|  | // SPDX-License-Identifier: GPL-2.0+ | 
|  | /* | 
|  | * fscrypt-crypt-util.c - utility for verifying fscrypt-encrypted data | 
|  | * | 
|  | * Copyright 2019 Google LLC | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * This program implements all crypto algorithms supported by fscrypt (a.k.a. | 
|  | * ext4, f2fs, and ubifs encryption), for the purpose of verifying the | 
|  | * correctness of the ciphertext stored on-disk.  See usage() below. | 
|  | * | 
|  | * All algorithms are implemented in portable C code to avoid depending on | 
|  | * libcrypto (OpenSSL), and because some fscrypt-supported algorithms aren't | 
|  | * available in libcrypto anyway (e.g. Adiantum), or are only supported in | 
|  | * recent versions (e.g. HKDF-SHA512).  For simplicity, all crypto code here | 
|  | * tries to follow the mathematical definitions directly, without optimizing for | 
|  | * performance or worrying about following security best practices such as | 
|  | * mitigating side-channel attacks.  So, only use this program for testing! | 
|  | */ | 
|  |  | 
|  | #include <asm/byteorder.h> | 
|  | #include <errno.h> | 
|  | #include <getopt.h> | 
|  | #include <limits.h> | 
|  | #include <linux/types.h> | 
|  | #include <stdarg.h> | 
|  | #include <stdbool.h> | 
|  | #include <stdint.h> | 
|  | #include <stdio.h> | 
|  | #include <stdlib.h> | 
|  | #include <string.h> | 
|  | #include <unistd.h> | 
|  |  | 
|  | #define PROGRAM_NAME "fscrypt-crypt-util" | 
|  |  | 
|  | /* | 
|  | * Define to enable the tests of the crypto code in this file.  If enabled, you | 
|  | * must link this program with OpenSSL (-lcrypto) v1.1.0 or later, and your | 
|  | * kernel needs CONFIG_CRYPTO_USER_API_SKCIPHER=y and CONFIG_CRYPTO_ADIANTUM=y. | 
|  | */ | 
|  | #undef ENABLE_ALG_TESTS | 
|  |  | 
|  | #define NUM_ALG_TEST_ITERATIONS	10000 | 
|  |  | 
|  | static void usage(FILE *fp) | 
|  | { | 
|  | fputs( | 
|  | "Usage: " PROGRAM_NAME " [OPTION]... CIPHER MASTER_KEY\n" | 
|  | "\n" | 
|  | "Utility for verifying fscrypt-encrypted data.  This program encrypts\n" | 
|  | "(or decrypts) the data on stdin using the given CIPHER with the given\n" | 
|  | "MASTER_KEY (or a key derived from it, if a KDF is specified), and writes the\n" | 
|  | "resulting ciphertext (or plaintext) to stdout.\n" | 
|  | "\n" | 
|  | "CIPHER can be AES-256-XTS, AES-256-CTS-CBC, AES-128-CBC-ESSIV, AES-128-CTS-CBC,\n" | 
|  | "or Adiantum.  MASTER_KEY must be a hex string long enough for the cipher.\n" | 
|  | "\n" | 
|  | "WARNING: this program is only meant for testing, not for \"real\" use!\n" | 
|  | "\n" | 
|  | "Options:\n" | 
|  | "  --block-number=BNUM         Starting block number for IV generation.\n" | 
|  | "                                Default: 0\n" | 
|  | "  --block-size=BLOCK_SIZE     Encrypt each BLOCK_SIZE bytes independently.\n" | 
|  | "                                Default: 4096 bytes\n" | 
|  | "  --decrypt                   Decrypt instead of encrypt\n" | 
|  | "  --file-nonce=NONCE          File's nonce as a 32-character hex string\n" | 
|  | "  --fs-uuid=UUID              The filesystem UUID as a 32-character hex string.\n" | 
|  | "                                Required for --iv-ino-lblk-32 and\n" | 
|  | "                                --iv-ino-lblk-64; otherwise is unused.\n" | 
|  | "  --help                      Show this help\n" | 
|  | "  --inode-number=INUM         The file's inode number.  Required for\n" | 
|  | "                                --iv-ino-lblk-32 and --iv-ino-lblk-64;\n" | 
|  | "                                otherwise is unused.\n" | 
|  | "  --iv-ino-lblk-32            Similar to --iv-ino-lblk-64, but selects the\n" | 
|  | "                                32-bit variant.\n" | 
|  | "  --iv-ino-lblk-64            Use the format where the IVs include the inode\n" | 
|  | "                                number and the same key is shared across files.\n" | 
|  | "                                Requires --kdf=HKDF-SHA512, --fs-uuid,\n" | 
|  | "                                --inode-number, and --mode-num.\n" | 
|  | "  --kdf=KDF                   Key derivation function to use: AES-128-ECB,\n" | 
|  | "                                HKDF-SHA512, or none.  Default: none\n" | 
|  | "  --mode-num=NUM              Derive per-mode key using mode number NUM\n" | 
|  | "  --padding=PADDING           If last block is partial, zero-pad it to next\n" | 
|  | "                                PADDING-byte boundary.  Default: BLOCK_SIZE\n" | 
|  | , fp); | 
|  | } | 
|  |  | 
|  | /*----------------------------------------------------------------------------* | 
|  | *                                 Utilities                                  * | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | #define ARRAY_SIZE(A)		(sizeof(A) / sizeof((A)[0])) | 
|  | #define MIN(x, y)		((x) < (y) ? (x) : (y)) | 
|  | #define MAX(x, y)		((x) > (y) ? (x) : (y)) | 
|  | #define ROUND_DOWN(x, y)	((x) & ~((y) - 1)) | 
|  | #define ROUND_UP(x, y)		(((x) + (y) - 1) & ~((y) - 1)) | 
|  | #define DIV_ROUND_UP(n, d)	(((n) + (d) - 1) / (d)) | 
|  | #define STATIC_ASSERT(e)	((void)sizeof(char[1 - 2*!(e)])) | 
|  |  | 
|  | typedef __u8			u8; | 
|  | typedef __u16			u16; | 
|  | typedef __u32			u32; | 
|  | typedef __u64			u64; | 
|  |  | 
|  | #define cpu_to_le32		__cpu_to_le32 | 
|  | #define cpu_to_be32		__cpu_to_be32 | 
|  | #define cpu_to_le64		__cpu_to_le64 | 
|  | #define cpu_to_be64		__cpu_to_be64 | 
|  | #define le32_to_cpu		__le32_to_cpu | 
|  | #define be32_to_cpu		__be32_to_cpu | 
|  | #define le64_to_cpu		__le64_to_cpu | 
|  | #define be64_to_cpu		__be64_to_cpu | 
|  |  | 
|  | #define DEFINE_UNALIGNED_ACCESS_HELPERS(type, native_type)	\ | 
|  | static inline native_type __attribute__((unused))		\ | 
|  | get_unaligned_##type(const void *p)				\ | 
|  | {								\ | 
|  | __##type x;						\ | 
|  | \ | 
|  | memcpy(&x, p, sizeof(x));				\ | 
|  | return type##_to_cpu(x);				\ | 
|  | }								\ | 
|  | \ | 
|  | static inline void __attribute__((unused))			\ | 
|  | put_unaligned_##type(native_type v, void *p)			\ | 
|  | {								\ | 
|  | __##type x = cpu_to_##type(v);				\ | 
|  | \ | 
|  | memcpy(p, &x, sizeof(x));				\ | 
|  | } | 
|  |  | 
|  | DEFINE_UNALIGNED_ACCESS_HELPERS(le32, u32) | 
|  | DEFINE_UNALIGNED_ACCESS_HELPERS(be32, u32) | 
|  | DEFINE_UNALIGNED_ACCESS_HELPERS(le64, u64) | 
|  | DEFINE_UNALIGNED_ACCESS_HELPERS(be64, u64) | 
|  |  | 
|  | static inline bool is_power_of_2(unsigned long v) | 
|  | { | 
|  | return v != 0 && (v & (v - 1)) == 0; | 
|  | } | 
|  |  | 
|  | static inline u32 rol32(u32 v, int n) | 
|  | { | 
|  | return (v << n) | (v >> (32 - n)); | 
|  | } | 
|  |  | 
|  | static inline u32 ror32(u32 v, int n) | 
|  | { | 
|  | return (v >> n) | (v << (32 - n)); | 
|  | } | 
|  |  | 
|  | static inline u64 rol64(u64 v, int n) | 
|  | { | 
|  | return (v << n) | (v >> (64 - n)); | 
|  | } | 
|  |  | 
|  | static inline u64 ror64(u64 v, int n) | 
|  | { | 
|  | return (v >> n) | (v << (64 - n)); | 
|  | } | 
|  |  | 
|  | static inline void xor(u8 *res, const u8 *a, const u8 *b, size_t count) | 
|  | { | 
|  | while (count--) | 
|  | *res++ = *a++ ^ *b++; | 
|  | } | 
|  |  | 
|  | static void __attribute__((noreturn, format(printf, 2, 3))) | 
|  | do_die(int err, const char *format, ...) | 
|  | { | 
|  | va_list va; | 
|  |  | 
|  | va_start(va, format); | 
|  | fputs("[" PROGRAM_NAME "] ERROR: ", stderr); | 
|  | vfprintf(stderr, format, va); | 
|  | if (err) | 
|  | fprintf(stderr, ": %s", strerror(errno)); | 
|  | putc('\n', stderr); | 
|  | va_end(va); | 
|  | exit(1); | 
|  | } | 
|  |  | 
|  | #define die(format, ...)	do_die(0,     (format), ##__VA_ARGS__) | 
|  | #define die_errno(format, ...)	do_die(errno, (format), ##__VA_ARGS__) | 
|  |  | 
|  | static __attribute__((noreturn)) void | 
|  | assertion_failed(const char *expr, const char *file, int line) | 
|  | { | 
|  | die("Assertion failed: %s at %s:%d", expr, file, line); | 
|  | } | 
|  |  | 
|  | #define ASSERT(e) ({ if (!(e)) assertion_failed(#e, __FILE__, __LINE__); }) | 
|  |  | 
|  | static void *xmalloc(size_t size) | 
|  | { | 
|  | void *p = malloc(size); | 
|  |  | 
|  | ASSERT(p != NULL); | 
|  | return p; | 
|  | } | 
|  |  | 
|  | static int hexchar2bin(char c) | 
|  | { | 
|  | if (c >= 'a' && c <= 'f') | 
|  | return 10 + c - 'a'; | 
|  | if (c >= 'A' && c <= 'F') | 
|  | return 10 + c - 'A'; | 
|  | if (c >= '0' && c <= '9') | 
|  | return c - '0'; | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | static int hex2bin(const char *hex, u8 *bin, int max_bin_size) | 
|  | { | 
|  | size_t len = strlen(hex); | 
|  | size_t i; | 
|  |  | 
|  | if (len & 1) | 
|  | return -1; | 
|  | len /= 2; | 
|  | if (len > max_bin_size) | 
|  | return -1; | 
|  |  | 
|  | for (i = 0; i < len; i++) { | 
|  | int high = hexchar2bin(hex[2 * i]); | 
|  | int low = hexchar2bin(hex[2 * i + 1]); | 
|  |  | 
|  | if (high < 0 || low < 0) | 
|  | return -1; | 
|  | bin[i] = (high << 4) | low; | 
|  | } | 
|  | return len; | 
|  | } | 
|  |  | 
