|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | * TCP CUBIC: Binary Increase Congestion control for TCP v2.3 | 
|  | * Home page: | 
|  | *      http://netsrv.csc.ncsu.edu/twiki/bin/view/Main/BIC | 
|  | * This is from the implementation of CUBIC TCP in | 
|  | * Sangtae Ha, Injong Rhee and Lisong Xu, | 
|  | *  "CUBIC: A New TCP-Friendly High-Speed TCP Variant" | 
|  | *  in ACM SIGOPS Operating System Review, July 2008. | 
|  | * Available from: | 
|  | *  http://netsrv.csc.ncsu.edu/export/cubic_a_new_tcp_2008.pdf | 
|  | * | 
|  | * CUBIC integrates a new slow start algorithm, called HyStart. | 
|  | * The details of HyStart are presented in | 
|  | *  Sangtae Ha and Injong Rhee, | 
|  | *  "Taming the Elephants: New TCP Slow Start", NCSU TechReport 2008. | 
|  | * Available from: | 
|  | *  http://netsrv.csc.ncsu.edu/export/hystart_techreport_2008.pdf | 
|  | * | 
|  | * All testing results are available from: | 
|  | * http://netsrv.csc.ncsu.edu/wiki/index.php/TCP_Testing | 
|  | * | 
|  | * Unless CUBIC is enabled and congestion window is large | 
|  | * this behaves the same as the original Reno. | 
|  | */ | 
|  |  | 
|  | #include <linux/mm.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/math64.h> | 
|  | #include <net/tcp.h> | 
|  |  | 
|  | #define BICTCP_BETA_SCALE    1024	/* Scale factor beta calculation | 
|  | * max_cwnd = snd_cwnd * beta | 
|  | */ | 
|  | #define	BICTCP_HZ		10	/* BIC HZ 2^10 = 1024 */ | 
|  |  | 
|  | /* Two methods of hybrid slow start */ | 
|  | #define HYSTART_ACK_TRAIN	0x1 | 
|  | #define HYSTART_DELAY		0x2 | 
|  |  | 
|  | /* Number of delay samples for detecting the increase of delay */ | 
|  | #define HYSTART_MIN_SAMPLES	8 | 
|  | #define HYSTART_DELAY_MIN	(4000U)	/* 4 ms */ | 
|  | #define HYSTART_DELAY_MAX	(16000U)	/* 16 ms */ | 
|  | #define HYSTART_DELAY_THRESH(x)	clamp(x, HYSTART_DELAY_MIN, HYSTART_DELAY_MAX) | 
|  |  | 
|  | static int fast_convergence __read_mostly = 1; | 
|  | static int beta __read_mostly = 717;	/* = 717/1024 (BICTCP_BETA_SCALE) */ | 
|  | static int initial_ssthresh __read_mostly; | 
|  | static int bic_scale __read_mostly = 41; | 
|  | static int tcp_friendliness __read_mostly = 1; | 
|  |  | 
|  | static int hystart __read_mostly = 1; | 
|  | static int hystart_detect __read_mostly = HYSTART_ACK_TRAIN | HYSTART_DELAY; | 
|  | static int hystart_low_window __read_mostly = 16; | 
|  | static int hystart_ack_delta_us __read_mostly = 2000; | 
|  |  | 
|  | static u32 cube_rtt_scale __read_mostly; | 
|  | static u32 beta_scale __read_mostly; | 
|  | static u64 cube_factor __read_mostly; | 
|  |  | 
|  | /* Note parameters that are used for precomputing scale factors are read-only */ | 
|  | module_param(fast_convergence, int, 0644); | 
|  | MODULE_PARM_DESC(fast_convergence, "turn on/off fast convergence"); | 
|  | module_param(beta, int, 0644); | 
|  | MODULE_PARM_DESC(beta, "beta for multiplicative increase"); | 
|  | module_param(initial_ssthresh, int, 0644); | 
|  | MODULE_PARM_DESC(initial_ssthresh, "initial value of slow start threshold"); | 
|  | module_param(bic_scale, int, 0444); | 
|  | MODULE_PARM_DESC(bic_scale, "scale (scaled by 1024) value for bic function (bic_scale/1024)"); | 
