations are made. | 
 | 		 * | 
 | 		 * bitmap is created for zone's valid pfn range. but memmap | 
 | 		 * can be created for invalid pages (for alignment) | 
 | 		 * check here not to call set_pageblock_migratetype() against | 
 | 		 * pfn out of zone. | 
 | 		 * | 
 | 		 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap | 
 | 		 * because this is done early in section_activate() | 
 | 		 */ | 
 | 		if (!(pfn & (pageblock_nr_pages - 1))) { | 
 | 			set_pageblock_migratetype(page, MIGRATE_MOVABLE); | 
 | 			cond_resched(); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	pr_info("%s initialised %lu pages in %ums\n", __func__, | 
 | 		nr_pages, jiffies_to_msecs(jiffies - start)); | 
 | } | 
 |  | 
 | #endif | 
 | static void __meminit zone_init_free_lists(struct zone *zone) | 
 | { | 
 | 	unsigned int order, t; | 
 | 	for_each_migratetype_order(order, t) { | 
 | 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); | 
 | 		zone->free_area[order].nr_free = 0; | 
 | 	} | 
 | } | 
 |  | 
 | void __meminit __weak memmap_init(unsigned long size, int nid, | 
 | 				  unsigned long zone, | 
 | 				  unsigned long range_start_pfn) | 
 | { | 
 | 	unsigned long start_pfn, end_pfn; | 
 | 	unsigned long range_end_pfn = range_start_pfn + size; | 
 | 	int i; | 
 |  | 
 | 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { | 
 | 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); | 
 | 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); | 
 |  | 
 | 		if (end_pfn > start_pfn) { | 
 | 			size = end_pfn - start_pfn; | 
 | 			memmap_init_zone(size, nid, zone, start_pfn, | 
 | 					 MEMMAP_EARLY, NULL); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static int zone_batchsize(struct zone *zone) | 
 | { | 
 | #ifdef CONFIG_MMU | 
 | 	int batch; | 
 |  | 
 | 	/* | 
 | 	 * The per-cpu-pages pools are set to around 1000th of the | 
 | 	 * size of the zone. | 
 | 	 */ | 
 | 	batch = zone_managed_pages(zone) / 1024; | 
 | 	/* But no more than a meg. */ | 
 | 	if (batch * PAGE_SIZE > 1024 * 1024) | 
 | 		batch = (1024 * 1024) / PAGE_SIZE; | 
 | 	batch /= 4;		/* We effectively *= 4 below */ | 
 | 	if (batch < 1) | 
 | 		batch = 1; | 
 |  | 
 | 	/* | 
 | 	 * Clamp the batch to a 2^n - 1 value. Having a power | 
 | 	 * of 2 value was found to be more likely to have | 
 | 	 * suboptimal cache aliasing properties in some cases. | 
 | 	 * | 
 | 	 * For example if 2 tasks are alternately allocating | 
 | 	 * batches of pages, one task can end up with a lot | 
 | 	 * of pages of one half of the possible page colors | 
 | 	 * and the other with pages of the other colors. | 
 | 	 */ | 
 | 	batch = rounddown_pow_of_two(batch + batch/2) - 1; | 
 |  | 
 | 	return batch; | 
 |  | 
 | #else | 
 | 	/* The deferral and batching of frees should be suppressed under NOMMU | 
 | 	 * conditions. | 
 | 	 * | 
 | 	 * The problem is that NOMMU needs to be able to allocate large chunks | 
 | 	 * of contiguous memory as there's no hardware page translation to | 
 | 	 * assemble apparent contiguous memory from discontiguous pages. | 
 | 	 * | 
 | 	 * Queueing large contiguous runs of pages for batching, however, | 
 | 	 * causes the pages to actually be freed in smaller chunks.  As there | 
 | 	 * can be a significant delay between the individual batches being | 
 | 	 * recycled, this leads to the once large chunks of space being | 
 | 	 * fragmented and becoming unavailable for high-order allocations. | 
 | 	 */ | 
 | 	return 0; | 
 | #endif | 
 | } | 
 |  | 
 | /* | 
 |  * pcp->high and pcp->batch values are related and dependent on one another: | 
 |  * ->batch must never be higher then ->high. | 
 |  * The following function updates them in a safe manner without read side | 
 |  * locking. | 
 |  * | 
 |  * Any new users of pcp->batch and pcp->high should ensure they can cope with | 
 |  * those fields changing asynchronously (acording the the above rule). | 
 |  * | 
 |  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function | 
 |  * outside of boot time (or some other assurance that no concurrent updaters | 
 |  * exist). | 
 |  */ | 
 | static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, | 
 | 		unsigned long batch) | 
 | { | 
 |        /* start with a fail safe value for batch */ | 
 | 	pcp->batch = 1; | 
 | 	smp_wmb(); | 
 |  | 
 |        /* Update high, then batch, in order */ | 
 | 	pcp->high = high; | 
 | 	smp_wmb(); | 
 |  | 
 | 	pcp->batch = batch; | 
 | } | 
 |  | 
 | /* a companion to pageset_set_high() */ | 
 | static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch) | 
 | { | 
 | 	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch)); | 
 | } | 
 |  | 
 | static void pageset_init(struct per_cpu_pageset *p) | 
 | { | 
 | 	struct per_cpu_pages *pcp; | 
 | 	int migratetype; | 
 |  | 
 | 	memset(p, 0, sizeof(*p)); | 
 |  | 
 | 	pcp = &p->pcp; | 
 | 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) | 
 | 		INIT_LIST_HEAD(&pcp->lists[migratetype]); | 
 | } | 
 |  | 
 | static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) | 
 | { | 
 | 	pageset_init(p); | 
 | 	pageset_set_batch(p, batch); | 
 | } | 
 |  | 
 | /* | 
 |  * pageset_set_high() sets the high water mark for hot per_cpu_pagelist | 
 |  * to the value high for the pageset p. | 
 |  */ | 
 | static void pageset_set_high(struct per_cpu_pageset *p, | 
 | 				unsigned long high) | 
 | { | 
 | 	unsigned long batch = max(1UL, high / 4); | 
 | 	if ((high / 4) > (PAGE_SHIFT * 8)) | 
 | 		batch = PAGE_SHIFT * 8; | 
 |  | 
 | 	pageset_update(&p->pcp, high, batch); | 
 | } | 
 |  | 
 | static void pageset_set_high_and_batch(struct zone *zone, | 
 | 				       struct per_cpu_pageset *pcp) | 
 | { | 
 | 	if (percpu_pagelist_fraction) | 
 | 		pageset_set_high(pcp, | 
 | 			(zone_managed_pages(zone) / | 
 | 				percpu_pagelist_fraction)); | 
 | 	else | 
 | 		pageset_set_batch(pcp, zone_batchsize(zone)); | 
 | } | 
 |  | 
 | static void __meminit zone_pageset_init(struct zone *zone, int cpu) | 
 | { | 
 | 	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); | 
 |  | 
 | 	pageset_init(pcp); | 
 | 	pageset_set_high_and_batch(zone, pcp); | 
 | } | 
 |  | 
 | void __meminit setup_zone_pageset(struct zone *zone) | 
 | { | 
 | 	int cpu; | 
 | 	zone->pageset = alloc_percpu(struct per_cpu_pageset); | 
 | 	for_each_possible_cpu(cpu) | 
 | 		zone_pageset_init(zone, cpu); | 
 | } | 
 |  | 
 | /* | 
 |  * Allocate per cpu pagesets and initialize them. | 
 |  * Before this call only boot pagesets were available. | 
 |  */ | 
 | void __init setup_per_cpu_pageset(void) | 
 | { | 
 | 	struct pglist_data *pgdat; | 
 | 	struct zone *zone; | 
 | 	int __maybe_unused cpu; | 
 |  | 
 | 	for_each_populated_zone(zone) | 
 | 		setup_zone_pageset(zone); | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | 	/* | 
 | 	 * Unpopulated zones continue using the boot pagesets. | 
 | 	 * The numa stats for these pagesets need to be reset. | 
 | 	 * Otherwise, they will end up skewing the stats of | 
 | 	 * the nodes these zones are associated with. | 
 | 	 */ | 
 | 	for_each_possible_cpu(cpu) { | 
 | 		struct per_cpu_pageset *pcp = &per_cpu(boot_pageset, cpu); | 
 | 		memset(pcp->vm_numa_stat_diff, 0, | 
 | 		       sizeof(pcp->vm_numa_stat_diff)); | 
 | 	} | 
 | #endif | 
 |  | 
 | 	for_each_online_pgdat(pgdat) | 
 | 		pgdat->per_cpu_nodestats = | 
 | 			alloc_percpu(struct per_cpu_nodestat); | 
 | } | 
 |  | 
 | static __meminit void zone_pcp_init(struct zone *zone) | 
 | { | 
 | 	/* | 
 | 	 * per cpu subsystem is not up at this point. The following code | 
 | 	 * relies on the ability of the linker to provide the | 
 | 	 * offset of a (static) per cpu variable into the per cpu area. | 
 | 	 */ | 
 | 	zone->pageset = &boot_pageset; | 
 |  | 
 | 	if (populated_zone(zone)) | 
 | 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n", | 
 | 			zone->name, zone->present_pages, | 
 | 					 zone_batchsize(zone)); | 
 | } | 
 |  | 
 | void __meminit init_currently_empty_zone(struct zone *zone, | 
 | 					unsigned long zone_start_pfn, | 
 | 					unsigned long size) | 
 | { | 
 | 	struct pglist_data *pgdat = zone->zone_pgdat; | 
 | 	int zone_idx = zone_idx(zone) + 1; | 
 |  | 
 | 	if (zone_idx > pgdat->nr_zones) | 
 | 		pgdat->nr_zones = zone_idx; | 
 |  | 
 | 	zone->zone_start_pfn = zone_start_pfn; | 
 |  | 
 | 	mminit_dprintk(MMINIT_TRACE, "memmap_init", | 
 | 			"Initialising map node %d zone %lu pfns %lu -> %lu\n", | 
 | 			pgdat->node_id, | 
 | 			(unsigned long)zone_idx(zone), | 
 | 			zone_start_pfn, (zone_start_pfn + size)); | 
 |  | 
 | 	zone_init_free_lists(zone); | 
 | 	zone->initialized = 1; | 
 | } | 
 |  | 
 | /** | 
 |  * sparse_memory_present_with_active_regions - Call memory_present for each active range | 
 |  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. | 
 |  * | 
 |  * If an architecture guarantees that all ranges registered contain no holes and may | 
 |  * be freed, this function may be used instead of calling memory_present() manually. | 
 |  */ | 
 | void __init sparse_memory_present_with_active_regions(int nid) | 
 | { | 
 | 	unsigned long start_pfn, end_pfn; | 
 | 	int i, this_nid; | 
 |  | 
 | 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) | 
 | 		memory_present(this_nid, start_pfn, end_pfn); | 
 | } | 
 |  | 
 | /** | 
 |  * get_pfn_range_for_nid - Return the start and end page frames for a node | 
 |  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. | 
 |  * @start_pfn: Passed by reference. On return, it will have the node start_pfn. | 
 |  * @end_pfn: Passed by reference. On return, it will have the node end_pfn. | 
 |  * | 
 |  * It returns the start and end page frame of a node based on information | 
 |  * provided by memblock_set_node(). If called for a node | 
 |  * with no available memory, a warning is printed and the start and end | 
 |  * PFNs will be 0. | 
 |  */ | 
 | void __init get_pfn_range_for_nid(unsigned int nid, | 
 | 			unsigned long *start_pfn, unsigned long *end_pfn) | 
 | { | 
 | 	unsigned long this_start_pfn, this_end_pfn; | 
 | 	int i; | 
 |  | 
 | 	*start_pfn = -1UL; | 
 | 	*end_pfn = 0; | 
 |  | 
 | 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { | 
 | 		*start_pfn = min(*start_pfn, this_start_pfn); | 
 | 		*end_pfn = max(*end_pfn, this_end_pfn); | 
 | 	} | 
 |  | 
 | 	if (*start_pfn == -1UL) | 
 | 		*start_pfn = 0; | 
 | } | 
 |  | 
 | /* | 
 |  * This finds a zone that can be used for ZONE_MOVABLE pages. The | 
 |  * assumption is made that zones within a node are ordered in monotonic | 
 |  * increasing memory addresses so that the "highest" populated zone is used | 
 |  */ | 
 | static void __init find_usable_zone_for_movable(void) | 
 | { | 
 | 	int zone_index; | 
 | 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { | 
 | 		if (zone_index == ZONE_MOVABLE) | 
 | 			continue; | 
 |  | 
 | 		if (arch_zone_highest_possible_pfn[zone_index] > | 
 | 				arch_zone_lowest_possible_pfn[zone_index]) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	VM_BUG_ON(zone_index == -1); | 
 | 	movable_zone = zone_index; | 
 | } | 
 |  | 
 | /* | 
 |  * The zone ranges provided by the architecture do not include ZONE_MOVABLE | 
 |  * because it is sized independent of architecture. Unlike the other zones, | 
 |  * the starting point for ZONE_MOVABLE is not fixed. It may be different | 
 |  * in each node depending on the size of each node and how evenly kernelcore | 
 |  * is distributed. This helper function adjusts the zone ranges | 
 |  * provided by the architecture for a given node by using the end of the | 
 |  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that | 