|  | static size_t xread(int fd, void *buf, size_t count) | 
|  | { | 
|  | const size_t orig_count = count; | 
|  |  | 
|  | while (count) { | 
|  | ssize_t res = read(fd, buf, count); | 
|  |  | 
|  | if (res < 0) | 
|  | die_errno("read error"); | 
|  | if (res == 0) | 
|  | break; | 
|  | buf += res; | 
|  | count -= res; | 
|  | } | 
|  | return orig_count - count; | 
|  | } | 
|  |  | 
|  | static void full_write(int fd, const void *buf, size_t count) | 
|  | { | 
|  | while (count) { | 
|  | ssize_t res = write(fd, buf, count); | 
|  |  | 
|  | if (res < 0) | 
|  | die_errno("write error"); | 
|  | buf += res; | 
|  | count -= res; | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef ENABLE_ALG_TESTS | 
|  | static void rand_bytes(u8 *buf, size_t count) | 
|  | { | 
|  | while (count--) | 
|  | *buf++ = rand(); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /*----------------------------------------------------------------------------* | 
|  | *                          Finite field arithmetic                           * | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | /* Multiply a GF(2^8) element by the polynomial 'x' */ | 
|  | static inline u8 gf2_8_mul_x(u8 b) | 
|  | { | 
|  | return (b << 1) ^ ((b & 0x80) ? 0x1B : 0); | 
|  | } | 
|  |  | 
|  | /* Multiply four packed GF(2^8) elements by the polynomial 'x' */ | 
|  | static inline u32 gf2_8_mul_x_4way(u32 w) | 
|  | { | 
|  | return ((w & 0x7F7F7F7F) << 1) ^ (((w & 0x80808080) >> 7) * 0x1B); | 
|  | } | 
|  |  | 
|  | /* Element of GF(2^128) */ | 
|  | typedef struct { | 
|  | __le64 lo; | 
|  | __le64 hi; | 
|  | } ble128; | 
|  |  | 
|  | /* Multiply a GF(2^128) element by the polynomial 'x' */ | 
|  | static inline void gf2_128_mul_x(ble128 *t) | 
|  | { | 
|  | u64 lo = le64_to_cpu(t->lo); | 
|  | u64 hi = le64_to_cpu(t->hi); | 
|  |  | 
|  | t->hi = cpu_to_le64((hi << 1) | (lo >> 63)); | 
|  | t->lo = cpu_to_le64((lo << 1) ^ ((hi & (1ULL << 63)) ? 0x87 : 0)); | 
|  | } | 
|  |  | 
|  | /*----------------------------------------------------------------------------* | 
|  | *                             Group arithmetic                               * | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | /* Element of Z/(2^{128}Z)  (a.k.a. the integers modulo 2^128) */ | 
|  | typedef struct { | 
|  | __le64 lo; | 
|  | __le64 hi; | 
|  | } le128; | 
|  |  | 
|  | static inline void le128_add(le128 *res, const le128 *a, const le128 *b) | 
|  | { | 
|  | u64 a_lo = le64_to_cpu(a->lo); | 
|  | u64 b_lo = le64_to_cpu(b->lo); | 
|  |  | 
|  | res->lo = cpu_to_le64(a_lo + b_lo); | 
|  | res->hi = cpu_to_le64(le64_to_cpu(a->hi) + le64_to_cpu(b->hi) + | 
|  | (a_lo + b_lo < a_lo)); | 
|  | } | 
|  |  | 
|  | static inline void le128_sub(le128 *res, const le128 *a, const le128 *b) | 
|  | { | 
|  | u64 a_lo = le64_to_cpu(a->lo); | 
|  | u64 b_lo = le64_to_cpu(b->lo); | 
|  |  | 
|  | res->lo = cpu_to_le64(a_lo - b_lo); | 
|  | res->hi = cpu_to_le64(le64_to_cpu(a->hi) - le64_to_cpu(b->hi) - | 
|  | (a_lo - b_lo > a_lo)); | 
|  | } | 
|  |  | 
|  | /*----------------------------------------------------------------------------* | 
|  | *                              AES block cipher                              * | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | /* | 
|  | * Reference: "FIPS 197, Advanced Encryption Standard" | 
|  | *	https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.197.pdf | 
|  | */ | 
|  |  | 
|  | #define AES_BLOCK_SIZE		16 | 
|  | #define AES_128_KEY_SIZE	16 | 
|  | #define AES_192_KEY_SIZE	24 | 
|  | #define AES_256_KEY_SIZE	32 | 
|  |  | 
|  | static inline void AddRoundKey(u32 state[4], const u32 *rk) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < 4; i++) | 
|  | state[i] ^= rk[i]; | 
|  | } | 
|  |  | 
|  | static const u8 aes_sbox[256] = { | 
|  | 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, | 
|  | 0xfe, 0xd7, 0xab, 0x76, 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, | 
|  | 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, 0xb7, 0xfd, 0x93, 0x26, | 
|  | 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, | 
|  | 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, | 
|  | 0xeb, 0x27, 0xb2, 0x75, 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, | 
|  | 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, 0x53, 0xd1, 0x00, 0xed, | 
|  | 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, | 
|  | 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, | 
|  | 0x50, 0x3c, 0x9f, 0xa8, 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, | 
|  | 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, 0xcd, 0x0c, 0x13, 0xec, | 
|  | 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, | 
|  | 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, | 
|  | 0xde, 0x5e, 0x0b, 0xdb, 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, | 
|  | 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, 0xe7, 0xc8, 0x37, 0x6d, | 
|  | 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, | 
|  | 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, | 
|  | 0x4b, 0xbd, 0x8b, 0x8a, 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, | 
|  | 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, 0xe1, 0xf8, 0x98, 0x11, | 
|  | 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, | 
|  | 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, | 
|  | 0xb0, 0x54, 0xbb, 0x16, | 
|  | }; | 
|  |  | 
|  | static u8 aes_inverse_sbox[256]; | 
|  |  | 
|  | static void aes_init(void) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < 256; i++) | 
|  | aes_inverse_sbox[aes_sbox[i]] = i; | 
|  | } | 
|  |  | 
|  | static inline u32 DoSubWord(u32 w, const u8 sbox[256]) | 
|  | { | 
|  | return ((u32)sbox[(u8)(w >> 24)] << 24) | | 
|  | ((u32)sbox[(u8)(w >> 16)] << 16) | | 
|  | ((u32)sbox[(u8)(w >>  8)] <<  8) | | 
|  | ((u32)sbox[(u8)(w >>  0)] <<  0); | 
|  | } | 
|  |  | 
|  | static inline u32 SubWord(u32 w) | 
|  | { | 
|  | return DoSubWord(w, aes_sbox); | 
|  | } | 
|  |  | 
|  | static inline u32 InvSubWord(u32 w) | 
|  | { | 
|  | return DoSubWord(w, aes_inverse_sbox); | 
|  | } | 
|  |  | 
|  | static inline void SubBytes(u32 state[4]) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < 4; i++) | 
|  | state[i] = SubWord(state[i]); | 
|  | } | 
|  |  | 
|  | static inline void InvSubBytes(u32 state[4]) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < 4; i++) | 
|  | state[i] = InvSubWord(state[i]); | 
|  | } | 
|  |  | 
|  | static inline void DoShiftRows(u32 state[4], int direction) | 
|  | { | 
|  | u32 newstate[4]; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < 4; i++) | 
|  | newstate[i] = (state[(i + direction*0) & 3] & 0xff) | | 
|  | (state[(i + direction*1) & 3] & 0xff00) | | 
|  | (state[(i + direction*2) & 3] & 0xff0000) | | 
|  | (state[(i + direction*3) & 3] & 0xff000000); | 
|  | memcpy(state, newstate, 16); | 
|  | } | 
|  |  | 
|  | static inline void ShiftRows(u32 state[4]) | 
|  | { | 
|  | DoShiftRows(state, 1); | 
|  | } | 
|  |  | 
|  | static inline void InvShiftRows(u32 state[4]) | 
|  | { | 
|  | DoShiftRows(state, -1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Mix one column by doing the following matrix multiplication in GF(2^8): | 
|  | * | 
|  | *     | 2 3 1 1 |   | w[0] | | 
|  | *     | 1 2 3 1 |   | w[1] | | 
|  | *     | 1 1 2 3 | x | w[2] | | 
|  | *     | 3 1 1 2 |   | w[3] | | 
|  | * | 
|  | * a.k.a. w[i] = 2*w[i] + 3*w[(i+1)%4] + w[(i+2)%4] + w[(i+3)%4] | 
|  | */ | 
|  | static inline u32 MixColumn(u32 w) | 
|  | { | 
|  | u32 _2w0_w2 = gf2_8_mul_x_4way(w) ^ ror32(w, 16); | 
|  | u32 _3w1_w3 = ror32(_2w0_w2 ^ w, 8); | 
|  |  | 
|  | return _2w0_w2 ^ _3w1_w3; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *           ( | 5 0 4 0 |   | w[0] | ) | 
|  | *          (  | 0 5 0 4 |   | w[1] |  ) | 
|  | * MixColumn(  | 4 0 5 0 | x | w[2] |  ) | 
|  | *           ( | 0 4 0 5 |   | w[3] | ) | 
|  | */ | 
|  | static inline u32 InvMixColumn(u32 w) | 
|  | { | 
|  | u32 _4w = gf2_8_mul_x_4way(gf2_8_mul_x_4way(w)); | 
|  |  | 
|  | return MixColumn(_4w ^ w ^ ror32(_4w, 16)); | 
|  | } | 
|  |  | 
|  | static inline void MixColumns(u32 state[4]) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < 4; i++) | 
|  | state[i] = MixColumn(state[i]); | 
|  | } | 
|  |  | 
|  | static inline void InvMixColumns(u32 state[4]) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < 4; i++) | 
|  | state[i] = InvMixColumn(state[i]); | 
|  | } | 
|  |  | 
|  | struct aes_key { | 
|  | u32 round_keys[15 * 4]; | 
|  | int nrounds; | 
|  | }; | 
|  |  | 
|  | /* Expand an AES key */ | 
|  | static void aes_setkey(struct aes_key *k, const u8 *key, int keysize) | 
|  | { | 
|  | const int N = keysize / 4; | 
|  | u32 * const rk = k->round_keys; | 
|  | u8 rcon = 1; | 
|  | int i; | 
|  |  | 
|  | ASSERT(keysize == 16 || keysize == 24 || keysize == 32); | 
|  | k->nrounds = 6 + N; | 
|  | for (i = 0; i < 4 * (k->nrounds + 1); i++) { | 
|  | if (i < N) { | 
|  | rk[i] = get_unaligned_le32(&key[i * sizeof(__le32)]); | 
|  | } else if (i % N == 0) { | 