|  | module_param(tcp_friendliness, int, 0644); | 
|  | MODULE_PARM_DESC(tcp_friendliness, "turn on/off tcp friendliness"); | 
|  | module_param(hystart, int, 0644); | 
|  | MODULE_PARM_DESC(hystart, "turn on/off hybrid slow start algorithm"); | 
|  | module_param(hystart_detect, int, 0644); | 
|  | MODULE_PARM_DESC(hystart_detect, "hybrid slow start detection mechanisms" | 
|  | " 1: packet-train 2: delay 3: both packet-train and delay"); | 
|  | module_param(hystart_low_window, int, 0644); | 
|  | MODULE_PARM_DESC(hystart_low_window, "lower bound cwnd for hybrid slow start"); | 
|  | module_param(hystart_ack_delta_us, int, 0644); | 
|  | MODULE_PARM_DESC(hystart_ack_delta_us, "spacing between ack's indicating train (usecs)"); | 
|  |  | 
|  | /* BIC TCP Parameters */ | 
|  | struct bictcp { | 
|  | u32	cnt;		/* increase cwnd by 1 after ACKs */ | 
|  | u32	last_max_cwnd;	/* last maximum snd_cwnd */ | 
|  | u32	last_cwnd;	/* the last snd_cwnd */ | 
|  | u32	last_time;	/* time when updated last_cwnd */ | 
|  | u32	bic_origin_point;/* origin point of bic function */ | 
|  | u32	bic_K;		/* time to origin point | 
|  | from the beginning of the current epoch */ | 
|  | u32	delay_min;	/* min delay (usec) */ | 
|  | u32	epoch_start;	/* beginning of an epoch */ | 
|  | u32	ack_cnt;	/* number of acks */ | 
|  | u32	tcp_cwnd;	/* estimated tcp cwnd */ | 
|  | u16	unused; | 
|  | u8	sample_cnt;	/* number of samples to decide curr_rtt */ | 
|  | u8	found;		/* the exit point is found? */ | 
|  | u32	round_start;	/* beginning of each round */ | 
|  | u32	end_seq;	/* end_seq of the round */ | 
|  | u32	last_ack;	/* last time when the ACK spacing is close */ | 
|  | u32	curr_rtt;	/* the minimum rtt of current round */ | 
|  | }; | 
|  |  | 
|  | static inline void bictcp_reset(struct bictcp *ca) | 
|  | { | 
|  | ca->cnt = 0; | 
|  | ca->last_max_cwnd = 0; | 
|  | ca->last_cwnd = 0; | 
|  | ca->last_time = 0; | 
|  | ca->bic_origin_point = 0; | 
|  | ca->bic_K = 0; | 
|  | ca->delay_min = 0; | 
|  | ca->epoch_start = 0; | 
|  | ca->ack_cnt = 0; | 
|  | ca->tcp_cwnd = 0; | 
|  | ca->found = 0; | 
|  | } | 
|  |  | 
|  | static inline u32 bictcp_clock_us(const struct sock *sk) | 
|  | { | 
|  | return tcp_sk(sk)->tcp_mstamp; | 
|  | } | 
|  |  | 
|  | static inline void bictcp_hystart_reset(struct sock *sk) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | struct bictcp *ca = inet_csk_ca(sk); | 
|  |  | 
|  | ca->round_start = ca->last_ack = bictcp_clock_us(sk); | 
|  | ca->end_seq = tp->snd_nxt; | 
|  | ca->curr_rtt = ~0U; | 
|  | ca->sample_cnt = 0; | 
|  | } | 
|  |  | 
|  | static void bictcp_init(struct sock *sk) | 
|  | { | 
|  | struct bictcp *ca = inet_csk_ca(sk); | 
|  |  | 
|  | bictcp_reset(ca); | 
|  |  | 
|  | if (hystart) | 
|  | bictcp_hystart_reset(sk); | 
|  |  | 
|  | if (!hystart && initial_ssthresh) | 
|  | tcp_sk(sk)->snd_ssthresh = initial_ssthresh; | 
|  | } | 
|  |  | 
|  | static void bictcp_cwnd_event(struct sock *sk, enum tcp_ca_event event) | 
|  | { | 
|  | if (event == CA_EVENT_TX_START) { | 
|  | struct bictcp *ca = inet_csk_ca(sk); | 
|  | u32 now = tcp_jiffies32; | 
|  | s32 delta; | 
|  |  | 
|  | delta = now - tcp_sk(sk)->lsndtime; | 
|  |  | 
|  | /* We were application limited (idle) for a while. | 
