| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * linux/mm/madvise.c |
| * |
| * Copyright (C) 1999 Linus Torvalds |
| * Copyright (C) 2002 Christoph Hellwig |
| */ |
| |
| #include <linux/mman.h> |
| #include <linux/pagemap.h> |
| #include <linux/syscalls.h> |
| #include <linux/mempolicy.h> |
| #include <linux/page-isolation.h> |
| #include <linux/page_idle.h> |
| #include <linux/userfaultfd_k.h> |
| #include <linux/hugetlb.h> |
| #include <linux/falloc.h> |
| #include <linux/fadvise.h> |
| #include <linux/sched.h> |
| #include <linux/sched/mm.h> |
| #include <linux/mm_inline.h> |
| #include <linux/mmu_context.h> |
| #include <linux/string.h> |
| #include <linux/uio.h> |
| #include <linux/ksm.h> |
| #include <linux/fs.h> |
| #include <linux/file.h> |
| #include <linux/blkdev.h> |
| #include <linux/backing-dev.h> |
| #include <linux/pagewalk.h> |
| #include <linux/swap.h> |
| #include <linux/swapops.h> |
| #include <linux/shmem_fs.h> |
| #include <linux/mmu_notifier.h> |
| |
| #include <asm/tlb.h> |
| |
| #include "internal.h" |
| #include "swap.h" |
| |
| #define __MADV_SET_ANON_VMA_NAME (-1) |
| |
| /* |
| * Maximum number of attempts we make to install guard pages before we give up |
| * and return -ERESTARTNOINTR to have userspace try again. |
| */ |
| #define MAX_MADVISE_GUARD_RETRIES 3 |
| |
| struct madvise_walk_private { |
| struct mmu_gather *tlb; |
| bool pageout; |
| }; |
| |
| enum madvise_lock_mode { |
| MADVISE_NO_LOCK, |
| MADVISE_MMAP_READ_LOCK, |
| MADVISE_MMAP_WRITE_LOCK, |
| MADVISE_VMA_READ_LOCK, |
| }; |
| |
| struct madvise_behavior_range { |
| unsigned long start; |
| unsigned long end; |
| }; |
| |
| struct madvise_behavior { |
| struct mm_struct *mm; |
| int behavior; |
| struct mmu_gather *tlb; |
| enum madvise_lock_mode lock_mode; |
| struct anon_vma_name *anon_name; |
| |
| /* |
| * The range over which the behaviour is currently being applied. If |
| * traversing multiple VMAs, this is updated for each. |
| */ |
| struct madvise_behavior_range range; |
| /* The VMA and VMA preceding it (if applicable) currently targeted. */ |
| struct vm_area_struct *prev; |
| struct vm_area_struct *vma; |
| bool lock_dropped; |
| }; |
| |
| #ifdef CONFIG_ANON_VMA_NAME |
| static int madvise_walk_vmas(struct madvise_behavior *madv_behavior); |
| |
| struct anon_vma_name *anon_vma_name_alloc(const char *name) |
| { |
| struct anon_vma_name *anon_name; |
| size_t count; |
| |
| /* Add 1 for NUL terminator at the end of the anon_name->name */ |
| count = strlen(name) + 1; |
| anon_name = kmalloc(struct_size(anon_name, name, count), GFP_KERNEL); |
| if (anon_name) { |
| kref_init(&anon_name->kref); |
| memcpy(anon_name->name, name, count); |
| } |
| |
| return anon_name; |
| } |
| |
| void anon_vma_name_free(struct kref *kref) |
| { |
| struct anon_vma_name *anon_name = |
| container_of(kref, struct anon_vma_name, kref); |
| kfree(anon_name); |
| } |
| |
| struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma) |
| { |
| if (!rwsem_is_locked(&vma->vm_mm->mmap_lock)) |
| vma_assert_locked(vma); |
| |
| return vma->anon_name; |
| } |
| |
| /* mmap_lock should be write-locked */ |
| static int replace_anon_vma_name(struct vm_area_struct *vma, |
| struct anon_vma_name *anon_name) |
| { |
| struct anon_vma_name *orig_name = anon_vma_name(vma); |
| |
| if (!anon_name) { |
| vma->anon_name = NULL; |
| anon_vma_name_put(orig_name); |
| return 0; |
| } |
| |
| if (anon_vma_name_eq(orig_name, anon_name)) |
| return 0; |
| |
| vma->anon_name = anon_vma_name_reuse(anon_name); |
| anon_vma_name_put(orig_name); |
| |
| return 0; |
| } |
| #else /* CONFIG_ANON_VMA_NAME */ |
| static int replace_anon_vma_name(struct vm_area_struct *vma, |
| struct anon_vma_name *anon_name) |
| { |
| if (anon_name) |
| return -EINVAL; |
| |
| return 0; |
| } |
| #endif /* CONFIG_ANON_VMA_NAME */ |
| /* |
| * Update the vm_flags or anon_name on region of a vma, splitting it or merging |
| * it as necessary. Must be called with mmap_lock held for writing. |
| */ |
| static int madvise_update_vma(vm_flags_t new_flags, |
| struct madvise_behavior *madv_behavior) |
| { |
| struct vm_area_struct *vma = madv_behavior->vma; |
| struct madvise_behavior_range *range = &madv_behavior->range; |
| struct anon_vma_name *anon_name = madv_behavior->anon_name; |
| bool set_new_anon_name = madv_behavior->behavior == __MADV_SET_ANON_VMA_NAME; |
| VMA_ITERATOR(vmi, madv_behavior->mm, range->start); |
| |
| if (new_flags == vma->vm_flags && (!set_new_anon_name || |
| anon_vma_name_eq(anon_vma_name(vma), anon_name))) |
| return 0; |
| |
| if (set_new_anon_name) |
| vma = vma_modify_name(&vmi, madv_behavior->prev, vma, |
| range->start, range->end, anon_name); |
| else |
| vma = vma_modify_flags(&vmi, madv_behavior->prev, vma, |
| range->start, range->end, new_flags); |
| |
| if (IS_ERR(vma)) |
| return PTR_ERR(vma); |
| |
| madv_behavior->vma = vma; |
| |
| /* vm_flags is protected by the mmap_lock held in write mode. */ |
| vma_start_write(vma); |
| vm_flags_reset(vma, new_flags); |
| if (set_new_anon_name) |
| return replace_anon_vma_name(vma, anon_name); |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_SWAP |
| static int swapin_walk_pmd_entry(pmd_t *pmd, unsigned long start, |
| unsigned long end, struct mm_walk *walk) |
| { |
| struct vm_area_struct *vma = walk->private; |
| struct swap_iocb *splug = NULL; |
| pte_t *ptep = NULL; |
| spinlock_t *ptl; |
| unsigned long addr; |
| |
| for (addr = start; addr < end; addr += PAGE_SIZE) { |
| pte_t pte; |
| swp_entry_t entry; |
| struct folio *folio; |
| |
| if (!ptep++) { |
| ptep = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); |
| if (!ptep) |
| break; |
| } |
| |
| pte = ptep_get(ptep); |
| if (!is_swap_pte(pte)) |
| continue; |
| entry = pte_to_swp_entry(pte); |
| if (unlikely(non_swap_entry(entry))) |
| continue; |
| |
| pte_unmap_unlock(ptep, ptl); |
| ptep = NULL; |
| |
| folio = read_swap_cache_async(entry, GFP_HIGHUSER_MOVABLE, |
| vma, addr, &splug); |
| if (folio) |
| folio_put(folio); |
| } |
| |
| if (ptep) |
| pte_unmap_unlock(ptep, ptl); |
| swap_read_unplug(splug); |
| cond_resched(); |
| |
| return 0; |
| } |
| |
| static const struct mm_walk_ops swapin_walk_ops = { |
| .pmd_entry = swapin_walk_pmd_entry, |
| .walk_lock = PGWALK_RDLOCK, |
| }; |
| |
| static void shmem_swapin_range(struct vm_area_struct *vma, |
| unsigned long start, unsigned long end, |
| struct address_space *mapping) |
| { |
| XA_STATE(xas, &mapping->i_pages, linear_page_index(vma, start)); |
| pgoff_t end_index = linear_page_index(vma, end) - 1; |
| struct folio *folio; |
| struct swap_iocb *splug = NULL; |
| |
| rcu_read_lock(); |
| xas_for_each(&xas, folio, end_index) { |
| unsigned long addr; |
| swp_entry_t entry; |
| |
| if (!xa_is_value(folio)) |
| continue; |
| entry = radix_to_swp_entry(folio); |
| /* There might be swapin error entries in shmem mapping. */ |
| if (non_swap_entry(entry)) |
| continue; |
| |
| addr = vma->vm_start + |
| ((xas.xa_index - vma->vm_pgoff) << PAGE_SHIFT); |
| xas_pause(&xas); |
| rcu_read_unlock(); |
| |
| folio = read_swap_cache_async(entry, mapping_gfp_mask(mapping), |
| vma, addr, &splug); |
| if (folio) |
| folio_put(folio); |
| |
| rcu_read_lock(); |
| } |
| rcu_read_unlock(); |
| swap_read_unplug(splug); |
| } |
| #endif /* CONFIG_SWAP */ |
| |
| static void mark_mmap_lock_dropped(struct madvise_behavior *madv_behavior) |
| { |
| VM_WARN_ON_ONCE(madv_behavior->lock_mode == MADVISE_VMA_READ_LOCK); |
| madv_behavior->lock_dropped = true; |
| } |
| |
| /* |
| * Schedule all required I/O operations. Do not wait for completion. |
| */ |
| static long madvise_willneed(struct madvise_behavior *madv_behavior) |
| { |
| struct vm_area_struct *vma = madv_behavior->vma; |
| struct mm_struct *mm = madv_behavior->mm; |
| struct file *file = vma->vm_file; |
| unsigned long start = madv_behavior->range.start; |
| unsigned long end = madv_behavior->range.end; |
| loff_t offset; |
| |
| #ifdef CONFIG_SWAP |
| if (!file) { |
| walk_page_range_vma(vma, start, end, &swapin_walk_ops, vma); |