|  | rk[i] = rk[i - N] ^ SubWord(ror32(rk[i - 1], 8)) ^ rcon; | 
|  | rcon = gf2_8_mul_x(rcon); | 
|  | } else if (N > 6 && i % N == 4) { | 
|  | rk[i] = rk[i - N] ^ SubWord(rk[i - 1]); | 
|  | } else { | 
|  | rk[i] = rk[i - N] ^ rk[i - 1]; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Encrypt one 16-byte block with AES */ | 
|  | static void aes_encrypt(const struct aes_key *k, const u8 src[AES_BLOCK_SIZE], | 
|  | u8 dst[AES_BLOCK_SIZE]) | 
|  | { | 
|  | u32 state[4]; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < 4; i++) | 
|  | state[i] = get_unaligned_le32(&src[i * sizeof(__le32)]); | 
|  |  | 
|  | AddRoundKey(state, k->round_keys); | 
|  | for (i = 1; i < k->nrounds; i++) { | 
|  | SubBytes(state); | 
|  | ShiftRows(state); | 
|  | MixColumns(state); | 
|  | AddRoundKey(state, &k->round_keys[4 * i]); | 
|  | } | 
|  | SubBytes(state); | 
|  | ShiftRows(state); | 
|  | AddRoundKey(state, &k->round_keys[4 * i]); | 
|  |  | 
|  | for (i = 0; i < 4; i++) | 
|  | put_unaligned_le32(state[i], &dst[i * sizeof(__le32)]); | 
|  | } | 
|  |  | 
|  | /* Decrypt one 16-byte block with AES */ | 
|  | static void aes_decrypt(const struct aes_key *k, const u8 src[AES_BLOCK_SIZE], | 
|  | u8 dst[AES_BLOCK_SIZE]) | 
|  | { | 
|  | u32 state[4]; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < 4; i++) | 
|  | state[i] = get_unaligned_le32(&src[i * sizeof(__le32)]); | 
|  |  | 
|  | AddRoundKey(state, &k->round_keys[4 * k->nrounds]); | 
|  | InvShiftRows(state); | 
|  | InvSubBytes(state); | 
|  | for (i = k->nrounds - 1; i >= 1; i--) { | 
|  | AddRoundKey(state, &k->round_keys[4 * i]); | 
|  | InvMixColumns(state); | 
|  | InvShiftRows(state); | 
|  | InvSubBytes(state); | 
|  | } | 
|  | AddRoundKey(state, k->round_keys); | 
|  |  | 
|  | for (i = 0; i < 4; i++) | 
|  | put_unaligned_le32(state[i], &dst[i * sizeof(__le32)]); | 
|  | } | 
|  |  | 
|  | #ifdef ENABLE_ALG_TESTS | 
|  | #include <openssl/aes.h> | 
|  | static void test_aes_keysize(int keysize) | 
|  | { | 
|  | unsigned long num_tests = NUM_ALG_TEST_ITERATIONS; | 
|  |  | 
|  | while (num_tests--) { | 
|  | struct aes_key k; | 
|  | AES_KEY ref_k; | 
|  | u8 key[AES_256_KEY_SIZE]; | 
|  | u8 ptext[AES_BLOCK_SIZE]; | 
|  | u8 ctext[AES_BLOCK_SIZE]; | 
|  | u8 ref_ctext[AES_BLOCK_SIZE]; | 
|  | u8 decrypted[AES_BLOCK_SIZE]; | 
|  |  | 
|  | rand_bytes(key, keysize); | 
|  | rand_bytes(ptext, AES_BLOCK_SIZE); | 
|  |  | 
|  | aes_setkey(&k, key, keysize); | 
|  | aes_encrypt(&k, ptext, ctext); | 
|  |  | 
|  | ASSERT(AES_set_encrypt_key(key, keysize*8, &ref_k) == 0); | 
|  | AES_encrypt(ptext, ref_ctext, &ref_k); | 
|  |  | 
|  | ASSERT(memcmp(ctext, ref_ctext, AES_BLOCK_SIZE) == 0); | 
|  |  | 
|  | aes_decrypt(&k, ctext, decrypted); | 
|  | ASSERT(memcmp(ptext, decrypted, AES_BLOCK_SIZE) == 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void test_aes(void) | 
|  | { | 
|  | test_aes_keysize(AES_128_KEY_SIZE); | 
|  | test_aes_keysize(AES_192_KEY_SIZE); | 
|  | test_aes_keysize(AES_256_KEY_SIZE); | 
|  | } | 
|  | #endif /* ENABLE_ALG_TESTS */ | 
|  |  | 
|  | /*----------------------------------------------------------------------------* | 
|  | *                            SHA-512 and SHA-256                             * | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | /* | 
|  | * Reference: "FIPS 180-2, Secure Hash Standard" | 
|  | *	https://csrc.nist.gov/csrc/media/publications/fips/180/2/archive/2002-08-01/documents/fips180-2withchangenotice.pdf | 
|  | */ | 
|  |  | 
|  | #define SHA512_DIGEST_SIZE	64 | 
|  | #define SHA512_BLOCK_SIZE	128 | 
|  |  | 
|  | #define SHA256_DIGEST_SIZE	32 | 
|  | #define SHA256_BLOCK_SIZE	64 | 
|  |  | 
|  | #define Ch(x, y, z)	(((x) & (y)) ^ (~(x) & (z))) | 
|  | #define Maj(x, y, z)	(((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) | 
|  |  | 
|  | #define Sigma512_0(x)	(ror64((x), 28) ^ ror64((x), 34) ^ ror64((x), 39)) | 
|  | #define Sigma512_1(x)	(ror64((x), 14) ^ ror64((x), 18) ^ ror64((x), 41)) | 
|  | #define sigma512_0(x)	(ror64((x),  1) ^ ror64((x),  8) ^ ((x) >> 7)) | 
|  | #define sigma512_1(x)	(ror64((x), 19) ^ ror64((x), 61) ^ ((x) >> 6)) | 
|  |  | 
|  | #define Sigma256_0(x)	(ror32((x),  2) ^ ror32((x), 13) ^ ror32((x), 22)) | 
|  | #define Sigma256_1(x)	(ror32((x),  6) ^ ror32((x), 11) ^ ror32((x), 25)) | 
|  | #define sigma256_0(x)	(ror32((x),  7) ^ ror32((x), 18) ^ ((x) >>  3)) | 
|  | #define sigma256_1(x)	(ror32((x), 17) ^ ror32((x), 19) ^ ((x) >> 10)) | 
|  |  | 
|  | static const u64 sha512_iv[8] = { | 
|  | 0x6a09e667f3bcc908, 0xbb67ae8584caa73b, 0x3c6ef372fe94f82b, | 
|  | 0xa54ff53a5f1d36f1, 0x510e527fade682d1, 0x9b05688c2b3e6c1f, | 
|  | 0x1f83d9abfb41bd6b, 0x5be0cd19137e2179, | 
|  | }; | 
|  |  | 
|  | static const u64 sha512_round_constants[80] = { | 
|  | 0x428a2f98d728ae22, 0x7137449123ef65cd, 0xb5c0fbcfec4d3b2f, | 
|  | 0xe9b5dba58189dbbc, 0x3956c25bf348b538, 0x59f111f1b605d019, | 
|  | 0x923f82a4af194f9b, 0xab1c5ed5da6d8118, 0xd807aa98a3030242, | 
|  | 0x12835b0145706fbe, 0x243185be4ee4b28c, 0x550c7dc3d5ffb4e2, | 
|  | 0x72be5d74f27b896f, 0x80deb1fe3b1696b1, 0x9bdc06a725c71235, | 
|  | 0xc19bf174cf692694, 0xe49b69c19ef14ad2, 0xefbe4786384f25e3, | 
|  | 0x0fc19dc68b8cd5b5, 0x240ca1cc77ac9c65, 0x2de92c6f592b0275, | 
|  | 0x4a7484aa6ea6e483, 0x5cb0a9dcbd41fbd4, 0x76f988da831153b5, | 
|  | 0x983e5152ee66dfab, 0xa831c66d2db43210, 0xb00327c898fb213f, | 
|  | 0xbf597fc7beef0ee4, 0xc6e00bf33da88fc2, 0xd5a79147930aa725, | 
|  | 0x06ca6351e003826f, 0x142929670a0e6e70, 0x27b70a8546d22ffc, | 
|  | 0x2e1b21385c26c926, 0x4d2c6dfc5ac42aed, 0x53380d139d95b3df, | 
|  | 0x650a73548baf63de, 0x766a0abb3c77b2a8, 0x81c2c92e47edaee6, | 
|  | 0x92722c851482353b, 0xa2bfe8a14cf10364, 0xa81a664bbc423001, | 
|  | 0xc24b8b70d0f89791, 0xc76c51a30654be30, 0xd192e819d6ef5218, | 
|  | 0xd69906245565a910, 0xf40e35855771202a, 0x106aa07032bbd1b8, | 
|  | 0x19a4c116b8d2d0c8, 0x1e376c085141ab53, 0x2748774cdf8eeb99, | 
|  | 0x34b0bcb5e19b48a8, 0x391c0cb3c5c95a63, 0x4ed8aa4ae3418acb, | 
|  | 0x5b9cca4f7763e373, 0x682e6ff3d6b2b8a3, 0x748f82ee5defb2fc, | 
|  | 0x78a5636f43172f60, 0x84c87814a1f0ab72, 0x8cc702081a6439ec, | 
|  | 0x90befffa23631e28, 0xa4506cebde82bde9, 0xbef9a3f7b2c67915, | 
|  | 0xc67178f2e372532b, 0xca273eceea26619c, 0xd186b8c721c0c207, | 
|  | 0xeada7dd6cde0eb1e, 0xf57d4f7fee6ed178, 0x06f067aa72176fba, | 
|  | 0x0a637dc5a2c898a6, 0x113f9804bef90dae, 0x1b710b35131c471b, | 
|  | 0x28db77f523047d84, 0x32caab7b40c72493, 0x3c9ebe0a15c9bebc, | 
|  | 0x431d67c49c100d4c, 0x4cc5d4becb3e42b6, 0x597f299cfc657e2a, | 
|  | 0x5fcb6fab3ad6faec, 0x6c44198c4a475817, | 
|  | }; | 
|  |  | 
|  | /* Compute the SHA-512 digest of the given buffer */ | 
|  | static void sha512(const u8 *in, size_t inlen, u8 out[SHA512_DIGEST_SIZE]) | 
|  | { | 
|  | const size_t msglen = ROUND_UP(inlen + 17, SHA512_BLOCK_SIZE); | 
|  | u8 * const msg = xmalloc(msglen); | 
|  | u64 H[8]; | 
|  | int i; | 
|  |  | 
|  | /* super naive way of handling the padding */ | 
|  | memcpy(msg, in, inlen); | 
|  | memset(&msg[inlen], 0, msglen - inlen); | 
|  | msg[inlen] = 0x80; | 
|  | put_unaligned_be64((u64)inlen * 8, &msg[msglen - sizeof(__be64)]); | 
|  | in = msg; | 
|  |  | 
|  | memcpy(H, sha512_iv, sizeof(H)); | 
|  | do { | 
|  | u64 a = H[0], b = H[1], c = H[2], d = H[3], | 
|  | e = H[4], f = H[5], g = H[6], h = H[7]; | 
|  | u64 W[80]; | 
|  |  | 
|  | for (i = 0; i < 16; i++) | 
|  | W[i] = get_unaligned_be64(&in[i * sizeof(__be64)]); | 
|  | for (; i < ARRAY_SIZE(W); i++) | 
|  | W[i] = sigma512_1(W[i - 2]) + W[i - 7] + | 
|  | sigma512_0(W[i - 15]) + W[i - 16]; | 
|  | for (i = 0; i < ARRAY_SIZE(W); i++) { | 
|  | u64 T1 = h + Sigma512_1(e) + Ch(e, f, g) + | 
|  | sha512_round_constants[i] + W[i]; | 
|  | u64 T2 = Sigma512_0(a) + Maj(a, b, c); | 
|  |  | 
|  | h = g; g = f; f = e; e = d + T1; | 
|  | d = c; c = b; b = a; a = T1 + T2; | 
|  | } | 
|  | H[0] += a; H[1] += b; H[2] += c; H[3] += d; | 
|  | H[4] += e; H[5] += f; H[6] += g; H[7] += h; | 
|  | } while ((in += SHA512_BLOCK_SIZE) != &msg[msglen]); | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(H); i++) | 
|  | put_unaligned_be64(H[i], &out[i * sizeof(__be64)]); | 
|  | free(msg); | 
|  | } | 
|  |  | 
|  | /* Compute the SHA-256 digest of the given buffer */ | 
|  | static void sha256(const u8 *in, size_t inlen, u8 out[SHA256_DIGEST_SIZE]) | 
|  | { | 
|  | const size_t msglen = ROUND_UP(inlen + 9, SHA256_BLOCK_SIZE); | 
|  | u8 * const msg = xmalloc(msglen); | 
|  | u32 H[8]; | 
|  | int i; | 
|  |  | 
|  | /* super naive way of handling the padding */ | 
|  | memcpy(msg, in, inlen); | 
|  | memset(&msg[inlen], 0, msglen - inlen); | 
|  | msg[inlen] = 0x80; | 
|  | put_unaligned_be64((u64)inlen * 8, &msg[msglen - sizeof(__be64)]); | 
|  | in = msg; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(H); i++) | 
|  | H[i] = (u32)(sha512_iv[i] >> 32); | 
|  | do { | 
|  | u32 a = H[0], b = H[1], c = H[2], d = H[3], | 
|  | e = H[4], f = H[5], g = H[6], h = H[7]; | 
|  | u32 W[64]; | 
|  |  | 
|  | for (i = 0; i < 16; i++) | 
|  | W[i] = get_unaligned_be32(&in[i * sizeof(__be32)]); | 