 |  * zones within a node are in order of monotonic increases memory addresses | 
 |  */ | 
 | static void __init adjust_zone_range_for_zone_movable(int nid, | 
 | 					unsigned long zone_type, | 
 | 					unsigned long node_start_pfn, | 
 | 					unsigned long node_end_pfn, | 
 | 					unsigned long *zone_start_pfn, | 
 | 					unsigned long *zone_end_pfn) | 
 | { | 
 | 	/* Only adjust if ZONE_MOVABLE is on this node */ | 
 | 	if (zone_movable_pfn[nid]) { | 
 | 		/* Size ZONE_MOVABLE */ | 
 | 		if (zone_type == ZONE_MOVABLE) { | 
 | 			*zone_start_pfn = zone_movable_pfn[nid]; | 
 | 			*zone_end_pfn = min(node_end_pfn, | 
 | 				arch_zone_highest_possible_pfn[movable_zone]); | 
 |  | 
 | 		/* Adjust for ZONE_MOVABLE starting within this range */ | 
 | 		} else if (!mirrored_kernelcore && | 
 | 			*zone_start_pfn < zone_movable_pfn[nid] && | 
 | 			*zone_end_pfn > zone_movable_pfn[nid]) { | 
 | 			*zone_end_pfn = zone_movable_pfn[nid]; | 
 |  | 
 | 		/* Check if this whole range is within ZONE_MOVABLE */ | 
 | 		} else if (*zone_start_pfn >= zone_movable_pfn[nid]) | 
 | 			*zone_start_pfn = *zone_end_pfn; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Return the number of pages a zone spans in a node, including holes | 
 |  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() | 
 |  */ | 
 | static unsigned long __init zone_spanned_pages_in_node(int nid, | 
 | 					unsigned long zone_type, | 
 | 					unsigned long node_start_pfn, | 
 | 					unsigned long node_end_pfn, | 
 | 					unsigned long *zone_start_pfn, | 
 | 					unsigned long *zone_end_pfn) | 
 | { | 
 | 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; | 
 | 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; | 
 | 	/* When hotadd a new node from cpu_up(), the node should be empty */ | 
 | 	if (!node_start_pfn && !node_end_pfn) | 
 | 		return 0; | 
 |  | 
 | 	/* Get the start and end of the zone */ | 
 | 	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); | 
 | 	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); | 
 | 	adjust_zone_range_for_zone_movable(nid, zone_type, | 
 | 				node_start_pfn, node_end_pfn, | 
 | 				zone_start_pfn, zone_end_pfn); | 
 |  | 
 | 	/* Check that this node has pages within the zone's required range */ | 
 | 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) | 
 | 		return 0; | 
 |  | 
 | 	/* Move the zone boundaries inside the node if necessary */ | 
 | 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn); | 
 | 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn); | 
 |  | 
 | 	/* Return the spanned pages */ | 
 | 	return *zone_end_pfn - *zone_start_pfn; | 
 | } | 
 |  | 
 | /* | 
 |  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, | 
 |  * then all holes in the requested range will be accounted for. | 
 |  */ | 
 | unsigned long __init __absent_pages_in_range(int nid, | 
 | 				unsigned long range_start_pfn, | 
 | 				unsigned long range_end_pfn) | 
 | { | 
 | 	unsigned long nr_absent = range_end_pfn - range_start_pfn; | 
 | 	unsigned long start_pfn, end_pfn; | 
 | 	int i; | 
 |  | 
 | 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { | 
 | 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); | 
 | 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); | 
 | 		nr_absent -= end_pfn - start_pfn; | 
 | 	} | 
 | 	return nr_absent; | 
 | } | 
 |  | 
 | /** | 
 |  * absent_pages_in_range - Return number of page frames in holes within a range | 
 |  * @start_pfn: The start PFN to start searching for holes | 
 |  * @end_pfn: The end PFN to stop searching for holes | 
 |  * | 
 |  * Return: the number of pages frames in memory holes within a range. | 
 |  */ | 
 | unsigned long __init absent_pages_in_range(unsigned long start_pfn, | 
 | 							unsigned long end_pfn) | 
 | { | 
 | 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); | 
 | } | 
 |  | 
 | /* Return the number of page frames in holes in a zone on a node */ | 
 | static unsigned long __init zone_absent_pages_in_node(int nid, | 
 | 					unsigned long zone_type, | 
 | 					unsigned long node_start_pfn, | 
 | 					unsigned long node_end_pfn) | 
 | { | 
 | 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; | 
 | 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; | 
 | 	unsigned long zone_start_pfn, zone_end_pfn; | 
 | 	unsigned long nr_absent; | 
 |  | 
 | 	/* When hotadd a new node from cpu_up(), the node should be empty */ | 
 | 	if (!node_start_pfn && !node_end_pfn) | 
 | 		return 0; | 
 |  | 
 | 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); | 
 | 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); | 
 |  | 
 | 	adjust_zone_range_for_zone_movable(nid, zone_type, | 
 | 			node_start_pfn, node_end_pfn, | 
 | 			&zone_start_pfn, &zone_end_pfn); | 
 | 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); | 
 |  | 
 | 	/* | 
 | 	 * ZONE_MOVABLE handling. | 
 | 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages | 
 | 	 * and vice versa. | 
 | 	 */ | 
 | 	if (mirrored_kernelcore && zone_movable_pfn[nid]) { | 
 | 		unsigned long start_pfn, end_pfn; | 
 | 		struct memblock_region *r; | 
 |  | 
 | 		for_each_memblock(memory, r) { | 
 | 			start_pfn = clamp(memblock_region_memory_base_pfn(r), | 
 | 					  zone_start_pfn, zone_end_pfn); | 
 | 			end_pfn = clamp(memblock_region_memory_end_pfn(r), | 
 | 					zone_start_pfn, zone_end_pfn); | 
 |  | 
 | 			if (zone_type == ZONE_MOVABLE && | 
 | 			    memblock_is_mirror(r)) | 
 | 				nr_absent += end_pfn - start_pfn; | 
 |  | 
 | 			if (zone_type == ZONE_NORMAL && | 
 | 			    !memblock_is_mirror(r)) | 
 | 				nr_absent += end_pfn - start_pfn; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return nr_absent; | 
 | } | 
 |  | 
 | static void __init calculate_node_totalpages(struct pglist_data *pgdat, | 
 | 						unsigned long node_start_pfn, | 
 | 						unsigned long node_end_pfn) | 
 | { | 
 | 	unsigned long realtotalpages = 0, totalpages = 0; | 
 | 	enum zone_type i; | 
 |  | 
 | 	for (i = 0; i < MAX_NR_ZONES; i++) { | 
 | 		struct zone *zone = pgdat->node_zones + i; | 
 | 		unsigned long zone_start_pfn, zone_end_pfn; | 
 | 		unsigned long spanned, absent; | 
 | 		unsigned long size, real_size; | 
 |  | 
 | 		spanned = zone_spanned_pages_in_node(pgdat->node_id, i, | 
 | 						     node_start_pfn, | 
 | 						     node_end_pfn, | 
 | 						     &zone_start_pfn, | 
 | 						     &zone_end_pfn); | 
 | 		absent = zone_absent_pages_in_node(pgdat->node_id, i, | 
 | 						   node_start_pfn, | 
 | 						   node_end_pfn); | 
 |  | 
 | 		size = spanned; | 
 | 		real_size = size - absent; | 
 |  | 
 | 		if (size) | 
 | 			zone->zone_start_pfn = zone_start_pfn; | 
 | 		else | 
 | 			zone->zone_start_pfn = 0; | 
 | 		zone->spanned_pages = size; | 
 | 		zone->present_pages = real_size; | 
 |  | 
 | 		totalpages += size; | 
 | 		realtotalpages += real_size; | 
 | 	} | 
 |  | 
 | 	pgdat->node_spanned_pages = totalpages; | 
 | 	pgdat->node_present_pages = realtotalpages; | 
 | 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, | 
 | 							realtotalpages); | 
 | } | 
 |  | 
 | #ifndef CONFIG_SPARSEMEM | 
 | /* | 
 |  * Calculate the size of the zone->blockflags rounded to an unsigned long | 
 |  * Start by making sure zonesize is a multiple of pageblock_order by rounding | 
 |  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally | 
 |  * round what is now in bits to nearest long in bits, then return it in | 
 |  * bytes. | 
 |  */ | 
 | static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) | 
 | { | 
 | 	unsigned long usemapsize; | 
 |  | 
 | 	zonesize += zone_start_pfn & (pageblock_nr_pages-1); | 
 | 	usemapsize = roundup(zonesize, pageblock_nr_pages); | 
 | 	usemapsize = usemapsize >> pageblock_order; | 
 | 	usemapsize *= NR_PAGEBLOCK_BITS; | 
 | 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); | 
 |  | 
 | 	return usemapsize / 8; | 
 | } | 
 |  | 
 | static void __ref setup_usemap(struct pglist_data *pgdat, | 
 | 				struct zone *zone, | 
 | 				unsigned long zone_start_pfn, | 
 | 				unsigned long zonesize) | 
 | { | 
 | 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize); | 
 | 	zone->pageblock_flags = NULL; | 
 | 	if (usemapsize) { | 
 | 		zone->pageblock_flags = | 
 | 			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES, | 
 | 					    pgdat->node_id); | 
 | 		if (!zone->pageblock_flags) | 
 | 			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n", | 
 | 			      usemapsize, zone->name, pgdat->node_id); | 
 | 	} | 
 | } | 
 | #else | 
 | static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone, | 
 | 				unsigned long zone_start_pfn, unsigned long zonesize) {} | 
 | #endif /* CONFIG_SPARSEMEM */ | 
 |  | 
 | #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE | 
 |  | 
 | /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ | 
 | void __init set_pageblock_order(void) | 
 | { | 
 | 	unsigned int order; | 
 |  | 
 | 	/* Check that pageblock_nr_pages has not already been setup */ | 
 | 	if (pageblock_order) | 
 | 		return; | 
 |  | 
 | 	if (HPAGE_SHIFT > PAGE_SHIFT) | 
 | 		order = HUGETLB_PAGE_ORDER; | 
 | 	else | 
 | 		order = MAX_ORDER - 1; | 
 |  | 
 | 	/* | 
 | 	 * Assume the largest contiguous order of interest is a huge page. | 
 | 	 * This value may be variable depending on boot parameters on IA64 and | 
 | 	 * powerpc. | 
 | 	 */ | 
 | 	pageblock_order = order; | 
 | } | 
 | #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ | 
 |  | 
 | /* | 
 |  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() | 
 |  * is unused as pageblock_order is set at compile-time. See | 
 |  * include/linux/pageblock-flags.h for the values of pageblock_order based on | 
 |  * the kernel config | 
 |  */ | 
 | void __init set_pageblock_order(void) | 
 | { | 
 | } | 
 |  | 
 | #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ | 
 |  | 
 | static unsigned long __init calc_memmap_size(unsigned long spanned_pages, | 
 | 						unsigned long present_pages) | 
 | { | 
 | 	unsigned long pages = spanned_pages; | 
 |  | 
 | 	/* | 
 | 	 * Provide a more accurate estimation if there are holes within | 
 | 	 * the zone and SPARSEMEM is in use. If there are holes within the | 
 | 	 * zone, each populated memory region may cost us one or two extra | 
 | 	 * memmap pages due to alignment because memmap pages for each | 
 | 	 * populated regions may not be naturally aligned on page boundary. | 
 | 	 * So the (present_pages >> 4) heuristic is a tradeoff for that. | 
 | 	 */ | 
 | 	if (spanned_pages > present_pages + (present_pages >> 4) && | 
 | 	    IS_ENABLED(CONFIG_SPARSEMEM)) | 
 | 		pages = present_pages; | 
 |  | 
 | 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; | 
 | } | 
 |  | 
 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
 | static void pgdat_init_split_queue(struct pglist_data *pgdat) | 
 | { | 
 | 	struct deferred_split *ds_queue = &pgdat->deferred_split_queue; | 
 |  | 
 | 	spin_lock_init(&ds_queue->split_queue_lock); | 
 | 	INIT_LIST_HEAD(&ds_queue->split_queue); | 
 | 	ds_queue->split_queue_len = 0; | 
 | } | 
 | #else | 
 | static void pgdat_init_split_queue(struct pglist_data *pgdat) {} | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_COMPACTION | 
 | static void pgdat_init_kcompactd(struct pglist_data *pgdat) | 
 | { | 
 | 	init_waitqueue_head(&pgdat->kcompactd_wait); | 
 | } | 
 | #else | 
 | static void pgdat_init_kcompactd(struct pglist_data *pgdat) {} | 
 | #endif | 
 |  | 
 | static void __meminit pgdat_init_internals(struct pglist_data *pgdat) | 
 | { | 
 | 	pgdat_resize_init(pgdat); | 
 |  | 
 | 	pgdat_init_split_queue(pgdat); | 