|  | * Shift epoch_start to keep cwnd growth to cubic curve. | 
|  | */ | 
|  | if (ca->epoch_start && delta > 0) { | 
|  | ca->epoch_start += delta; | 
|  | if (after(ca->epoch_start, now)) | 
|  | ca->epoch_start = now; | 
|  | } | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* calculate the cubic root of x using a table lookup followed by one | 
|  | * Newton-Raphson iteration. | 
|  | * Avg err ~= 0.195% | 
|  | */ | 
|  | static u32 cubic_root(u64 a) | 
|  | { | 
|  | u32 x, b, shift; | 
|  | /* | 
|  | * cbrt(x) MSB values for x MSB values in [0..63]. | 
|  | * Precomputed then refined by hand - Willy Tarreau | 
|  | * | 
|  | * For x in [0..63], | 
|  | *   v = cbrt(x << 18) - 1 | 
|  | *   cbrt(x) = (v[x] + 10) >> 6 | 
|  | */ | 
|  | static const u8 v[] = { | 
|  | /* 0x00 */    0,   54,   54,   54,  118,  118,  118,  118, | 
|  | /* 0x08 */  123,  129,  134,  138,  143,  147,  151,  156, | 
|  | /* 0x10 */  157,  161,  164,  168,  170,  173,  176,  179, | 
|  | /* 0x18 */  181,  185,  187,  190,  192,  194,  197,  199, | 
|  | /* 0x20 */  200,  202,  204,  206,  209,  211,  213,  215, | 
|  | /* 0x28 */  217,  219,  221,  222,  224,  225,  227,  229, | 
|  | /* 0x30 */  231,  232,  234,  236,  237,  239,  240,  242, | 
|  | /* 0x38 */  244,  245,  246,  248,  250,  251,  252,  254, | 
|  | }; | 
|  |  | 
|  | b = fls64(a); | 
|  | if (b < 7) { | 
|  | /* a in [0..63] */ | 
|  | return ((u32)v[(u32)a] + 35) >> 6; | 
|  | } | 
|  |  | 
|  | b = ((b * 84) >> 8) - 1; | 
|  | shift = (a >> (b * 3)); | 
|  |  | 
|  | x = ((u32)(((u32)v[shift] + 10) << b)) >> 6; | 
|  |  | 
|  | /* | 
|  | * Newton-Raphson iteration | 
|  | *                         2 | 
|  | * x    = ( 2 * x  +  a / x  ) / 3 | 
|  | *  k+1          k         k | 
|  | */ | 
|  | x = (2 * x + (u32)div64_u64(a, (u64)x * (u64)(x - 1))); | 
|  | x = ((x * 341) >> 10); | 
|  | return x; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Compute congestion window to use. | 
|  | */ | 
|  | static inline void bictcp_update(struct bictcp *ca, u32 cwnd, u32 acked) | 
|  | { | 
|  | u32 delta, bic_target, max_cnt; | 
|  | u64 offs, t; | 
|  |  | 
|  | ca->ack_cnt += acked;	/* count the number of ACKed packets */ | 
|  |  | 
|  | if (ca->last_cwnd == cwnd && | 
|  | (s32)(tcp_jiffies32 - ca->last_time) <= HZ / 32) | 
|  | return; | 
|  |  | 
|  | /* The CUBIC function can update ca->cnt at most once per jiffy. | 
|  | * On all cwnd reduction events, ca->epoch_start is set to 0, | 
|  | * which will force a recalculation of ca->cnt. | 
|  | */ | 
|  | if (ca->epoch_start && tcp_jiffies32 == ca->last_time) | 
|  | goto tcp_friendliness; | 
|  |  | 
|  | ca->last_cwnd = cwnd; | 
|  | ca->last_time = tcp_jiffies32; | 
|  |  | 
|  | if (ca->epoch_start == 0) { | 
|  | ca->epoch_start = tcp_jiffies32;	/* record beginning */ | 
|  | ca->ack_cnt = acked;			/* start counting */ | 
|  | ca->tcp_cwnd = cwnd;			/* syn with cubic */ | 
|  |  | 
|  | if (ca->last_max_cwnd <= cwnd) { | 
|  | ca->bic_K = 0; | 
|  | ca->bic_origin_point = cwnd; | 
|  | } else { | 
|  | /* Compute new K based on | 
|  | * (wmax-cwnd) * (srtt>>3 / HZ) / c * 2^(3*bictcp_HZ) | 
|  | */ | 
|  | ca->bic_K = cubic_root(cube_factor | 