| lru_add_drain(); /* Push any new pages onto the LRU now */ |
| return 0; |
| } |
| |
| if (shmem_mapping(file->f_mapping)) { |
| shmem_swapin_range(vma, start, end, file->f_mapping); |
| lru_add_drain(); /* Push any new pages onto the LRU now */ |
| return 0; |
| } |
| #else |
| if (!file) |
| return -EBADF; |
| #endif |
| |
| if (IS_DAX(file_inode(file))) { |
| /* no bad return value, but ignore advice */ |
| return 0; |
| } |
| |
| /* |
| * Filesystem's fadvise may need to take various locks. We need to |
| * explicitly grab a reference because the vma (and hence the |
| * vma's reference to the file) can go away as soon as we drop |
| * mmap_lock. |
| */ |
| mark_mmap_lock_dropped(madv_behavior); |
| get_file(file); |
| offset = (loff_t)(start - vma->vm_start) |
| + ((loff_t)vma->vm_pgoff << PAGE_SHIFT); |
| mmap_read_unlock(mm); |
| vfs_fadvise(file, offset, end - start, POSIX_FADV_WILLNEED); |
| fput(file); |
| mmap_read_lock(mm); |
| return 0; |
| } |
| |
| static inline bool can_do_file_pageout(struct vm_area_struct *vma) |
| { |
| if (!vma->vm_file) |
| return false; |
| /* |
| * paging out pagecache only for non-anonymous mappings that correspond |
| * to the files the calling process could (if tried) open for writing; |
| * otherwise we'd be including shared non-exclusive mappings, which |
| * opens a side channel. |
| */ |
| return inode_owner_or_capable(&nop_mnt_idmap, |
| file_inode(vma->vm_file)) || |
| file_permission(vma->vm_file, MAY_WRITE) == 0; |
| } |
| |
| static inline int madvise_folio_pte_batch(unsigned long addr, unsigned long end, |
| struct folio *folio, pte_t *ptep, |
| pte_t *ptentp) |
| { |
| int max_nr = (end - addr) / PAGE_SIZE; |
| |
| return folio_pte_batch_flags(folio, NULL, ptep, ptentp, max_nr, |
| FPB_MERGE_YOUNG_DIRTY); |
| } |
| |
| static int madvise_cold_or_pageout_pte_range(pmd_t *pmd, |
| unsigned long addr, unsigned long end, |
| struct mm_walk *walk) |
| { |
| struct madvise_walk_private *private = walk->private; |
| struct mmu_gather *tlb = private->tlb; |
| bool pageout = private->pageout; |
| struct mm_struct *mm = tlb->mm; |
| struct vm_area_struct *vma = walk->vma; |
| pte_t *start_pte, *pte, ptent; |
| spinlock_t *ptl; |
| struct folio *folio = NULL; |
| LIST_HEAD(folio_list); |
| bool pageout_anon_only_filter; |
| unsigned int batch_count = 0; |
| int nr; |
| |
| if (fatal_signal_pending(current)) |
| return -EINTR; |
| |
| pageout_anon_only_filter = pageout && !vma_is_anonymous(vma) && |
| !can_do_file_pageout(vma); |
| |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| if (pmd_trans_huge(*pmd)) { |
| pmd_t orig_pmd; |
| unsigned long next = pmd_addr_end(addr, end); |
| |
| tlb_change_page_size(tlb, HPAGE_PMD_SIZE); |
| ptl = pmd_trans_huge_lock(pmd, vma); |
| if (!ptl) |
| return 0; |
| |
| orig_pmd = *pmd; |
| if (is_huge_zero_pmd(orig_pmd)) |
| goto huge_unlock; |
| |
| if (unlikely(!pmd_present(orig_pmd))) { |
| VM_BUG_ON(thp_migration_supported() && |
| !is_pmd_migration_entry(orig_pmd)); |
| goto huge_unlock; |
| } |
| |
| folio = pmd_folio(orig_pmd); |
| |
| /* Do not interfere with other mappings of this folio */ |
| if (folio_maybe_mapped_shared(folio)) |
| goto huge_unlock; |
| |
| if (pageout_anon_only_filter && !folio_test_anon(folio)) |
| goto huge_unlock; |
| |
| if (next - addr != HPAGE_PMD_SIZE) { |
| int err; |
| |
| folio_get(folio); |
| spin_unlock(ptl); |
| folio_lock(folio); |
| err = split_folio(folio); |
| folio_unlock(folio); |
| folio_put(folio); |
| if (!err) |
| goto regular_folio; |
| return 0; |
| } |
| |
| if (!pageout && pmd_young(orig_pmd)) { |
| pmdp_invalidate(vma, addr, pmd); |
| orig_pmd = pmd_mkold(orig_pmd); |
| |
| set_pmd_at(mm, addr, pmd, orig_pmd); |
| tlb_remove_pmd_tlb_entry(tlb, pmd, addr); |
| } |
| |
| folio_clear_referenced(folio); |
| folio_test_clear_young(folio); |
| if (folio_test_active(folio)) |
| folio_set_workingset(folio); |
| if (pageout) { |
| if (folio_isolate_lru(folio)) { |
| if (folio_test_unevictable(folio)) |
| folio_putback_lru(folio); |
| else |
| list_add(&folio->lru, &folio_list); |
| } |
| } else |
| folio_deactivate(folio); |
| huge_unlock: |
| spin_unlock(ptl); |
| if (pageout) |
| reclaim_pages(&folio_list); |
| return 0; |
| } |
| |
| regular_folio: |
| #endif |
| tlb_change_page_size(tlb, PAGE_SIZE); |
| restart: |
| start_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); |
| if (!start_pte) |
| return 0; |
| flush_tlb_batched_pending(mm); |
| arch_enter_lazy_mmu_mode(); |
| for (; addr < end; pte += nr, addr += nr * PAGE_SIZE) { |
| nr = 1; |
| ptent = ptep_get(pte); |
| |
| if (++batch_count == SWAP_CLUSTER_MAX) { |
| batch_count = 0; |
| if (need_resched()) { |
| arch_leave_lazy_mmu_mode(); |
| pte_unmap_unlock(start_pte, ptl); |
| cond_resched(); |
| goto restart; |
| } |
| } |
| |
| if (pte_none(ptent)) |
| continue; |
| |
| if (!pte_present(ptent)) |
| continue; |
| |
| folio = vm_normal_folio(vma, addr, ptent); |
| if (!folio || folio_is_zone_device(folio)) |
| continue; |
| |
| /* |
| * If we encounter a large folio, only split it if it is not |
| * fully mapped within the range we are operating on. Otherwise |
| * leave it as is so that it can be swapped out whole. If we |
| * fail to split a folio, leave it in place and advance to the |
| * next pte in the range. |
| */ |
| if (folio_test_large(folio)) { |
| nr = madvise_folio_pte_batch(addr, end, folio, pte, &ptent); |
| if (nr < folio_nr_pages(folio)) { |
| int err; |
| |
| if (folio_maybe_mapped_shared(folio)) |
| continue; |
| if (pageout_anon_only_filter && !folio_test_anon(folio)) |
| continue; |
| if (!folio_trylock(folio)) |
| continue; |
| folio_get(folio); |
| arch_leave_lazy_mmu_mode(); |
| pte_unmap_unlock(start_pte, ptl); |
| start_pte = NULL; |
| err = split_folio(folio); |
| folio_unlock(folio); |
| folio_put(folio); |
| start_pte = pte = |
| pte_offset_map_lock(mm, pmd, addr, &ptl); |
| if (!start_pte) |
| break; |
| flush_tlb_batched_pending(mm); |
| arch_enter_lazy_mmu_mode(); |
| if (!err) |
| nr = 0; |
| continue; |
| } |
| } |
| |
| /* |
| * Do not interfere with other mappings of this folio and |
| * non-LRU folio. If we have a large folio at this point, we |
| * know it is fully mapped so if its mapcount is the same as its |
| * number of pages, it must be exclusive. |
| */ |
| if (!folio_test_lru(folio) || |
| folio_mapcount(folio) != folio_nr_pages(folio)) |
| continue; |
| |
| if (pageout_anon_only_filter && !folio_test_anon(folio)) |
| continue; |
| |
| if (!pageout && pte_young(ptent)) { |
| clear_young_dirty_ptes(vma, addr, pte, nr, |
| CYDP_CLEAR_YOUNG); |
| tlb_remove_tlb_entries(tlb, pte, nr, addr); |
| } |
| |
| /* |
| * We are deactivating a folio for accelerating reclaiming. |
| * VM couldn't reclaim the folio unless we clear PG_young. |
| * As a side effect, it makes confuse idle-page tracking |
| * because they will miss recent referenced history. |
| */ |
| folio_clear_referenced(folio); |
| folio_test_clear_young(folio); |
| if (folio_test_active(folio)) |
| folio_set_workingset(folio); |
| if (pageout) { |
| if (folio_isolate_lru(folio)) { |
| if (folio_test_unevictable(folio)) |
| folio_putback_lru(folio); |
| else |
| list_add(&folio->lru, &folio_list); |
| } |
| } else |
| folio_deactivate(folio); |
| } |
| |
| if (start_pte) { |
| arch_leave_lazy_mmu_mode(); |
| pte_unmap_unlock(start_pte, ptl); |
| } |
| if (pageout) |
| reclaim_pages(&folio_list); |
| cond_resched(); |
| |
| return 0; |
| } |
| |
| static const struct mm_walk_ops cold_walk_ops = { |
| .pmd_entry = madvise_cold_or_pageout_pte_range, |
| .walk_lock = PGWALK_RDLOCK, |
| }; |
| |
| static void madvise_cold_page_range(struct mmu_gather *tlb, |
| struct madvise_behavior *madv_behavior) |
| |
| { |
| struct vm_area_struct *vma = madv_behavior->vma; |
| struct madvise_behavior_range *range = &madv_behavior->range; |
| struct madvise_walk_private walk_private = { |
| .pageout = false, |
| .tlb = tlb, |
| }; |
| |
| tlb_start_vma(tlb, vma); |
| walk_page_range_vma(vma, range->start, range->end, &cold_walk_ops, |