|  | for (; i < ARRAY_SIZE(W); i++) | 
|  | W[i] = sigma256_1(W[i - 2]) + W[i - 7] + | 
|  | sigma256_0(W[i - 15]) + W[i - 16]; | 
|  | for (i = 0; i < ARRAY_SIZE(W); i++) { | 
|  | u32 T1 = h + Sigma256_1(e) + Ch(e, f, g) + | 
|  | (u32)(sha512_round_constants[i] >> 32) + W[i]; | 
|  | u32 T2 = Sigma256_0(a) + Maj(a, b, c); | 
|  |  | 
|  | h = g; g = f; f = e; e = d + T1; | 
|  | d = c; c = b; b = a; a = T1 + T2; | 
|  | } | 
|  | H[0] += a; H[1] += b; H[2] += c; H[3] += d; | 
|  | H[4] += e; H[5] += f; H[6] += g; H[7] += h; | 
|  | } while ((in += SHA256_BLOCK_SIZE) != &msg[msglen]); | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(H); i++) | 
|  | put_unaligned_be32(H[i], &out[i * sizeof(__be32)]); | 
|  | free(msg); | 
|  | } | 
|  |  | 
|  | #ifdef ENABLE_ALG_TESTS | 
|  | #include <openssl/sha.h> | 
|  | static void test_sha2(void) | 
|  | { | 
|  | unsigned long num_tests = NUM_ALG_TEST_ITERATIONS; | 
|  |  | 
|  | while (num_tests--) { | 
|  | u8 in[4096]; | 
|  | u8 digest[SHA512_DIGEST_SIZE]; | 
|  | u8 ref_digest[SHA512_DIGEST_SIZE]; | 
|  | const size_t inlen = rand() % (1 + sizeof(in)); | 
|  |  | 
|  | rand_bytes(in, inlen); | 
|  |  | 
|  | sha256(in, inlen, digest); | 
|  | SHA256(in, inlen, ref_digest); | 
|  | ASSERT(memcmp(digest, ref_digest, SHA256_DIGEST_SIZE) == 0); | 
|  |  | 
|  | sha512(in, inlen, digest); | 
|  | SHA512(in, inlen, ref_digest); | 
|  | ASSERT(memcmp(digest, ref_digest, SHA512_DIGEST_SIZE) == 0); | 
|  | } | 
|  | } | 
|  | #endif /* ENABLE_ALG_TESTS */ | 
|  |  | 
|  | /*----------------------------------------------------------------------------* | 
|  | *                            HKDF implementation                             * | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | static void hmac_sha512(const u8 *key, size_t keylen, const u8 *msg, | 
|  | size_t msglen, u8 mac[SHA512_DIGEST_SIZE]) | 
|  | { | 
|  | u8 *ibuf = xmalloc(SHA512_BLOCK_SIZE + msglen); | 
|  | u8 obuf[SHA512_BLOCK_SIZE + SHA512_DIGEST_SIZE]; | 
|  |  | 
|  | ASSERT(keylen <= SHA512_BLOCK_SIZE); /* keylen > bs not implemented */ | 
|  |  | 
|  | memset(ibuf, 0x36, SHA512_BLOCK_SIZE); | 
|  | xor(ibuf, ibuf, key, keylen); | 
|  | memcpy(&ibuf[SHA512_BLOCK_SIZE], msg, msglen); | 
|  |  | 
|  | memset(obuf, 0x5c, SHA512_BLOCK_SIZE); | 
|  | xor(obuf, obuf, key, keylen); | 
|  | sha512(ibuf, SHA512_BLOCK_SIZE + msglen, &obuf[SHA512_BLOCK_SIZE]); | 
|  | sha512(obuf, sizeof(obuf), mac); | 
|  |  | 
|  | free(ibuf); | 
|  | } | 
|  |  | 
|  | static void hkdf_sha512(const u8 *ikm, size_t ikmlen, | 
|  | const u8 *salt, size_t saltlen, | 
|  | const u8 *info, size_t infolen, | 
|  | u8 *output, size_t outlen) | 
|  | { | 
|  | static const u8 default_salt[SHA512_DIGEST_SIZE]; | 
|  | u8 prk[SHA512_DIGEST_SIZE]; /* pseudorandom key */ | 
|  | u8 *buf = xmalloc(1 + infolen + SHA512_DIGEST_SIZE); | 
|  | u8 counter = 1; | 
|  | size_t i; | 
|  |  | 
|  | if (saltlen == 0) { | 
|  | salt = default_salt; | 
|  | saltlen = sizeof(default_salt); | 
|  | } | 
|  |  | 
|  | /* HKDF-Extract */ | 
|  | ASSERT(ikmlen > 0); | 
|  | hmac_sha512(salt, saltlen, ikm, ikmlen, prk); | 
|  |  | 
|  | /* HKDF-Expand */ | 
|  | for (i = 0; i < outlen; i += SHA512_DIGEST_SIZE) { | 
|  | u8 *p = buf; | 
|  | u8 tmp[SHA512_DIGEST_SIZE]; | 
|  |  | 
|  | ASSERT(counter != 0); | 
|  | if (i > 0) { | 
|  | memcpy(p, &output[i - SHA512_DIGEST_SIZE], | 
|  | SHA512_DIGEST_SIZE); | 
|  | p += SHA512_DIGEST_SIZE; | 
|  | } | 
|  | memcpy(p, info, infolen); | 
|  | p += infolen; | 
|  | *p++ = counter++; | 
|  | hmac_sha512(prk, sizeof(prk), buf, p - buf, tmp); | 
|  | memcpy(&output[i], tmp, MIN(sizeof(tmp), outlen - i)); | 
|  | } | 
|  | free(buf); | 
|  | } | 
|  |  | 
|  | #ifdef ENABLE_ALG_TESTS | 
|  | #include <openssl/evp.h> | 
|  | #include <openssl/kdf.h> | 
|  | static void openssl_hkdf_sha512(const u8 *ikm, size_t ikmlen, | 
|  | const u8 *salt, size_t saltlen, | 
|  | const u8 *info, size_t infolen, | 
|  | u8 *output, size_t outlen) | 
|  | { | 
|  | EVP_PKEY_CTX *pctx = EVP_PKEY_CTX_new_id(EVP_PKEY_HKDF, NULL); | 
|  | size_t actual_outlen = outlen; | 
|  |  | 
|  | ASSERT(pctx != NULL); | 
|  | ASSERT(EVP_PKEY_derive_init(pctx) > 0); | 
|  | ASSERT(EVP_PKEY_CTX_set_hkdf_md(pctx, EVP_sha512()) > 0); | 
|  | ASSERT(EVP_PKEY_CTX_set1_hkdf_key(pctx, ikm, ikmlen) > 0); | 
|  | ASSERT(EVP_PKEY_CTX_set1_hkdf_salt(pctx, salt, saltlen) > 0); | 
|  | ASSERT(EVP_PKEY_CTX_add1_hkdf_info(pctx, info, infolen) > 0); | 
|  | ASSERT(EVP_PKEY_derive(pctx, output, &actual_outlen) > 0); | 
|  | ASSERT(actual_outlen == outlen); | 
|  | EVP_PKEY_CTX_free(pctx); | 
|  | } | 
|  |  | 
|  | static void test_hkdf_sha512(void) | 
|  | { | 
|  | unsigned long num_tests = NUM_ALG_TEST_ITERATIONS; | 
|  |  | 
|  | while (num_tests--) { | 
|  | u8 ikm[SHA512_DIGEST_SIZE]; | 
|  | u8 salt[SHA512_DIGEST_SIZE]; | 
|  | u8 info[128]; | 
|  | u8 actual_output[512]; | 
|  | u8 expected_output[sizeof(actual_output)]; | 
|  | size_t ikmlen = 1 + (rand() % sizeof(ikm)); | 
|  | size_t saltlen = rand() % (1 + sizeof(salt)); | 
|  | size_t infolen = rand() % (1 + sizeof(info)); | 
|  | size_t outlen = rand() % (1 + sizeof(actual_output)); | 
|  |  | 
|  | rand_bytes(ikm, ikmlen); | 
|  | rand_bytes(salt, saltlen); | 
|  | rand_bytes(info, infolen); | 
|  |  | 
|  | hkdf_sha512(ikm, ikmlen, salt, saltlen, info, infolen, | 
|  | actual_output, outlen); | 
|  | openssl_hkdf_sha512(ikm, ikmlen, salt, saltlen, info, infolen, | 
|  | expected_output, outlen); | 
|  | ASSERT(memcmp(actual_output, expected_output, outlen) == 0); | 
|  | } | 
|  | } | 
|  | #endif /* ENABLE_ALG_TESTS */ | 
|  |  | 
|  | /*----------------------------------------------------------------------------* | 
|  | *                            AES encryption modes                            * | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | static void aes_256_xts_crypt(const u8 key[2 * AES_256_KEY_SIZE], | 
|  | const u8 iv[AES_BLOCK_SIZE], const u8 *src, | 
|  | u8 *dst, size_t nbytes, bool decrypting) | 
|  | { | 
|  | struct aes_key tweak_key, cipher_key; | 
|  | ble128 t; | 
|  | size_t i; | 
|  |  | 
|  | ASSERT(nbytes % AES_BLOCK_SIZE == 0); | 
|  | aes_setkey(&cipher_key, key, AES_256_KEY_SIZE); | 
|  | aes_setkey(&tweak_key, &key[AES_256_KEY_SIZE], AES_256_KEY_SIZE); | 
|  | aes_encrypt(&tweak_key, iv, (u8 *)&t); | 
|  | for (i = 0; i < nbytes; i += AES_BLOCK_SIZE) { | 
|  | xor(&dst[i], &src[i], (const u8 *)&t, AES_BLOCK_SIZE); | 
|  | if (decrypting) | 
|  | aes_decrypt(&cipher_key, &dst[i], &dst[i]); | 
|  | else | 
|  | aes_encrypt(&cipher_key, &dst[i], &dst[i]); | 
|  | xor(&dst[i], &dst[i], (const u8 *)&t, AES_BLOCK_SIZE); | 
|  | gf2_128_mul_x(&t); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void aes_256_xts_encrypt(const u8 key[2 * AES_256_KEY_SIZE], | 
|  | const u8 iv[AES_BLOCK_SIZE], const u8 *src, | 
|  | u8 *dst, size_t nbytes) | 
|  | { | 
|  | aes_256_xts_crypt(key, iv, src, dst, nbytes, false); | 
|  | } | 
|  |  | 
|  | static void aes_256_xts_decrypt(const u8 key[2 * AES_256_KEY_SIZE], | 
|  | const u8 iv[AES_BLOCK_SIZE], const u8 *src, | 
|  | u8 *dst, size_t nbytes) | 
|  | { | 
|  | aes_256_xts_crypt(key, iv, src, dst, nbytes, true); | 
|  | } | 
|  |  | 
|  | #ifdef ENABLE_ALG_TESTS | 
|  | #include <openssl/evp.h> | 
|  | static void test_aes_256_xts(void) | 
|  | { | 
|  | unsigned long num_tests = NUM_ALG_TEST_ITERATIONS; | 
|  | EVP_CIPHER_CTX *ctx = EVP_CIPHER_CTX_new(); | 
|  |  | 
|  | ASSERT(ctx != NULL); | 
|  | while (num_tests--) { | 
|  | u8 key[2 * AES_256_KEY_SIZE]; | 
|  | u8 iv[AES_BLOCK_SIZE]; | 
|  | u8 ptext[512]; | 
|  | u8 ctext[sizeof(ptext)]; | 
|  | u8 ref_ctext[sizeof(ptext)]; | 
|  | u8 decrypted[sizeof(ptext)]; | 
|  | const size_t datalen = ROUND_DOWN(rand() % (1 + sizeof(ptext)), | 
|  | AES_BLOCK_SIZE); | 
|  | int outl, res; | 
|  |  | 
|  | rand_bytes(key, sizeof(key)); | 
|  | rand_bytes(iv, sizeof(iv)); | 
|  | rand_bytes(ptext, datalen); | 
|  |  | 
|  | aes_256_xts_encrypt(key, iv, ptext, ctext, datalen); | 
|  | res = EVP_EncryptInit_ex(ctx, EVP_aes_256_xts(), NULL, key, iv); | 
|  | ASSERT(res > 0); | 
|  | res = EVP_EncryptUpdate(ctx, ref_ctext, &outl, ptext, datalen); | 
|  | ASSERT(res > 0); | 
|  | ASSERT(outl == datalen); | 
|  | ASSERT(memcmp(ctext, ref_ctext, datalen) == 0); | 
|  |  | 
|  | aes_256_xts_decrypt(key, iv, ctext, decrypted, datalen); | 
|  | ASSERT(memcmp(ptext, decrypted, datalen) == 0); | 
|  | } | 
|  | EVP_CIPHER_CTX_free(ctx); | 
|  | } | 
|  | #endif /* ENABLE_ALG_TESTS */ | 
|  |  | 
|  | static void aes_cbc_encrypt(const struct aes_key *k, | 
|  | const u8 iv[AES_BLOCK_SIZE], | 
|  | const u8 *src, u8 *dst, size_t nbytes) | 
|  | { | 
|  | size_t i; | 
|  |  | 
|  | ASSERT(nbytes % AES_BLOCK_SIZE == 0); | 
|  | for (i = 0; i < nbytes; i += AES_BLOCK_SIZE) { | 
|  | xor(&dst[i], &src[i], (i == 0 ? iv : &dst[i - AES_BLOCK_SIZE]), | 
|  | AES_BLOCK_SIZE); | 
|  | aes_encrypt(k, &dst[i], &dst[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void aes_cbc_decrypt(const struct aes_key *k, | 