 | 	pgdat_init_kcompactd(pgdat); | 
 |  | 
 | 	init_waitqueue_head(&pgdat->kswapd_wait); | 
 | 	init_waitqueue_head(&pgdat->pfmemalloc_wait); | 
 |  | 
 | 	pgdat_page_ext_init(pgdat); | 
 | 	spin_lock_init(&pgdat->lru_lock); | 
 | 	lruvec_init(&pgdat->__lruvec); | 
 | } | 
 |  | 
 | static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid, | 
 | 							unsigned long remaining_pages) | 
 | { | 
 | 	atomic_long_set(&zone->managed_pages, remaining_pages); | 
 | 	zone_set_nid(zone, nid); | 
 | 	zone->name = zone_names[idx]; | 
 | 	zone->zone_pgdat = NODE_DATA(nid); | 
 | 	spin_lock_init(&zone->lock); | 
 | 	zone_seqlock_init(zone); | 
 | 	zone_pcp_init(zone); | 
 | } | 
 |  | 
 | /* | 
 |  * Set up the zone data structures | 
 |  * - init pgdat internals | 
 |  * - init all zones belonging to this node | 
 |  * | 
 |  * NOTE: this function is only called during memory hotplug | 
 |  */ | 
 | #ifdef CONFIG_MEMORY_HOTPLUG | 
 | void __ref free_area_init_core_hotplug(int nid) | 
 | { | 
 | 	enum zone_type z; | 
 | 	pg_data_t *pgdat = NODE_DATA(nid); | 
 |  | 
 | 	pgdat_init_internals(pgdat); | 
 | 	for (z = 0; z < MAX_NR_ZONES; z++) | 
 | 		zone_init_internals(&pgdat->node_zones[z], z, nid, 0); | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * Set up the zone data structures: | 
 |  *   - mark all pages reserved | 
 |  *   - mark all memory queues empty | 
 |  *   - clear the memory bitmaps | 
 |  * | 
 |  * NOTE: pgdat should get zeroed by caller. | 
 |  * NOTE: this function is only called during early init. | 
 |  */ | 
 | static void __init free_area_init_core(struct pglist_data *pgdat) | 
 | { | 
 | 	enum zone_type j; | 
 | 	int nid = pgdat->node_id; | 
 |  | 
 | 	pgdat_init_internals(pgdat); | 
 | 	pgdat->per_cpu_nodestats = &boot_nodestats; | 
 |  | 
 | 	for (j = 0; j < MAX_NR_ZONES; j++) { | 
 | 		struct zone *zone = pgdat->node_zones + j; | 
 | 		unsigned long size, freesize, memmap_pages; | 
 | 		unsigned long zone_start_pfn = zone->zone_start_pfn; | 
 |  | 
 | 		size = zone->spanned_pages; | 
 | 		freesize = zone->present_pages; | 
 |  | 
 | 		/* | 
 | 		 * Adjust freesize so that it accounts for how much memory | 
 | 		 * is used by this zone for memmap. This affects the watermark | 
 | 		 * and per-cpu initialisations | 
 | 		 */ | 
 | 		memmap_pages = calc_memmap_size(size, freesize); | 
 | 		if (!is_highmem_idx(j)) { | 
 | 			if (freesize >= memmap_pages) { | 
 | 				freesize -= memmap_pages; | 
 | 				if (memmap_pages) | 
 | 					printk(KERN_DEBUG | 
 | 					       "  %s zone: %lu pages used for memmap\n", | 
 | 					       zone_names[j], memmap_pages); | 
 | 			} else | 
 | 				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n", | 
 | 					zone_names[j], memmap_pages, freesize); | 
 | 		} | 
 |  | 
 | 		/* Account for reserved pages */ | 
 | 		if (j == 0 && freesize > dma_reserve) { | 
 | 			freesize -= dma_reserve; | 
 | 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n", | 
 | 					zone_names[0], dma_reserve); | 
 | 		} | 
 |  | 
 | 		if (!is_highmem_idx(j)) | 
 | 			nr_kernel_pages += freesize; | 
 | 		/* Charge for highmem memmap if there are enough kernel pages */ | 
 | 		else if (nr_kernel_pages > memmap_pages * 2) | 
 | 			nr_kernel_pages -= memmap_pages; | 
 | 		nr_all_pages += freesize; | 
 |  | 
 | 		/* | 
 | 		 * Set an approximate value for lowmem here, it will be adjusted | 
 | 		 * when the bootmem allocator frees pages into the buddy system. | 
 | 		 * And all highmem pages will be managed by the buddy system. | 
 | 		 */ | 
 | 		zone_init_internals(zone, j, nid, freesize); | 
 |  | 
 | 		if (!size) | 
 | 			continue; | 
 |  | 
 | 		set_pageblock_order(); | 
 | 		setup_usemap(pgdat, zone, zone_start_pfn, size); | 
 | 		init_currently_empty_zone(zone, zone_start_pfn, size); | 
 | 		memmap_init(size, nid, j, zone_start_pfn); | 
 | 	} | 
 | } | 
 |  | 
 | #ifdef CONFIG_FLAT_NODE_MEM_MAP | 
 | static void __ref alloc_node_mem_map(struct pglist_data *pgdat) | 
 | { | 
 | 	unsigned long __maybe_unused start = 0; | 
 | 	unsigned long __maybe_unused offset = 0; | 
 |  | 
 | 	/* Skip empty nodes */ | 
 | 	if (!pgdat->node_spanned_pages) | 
 | 		return; | 
 |  | 
 | 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); | 
 | 	offset = pgdat->node_start_pfn - start; | 
 | 	/* ia64 gets its own node_mem_map, before this, without bootmem */ | 
 | 	if (!pgdat->node_mem_map) { | 
 | 		unsigned long size, end; | 
 | 		struct page *map; | 
 |  | 
 | 		/* | 
 | 		 * The zone's endpoints aren't required to be MAX_ORDER | 
 | 		 * aligned but the node_mem_map endpoints must be in order | 
 | 		 * for the buddy allocator to function correctly. | 
 | 		 */ | 
 | 		end = pgdat_end_pfn(pgdat); | 
 | 		end = ALIGN(end, MAX_ORDER_NR_PAGES); | 
 | 		size =  (end - start) * sizeof(struct page); | 
 | 		map = memblock_alloc_node(size, SMP_CACHE_BYTES, | 
 | 					  pgdat->node_id); | 
 | 		if (!map) | 
 | 			panic("Failed to allocate %ld bytes for node %d memory map\n", | 
 | 			      size, pgdat->node_id); | 
 | 		pgdat->node_mem_map = map + offset; | 
 | 	} | 
 | 	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n", | 
 | 				__func__, pgdat->node_id, (unsigned long)pgdat, | 
 | 				(unsigned long)pgdat->node_mem_map); | 
 | #ifndef CONFIG_NEED_MULTIPLE_NODES | 
 | 	/* | 
 | 	 * With no DISCONTIG, the global mem_map is just set as node 0's | 
 | 	 */ | 
 | 	if (pgdat == NODE_DATA(0)) { | 
 | 		mem_map = NODE_DATA(0)->node_mem_map; | 
 | 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn) | 
 | 			mem_map -= offset; | 
 | 	} | 
 | #endif | 
 | } | 
 | #else | 
 | static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { } | 
 | #endif /* CONFIG_FLAT_NODE_MEM_MAP */ | 
 |  | 
 | #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT | 
 | static inline void pgdat_set_deferred_range(pg_data_t *pgdat) | 
 | { | 
 | 	pgdat->first_deferred_pfn = ULONG_MAX; | 
 | } | 
 | #else | 
 | static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {} | 
 | #endif | 
 |  | 
 | static void __init free_area_init_node(int nid) | 
 | { | 
 | 	pg_data_t *pgdat = NODE_DATA(nid); | 
 | 	unsigned long start_pfn = 0; | 
 | 	unsigned long end_pfn = 0; | 
 |  | 
 | 	/* pg_data_t should be reset to zero when it's allocated */ | 
 | 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx); | 
 |  | 
 | 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); | 
 |  | 
 | 	pgdat->node_id = nid; | 
 | 	pgdat->node_start_pfn = start_pfn; | 
 | 	pgdat->per_cpu_nodestats = NULL; | 
 |  | 
 | 	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, | 
 | 		(u64)start_pfn << PAGE_SHIFT, | 
 | 		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); | 
 | 	calculate_node_totalpages(pgdat, start_pfn, end_pfn); | 
 |  | 
 | 	alloc_node_mem_map(pgdat); | 
 | 	pgdat_set_deferred_range(pgdat); | 
 |  | 
 | 	free_area_init_core(pgdat); | 
 | } | 
 |  | 
 | void __init free_area_init_memoryless_node(int nid) | 
 | { | 
 | 	free_area_init_node(nid); | 
 | } | 
 |  | 
 | #if !defined(CONFIG_FLAT_NODE_MEM_MAP) | 
 | /* | 
 |  * Initialize all valid struct pages in the range [spfn, epfn) and mark them | 
 |  * PageReserved(). Return the number of struct pages that were initialized. | 
 |  */ | 
 | static u64 __init init_unavailable_range(unsigned long spfn, unsigned long epfn) | 
 | { | 
 | 	unsigned long pfn; | 
 | 	u64 pgcnt = 0; | 
 |  | 
 | 	for (pfn = spfn; pfn < epfn; pfn++) { | 
 | 		if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) { | 
 | 			pfn = ALIGN_DOWN(pfn, pageblock_nr_pages) | 
 | 				+ pageblock_nr_pages - 1; | 
 | 			continue; | 
 | 		} | 
 | 		/* | 
 | 		 * Use a fake node/zone (0) for now. Some of these pages | 
 | 		 * (in memblock.reserved but not in memblock.memory) will | 
 | 		 * get re-initialized via reserve_bootmem_region() later. | 
 | 		 */ | 
 | 		__init_single_page(pfn_to_page(pfn), pfn, 0, 0); | 
 | 		__SetPageReserved(pfn_to_page(pfn)); | 
 | 		pgcnt++; | 
 | 	} | 
 |  | 
 | 	return pgcnt; | 
 | } | 
 |  | 
 | /* | 
 |  * Only struct pages that are backed by physical memory are zeroed and | 
 |  * initialized by going through __init_single_page(). But, there are some | 
 |  * struct pages which are reserved in memblock allocator and their fields | 
 |  * may be accessed (for example page_to_pfn() on some configuration accesses | 
 |  * flags). We must explicitly initialize those struct pages. | 
 |  * | 
 |  * This function also addresses a similar issue where struct pages are left | 
 |  * uninitialized because the physical address range is not covered by | 
 |  * memblock.memory or memblock.reserved. That could happen when memblock | 
 |  * layout is manually configured via memmap=, or when the highest physical | 
 |  * address (max_pfn) does not end on a section boundary. | 
 |  */ | 
 | static void __init init_unavailable_mem(void) | 
 | { | 
 | 	phys_addr_t start, end; | 
 | 	u64 i, pgcnt; | 
 | 	phys_addr_t next = 0; | 
 |  | 
 | 	/* | 
 | 	 * Loop through unavailable ranges not covered by memblock.memory. | 
 | 	 */ | 
 | 	pgcnt = 0; | 
 | 	for_each_mem_range(i, &memblock.memory, NULL, | 
 | 			NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) { | 
 | 		if (next < start) | 
 | 			pgcnt += init_unavailable_range(PFN_DOWN(next), | 
 | 							PFN_UP(start)); | 
 | 		next = end; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Early sections always have a fully populated memmap for the whole | 
 | 	 * section - see pfn_valid(). If the last section has holes at the | 
 | 	 * end and that section is marked "online", the memmap will be | 
 | 	 * considered initialized. Make sure that memmap has a well defined | 
 | 	 * state. | 
 | 	 */ | 
 | 	pgcnt += init_unavailable_range(PFN_DOWN(next), | 
 | 					round_up(max_pfn, PAGES_PER_SECTION)); | 
 |  | 
 | 	/* | 
 | 	 * Struct pages that do not have backing memory. This could be because | 
 | 	 * firmware is using some of this memory, or for some other reasons. | 
 | 	 */ | 
 | 	if (pgcnt) | 
 | 		pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt); | 
 | } | 
 | #else | 
 | static inline void __init init_unavailable_mem(void) | 
 | { | 
 | } | 
 | #endif /* !CONFIG_FLAT_NODE_MEM_MAP */ | 
 |  | 
 | #if MAX_NUMNODES > 1 | 
 | /* | 
 |  * Figure out the number of possible node ids. | 
 |  */ | 
 | void __init setup_nr_node_ids(void) | 
 | { | 
 | 	unsigned int highest; | 
 |  | 
 | 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); | 
 | 	nr_node_ids = highest + 1; | 
 | } | 
 | #endif | 
 |  | 
 | /** | 
 |  * node_map_pfn_alignment - determine the maximum internode alignment | 
 |  * | 
 |  * This function should be called after node map is populated and sorted. | 
 |  * It calculates the maximum power of two alignment which can distinguish | 
 |  * all the nodes. | 
 |  * | 
 |  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value | 
 |  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the | 
 |  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is | 
 |  * shifted, 1GiB is enough and this function will indicate so. | 
 |  * | 
 |  * This is used to test whether pfn -> nid mapping of the chosen memory | 
 |  * model has fine enough granularity to avoid incorrect mapping for the | 
 |  * populated node map. | 
 |  * | 
 |  * Return: the determined alignment in pfn's.  0 if there is no alignment | 
 |  * requirement (single node). | 
 |  */ | 
 | unsigned long __init node_map_pfn_alignment(void) | 
 | { | 
 | 	unsigned long accl_mask = 0, last_end = 0; | 
 | 	unsigned long start, end, mask; | 
 | 	int last_nid = NUMA_NO_NODE; | 
 | 	int i, nid; | 
 |  | 
