| // SPDX-License-Identifier: GPL-2.0-only | 
 | /* | 
 |  * Audio and Music Data Transmission Protocol (IEC 61883-6) streams | 
 |  * with Common Isochronous Packet (IEC 61883-1) headers | 
 |  * | 
 |  * Copyright (c) Clemens Ladisch <clemens@ladisch.de> | 
 |  */ | 
 |  | 
 | #include <linux/device.h> | 
 | #include <linux/err.h> | 
 | #include <linux/firewire.h> | 
 | #include <linux/firewire-constants.h> | 
 | #include <linux/module.h> | 
 | #include <linux/slab.h> | 
 | #include <sound/pcm.h> | 
 | #include <sound/pcm_params.h> | 
 | #include "amdtp-stream.h" | 
 |  | 
 | #define TICKS_PER_CYCLE		3072 | 
 | #define CYCLES_PER_SECOND	8000 | 
 | #define TICKS_PER_SECOND	(TICKS_PER_CYCLE * CYCLES_PER_SECOND) | 
 |  | 
 | #define OHCI_MAX_SECOND		8 | 
 |  | 
 | /* Always support Linux tracing subsystem. */ | 
 | #define CREATE_TRACE_POINTS | 
 | #include "amdtp-stream-trace.h" | 
 |  | 
 | #define TRANSFER_DELAY_TICKS	0x2e00 /* 479.17 microseconds */ | 
 |  | 
 | /* isochronous header parameters */ | 
 | #define ISO_DATA_LENGTH_SHIFT	16 | 
 | #define TAG_NO_CIP_HEADER	0 | 
 | #define TAG_CIP			1 | 
 |  | 
 | /* common isochronous packet header parameters */ | 
 | #define CIP_EOH_SHIFT		31 | 
 | #define CIP_EOH			(1u << CIP_EOH_SHIFT) | 
 | #define CIP_EOH_MASK		0x80000000 | 
 | #define CIP_SID_SHIFT		24 | 
 | #define CIP_SID_MASK		0x3f000000 | 
 | #define CIP_DBS_MASK		0x00ff0000 | 
 | #define CIP_DBS_SHIFT		16 | 
 | #define CIP_SPH_MASK		0x00000400 | 
 | #define CIP_SPH_SHIFT		10 | 
 | #define CIP_DBC_MASK		0x000000ff | 
 | #define CIP_FMT_SHIFT		24 | 
 | #define CIP_FMT_MASK		0x3f000000 | 
 | #define CIP_FDF_MASK		0x00ff0000 | 
 | #define CIP_FDF_SHIFT		16 | 
 | #define CIP_SYT_MASK		0x0000ffff | 
 | #define CIP_SYT_NO_INFO		0xffff | 
 |  | 
 | /* Audio and Music transfer protocol specific parameters */ | 
 | #define CIP_FMT_AM		0x10 | 
 | #define AMDTP_FDF_NO_DATA	0xff | 
 |  | 
 | // For iso header, tstamp and 2 CIP header. | 
 | #define IR_CTX_HEADER_SIZE_CIP		16 | 
 | // For iso header and tstamp. | 
 | #define IR_CTX_HEADER_SIZE_NO_CIP	8 | 
 | #define HEADER_TSTAMP_MASK	0x0000ffff | 
 |  | 
 | #define IT_PKT_HEADER_SIZE_CIP		8 // For 2 CIP header. | 
 | #define IT_PKT_HEADER_SIZE_NO_CIP	0 // Nothing. | 
 |  | 
 | static void pcm_period_tasklet(unsigned long data); | 
 |  | 
 | /** | 
 |  * amdtp_stream_init - initialize an AMDTP stream structure | 
 |  * @s: the AMDTP stream to initialize | 
 |  * @unit: the target of the stream | 
 |  * @dir: the direction of stream | 
 |  * @flags: the packet transmission method to use | 
 |  * @fmt: the value of fmt field in CIP header | 
 |  * @process_ctx_payloads: callback handler to process payloads of isoc context | 
 |  * @protocol_size: the size to allocate newly for protocol | 
 |  */ | 
 | int amdtp_stream_init(struct amdtp_stream *s, struct fw_unit *unit, | 
 | 		      enum amdtp_stream_direction dir, enum cip_flags flags, | 
 | 		      unsigned int fmt, | 
 | 		      amdtp_stream_process_ctx_payloads_t process_ctx_payloads, | 
 | 		      unsigned int protocol_size) | 
 | { | 
 | 	if (process_ctx_payloads == NULL) | 
 | 		return -EINVAL; | 
 |  | 
 | 	s->protocol = kzalloc(protocol_size, GFP_KERNEL); | 
 | 	if (!s->protocol) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	s->unit = unit; | 
 | 	s->direction = dir; | 
 | 	s->flags = flags; | 
 | 	s->context = ERR_PTR(-1); | 
 | 	mutex_init(&s->mutex); | 
 | 	tasklet_init(&s->period_tasklet, pcm_period_tasklet, (unsigned long)s); | 
 | 	s->packet_index = 0; | 
 |  | 
 | 	init_waitqueue_head(&s->callback_wait); | 
 | 	s->callbacked = false; | 
 |  | 
 | 	s->fmt = fmt; | 
 | 	s->process_ctx_payloads = process_ctx_payloads; | 
 |  | 
 | 	if (dir == AMDTP_OUT_STREAM) | 
 | 		s->ctx_data.rx.syt_override = -1; | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(amdtp_stream_init); | 
 |  | 
 | /** | 
 |  * amdtp_stream_destroy - free stream resources | 
 |  * @s: the AMDTP stream to destroy | 
 |  */ | 
 | void amdtp_stream_destroy(struct amdtp_stream *s) | 
 | { | 
 | 	/* Not initialized. */ | 
 | 	if (s->protocol == NULL) | 
 | 		return; | 
 |  | 
 | 	WARN_ON(amdtp_stream_running(s)); | 
 | 	kfree(s->protocol); | 
 | 	mutex_destroy(&s->mutex); | 
 | } | 
 | EXPORT_SYMBOL(amdtp_stream_destroy); | 
 |  | 
 | const unsigned int amdtp_syt_intervals[CIP_SFC_COUNT] = { | 
 | 	[CIP_SFC_32000]  =  8, | 
 | 	[CIP_SFC_44100]  =  8, | 
 | 	[CIP_SFC_48000]  =  8, | 
 | 	[CIP_SFC_88200]  = 16, | 
 | 	[CIP_SFC_96000]  = 16, | 
 | 	[CIP_SFC_176400] = 32, | 
 | 	[CIP_SFC_192000] = 32, | 
 | }; | 
 | EXPORT_SYMBOL(amdtp_syt_intervals); | 
 |  | 
 | const unsigned int amdtp_rate_table[CIP_SFC_COUNT] = { | 
 | 	[CIP_SFC_32000]  =  32000, | 
 | 	[CIP_SFC_44100]  =  44100, | 
 | 	[CIP_SFC_48000]  =  48000, | 
 | 	[CIP_SFC_88200]  =  88200, | 
 | 	[CIP_SFC_96000]  =  96000, | 
 | 	[CIP_SFC_176400] = 176400, | 
 | 	[CIP_SFC_192000] = 192000, | 
 | }; | 
 | EXPORT_SYMBOL(amdtp_rate_table); | 
 |  | 
 | static int apply_constraint_to_size(struct snd_pcm_hw_params *params, | 
 | 				    struct snd_pcm_hw_rule *rule) | 
 | { | 
 | 	struct snd_interval *s = hw_param_interval(params, rule->var); | 
 | 	const struct snd_interval *r = | 
 | 		hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_RATE); | 
 | 	struct snd_interval t = {0}; | 
 | 	unsigned int step = 0; | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < CIP_SFC_COUNT; ++i) { | 
 | 		if (snd_interval_test(r, amdtp_rate_table[i])) | 
 | 			step = max(step, amdtp_syt_intervals[i]); | 
 | 	} | 
 |  | 
 | 	t.min = roundup(s->min, step); | 
 | 	t.max = rounddown(s->max, step); | 
 | 	t.integer = 1; | 
 |  | 
 | 	return snd_interval_refine(s, &t); | 
 | } | 
 |  | 
 | /** | 
 |  * amdtp_stream_add_pcm_hw_constraints - add hw constraints for PCM substream | 
 |  * @s:		the AMDTP stream, which must be initialized. | 
 |  * @runtime:	the PCM substream runtime | 
 |  */ | 
 | int amdtp_stream_add_pcm_hw_constraints(struct amdtp_stream *s, | 
 | 					struct snd_pcm_runtime *runtime) | 
 | { | 
 | 	struct snd_pcm_hardware *hw = &runtime->hw; | 
 | 	unsigned int ctx_header_size; | 
 | 	unsigned int maximum_usec_per_period; | 
 | 	int err; | 
 |  | 
 | 	hw->info = SNDRV_PCM_INFO_BATCH | | 
 | 		   SNDRV_PCM_INFO_BLOCK_TRANSFER | | 
 | 		   SNDRV_PCM_INFO_INTERLEAVED | | 
 | 		   SNDRV_PCM_INFO_JOINT_DUPLEX | | 
 | 		   SNDRV_PCM_INFO_MMAP | | 