|  | * (ca->last_max_cwnd - cwnd)); | 
|  | ca->bic_origin_point = ca->last_max_cwnd; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* cubic function - calc*/ | 
|  | /* calculate c * time^3 / rtt, | 
|  | *  while considering overflow in calculation of time^3 | 
|  | * (so time^3 is done by using 64 bit) | 
|  | * and without the support of division of 64bit numbers | 
|  | * (so all divisions are done by using 32 bit) | 
|  | *  also NOTE the unit of those veriables | 
|  | *	  time  = (t - K) / 2^bictcp_HZ | 
|  | *	  c = bic_scale >> 10 | 
|  | * rtt  = (srtt >> 3) / HZ | 
|  | * !!! The following code does not have overflow problems, | 
|  | * if the cwnd < 1 million packets !!! | 
|  | */ | 
|  |  | 
|  | t = (s32)(tcp_jiffies32 - ca->epoch_start); | 
|  | t += usecs_to_jiffies(ca->delay_min); | 
|  | /* change the unit from HZ to bictcp_HZ */ | 
|  | t <<= BICTCP_HZ; | 
|  | do_div(t, HZ); | 
|  |  | 
|  | if (t < ca->bic_K)		/* t - K */ | 
|  | offs = ca->bic_K - t; | 
|  | else | 
|  | offs = t - ca->bic_K; | 
|  |  | 
|  | /* c/rtt * (t-K)^3 */ | 
|  | delta = (cube_rtt_scale * offs * offs * offs) >> (10+3*BICTCP_HZ); | 
|  | if (t < ca->bic_K)                            /* below origin*/ | 
|  | bic_target = ca->bic_origin_point - delta; | 
|  | else                                          /* above origin*/ | 
|  | bic_target = ca->bic_origin_point + delta; | 
|  |  | 
|  | /* cubic function - calc bictcp_cnt*/ | 
|  | if (bic_target > cwnd) { | 
|  | ca->cnt = cwnd / (bic_target - cwnd); | 
|  | } else { | 
|  | ca->cnt = 100 * cwnd;              /* very small increment*/ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The initial growth of cubic function may be too conservative | 
|  | * when the available bandwidth is still unknown. | 
|  | */ | 
|  | if (ca->last_max_cwnd == 0 && ca->cnt > 20) | 
|  | ca->cnt = 20;	/* increase cwnd 5% per RTT */ | 
|  |  | 
|  | tcp_friendliness: | 
|  | /* TCP Friendly */ | 
|  | if (tcp_friendliness) { | 
|  | u32 scale = beta_scale; | 
|  |  | 
|  | delta = (cwnd * scale) >> 3; | 
|  | while (ca->ack_cnt > delta) {		/* update tcp cwnd */ | 
|  | ca->ack_cnt -= delta; | 
|  | ca->tcp_cwnd++; | 
|  | } | 
|  |  | 
|  | if (ca->tcp_cwnd > cwnd) {	/* if bic is slower than tcp */ | 
|  | delta = ca->tcp_cwnd - cwnd; | 
|  | max_cnt = cwnd / delta; | 
|  | if (ca->cnt > max_cnt) | 
|  | ca->cnt = max_cnt; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* The maximum rate of cwnd increase CUBIC allows is 1 packet per | 
|  | * 2 packets ACKed, meaning cwnd grows at 1.5x per RTT. | 
|  | */ | 
|  | ca->cnt = max(ca->cnt, 2U); | 
|  | } | 
|  |  | 
|  | static void bictcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | struct bictcp *ca = inet_csk_ca(sk); | 
|  |  | 
|  | if (!tcp_is_cwnd_limited(sk)) | 
|  | return; | 
|  |  | 
|  | if (tcp_in_slow_start(tp)) { | 
|  | if (hystart && after(ack, ca->end_seq)) | 
|  | bictcp_hystart_reset(sk); | 
|  | acked = tcp_slow_start(tp, acked); | 
|  | if (!acked) | 
|  | return; | 
|  | } | 
|  | bictcp_update(ca, tp->snd_cwnd, acked); | 
|  | tcp_cong_avoid_ai(tp, ca->cnt, acked); | 
|  | } | 
|  |  | 
|  | static u32 bictcp_recalc_ssthresh(struct sock *sk) | 
|  | { | 
|  | const struct tcp_sock *tp = tcp_sk(sk); | 