| &walk_private); |
| tlb_end_vma(tlb, vma); |
| } |
| |
| static inline bool can_madv_lru_vma(struct vm_area_struct *vma) |
| { |
| return !(vma->vm_flags & (VM_LOCKED|VM_PFNMAP|VM_HUGETLB)); |
| } |
| |
| static long madvise_cold(struct madvise_behavior *madv_behavior) |
| { |
| struct vm_area_struct *vma = madv_behavior->vma; |
| struct mmu_gather tlb; |
| |
| if (!can_madv_lru_vma(vma)) |
| return -EINVAL; |
| |
| lru_add_drain(); |
| tlb_gather_mmu(&tlb, madv_behavior->mm); |
| madvise_cold_page_range(&tlb, madv_behavior); |
| tlb_finish_mmu(&tlb); |
| |
| return 0; |
| } |
| |
| static void madvise_pageout_page_range(struct mmu_gather *tlb, |
| struct vm_area_struct *vma, |
| struct madvise_behavior_range *range) |
| { |
| struct madvise_walk_private walk_private = { |
| .pageout = true, |
| .tlb = tlb, |
| }; |
| |
| tlb_start_vma(tlb, vma); |
| walk_page_range_vma(vma, range->start, range->end, &cold_walk_ops, |
| &walk_private); |
| tlb_end_vma(tlb, vma); |
| } |
| |
| static long madvise_pageout(struct madvise_behavior *madv_behavior) |
| { |
| struct mmu_gather tlb; |
| struct vm_area_struct *vma = madv_behavior->vma; |
| |
| if (!can_madv_lru_vma(vma)) |
| return -EINVAL; |
| |
| /* |
| * If the VMA belongs to a private file mapping, there can be private |
| * dirty pages which can be paged out if even this process is neither |
| * owner nor write capable of the file. We allow private file mappings |
| * further to pageout dirty anon pages. |
| */ |
| if (!vma_is_anonymous(vma) && (!can_do_file_pageout(vma) && |
| (vma->vm_flags & VM_MAYSHARE))) |
| return 0; |
| |
| lru_add_drain(); |
| tlb_gather_mmu(&tlb, madv_behavior->mm); |
| madvise_pageout_page_range(&tlb, vma, &madv_behavior->range); |
| tlb_finish_mmu(&tlb); |
| |
| return 0; |
| } |
| |
| static int madvise_free_pte_range(pmd_t *pmd, unsigned long addr, |
| unsigned long end, struct mm_walk *walk) |
| |
| { |
| const cydp_t cydp_flags = CYDP_CLEAR_YOUNG | CYDP_CLEAR_DIRTY; |
| struct mmu_gather *tlb = walk->private; |
| struct mm_struct *mm = tlb->mm; |
| struct vm_area_struct *vma = walk->vma; |
| spinlock_t *ptl; |
| pte_t *start_pte, *pte, ptent; |
| struct folio *folio; |
| int nr_swap = 0; |
| unsigned long next; |
| int nr, max_nr; |
| |
| next = pmd_addr_end(addr, end); |
| if (pmd_trans_huge(*pmd)) |
| if (madvise_free_huge_pmd(tlb, vma, pmd, addr, next)) |
| return 0; |
| |
| tlb_change_page_size(tlb, PAGE_SIZE); |
| start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl); |
| if (!start_pte) |
| return 0; |
| flush_tlb_batched_pending(mm); |
| arch_enter_lazy_mmu_mode(); |
| for (; addr != end; pte += nr, addr += PAGE_SIZE * nr) { |
| nr = 1; |
| ptent = ptep_get(pte); |
| |
| if (pte_none(ptent)) |
| continue; |
| /* |
| * If the pte has swp_entry, just clear page table to |
| * prevent swap-in which is more expensive rather than |
| * (page allocation + zeroing). |
| */ |
| if (!pte_present(ptent)) { |
| swp_entry_t entry; |
| |
| entry = pte_to_swp_entry(ptent); |
| if (!non_swap_entry(entry)) { |
| max_nr = (end - addr) / PAGE_SIZE; |
| nr = swap_pte_batch(pte, max_nr, ptent); |
| nr_swap -= nr; |
| free_swap_and_cache_nr(entry, nr); |
| clear_not_present_full_ptes(mm, addr, pte, nr, tlb->fullmm); |
| } else if (is_hwpoison_entry(entry) || |
| is_poisoned_swp_entry(entry)) { |
| pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); |
| } |
| continue; |
| } |
| |
| folio = vm_normal_folio(vma, addr, ptent); |
| if (!folio || folio_is_zone_device(folio)) |
| continue; |
| |
| /* |
| * If we encounter a large folio, only split it if it is not |
| * fully mapped within the range we are operating on. Otherwise |
| * leave it as is so that it can be marked as lazyfree. If we |
| * fail to split a folio, leave it in place and advance to the |
| * next pte in the range. |
| */ |
| if (folio_test_large(folio)) { |
| nr = madvise_folio_pte_batch(addr, end, folio, pte, &ptent); |
| if (nr < folio_nr_pages(folio)) { |
| int err; |
| |
| if (folio_maybe_mapped_shared(folio)) |
| continue; |
| if (!folio_trylock(folio)) |
| continue; |
| folio_get(folio); |
| arch_leave_lazy_mmu_mode(); |
| pte_unmap_unlock(start_pte, ptl); |
| start_pte = NULL; |
| err = split_folio(folio); |
| folio_unlock(folio); |
| folio_put(folio); |
| pte = pte_offset_map_lock(mm, pmd, addr, &ptl); |
| start_pte = pte; |
| if (!start_pte) |
| break; |
| flush_tlb_batched_pending(mm); |
| arch_enter_lazy_mmu_mode(); |
| if (!err) |
| nr = 0; |
| continue; |
| } |
| } |
| |
| if (folio_test_swapcache(folio) || folio_test_dirty(folio)) { |
| if (!folio_trylock(folio)) |
| continue; |
| /* |
| * If we have a large folio at this point, we know it is |
| * fully mapped so if its mapcount is the same as its |
| * number of pages, it must be exclusive. |
| */ |
| if (folio_mapcount(folio) != folio_nr_pages(folio)) { |
| folio_unlock(folio); |
| continue; |
| } |
| |
| if (folio_test_swapcache(folio) && |
| !folio_free_swap(folio)) { |
| folio_unlock(folio); |
| continue; |
| } |
| |
| folio_clear_dirty(folio); |
| folio_unlock(folio); |
| } |
| |
| if (pte_young(ptent) || pte_dirty(ptent)) { |
| clear_young_dirty_ptes(vma, addr, pte, nr, cydp_flags); |
| tlb_remove_tlb_entries(tlb, pte, nr, addr); |
| } |
| folio_mark_lazyfree(folio); |
| } |
| |
| if (nr_swap) |
| add_mm_counter(mm, MM_SWAPENTS, nr_swap); |
| if (start_pte) { |
| arch_leave_lazy_mmu_mode(); |
| pte_unmap_unlock(start_pte, ptl); |
| } |
| cond_resched(); |
| |
| return 0; |
| } |
| |
| static inline enum page_walk_lock get_walk_lock(enum madvise_lock_mode mode) |
| { |
| switch (mode) { |
| case MADVISE_VMA_READ_LOCK: |
| return PGWALK_VMA_RDLOCK_VERIFY; |
| case MADVISE_MMAP_READ_LOCK: |
| return PGWALK_RDLOCK; |
| default: |
| /* Other modes don't require fixing up the walk_lock */ |
| WARN_ON_ONCE(1); |
| return PGWALK_RDLOCK; |
| } |
| } |
| |
| static int madvise_free_single_vma(struct madvise_behavior *madv_behavior) |
| { |
| struct mm_struct *mm = madv_behavior->mm; |
| struct vm_area_struct *vma = madv_behavior->vma; |
| unsigned long start_addr = madv_behavior->range.start; |
| unsigned long end_addr = madv_behavior->range.end; |
| struct mmu_notifier_range range; |
| struct mmu_gather *tlb = madv_behavior->tlb; |
| struct mm_walk_ops walk_ops = { |
| .pmd_entry = madvise_free_pte_range, |
| }; |
| |
| /* MADV_FREE works for only anon vma at the moment */ |
| if (!vma_is_anonymous(vma)) |
| return -EINVAL; |
| |
| range.start = max(vma->vm_start, start_addr); |
| if (range.start >= vma->vm_end) |
| return -EINVAL; |
| range.end = min(vma->vm_end, end_addr); |
| if (range.end <= vma->vm_start) |
| return -EINVAL; |
| mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, |
| range.start, range.end); |
| |
| lru_add_drain(); |
| update_hiwater_rss(mm); |
| |
| mmu_notifier_invalidate_range_start(&range); |
| tlb_start_vma(tlb, vma); |
| walk_ops.walk_lock = get_walk_lock(madv_behavior->lock_mode); |
| walk_page_range_vma(vma, range.start, range.end, |
| &walk_ops, tlb); |
| tlb_end_vma(tlb, vma); |
| mmu_notifier_invalidate_range_end(&range); |
| return 0; |
| } |
| |
| /* |
| * Application no longer needs these pages. If the pages are dirty, |
| * it's OK to just throw them away. The app will be more careful about |
| * data it wants to keep. Be sure to free swap resources too. The |
| * zap_page_range_single call sets things up for shrink_active_list to actually |
| * free these pages later if no one else has touched them in the meantime, |
| * although we could add these pages to a global reuse list for |
| * shrink_active_list to pick up before reclaiming other pages. |
| * |
| * NB: This interface discards data rather than pushes it out to swap, |
| * as some implementations do. This has performance implications for |
| * applications like large transactional databases which want to discard |
| * pages in anonymous maps after committing to backing store the data |
| * that was kept in them. There is no reason to write this data out to |