 | 		   SNDRV_PCM_INFO_MMAP_VALID; | 
 |  | 
 | 	/* SNDRV_PCM_INFO_BATCH */ | 
 | 	hw->periods_min = 2; | 
 | 	hw->periods_max = UINT_MAX; | 
 |  | 
 | 	/* bytes for a frame */ | 
 | 	hw->period_bytes_min = 4 * hw->channels_max; | 
 |  | 
 | 	/* Just to prevent from allocating much pages. */ | 
 | 	hw->period_bytes_max = hw->period_bytes_min * 2048; | 
 | 	hw->buffer_bytes_max = hw->period_bytes_max * hw->periods_min; | 
 |  | 
 | 	// Linux driver for 1394 OHCI controller voluntarily flushes isoc | 
 | 	// context when total size of accumulated context header reaches | 
 | 	// PAGE_SIZE. This kicks tasklet for the isoc context and brings | 
 | 	// callback in the middle of scheduled interrupts. | 
 | 	// Although AMDTP streams in the same domain use the same events per | 
 | 	// IRQ, use the largest size of context header between IT/IR contexts. | 
 | 	// Here, use the value of context header in IR context is for both | 
 | 	// contexts. | 
 | 	if (!(s->flags & CIP_NO_HEADER)) | 
 | 		ctx_header_size = IR_CTX_HEADER_SIZE_CIP; | 
 | 	else | 
 | 		ctx_header_size = IR_CTX_HEADER_SIZE_NO_CIP; | 
 | 	maximum_usec_per_period = USEC_PER_SEC * PAGE_SIZE / | 
 | 				  CYCLES_PER_SECOND / ctx_header_size; | 
 |  | 
 | 	// In IEC 61883-6, one isoc packet can transfer events up to the value | 
 | 	// of syt interval. This comes from the interval of isoc cycle. As 1394 | 
 | 	// OHCI controller can generate hardware IRQ per isoc packet, the | 
 | 	// interval is 125 usec. | 
 | 	// However, there are two ways of transmission in IEC 61883-6; blocking | 
 | 	// and non-blocking modes. In blocking mode, the sequence of isoc packet | 
 | 	// includes 'empty' or 'NODATA' packets which include no event. In | 
 | 	// non-blocking mode, the number of events per packet is variable up to | 
 | 	// the syt interval. | 
 | 	// Due to the above protocol design, the minimum PCM frames per | 
 | 	// interrupt should be double of the value of syt interval, thus it is | 
 | 	// 250 usec. | 
 | 	err = snd_pcm_hw_constraint_minmax(runtime, | 
 | 					   SNDRV_PCM_HW_PARAM_PERIOD_TIME, | 
 | 					   250, maximum_usec_per_period); | 
 | 	if (err < 0) | 
 | 		goto end; | 
 |  | 
 | 	/* Non-Blocking stream has no more constraints */ | 
 | 	if (!(s->flags & CIP_BLOCKING)) | 
 | 		goto end; | 
 |  | 
 | 	/* | 
 | 	 * One AMDTP packet can include some frames. In blocking mode, the | 
 | 	 * number equals to SYT_INTERVAL. So the number is 8, 16 or 32, | 
 | 	 * depending on its sampling rate. For accurate period interrupt, it's | 
 | 	 * preferrable to align period/buffer sizes to current SYT_INTERVAL. | 
 | 	 */ | 
 | 	err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_SIZE, | 
 | 				  apply_constraint_to_size, NULL, | 
 | 				  SNDRV_PCM_HW_PARAM_PERIOD_SIZE, | 
 | 				  SNDRV_PCM_HW_PARAM_RATE, -1); | 
 | 	if (err < 0) | 
 | 		goto end; | 
 | 	err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, | 
 | 				  apply_constraint_to_size, NULL, | 
 | 				  SNDRV_PCM_HW_PARAM_BUFFER_SIZE, | 
 | 				  SNDRV_PCM_HW_PARAM_RATE, -1); | 
 | 	if (err < 0) | 
 | 		goto end; | 
 | end: | 
 | 	return err; | 
 | } | 
 | EXPORT_SYMBOL(amdtp_stream_add_pcm_hw_constraints); | 
 |  | 
 | /** | 
 |  * amdtp_stream_set_parameters - set stream parameters | 
 |  * @s: the AMDTP stream to configure | 
 |  * @rate: the sample rate | 
 |  * @data_block_quadlets: the size of a data block in quadlet unit | 
 |  * | 
 |  * The parameters must be set before the stream is started, and must not be | 
 |  * changed while the stream is running. | 
 |  */ | 
 | int amdtp_stream_set_parameters(struct amdtp_stream *s, unsigned int rate, | 
 | 				unsigned int data_block_quadlets) | 
 | { | 
 | 	unsigned int sfc; | 
 |  | 
 | 	for (sfc = 0; sfc < ARRAY_SIZE(amdtp_rate_table); ++sfc) { | 
 | 		if (amdtp_rate_table[sfc] == rate) | 
 | 			break; | 
 | 	} | 
 | 	if (sfc == ARRAY_SIZE(amdtp_rate_table)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	s->sfc = sfc; | 
 | 	s->data_block_quadlets = data_block_quadlets; | 
 | 	s->syt_interval = amdtp_syt_intervals[sfc]; | 
 |  | 
 | 	// default buffering in the device. | 
 | 	if (s->direction == AMDTP_OUT_STREAM) { | 
 | 		s->ctx_data.rx.transfer_delay = | 
 | 					TRANSFER_DELAY_TICKS - TICKS_PER_CYCLE; | 
 |  | 
 | 		if (s->flags & CIP_BLOCKING) { | 
 | 			// additional buffering needed to adjust for no-data | 
 | 			// packets. | 
 | 			s->ctx_data.rx.transfer_delay += | 
 | 				TICKS_PER_SECOND * s->syt_interval / rate; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(amdtp_stream_set_parameters); | 
 |  | 
 | /** | 
 |  * amdtp_stream_get_max_payload - get the stream's packet size | 
 |  * @s: the AMDTP stream | 
 |  * | 
 |  * This function must not be called before the stream has been configured | 
 |  * with amdtp_stream_set_parameters(). | 
 |  */ | 
 | unsigned int amdtp_stream_get_max_payload(struct amdtp_stream *s) | 
 | { | 
 | 	unsigned int multiplier = 1; | 
 | 	unsigned int cip_header_size = 0; | 
 |  | 
 | 	if (s->flags & CIP_JUMBO_PAYLOAD) | 
 | 		multiplier = 5; | 
 | 	if (!(s->flags & CIP_NO_HEADER)) | 
 | 		cip_header_size = sizeof(__be32) * 2; | 
 |  | 
 | 	return cip_header_size + | 
 | 		s->syt_interval * s->data_block_quadlets * sizeof(__be32) * multiplier; | 
 | } | 
 | EXPORT_SYMBOL(amdtp_stream_get_max_payload); | 
 |  | 
 | /** | 
 |  * amdtp_stream_pcm_prepare - prepare PCM device for running | 
 |  * @s: the AMDTP stream | 
 |  * | 
 |  * This function should be called from the PCM device's .prepare callback. | 
 |  */ | 
 | void amdtp_stream_pcm_prepare(struct amdtp_stream *s) | 
 | { | 
 | 	tasklet_kill(&s->period_tasklet); | 
 | 	s->pcm_buffer_pointer = 0; | 
 | 	s->pcm_period_pointer = 0; | 
 | } | 
 | EXPORT_SYMBOL(amdtp_stream_pcm_prepare); | 
 |  | 
 | static unsigned int calculate_data_blocks(unsigned int *data_block_state, | 
 | 				bool is_blocking, bool is_no_info, | 
 | 				unsigned int syt_interval, enum cip_sfc sfc) | 
 | { | 
 | 	unsigned int data_blocks; | 
 |  | 
 | 	/* Blocking mode. */ | 
 | 	if (is_blocking) { | 
 | 		/* This module generate empty packet for 'no data'. */ | 
 | 		if (is_no_info) | 
 | 			data_blocks = 0; | 
 | 		else | 
 | 			data_blocks = syt_interval; | 
 | 	/* Non-blocking mode. */ | 
 | 	} else { | 
 | 		if (!cip_sfc_is_base_44100(sfc)) { | 
 | 			// Sample_rate / 8000 is an integer, and precomputed. | 
 | 			data_blocks = *data_block_state; | 