|  | struct bictcp *ca = inet_csk_ca(sk); | 
|  |  | 
|  | ca->epoch_start = 0;	/* end of epoch */ | 
|  |  | 
|  | /* Wmax and fast convergence */ | 
|  | if (tp->snd_cwnd < ca->last_max_cwnd && fast_convergence) | 
|  | ca->last_max_cwnd = (tp->snd_cwnd * (BICTCP_BETA_SCALE + beta)) | 
|  | / (2 * BICTCP_BETA_SCALE); | 
|  | else | 
|  | ca->last_max_cwnd = tp->snd_cwnd; | 
|  |  | 
|  | return max((tp->snd_cwnd * beta) / BICTCP_BETA_SCALE, 2U); | 
|  | } | 
|  |  | 
|  | static void bictcp_state(struct sock *sk, u8 new_state) | 
|  | { | 
|  | if (new_state == TCP_CA_Loss) { | 
|  | bictcp_reset(inet_csk_ca(sk)); | 
|  | bictcp_hystart_reset(sk); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Account for TSO/GRO delays. | 
|  | * Otherwise short RTT flows could get too small ssthresh, since during | 
|  | * slow start we begin with small TSO packets and ca->delay_min would | 
|  | * not account for long aggregation delay when TSO packets get bigger. | 
|  | * Ideally even with a very small RTT we would like to have at least one | 
|  | * TSO packet being sent and received by GRO, and another one in qdisc layer. | 
|  | * We apply another 100% factor because @rate is doubled at this point. | 
|  | * We cap the cushion to 1ms. | 
|  | */ | 
|  | static u32 hystart_ack_delay(struct sock *sk) | 
|  | { | 
|  | unsigned long rate; | 
|  |  | 
|  | rate = READ_ONCE(sk->sk_pacing_rate); | 
|  | if (!rate) | 
|  | return 0; | 
|  | return min_t(u64, USEC_PER_MSEC, | 
|  | div64_ul((u64)GSO_MAX_SIZE * 4 * USEC_PER_SEC, rate)); | 
|  | } | 
|  |  | 
|  | static void hystart_update(struct sock *sk, u32 delay) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | struct bictcp *ca = inet_csk_ca(sk); | 
|  | u32 threshold; | 
|  |  | 
|  | if (hystart_detect & HYSTART_ACK_TRAIN) { | 
|  | u32 now = bictcp_clock_us(sk); | 
|  |  | 
|  | /* first detection parameter - ack-train detection */ | 
|  | if ((s32)(now - ca->last_ack) <= hystart_ack_delta_us) { | 
|  | ca->last_ack = now; | 
|  |  | 
|  | threshold = ca->delay_min + hystart_ack_delay(sk); | 
|  |  | 
|  | /* Hystart ack train triggers if we get ack past | 
|  | * ca->delay_min/2. | 
|  | * Pacing might have delayed packets up to RTT/2 | 
|  | * during slow start. | 
|  | */ | 
|  | if (sk->sk_pacing_status == SK_PACING_NONE) | 
|  | threshold >>= 1; | 
|  |  | 
|  | if ((s32)(now - ca->round_start) > threshold) { | 
|  | ca->found = 1; | 
|  | pr_debug("hystart_ack_train (%u > %u) delay_min %u (+ ack_delay %u) cwnd %u\n", | 
|  | now - ca->round_start, threshold, | 
|  | ca->delay_min, hystart_ack_delay(sk), tp->snd_cwnd); | 
|  | NET_INC_STATS(sock_net(sk), | 
|  | LINUX_MIB_TCPHYSTARTTRAINDETECT); | 
|  | NET_ADD_STATS(sock_net(sk), | 
|  | LINUX_MIB_TCPHYSTARTTRAINCWND, | 
|  | tp->snd_cwnd); | 
|  | tp->snd_ssthresh = tp->snd_cwnd; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (hystart_detect & HYSTART_DELAY) { | 
|  | /* obtain the minimum delay of more than sampling packets */ | 
|  | if (ca->sample_cnt < HYSTART_MIN_SAMPLES) { | 
|  | if (ca->curr_rtt > delay) | 
|  | ca->curr_rtt = delay; | 
|  |  | 
|  | ca->sample_cnt++; | 
|  | } else { | 
|  | if (ca->curr_rtt > ca->delay_min + | 