| * the swap area if the application is discarding it. |
| * |
| * An interface that causes the system to free clean pages and flush |
| * dirty pages is already available as msync(MS_INVALIDATE). |
| */ |
| static long madvise_dontneed_single_vma(struct madvise_behavior *madv_behavior) |
| |
| { |
| struct madvise_behavior_range *range = &madv_behavior->range; |
| struct zap_details details = { |
| .reclaim_pt = true, |
| .even_cows = true, |
| }; |
| |
| zap_page_range_single_batched( |
| madv_behavior->tlb, madv_behavior->vma, range->start, |
| range->end - range->start, &details); |
| return 0; |
| } |
| |
| static |
| bool madvise_dontneed_free_valid_vma(struct madvise_behavior *madv_behavior) |
| { |
| struct vm_area_struct *vma = madv_behavior->vma; |
| int behavior = madv_behavior->behavior; |
| struct madvise_behavior_range *range = &madv_behavior->range; |
| |
| if (!is_vm_hugetlb_page(vma)) { |
| unsigned int forbidden = VM_PFNMAP; |
| |
| if (behavior != MADV_DONTNEED_LOCKED) |
| forbidden |= VM_LOCKED; |
| |
| return !(vma->vm_flags & forbidden); |
| } |
| |
| if (behavior != MADV_DONTNEED && behavior != MADV_DONTNEED_LOCKED) |
| return false; |
| if (range->start & ~huge_page_mask(hstate_vma(vma))) |
| return false; |
| |
| /* |
| * Madvise callers expect the length to be rounded up to PAGE_SIZE |
| * boundaries, and may be unaware that this VMA uses huge pages. |
| * Avoid unexpected data loss by rounding down the number of |
| * huge pages freed. |
| */ |
| range->end = ALIGN_DOWN(range->end, huge_page_size(hstate_vma(vma))); |
| |
| return true; |
| } |
| |
| static long madvise_dontneed_free(struct madvise_behavior *madv_behavior) |
| { |
| struct mm_struct *mm = madv_behavior->mm; |
| struct madvise_behavior_range *range = &madv_behavior->range; |
| int behavior = madv_behavior->behavior; |
| |
| if (!madvise_dontneed_free_valid_vma(madv_behavior)) |
| return -EINVAL; |
| |
| if (range->start == range->end) |
| return 0; |
| |
| if (!userfaultfd_remove(madv_behavior->vma, range->start, range->end)) { |
| struct vm_area_struct *vma; |
| |
| mark_mmap_lock_dropped(madv_behavior); |
| mmap_read_lock(mm); |
| madv_behavior->vma = vma = vma_lookup(mm, range->start); |
| if (!vma) |
| return -ENOMEM; |
| /* |
| * Potential end adjustment for hugetlb vma is OK as |
| * the check below keeps end within vma. |
| */ |
| if (!madvise_dontneed_free_valid_vma(madv_behavior)) |
| return -EINVAL; |
| if (range->end > vma->vm_end) { |
| /* |
| * Don't fail if end > vma->vm_end. If the old |
| * vma was split while the mmap_lock was |
| * released the effect of the concurrent |
| * operation may not cause madvise() to |
| * have an undefined result. There may be an |
| * adjacent next vma that we'll walk |
| * next. userfaultfd_remove() will generate an |
| * UFFD_EVENT_REMOVE repetition on the |
| * end-vma->vm_end range, but the manager can |
| * handle a repetition fine. |
| */ |
| range->end = vma->vm_end; |
| } |
| /* |
| * If the memory region between start and end was |
| * originally backed by 4kB pages and then remapped to |
| * be backed by hugepages while mmap_lock was dropped, |
| * the adjustment for hugetlb vma above may have rounded |
| * end down to the start address. |
| */ |
| if (range->start == range->end) |
| return 0; |
| VM_WARN_ON(range->start > range->end); |
| } |
| |
| if (behavior == MADV_DONTNEED || behavior == MADV_DONTNEED_LOCKED) |
| return madvise_dontneed_single_vma(madv_behavior); |
| else if (behavior == MADV_FREE) |
| return madvise_free_single_vma(madv_behavior); |
| else |
| return -EINVAL; |
| } |
| |
| static long madvise_populate(struct madvise_behavior *madv_behavior) |
| { |
| struct mm_struct *mm = madv_behavior->mm; |
| const bool write = madv_behavior->behavior == MADV_POPULATE_WRITE; |
| int locked = 1; |
| unsigned long start = madv_behavior->range.start; |
| unsigned long end = madv_behavior->range.end; |
| long pages; |
| |
| while (start < end) { |
| /* Populate (prefault) page tables readable/writable. */ |
| pages = faultin_page_range(mm, start, end, write, &locked); |
| if (!locked) { |
| mmap_read_lock(mm); |
| locked = 1; |
| } |
| if (pages < 0) { |
| switch (pages) { |
| case -EINTR: |
| return -EINTR; |
| case -EINVAL: /* Incompatible mappings / permissions. */ |
| return -EINVAL; |
| case -EHWPOISON: |
| return -EHWPOISON; |
| case -EFAULT: /* VM_FAULT_SIGBUS or VM_FAULT_SIGSEGV */ |
| return -EFAULT; |
| default: |
| pr_warn_once("%s: unhandled return value: %ld\n", |
| __func__, pages); |
| fallthrough; |
| case -ENOMEM: /* No VMA or out of memory. */ |
| return -ENOMEM; |
| } |
| } |
| start += pages * PAGE_SIZE; |
| } |
| return 0; |
| } |
| |
| /* |
| * Application wants to free up the pages and associated backing store. |
| * This is effectively punching a hole into the middle of a file. |
| */ |
| static long madvise_remove(struct madvise_behavior *madv_behavior) |
| { |
| loff_t offset; |
| int error; |
| struct file *f; |
| struct mm_struct *mm = madv_behavior->mm; |
| struct vm_area_struct *vma = madv_behavior->vma; |
| unsigned long start = madv_behavior->range.start; |
| unsigned long end = madv_behavior->range.end; |
| |
| mark_mmap_lock_dropped(madv_behavior); |
| |
| if (vma->vm_flags & VM_LOCKED) |
| return -EINVAL; |
| |
| f = vma->vm_file; |
| |
| if (!f || !f->f_mapping || !f->f_mapping->host) { |
| return -EINVAL; |
| } |
| |
| if (!vma_is_shared_maywrite(vma)) |
| return -EACCES; |
| |
| offset = (loff_t)(start - vma->vm_start) |
| + ((loff_t)vma->vm_pgoff << PAGE_SHIFT); |
| |
| /* |
| * Filesystem's fallocate may need to take i_rwsem. We need to |
| * explicitly grab a reference because the vma (and hence the |
| * vma's reference to the file) can go away as soon as we drop |
| * mmap_lock. |
| */ |
| get_file(f); |
| if (userfaultfd_remove(vma, start, end)) { |
| /* mmap_lock was not released by userfaultfd_remove() */ |
| mmap_read_unlock(mm); |
| } |
| error = vfs_fallocate(f, |
| FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, |
| offset, end - start); |
| fput(f); |
| mmap_read_lock(mm); |
| return error; |
| } |
| |
| static bool is_valid_guard_vma(struct vm_area_struct *vma, bool allow_locked) |
| { |
| vm_flags_t disallowed = VM_SPECIAL | VM_HUGETLB; |
| |
| /* |
| * A user could lock after setting a guard range but that's fine, as |
| * they'd not be able to fault in. The issue arises when we try to zap |
| * existing locked VMAs. We don't want to do that. |
| */ |
| if (!allow_locked) |
| disallowed |= VM_LOCKED; |
| |
| return !(vma->vm_flags & disallowed); |
| } |
| |
| static bool is_guard_pte_marker(pte_t ptent) |
| { |
| return is_pte_marker(ptent) && |
| is_guard_swp_entry(pte_to_swp_entry(ptent)); |
| } |
| |
| static int guard_install_pud_entry(pud_t *pud, unsigned long addr, |
| unsigned long next, struct mm_walk *walk) |
| { |
| pud_t pudval = pudp_get(pud); |
| |
| /* If huge return >0 so we abort the operation + zap. */ |
| return pud_trans_huge(pudval); |
| } |
| |
| static int guard_install_pmd_entry(pmd_t *pmd, unsigned long addr, |
| unsigned long next, struct mm_walk *walk) |
| { |
| pmd_t pmdval = pmdp_get(pmd); |
| |
| /* If huge return >0 so we abort the operation + zap. */ |
| return pmd_trans_huge(pmdval); |
| } |
| |
| static int guard_install_pte_entry(pte_t *pte, unsigned long addr, |
| unsigned long next, struct mm_walk *walk) |
| { |
| pte_t pteval = ptep_get(pte); |
| unsigned long *nr_pages = (unsigned long *)walk->private; |
| |
| /* If there is already a guard page marker, we have nothing to do. */ |
| if (is_guard_pte_marker(pteval)) { |
| (*nr_pages)++; |
| |
| return 0; |
| } |
| |
| /* If populated return >0 so we abort the operation + zap. */ |
| return 1; |
| } |
| |
| static int guard_install_set_pte(unsigned long addr, unsigned long next, |
| pte_t *ptep, struct mm_walk *walk) |
| { |
| unsigned long *nr_pages = (unsigned long *)walk->private; |
| |
| /* Simply install a PTE marker, this causes segfault on access. */ |
| *ptep = make_pte_marker(PTE_MARKER_GUARD); |
| (*nr_pages)++; |