 | 		} else { | 
 | 			unsigned int phase = *data_block_state; | 
 |  | 
 | 		/* | 
 | 		 * This calculates the number of data blocks per packet so that | 
 | 		 * 1) the overall rate is correct and exactly synchronized to | 
 | 		 *    the bus clock, and | 
 | 		 * 2) packets with a rounded-up number of blocks occur as early | 
 | 		 *    as possible in the sequence (to prevent underruns of the | 
 | 		 *    device's buffer). | 
 | 		 */ | 
 | 			if (sfc == CIP_SFC_44100) | 
 | 				/* 6 6 5 6 5 6 5 ... */ | 
 | 				data_blocks = 5 + ((phase & 1) ^ | 
 | 						   (phase == 0 || phase >= 40)); | 
 | 			else | 
 | 				/* 12 11 11 11 11 ... or 23 22 22 22 22 ... */ | 
 | 				data_blocks = 11 * (sfc >> 1) + (phase == 0); | 
 | 			if (++phase >= (80 >> (sfc >> 1))) | 
 | 				phase = 0; | 
 | 			*data_block_state = phase; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return data_blocks; | 
 | } | 
 |  | 
 | static unsigned int calculate_syt_offset(unsigned int *last_syt_offset, | 
 | 			unsigned int *syt_offset_state, enum cip_sfc sfc) | 
 | { | 
 | 	unsigned int syt_offset; | 
 |  | 
 | 	if (*last_syt_offset < TICKS_PER_CYCLE) { | 
 | 		if (!cip_sfc_is_base_44100(sfc)) | 
 | 			syt_offset = *last_syt_offset + *syt_offset_state; | 
 | 		else { | 
 | 		/* | 
 | 		 * The time, in ticks, of the n'th SYT_INTERVAL sample is: | 
 | 		 *   n * SYT_INTERVAL * 24576000 / sample_rate | 
 | 		 * Modulo TICKS_PER_CYCLE, the difference between successive | 
 | 		 * elements is about 1386.23.  Rounding the results of this | 
 | 		 * formula to the SYT precision results in a sequence of | 
 | 		 * differences that begins with: | 
 | 		 *   1386 1386 1387 1386 1386 1386 1387 1386 1386 1386 1387 ... | 
 | 		 * This code generates _exactly_ the same sequence. | 
 | 		 */ | 
 | 			unsigned int phase = *syt_offset_state; | 
 | 			unsigned int index = phase % 13; | 
 |  | 
 | 			syt_offset = *last_syt_offset; | 
 | 			syt_offset += 1386 + ((index && !(index & 3)) || | 
 | 					      phase == 146); | 
 | 			if (++phase >= 147) | 
 | 				phase = 0; | 
 | 			*syt_offset_state = phase; | 
 | 		} | 
 | 	} else | 
 | 		syt_offset = *last_syt_offset - TICKS_PER_CYCLE; | 
 | 	*last_syt_offset = syt_offset; | 
 |  | 
 | 	if (syt_offset >= TICKS_PER_CYCLE) | 
 | 		syt_offset = CIP_SYT_NO_INFO; | 
 |  | 
 | 	return syt_offset; | 
 | } | 
 |  | 
 | static void update_pcm_pointers(struct amdtp_stream *s, | 
 | 				struct snd_pcm_substream *pcm, | 
 | 				unsigned int frames) | 
 | { | 
 | 	unsigned int ptr; | 
 |  | 
 | 	ptr = s->pcm_buffer_pointer + frames; | 
 | 	if (ptr >= pcm->runtime->buffer_size) | 
 | 		ptr -= pcm->runtime->buffer_size; | 
 | 	WRITE_ONCE(s->pcm_buffer_pointer, ptr); | 
 |  | 
 | 	s->pcm_period_pointer += frames; | 
 | 	if (s->pcm_period_pointer >= pcm->runtime->period_size) { | 
 | 		s->pcm_period_pointer -= pcm->runtime->period_size; | 
 | 		tasklet_hi_schedule(&s->period_tasklet); | 
 | 	} | 
 | } | 
 |  | 
 | static void pcm_period_tasklet(unsigned long data) | 
 | { | 
 | 	struct amdtp_stream *s = (void *)data; | 
 | 	struct snd_pcm_substream *pcm = READ_ONCE(s->pcm); | 
 |  | 
 | 	if (pcm) | 
 | 		snd_pcm_period_elapsed(pcm); | 
 | } | 
 |  | 
 | static int queue_packet(struct amdtp_stream *s, struct fw_iso_packet *params, | 
 | 			bool sched_irq) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	params->interrupt = sched_irq; | 
 | 	params->tag = s->tag; | 
 | 	params->sy = 0; | 
 |  | 
 | 	err = fw_iso_context_queue(s->context, params, &s->buffer.iso_buffer, | 
 | 				   s->buffer.packets[s->packet_index].offset); | 
 | 	if (err < 0) { | 
 | 		dev_err(&s->unit->device, "queueing error: %d\n", err); | 
 | 		goto end; | 
 | 	} | 
 |  | 
 | 	if (++s->packet_index >= s->queue_size) | 
 | 		s->packet_index = 0; | 
 | end: | 
 | 	return err; | 
 | } | 
 |  | 
 | static inline int queue_out_packet(struct amdtp_stream *s, | 
 | 				   struct fw_iso_packet *params, bool sched_irq) | 
 | { | 
 | 	params->skip = | 
 | 		!!(params->header_length == 0 && params->payload_length == 0); | 
 | 	return queue_packet(s, params, sched_irq); | 
 | } | 
 |  | 
 | static inline int queue_in_packet(struct amdtp_stream *s, | 
 | 				  struct fw_iso_packet *params) | 
 | { | 
 | 	// Queue one packet for IR context. | 
 | 	params->header_length = s->ctx_data.tx.ctx_header_size; | 
 | 	params->payload_length = s->ctx_data.tx.max_ctx_payload_length; | 
 | 	params->skip = false; | 
 | 	return queue_packet(s, params, false); | 
 | } | 
 |  | 
 | static void generate_cip_header(struct amdtp_stream *s, __be32 cip_header[2], | 
 | 			unsigned int data_block_counter, unsigned int syt) | 
 | { | 
 | 	cip_header[0] = cpu_to_be32(READ_ONCE(s->source_node_id_field) | | 
 | 				(s->data_block_quadlets << CIP_DBS_SHIFT) | | 
 | 				((s->sph << CIP_SPH_SHIFT) & CIP_SPH_MASK) | | 
 | 				data_block_counter); | 
 | 	cip_header[1] = cpu_to_be32(CIP_EOH | | 
 | 			((s->fmt << CIP_FMT_SHIFT) & CIP_FMT_MASK) | | 
 | 			((s->ctx_data.rx.fdf << CIP_FDF_SHIFT) & CIP_FDF_MASK) | | 
 | 			(syt & CIP_SYT_MASK)); | 
 | } | 
 |  | 
 | static void build_it_pkt_header(struct amdtp_stream *s, unsigned int cycle, | 
 | 				struct fw_iso_packet *params, | 
 | 				unsigned int data_blocks, | 
 | 				unsigned int data_block_counter, | 
 | 				unsigned int syt, unsigned int index) | 
 | { | 
 | 	unsigned int payload_length; | 
 | 	__be32 *cip_header; | 
 |  | 
 | 	payload_length = data_blocks * sizeof(__be32) * s->data_block_quadlets; | 
 | 	params->payload_length = payload_length; | 
 |  | 
 | 	if (!(s->flags & CIP_NO_HEADER)) { | 
 | 		cip_header = (__be32 *)params->header; | 
 | 		generate_cip_header(s, cip_header, data_block_counter, syt); | 
 | 		params->header_length = 2 * sizeof(__be32); | 
 | 		payload_length += params->header_length; | 
 | 	} else { | 
 | 		cip_header = NULL; | 
 | 	} | 
 |  | 
 | 	trace_amdtp_packet(s, cycle, cip_header, payload_length, data_blocks, | 
 | 			   data_block_counter, index); | 
 | } | 
 |  | 
 | static int check_cip_header(struct amdtp_stream *s, const __be32 *buf, | 
 | 			    unsigned int payload_length, | 
 | 			    unsigned int *data_blocks, | 
 | 			    unsigned int *data_block_counter, unsigned int *syt) | 
 | { | 
 | 	u32 cip_header[2]; | 
 | 	unsigned int sph; | 
 | 	unsigned int fmt; | 
 | 	unsigned int fdf; | 
 | 	unsigned int dbc; | 
 | 	bool lost; | 
 |  | 
 | 	cip_header[0] = be32_to_cpu(buf[0]); | 