 | 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { | 
 | 		if (!start || last_nid < 0 || last_nid == nid) { | 
 | 			last_nid = nid; | 
 | 			last_end = end; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Start with a mask granular enough to pin-point to the | 
 | 		 * start pfn and tick off bits one-by-one until it becomes | 
 | 		 * too coarse to separate the current node from the last. | 
 | 		 */ | 
 | 		mask = ~((1 << __ffs(start)) - 1); | 
 | 		while (mask && last_end <= (start & (mask << 1))) | 
 | 			mask <<= 1; | 
 |  | 
 | 		/* accumulate all internode masks */ | 
 | 		accl_mask |= mask; | 
 | 	} | 
 |  | 
 | 	/* convert mask to number of pages */ | 
 | 	return ~accl_mask + 1; | 
 | } | 
 |  | 
 | /** | 
 |  * find_min_pfn_with_active_regions - Find the minimum PFN registered | 
 |  * | 
 |  * Return: the minimum PFN based on information provided via | 
 |  * memblock_set_node(). | 
 |  */ | 
 | unsigned long __init find_min_pfn_with_active_regions(void) | 
 | { | 
 | 	return PHYS_PFN(memblock_start_of_DRAM()); | 
 | } | 
 |  | 
 | /* | 
 |  * early_calculate_totalpages() | 
 |  * Sum pages in active regions for movable zone. | 
 |  * Populate N_MEMORY for calculating usable_nodes. | 
 |  */ | 
 | static unsigned long __init early_calculate_totalpages(void) | 
 | { | 
 | 	unsigned long totalpages = 0; | 
 | 	unsigned long start_pfn, end_pfn; | 
 | 	int i, nid; | 
 |  | 
 | 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { | 
 | 		unsigned long pages = end_pfn - start_pfn; | 
 |  | 
 | 		totalpages += pages; | 
 | 		if (pages) | 
 | 			node_set_state(nid, N_MEMORY); | 
 | 	} | 
 | 	return totalpages; | 
 | } | 
 |  | 
 | /* | 
 |  * Find the PFN the Movable zone begins in each node. Kernel memory | 
 |  * is spread evenly between nodes as long as the nodes have enough | 
 |  * memory. When they don't, some nodes will have more kernelcore than | 
 |  * others | 
 |  */ | 
 | static void __init find_zone_movable_pfns_for_nodes(void) | 
 | { | 
 | 	int i, nid; | 
 | 	unsigned long usable_startpfn; | 
 | 	unsigned long kernelcore_node, kernelcore_remaining; | 
 | 	/* save the state before borrow the nodemask */ | 
 | 	nodemask_t saved_node_state = node_states[N_MEMORY]; | 
 | 	unsigned long totalpages = early_calculate_totalpages(); | 
 | 	int usable_nodes = nodes_weight(node_states[N_MEMORY]); | 
 | 	struct memblock_region *r; | 
 |  | 
 | 	/* Need to find movable_zone earlier when movable_node is specified. */ | 
 | 	find_usable_zone_for_movable(); | 
 |  | 
 | 	/* | 
 | 	 * If movable_node is specified, ignore kernelcore and movablecore | 
 | 	 * options. | 
 | 	 */ | 
 | 	if (movable_node_is_enabled()) { | 
 | 		for_each_memblock(memory, r) { | 
 | 			if (!memblock_is_hotpluggable(r)) | 
 | 				continue; | 
 |  | 
 | 			nid = memblock_get_region_node(r); | 
 |  | 
 | 			usable_startpfn = PFN_DOWN(r->base); | 
 | 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ? | 
 | 				min(usable_startpfn, zone_movable_pfn[nid]) : | 
 | 				usable_startpfn; | 
 | 		} | 
 |  | 
 | 		goto out2; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If kernelcore=mirror is specified, ignore movablecore option | 
 | 	 */ | 
 | 	if (mirrored_kernelcore) { | 
 | 		bool mem_below_4gb_not_mirrored = false; | 
 |  | 
 | 		for_each_memblock(memory, r) { | 
 | 			if (memblock_is_mirror(r)) | 
 | 				continue; | 
 |  | 
 | 			nid = memblock_get_region_node(r); | 
 |  | 
 | 			usable_startpfn = memblock_region_memory_base_pfn(r); | 
 |  | 
 | 			if (usable_startpfn < 0x100000) { | 
 | 				mem_below_4gb_not_mirrored = true; | 
 | 				continue; | 
 | 			} | 
 |  | 
 | 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ? | 
 | 				min(usable_startpfn, zone_movable_pfn[nid]) : | 
 | 				usable_startpfn; | 
 | 		} | 
 |  | 
 | 		if (mem_below_4gb_not_mirrored) | 
 | 			pr_warn("This configuration results in unmirrored kernel memory.\n"); | 
 |  | 
 | 		goto out2; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the | 
 | 	 * amount of necessary memory. | 
 | 	 */ | 
 | 	if (required_kernelcore_percent) | 
 | 		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) / | 
 | 				       10000UL; | 
 | 	if (required_movablecore_percent) | 
 | 		required_movablecore = (totalpages * 100 * required_movablecore_percent) / | 
 | 					10000UL; | 
 |  | 
 | 	/* | 
 | 	 * If movablecore= was specified, calculate what size of | 
 | 	 * kernelcore that corresponds so that memory usable for | 
 | 	 * any allocation type is evenly spread. If both kernelcore | 
 | 	 * and movablecore are specified, then the value of kernelcore | 
 | 	 * will be used for required_kernelcore if it's greater than | 
 | 	 * what movablecore would have allowed. | 
 | 	 */ | 
 | 	if (required_movablecore) { | 
 | 		unsigned long corepages; | 
 |  | 
 | 		/* | 
 | 		 * Round-up so that ZONE_MOVABLE is at least as large as what | 
 | 		 * was requested by the user | 
 | 		 */ | 
 | 		required_movablecore = | 
 | 			roundup(required_movablecore, MAX_ORDER_NR_PAGES); | 
 | 		required_movablecore = min(totalpages, required_movablecore); | 
 | 		corepages = totalpages - required_movablecore; | 
 |  | 
 | 		required_kernelcore = max(required_kernelcore, corepages); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If kernelcore was not specified or kernelcore size is larger | 
 | 	 * than totalpages, there is no ZONE_MOVABLE. | 
 | 	 */ | 
 | 	if (!required_kernelcore || required_kernelcore >= totalpages) | 
 | 		goto out; | 
 |  | 
 | 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ | 
 | 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; | 
 |  | 
 | restart: | 
 | 	/* Spread kernelcore memory as evenly as possible throughout nodes */ | 
 | 	kernelcore_node = required_kernelcore / usable_nodes; | 
 | 	for_each_node_state(nid, N_MEMORY) { | 
 | 		unsigned long start_pfn, end_pfn; | 
 |  | 
 | 		/* | 
 | 		 * Recalculate kernelcore_node if the division per node | 
 | 		 * now exceeds what is necessary to satisfy the requested | 
 | 		 * amount of memory for the kernel | 
 | 		 */ | 
 | 		if (required_kernelcore < kernelcore_node) | 
 | 			kernelcore_node = required_kernelcore / usable_nodes; | 
 |  | 
 | 		/* | 
 | 		 * As the map is walked, we track how much memory is usable | 
 | 		 * by the kernel using kernelcore_remaining. When it is | 
 | 		 * 0, the rest of the node is usable by ZONE_MOVABLE | 
 | 		 */ | 
 | 		kernelcore_remaining = kernelcore_node; | 
 |  | 
 | 		/* Go through each range of PFNs within this node */ | 
 | 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { | 
 | 			unsigned long size_pages; | 
 |  | 
 | 			start_pfn = max(start_pfn, zone_movable_pfn[nid]); | 
 | 			if (start_pfn >= end_pfn) | 
 | 				continue; | 
 |  | 
 | 			/* Account for what is only usable for kernelcore */ | 
 | 			if (start_pfn < usable_startpfn) { | 
 | 				unsigned long kernel_pages; | 
 | 				kernel_pages = min(end_pfn, usable_startpfn) | 
 | 								- start_pfn; | 
 |  | 
 | 				kernelcore_remaining -= min(kernel_pages, | 
 | 							kernelcore_remaining); | 
 | 				required_kernelcore -= min(kernel_pages, | 
 | 							required_kernelcore); | 
 |  | 
 | 				/* Continue if range is now fully accounted */ | 
 | 				if (end_pfn <= usable_startpfn) { | 
 |  | 
 | 					/* | 
 | 					 * Push zone_movable_pfn to the end so | 
 | 					 * that if we have to rebalance | 
 | 					 * kernelcore across nodes, we will | 
 | 					 * not double account here | 
 | 					 */ | 
 | 					zone_movable_pfn[nid] = end_pfn; | 
 | 					continue; | 
 | 				} | 
 | 				start_pfn = usable_startpfn; | 
 | 			} | 
 |  | 
 | 			/* | 
 | 			 * The usable PFN range for ZONE_MOVABLE is from | 
 | 			 * start_pfn->end_pfn. Calculate size_pages as the | 
 | 			 * number of pages used as kernelcore | 
 | 			 */ | 
 | 			size_pages = end_pfn - start_pfn; | 
 | 			if (size_pages > kernelcore_remaining) | 
 | 				size_pages = kernelcore_remaining; | 
 | 			zone_movable_pfn[nid] = start_pfn + size_pages; | 
 |  | 
 | 			/* | 
 | 			 * Some kernelcore has been met, update counts and | 
 | 			 * break if the kernelcore for this node has been | 
 | 			 * satisfied | 
 | 			 */ | 
 | 			required_kernelcore -= min(required_kernelcore, | 
 | 								size_pages); | 
 | 			kernelcore_remaining -= size_pages; | 
 | 			if (!kernelcore_remaining) | 
 | 				break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If there is still required_kernelcore, we do another pass with one | 
 | 	 * less node in the count. This will push zone_movable_pfn[nid] further | 
 | 	 * along on the nodes that still have memory until kernelcore is | 
 | 	 * satisfied | 
 | 	 */ | 
 | 	usable_nodes--; | 
 | 	if (usable_nodes && required_kernelcore > usable_nodes) | 
 | 		goto restart; | 
 |  | 
 | out2: | 
 | 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ | 
 | 	for (nid = 0; nid < MAX_NUMNODES; nid++) | 
 | 		zone_movable_pfn[nid] = | 
 | 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); | 
 |  | 
 | out: | 
 | 	/* restore the node_state */ | 
 | 	node_states[N_MEMORY] = saved_node_state; | 
 | } | 
 |  | 
 | /* Any regular or high memory on that node ? */ | 
 | static void check_for_memory(pg_data_t *pgdat, int nid) | 
 | { | 
 | 	enum zone_type zone_type; | 
 |  | 
 | 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { | 
 | 		struct zone *zone = &pgdat->node_zones[zone_type]; | 
 | 		if (populated_zone(zone)) { | 
 | 			if (IS_ENABLED(CONFIG_HIGHMEM)) | 
 | 				node_set_state(nid, N_HIGH_MEMORY); | 
 | 			if (zone_type <= ZONE_NORMAL) | 
 | 				node_set_state(nid, N_NORMAL_MEMORY); | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Some architecturs, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For | 
 |  * such cases we allow max_zone_pfn sorted in the descending order | 
 |  */ | 
 | bool __weak arch_has_descending_max_zone_pfns(void) | 
 | { | 
 | 	return false; | 
 | } | 
 |  | 
 | /** | 
 |  * free_area_init - Initialise all pg_data_t and zone data | 
 |  * @max_zone_pfn: an array of max PFNs for each zone | 
 |  * | 
 |  * This will call free_area_init_node() for each active node in the system. | 
 |  * Using the page ranges provided by memblock_set_node(), the size of each | 
 |  * zone in each node and their holes is calculated. If the maximum PFN | 
 |  * between two adjacent zones match, it is assumed that the zone is empty. | 
 |  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed | 
 |  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone | 
 |  * starts where the previous one ended. For example, ZONE_DMA32 starts | 
 |  * at arch_max_dma_pfn. | 
 |  */ | 
 | void __init free_area_init(unsigned long *max_zone_pfn) | 
 | { | 
 | 	unsigned long start_pfn, end_pfn; | 
 | 	int i, nid, zone; | 
 | 	bool descending; | 
 |  | 
 | 	/* Record where the zone boundaries are */ | 
 | 	memset(arch_zone_lowest_possible_pfn, 0, | 
 | 				sizeof(arch_zone_lowest_possible_pfn)); | 
 | 	memset(arch_zone_highest_possible_pfn, 0, | 
 | 				sizeof(arch_zone_highest_possible_pfn)); | 
 |  | 
 | 	start_pfn = find_min_pfn_with_active_regions(); | 
 | 	descending = arch_has_descending_max_zone_pfns(); | 
 |  | 
 | 	for (i = 0; i < MAX_NR_ZONES; i++) { | 
 | 		if (descending) | 
 | 			zone = MAX_NR_ZONES - i - 1; | 
 | 		else | 
 | 			zone = i; | 
 |  | 
 | 		if (zone == ZONE_MOVABLE) | 
 | 			continue; | 
 |  | 
 | 		end_pfn = max(max_zone_pfn[zone], start_pfn); | 
 | 		arch_zone_lowest_possible_pfn[zone] = start_pfn; | 
 | 		arch_zone_highest_possible_pfn[zone] = end_pfn; | 
 |  | 
 | 		start_pfn = end_pfn; | 
 | 	} | 
 |  | 
 | 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */ | 