|  | const u8 iv[AES_BLOCK_SIZE], | 
|  | const u8 *src, u8 *dst, size_t nbytes) | 
|  | { | 
|  | size_t i = nbytes; | 
|  |  | 
|  | ASSERT(i % AES_BLOCK_SIZE == 0); | 
|  | while (i) { | 
|  | i -= AES_BLOCK_SIZE; | 
|  | aes_decrypt(k, &src[i], &dst[i]); | 
|  | xor(&dst[i], &dst[i], (i == 0 ? iv : &src[i - AES_BLOCK_SIZE]), | 
|  | AES_BLOCK_SIZE); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void aes_cts_cbc_encrypt(const u8 *key, int keysize, | 
|  | const u8 iv[AES_BLOCK_SIZE], | 
|  | const u8 *src, u8 *dst, size_t nbytes) | 
|  | { | 
|  | const size_t offset = ROUND_DOWN(nbytes - 1, AES_BLOCK_SIZE); | 
|  | const size_t final_bsize = nbytes - offset; | 
|  | struct aes_key k; | 
|  | u8 *pad; | 
|  | u8 buf[AES_BLOCK_SIZE]; | 
|  |  | 
|  | ASSERT(nbytes >= AES_BLOCK_SIZE); | 
|  |  | 
|  | aes_setkey(&k, key, keysize); | 
|  |  | 
|  | if (nbytes == AES_BLOCK_SIZE) | 
|  | return aes_cbc_encrypt(&k, iv, src, dst, nbytes); | 
|  |  | 
|  | aes_cbc_encrypt(&k, iv, src, dst, offset); | 
|  | pad = &dst[offset - AES_BLOCK_SIZE]; | 
|  |  | 
|  | memcpy(buf, pad, AES_BLOCK_SIZE); | 
|  | xor(buf, buf, &src[offset], final_bsize); | 
|  | memcpy(&dst[offset], pad, final_bsize); | 
|  | aes_encrypt(&k, buf, pad); | 
|  | } | 
|  |  | 
|  | static void aes_cts_cbc_decrypt(const u8 *key, int keysize, | 
|  | const u8 iv[AES_BLOCK_SIZE], | 
|  | const u8 *src, u8 *dst, size_t nbytes) | 
|  | { | 
|  | const size_t offset = ROUND_DOWN(nbytes - 1, AES_BLOCK_SIZE); | 
|  | const size_t final_bsize = nbytes - offset; | 
|  | struct aes_key k; | 
|  | u8 *pad; | 
|  |  | 
|  | ASSERT(nbytes >= AES_BLOCK_SIZE); | 
|  |  | 
|  | aes_setkey(&k, key, keysize); | 
|  |  | 
|  | if (nbytes == AES_BLOCK_SIZE) | 
|  | return aes_cbc_decrypt(&k, iv, src, dst, nbytes); | 
|  |  | 
|  | pad = &dst[offset - AES_BLOCK_SIZE]; | 
|  | aes_decrypt(&k, &src[offset - AES_BLOCK_SIZE], pad); | 
|  | xor(&dst[offset], &src[offset], pad, final_bsize); | 
|  | xor(pad, pad, &dst[offset], final_bsize); | 
|  |  | 
|  | aes_cbc_decrypt(&k, (offset == AES_BLOCK_SIZE ? | 
|  | iv : &src[offset - 2 * AES_BLOCK_SIZE]), | 
|  | pad, pad, AES_BLOCK_SIZE); | 
|  | aes_cbc_decrypt(&k, iv, src, dst, offset - AES_BLOCK_SIZE); | 
|  | } | 
|  |  | 
|  | static void aes_256_cts_cbc_encrypt(const u8 key[AES_256_KEY_SIZE], | 
|  | const u8 iv[AES_BLOCK_SIZE], | 
|  | const u8 *src, u8 *dst, size_t nbytes) | 
|  | { | 
|  | aes_cts_cbc_encrypt(key, AES_256_KEY_SIZE, iv, src, dst, nbytes); | 
|  | } | 
|  |  | 
|  | static void aes_256_cts_cbc_decrypt(const u8 key[AES_256_KEY_SIZE], | 
|  | const u8 iv[AES_BLOCK_SIZE], | 
|  | const u8 *src, u8 *dst, size_t nbytes) | 
|  | { | 
|  | aes_cts_cbc_decrypt(key, AES_256_KEY_SIZE, iv, src, dst, nbytes); | 
|  | } | 
|  |  | 
|  | #ifdef ENABLE_ALG_TESTS | 
|  | #include <openssl/modes.h> | 
|  | static void aes_block128_f(const unsigned char in[16], | 
|  | unsigned char out[16], const void *key) | 
|  | { | 
|  | aes_encrypt(key, in, out); | 
|  | } | 
|  |  | 
|  | static void test_aes_256_cts_cbc(void) | 
|  | { | 
|  | unsigned long num_tests = NUM_ALG_TEST_ITERATIONS; | 
|  |  | 
|  | while (num_tests--) { | 
|  | u8 key[AES_256_KEY_SIZE]; | 
|  | u8 iv[AES_BLOCK_SIZE]; | 
|  | u8 iv_copy[AES_BLOCK_SIZE]; | 
|  | u8 ptext[512]; | 
|  | u8 ctext[sizeof(ptext)]; | 
|  | u8 ref_ctext[sizeof(ptext)]; | 
|  | u8 decrypted[sizeof(ptext)]; | 
|  | const size_t datalen = 16 + (rand() % (sizeof(ptext) - 15)); | 
|  | struct aes_key k; | 
|  |  | 
|  | rand_bytes(key, sizeof(key)); | 
|  | rand_bytes(iv, sizeof(iv)); | 
|  | rand_bytes(ptext, datalen); | 
|  |  | 
|  | aes_256_cts_cbc_encrypt(key, iv, ptext, ctext, datalen); | 
|  |  | 
|  | /* OpenSSL doesn't allow datalen=AES_BLOCK_SIZE; Linux does */ | 
|  | if (datalen != AES_BLOCK_SIZE) { | 
|  | aes_setkey(&k, key, sizeof(key)); | 
|  | memcpy(iv_copy, iv, sizeof(iv)); | 
|  | ASSERT(CRYPTO_cts128_encrypt_block(ptext, ref_ctext, | 
|  | datalen, &k, iv_copy, | 
|  | aes_block128_f) | 
|  | == datalen); | 
|  | ASSERT(memcmp(ctext, ref_ctext, datalen) == 0); | 
|  | } | 
|  | aes_256_cts_cbc_decrypt(key, iv, ctext, decrypted, datalen); | 
|  | ASSERT(memcmp(ptext, decrypted, datalen) == 0); | 
|  | } | 
|  | } | 
|  | #endif /* ENABLE_ALG_TESTS */ | 
|  |  | 
|  | static void essiv_generate_iv(const u8 orig_key[AES_128_KEY_SIZE], | 
|  | const u8 orig_iv[AES_BLOCK_SIZE], | 
|  | u8 real_iv[AES_BLOCK_SIZE]) | 
|  | { | 
|  | u8 essiv_key[SHA256_DIGEST_SIZE]; | 
|  | struct aes_key essiv; | 
|  |  | 
|  | /* AES encrypt the original IV using a hash of the original key */ | 
|  | STATIC_ASSERT(SHA256_DIGEST_SIZE == AES_256_KEY_SIZE); | 
|  | sha256(orig_key, AES_128_KEY_SIZE, essiv_key); | 
|  | aes_setkey(&essiv, essiv_key, AES_256_KEY_SIZE); | 
|  | aes_encrypt(&essiv, orig_iv, real_iv); | 
|  | } | 
|  |  | 
|  | static void aes_128_cbc_essiv_encrypt(const u8 key[AES_128_KEY_SIZE], | 
|  | const u8 iv[AES_BLOCK_SIZE], | 
|  | const u8 *src, u8 *dst, size_t nbytes) | 
|  | { | 
|  | struct aes_key k; | 
|  | u8 real_iv[AES_BLOCK_SIZE]; | 
|  |  | 
|  | aes_setkey(&k, key, AES_128_KEY_SIZE); | 
|  | essiv_generate_iv(key, iv, real_iv); | 
|  | aes_cbc_encrypt(&k, real_iv, src, dst, nbytes); | 
|  | } | 
|  |  | 
|  | static void aes_128_cbc_essiv_decrypt(const u8 key[AES_128_KEY_SIZE], | 
|  | const u8 iv[AES_BLOCK_SIZE], | 
|  | const u8 *src, u8 *dst, size_t nbytes) | 
|  | { | 
|  | struct aes_key k; | 
|  | u8 real_iv[AES_BLOCK_SIZE]; | 
|  |  | 
|  | aes_setkey(&k, key, AES_128_KEY_SIZE); | 
|  | essiv_generate_iv(key, iv, real_iv); | 
|  | aes_cbc_decrypt(&k, real_iv, src, dst, nbytes); | 
|  | } | 
|  |  | 
|  | static void aes_128_cts_cbc_encrypt(const u8 key[AES_128_KEY_SIZE], | 
|  | const u8 iv[AES_BLOCK_SIZE], | 
|  | const u8 *src, u8 *dst, size_t nbytes) | 
|  | { | 
|  | aes_cts_cbc_encrypt(key, AES_128_KEY_SIZE, iv, src, dst, nbytes); | 
|  | } | 
|  |  | 
|  | static void aes_128_cts_cbc_decrypt(const u8 key[AES_128_KEY_SIZE], | 
|  | const u8 iv[AES_BLOCK_SIZE], | 
|  | const u8 *src, u8 *dst, size_t nbytes) | 
|  | { | 
|  | aes_cts_cbc_decrypt(key, AES_128_KEY_SIZE, iv, src, dst, nbytes); | 
|  | } | 
|  |  | 
|  | /*----------------------------------------------------------------------------* | 
|  | *                           XChaCha12 stream cipher                          * | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | /* | 
|  | * References: | 
|  | *   - "XChaCha: eXtended-nonce ChaCha and AEAD_XChaCha20_Poly1305" | 
|  | *	https://tools.ietf.org/html/draft-arciszewski-xchacha-03 | 
|  | * | 
|  | *   - "ChaCha, a variant of Salsa20" | 
|  | *	https://cr.yp.to/chacha/chacha-20080128.pdf | 
|  | * | 
|  | *   - "Extending the Salsa20 nonce" | 
|  | *	https://cr.yp.to/snuffle/xsalsa-20081128.pdf | 
|  | */ | 
|  |  | 
|  | #define CHACHA_KEY_SIZE		32 | 
|  | #define XCHACHA_KEY_SIZE	CHACHA_KEY_SIZE | 
|  | #define XCHACHA_NONCE_SIZE	24 | 
|  |  | 
|  | static void chacha_init_state(u32 state[16], const u8 key[CHACHA_KEY_SIZE], | 
|  | const u8 iv[16]) | 
|  | { | 
|  | static const u8 consts[16] = "expand 32-byte k"; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < 4; i++) | 
|  | state[i] = get_unaligned_le32(&consts[i * sizeof(__le32)]); | 
|  | for (i = 0; i < 8; i++) | 
|  | state[4 + i] = get_unaligned_le32(&key[i * sizeof(__le32)]); | 
|  | for (i = 0; i < 4; i++) | 
|  | state[12 + i] = get_unaligned_le32(&iv[i * sizeof(__le32)]); | 
|  | } | 
|  |  | 
|  | #define CHACHA_QUARTERROUND(a, b, c, d)		\ | 
|  | do {					\ | 
|  | a += b; d = rol32(d ^ a, 16);	\ | 
|  | c += d; b = rol32(b ^ c, 12);	\ | 
|  | a += b; d = rol32(d ^ a, 8);	\ | 
|  | c += d; b = rol32(b ^ c, 7);	\ | 
|  | } while (0) | 
|  |  | 
|  | static void chacha_permute(u32 x[16], int nrounds) | 
|  | { | 
|  | do { | 
|  | /* column round */ | 
|  | CHACHA_QUARTERROUND(x[0], x[4], x[8], x[12]); | 
|  | CHACHA_QUARTERROUND(x[1], x[5], x[9], x[13]); | 
|  | CHACHA_QUARTERROUND(x[2], x[6], x[10], x[14]); | 
|  | CHACHA_QUARTERROUND(x[3], x[7], x[11], x[15]); | 
|  |  | 
|  | /* diagonal round */ | 
|  | CHACHA_QUARTERROUND(x[0], x[5], x[10], x[15]); | 
|  | CHACHA_QUARTERROUND(x[1], x[6], x[11], x[12]); | 
|  | CHACHA_QUARTERROUND(x[2], x[7], x[8], x[13]); | 
|  | CHACHA_QUARTERROUND(x[3], x[4], x[9], x[14]); | 
|  | } while ((nrounds -= 2) != 0); | 
|  | } | 
|  |  | 
|  | static void xchacha(const u8 key[XCHACHA_KEY_SIZE], | 
|  | const u8 nonce[XCHACHA_NONCE_SIZE], | 
|  | const u8 *src, u8 *dst, size_t nbytes, int nrounds) | 
|  | { | 
|  | u32 state[16]; | 
|  | u8 real_key[CHACHA_KEY_SIZE]; | 
|  | u8 real_iv[16] = { 0 }; | 
|  | size_t i, j; | 
|  |  | 
|  | /* Compute real key using original key and first 128 nonce bits */ | 
|  | chacha_init_state(state, key, nonce); | 
|  | chacha_permute(state, nrounds); | 
|  | for (i = 0; i < 8; i++) /* state words 0..3, 12..15 */ | 
|  | put_unaligned_le32(state[(i < 4 ? 0 : 8) + i], | 
|  | &real_key[i * sizeof(__le32)]); | 
|  |  | 
|  | /* Now do regular ChaCha, using real key and remaining nonce bits */ | 