 | 	cip_header[1] = be32_to_cpu(buf[1]); | 
 |  | 
 | 	/* | 
 | 	 * This module supports 'Two-quadlet CIP header with SYT field'. | 
 | 	 * For convenience, also check FMT field is AM824 or not. | 
 | 	 */ | 
 | 	if ((((cip_header[0] & CIP_EOH_MASK) == CIP_EOH) || | 
 | 	     ((cip_header[1] & CIP_EOH_MASK) != CIP_EOH)) && | 
 | 	    (!(s->flags & CIP_HEADER_WITHOUT_EOH))) { | 
 | 		dev_info_ratelimited(&s->unit->device, | 
 | 				"Invalid CIP header for AMDTP: %08X:%08X\n", | 
 | 				cip_header[0], cip_header[1]); | 
 | 		return -EAGAIN; | 
 | 	} | 
 |  | 
 | 	/* Check valid protocol or not. */ | 
 | 	sph = (cip_header[0] & CIP_SPH_MASK) >> CIP_SPH_SHIFT; | 
 | 	fmt = (cip_header[1] & CIP_FMT_MASK) >> CIP_FMT_SHIFT; | 
 | 	if (sph != s->sph || fmt != s->fmt) { | 
 | 		dev_info_ratelimited(&s->unit->device, | 
 | 				     "Detect unexpected protocol: %08x %08x\n", | 
 | 				     cip_header[0], cip_header[1]); | 
 | 		return -EAGAIN; | 
 | 	} | 
 |  | 
 | 	/* Calculate data blocks */ | 
 | 	fdf = (cip_header[1] & CIP_FDF_MASK) >> CIP_FDF_SHIFT; | 
 | 	if (payload_length < sizeof(__be32) * 2 || | 
 | 	    (fmt == CIP_FMT_AM && fdf == AMDTP_FDF_NO_DATA)) { | 
 | 		*data_blocks = 0; | 
 | 	} else { | 
 | 		unsigned int data_block_quadlets = | 
 | 				(cip_header[0] & CIP_DBS_MASK) >> CIP_DBS_SHIFT; | 
 | 		/* avoid division by zero */ | 
 | 		if (data_block_quadlets == 0) { | 
 | 			dev_err(&s->unit->device, | 
 | 				"Detect invalid value in dbs field: %08X\n", | 
 | 				cip_header[0]); | 
 | 			return -EPROTO; | 
 | 		} | 
 | 		if (s->flags & CIP_WRONG_DBS) | 
 | 			data_block_quadlets = s->data_block_quadlets; | 
 |  | 
 | 		*data_blocks = (payload_length / sizeof(__be32) - 2) / | 
 | 							data_block_quadlets; | 
 | 	} | 
 |  | 
 | 	/* Check data block counter continuity */ | 
 | 	dbc = cip_header[0] & CIP_DBC_MASK; | 
 | 	if (*data_blocks == 0 && (s->flags & CIP_EMPTY_HAS_WRONG_DBC) && | 
 | 	    *data_block_counter != UINT_MAX) | 
 | 		dbc = *data_block_counter; | 
 |  | 
 | 	if ((dbc == 0x00 && (s->flags & CIP_SKIP_DBC_ZERO_CHECK)) || | 
 | 	    *data_block_counter == UINT_MAX) { | 
 | 		lost = false; | 
 | 	} else if (!(s->flags & CIP_DBC_IS_END_EVENT)) { | 
 | 		lost = dbc != *data_block_counter; | 
 | 	} else { | 
 | 		unsigned int dbc_interval; | 
 |  | 
 | 		if (*data_blocks > 0 && s->ctx_data.tx.dbc_interval > 0) | 
 | 			dbc_interval = s->ctx_data.tx.dbc_interval; | 
 | 		else | 
 | 			dbc_interval = *data_blocks; | 
 |  | 
 | 		lost = dbc != ((*data_block_counter + dbc_interval) & 0xff); | 
 | 	} | 
 |  | 
 | 	if (lost) { | 
 | 		dev_err(&s->unit->device, | 
 | 			"Detect discontinuity of CIP: %02X %02X\n", | 
 | 			*data_block_counter, dbc); | 
 | 		return -EIO; | 
 | 	} | 
 |  | 
 | 	*data_block_counter = dbc; | 
 |  | 
 | 	*syt = cip_header[1] & CIP_SYT_MASK; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int parse_ir_ctx_header(struct amdtp_stream *s, unsigned int cycle, | 
 | 			       const __be32 *ctx_header, | 
 | 			       unsigned int *payload_length, | 
 | 			       unsigned int *data_blocks, | 
 | 			       unsigned int *data_block_counter, | 
 | 			       unsigned int *syt, unsigned int index) | 
 | { | 
 | 	const __be32 *cip_header; | 
 | 	int err; | 
 |  | 
 | 	*payload_length = be32_to_cpu(ctx_header[0]) >> ISO_DATA_LENGTH_SHIFT; | 
 | 	if (*payload_length > s->ctx_data.tx.ctx_header_size + | 
 | 					s->ctx_data.tx.max_ctx_payload_length) { | 
 | 		dev_err(&s->unit->device, | 
 | 			"Detect jumbo payload: %04x %04x\n", | 
 | 			*payload_length, s->ctx_data.tx.max_ctx_payload_length); | 
 | 		return -EIO; | 
 | 	} | 
 |  | 
 | 	if (!(s->flags & CIP_NO_HEADER)) { | 
 | 		cip_header = ctx_header + 2; | 
 | 		err = check_cip_header(s, cip_header, *payload_length, | 
 | 				       data_blocks, data_block_counter, syt); | 
 | 		if (err < 0) | 
 | 			return err; | 
 | 	} else { | 
 | 		cip_header = NULL; | 
 | 		err = 0; | 
 | 		*data_blocks = *payload_length / sizeof(__be32) / | 
 | 			       s->data_block_quadlets; | 
 | 		*syt = 0; | 
 |  | 
 | 		if (*data_block_counter == UINT_MAX) | 
 | 			*data_block_counter = 0; | 
 | 	} | 
 |  | 
 | 	trace_amdtp_packet(s, cycle, cip_header, *payload_length, *data_blocks, | 
 | 			   *data_block_counter, index); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | // In CYCLE_TIMER register of IEEE 1394, 7 bits are used to represent second. On | 
 | // the other hand, in DMA descriptors of 1394 OHCI, 3 bits are used to represent | 
 | // it. Thus, via Linux firewire subsystem, we can get the 3 bits for second. | 
 | static inline u32 compute_cycle_count(__be32 ctx_header_tstamp) | 
 | { | 
 | 	u32 tstamp = be32_to_cpu(ctx_header_tstamp) & HEADER_TSTAMP_MASK; | 
 | 	return (((tstamp >> 13) & 0x07) * 8000) + (tstamp & 0x1fff); | 
 | } | 
 |  | 
 | static inline u32 increment_cycle_count(u32 cycle, unsigned int addend) | 
 | { | 
 | 	cycle += addend; | 
 | 	if (cycle >= OHCI_MAX_SECOND * CYCLES_PER_SECOND) | 
 | 		cycle -= OHCI_MAX_SECOND * CYCLES_PER_SECOND; | 
 | 	return cycle; | 
 | } | 
 |  | 
 | // Align to actual cycle count for the packet which is going to be scheduled. | 
 | // This module queued the same number of isochronous cycle as the size of queue | 
 | // to kip isochronous cycle, therefore it's OK to just increment the cycle by | 
 | // the size of queue for scheduled cycle. | 
 | static inline u32 compute_it_cycle(const __be32 ctx_header_tstamp, | 
 | 				   unsigned int queue_size) | 
 | { | 
 | 	u32 cycle = compute_cycle_count(ctx_header_tstamp); | 
 | 	return increment_cycle_count(cycle, queue_size); | 
 | } | 
 |  | 
 | static int generate_device_pkt_descs(struct amdtp_stream *s, | 
 | 				     struct pkt_desc *descs, | 
 | 				     const __be32 *ctx_header, | 
 | 				     unsigned int packets) | 
 | { | 
 | 	unsigned int dbc = s->data_block_counter; | 
 | 	int i; | 
 | 	int err; | 
 |  | 
 | 	for (i = 0; i < packets; ++i) { | 
 | 		struct pkt_desc *desc = descs + i; | 
 | 		unsigned int index = (s->packet_index + i) % s->queue_size; | 
 | 		unsigned int cycle; | 
 | 		unsigned int payload_length; | 
 | 		unsigned int data_blocks; | 
 | 		unsigned int syt; | 
 |  | 
 | 		cycle = compute_cycle_count(ctx_header[1]); | 
 |  | 
 | 		err = parse_ir_ctx_header(s, cycle, ctx_header, &payload_length, | 
 | 					  &data_blocks, &dbc, &syt, i); | 
 | 		if (err < 0) | 
 | 			return err; | 
 |  | 