 | 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); | 
 | 	find_zone_movable_pfns_for_nodes(); | 
 |  | 
 | 	/* Print out the zone ranges */ | 
 | 	pr_info("Zone ranges:\n"); | 
 | 	for (i = 0; i < MAX_NR_ZONES; i++) { | 
 | 		if (i == ZONE_MOVABLE) | 
 | 			continue; | 
 | 		pr_info("  %-8s ", zone_names[i]); | 
 | 		if (arch_zone_lowest_possible_pfn[i] == | 
 | 				arch_zone_highest_possible_pfn[i]) | 
 | 			pr_cont("empty\n"); | 
 | 		else | 
 | 			pr_cont("[mem %#018Lx-%#018Lx]\n", | 
 | 				(u64)arch_zone_lowest_possible_pfn[i] | 
 | 					<< PAGE_SHIFT, | 
 | 				((u64)arch_zone_highest_possible_pfn[i] | 
 | 					<< PAGE_SHIFT) - 1); | 
 | 	} | 
 |  | 
 | 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */ | 
 | 	pr_info("Movable zone start for each node\n"); | 
 | 	for (i = 0; i < MAX_NUMNODES; i++) { | 
 | 		if (zone_movable_pfn[i]) | 
 | 			pr_info("  Node %d: %#018Lx\n", i, | 
 | 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Print out the early node map, and initialize the | 
 | 	 * subsection-map relative to active online memory ranges to | 
 | 	 * enable future "sub-section" extensions of the memory map. | 
 | 	 */ | 
 | 	pr_info("Early memory node ranges\n"); | 
 | 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { | 
 | 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid, | 
 | 			(u64)start_pfn << PAGE_SHIFT, | 
 | 			((u64)end_pfn << PAGE_SHIFT) - 1); | 
 | 		subsection_map_init(start_pfn, end_pfn - start_pfn); | 
 | 	} | 
 |  | 
 | 	/* Initialise every node */ | 
 | 	mminit_verify_pageflags_layout(); | 
 | 	setup_nr_node_ids(); | 
 | 	init_unavailable_mem(); | 
 | 	for_each_online_node(nid) { | 
 | 		pg_data_t *pgdat = NODE_DATA(nid); | 
 | 		free_area_init_node(nid); | 
 |  | 
 | 		/* Any memory on that node */ | 
 | 		if (pgdat->node_present_pages) | 
 | 			node_set_state(nid, N_MEMORY); | 
 | 		check_for_memory(pgdat, nid); | 
 | 	} | 
 | } | 
 |  | 
 | static int __init cmdline_parse_core(char *p, unsigned long *core, | 
 | 				     unsigned long *percent) | 
 | { | 
 | 	unsigned long long coremem; | 
 | 	char *endptr; | 
 |  | 
 | 	if (!p) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* Value may be a percentage of total memory, otherwise bytes */ | 
 | 	coremem = simple_strtoull(p, &endptr, 0); | 
 | 	if (*endptr == '%') { | 
 | 		/* Paranoid check for percent values greater than 100 */ | 
 | 		WARN_ON(coremem > 100); | 
 |  | 
 | 		*percent = coremem; | 
 | 	} else { | 
 | 		coremem = memparse(p, &p); | 
 | 		/* Paranoid check that UL is enough for the coremem value */ | 
 | 		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); | 
 |  | 
 | 		*core = coremem >> PAGE_SHIFT; | 
 | 		*percent = 0UL; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * kernelcore=size sets the amount of memory for use for allocations that | 
 |  * cannot be reclaimed or migrated. | 
 |  */ | 
 | static int __init cmdline_parse_kernelcore(char *p) | 
 | { | 
 | 	/* parse kernelcore=mirror */ | 
 | 	if (parse_option_str(p, "mirror")) { | 
 | 		mirrored_kernelcore = true; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	return cmdline_parse_core(p, &required_kernelcore, | 
 | 				  &required_kernelcore_percent); | 
 | } | 
 |  | 
 | /* | 
 |  * movablecore=size sets the amount of memory for use for allocations that | 
 |  * can be reclaimed or migrated. | 
 |  */ | 
 | static int __init cmdline_parse_movablecore(char *p) | 
 | { | 
 | 	return cmdline_parse_core(p, &required_movablecore, | 
 | 				  &required_movablecore_percent); | 
 | } | 
 |  | 
 | early_param("kernelcore", cmdline_parse_kernelcore); | 
 | early_param("movablecore", cmdline_parse_movablecore); | 
 |  | 
 | void adjust_managed_page_count(struct page *page, long count) | 
 | { | 
 | 	atomic_long_add(count, &page_zone(page)->managed_pages); | 
 | 	totalram_pages_add(count); | 
 | #ifdef CONFIG_HIGHMEM | 
 | 	if (PageHighMem(page)) | 
 | 		totalhigh_pages_add(count); | 
 | #endif | 
 | } | 
 | EXPORT_SYMBOL(adjust_managed_page_count); | 
 |  | 
 | unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) | 
 | { | 
 | 	void *pos; | 
 | 	unsigned long pages = 0; | 
 |  | 
 | 	start = (void *)PAGE_ALIGN((unsigned long)start); | 
 | 	end = (void *)((unsigned long)end & PAGE_MASK); | 
 | 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { | 
 | 		struct page *page = virt_to_page(pos); | 
 | 		void *direct_map_addr; | 
 |  | 
 | 		/* | 
 | 		 * 'direct_map_addr' might be different from 'pos' | 
 | 		 * because some architectures' virt_to_page() | 
 | 		 * work with aliases.  Getting the direct map | 
 | 		 * address ensures that we get a _writeable_ | 
 | 		 * alias for the memset(). | 
 | 		 */ | 
 | 		direct_map_addr = page_address(page); | 
 | 		if ((unsigned int)poison <= 0xFF) | 
 | 			memset(direct_map_addr, poison, PAGE_SIZE); | 
 |  | 
 | 		free_reserved_page(page); | 
 | 	} | 
 |  | 
 | 	if (pages && s) | 
 | 		pr_info("Freeing %s memory: %ldK\n", | 
 | 			s, pages << (PAGE_SHIFT - 10)); | 
 |  | 
 | 	return pages; | 
 | } | 
 |  | 
 | #ifdef	CONFIG_HIGHMEM | 
 | void free_highmem_page(struct page *page) | 
 | { | 
 | 	__free_reserved_page(page); | 
 | 	totalram_pages_inc(); | 
 | 	atomic_long_inc(&page_zone(page)->managed_pages); | 
 | 	totalhigh_pages_inc(); | 
 | } | 
 | #endif | 
 |  | 
 |  | 
 | void __init mem_init_print_info(const char *str) | 
 | { | 
 | 	unsigned long physpages, codesize, datasize, rosize, bss_size; | 
 | 	unsigned long init_code_size, init_data_size; | 
 |  | 
 | 	physpages = get_num_physpages(); | 
 | 	codesize = _etext - _stext; | 
 | 	datasize = _edata - _sdata; | 
 | 	rosize = __end_rodata - __start_rodata; | 
 | 	bss_size = __bss_stop - __bss_start; | 
 | 	init_data_size = __init_end - __init_begin; | 
 | 	init_code_size = _einittext - _sinittext; | 
 |  | 
 | 	/* | 
 | 	 * Detect special cases and adjust section sizes accordingly: | 
 | 	 * 1) .init.* may be embedded into .data sections | 
 | 	 * 2) .init.text.* may be out of [__init_begin, __init_end], | 
 | 	 *    please refer to arch/tile/kernel/vmlinux.lds.S. | 
 | 	 * 3) .rodata.* may be embedded into .text or .data sections. | 
 | 	 */ | 
 | #define adj_init_size(start, end, size, pos, adj) \ | 
 | 	do { \ | 
 | 		if (start <= pos && pos < end && size > adj) \ | 
 | 			size -= adj; \ | 
 | 	} while (0) | 
 |  | 
 | 	adj_init_size(__init_begin, __init_end, init_data_size, | 
 | 		     _sinittext, init_code_size); | 
 | 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); | 
 | 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); | 
 | 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); | 
 | 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); | 
 |  | 
 | #undef	adj_init_size | 
 |  | 
 | 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" | 
 | #ifdef	CONFIG_HIGHMEM | 
 | 		", %luK highmem" | 
 | #endif | 
 | 		"%s%s)\n", | 
 | 		nr_free_pages() << (PAGE_SHIFT - 10), | 
 | 		physpages << (PAGE_SHIFT - 10), | 
 | 		codesize >> 10, datasize >> 10, rosize >> 10, | 
 | 		(init_data_size + init_code_size) >> 10, bss_size >> 10, | 
 | 		(physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10), | 
 | 		totalcma_pages << (PAGE_SHIFT - 10), | 
 | #ifdef	CONFIG_HIGHMEM | 
 | 		totalhigh_pages() << (PAGE_SHIFT - 10), | 
 | #endif | 
 | 		str ? ", " : "", str ? str : ""); | 
 | } | 
 |  | 
 | /** | 
 |  * set_dma_reserve - set the specified number of pages reserved in the first zone | 
 |  * @new_dma_reserve: The number of pages to mark reserved | 
 |  * | 
 |  * The per-cpu batchsize and zone watermarks are determined by managed_pages. | 
 |  * In the DMA zone, a significant percentage may be consumed by kernel image | 
 |  * and other unfreeable allocations which can skew the watermarks badly. This | 
 |  * function may optionally be used to account for unfreeable pages in the | 
 |  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and | 
 |  * smaller per-cpu batchsize. | 
 |  */ | 
 | void __init set_dma_reserve(unsigned long new_dma_reserve) | 
 | { | 
 | 	dma_reserve = new_dma_reserve; | 
 | } | 
 |  | 
 | static int page_alloc_cpu_dead(unsigned int cpu) | 
 | { | 
 |  | 
 | 	lru_add_drain_cpu(cpu); | 
 | 	drain_pages(cpu); | 
 |  | 
 | 	/* | 
 | 	 * Spill the event counters of the dead processor | 
 | 	 * into the current processors event counters. | 
 | 	 * This artificially elevates the count of the current | 
 | 	 * processor. | 
 | 	 */ | 
 | 	vm_events_fold_cpu(cpu); | 
 |  | 
 | 	/* | 
 | 	 * Zero the differential counters of the dead processor | 
 | 	 * so that the vm statistics are consistent. | 
 | 	 * | 
 | 	 * This is only okay since the processor is dead and cannot | 
 | 	 * race with what we are doing. | 
 | 	 */ | 
 | 	cpu_vm_stats_fold(cpu); | 
 | 	return 0; | 
 | } | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | int hashdist = HASHDIST_DEFAULT; | 
 |  | 
 | static int __init set_hashdist(char *str) | 
 | { | 
 | 	if (!str) | 
 | 		return 0; | 
 | 	hashdist = simple_strtoul(str, &str, 0); | 
 | 	return 1; | 
 | } | 
 | __setup("hashdist=", set_hashdist); | 
 | #endif | 
 |  | 
 | void __init page_alloc_init(void) | 
 | { | 
 | 	int ret; | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | 	if (num_node_state(N_MEMORY) == 1) | 
 | 		hashdist = 0; | 
 | #endif | 
 |  | 
 | 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD, | 
 | 					"mm/page_alloc:dead", NULL, | 
 | 					page_alloc_cpu_dead); | 
 | 	WARN_ON(ret < 0); | 
 | } | 
 |  | 
 | /* | 
 |  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio | 
 |  *	or min_free_kbytes changes. | 
 |  */ | 
 | static void calculate_totalreserve_pages(void) | 
 | { | 
 | 	struct pglist_data *pgdat; | 
 | 	unsigned long reserve_pages = 0; | 
 | 	enum zone_type i, j; | 
 |  | 
 | 	for_each_online_pgdat(pgdat) { | 
 |  | 
 | 		pgdat->totalreserve_pages = 0; | 
 |  | 
 | 		for (i = 0; i < MAX_NR_ZONES; i++) { | 
 | 			struct zone *zone = pgdat->node_zones + i; | 
 | 			long max = 0; | 
 | 			unsigned long managed_pages = zone_managed_pages(zone); | 
 |  | 
 | 			/* Find valid and maximum lowmem_reserve in the zone */ | 
 | 			for (j = i; j < MAX_NR_ZONES; j++) { | 
 | 				if (zone->lowmem_reserve[j] > max) | 
 | 					max = zone->lowmem_reserve[j]; | 
 | 			} | 
 |  | 
 | 			/* we treat the high watermark as reserved pages. */ | 
 | 			max += high_wmark_pages(zone); | 
 |  | 
 | 			if (max > managed_pages) | 
 | 				max = managed_pages; | 
 |  | 
 | 			pgdat->totalreserve_pages += max; | 
 |  | 
 | 			reserve_pages += max; | 
 | 		} | 
 | 	} | 
 | 	totalreserve_pages = reserve_pages; | 
 | } | 
 |  | 
 | /* | 
 |  * setup_per_zone_lowmem_reserve - called whenever | 
 |  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone | 
 |  *	has a correct pages reserved value, so an adequate number of | 
 |  *	pages are left in the zone after a successful __alloc_pages(). | 
 |  */ | 
 | static void setup_per_zone_lowmem_reserve(void) | 
 | { | 
 | 	struct pglist_data *pgdat; | 
 | 	enum zone_type j, idx; | 
 |  | 
 | 	for_each_online_pgdat(pgdat) { | 
 | 		for (j = 0; j < MAX_NR_ZONES; j++) { | 
 | 			struct zone *zone = pgdat->node_zones + j; | 
 | 			unsigned long managed_pages = zone_managed_pages(zone); | 
 |  | 
 | 			zone->lowmem_reserve[j] = 0; | 
 |  | 
 | 			idx = j; | 
 | 			while (idx) { | 
 | 				struct zone *lower_zone; | 
 |  | 
 | 				idx--; | 
 | 				lower_zone = pgdat->node_zones + idx; | 
 |  | 
 | 				if (!sysctl_lowmem_reserve_ratio[idx] || | 
 | 				    !zone_managed_pages(lower_zone)) { | 
 | 					lower_zone->lowmem_reserve[j] = 0; | 
 | 					continue; | 
 | 				} else { | 