| |
| return 0; |
| } |
| |
| static const struct mm_walk_ops guard_install_walk_ops = { |
| .pud_entry = guard_install_pud_entry, |
| .pmd_entry = guard_install_pmd_entry, |
| .pte_entry = guard_install_pte_entry, |
| .install_pte = guard_install_set_pte, |
| .walk_lock = PGWALK_RDLOCK, |
| }; |
| |
| static long madvise_guard_install(struct madvise_behavior *madv_behavior) |
| { |
| struct vm_area_struct *vma = madv_behavior->vma; |
| struct madvise_behavior_range *range = &madv_behavior->range; |
| long err; |
| int i; |
| |
| if (!is_valid_guard_vma(vma, /* allow_locked = */false)) |
| return -EINVAL; |
| |
| /* |
| * If we install guard markers, then the range is no longer |
| * empty from a page table perspective and therefore it's |
| * appropriate to have an anon_vma. |
| * |
| * This ensures that on fork, we copy page tables correctly. |
| */ |
| err = anon_vma_prepare(vma); |
| if (err) |
| return err; |
| |
| /* |
| * Optimistically try to install the guard marker pages first. If any |
| * non-guard pages are encountered, give up and zap the range before |
| * trying again. |
| * |
| * We try a few times before giving up and releasing back to userland to |
| * loop around, releasing locks in the process to avoid contention. This |
| * would only happen if there was a great many racing page faults. |
| * |
| * In most cases we should simply install the guard markers immediately |
| * with no zap or looping. |
| */ |
| for (i = 0; i < MAX_MADVISE_GUARD_RETRIES; i++) { |
| unsigned long nr_pages = 0; |
| |
| /* Returns < 0 on error, == 0 if success, > 0 if zap needed. */ |
| err = walk_page_range_mm(vma->vm_mm, range->start, range->end, |
| &guard_install_walk_ops, &nr_pages); |
| if (err < 0) |
| return err; |
| |
| if (err == 0) { |
| unsigned long nr_expected_pages = |
| PHYS_PFN(range->end - range->start); |
| |
| VM_WARN_ON(nr_pages != nr_expected_pages); |
| return 0; |
| } |
| |
| /* |
| * OK some of the range have non-guard pages mapped, zap |
| * them. This leaves existing guard pages in place. |
| */ |
| zap_page_range_single(vma, range->start, |
| range->end - range->start, NULL); |
| } |
| |
| /* |
| * We were unable to install the guard pages due to being raced by page |
| * faults. This should not happen ordinarily. We return to userspace and |
| * immediately retry, relieving lock contention. |
| */ |
| return restart_syscall(); |
| } |
| |
| static int guard_remove_pud_entry(pud_t *pud, unsigned long addr, |
| unsigned long next, struct mm_walk *walk) |
| { |
| pud_t pudval = pudp_get(pud); |
| |
| /* If huge, cannot have guard pages present, so no-op - skip. */ |
| if (pud_trans_huge(pudval)) |
| walk->action = ACTION_CONTINUE; |
| |
| return 0; |
| } |
| |
| static int guard_remove_pmd_entry(pmd_t *pmd, unsigned long addr, |
| unsigned long next, struct mm_walk *walk) |
| { |
| pmd_t pmdval = pmdp_get(pmd); |
| |
| /* If huge, cannot have guard pages present, so no-op - skip. */ |
| if (pmd_trans_huge(pmdval)) |
| walk->action = ACTION_CONTINUE; |
| |
| return 0; |
| } |
| |
| static int guard_remove_pte_entry(pte_t *pte, unsigned long addr, |
| unsigned long next, struct mm_walk *walk) |
| { |
| pte_t ptent = ptep_get(pte); |
| |
| if (is_guard_pte_marker(ptent)) { |
| /* Simply clear the PTE marker. */ |
| pte_clear_not_present_full(walk->mm, addr, pte, false); |
| update_mmu_cache(walk->vma, addr, pte); |
| } |
| |
| return 0; |
| } |
| |
| static const struct mm_walk_ops guard_remove_walk_ops = { |
| .pud_entry = guard_remove_pud_entry, |
| .pmd_entry = guard_remove_pmd_entry, |
| .pte_entry = guard_remove_pte_entry, |
| .walk_lock = PGWALK_RDLOCK, |
| }; |
| |
| static long madvise_guard_remove(struct madvise_behavior *madv_behavior) |
| { |
| struct vm_area_struct *vma = madv_behavior->vma; |
| struct madvise_behavior_range *range = &madv_behavior->range; |
| |
| /* |
| * We're ok with removing guards in mlock()'d ranges, as this is a |
| * non-destructive action. |
| */ |
| if (!is_valid_guard_vma(vma, /* allow_locked = */true)) |
| return -EINVAL; |
| |
| return walk_page_range_vma(vma, range->start, range->end, |
| &guard_remove_walk_ops, NULL); |
| } |
| |
| #ifdef CONFIG_64BIT |
| /* Does the madvise operation result in discarding of mapped data? */ |
| static bool is_discard(int behavior) |
| { |
| switch (behavior) { |
| case MADV_FREE: |
| case MADV_DONTNEED: |
| case MADV_DONTNEED_LOCKED: |
| case MADV_REMOVE: |
| case MADV_DONTFORK: |
| case MADV_WIPEONFORK: |
| case MADV_GUARD_INSTALL: |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /* |
| * We are restricted from madvise()'ing mseal()'d VMAs only in very particular |
| * circumstances - discarding of data from read-only anonymous SEALED mappings. |
| * |
| * This is because users cannot trivally discard data from these VMAs, and may |
| * only do so via an appropriate madvise() call. |
| */ |
| static bool can_madvise_modify(struct madvise_behavior *madv_behavior) |
| { |
| struct vm_area_struct *vma = madv_behavior->vma; |
| |
| /* If the VMA isn't sealed we're good. */ |
| if (!vma_is_sealed(vma)) |
| return true; |
| |
| /* For a sealed VMA, we only care about discard operations. */ |
| if (!is_discard(madv_behavior->behavior)) |
| return true; |
| |
| /* |
| * We explicitly permit all file-backed mappings, whether MAP_SHARED or |
| * MAP_PRIVATE. |
| * |
| * The latter causes some complications. Because now, one can mmap() |
| * read/write a MAP_PRIVATE mapping, write to it, then mprotect() |
| * read-only, mseal() and a discard will be permitted. |
| * |
| * However, in order to avoid issues with potential use of madvise(..., |
| * MADV_DONTNEED) of mseal()'d .text mappings we, for the time being, |
| * permit this. |
| */ |
| if (!vma_is_anonymous(vma)) |
| return true; |
| |
| /* If the user could write to the mapping anyway, then this is fine. */ |
| if ((vma->vm_flags & VM_WRITE) && |
| arch_vma_access_permitted(vma, /* write= */ true, |
| /* execute= */ false, /* foreign= */ false)) |
| return true; |
| |
| /* Otherwise, we are not permitted to perform this operation. */ |
| return false; |
| } |
| #else |
| static bool can_madvise_modify(struct madvise_behavior *madv_behavior) |
| { |
| return true; |
| } |
| #endif |
| |
| /* |
| * Apply an madvise behavior to a region of a vma. madvise_update_vma |
| * will handle splitting a vm area into separate areas, each area with its own |
| * behavior. |
| */ |
| static int madvise_vma_behavior(struct madvise_behavior *madv_behavior) |
| { |
| int behavior = madv_behavior->behavior; |
| struct vm_area_struct *vma = madv_behavior->vma; |
| vm_flags_t new_flags = vma->vm_flags; |
| struct madvise_behavior_range *range = &madv_behavior->range; |
| int error; |
| |
| if (unlikely(!can_madvise_modify(madv_behavior))) |
| return -EPERM; |
| |
| switch (behavior) { |
| case MADV_REMOVE: |
| return madvise_remove(madv_behavior); |
| case MADV_WILLNEED: |
| return madvise_willneed(madv_behavior); |
| case MADV_COLD: |
| return madvise_cold(madv_behavior); |
| case MADV_PAGEOUT: |
| return madvise_pageout(madv_behavior); |
| case MADV_FREE: |
| case MADV_DONTNEED: |
| case MADV_DONTNEED_LOCKED: |
| return madvise_dontneed_free(madv_behavior); |
| case MADV_COLLAPSE: |
| return madvise_collapse(vma, range->start, range->end, |
| &madv_behavior->lock_dropped); |
| case MADV_GUARD_INSTALL: |
| return madvise_guard_install(madv_behavior); |
| case MADV_GUARD_REMOVE: |
| return madvise_guard_remove(madv_behavior); |
| |
| /* The below behaviours update VMAs via madvise_update_vma(). */ |
| |
| case MADV_NORMAL: |
| new_flags = new_flags & ~VM_RAND_READ & ~VM_SEQ_READ; |
| break; |
| case MADV_SEQUENTIAL: |
| new_flags = (new_flags & ~VM_RAND_READ) | VM_SEQ_READ; |
| break; |
| case MADV_RANDOM: |
| new_flags = (new_flags & ~VM_SEQ_READ) | VM_RAND_READ; |
| break; |
| case MADV_DONTFORK: |
| new_flags |= VM_DONTCOPY; |
| break; |
| case MADV_DOFORK: |
| if (new_flags & VM_IO) |
| return -EINVAL; |
| new_flags &= ~VM_DONTCOPY; |
| break; |
| case MADV_WIPEONFORK: |