 | 		desc->cycle = cycle; | 
 | 		desc->syt = syt; | 
 | 		desc->data_blocks = data_blocks; | 
 | 		desc->data_block_counter = dbc; | 
 | 		desc->ctx_payload = s->buffer.packets[index].buffer; | 
 |  | 
 | 		if (!(s->flags & CIP_DBC_IS_END_EVENT)) | 
 | 			dbc = (dbc + desc->data_blocks) & 0xff; | 
 |  | 
 | 		ctx_header += | 
 | 			s->ctx_data.tx.ctx_header_size / sizeof(*ctx_header); | 
 | 	} | 
 |  | 
 | 	s->data_block_counter = dbc; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static unsigned int compute_syt(unsigned int syt_offset, unsigned int cycle, | 
 | 				unsigned int transfer_delay) | 
 | { | 
 | 	unsigned int syt; | 
 |  | 
 | 	syt_offset += transfer_delay; | 
 | 	syt = ((cycle + syt_offset / TICKS_PER_CYCLE) << 12) | | 
 | 	      (syt_offset % TICKS_PER_CYCLE); | 
 | 	return syt & CIP_SYT_MASK; | 
 | } | 
 |  | 
 | static void generate_pkt_descs(struct amdtp_stream *s, struct pkt_desc *descs, | 
 | 			       const __be32 *ctx_header, unsigned int packets, | 
 | 			       const struct seq_desc *seq_descs, | 
 | 			       unsigned int seq_size) | 
 | { | 
 | 	unsigned int dbc = s->data_block_counter; | 
 | 	unsigned int seq_index = s->ctx_data.rx.seq_index; | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < packets; ++i) { | 
 | 		struct pkt_desc *desc = descs + i; | 
 | 		unsigned int index = (s->packet_index + i) % s->queue_size; | 
 | 		const struct seq_desc *seq = seq_descs + seq_index; | 
 | 		unsigned int syt; | 
 |  | 
 | 		desc->cycle = compute_it_cycle(*ctx_header, s->queue_size); | 
 |  | 
 | 		syt = seq->syt_offset; | 
 | 		if (syt != CIP_SYT_NO_INFO) { | 
 | 			syt = compute_syt(syt, desc->cycle, | 
 | 					  s->ctx_data.rx.transfer_delay); | 
 | 		} | 
 | 		desc->syt = syt; | 
 | 		desc->data_blocks = seq->data_blocks; | 
 |  | 
 | 		if (s->flags & CIP_DBC_IS_END_EVENT) | 
 | 			dbc = (dbc + desc->data_blocks) & 0xff; | 
 |  | 
 | 		desc->data_block_counter = dbc; | 
 |  | 
 | 		if (!(s->flags & CIP_DBC_IS_END_EVENT)) | 
 | 			dbc = (dbc + desc->data_blocks) & 0xff; | 
 |  | 
 | 		desc->ctx_payload = s->buffer.packets[index].buffer; | 
 |  | 
 | 		seq_index = (seq_index + 1) % seq_size; | 
 |  | 
 | 		++ctx_header; | 
 | 	} | 
 |  | 
 | 	s->data_block_counter = dbc; | 
 | 	s->ctx_data.rx.seq_index = seq_index; | 
 | } | 
 |  | 
 | static inline void cancel_stream(struct amdtp_stream *s) | 
 | { | 
 | 	s->packet_index = -1; | 
 | 	if (in_interrupt()) | 
 | 		amdtp_stream_pcm_abort(s); | 
 | 	WRITE_ONCE(s->pcm_buffer_pointer, SNDRV_PCM_POS_XRUN); | 
 | } | 
 |  | 
 | static void process_ctx_payloads(struct amdtp_stream *s, | 
 | 				 const struct pkt_desc *descs, | 
 | 				 unsigned int packets) | 
 | { | 
 | 	struct snd_pcm_substream *pcm; | 
 | 	unsigned int pcm_frames; | 
 |  | 
 | 	pcm = READ_ONCE(s->pcm); | 
 | 	pcm_frames = s->process_ctx_payloads(s, descs, packets, pcm); | 
 | 	if (pcm) | 
 | 		update_pcm_pointers(s, pcm, pcm_frames); | 
 | } | 
 |  | 
 | static void out_stream_callback(struct fw_iso_context *context, u32 tstamp, | 
 | 				size_t header_length, void *header, | 
 | 				void *private_data) | 
 | { | 
 | 	struct amdtp_stream *s = private_data; | 
 | 	const struct amdtp_domain *d = s->domain; | 
 | 	const __be32 *ctx_header = header; | 
 | 	unsigned int events_per_period = s->ctx_data.rx.events_per_period; | 
 | 	unsigned int event_count = s->ctx_data.rx.event_count; | 
 | 	unsigned int packets; | 
 | 	int i; | 
 |  | 
 | 	if (s->packet_index < 0) | 
 | 		return; | 
 |  | 
 | 	// Calculate the number of packets in buffer and check XRUN. | 
 | 	packets = header_length / sizeof(*ctx_header); | 
 |  | 
 | 	generate_pkt_descs(s, s->pkt_descs, ctx_header, packets, d->seq_descs, | 
 | 			   d->seq_size); | 
 |  | 
 | 	process_ctx_payloads(s, s->pkt_descs, packets); | 
 |  | 
 | 	for (i = 0; i < packets; ++i) { | 
 | 		const struct pkt_desc *desc = s->pkt_descs + i; | 
 | 		unsigned int syt; | 
 | 		struct { | 
 | 			struct fw_iso_packet params; | 
 | 			__be32 header[IT_PKT_HEADER_SIZE_CIP / sizeof(__be32)]; | 
 | 		} template = { {0}, {0} }; | 
 | 		bool sched_irq = false; | 
 |  | 
 | 		if (s->ctx_data.rx.syt_override < 0) | 
 | 			syt = desc->syt; | 
 | 		else | 
 | 			syt = s->ctx_data.rx.syt_override; | 
 |  | 
 | 		build_it_pkt_header(s, desc->cycle, &template.params, | 
 | 				    desc->data_blocks, desc->data_block_counter, | 
 | 				    syt, i); | 
 |  | 
 | 		if (s == s->domain->irq_target) { | 
 | 			event_count += desc->data_blocks; | 
 | 			if (event_count >= events_per_period) { | 
 | 				event_count -= events_per_period; | 
 | 				sched_irq = true; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		if (queue_out_packet(s, &template.params, sched_irq) < 0) { | 
 | 			cancel_stream(s); | 
 | 			return; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	s->ctx_data.rx.event_count = event_count; | 
 | } | 
 |  | 
 | static void in_stream_callback(struct fw_iso_context *context, u32 tstamp, | 
 | 			       size_t header_length, void *header, | 
 | 			       void *private_data) | 
 | { | 
 | 	struct amdtp_stream *s = private_data; | 
 | 	__be32 *ctx_header = header; | 
 | 	unsigned int packets; | 
 | 	int i; | 
 | 	int err; | 
 |  | 
 | 	if (s->packet_index < 0) | 
 | 		return; | 
 |  | 
 | 	// Calculate the number of packets in buffer and check XRUN. | 
 | 	packets = header_length / s->ctx_data.tx.ctx_header_size; | 
 |  | 
 | 	err = generate_device_pkt_descs(s, s->pkt_descs, ctx_header, packets); | 
 | 	if (err < 0) { | 
 | 		if (err != -EAGAIN) { | 
 | 			cancel_stream(s); | 
 | 			return; | 
 | 		} | 
 | 	} else { | 
 | 		process_ctx_payloads(s, s->pkt_descs, packets); | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < packets; ++i) { | 
 | 		struct fw_iso_packet params = {0}; | 
 |  | 
 | 		if (queue_in_packet(s, ¶ms) < 0) { | 
 | 			cancel_stream(s); | 
 | 			return; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static void pool_ideal_seq_descs(struct amdtp_domain *d, unsigned int packets) | 
 | { | 
 | 	struct amdtp_stream *irq_target = d->irq_target; | 
 | 	unsigned int seq_tail = d->seq_tail; | 
 | 	unsigned int seq_size = d->seq_size; | 
 | 	unsigned int min_avail; | 
 | 	struct amdtp_stream *s; | 
 |  | 
 | 	min_avail = d->seq_size; | 
 | 	list_for_each_entry(s, &d->streams, list) { | 
 | 		unsigned int seq_index; | 
 | 		unsigned int avail; | 
 |  | 
 | 		if (s->direction == AMDTP_IN_STREAM) | 
 | 			continue; | 