 | 					lower_zone->lowmem_reserve[j] = | 
 | 						managed_pages / sysctl_lowmem_reserve_ratio[idx]; | 
 | 				} | 
 | 				managed_pages += zone_managed_pages(lower_zone); | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* update totalreserve_pages */ | 
 | 	calculate_totalreserve_pages(); | 
 | } | 
 |  | 
 | static void __setup_per_zone_wmarks(void) | 
 | { | 
 | 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); | 
 | 	unsigned long lowmem_pages = 0; | 
 | 	struct zone *zone; | 
 | 	unsigned long flags; | 
 |  | 
 | 	/* Calculate total number of !ZONE_HIGHMEM pages */ | 
 | 	for_each_zone(zone) { | 
 | 		if (!is_highmem(zone)) | 
 | 			lowmem_pages += zone_managed_pages(zone); | 
 | 	} | 
 |  | 
 | 	for_each_zone(zone) { | 
 | 		u64 tmp; | 
 |  | 
 | 		spin_lock_irqsave(&zone->lock, flags); | 
 | 		tmp = (u64)pages_min * zone_managed_pages(zone); | 
 | 		do_div(tmp, lowmem_pages); | 
 | 		if (is_highmem(zone)) { | 
 | 			/* | 
 | 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't | 
 | 			 * need highmem pages, so cap pages_min to a small | 
 | 			 * value here. | 
 | 			 * | 
 | 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) | 
 | 			 * deltas control async page reclaim, and so should | 
 | 			 * not be capped for highmem. | 
 | 			 */ | 
 | 			unsigned long min_pages; | 
 |  | 
 | 			min_pages = zone_managed_pages(zone) / 1024; | 
 | 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); | 
 | 			zone->_watermark[WMARK_MIN] = min_pages; | 
 | 		} else { | 
 | 			/* | 
 | 			 * If it's a lowmem zone, reserve a number of pages | 
 | 			 * proportionate to the zone's size. | 
 | 			 */ | 
 | 			zone->_watermark[WMARK_MIN] = tmp; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Set the kswapd watermarks distance according to the | 
 | 		 * scale factor in proportion to available memory, but | 
 | 		 * ensure a minimum size on small systems. | 
 | 		 */ | 
 | 		tmp = max_t(u64, tmp >> 2, | 
 | 			    mult_frac(zone_managed_pages(zone), | 
 | 				      watermark_scale_factor, 10000)); | 
 |  | 
 | 		zone->watermark_boost = 0; | 
 | 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp; | 
 | 		zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2; | 
 |  | 
 | 		spin_unlock_irqrestore(&zone->lock, flags); | 
 | 	} | 
 |  | 
 | 	/* update totalreserve_pages */ | 
 | 	calculate_totalreserve_pages(); | 
 | } | 
 |  | 
 | /** | 
 |  * setup_per_zone_wmarks - called when min_free_kbytes changes | 
 |  * or when memory is hot-{added|removed} | 
 |  * | 
 |  * Ensures that the watermark[min,low,high] values for each zone are set | 
 |  * correctly with respect to min_free_kbytes. | 
 |  */ | 
 | void setup_per_zone_wmarks(void) | 
 | { | 
 | 	static DEFINE_SPINLOCK(lock); | 
 |  | 
 | 	spin_lock(&lock); | 
 | 	__setup_per_zone_wmarks(); | 
 | 	spin_unlock(&lock); | 
 | } | 
 |  | 
 | /* | 
 |  * Initialise min_free_kbytes. | 
 |  * | 
 |  * For small machines we want it small (128k min).  For large machines | 
 |  * we want it large (64MB max).  But it is not linear, because network | 
 |  * bandwidth does not increase linearly with machine size.  We use | 
 |  * | 
 |  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: | 
 |  *	min_free_kbytes = sqrt(lowmem_kbytes * 16) | 
 |  * | 
 |  * which yields | 
 |  * | 
 |  * 16MB:	512k | 
 |  * 32MB:	724k | 
 |  * 64MB:	1024k | 
 |  * 128MB:	1448k | 
 |  * 256MB:	2048k | 
 |  * 512MB:	2896k | 
 |  * 1024MB:	4096k | 
 |  * 2048MB:	5792k | 
 |  * 4096MB:	8192k | 
 |  * 8192MB:	11584k | 
 |  * 16384MB:	16384k | 
 |  */ | 
 | int __meminit init_per_zone_wmark_min(void) | 
 | { | 
 | 	unsigned long lowmem_kbytes; | 
 | 	int new_min_free_kbytes; | 
 |  | 
 | 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); | 
 | 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); | 
 |  | 
 | 	if (new_min_free_kbytes > user_min_free_kbytes) { | 
 | 		min_free_kbytes = new_min_free_kbytes; | 
 | 		if (min_free_kbytes < 128) | 
 | 			min_free_kbytes = 128; | 
 | 		if (min_free_kbytes > 262144) | 
 | 			min_free_kbytes = 262144; | 
 | 	} else { | 
 | 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", | 
 | 				new_min_free_kbytes, user_min_free_kbytes); | 
 | 	} | 
 | 	setup_per_zone_wmarks(); | 
 | 	refresh_zone_stat_thresholds(); | 
 | 	setup_per_zone_lowmem_reserve(); | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | 	setup_min_unmapped_ratio(); | 
 | 	setup_min_slab_ratio(); | 
 | #endif | 
 |  | 
 | 	return 0; | 
 | } | 
 | core_initcall(init_per_zone_wmark_min) | 
 |  | 
 | /* | 
 |  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so | 
 |  *	that we can call two helper functions whenever min_free_kbytes | 
 |  *	changes. | 
 |  */ | 
 | int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, | 
 | 		void *buffer, size_t *length, loff_t *ppos) | 
 | { | 
 | 	int rc; | 
 |  | 
 | 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos); | 
 | 	if (rc) | 
 | 		return rc; | 
 |  | 
 | 	if (write) { | 
 | 		user_min_free_kbytes = min_free_kbytes; | 
 | 		setup_per_zone_wmarks(); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, | 
 | 		void *buffer, size_t *length, loff_t *ppos) | 
 | { | 
 | 	int rc; | 
 |  | 
 | 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos); | 
 | 	if (rc) | 
 | 		return rc; | 
 |  | 
 | 	if (write) | 
 | 		setup_per_zone_wmarks(); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | static void setup_min_unmapped_ratio(void) | 
 | { | 
 | 	pg_data_t *pgdat; | 
 | 	struct zone *zone; | 
 |  | 
 | 	for_each_online_pgdat(pgdat) | 
 | 		pgdat->min_unmapped_pages = 0; | 
 |  | 
 | 	for_each_zone(zone) | 
 | 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * | 
 | 						         sysctl_min_unmapped_ratio) / 100; | 
 | } | 
 |  | 
 |  | 
 | int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, | 
 | 		void *buffer, size_t *length, loff_t *ppos) | 
 | { | 
 | 	int rc; | 
 |  | 
 | 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos); | 
 | 	if (rc) | 
 | 		return rc; | 
 |  | 
 | 	setup_min_unmapped_ratio(); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void setup_min_slab_ratio(void) | 
 | { | 
 | 	pg_data_t *pgdat; | 
 | 	struct zone *zone; | 
 |  | 
 | 	for_each_online_pgdat(pgdat) | 
 | 		pgdat->min_slab_pages = 0; | 
 |  | 
 | 	for_each_zone(zone) | 
 | 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * | 
 | 						     sysctl_min_slab_ratio) / 100; | 
 | } | 
 |  | 
 | int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, | 
 | 		void *buffer, size_t *length, loff_t *ppos) | 
 | { | 
 | 	int rc; | 
 |  | 
 | 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos); | 
 | 	if (rc) | 
 | 		return rc; | 
 |  | 
 | 	setup_min_slab_ratio(); | 
 |  | 
 | 	return 0; | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around | 
 |  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() | 
 |  *	whenever sysctl_lowmem_reserve_ratio changes. | 
 |  * | 
 |  * The reserve ratio obviously has absolutely no relation with the | 
 |  * minimum watermarks. The lowmem reserve ratio can only make sense | 
 |  * if in function of the boot time zone sizes. | 
 |  */ | 
 | int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, | 
 | 		void *buffer, size_t *length, loff_t *ppos) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	proc_dointvec_minmax(table, write, buffer, length, ppos); | 
 |  | 
 | 	for (i = 0; i < MAX_NR_ZONES; i++) { | 
 | 		if (sysctl_lowmem_reserve_ratio[i] < 1) | 
 | 			sysctl_lowmem_reserve_ratio[i] = 0; | 
 | 	} | 
 |  | 
 | 	setup_per_zone_lowmem_reserve(); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void __zone_pcp_update(struct zone *zone) | 
 | { | 
 | 	unsigned int cpu; | 
 |  | 
 | 	for_each_possible_cpu(cpu) | 
 | 		pageset_set_high_and_batch(zone, | 
 | 				per_cpu_ptr(zone->pageset, cpu)); | 
 | } | 
 |  | 
 | /* | 
 |  * percpu_pagelist_fraction - changes the pcp->high for each zone on each | 
 |  * cpu.  It is the fraction of total pages in each zone that a hot per cpu | 
 |  * pagelist can have before it gets flushed back to buddy allocator. | 
 |  */ | 
 | int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write, | 
 | 		void *buffer, size_t *length, loff_t *ppos) | 
 | { | 
 | 	struct zone *zone; | 
 | 	int old_percpu_pagelist_fraction; | 
 | 	int ret; | 
 |  | 
 | 	mutex_lock(&pcp_batch_high_lock); | 
 | 	old_percpu_pagelist_fraction = percpu_pagelist_fraction; | 
 |  | 
 | 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos); | 
 | 	if (!write || ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	/* Sanity checking to avoid pcp imbalance */ | 
 | 	if (percpu_pagelist_fraction && | 
 | 	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) { | 
 | 		percpu_pagelist_fraction = old_percpu_pagelist_fraction; | 
 | 		ret = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* No change? */ | 
 | 	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction) | 
 | 		goto out; | 
 |  | 
 | 	for_each_populated_zone(zone) | 
 | 		__zone_pcp_update(zone); | 
 | out: | 
 | 	mutex_unlock(&pcp_batch_high_lock); | 
 | 	return ret; | 
 | } | 
 |  | 
 | #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES | 
 | /* | 
 |  * Returns the number of pages that arch has reserved but | 
 |  * is not known to alloc_large_system_hash(). | 
 |  */ | 
 | static unsigned long __init arch_reserved_kernel_pages(void) | 
 | { | 
 | 	return 0; | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * Adaptive scale is meant to reduce sizes of hash tables on large memory | 
 |  * machines. As memory size is increased the scale is also increased but at | 
 |  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory | 
 |  * quadruples the scale is increased by one, which means the size of hash table | 
 |  * only doubles, instead of quadrupling as well. | 
 |  * Because 32-bit systems cannot have large physical memory, where this scaling | 
 |  * makes sense, it is disabled on such platforms. | 
 |  */ | 
 | #if __BITS_PER_LONG > 32 | 
 | #define ADAPT_SCALE_BASE	(64ul << 30) | 
 | #define ADAPT_SCALE_SHIFT	2 | 
 | #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT) | 
 | #endif | 
 |  | 
 | /* | 
 |  * allocate a large system hash table from bootmem | 
 |  * - it is assumed that the hash table must contain an exact power-of-2 | 
 |  *   quantity of entries | 
 |  * - limit is the number of hash buckets, not the total allocation size | 
 |  */ | 
 | void *__init alloc_large_system_hash(const char *tablename, | 
 | 				     unsigned long bucketsize, | 
 | 				     unsigned long numentries, | 
 | 				     int scale, | 
 | 				     int flags, | 
 | 				     unsigned int *_hash_shift, | 
 | 				     unsigned int *_hash_mask, | 
 | 				     unsigned long low_limit, | 
 | 				     unsigned long high_limit) | 
 | { | 
 | 	unsigned long long max = high_limit; | 
 | 	unsigned long log2qty, size; | 
 | 	void *table = NULL; | 
 | 	gfp_t gfp_flags; | 
 | 	bool virt; | 
 |  | 
 | 	/* allow the kernel cmdline to have a say */ | 
 | 	if (!numentries) { | 
 | 		/* round applicable memory size up to nearest megabyte */ | 
 | 		numentries = nr_kernel_pages; | 
 | 		numentries -= arch_reserved_kernel_pages(); | 
 |  | 
 | 		/* It isn't necessary when PAGE_SIZE >= 1MB */ | 
 | 		if (PAGE_SHIFT < 20) | 
 | 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE); | 
 |  | 
 | #if __BITS_PER_LONG > 32 | 
 | 		if (!high_limit) { | 
 | 			unsigned long adapt; | 
 |  | 
 | 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries; | 
 | 			     adapt <<= ADAPT_SCALE_SHIFT) | 
 | 				scale++; | 
 | 		} | 
 | #endif | 
 |  | 