|  | memcpy(&real_iv[8], nonce + 16, 8); | 
|  | chacha_init_state(state, real_key, real_iv); | 
|  | for (i = 0; i < nbytes; i += 64) { | 
|  | u32 x[16]; | 
|  | __le32 keystream[16]; | 
|  |  | 
|  | memcpy(x, state, 64); | 
|  | chacha_permute(x, nrounds); | 
|  | for (j = 0; j < 16; j++) | 
|  | keystream[j] = cpu_to_le32(x[j] + state[j]); | 
|  | xor(&dst[i], &src[i], (u8 *)keystream, MIN(nbytes - i, 64)); | 
|  | if (++state[12] == 0) | 
|  | state[13]++; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void xchacha12(const u8 key[XCHACHA_KEY_SIZE], | 
|  | const u8 nonce[XCHACHA_NONCE_SIZE], | 
|  | const u8 *src, u8 *dst, size_t nbytes) | 
|  | { | 
|  | xchacha(key, nonce, src, dst, nbytes, 12); | 
|  | } | 
|  |  | 
|  | /*----------------------------------------------------------------------------* | 
|  | *                                 Poly1305                                   * | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | /* | 
|  | * Note: this is only the Poly1305 ε-almost-∆-universal hash function, not the | 
|  | * full Poly1305 MAC.  I.e., it doesn't add anything at the end. | 
|  | */ | 
|  |  | 
|  | #define POLY1305_KEY_SIZE	16 | 
|  | #define POLY1305_BLOCK_SIZE	16 | 
|  |  | 
|  | static void poly1305(const u8 key[POLY1305_KEY_SIZE], | 
|  | const u8 *msg, size_t msglen, le128 *out) | 
|  | { | 
|  | const u32 limb_mask = 0x3ffffff;	/* limbs are base 2^26 */ | 
|  | const u64 r0 = (get_unaligned_le32(key +  0) >> 0) & 0x3ffffff; | 
|  | const u64 r1 = (get_unaligned_le32(key +  3) >> 2) & 0x3ffff03; | 
|  | const u64 r2 = (get_unaligned_le32(key +  6) >> 4) & 0x3ffc0ff; | 
|  | const u64 r3 = (get_unaligned_le32(key +  9) >> 6) & 0x3f03fff; | 
|  | const u64 r4 = (get_unaligned_le32(key + 12) >> 8) & 0x00fffff; | 
|  | u32 h0 = 0, h1 = 0, h2 = 0, h3 = 0, h4 = 0; | 
|  | u32 g0, g1, g2, g3, g4, ge_p_mask; | 
|  |  | 
|  | /* Partial block support is not necessary for Adiantum */ | 
|  | ASSERT(msglen % POLY1305_BLOCK_SIZE == 0); | 
|  |  | 
|  | while (msglen) { | 
|  | u64 d0, d1, d2, d3, d4; | 
|  |  | 
|  | /* h += *msg */ | 
|  | h0 += (get_unaligned_le32(msg +  0) >> 0) & limb_mask; | 
|  | h1 += (get_unaligned_le32(msg +  3) >> 2) & limb_mask; | 
|  | h2 += (get_unaligned_le32(msg +  6) >> 4) & limb_mask; | 
|  | h3 += (get_unaligned_le32(msg +  9) >> 6) & limb_mask; | 
|  | h4 += (get_unaligned_le32(msg + 12) >> 8) | (1 << 24); | 
|  |  | 
|  | /* h *= r */ | 
|  | d0 = h0*r0 + h1*5*r4 + h2*5*r3 + h3*5*r2 + h4*5*r1; | 
|  | d1 = h0*r1 + h1*r0   + h2*5*r4 + h3*5*r3 + h4*5*r2; | 
|  | d2 = h0*r2 + h1*r1   + h2*r0   + h3*5*r4 + h4*5*r3; | 
|  | d3 = h0*r3 + h1*r2   + h2*r1   + h3*r0   + h4*5*r4; | 
|  | d4 = h0*r4 + h1*r3   + h2*r2   + h3*r1   + h4*r0; | 
|  |  | 
|  | /* (partial) h %= 2^130 - 5 */ | 
|  | d1 += d0 >> 26;		h0 = d0 & limb_mask; | 
|  | d2 += d1 >> 26;		h1 = d1 & limb_mask; | 
|  | d3 += d2 >> 26;		h2 = d2 & limb_mask; | 
|  | d4 += d3 >> 26;		h3 = d3 & limb_mask; | 
|  | h0 += (d4 >> 26) * 5;	h4 = d4 & limb_mask; | 
|  | h1 += h0 >> 26;		h0 &= limb_mask; | 
|  |  | 
|  | msg += POLY1305_BLOCK_SIZE; | 
|  | msglen -= POLY1305_BLOCK_SIZE; | 
|  | } | 
|  |  | 
|  | /* fully carry h */ | 
|  | h2 += (h1 >> 26);	h1 &= limb_mask; | 
|  | h3 += (h2 >> 26);	h2 &= limb_mask; | 
|  | h4 += (h3 >> 26);	h3 &= limb_mask; | 
|  | h0 += (h4 >> 26) * 5;	h4 &= limb_mask; | 
|  | h1 += (h0 >> 26);	h0 &= limb_mask; | 
|  |  | 
|  | /* if (h >= 2^130 - 5) h -= 2^130 - 5; */ | 
|  | g0 = h0 + 5; | 
|  | g1 = h1 + (g0 >> 26);	g0 &= limb_mask; | 
|  | g2 = h2 + (g1 >> 26);	g1 &= limb_mask; | 
|  | g3 = h3 + (g2 >> 26);	g2 &= limb_mask; | 
|  | g4 = h4 + (g3 >> 26);	g3 &= limb_mask; | 
|  | ge_p_mask = ~((g4 >> 26) - 1); /* all 1's if h >= 2^130 - 5, else 0 */ | 
|  | h0 = (h0 & ~ge_p_mask) | (g0 & ge_p_mask); | 
|  | h1 = (h1 & ~ge_p_mask) | (g1 & ge_p_mask); | 
|  | h2 = (h2 & ~ge_p_mask) | (g2 & ge_p_mask); | 
|  | h3 = (h3 & ~ge_p_mask) | (g3 & ge_p_mask); | 
|  | h4 = (h4 & ~ge_p_mask) | (g4 & ge_p_mask & limb_mask); | 
|  |  | 
|  | /* h %= 2^128 */ | 
|  | out->lo = cpu_to_le64(((u64)h2 << 52) | ((u64)h1 << 26) | h0); | 
|  | out->hi = cpu_to_le64(((u64)h4 << 40) | ((u64)h3 << 14) | (h2 >> 12)); | 
|  | } | 
|  |  | 
|  | /*----------------------------------------------------------------------------* | 
|  | *                          Adiantum encryption mode                          * | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | /* | 
|  | * Reference: "Adiantum: length-preserving encryption for entry-level processors" | 
|  | *	https://tosc.iacr.org/index.php/ToSC/article/view/7360 | 
|  | */ | 
|  |  | 
|  | #define ADIANTUM_KEY_SIZE	32 | 
|  | #define ADIANTUM_IV_SIZE	32 | 
|  | #define ADIANTUM_HASH_KEY_SIZE	((2 * POLY1305_KEY_SIZE) + NH_KEY_SIZE) | 
|  |  | 
|  | #define NH_KEY_SIZE		1072 | 
|  | #define NH_KEY_WORDS		(NH_KEY_SIZE / sizeof(u32)) | 
|  | #define NH_BLOCK_SIZE		1024 | 
|  | #define NH_HASH_SIZE		32 | 
|  | #define NH_MESSAGE_UNIT		16 | 
|  |  | 
|  | static u64 nh_pass(const u32 *key, const u8 *msg, size_t msglen) | 
|  | { | 
|  | u64 sum = 0; | 
|  |  | 
|  | ASSERT(msglen % NH_MESSAGE_UNIT == 0); | 
|  | while (msglen) { | 
|  | sum += (u64)(u32)(get_unaligned_le32(msg +  0) + key[0]) * | 
|  | (u32)(get_unaligned_le32(msg +  8) + key[2]); | 
|  | sum += (u64)(u32)(get_unaligned_le32(msg +  4) + key[1]) * | 
|  | (u32)(get_unaligned_le32(msg + 12) + key[3]); | 
|  | key += NH_MESSAGE_UNIT / sizeof(key[0]); | 
|  | msg += NH_MESSAGE_UNIT; | 
|  | msglen -= NH_MESSAGE_UNIT; | 
|  | } | 
|  | return sum; | 
|  | } | 
|  |  | 
|  | /* NH ε-almost-universal hash function */ | 
|  | static void nh(const u32 *key, const u8 *msg, size_t msglen, | 
|  | u8 result[NH_HASH_SIZE]) | 
|  | { | 
|  | size_t i; | 
|  |  | 
|  | for (i = 0; i < NH_HASH_SIZE; i += sizeof(__le64)) { | 
|  | put_unaligned_le64(nh_pass(key, msg, msglen), &result[i]); | 
|  | key += NH_MESSAGE_UNIT / sizeof(key[0]); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Adiantum's ε-almost-∆-universal hash function */ | 
|  | static void adiantum_hash(const u8 key[ADIANTUM_HASH_KEY_SIZE], | 
|  | const u8 iv[ADIANTUM_IV_SIZE], | 
|  | const u8 *msg, size_t msglen, le128 *result) | 
|  | { | 
|  | const u8 *header_poly_key = key; | 
|  | const u8 *msg_poly_key = header_poly_key + POLY1305_KEY_SIZE; | 
|  | const u8 *nh_key = msg_poly_key + POLY1305_KEY_SIZE; | 
|  | u32 nh_key_words[NH_KEY_WORDS]; | 
|  | u8 header[POLY1305_BLOCK_SIZE + ADIANTUM_IV_SIZE]; | 
|  | const size_t num_nh_blocks = DIV_ROUND_UP(msglen, NH_BLOCK_SIZE); | 
|  | u8 *nh_hashes = xmalloc(num_nh_blocks * NH_HASH_SIZE); | 
|  | const size_t padded_msglen = ROUND_UP(msglen, NH_MESSAGE_UNIT); | 
|  | u8 *padded_msg = xmalloc(padded_msglen); | 
|  | le128 hash1, hash2; | 
|  | size_t i; | 
|  |  | 
|  | for (i = 0; i < NH_KEY_WORDS; i++) | 
|  | nh_key_words[i] = get_unaligned_le32(&nh_key[i * sizeof(u32)]); | 
|  |  | 
|  | /* Hash tweak and message length with first Poly1305 key */ | 
|  | put_unaligned_le64((u64)msglen * 8, header); | 
|  | put_unaligned_le64(0, &header[sizeof(__le64)]); | 
|  | memcpy(&header[POLY1305_BLOCK_SIZE], iv, ADIANTUM_IV_SIZE); | 
|  | poly1305(header_poly_key, header, sizeof(header), &hash1); | 
|  |  | 
|  | /* Hash NH hashes of message blocks using second Poly1305 key */ | 
|  | /* (using a super naive way of handling the padding) */ | 
|  | memcpy(padded_msg, msg, msglen); | 
|  | memset(&padded_msg[msglen], 0, padded_msglen - msglen); | 
|  | for (i = 0; i < num_nh_blocks; i++) { | 
|  | nh(nh_key_words, &padded_msg[i * NH_BLOCK_SIZE], | 
|  | MIN(NH_BLOCK_SIZE, padded_msglen - (i * NH_BLOCK_SIZE)), | 
|  | &nh_hashes[i * NH_HASH_SIZE]); | 
|  | } | 
|  | poly1305(msg_poly_key, nh_hashes, num_nh_blocks * NH_HASH_SIZE, &hash2); | 
|  |  | 
|  | /* Add the two hashes together to get the final hash */ | 
|  | le128_add(result, &hash1, &hash2); | 
|  |  | 
|  | free(nh_hashes); | 
|  | free(padded_msg); | 
|  | } | 
|  |  | 
|  | static void adiantum_crypt(const u8 key[ADIANTUM_KEY_SIZE], | 
|  | const u8 iv[ADIANTUM_IV_SIZE], const u8 *src, | 
|  | u8 *dst, size_t nbytes, bool decrypting) | 
|  | { | 
|  | u8 subkeys[AES_256_KEY_SIZE + ADIANTUM_HASH_KEY_SIZE] = { 0 }; | 
|  | struct aes_key aes_key; | 
|  | union { | 
|  | u8 nonce[XCHACHA_NONCE_SIZE]; | 
|  | le128 block; | 
|  | } u = { .nonce = { 1 } }; | 
|  | const size_t bulk_len = nbytes - sizeof(u.block); | 
|  | le128 hash; | 
|  |  | 
|  | ASSERT(nbytes >= sizeof(u.block)); | 
|  |  | 
|  | /* Derive subkeys */ | 
|  | xchacha12(key, u.nonce, subkeys, subkeys, sizeof(subkeys)); | 
|  | aes_setkey(&aes_key, subkeys, AES_256_KEY_SIZE); | 
|  |  | 
|  | /* Hash left part and add to right part */ | 
|  | adiantum_hash(&subkeys[AES_256_KEY_SIZE], iv, src, bulk_len, &hash); | 
|  | memcpy(&u.block, &src[bulk_len], sizeof(u.block)); | 
|  | le128_add(&u.block, &u.block, &hash); | 
|  |  | 
|  | if (!decrypting) /* Encrypt right part with block cipher */ | 
|  | aes_encrypt(&aes_key, u.nonce, u.nonce); | 
|  |  | 