| /* MADV_WIPEONFORK is only supported on anonymous memory. */ |
| if (vma->vm_file || new_flags & VM_SHARED) |
| return -EINVAL; |
| new_flags |= VM_WIPEONFORK; |
| break; |
| case MADV_KEEPONFORK: |
| if (new_flags & VM_DROPPABLE) |
| return -EINVAL; |
| new_flags &= ~VM_WIPEONFORK; |
| break; |
| case MADV_DONTDUMP: |
| new_flags |= VM_DONTDUMP; |
| break; |
| case MADV_DODUMP: |
| if ((!is_vm_hugetlb_page(vma) && (new_flags & VM_SPECIAL)) || |
| (new_flags & VM_DROPPABLE)) |
| return -EINVAL; |
| new_flags &= ~VM_DONTDUMP; |
| break; |
| case MADV_MERGEABLE: |
| case MADV_UNMERGEABLE: |
| error = ksm_madvise(vma, range->start, range->end, |
| behavior, &new_flags); |
| if (error) |
| goto out; |
| break; |
| case MADV_HUGEPAGE: |
| case MADV_NOHUGEPAGE: |
| error = hugepage_madvise(vma, &new_flags, behavior); |
| if (error) |
| goto out; |
| break; |
| case __MADV_SET_ANON_VMA_NAME: |
| /* Only anonymous mappings can be named */ |
| if (vma->vm_file && !vma_is_anon_shmem(vma)) |
| return -EBADF; |
| break; |
| } |
| |
| /* This is a write operation.*/ |
| VM_WARN_ON_ONCE(madv_behavior->lock_mode != MADVISE_MMAP_WRITE_LOCK); |
| |
| error = madvise_update_vma(new_flags, madv_behavior); |
| out: |
| /* |
| * madvise() returns EAGAIN if kernel resources, such as |
| * slab, are temporarily unavailable. |
| */ |
| if (error == -ENOMEM) |
| error = -EAGAIN; |
| return error; |
| } |
| |
| #ifdef CONFIG_MEMORY_FAILURE |
| /* |
| * Error injection support for memory error handling. |
| */ |
| static int madvise_inject_error(struct madvise_behavior *madv_behavior) |
| { |
| unsigned long size; |
| unsigned long start = madv_behavior->range.start; |
| unsigned long end = madv_behavior->range.end; |
| |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| |
| for (; start < end; start += size) { |
| unsigned long pfn; |
| struct page *page; |
| int ret; |
| |
| ret = get_user_pages_fast(start, 1, 0, &page); |
| if (ret != 1) |
| return ret; |
| pfn = page_to_pfn(page); |
| |
| /* |
| * When soft offlining hugepages, after migrating the page |
| * we dissolve it, therefore in the second loop "page" will |
| * no longer be a compound page. |
| */ |
| size = page_size(compound_head(page)); |
| |
| if (madv_behavior->behavior == MADV_SOFT_OFFLINE) { |
| pr_info("Soft offlining pfn %#lx at process virtual address %#lx\n", |
| pfn, start); |
| ret = soft_offline_page(pfn, MF_COUNT_INCREASED); |
| } else { |
| pr_info("Injecting memory failure for pfn %#lx at process virtual address %#lx\n", |
| pfn, start); |
| ret = memory_failure(pfn, MF_ACTION_REQUIRED | MF_COUNT_INCREASED | MF_SW_SIMULATED); |
| if (ret == -EOPNOTSUPP) |
| ret = 0; |
| } |
| |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static bool is_memory_failure(struct madvise_behavior *madv_behavior) |
| { |
| switch (madv_behavior->behavior) { |
| case MADV_HWPOISON: |
| case MADV_SOFT_OFFLINE: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| #else |
| |
| static int madvise_inject_error(struct madvise_behavior *madv_behavior) |
| { |
| return 0; |
| } |
| |
| static bool is_memory_failure(struct madvise_behavior *madv_behavior) |
| { |
| return false; |
| } |
| |
| #endif /* CONFIG_MEMORY_FAILURE */ |
| |
| static bool |
| madvise_behavior_valid(int behavior) |
| { |
| switch (behavior) { |
| case MADV_DOFORK: |
| case MADV_DONTFORK: |
| case MADV_NORMAL: |
| case MADV_SEQUENTIAL: |
| case MADV_RANDOM: |
| case MADV_REMOVE: |
| case MADV_WILLNEED: |
| case MADV_DONTNEED: |
| case MADV_DONTNEED_LOCKED: |
| case MADV_FREE: |
| case MADV_COLD: |
| case MADV_PAGEOUT: |
| case MADV_POPULATE_READ: |
| case MADV_POPULATE_WRITE: |
| #ifdef CONFIG_KSM |
| case MADV_MERGEABLE: |
| case MADV_UNMERGEABLE: |
| #endif |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| case MADV_HUGEPAGE: |
| case MADV_NOHUGEPAGE: |
| case MADV_COLLAPSE: |
| #endif |
| case MADV_DONTDUMP: |
| case MADV_DODUMP: |
| case MADV_WIPEONFORK: |
| case MADV_KEEPONFORK: |
| case MADV_GUARD_INSTALL: |
| case MADV_GUARD_REMOVE: |
| #ifdef CONFIG_MEMORY_FAILURE |
| case MADV_SOFT_OFFLINE: |
| case MADV_HWPOISON: |
| #endif |
| return true; |
| |
| default: |
| return false; |
| } |
| } |
| |
| /* Can we invoke process_madvise() on a remote mm for the specified behavior? */ |
| static bool process_madvise_remote_valid(int behavior) |
| { |
| switch (behavior) { |
| case MADV_COLD: |
| case MADV_PAGEOUT: |
| case MADV_WILLNEED: |
| case MADV_COLLAPSE: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| /* |
| * Try to acquire a VMA read lock if possible. |
| * |
| * We only support this lock over a single VMA, which the input range must |
| * span either partially or fully. |
| * |
| * This function always returns with an appropriate lock held. If a VMA read |
| * lock could be acquired, we return true and set madv_behavior state |
| * accordingly. |
| * |
| * If a VMA read lock could not be acquired, we return false and expect caller to |
| * fallback to mmap lock behaviour. |
| */ |
| static bool try_vma_read_lock(struct madvise_behavior *madv_behavior) |
| { |
| struct mm_struct *mm = madv_behavior->mm; |
| struct vm_area_struct *vma; |
| |
| vma = lock_vma_under_rcu(mm, madv_behavior->range.start); |
| if (!vma) |
| goto take_mmap_read_lock; |
| /* |
| * Must span only a single VMA; uffd and remote processes are |
| * unsupported. |
| */ |
| if (madv_behavior->range.end > vma->vm_end || current->mm != mm || |
| userfaultfd_armed(vma)) { |
| vma_end_read(vma); |
| goto take_mmap_read_lock; |
| } |
| madv_behavior->vma = vma; |
| return true; |
| |
| take_mmap_read_lock: |
| mmap_read_lock(mm); |
| madv_behavior->lock_mode = MADVISE_MMAP_READ_LOCK; |
| return false; |
| } |
| |
| /* |
| * Walk the vmas in range [start,end), and call the madvise_vma_behavior |
| * function on each one. The function will get start and end parameters that |
| * cover the overlap between the current vma and the original range. Any |
| * unmapped regions in the original range will result in this function returning |
| * -ENOMEM while still calling the madvise_vma_behavior function on all of the |
| * existing vmas in the range. Must be called with the mmap_lock held for |
| * reading or writing. |
| */ |
| static |
| int madvise_walk_vmas(struct madvise_behavior *madv_behavior) |
| { |
| struct mm_struct *mm = madv_behavior->mm; |
| struct madvise_behavior_range *range = &madv_behavior->range; |
| /* range is updated to span each VMA, so store end of entire range. */ |
| unsigned long last_end = range->end; |
| int unmapped_error = 0; |
| int error; |
| struct vm_area_struct *prev, *vma; |
| |
| /* |
| * If VMA read lock is supported, apply madvise to a single VMA |
| * tentatively, avoiding walking VMAs. |
| */ |
| if (madv_behavior->lock_mode == MADVISE_VMA_READ_LOCK && |
| try_vma_read_lock(madv_behavior)) { |
| error = madvise_vma_behavior(madv_behavior); |
| vma_end_read(madv_behavior->vma); |
| return error; |
| } |
| |
| vma = find_vma_prev(mm, range->start, &prev); |
| if (vma && range->start > vma->vm_start) |
| prev = vma; |
| |
| for (;;) { |
| /* Still start < end. */ |
| if (!vma) |
| return -ENOMEM; |
| |
| /* Here start < (last_end|vma->vm_end). */ |
| if (range->start < vma->vm_start) { |
| /* |
| * This indicates a gap between VMAs in the input |
| * range. This does not cause the operation to abort, |
| * rather we simply return -ENOMEM to indicate that this |
| * has happened, but carry on. |
| */ |
| unmapped_error = -ENOMEM; |
| range->start = vma->vm_start; |
| if (range->start >= last_end) |
| break; |
| } |
| |
| /* Here vma->vm_start <= range->start < (last_end|vma->vm_end) */ |
| range->end = min(vma->vm_end, last_end); |
| |
| /* Here vma->vm_start <= range->start < range->end <= (last_end|vma->vm_end). */ |
| madv_behavior->prev = prev; |
| madv_behavior->vma = vma; |
| error = madvise_vma_behavior(madv_behavior); |
| if (error) |
| return error; |
| if (madv_behavior->lock_dropped) { |
| /* We dropped the mmap lock, we can't ref the VMA. */ |
| prev = NULL; |
| vma = NULL; |