 |  | 
 | 		seq_index = s->ctx_data.rx.seq_index; | 
 | 		avail = d->seq_tail; | 
 | 		if (seq_index > avail) | 
 | 			avail += d->seq_size; | 
 | 		avail -= seq_index; | 
 |  | 
 | 		if (avail < min_avail) | 
 | 			min_avail = avail; | 
 | 	} | 
 |  | 
 | 	while (min_avail < packets) { | 
 | 		struct seq_desc *desc = d->seq_descs + seq_tail; | 
 |  | 
 | 		desc->syt_offset = calculate_syt_offset(&d->last_syt_offset, | 
 | 					&d->syt_offset_state, irq_target->sfc); | 
 | 		desc->data_blocks = calculate_data_blocks(&d->data_block_state, | 
 | 				!!(irq_target->flags & CIP_BLOCKING), | 
 | 				desc->syt_offset == CIP_SYT_NO_INFO, | 
 | 				irq_target->syt_interval, irq_target->sfc); | 
 |  | 
 | 		++seq_tail; | 
 | 		seq_tail %= seq_size; | 
 |  | 
 | 		++min_avail; | 
 | 	} | 
 |  | 
 | 	d->seq_tail = seq_tail; | 
 | } | 
 |  | 
 | static void irq_target_callback(struct fw_iso_context *context, u32 tstamp, | 
 | 				size_t header_length, void *header, | 
 | 				void *private_data) | 
 | { | 
 | 	struct amdtp_stream *irq_target = private_data; | 
 | 	struct amdtp_domain *d = irq_target->domain; | 
 | 	unsigned int packets = header_length / sizeof(__be32); | 
 | 	struct amdtp_stream *s; | 
 |  | 
 | 	// Record enough entries with extra 3 cycles at least. | 
 | 	pool_ideal_seq_descs(d, packets + 3); | 
 |  | 
 | 	out_stream_callback(context, tstamp, header_length, header, irq_target); | 
 | 	if (amdtp_streaming_error(irq_target)) | 
 | 		goto error; | 
 |  | 
 | 	list_for_each_entry(s, &d->streams, list) { | 
 | 		if (s != irq_target && amdtp_stream_running(s)) { | 
 | 			fw_iso_context_flush_completions(s->context); | 
 | 			if (amdtp_streaming_error(s)) | 
 | 				goto error; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return; | 
 | error: | 
 | 	if (amdtp_stream_running(irq_target)) | 
 | 		cancel_stream(irq_target); | 
 |  | 
 | 	list_for_each_entry(s, &d->streams, list) { | 
 | 		if (amdtp_stream_running(s)) | 
 | 			cancel_stream(s); | 
 | 	} | 
 | } | 
 |  | 
 | // this is executed one time. | 
 | static void amdtp_stream_first_callback(struct fw_iso_context *context, | 
 | 					u32 tstamp, size_t header_length, | 
 | 					void *header, void *private_data) | 
 | { | 
 | 	struct amdtp_stream *s = private_data; | 
 | 	const __be32 *ctx_header = header; | 
 | 	u32 cycle; | 
 |  | 
 | 	/* | 
 | 	 * For in-stream, first packet has come. | 
 | 	 * For out-stream, prepared to transmit first packet | 
 | 	 */ | 
 | 	s->callbacked = true; | 
 | 	wake_up(&s->callback_wait); | 
 |  | 
 | 	if (s->direction == AMDTP_IN_STREAM) { | 
 | 		cycle = compute_cycle_count(ctx_header[1]); | 
 |  | 
 | 		context->callback.sc = in_stream_callback; | 
 | 	} else { | 
 | 		cycle = compute_it_cycle(*ctx_header, s->queue_size); | 
 |  | 
 | 		if (s == s->domain->irq_target) | 
 | 			context->callback.sc = irq_target_callback; | 
 | 		else | 
 | 			context->callback.sc = out_stream_callback; | 
 | 	} | 
 |  | 
 | 	s->start_cycle = cycle; | 
 |  | 
 | 	context->callback.sc(context, tstamp, header_length, header, s); | 
 | } | 
 |  | 
 | /** | 
 |  * amdtp_stream_start - start transferring packets | 
 |  * @s: the AMDTP stream to start | 
 |  * @channel: the isochronous channel on the bus | 
 |  * @speed: firewire speed code | 
 |  * @start_cycle: the isochronous cycle to start the context. Start immediately | 
 |  *		 if negative value is given. | 
 |  * @queue_size: The number of packets in the queue. | 
 |  * @idle_irq_interval: the interval to queue packet during initial state. | 
 |  * | 
 |  * The stream cannot be started until it has been configured with | 
 |  * amdtp_stream_set_parameters() and it must be started before any PCM or MIDI | 
 |  * device can be started. | 
 |  */ | 
 | static int amdtp_stream_start(struct amdtp_stream *s, int channel, int speed, | 
 | 			      int start_cycle, unsigned int queue_size, | 
 | 			      unsigned int idle_irq_interval) | 
 | { | 
 | 	bool is_irq_target = (s == s->domain->irq_target); | 
 | 	unsigned int ctx_header_size; | 
 | 	unsigned int max_ctx_payload_size; | 
 | 	enum dma_data_direction dir; | 
 | 	int type, tag, err; | 
 |  | 
 | 	mutex_lock(&s->mutex); | 
 |  | 
 | 	if (WARN_ON(amdtp_stream_running(s) || | 
 | 		    (s->data_block_quadlets < 1))) { | 
 | 		err = -EBADFD; | 
 | 		goto err_unlock; | 
 | 	} | 
 |  | 
 | 	if (s->direction == AMDTP_IN_STREAM) { | 
 | 		// NOTE: IT context should be used for constant IRQ. | 
 | 		if (is_irq_target) { | 
 | 			err = -EINVAL; | 
 | 			goto err_unlock; | 
 | 		} | 
 |  | 
 | 		s->data_block_counter = UINT_MAX; | 
 | 	} else { | 
 | 		s->data_block_counter = 0; | 
 | 	} | 
 |  | 
 | 	/* initialize packet buffer */ | 
 | 	if (s->direction == AMDTP_IN_STREAM) { | 
 | 		dir = DMA_FROM_DEVICE; | 
 | 		type = FW_ISO_CONTEXT_RECEIVE; | 
 | 		if (!(s->flags & CIP_NO_HEADER)) | 
 | 			ctx_header_size = IR_CTX_HEADER_SIZE_CIP; | 
 | 		else | 
 | 			ctx_header_size = IR_CTX_HEADER_SIZE_NO_CIP; | 
 |  | 
 | 		max_ctx_payload_size = amdtp_stream_get_max_payload(s) - | 
 | 				       ctx_header_size; | 
 | 	} else { | 
 | 		dir = DMA_TO_DEVICE; | 
 | 		type = FW_ISO_CONTEXT_TRANSMIT; | 
 | 		ctx_header_size = 0;	// No effect for IT context. | 
 |  | 
 | 		max_ctx_payload_size = amdtp_stream_get_max_payload(s); | 
 | 		if (!(s->flags & CIP_NO_HEADER)) | 
 | 			max_ctx_payload_size -= IT_PKT_HEADER_SIZE_CIP; | 
 | 	} | 
 |  | 
 | 	err = iso_packets_buffer_init(&s->buffer, s->unit, queue_size, | 
 | 				      max_ctx_payload_size, dir); | 
 | 	if (err < 0) | 
 | 		goto err_unlock; | 
 | 	s->queue_size = queue_size; | 
 |  | 
 | 	s->context = fw_iso_context_create(fw_parent_device(s->unit)->card, | 
 | 					  type, channel, speed, ctx_header_size, | 
 | 					  amdtp_stream_first_callback, s); | 
 | 	if (IS_ERR(s->context)) { | 
 | 		err = PTR_ERR(s->context); | 
 | 		if (err == -EBUSY) | 
 | 			dev_err(&s->unit->device, | 
 | 				"no free stream on this controller\n"); | 
 | 		goto err_buffer; | 
 | 	} | 
 |  | 
 | 	amdtp_stream_update(s); | 
 |  | 
 | 	if (s->direction == AMDTP_IN_STREAM) { | 
 | 		s->ctx_data.tx.max_ctx_payload_length = max_ctx_payload_size; | 
 | 		s->ctx_data.tx.ctx_header_size = ctx_header_size; | 
 | 	} | 
 |  | 
 | 	if (s->flags & CIP_NO_HEADER) | 
 | 		s->tag = TAG_NO_CIP_HEADER; | 
 | 	else | 
 | 		s->tag = TAG_CIP; | 
 |  | 
 | 	s->pkt_descs = kcalloc(s->queue_size, sizeof(*s->pkt_descs), | 