|  | /* Encrypt left part with stream cipher, using the computed nonce */ | 
|  | u.nonce[sizeof(u.block)] = 1; | 
|  | xchacha12(key, u.nonce, src, dst, bulk_len); | 
|  |  | 
|  | if (decrypting) /* Decrypt right part with block cipher */ | 
|  | aes_decrypt(&aes_key, u.nonce, u.nonce); | 
|  |  | 
|  | /* Finalize right part by subtracting hash of left part */ | 
|  | adiantum_hash(&subkeys[AES_256_KEY_SIZE], iv, dst, bulk_len, &hash); | 
|  | le128_sub(&u.block, &u.block, &hash); | 
|  | memcpy(&dst[bulk_len], &u.block, sizeof(u.block)); | 
|  | } | 
|  |  | 
|  | static void adiantum_encrypt(const u8 key[ADIANTUM_KEY_SIZE], | 
|  | const u8 iv[ADIANTUM_IV_SIZE], | 
|  | const u8 *src, u8 *dst, size_t nbytes) | 
|  | { | 
|  | adiantum_crypt(key, iv, src, dst, nbytes, false); | 
|  | } | 
|  |  | 
|  | static void adiantum_decrypt(const u8 key[ADIANTUM_KEY_SIZE], | 
|  | const u8 iv[ADIANTUM_IV_SIZE], | 
|  | const u8 *src, u8 *dst, size_t nbytes) | 
|  | { | 
|  | adiantum_crypt(key, iv, src, dst, nbytes, true); | 
|  | } | 
|  |  | 
|  | #ifdef ENABLE_ALG_TESTS | 
|  | #include <linux/if_alg.h> | 
|  | #include <sys/socket.h> | 
|  | #define SOL_ALG 279 | 
|  | static void af_alg_crypt(int algfd, int op, const u8 *key, size_t keylen, | 
|  | const u8 *iv, size_t ivlen, | 
|  | const u8 *src, u8 *dst, size_t datalen) | 
|  | { | 
|  | size_t controllen = CMSG_SPACE(sizeof(int)) + | 
|  | CMSG_SPACE(sizeof(struct af_alg_iv) + ivlen); | 
|  | u8 *control = xmalloc(controllen); | 
|  | struct iovec iov = { .iov_base = (u8 *)src, .iov_len = datalen }; | 
|  | struct msghdr msg = { | 
|  | .msg_iov = &iov, | 
|  | .msg_iovlen = 1, | 
|  | .msg_control = control, | 
|  | .msg_controllen = controllen, | 
|  | }; | 
|  | struct cmsghdr *cmsg; | 
|  | struct af_alg_iv *algiv; | 
|  | int reqfd; | 
|  |  | 
|  | memset(control, 0, controllen); | 
|  |  | 
|  | cmsg = CMSG_FIRSTHDR(&msg); | 
|  | cmsg->cmsg_len = CMSG_LEN(sizeof(int)); | 
|  | cmsg->cmsg_level = SOL_ALG; | 
|  | cmsg->cmsg_type = ALG_SET_OP; | 
|  | *(int *)CMSG_DATA(cmsg) = op; | 
|  |  | 
|  | cmsg = CMSG_NXTHDR(&msg, cmsg); | 
|  | cmsg->cmsg_len = CMSG_LEN(sizeof(struct af_alg_iv) + ivlen); | 
|  | cmsg->cmsg_level = SOL_ALG; | 
|  | cmsg->cmsg_type = ALG_SET_IV; | 
|  | algiv = (struct af_alg_iv *)CMSG_DATA(cmsg); | 
|  | algiv->ivlen = ivlen; | 
|  | memcpy(algiv->iv, iv, ivlen); | 
|  |  | 
|  | if (setsockopt(algfd, SOL_ALG, ALG_SET_KEY, key, keylen) != 0) | 
|  | die_errno("can't set key on AF_ALG socket"); | 
|  |  | 
|  | reqfd = accept(algfd, NULL, NULL); | 
|  | if (reqfd < 0) | 
|  | die_errno("can't accept() AF_ALG socket"); | 
|  | if (sendmsg(reqfd, &msg, 0) != datalen) | 
|  | die_errno("can't sendmsg() AF_ALG request socket"); | 
|  | if (xread(reqfd, dst, datalen) != datalen) | 
|  | die("short read from AF_ALG request socket"); | 
|  | close(reqfd); | 
|  |  | 
|  | free(control); | 
|  | } | 
|  |  | 
|  | static void test_adiantum(void) | 
|  | { | 
|  | int algfd = socket(AF_ALG, SOCK_SEQPACKET, 0); | 
|  | struct sockaddr_alg addr = { | 
|  | .salg_type = "skcipher", | 
|  | .salg_name = "adiantum(xchacha12,aes)", | 
|  | }; | 
|  | unsigned long num_tests = NUM_ALG_TEST_ITERATIONS; | 
|  |  | 
|  | if (algfd < 0) | 
|  | die_errno("can't create AF_ALG socket"); | 
|  | if (bind(algfd, (struct sockaddr *)&addr, sizeof(addr)) != 0) | 
|  | die_errno("can't bind AF_ALG socket to Adiantum algorithm"); | 
|  |  | 
|  | while (num_tests--) { | 
|  | u8 key[ADIANTUM_KEY_SIZE]; | 
|  | u8 iv[ADIANTUM_IV_SIZE]; | 
|  | u8 ptext[4096]; | 
|  | u8 ctext[sizeof(ptext)]; | 
|  | u8 ref_ctext[sizeof(ptext)]; | 
|  | u8 decrypted[sizeof(ptext)]; | 
|  | const size_t datalen = 16 + (rand() % (sizeof(ptext) - 15)); | 
|  |  | 
|  | rand_bytes(key, sizeof(key)); | 
|  | rand_bytes(iv, sizeof(iv)); | 
|  | rand_bytes(ptext, datalen); | 
|  |  | 
|  | adiantum_encrypt(key, iv, ptext, ctext, datalen); | 
|  | af_alg_crypt(algfd, ALG_OP_ENCRYPT, key, sizeof(key), | 
|  | iv, sizeof(iv), ptext, ref_ctext, datalen); | 
|  | ASSERT(memcmp(ctext, ref_ctext, datalen) == 0); | 
|  |  | 
|  | adiantum_decrypt(key, iv, ctext, decrypted, datalen); | 
|  | ASSERT(memcmp(ptext, decrypted, datalen) == 0); | 
|  | } | 
|  | close(algfd); | 
|  | } | 
|  | #endif /* ENABLE_ALG_TESTS */ | 
|  |  | 
|  | /*----------------------------------------------------------------------------* | 
|  | *                               SipHash-2-4                                  * | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | /* | 
|  | * Reference: "SipHash: a fast short-input PRF" | 
|  | *	https://cr.yp.to/siphash/siphash-20120918.pdf | 
|  | */ | 
|  |  | 
|  | #define SIPROUND						\ | 
|  | do {							\ | 
|  | v0 += v1;	    v2 += v3;			\ | 
|  | v1 = rol64(v1, 13); v3 = rol64(v3, 16);		\ | 
|  | v1 ^= v0;	    v3 ^= v2;			\ | 
|  | v0 = rol64(v0, 32);				\ | 
|  | v2 += v1;	    v0 += v3;			\ | 
|  | v1 = rol64(v1, 17); v3 = rol64(v3, 21);		\ | 
|  | v1 ^= v2;	    v3 ^= v0;			\ | 
|  | v2 = rol64(v2, 32);				\ | 
|  | } while (0) | 
|  |  | 
|  | /* Compute the SipHash-2-4 of a 64-bit number when formatted as little endian */ | 
|  | static u64 siphash_1u64(const u64 key[2], u64 data) | 
|  | { | 
|  | u64 v0 = key[0] ^ 0x736f6d6570736575ULL; | 
|  | u64 v1 = key[1] ^ 0x646f72616e646f6dULL; | 
|  | u64 v2 = key[0] ^ 0x6c7967656e657261ULL; | 
|  | u64 v3 = key[1] ^ 0x7465646279746573ULL; | 
|  | u64 m[2] = {data, (u64)sizeof(data) << 56}; | 
|  | size_t i; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(m); i++) { | 
|  | v3 ^= m[i]; | 
|  | SIPROUND; | 
|  | SIPROUND; | 
|  | v0 ^= m[i]; | 
|  | } | 
|  |  | 
|  | v2 ^= 0xff; | 
|  | for (i = 0; i < 4; i++) | 
|  | SIPROUND; | 
|  | return v0 ^ v1 ^ v2 ^ v3; | 
|  | } | 
|  |  | 
|  | /*----------------------------------------------------------------------------* | 
|  | *                               Main program                                 * | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | #define FILE_NONCE_SIZE		16 | 
|  | #define UUID_SIZE		16 | 
|  | #define MAX_KEY_SIZE		64 | 
|  | #define MAX_IV_SIZE		ADIANTUM_IV_SIZE | 
|  |  | 
|  | static const struct fscrypt_cipher { | 
|  | const char *name; | 
|  | void (*encrypt)(const u8 *key, const u8 *iv, const u8 *src, | 
|  | u8 *dst, size_t nbytes); | 
|  | void (*decrypt)(const u8 *key, const u8 *iv, const u8 *src, | 
|  | u8 *dst, size_t nbytes); | 
|  | int keysize; | 
|  | int min_input_size; | 
|  | } fscrypt_ciphers[] = { | 
|  | { | 
|  | .name = "AES-256-XTS", | 
|  | .encrypt = aes_256_xts_encrypt, | 
|  | .decrypt = aes_256_xts_decrypt, | 
|  | .keysize = 2 * AES_256_KEY_SIZE, | 
|  | }, { | 
|  | .name = "AES-256-CTS-CBC", | 
|  | .encrypt = aes_256_cts_cbc_encrypt, | 
|  | .decrypt = aes_256_cts_cbc_decrypt, | 
|  | .keysize = AES_256_KEY_SIZE, | 
|  | .min_input_size = AES_BLOCK_SIZE, | 
|  | }, { | 
|  | .name = "AES-128-CBC-ESSIV", | 
|  | .encrypt = aes_128_cbc_essiv_encrypt, | 
|  | .decrypt = aes_128_cbc_essiv_decrypt, | 
|  | .keysize = AES_128_KEY_SIZE, | 
|  | }, { | 
|  | .name = "AES-128-CTS-CBC", | 
|  | .encrypt = aes_128_cts_cbc_encrypt, | 
|  | .decrypt = aes_128_cts_cbc_decrypt, | 
|  | .keysize = AES_128_KEY_SIZE, | 
|  | .min_input_size = AES_BLOCK_SIZE, | 
|  | }, { | 
|  | .name = "Adiantum", | 
|  | .encrypt = adiantum_encrypt, | 
|  | .decrypt = adiantum_decrypt, | 
|  | .keysize = ADIANTUM_KEY_SIZE, | 
|  | .min_input_size = AES_BLOCK_SIZE, | 
|  | } | 
|  | }; | 
|  |  | 
|  | static const struct fscrypt_cipher *find_fscrypt_cipher(const char *name) | 
|  | { | 
|  | size_t i; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(fscrypt_ciphers); i++) { | 
|  | if (strcmp(fscrypt_ciphers[i].name, name) == 0) | 
|  | return &fscrypt_ciphers[i]; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | union fscrypt_iv { | 
|  | /* usual IV format */ | 
|  | struct { | 
|  | /* logical block number within the file */ | 
|  | __le64 block_number; | 
|  |  | 
|  | /* per-file nonce; only set in DIRECT_KEY mode */ | 
|  | u8 nonce[FILE_NONCE_SIZE]; | 
|  | }; | 
|  | /* IV format for IV_INO_LBLK_* modes */ | 
|  | struct { | 
|  | /* | 
|  | * IV_INO_LBLK_64: logical block number within the file | 
|  | * IV_INO_LBLK_32: hashed inode number + logical block number | 
|  | *		   within the file, mod 2^32 | 
|  | */ | 
|  | __le32 block_number32; | 
|  |  | 
|  | /* IV_INO_LBLK_64: inode number */ | 
|  | __le32 inode_number; | 
|  | }; | 
|  | /* Any extra bytes up to the algorithm's IV size must be zeroed */ | 
|  | u8 bytes[MAX_IV_SIZE]; | 
|  | }; | 
|  |  | 
|  | static void crypt_loop(const struct fscrypt_cipher *cipher, const u8 *key, | 
|  | union fscrypt_iv *iv, bool decrypting, | 
|  | size_t block_size, size_t padding, bool is_bnum_32bit) | 
|  | { | 
|  | u8 *buf = xmalloc(block_size); | 
|  | size_t res; | 
|  |  | 
|  | while ((res = xread(STDIN_FILENO, buf, block_size)) > 0) { | 
|  | size_t crypt_len = block_size; | 
|  |  | 
|  | if (padding > 0) { | 
|  | crypt_len = MAX(res, cipher->min_input_size); | 
|  | crypt_len = ROUND_UP(crypt_len, padding); | 