 | 		/* limit to 1 bucket per 2^scale bytes of low memory */ | 
 | 		if (scale > PAGE_SHIFT) | 
 | 			numentries >>= (scale - PAGE_SHIFT); | 
 | 		else | 
 | 			numentries <<= (PAGE_SHIFT - scale); | 
 |  | 
 | 		/* Make sure we've got at least a 0-order allocation.. */ | 
 | 		if (unlikely(flags & HASH_SMALL)) { | 
 | 			/* Makes no sense without HASH_EARLY */ | 
 | 			WARN_ON(!(flags & HASH_EARLY)); | 
 | 			if (!(numentries >> *_hash_shift)) { | 
 | 				numentries = 1UL << *_hash_shift; | 
 | 				BUG_ON(!numentries); | 
 | 			} | 
 | 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) | 
 | 			numentries = PAGE_SIZE / bucketsize; | 
 | 	} | 
 | 	numentries = roundup_pow_of_two(numentries); | 
 |  | 
 | 	/* limit allocation size to 1/16 total memory by default */ | 
 | 	if (max == 0) { | 
 | 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; | 
 | 		do_div(max, bucketsize); | 
 | 	} | 
 | 	max = min(max, 0x80000000ULL); | 
 |  | 
 | 	if (numentries < low_limit) | 
 | 		numentries = low_limit; | 
 | 	if (numentries > max) | 
 | 		numentries = max; | 
 |  | 
 | 	log2qty = ilog2(numentries); | 
 |  | 
 | 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC; | 
 | 	do { | 
 | 		virt = false; | 
 | 		size = bucketsize << log2qty; | 
 | 		if (flags & HASH_EARLY) { | 
 | 			if (flags & HASH_ZERO) | 
 | 				table = memblock_alloc(size, SMP_CACHE_BYTES); | 
 | 			else | 
 | 				table = memblock_alloc_raw(size, | 
 | 							   SMP_CACHE_BYTES); | 
 | 		} else if (get_order(size) >= MAX_ORDER || hashdist) { | 
 | 			table = __vmalloc(size, gfp_flags); | 
 | 			virt = true; | 
 | 		} else { | 
 | 			/* | 
 | 			 * If bucketsize is not a power-of-two, we may free | 
 | 			 * some pages at the end of hash table which | 
 | 			 * alloc_pages_exact() automatically does | 
 | 			 */ | 
 | 			table = alloc_pages_exact(size, gfp_flags); | 
 | 			kmemleak_alloc(table, size, 1, gfp_flags); | 
 | 		} | 
 | 	} while (!table && size > PAGE_SIZE && --log2qty); | 
 |  | 
 | 	if (!table) | 
 | 		panic("Failed to allocate %s hash table\n", tablename); | 
 |  | 
 | 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n", | 
 | 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size, | 
 | 		virt ? "vmalloc" : "linear"); | 
 |  | 
 | 	if (_hash_shift) | 
 | 		*_hash_shift = log2qty; | 
 | 	if (_hash_mask) | 
 | 		*_hash_mask = (1 << log2qty) - 1; | 
 |  | 
 | 	return table; | 
 | } | 
 |  | 
 | /* | 
 |  * This function checks whether pageblock includes unmovable pages or not. | 
 |  * | 
 |  * PageLRU check without isolation or lru_lock could race so that | 
 |  * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable | 
 |  * check without lock_page also may miss some movable non-lru pages at | 
 |  * race condition. So you can't expect this function should be exact. | 
 |  * | 
 |  * Returns a page without holding a reference. If the caller wants to | 
 |  * dereference that page (e.g., dumping), it has to make sure that that it | 
 |  * cannot get removed (e.g., via memory unplug) concurrently. | 
 |  * | 
 |  */ | 
 | struct page *has_unmovable_pages(struct zone *zone, struct page *page, | 
 | 				 int migratetype, int flags) | 
 | { | 
 | 	unsigned long iter = 0; | 
 | 	unsigned long pfn = page_to_pfn(page); | 
 |  | 
 | 	/* | 
 | 	 * TODO we could make this much more efficient by not checking every | 
 | 	 * page in the range if we know all of them are in MOVABLE_ZONE and | 
 | 	 * that the movable zone guarantees that pages are migratable but | 
 | 	 * the later is not the case right now unfortunatelly. E.g. movablecore | 
 | 	 * can still lead to having bootmem allocations in zone_movable. | 
 | 	 */ | 
 |  | 
 | 	if (is_migrate_cma_page(page)) { | 
 | 		/* | 
 | 		 * CMA allocations (alloc_contig_range) really need to mark | 
 | 		 * isolate CMA pageblocks even when they are not movable in fact | 
 | 		 * so consider them movable here. | 
 | 		 */ | 
 | 		if (is_migrate_cma(migratetype)) | 
 | 			return NULL; | 
 |  | 
 | 		return page; | 
 | 	} | 
 |  | 
 | 	for (; iter < pageblock_nr_pages; iter++) { | 
 | 		if (!pfn_valid_within(pfn + iter)) | 
 | 			continue; | 
 |  | 
 | 		page = pfn_to_page(pfn + iter); | 
 |  | 
 | 		if (PageReserved(page)) | 
 | 			return page; | 
 |  | 
 | 		/* | 
 | 		 * If the zone is movable and we have ruled out all reserved | 
 | 		 * pages then it should be reasonably safe to assume the rest | 
 | 		 * is movable. | 
 | 		 */ | 
 | 		if (zone_idx(zone) == ZONE_MOVABLE) | 
 | 			continue; | 
 |  | 
 | 		/* | 
 | 		 * Hugepages are not in LRU lists, but they're movable. | 
 | 		 * THPs are on the LRU, but need to be counted as #small pages. | 
 | 		 * We need not scan over tail pages because we don't | 
 | 		 * handle each tail page individually in migration. | 
 | 		 */ | 
 | 		if (PageHuge(page) || PageTransCompound(page)) { | 
 | 			struct page *head = compound_head(page); | 
 | 			unsigned int skip_pages; | 
 |  | 
 | 			if (PageHuge(page)) { | 
 | 				if (!hugepage_migration_supported(page_hstate(head))) | 
 | 					return page; | 
 | 			} else if (!PageLRU(head) && !__PageMovable(head)) { | 
 | 				return page; | 
 | 			} | 
 |  | 
 | 			skip_pages = compound_nr(head) - (page - head); | 
 | 			iter += skip_pages - 1; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * We can't use page_count without pin a page | 
 | 		 * because another CPU can free compound page. | 
 | 		 * This check already skips compound tails of THP | 
 | 		 * because their page->_refcount is zero at all time. | 
 | 		 */ | 
 | 		if (!page_ref_count(page)) { | 
 | 			if (PageBuddy(page)) | 
 | 				iter += (1 << page_order(page)) - 1; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * The HWPoisoned page may be not in buddy system, and | 
 | 		 * page_count() is not 0. | 
 | 		 */ | 
 | 		if ((flags & MEMORY_OFFLINE) && PageHWPoison(page)) | 
 | 			continue; | 
 |  | 
 | 		/* | 
 | 		 * We treat all PageOffline() pages as movable when offlining | 
 | 		 * to give drivers a chance to decrement their reference count | 
 | 		 * in MEM_GOING_OFFLINE in order to indicate that these pages | 
 | 		 * can be offlined as there are no direct references anymore. | 
 | 		 * For actually unmovable PageOffline() where the driver does | 
 | 		 * not support this, we will fail later when trying to actually | 
 | 		 * move these pages that still have a reference count > 0. | 
 | 		 * (false negatives in this function only) | 
 | 		 */ | 
 | 		if ((flags & MEMORY_OFFLINE) && PageOffline(page)) | 
 | 			continue; | 
 |  | 
 | 		if (__PageMovable(page) || PageLRU(page)) | 
 | 			continue; | 
 |  | 
 | 		/* | 
 | 		 * If there are RECLAIMABLE pages, we need to check | 
 | 		 * it.  But now, memory offline itself doesn't call | 
 | 		 * shrink_node_slabs() and it still to be fixed. | 
 | 		 */ | 
 | 		/* | 
 | 		 * If the page is not RAM, page_count()should be 0. | 
 | 		 * we don't need more check. This is an _used_ not-movable page. | 
 | 		 * | 
 | 		 * The problematic thing here is PG_reserved pages. PG_reserved | 
 | 		 * is set to both of a memory hole page and a _used_ kernel | 
 | 		 * page at boot. | 
 | 		 */ | 
 | 		return page; | 
 | 	} | 
 | 	return NULL; | 
 | } | 
 |  | 
 | #ifdef CONFIG_CONTIG_ALLOC | 
 | static unsigned long pfn_max_align_down(unsigned long pfn) | 
 | { | 
 | 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, | 
 | 			     pageblock_nr_pages) - 1); | 
 | } | 
 |  | 
 | static unsigned long pfn_max_align_up(unsigned long pfn) | 
 | { | 
 | 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, | 
 | 				pageblock_nr_pages)); | 
 | } | 
 |  | 
 | /* [start, end) must belong to a single zone. */ | 
 | static int __alloc_contig_migrate_range(struct compact_control *cc, | 
 | 					unsigned long start, unsigned long end) | 
 | { | 
 | 	/* This function is based on compact_zone() from compaction.c. */ | 
 | 	unsigned int nr_reclaimed; | 
 | 	unsigned long pfn = start; | 
 | 	unsigned int tries = 0; | 
 | 	int ret = 0; | 
 |  | 
 | 	migrate_prep(); | 
 |  | 
 | 	while (pfn < end || !list_empty(&cc->migratepages)) { | 
 | 		if (fatal_signal_pending(current)) { | 
 | 			ret = -EINTR; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		if (list_empty(&cc->migratepages)) { | 
 | 			cc->nr_migratepages = 0; | 
 | 			pfn = isolate_migratepages_range(cc, pfn, end); | 
 | 			if (!pfn) { | 
 | 				ret = -EINTR; | 
 | 				break; | 
 | 			} | 
 | 			tries = 0; | 
 | 		} else if (++tries == 5) { | 
 | 			ret = ret < 0 ? ret : -EBUSY; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, | 
 | 							&cc->migratepages); | 
 | 		cc->nr_migratepages -= nr_reclaimed; | 
 |  | 
 | 		ret = migrate_pages(&cc->migratepages, alloc_migrate_target, | 
 | 				    NULL, 0, cc->mode, MR_CONTIG_RANGE); | 
 | 	} | 
 | 	if (ret < 0) { | 
 | 		putback_movable_pages(&cc->migratepages); | 
 | 		return ret; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * alloc_contig_range() -- tries to allocate given range of pages | 
 |  * @start:	start PFN to allocate | 
 |  * @end:	one-past-the-last PFN to allocate | 
 |  * @migratetype:	migratetype of the underlaying pageblocks (either | 
 |  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks | 
 |  *			in range must have the same migratetype and it must | 
 |  *			be either of the two. | 
 |  * @gfp_mask:	GFP mask to use during compaction | 
 |  * | 
 |  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES | 
 |  * aligned.  The PFN range must belong to a single zone. | 
 |  * | 
 |  * The first thing this routine does is attempt to MIGRATE_ISOLATE all | 
 |  * pageblocks in the range.  Once isolated, the pageblocks should not | 
 |  * be modified by others. | 
 |  * | 
 |  * Return: zero on success or negative error code.  On success all | 
 |  * pages which PFN is in [start, end) are allocated for the caller and | 
 |  * need to be freed with free_contig_range(). | 
 |  */ | 
 | int alloc_contig_range(unsigned long start, unsigned long end, | 
 | 		       unsigned migratetype, gfp_t gfp_mask) | 
 | { | 
 | 	unsigned long outer_start, outer_end; | 
 | 	unsigned int order; | 
 | 	int ret = 0; | 
 |  | 
 | 	struct compact_control cc = { | 
 | 		.nr_migratepages = 0, | 
 | 		.order = -1, | 
 | 		.zone = page_zone(pfn_to_page(start)), | 
 | 		.mode = MIGRATE_SYNC, | 
 | 		.ignore_skip_hint = true, | 
 | 		.no_set_skip_hint = true, | 
 | 		.gfp_mask = current_gfp_context(gfp_mask), | 
 | 		.alloc_contig = true, | 
 | 	}; | 
 | 	INIT_LIST_HEAD(&cc.migratepages); | 
 |  | 
 | 	/* | 
 | 	 * What we do here is we mark all pageblocks in range as | 
 | 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may | 
 | 	 * have different sizes, and due to the way page allocator | 
 | 	 * work, we align the range to biggest of the two pages so | 
 | 	 * that page allocator won't try to merge buddies from | 
 | 	 * different pageblocks and change MIGRATE_ISOLATE to some | 
 | 	 * other migration type. | 
 | 	 * | 
 | 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we | 
 | 	 * migrate the pages from an unaligned range (ie. pages that | 
 | 	 * we are interested in).  This will put all the pages in | 
 | 	 * range back to page allocator as MIGRATE_ISOLATE. | 
 | 	 * | 
 | 	 * When this is done, we take the pages in range from page | 
 | 	 * allocator removing them from the buddy system.  This way | 
 | 	 * page allocator will never consider using them. | 
 | 	 * | 
 | 	 * This lets us mark the pageblocks back as | 
 | 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the | 
 | 	 * aligned range but not in the unaligned, original range are | 