 | 			       GFP_KERNEL); | 
 | 	if (!s->pkt_descs) { | 
 | 		err = -ENOMEM; | 
 | 		goto err_context; | 
 | 	} | 
 |  | 
 | 	s->packet_index = 0; | 
 | 	do { | 
 | 		struct fw_iso_packet params; | 
 |  | 
 | 		if (s->direction == AMDTP_IN_STREAM) { | 
 | 			err = queue_in_packet(s, ¶ms); | 
 | 		} else { | 
 | 			bool sched_irq = false; | 
 |  | 
 | 			params.header_length = 0; | 
 | 			params.payload_length = 0; | 
 |  | 
 | 			if (is_irq_target) { | 
 | 				sched_irq = !((s->packet_index + 1) % | 
 | 					      idle_irq_interval); | 
 | 			} | 
 |  | 
 | 			err = queue_out_packet(s, ¶ms, sched_irq); | 
 | 		} | 
 | 		if (err < 0) | 
 | 			goto err_pkt_descs; | 
 | 	} while (s->packet_index > 0); | 
 |  | 
 | 	/* NOTE: TAG1 matches CIP. This just affects in stream. */ | 
 | 	tag = FW_ISO_CONTEXT_MATCH_TAG1; | 
 | 	if ((s->flags & CIP_EMPTY_WITH_TAG0) || (s->flags & CIP_NO_HEADER)) | 
 | 		tag |= FW_ISO_CONTEXT_MATCH_TAG0; | 
 |  | 
 | 	s->callbacked = false; | 
 | 	err = fw_iso_context_start(s->context, start_cycle, 0, tag); | 
 | 	if (err < 0) | 
 | 		goto err_pkt_descs; | 
 |  | 
 | 	mutex_unlock(&s->mutex); | 
 |  | 
 | 	return 0; | 
 | err_pkt_descs: | 
 | 	kfree(s->pkt_descs); | 
 | err_context: | 
 | 	fw_iso_context_destroy(s->context); | 
 | 	s->context = ERR_PTR(-1); | 
 | err_buffer: | 
 | 	iso_packets_buffer_destroy(&s->buffer, s->unit); | 
 | err_unlock: | 
 | 	mutex_unlock(&s->mutex); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | /** | 
 |  * amdtp_domain_stream_pcm_pointer - get the PCM buffer position | 
 |  * @d: the AMDTP domain. | 
 |  * @s: the AMDTP stream that transports the PCM data | 
 |  * | 
 |  * Returns the current buffer position, in frames. | 
 |  */ | 
 | unsigned long amdtp_domain_stream_pcm_pointer(struct amdtp_domain *d, | 
 | 					      struct amdtp_stream *s) | 
 | { | 
 | 	struct amdtp_stream *irq_target = d->irq_target; | 
 |  | 
 | 	if (irq_target && amdtp_stream_running(irq_target)) { | 
 | 		// This function is called in software IRQ context of | 
 | 		// period_tasklet or process context. | 
 | 		// | 
 | 		// When the software IRQ context was scheduled by software IRQ | 
 | 		// context of IT contexts, queued packets were already handled. | 
 | 		// Therefore, no need to flush the queue in buffer furthermore. | 
 | 		// | 
 | 		// When the process context reach here, some packets will be | 
 | 		// already queued in the buffer. These packets should be handled | 
 | 		// immediately to keep better granularity of PCM pointer. | 
 | 		// | 
 | 		// Later, the process context will sometimes schedules software | 
 | 		// IRQ context of the period_tasklet. Then, no need to flush the | 
 | 		// queue by the same reason as described in the above | 
 | 		if (!in_interrupt()) { | 
 | 			// Queued packet should be processed without any kernel | 
 | 			// preemption to keep latency against bus cycle. | 
 | 			preempt_disable(); | 
 | 			fw_iso_context_flush_completions(irq_target->context); | 
 | 			preempt_enable(); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return READ_ONCE(s->pcm_buffer_pointer); | 
 | } | 
 | EXPORT_SYMBOL_GPL(amdtp_domain_stream_pcm_pointer); | 
 |  | 
 | /** | 
 |  * amdtp_domain_stream_pcm_ack - acknowledge queued PCM frames | 
 |  * @d: the AMDTP domain. | 
 |  * @s: the AMDTP stream that transfers the PCM frames | 
 |  * | 
 |  * Returns zero always. | 
 |  */ | 
 | int amdtp_domain_stream_pcm_ack(struct amdtp_domain *d, struct amdtp_stream *s) | 
 | { | 
 | 	struct amdtp_stream *irq_target = d->irq_target; | 
 |  | 
 | 	// Process isochronous packets for recent isochronous cycle to handle | 
 | 	// queued PCM frames. | 
 | 	if (irq_target && amdtp_stream_running(irq_target)) { | 
 | 		// Queued packet should be processed without any kernel | 
 | 		// preemption to keep latency against bus cycle. | 
 | 		preempt_disable(); | 
 | 		fw_iso_context_flush_completions(irq_target->context); | 
 | 		preempt_enable(); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(amdtp_domain_stream_pcm_ack); | 
 |  | 
 | /** | 
 |  * amdtp_stream_update - update the stream after a bus reset | 
 |  * @s: the AMDTP stream | 
 |  */ | 
 | void amdtp_stream_update(struct amdtp_stream *s) | 
 | { | 
 | 	/* Precomputing. */ | 
 | 	WRITE_ONCE(s->source_node_id_field, | 
 |                    (fw_parent_device(s->unit)->card->node_id << CIP_SID_SHIFT) & CIP_SID_MASK); | 
 | } | 
 | EXPORT_SYMBOL(amdtp_stream_update); | 
 |  | 
 | /** | 
 |  * amdtp_stream_stop - stop sending packets | 
 |  * @s: the AMDTP stream to stop | 
 |  * | 
 |  * All PCM and MIDI devices of the stream must be stopped before the stream | 
 |  * itself can be stopped. | 
 |  */ | 
 | static void amdtp_stream_stop(struct amdtp_stream *s) | 
 | { | 
 | 	mutex_lock(&s->mutex); | 
 |  | 
 | 	if (!amdtp_stream_running(s)) { | 
 | 		mutex_unlock(&s->mutex); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	tasklet_kill(&s->period_tasklet); | 
 | 	fw_iso_context_stop(s->context); | 
 | 	fw_iso_context_destroy(s->context); | 
 | 	s->context = ERR_PTR(-1); | 
 | 	iso_packets_buffer_destroy(&s->buffer, s->unit); | 
 | 	kfree(s->pkt_descs); | 
 |  | 
 | 	s->callbacked = false; | 
 |  | 
 | 	mutex_unlock(&s->mutex); | 
 | } | 
 |  | 
 | /** | 
 |  * amdtp_stream_pcm_abort - abort the running PCM device | 
 |  * @s: the AMDTP stream about to be stopped | 
 |  * | 
 |  * If the isochronous stream needs to be stopped asynchronously, call this | 
 |  * function first to stop the PCM device. | 
 |  */ | 
 | void amdtp_stream_pcm_abort(struct amdtp_stream *s) | 
 | { | 
 | 	struct snd_pcm_substream *pcm; | 
 |  | 
 | 	pcm = READ_ONCE(s->pcm); | 
 | 	if (pcm) | 
 | 		snd_pcm_stop_xrun(pcm); | 
 | } | 
 | EXPORT_SYMBOL(amdtp_stream_pcm_abort); | 
 |  | 
 | /** | 
 |  * amdtp_domain_init - initialize an AMDTP domain structure | 
 |  * @d: the AMDTP domain to initialize. | 
 |  */ | 
 | int amdtp_domain_init(struct amdtp_domain *d) | 
 | { | 
 | 	INIT_LIST_HEAD(&d->streams); | 
 |  | 
 | 	d->events_per_period = 0; | 
 |  | 
 | 	d->seq_descs = NULL; | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(amdtp_domain_init); | 
 |  | 
 | /** | 
 |  * amdtp_domain_destroy - destroy an AMDTP domain structure | 
 |  * @d: the AMDTP domain to destroy. | 
 |  */ | 
 | void amdtp_domain_destroy(struct amdtp_domain *d) | 
 | { | 
 | 	// At present nothing to do. | 
 | 	return; | 
 | } | 