| madv_behavior->lock_dropped = false; |
| } else { |
| vma = madv_behavior->vma; |
| prev = vma; |
| } |
| |
| if (vma && range->end < vma->vm_end) |
| range->end = vma->vm_end; |
| if (range->end >= last_end) |
| break; |
| |
| vma = find_vma(mm, vma ? vma->vm_end : range->end); |
| range->start = range->end; |
| } |
| |
| return unmapped_error; |
| } |
| |
| /* |
| * Any behaviour which results in changes to the vma->vm_flags needs to |
| * take mmap_lock for writing. Others, which simply traverse vmas, need |
| * to only take it for reading. |
| */ |
| static enum madvise_lock_mode get_lock_mode(struct madvise_behavior *madv_behavior) |
| { |
| if (is_memory_failure(madv_behavior)) |
| return MADVISE_NO_LOCK; |
| |
| switch (madv_behavior->behavior) { |
| case MADV_REMOVE: |
| case MADV_WILLNEED: |
| case MADV_COLD: |
| case MADV_PAGEOUT: |
| case MADV_POPULATE_READ: |
| case MADV_POPULATE_WRITE: |
| case MADV_COLLAPSE: |
| case MADV_GUARD_INSTALL: |
| case MADV_GUARD_REMOVE: |
| return MADVISE_MMAP_READ_LOCK; |
| case MADV_DONTNEED: |
| case MADV_DONTNEED_LOCKED: |
| case MADV_FREE: |
| return MADVISE_VMA_READ_LOCK; |
| default: |
| return MADVISE_MMAP_WRITE_LOCK; |
| } |
| } |
| |
| static int madvise_lock(struct madvise_behavior *madv_behavior) |
| { |
| struct mm_struct *mm = madv_behavior->mm; |
| enum madvise_lock_mode lock_mode = get_lock_mode(madv_behavior); |
| |
| switch (lock_mode) { |
| case MADVISE_NO_LOCK: |
| break; |
| case MADVISE_MMAP_WRITE_LOCK: |
| if (mmap_write_lock_killable(mm)) |
| return -EINTR; |
| break; |
| case MADVISE_MMAP_READ_LOCK: |
| mmap_read_lock(mm); |
| break; |
| case MADVISE_VMA_READ_LOCK: |
| /* We will acquire the lock per-VMA in madvise_walk_vmas(). */ |
| break; |
| } |
| |
| madv_behavior->lock_mode = lock_mode; |
| return 0; |
| } |
| |
| static void madvise_unlock(struct madvise_behavior *madv_behavior) |
| { |
| struct mm_struct *mm = madv_behavior->mm; |
| |
| switch (madv_behavior->lock_mode) { |
| case MADVISE_NO_LOCK: |
| return; |
| case MADVISE_MMAP_WRITE_LOCK: |
| mmap_write_unlock(mm); |
| break; |
| case MADVISE_MMAP_READ_LOCK: |
| mmap_read_unlock(mm); |
| break; |
| case MADVISE_VMA_READ_LOCK: |
| /* We will drop the lock per-VMA in madvise_walk_vmas(). */ |
| break; |
| } |
| |
| madv_behavior->lock_mode = MADVISE_NO_LOCK; |
| } |
| |
| static bool madvise_batch_tlb_flush(int behavior) |
| { |
| switch (behavior) { |
| case MADV_DONTNEED: |
| case MADV_DONTNEED_LOCKED: |
| case MADV_FREE: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| static void madvise_init_tlb(struct madvise_behavior *madv_behavior) |
| { |
| if (madvise_batch_tlb_flush(madv_behavior->behavior)) |
| tlb_gather_mmu(madv_behavior->tlb, madv_behavior->mm); |
| } |
| |
| static void madvise_finish_tlb(struct madvise_behavior *madv_behavior) |
| { |
| if (madvise_batch_tlb_flush(madv_behavior->behavior)) |
| tlb_finish_mmu(madv_behavior->tlb); |
| } |
| |
| static bool is_valid_madvise(unsigned long start, size_t len_in, int behavior) |
| { |
| size_t len; |
| |
| if (!madvise_behavior_valid(behavior)) |
| return false; |
| |
| if (!PAGE_ALIGNED(start)) |
| return false; |
| len = PAGE_ALIGN(len_in); |
| |
| /* Check to see whether len was rounded up from small -ve to zero */ |
| if (len_in && !len) |
| return false; |
| |
| if (start + len < start) |
| return false; |
| |
| return true; |
| } |
| |
| /* |
| * madvise_should_skip() - Return if the request is invalid or nothing. |
| * @start: Start address of madvise-requested address range. |
| * @len_in: Length of madvise-requested address range. |
| * @behavior: Requested madvise behavor. |
| * @err: Pointer to store an error code from the check. |
| * |
| * If the specified behaviour is invalid or nothing would occur, we skip the |
| * operation. This function returns true in the cases, otherwise false. In |
| * the former case we store an error on @err. |
| */ |
| static bool madvise_should_skip(unsigned long start, size_t len_in, |
| int behavior, int *err) |
| { |
| if (!is_valid_madvise(start, len_in, behavior)) { |
| *err = -EINVAL; |
| return true; |
| } |
| if (start + PAGE_ALIGN(len_in) == start) { |
| *err = 0; |
| return true; |
| } |
| return false; |
| } |
| |
| static bool is_madvise_populate(struct madvise_behavior *madv_behavior) |
| { |
| switch (madv_behavior->behavior) { |
| case MADV_POPULATE_READ: |
| case MADV_POPULATE_WRITE: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| /* |
| * untagged_addr_remote() assumes mmap_lock is already held. On |
| * architectures like x86 and RISC-V, tagging is tricky because each |
| * mm may have a different tagging mask. However, we might only hold |
| * the per-VMA lock (currently only local processes are supported), |
| * so untagged_addr is used to avoid the mmap_lock assertion for |
| * local processes. |
| */ |
| static inline unsigned long get_untagged_addr(struct mm_struct *mm, |
| unsigned long start) |
| { |
| return current->mm == mm ? untagged_addr(start) : |
| untagged_addr_remote(mm, start); |
| } |
| |
| static int madvise_do_behavior(unsigned long start, size_t len_in, |
| struct madvise_behavior *madv_behavior) |
| { |
| struct blk_plug plug; |
| int error; |
| struct madvise_behavior_range *range = &madv_behavior->range; |
| |
| if (is_memory_failure(madv_behavior)) { |
| range->start = start; |
| range->end = start + len_in; |
| return madvise_inject_error(madv_behavior); |
| } |
| |
| range->start = get_untagged_addr(madv_behavior->mm, start); |
| range->end = range->start + PAGE_ALIGN(len_in); |
| |
| blk_start_plug(&plug); |
| if (is_madvise_populate(madv_behavior)) |
| error = madvise_populate(madv_behavior); |
| else |
| error = madvise_walk_vmas(madv_behavior); |
| blk_finish_plug(&plug); |
| return error; |
| } |
| |
| /* |
| * The madvise(2) system call. |
| * |
| * Applications can use madvise() to advise the kernel how it should |
| * handle paging I/O in this VM area. The idea is to help the kernel |
| * use appropriate read-ahead and caching techniques. The information |
| * provided is advisory only, and can be safely disregarded by the |
| * kernel without affecting the correct operation of the application. |
| * |
| * behavior values: |
| * MADV_NORMAL - the default behavior is to read clusters. This |
| * results in some read-ahead and read-behind. |
| * MADV_RANDOM - the system should read the minimum amount of data |
| * on any access, since it is unlikely that the appli- |
| * cation will need more than what it asks for. |
| * MADV_SEQUENTIAL - pages in the given range will probably be accessed |
| * once, so they can be aggressively read ahead, and |
| * can be freed soon after they are accessed. |
| * MADV_WILLNEED - the application is notifying the system to read |
| * some pages ahead. |
| * MADV_DONTNEED - the application is finished with the given range, |
| * so the kernel can free resources associated with it. |
| * MADV_FREE - the application marks pages in the given range as lazy free, |
| * where actual purges are postponed until memory pressure happens. |
| * MADV_REMOVE - the application wants to free up the given range of |
| * pages and associated backing store. |
| * MADV_DONTFORK - omit this area from child's address space when forking: |
| * typically, to avoid COWing pages pinned by get_user_pages(). |
| * MADV_DOFORK - cancel MADV_DONTFORK: no longer omit this area when forking. |
| * MADV_WIPEONFORK - present the child process with zero-filled memory in this |
| * range after a fork. |
| * MADV_KEEPONFORK - undo the effect of MADV_WIPEONFORK |
| * MADV_HWPOISON - trigger memory error handler as if the given memory range |
| * were corrupted by unrecoverable hardware memory failure. |
| * MADV_SOFT_OFFLINE - try to soft-offline the given range of memory. |
| * MADV_MERGEABLE - the application recommends that KSM try to merge pages in |
| * this area with pages of identical content from other such areas. |
| * MADV_UNMERGEABLE- cancel MADV_MERGEABLE: no longer merge pages with others. |