|  | HYSTART_DELAY_THRESH(ca->delay_min >> 3)) { | 
|  | ca->found = 1; | 
|  | NET_INC_STATS(sock_net(sk), | 
|  | LINUX_MIB_TCPHYSTARTDELAYDETECT); | 
|  | NET_ADD_STATS(sock_net(sk), | 
|  | LINUX_MIB_TCPHYSTARTDELAYCWND, | 
|  | tp->snd_cwnd); | 
|  | tp->snd_ssthresh = tp->snd_cwnd; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void bictcp_acked(struct sock *sk, const struct ack_sample *sample) | 
|  | { | 
|  | const struct tcp_sock *tp = tcp_sk(sk); | 
|  | struct bictcp *ca = inet_csk_ca(sk); | 
|  | u32 delay; | 
|  |  | 
|  | /* Some calls are for duplicates without timetamps */ | 
|  | if (sample->rtt_us < 0) | 
|  | return; | 
|  |  | 
|  | /* Discard delay samples right after fast recovery */ | 
|  | if (ca->epoch_start && (s32)(tcp_jiffies32 - ca->epoch_start) < HZ) | 
|  | return; | 
|  |  | 
|  | delay = sample->rtt_us; | 
|  | if (delay == 0) | 
|  | delay = 1; | 
|  |  | 
|  | /* first time call or link delay decreases */ | 
|  | if (ca->delay_min == 0 || ca->delay_min > delay) | 
|  | ca->delay_min = delay; | 
|  |  | 
|  | /* hystart triggers when cwnd is larger than some threshold */ | 
|  | if (!ca->found && tcp_in_slow_start(tp) && hystart && | 
|  | tp->snd_cwnd >= hystart_low_window) | 
|  | hystart_update(sk, delay); | 
|  | } | 
|  |  | 
|  | static struct tcp_congestion_ops cubictcp __read_mostly = { | 
|  | .init		= bictcp_init, | 
|  | .ssthresh	= bictcp_recalc_ssthresh, | 
|  | .cong_avoid	= bictcp_cong_avoid, | 
|  | .set_state	= bictcp_state, | 
|  | .undo_cwnd	= tcp_reno_undo_cwnd, | 
|  | .cwnd_event	= bictcp_cwnd_event, | 
|  | .pkts_acked     = bictcp_acked, | 
|  | .owner		= THIS_MODULE, | 
|  | .name		= "cubic", | 
|  | }; | 
|  |  | 
|  | static int __init cubictcp_register(void) | 
|  | { | 
|  | BUILD_BUG_ON(sizeof(struct bictcp) > ICSK_CA_PRIV_SIZE); | 
|  |  | 
|  | /* Precompute a bunch of the scaling factors that are used per-packet | 
|  | * based on SRTT of 100ms | 
|  | */ | 
|  |  | 
|  | beta_scale = 8*(BICTCP_BETA_SCALE+beta) / 3 | 
|  | / (BICTCP_BETA_SCALE - beta); | 
|  |  | 
|  | cube_rtt_scale = (bic_scale * 10);	/* 1024*c/rtt */ | 
|  |  | 
|  | /* calculate the "K" for (wmax-cwnd) = c/rtt * K^3 | 
|  | *  so K = cubic_root( (wmax-cwnd)*rtt/c ) | 
|  | * the unit of K is bictcp_HZ=2^10, not HZ | 
|  | * | 
|  | *  c = bic_scale >> 10 | 
|  | *  rtt = 100ms | 
|  | * | 
|  | * the following code has been designed and tested for | 
|  | * cwnd < 1 million packets | 
|  | * RTT < 100 seconds | 
|  | * HZ < 1,000,00  (corresponding to 10 nano-second) | 
|  | */ | 
|  |  | 
|  | /* 1/c * 2^2*bictcp_HZ * srtt */ | 
|  | cube_factor = 1ull << (10+3*BICTCP_HZ); /* 2^40 */ | 
|  |  | 
|  | /* divide by bic_scale and by constant Srtt (100ms) */ | 
|  | do_div(cube_factor, bic_scale * 10); | 
|  |  | 
|  | return tcp_register_congestion_control(&cubictcp); | 
|  | } | 
|  |  | 
|  | static void __exit cubictcp_unregister(void) | 
|  | { | 
|  | tcp_unregister_congestion_control(&cubictcp); | 
|  | } | 
|  |  | 
|  | module_init(cubictcp_register); | 
|  | module_exit(cubictcp_unregister); | 
|  |  | 
|  | MODULE_AUTHOR("Sangtae Ha, Stephen Hemminger"); | 
|  | MODULE_LICENSE("GPL"); | 
|  | MODULE_DESCRIPTION("CUBIC TCP"); | 
|  | MODULE_VERSION("2.3"); |