 | 	 * put back to page allocator so that buddy can use them. | 
 | 	 */ | 
 |  | 
 | 	ret = start_isolate_page_range(pfn_max_align_down(start), | 
 | 				       pfn_max_align_up(end), migratetype, 0); | 
 | 	if (ret < 0) | 
 | 		return ret; | 
 |  | 
 | 	/* | 
 | 	 * In case of -EBUSY, we'd like to know which page causes problem. | 
 | 	 * So, just fall through. test_pages_isolated() has a tracepoint | 
 | 	 * which will report the busy page. | 
 | 	 * | 
 | 	 * It is possible that busy pages could become available before | 
 | 	 * the call to test_pages_isolated, and the range will actually be | 
 | 	 * allocated.  So, if we fall through be sure to clear ret so that | 
 | 	 * -EBUSY is not accidentally used or returned to caller. | 
 | 	 */ | 
 | 	ret = __alloc_contig_migrate_range(&cc, start, end); | 
 | 	if (ret && ret != -EBUSY) | 
 | 		goto done; | 
 | 	ret =0; | 
 |  | 
 | 	/* | 
 | 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES | 
 | 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's | 
 | 	 * more, all pages in [start, end) are free in page allocator. | 
 | 	 * What we are going to do is to allocate all pages from | 
 | 	 * [start, end) (that is remove them from page allocator). | 
 | 	 * | 
 | 	 * The only problem is that pages at the beginning and at the | 
 | 	 * end of interesting range may be not aligned with pages that | 
 | 	 * page allocator holds, ie. they can be part of higher order | 
 | 	 * pages.  Because of this, we reserve the bigger range and | 
 | 	 * once this is done free the pages we are not interested in. | 
 | 	 * | 
 | 	 * We don't have to hold zone->lock here because the pages are | 
 | 	 * isolated thus they won't get removed from buddy. | 
 | 	 */ | 
 |  | 
 | 	lru_add_drain_all(); | 
 |  | 
 | 	order = 0; | 
 | 	outer_start = start; | 
 | 	while (!PageBuddy(pfn_to_page(outer_start))) { | 
 | 		if (++order >= MAX_ORDER) { | 
 | 			outer_start = start; | 
 | 			break; | 
 | 		} | 
 | 		outer_start &= ~0UL << order; | 
 | 	} | 
 |  | 
 | 	if (outer_start != start) { | 
 | 		order = page_order(pfn_to_page(outer_start)); | 
 |  | 
 | 		/* | 
 | 		 * outer_start page could be small order buddy page and | 
 | 		 * it doesn't include start page. Adjust outer_start | 
 | 		 * in this case to report failed page properly | 
 | 		 * on tracepoint in test_pages_isolated() | 
 | 		 */ | 
 | 		if (outer_start + (1UL << order) <= start) | 
 | 			outer_start = start; | 
 | 	} | 
 |  | 
 | 	/* Make sure the range is really isolated. */ | 
 | 	if (test_pages_isolated(outer_start, end, 0)) { | 
 | 		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n", | 
 | 			__func__, outer_start, end); | 
 | 		ret = -EBUSY; | 
 | 		goto done; | 
 | 	} | 
 |  | 
 | 	/* Grab isolated pages from freelists. */ | 
 | 	outer_end = isolate_freepages_range(&cc, outer_start, end); | 
 | 	if (!outer_end) { | 
 | 		ret = -EBUSY; | 
 | 		goto done; | 
 | 	} | 
 |  | 
 | 	/* Free head and tail (if any) */ | 
 | 	if (start != outer_start) | 
 | 		free_contig_range(outer_start, start - outer_start); | 
 | 	if (end != outer_end) | 
 | 		free_contig_range(end, outer_end - end); | 
 |  | 
 | done: | 
 | 	undo_isolate_page_range(pfn_max_align_down(start), | 
 | 				pfn_max_align_up(end), migratetype); | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(alloc_contig_range); | 
 |  | 
 | static int __alloc_contig_pages(unsigned long start_pfn, | 
 | 				unsigned long nr_pages, gfp_t gfp_mask) | 
 | { | 
 | 	unsigned long end_pfn = start_pfn + nr_pages; | 
 |  | 
 | 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE, | 
 | 				  gfp_mask); | 
 | } | 
 |  | 
 | static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn, | 
 | 				   unsigned long nr_pages) | 
 | { | 
 | 	unsigned long i, end_pfn = start_pfn + nr_pages; | 
 | 	struct page *page; | 
 |  | 
 | 	for (i = start_pfn; i < end_pfn; i++) { | 
 | 		page = pfn_to_online_page(i); | 
 | 		if (!page) | 
 | 			return false; | 
 |  | 
 | 		if (page_zone(page) != z) | 
 | 			return false; | 
 |  | 
 | 		if (PageReserved(page)) | 
 | 			return false; | 
 |  | 
 | 		if (page_count(page) > 0) | 
 | 			return false; | 
 |  | 
 | 		if (PageHuge(page)) | 
 | 			return false; | 
 | 	} | 
 | 	return true; | 
 | } | 
 |  | 
 | static bool zone_spans_last_pfn(const struct zone *zone, | 
 | 				unsigned long start_pfn, unsigned long nr_pages) | 
 | { | 
 | 	unsigned long last_pfn = start_pfn + nr_pages - 1; | 
 |  | 
 | 	return zone_spans_pfn(zone, last_pfn); | 
 | } | 
 |  | 
 | /** | 
 |  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages | 
 |  * @nr_pages:	Number of contiguous pages to allocate | 
 |  * @gfp_mask:	GFP mask to limit search and used during compaction | 
 |  * @nid:	Target node | 
 |  * @nodemask:	Mask for other possible nodes | 
 |  * | 
 |  * This routine is a wrapper around alloc_contig_range(). It scans over zones | 
 |  * on an applicable zonelist to find a contiguous pfn range which can then be | 
 |  * tried for allocation with alloc_contig_range(). This routine is intended | 
 |  * for allocation requests which can not be fulfilled with the buddy allocator. | 
 |  * | 
 |  * The allocated memory is always aligned to a page boundary. If nr_pages is a | 
 |  * power of two then the alignment is guaranteed to be to the given nr_pages | 
 |  * (e.g. 1GB request would be aligned to 1GB). | 
 |  * | 
 |  * Allocated pages can be freed with free_contig_range() or by manually calling | 
 |  * __free_page() on each allocated page. | 
 |  * | 
 |  * Return: pointer to contiguous pages on success, or NULL if not successful. | 
 |  */ | 
 | struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask, | 
 | 				int nid, nodemask_t *nodemask) | 
 | { | 
 | 	unsigned long ret, pfn, flags; | 
 | 	struct zonelist *zonelist; | 
 | 	struct zone *zone; | 
 | 	struct zoneref *z; | 
 |  | 
 | 	zonelist = node_zonelist(nid, gfp_mask); | 
 | 	for_each_zone_zonelist_nodemask(zone, z, zonelist, | 
 | 					gfp_zone(gfp_mask), nodemask) { | 
 | 		spin_lock_irqsave(&zone->lock, flags); | 
 |  | 
 | 		pfn = ALIGN(zone->zone_start_pfn, nr_pages); | 
 | 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) { | 
 | 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) { | 
 | 				/* | 
 | 				 * We release the zone lock here because | 
 | 				 * alloc_contig_range() will also lock the zone | 
 | 				 * at some point. If there's an allocation | 
 | 				 * spinning on this lock, it may win the race | 
 | 				 * and cause alloc_contig_range() to fail... | 
 | 				 */ | 
 | 				spin_unlock_irqrestore(&zone->lock, flags); | 
 | 				ret = __alloc_contig_pages(pfn, nr_pages, | 
 | 							gfp_mask); | 
 | 				if (!ret) | 
 | 					return pfn_to_page(pfn); | 
 | 				spin_lock_irqsave(&zone->lock, flags); | 
 | 			} | 
 | 			pfn += nr_pages; | 
 | 		} | 
 | 		spin_unlock_irqrestore(&zone->lock, flags); | 
 | 	} | 
 | 	return NULL; | 
 | } | 
 | #endif /* CONFIG_CONTIG_ALLOC */ | 
 |  | 
 | void free_contig_range(unsigned long pfn, unsigned int nr_pages) | 
 | { | 
 | 	unsigned int count = 0; | 
 |  | 
 | 	for (; nr_pages--; pfn++) { | 
 | 		struct page *page = pfn_to_page(pfn); | 
 |  | 
 | 		count += page_count(page) != 1; | 
 | 		__free_page(page); | 
 | 	} | 
 | 	WARN(count != 0, "%d pages are still in use!\n", count); | 
 | } | 
 | EXPORT_SYMBOL(free_contig_range); | 
 |  | 
 | /* | 
 |  * The zone indicated has a new number of managed_pages; batch sizes and percpu | 
 |  * page high values need to be recalulated. | 
 |  */ | 
 | void __meminit zone_pcp_update(struct zone *zone) | 
 | { | 
 | 	mutex_lock(&pcp_batch_high_lock); | 
 | 	__zone_pcp_update(zone); | 
 | 	mutex_unlock(&pcp_batch_high_lock); | 
 | } | 
 |  | 
 | void zone_pcp_reset(struct zone *zone) | 
 | { | 
 | 	unsigned long flags; | 
 | 	int cpu; | 
 | 	struct per_cpu_pageset *pset; | 
 |  | 
 | 	/* avoid races with drain_pages()  */ | 
 | 	local_irq_save(flags); | 
 | 	if (zone->pageset != &boot_pageset) { | 
 | 		for_each_online_cpu(cpu) { | 
 | 			pset = per_cpu_ptr(zone->pageset, cpu); | 
 | 			drain_zonestat(zone, pset); | 
 | 		} | 
 | 		free_percpu(zone->pageset); | 
 | 		zone->pageset = &boot_pageset; | 
 | 	} | 
 | 	local_irq_restore(flags); | 
 | } | 
 |  | 
 | #ifdef CONFIG_MEMORY_HOTREMOVE | 
 | /* | 
 |  * All pages in the range must be in a single zone and isolated | 
 |  * before calling this. | 
 |  */ | 
 | unsigned long | 
 | __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) | 
 | { | 
 | 	struct page *page; | 
 | 	struct zone *zone; | 
 | 	unsigned int order; | 
 | 	unsigned long pfn; | 
 | 	unsigned long flags; | 
 | 	unsigned long offlined_pages = 0; | 
 |  | 
 | 	/* find the first valid pfn */ | 
 | 	for (pfn = start_pfn; pfn < end_pfn; pfn++) | 
 | 		if (pfn_valid(pfn)) | 
 | 			break; | 
 | 	if (pfn == end_pfn) | 
 | 		return offlined_pages; | 
 |  | 
 | 	offline_mem_sections(pfn, end_pfn); | 
 | 	zone = page_zone(pfn_to_page(pfn)); | 
 | 	spin_lock_irqsave(&zone->lock, flags); | 
 | 	pfn = start_pfn; | 
 | 	while (pfn < end_pfn) { | 
 | 		if (!pfn_valid(pfn)) { | 
 | 			pfn++; | 
 | 			continue; | 
 | 		} | 
 | 		page = pfn_to_page(pfn); | 
 | 		/* | 
 | 		 * The HWPoisoned page may be not in buddy system, and | 
 | 		 * page_count() is not 0. | 
 | 		 */ | 
 | 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { | 
 | 			pfn++; | 
 | 			offlined_pages++; | 
 | 			continue; | 
 | 		} | 
 | 		/* | 
 | 		 * At this point all remaining PageOffline() pages have a | 
 | 		 * reference count of 0 and can simply be skipped. | 
 | 		 */ | 
 | 		if (PageOffline(page)) { | 
 | 			BUG_ON(page_count(page)); | 
 | 			BUG_ON(PageBuddy(page)); | 
 | 			pfn++; | 
 | 			offlined_pages++; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		BUG_ON(page_count(page)); | 
 | 		BUG_ON(!PageBuddy(page)); | 
 | 		order = page_order(page); | 
 | 		offlined_pages += 1 << order; | 
 | 		del_page_from_free_list(page, zone, order); | 
 | 		pfn += (1 << order); | 
 | 	} | 
 | 	spin_unlock_irqrestore(&zone->lock, flags); | 
 |  | 
 | 	return offlined_pages; | 
 | } | 
 | #endif | 
 |  | 
 | bool is_free_buddy_page(struct page *page) | 
 | { | 
 | 	struct zone *zone = page_zone(page); | 
 | 	unsigned long pfn = page_to_pfn(page); | 
 | 	unsigned long flags; | 
 | 	unsigned int order; | 
 |  | 
 | 	spin_lock_irqsave(&zone->lock, flags); | 
 | 	for (order = 0; order < MAX_ORDER; order++) { | 
 | 		struct page *page_head = page - (pfn & ((1 << order) - 1)); | 
 |  | 
 | 		if (PageBuddy(page_head) && page_order(page_head) >= order) | 
 | 			break; | 
 | 	} | 
 | 	spin_unlock_irqrestore(&zone->lock, flags); | 
 |  | 
 | 	return order < MAX_ORDER; | 
 | } | 
 |  | 
 | #ifdef CONFIG_MEMORY_FAILURE | 
 | /* | 
 |  * Set PG_hwpoison flag if a given page is confirmed to be a free page.  This | 
 |  * test is performed under the zone lock to prevent a race against page | 
 |  * allocation. | 
 |  */ | 
 | bool set_hwpoison_free_buddy_page(struct page *page) | 
 | { | 
 | 	struct zone *zone = page_zone(page); | 
 | 	unsigned long pfn = page_to_pfn(page); | 
 | 	unsigned long flags; | 
 | 	unsigned int order; | 
 | 	bool hwpoisoned = false; | 
 |  | 
 | 	spin_lock_irqsave(&zone->lock, flags); | 
 | 	for (order = 0; order < MAX_ORDER; order++) { | 
 | 		struct page *page_head = page - (pfn & ((1 << order) - 1)); | 
 |  | 
 | 		if (PageBuddy(page_head) && page_order(page_head) >= order) { | 
 | 			if (!TestSetPageHWPoison(page)) | 
 | 				hwpoisoned = true; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	spin_unlock_irqrestore(&zone->lock, flags); | 
 |  | 
 | 	return hwpoisoned; | 
 | } | 
 | #endif |