 | EXPORT_SYMBOL_GPL(amdtp_domain_destroy); | 
 |  | 
 | /** | 
 |  * amdtp_domain_add_stream - register isoc context into the domain. | 
 |  * @d: the AMDTP domain. | 
 |  * @s: the AMDTP stream. | 
 |  * @channel: the isochronous channel on the bus. | 
 |  * @speed: firewire speed code. | 
 |  */ | 
 | int amdtp_domain_add_stream(struct amdtp_domain *d, struct amdtp_stream *s, | 
 | 			    int channel, int speed) | 
 | { | 
 | 	struct amdtp_stream *tmp; | 
 |  | 
 | 	list_for_each_entry(tmp, &d->streams, list) { | 
 | 		if (s == tmp) | 
 | 			return -EBUSY; | 
 | 	} | 
 |  | 
 | 	list_add(&s->list, &d->streams); | 
 |  | 
 | 	s->channel = channel; | 
 | 	s->speed = speed; | 
 | 	s->domain = d; | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(amdtp_domain_add_stream); | 
 |  | 
 | static int get_current_cycle_time(struct fw_card *fw_card, int *cur_cycle) | 
 | { | 
 | 	int generation; | 
 | 	int rcode; | 
 | 	__be32 reg; | 
 | 	u32 data; | 
 |  | 
 | 	// This is a request to local 1394 OHCI controller and expected to | 
 | 	// complete without any event waiting. | 
 | 	generation = fw_card->generation; | 
 | 	smp_rmb();	// node_id vs. generation. | 
 | 	rcode = fw_run_transaction(fw_card, TCODE_READ_QUADLET_REQUEST, | 
 | 				   fw_card->node_id, generation, SCODE_100, | 
 | 				   CSR_REGISTER_BASE + CSR_CYCLE_TIME, | 
 | 				   ®, sizeof(reg)); | 
 | 	if (rcode != RCODE_COMPLETE) | 
 | 		return -EIO; | 
 |  | 
 | 	data = be32_to_cpu(reg); | 
 | 	*cur_cycle = data >> 12; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * amdtp_domain_start - start sending packets for isoc context in the domain. | 
 |  * @d: the AMDTP domain. | 
 |  * @ir_delay_cycle: the cycle delay to start all IR contexts. | 
 |  */ | 
 | int amdtp_domain_start(struct amdtp_domain *d, unsigned int ir_delay_cycle) | 
 | { | 
 | 	static const struct { | 
 | 		unsigned int data_block; | 
 | 		unsigned int syt_offset; | 
 | 	} *entry, initial_state[] = { | 
 | 		[CIP_SFC_32000]  = {  4, 3072 }, | 
 | 		[CIP_SFC_48000]  = {  6, 1024 }, | 
 | 		[CIP_SFC_96000]  = { 12, 1024 }, | 
 | 		[CIP_SFC_192000] = { 24, 1024 }, | 
 | 		[CIP_SFC_44100]  = {  0,   67 }, | 
 | 		[CIP_SFC_88200]  = {  0,   67 }, | 
 | 		[CIP_SFC_176400] = {  0,   67 }, | 
 | 	}; | 
 | 	unsigned int events_per_buffer = d->events_per_buffer; | 
 | 	unsigned int events_per_period = d->events_per_period; | 
 | 	unsigned int idle_irq_interval; | 
 | 	unsigned int queue_size; | 
 | 	struct amdtp_stream *s; | 
 | 	int cycle; | 
 | 	int err; | 
 |  | 
 | 	// Select an IT context as IRQ target. | 
 | 	list_for_each_entry(s, &d->streams, list) { | 
 | 		if (s->direction == AMDTP_OUT_STREAM) | 
 | 			break; | 
 | 	} | 
 | 	if (!s) | 
 | 		return -ENXIO; | 
 | 	d->irq_target = s; | 
 |  | 
 | 	// This is a case that AMDTP streams in domain run just for MIDI | 
 | 	// substream. Use the number of events equivalent to 10 msec as | 
 | 	// interval of hardware IRQ. | 
 | 	if (events_per_period == 0) | 
 | 		events_per_period = amdtp_rate_table[d->irq_target->sfc] / 100; | 
 | 	if (events_per_buffer == 0) | 
 | 		events_per_buffer = events_per_period * 3; | 
 |  | 
 | 	queue_size = DIV_ROUND_UP(CYCLES_PER_SECOND * events_per_buffer, | 
 | 				  amdtp_rate_table[d->irq_target->sfc]); | 
 |  | 
 | 	d->seq_descs = kcalloc(queue_size, sizeof(*d->seq_descs), GFP_KERNEL); | 
 | 	if (!d->seq_descs) | 
 | 		return -ENOMEM; | 
 | 	d->seq_size = queue_size; | 
 | 	d->seq_tail = 0; | 
 |  | 
 | 	entry = &initial_state[s->sfc]; | 
 | 	d->data_block_state = entry->data_block; | 
 | 	d->syt_offset_state = entry->syt_offset; | 
 | 	d->last_syt_offset = TICKS_PER_CYCLE; | 
 |  | 
 | 	if (ir_delay_cycle > 0) { | 
 | 		struct fw_card *fw_card = fw_parent_device(s->unit)->card; | 
 |  | 
 | 		err = get_current_cycle_time(fw_card, &cycle); | 
 | 		if (err < 0) | 
 | 			goto error; | 
 |  | 
 | 		// No need to care overflow in cycle field because of enough | 
 | 		// width. | 
 | 		cycle += ir_delay_cycle; | 
 |  | 
 | 		// Round up to sec field. | 
 | 		if ((cycle & 0x00001fff) >= CYCLES_PER_SECOND) { | 
 | 			unsigned int sec; | 
 |  | 
 | 			// The sec field can overflow. | 
 | 			sec = (cycle & 0xffffe000) >> 13; | 
 | 			cycle = (++sec << 13) | | 
 | 				((cycle & 0x00001fff) / CYCLES_PER_SECOND); | 
 | 		} | 
 |  | 
 | 		// In OHCI 1394 specification, lower 2 bits are available for | 
 | 		// sec field. | 
 | 		cycle &= 0x00007fff; | 
 | 	} else { | 
 | 		cycle = -1; | 
 | 	} | 
 |  | 
 | 	list_for_each_entry(s, &d->streams, list) { | 
 | 		int cycle_match; | 
 |  | 
 | 		if (s->direction == AMDTP_IN_STREAM) { | 
 | 			cycle_match = cycle; | 
 | 		} else { | 
 | 			// IT context starts immediately. | 
 | 			cycle_match = -1; | 
 | 			s->ctx_data.rx.seq_index = 0; | 
 | 		} | 
 |  | 
 | 		if (s != d->irq_target) { | 
 | 			err = amdtp_stream_start(s, s->channel, s->speed, | 
 | 						 cycle_match, queue_size, 0); | 
 | 			if (err < 0) | 
 | 				goto error; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	s = d->irq_target; | 
 | 	s->ctx_data.rx.events_per_period = events_per_period; | 
 | 	s->ctx_data.rx.event_count = 0; | 
 | 	s->ctx_data.rx.seq_index = 0; | 
 |  | 
 | 	idle_irq_interval = DIV_ROUND_UP(CYCLES_PER_SECOND * events_per_period, | 
 | 					 amdtp_rate_table[d->irq_target->sfc]); | 
 | 	err = amdtp_stream_start(s, s->channel, s->speed, -1, queue_size, | 
 | 				 idle_irq_interval); | 
 | 	if (err < 0) | 
 | 		goto error; | 
 |  | 
 | 	return 0; | 
 | error: | 
 | 	list_for_each_entry(s, &d->streams, list) | 
 | 		amdtp_stream_stop(s); | 
 | 	kfree(d->seq_descs); | 
 | 	d->seq_descs = NULL; | 
 | 	return err; | 
 | } | 
 | EXPORT_SYMBOL_GPL(amdtp_domain_start); | 
 |  | 
 | /** | 
 |  * amdtp_domain_stop - stop sending packets for isoc context in the same domain. | 
 |  * @d: the AMDTP domain to which the isoc contexts belong. | 
 |  */ | 
 | void amdtp_domain_stop(struct amdtp_domain *d) | 
 | { | 
 | 	struct amdtp_stream *s, *next; | 
 |  | 
 | 	if (d->irq_target) | 
 | 		amdtp_stream_stop(d->irq_target); | 
 |  | 
 | 	list_for_each_entry_safe(s, next, &d->streams, list) { | 
 | 		list_del(&s->list); | 
 |  | 
 | 		if (s != d->irq_target) | 
 | 			amdtp_stream_stop(s); | 
 | 	} | 
 |  | 
 | 	d->events_per_period = 0; | 
 | 	d->irq_target = NULL; | 
 |  | 
 | 	kfree(d->seq_descs); | 
 | 	d->seq_descs = NULL; | 
 | } | 
 | EXPORT_SYMBOL_GPL(amdtp_domain_stop); |