| * MADV_HUGEPAGE - the application wants to back the given range by transparent |
| * huge pages in the future. Existing pages might be coalesced and |
| * new pages might be allocated as THP. |
| * MADV_NOHUGEPAGE - mark the given range as not worth being backed by |
| * transparent huge pages so the existing pages will not be |
| * coalesced into THP and new pages will not be allocated as THP. |
| * MADV_COLLAPSE - synchronously coalesce pages into new THP. |
| * MADV_DONTDUMP - the application wants to prevent pages in the given range |
| * from being included in its core dump. |
| * MADV_DODUMP - cancel MADV_DONTDUMP: no longer exclude from core dump. |
| * MADV_COLD - the application is not expected to use this memory soon, |
| * deactivate pages in this range so that they can be reclaimed |
| * easily if memory pressure happens. |
| * MADV_PAGEOUT - the application is not expected to use this memory soon, |
| * page out the pages in this range immediately. |
| * MADV_POPULATE_READ - populate (prefault) page tables readable by |
| * triggering read faults if required |
| * MADV_POPULATE_WRITE - populate (prefault) page tables writable by |
| * triggering write faults if required |
| * |
| * return values: |
| * zero - success |
| * -EINVAL - start + len < 0, start is not page-aligned, |
| * "behavior" is not a valid value, or application |
| * is attempting to release locked or shared pages, |
| * or the specified address range includes file, Huge TLB, |
| * MAP_SHARED or VMPFNMAP range. |
| * -ENOMEM - addresses in the specified range are not currently |
| * mapped, or are outside the AS of the process. |
| * -EIO - an I/O error occurred while paging in data. |
| * -EBADF - map exists, but area maps something that isn't a file. |
| * -EAGAIN - a kernel resource was temporarily unavailable. |
| * -EPERM - memory is sealed. |
| */ |
| int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior) |
| { |
| int error; |
| struct mmu_gather tlb; |
| struct madvise_behavior madv_behavior = { |
| .mm = mm, |
| .behavior = behavior, |
| .tlb = &tlb, |
| }; |
| |
| if (madvise_should_skip(start, len_in, behavior, &error)) |
| return error; |
| error = madvise_lock(&madv_behavior); |
| if (error) |
| return error; |
| madvise_init_tlb(&madv_behavior); |
| error = madvise_do_behavior(start, len_in, &madv_behavior); |
| madvise_finish_tlb(&madv_behavior); |
| madvise_unlock(&madv_behavior); |
| |
| return error; |
| } |
| |
| SYSCALL_DEFINE3(madvise, unsigned long, start, size_t, len_in, int, behavior) |
| { |
| return do_madvise(current->mm, start, len_in, behavior); |
| } |
| |
| /* Perform an madvise operation over a vector of addresses and lengths. */ |
| static ssize_t vector_madvise(struct mm_struct *mm, struct iov_iter *iter, |
| int behavior) |
| { |
| ssize_t ret = 0; |
| size_t total_len; |
| struct mmu_gather tlb; |
| struct madvise_behavior madv_behavior = { |
| .mm = mm, |
| .behavior = behavior, |
| .tlb = &tlb, |
| }; |
| |
| total_len = iov_iter_count(iter); |
| |
| ret = madvise_lock(&madv_behavior); |
| if (ret) |
| return ret; |
| madvise_init_tlb(&madv_behavior); |
| |
| while (iov_iter_count(iter)) { |
| unsigned long start = (unsigned long)iter_iov_addr(iter); |
| size_t len_in = iter_iov_len(iter); |
| int error; |
| |
| if (madvise_should_skip(start, len_in, behavior, &error)) |
| ret = error; |
| else |
| ret = madvise_do_behavior(start, len_in, &madv_behavior); |
| /* |
| * An madvise operation is attempting to restart the syscall, |
| * but we cannot proceed as it would not be correct to repeat |
| * the operation in aggregate, and would be surprising to the |
| * user. |
| * |
| * We drop and reacquire locks so it is safe to just loop and |
| * try again. We check for fatal signals in case we need exit |
| * early anyway. |
| */ |
| if (ret == -ERESTARTNOINTR) { |
| if (fatal_signal_pending(current)) { |
| ret = -EINTR; |
| break; |
| } |
| |
| /* Drop and reacquire lock to unwind race. */ |
| madvise_finish_tlb(&madv_behavior); |
| madvise_unlock(&madv_behavior); |
| ret = madvise_lock(&madv_behavior); |
| if (ret) |
| goto out; |
| madvise_init_tlb(&madv_behavior); |
| continue; |
| } |
| if (ret < 0) |
| break; |
| iov_iter_advance(iter, iter_iov_len(iter)); |
| } |
| madvise_finish_tlb(&madv_behavior); |
| madvise_unlock(&madv_behavior); |
| |
| out: |
| ret = (total_len - iov_iter_count(iter)) ? : ret; |
| |
| return ret; |
| } |
| |
| SYSCALL_DEFINE5(process_madvise, int, pidfd, const struct iovec __user *, vec, |
| size_t, vlen, int, behavior, unsigned int, flags) |
| { |
| ssize_t ret; |
| struct iovec iovstack[UIO_FASTIOV]; |
| struct iovec *iov = iovstack; |
| struct iov_iter iter; |
| struct task_struct *task; |
| struct mm_struct *mm; |
| unsigned int f_flags; |
| |
| if (flags != 0) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| ret = import_iovec(ITER_DEST, vec, vlen, ARRAY_SIZE(iovstack), &iov, &iter); |
| if (ret < 0) |
| goto out; |
| |
| task = pidfd_get_task(pidfd, &f_flags); |
| if (IS_ERR(task)) { |
| ret = PTR_ERR(task); |
| goto free_iov; |
| } |
| |
| /* Require PTRACE_MODE_READ to avoid leaking ASLR metadata. */ |
| mm = mm_access(task, PTRACE_MODE_READ_FSCREDS); |
| if (IS_ERR(mm)) { |
| ret = PTR_ERR(mm); |
| goto release_task; |
| } |
| |
| /* |
| * We need only perform this check if we are attempting to manipulate a |
| * remote process's address space. |
| */ |
| if (mm != current->mm && !process_madvise_remote_valid(behavior)) { |
| ret = -EINVAL; |
| goto release_mm; |
| } |
| |
| /* |
| * Require CAP_SYS_NICE for influencing process performance. Note that |
| * only non-destructive hints are currently supported for remote |
| * processes. |
| */ |
| if (mm != current->mm && !capable(CAP_SYS_NICE)) { |
| ret = -EPERM; |
| goto release_mm; |
| } |
| |
| ret = vector_madvise(mm, &iter, behavior); |
| |
| release_mm: |
| mmput(mm); |
| release_task: |
| put_task_struct(task); |
| free_iov: |
| kfree(iov); |
| out: |
| return ret; |
| } |
| |
| #ifdef CONFIG_ANON_VMA_NAME |
| |
| #define ANON_VMA_NAME_MAX_LEN 80 |
| #define ANON_VMA_NAME_INVALID_CHARS "\\`$[]" |
| |
| static inline bool is_valid_name_char(char ch) |
| { |
| /* printable ascii characters, excluding ANON_VMA_NAME_INVALID_CHARS */ |
| return ch > 0x1f && ch < 0x7f && |
| !strchr(ANON_VMA_NAME_INVALID_CHARS, ch); |
| } |
| |
| static int madvise_set_anon_name(struct mm_struct *mm, unsigned long start, |
| unsigned long len_in, struct anon_vma_name *anon_name) |
| { |
| unsigned long end; |
| unsigned long len; |
| int error; |
| struct madvise_behavior madv_behavior = { |
| .mm = mm, |
| .behavior = __MADV_SET_ANON_VMA_NAME, |
| .anon_name = anon_name, |
| }; |
| |
| if (start & ~PAGE_MASK) |
| return -EINVAL; |
| len = (len_in + ~PAGE_MASK) & PAGE_MASK; |
| |
| /* Check to see whether len was rounded up from small -ve to zero */ |
| if (len_in && !len) |
| return -EINVAL; |
| |
| end = start + len; |
| if (end < start) |
| return -EINVAL; |
| |
| if (end == start) |
| return 0; |
| |
| madv_behavior.range.start = start; |
| madv_behavior.range.end = end; |
| |
| error = madvise_lock(&madv_behavior); |
| if (error) |
| return error; |
| error = madvise_walk_vmas(&madv_behavior); |
| madvise_unlock(&madv_behavior); |
| |
| return error; |
| } |
| |
| int set_anon_vma_name(unsigned long addr, unsigned long size, |
| const char __user *uname) |
| { |
| struct anon_vma_name *anon_name = NULL; |
| struct mm_struct *mm = current->mm; |
| int error; |
| |
| if (uname) { |
| char *name, *pch; |
| |
| name = strndup_user(uname, ANON_VMA_NAME_MAX_LEN); |
| if (IS_ERR(name)) |
| return PTR_ERR(name); |
| |
| for (pch = name; *pch != '\0'; pch++) { |
| if (!is_valid_name_char(*pch)) { |
| kfree(name); |
| return -EINVAL; |
| } |
| } |
| /* anon_vma has its own copy */ |
| anon_name = anon_vma_name_alloc(name); |
| kfree(name); |
| if (!anon_name) |
| return -ENOMEM; |
| } |
| |
| error = madvise_set_anon_name(mm, addr, size, anon_name); |
| anon_vma_name_put(anon_name); |
| |
| return error; |
| } |
| #endif |