|  | crypt_len = MIN(crypt_len, block_size); | 
|  | } | 
|  | ASSERT(crypt_len >= res); | 
|  | memset(&buf[res], 0, crypt_len - res); | 
|  |  | 
|  | if (decrypting) | 
|  | cipher->decrypt(key, iv->bytes, buf, buf, crypt_len); | 
|  | else | 
|  | cipher->encrypt(key, iv->bytes, buf, buf, crypt_len); | 
|  |  | 
|  | full_write(STDOUT_FILENO, buf, crypt_len); | 
|  |  | 
|  | if (is_bnum_32bit) | 
|  | iv->block_number32 = cpu_to_le32( | 
|  | le32_to_cpu(iv->block_number32) + 1); | 
|  | else | 
|  | iv->block_number = cpu_to_le64( | 
|  | le64_to_cpu(iv->block_number) + 1); | 
|  | } | 
|  | free(buf); | 
|  | } | 
|  |  | 
|  | /* The supported key derivation functions */ | 
|  | enum kdf_algorithm { | 
|  | KDF_NONE, | 
|  | KDF_AES_128_ECB, | 
|  | KDF_HKDF_SHA512, | 
|  | }; | 
|  |  | 
|  | static enum kdf_algorithm parse_kdf_algorithm(const char *arg) | 
|  | { | 
|  | if (strcmp(arg, "none") == 0) | 
|  | return KDF_NONE; | 
|  | if (strcmp(arg, "AES-128-ECB") == 0) | 
|  | return KDF_AES_128_ECB; | 
|  | if (strcmp(arg, "HKDF-SHA512") == 0) | 
|  | return KDF_HKDF_SHA512; | 
|  | die("Unknown KDF: %s", arg); | 
|  | } | 
|  |  | 
|  | static u8 parse_mode_number(const char *arg) | 
|  | { | 
|  | char *tmp; | 
|  | long num = strtol(arg, &tmp, 10); | 
|  |  | 
|  | if (num <= 0 || *tmp || (u8)num != num) | 
|  | die("Invalid mode number: %s", arg); | 
|  | return num; | 
|  | } | 
|  |  | 
|  | struct key_and_iv_params { | 
|  | u8 master_key[MAX_KEY_SIZE]; | 
|  | int master_key_size; | 
|  | enum kdf_algorithm kdf; | 
|  | u8 mode_num; | 
|  | u8 file_nonce[FILE_NONCE_SIZE]; | 
|  | bool file_nonce_specified; | 
|  | bool iv_ino_lblk_64; | 
|  | bool iv_ino_lblk_32; | 
|  | u64 block_number; | 
|  | u64 inode_number; | 
|  | u8 fs_uuid[UUID_SIZE]; | 
|  | bool fs_uuid_specified; | 
|  | }; | 
|  |  | 
|  | #define HKDF_CONTEXT_KEY_IDENTIFIER	1 | 
|  | #define HKDF_CONTEXT_PER_FILE_ENC_KEY	2 | 
|  | #define HKDF_CONTEXT_DIRECT_KEY		3 | 
|  | #define HKDF_CONTEXT_IV_INO_LBLK_64_KEY	4 | 
|  | #define HKDF_CONTEXT_DIRHASH_KEY	5 | 
|  | #define HKDF_CONTEXT_IV_INO_LBLK_32_KEY	6 | 
|  | #define HKDF_CONTEXT_INODE_HASH_KEY	7 | 
|  |  | 
|  | /* Hash the file's inode number using SipHash keyed by a derived key */ | 
|  | static u32 hash_inode_number(const struct key_and_iv_params *params) | 
|  | { | 
|  | u8 info[9] = "fscrypt"; | 
|  | union { | 
|  | u64 words[2]; | 
|  | u8 bytes[16]; | 
|  | } hash_key; | 
|  |  | 
|  | info[8] = HKDF_CONTEXT_INODE_HASH_KEY; | 
|  | hkdf_sha512(params->master_key, params->master_key_size, | 
|  | NULL, 0, info, sizeof(info), | 
|  | hash_key.bytes, sizeof(hash_key)); | 
|  |  | 
|  | hash_key.words[0] = get_unaligned_le64(&hash_key.bytes[0]); | 
|  | hash_key.words[1] = get_unaligned_le64(&hash_key.bytes[8]); | 
|  |  | 
|  | return (u32)siphash_1u64(hash_key.words, params->inode_number); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get the key and starting IV with which the encryption will actually be done. | 
|  | * If a KDF was specified, a subkey is derived from the master key and the mode | 
|  | * number or file nonce.  Otherwise, the master key is used directly. | 
|  | */ | 
|  | static void get_key_and_iv(const struct key_and_iv_params *params, | 
|  | u8 *real_key, size_t real_key_size, | 
|  | union fscrypt_iv *iv) | 
|  | { | 
|  | bool file_nonce_in_iv = false; | 
|  | struct aes_key aes_key; | 
|  | u8 info[8 + 1 + 1 + UUID_SIZE] = "fscrypt"; | 
|  | size_t infolen = 8; | 
|  | size_t i; | 
|  |  | 
|  | ASSERT(real_key_size <= params->master_key_size); | 
|  |  | 
|  | memset(iv, 0, sizeof(*iv)); | 
|  |  | 
|  | /* Overridden later for iv_ino_lblk_{64,32} */ | 
|  | iv->block_number = cpu_to_le64(params->block_number); | 
|  |  | 
|  | if (params->iv_ino_lblk_64 || params->iv_ino_lblk_32) { | 
|  | const char *opt = params->iv_ino_lblk_64 ? "--iv-ino-lblk-64" : | 
|  | "--iv-ino-lblk-32"; | 
|  | if (params->iv_ino_lblk_64 && params->iv_ino_lblk_32) | 
|  | die("--iv-ino-lblk-64 and --iv-ino-lblk-32 are mutually exclusive"); | 
|  | if (params->kdf != KDF_HKDF_SHA512) | 
|  | die("%s requires --kdf=HKDF-SHA512", opt); | 
|  | if (!params->fs_uuid_specified) | 
|  | die("%s requires --fs-uuid", opt); | 
|  | if (params->inode_number == 0) | 
|  | die("%s requires --inode-number", opt); | 
|  | if (params->mode_num == 0) | 
|  | die("%s requires --mode-num", opt); | 
|  | if (params->block_number > UINT32_MAX) | 
|  | die("%s can't use --block-number > UINT32_MAX", opt); | 
|  | if (params->inode_number > UINT32_MAX) | 
|  | die("%s can't use --inode-number > UINT32_MAX", opt); | 
|  | } | 
|  |  | 
|  | switch (params->kdf) { | 
|  | case KDF_NONE: | 
|  | if (params->mode_num != 0) | 
|  | die("--mode-num isn't supported with --kdf=none"); | 
|  | memcpy(real_key, params->master_key, real_key_size); | 
|  | file_nonce_in_iv = true; | 
|  | break; | 
|  | case KDF_AES_128_ECB: | 
|  | if (!params->file_nonce_specified) | 
|  | die("--file-nonce is required with --kdf=AES-128-ECB"); | 
|  | if (params->mode_num != 0) | 
|  | die("--mode-num isn't supported with --kdf=AES-128-ECB"); | 
|  | STATIC_ASSERT(FILE_NONCE_SIZE == AES_128_KEY_SIZE); | 
|  | ASSERT(real_key_size % AES_BLOCK_SIZE == 0); | 
|  | aes_setkey(&aes_key, params->file_nonce, AES_128_KEY_SIZE); | 
|  | for (i = 0; i < real_key_size; i += AES_BLOCK_SIZE) | 
|  | aes_encrypt(&aes_key, ¶ms->master_key[i], | 
|  | &real_key[i]); | 
|  | break; | 
|  | case KDF_HKDF_SHA512: | 
|  | if (params->iv_ino_lblk_64) { | 
|  | info[infolen++] = HKDF_CONTEXT_IV_INO_LBLK_64_KEY; | 
|  | info[infolen++] = params->mode_num; | 
|  | memcpy(&info[infolen], params->fs_uuid, UUID_SIZE); | 
|  | infolen += UUID_SIZE; | 
|  | iv->block_number32 = cpu_to_le32(params->block_number); | 
|  | iv->inode_number = cpu_to_le32(params->inode_number); | 
|  | } else if (params->iv_ino_lblk_32) { | 
|  | info[infolen++] = HKDF_CONTEXT_IV_INO_LBLK_32_KEY; | 
|  | info[infolen++] = params->mode_num; | 
|  | memcpy(&info[infolen], params->fs_uuid, UUID_SIZE); | 
|  | infolen += UUID_SIZE; | 
|  | iv->block_number32 = | 
|  | cpu_to_le32(hash_inode_number(params) + | 
|  | params->block_number); | 
|  | iv->inode_number = 0; | 
|  | } else if (params->mode_num != 0) { | 
|  | info[infolen++] = HKDF_CONTEXT_DIRECT_KEY; | 
|  | info[infolen++] = params->mode_num; | 
|  | file_nonce_in_iv = true; | 
|  | } else if (params->file_nonce_specified) { | 
|  | info[infolen++] = HKDF_CONTEXT_PER_FILE_ENC_KEY; | 
|  | memcpy(&info[infolen], params->file_nonce, | 
|  | FILE_NONCE_SIZE); | 
|  | infolen += FILE_NONCE_SIZE; | 
|  | } else { | 
|  | die("With --kdf=HKDF-SHA512, at least one of --file-nonce and --mode-num must be specified"); | 
|  | } | 
|  | hkdf_sha512(params->master_key, params->master_key_size, | 
|  | NULL, 0, info, infolen, real_key, real_key_size); | 
|  | break; | 
|  | default: | 
|  | ASSERT(0); | 
|  | } | 
|  |  | 
|  | if (file_nonce_in_iv && params->file_nonce_specified) | 
|  | memcpy(iv->nonce, params->file_nonce, FILE_NONCE_SIZE); | 
|  | } | 
|  |  | 
|  | enum { | 
|  | OPT_BLOCK_NUMBER, | 
|  | OPT_BLOCK_SIZE, | 
|  | OPT_DECRYPT, | 
|  | OPT_FILE_NONCE, | 
|  | OPT_FS_UUID, | 
|  | OPT_HELP, | 
|  | OPT_INODE_NUMBER, | 
|  | OPT_IV_INO_LBLK_32, | 
|  | OPT_IV_INO_LBLK_64, | 
|  | OPT_KDF, | 
|  | OPT_MODE_NUM, | 
|  | OPT_PADDING, | 
|  | }; | 
|  |  | 
|  | static const struct option longopts[] = { | 
|  | { "block-number",    required_argument, NULL, OPT_BLOCK_NUMBER }, | 
|  | { "block-size",      required_argument, NULL, OPT_BLOCK_SIZE }, | 
|  | { "decrypt",         no_argument,       NULL, OPT_DECRYPT }, | 
|  | { "file-nonce",      required_argument, NULL, OPT_FILE_NONCE }, | 
|  | { "fs-uuid",         required_argument, NULL, OPT_FS_UUID }, | 
|  | { "help",            no_argument,       NULL, OPT_HELP }, | 
|  | { "inode-number",    required_argument, NULL, OPT_INODE_NUMBER }, | 
|  | { "iv-ino-lblk-32",  no_argument,       NULL, OPT_IV_INO_LBLK_32 }, | 
|  | { "iv-ino-lblk-64",  no_argument,       NULL, OPT_IV_INO_LBLK_64 }, | 
|  | { "kdf",             required_argument, NULL, OPT_KDF }, | 
|  | { "mode-num",        required_argument, NULL, OPT_MODE_NUM }, | 
|  | { "padding",         required_argument, NULL, OPT_PADDING }, | 
|  | { NULL, 0, NULL, 0 }, | 
|  | }; | 
|  |  | 
|  | int main(int argc, char *argv[]) | 
|  | { | 
|  | size_t block_size = 4096; | 
|  | bool decrypting = false; | 
|  | struct key_and_iv_params params; | 
|  | size_t padding = 0; | 
|  | const struct fscrypt_cipher *cipher; | 
|  | u8 real_key[MAX_KEY_SIZE]; | 
|  | union fscrypt_iv iv; | 
|  | char *tmp; | 
|  | int c; | 
|  |  | 
|  | memset(¶ms, 0, sizeof(params)); | 
|  |  | 
|  | aes_init(); | 
|  |  | 
|  | #ifdef ENABLE_ALG_TESTS | 
|  | test_aes(); | 
|  | test_sha2(); | 
|  | test_hkdf_sha512(); | 
|  | test_aes_256_xts(); | 
|  | test_aes_256_cts_cbc(); | 
|  | test_adiantum(); | 
|  | #endif | 
|  |  | 
|  | while ((c = getopt_long(argc, argv, "", longopts, NULL)) != -1) { | 
|  | switch (c) { | 
|  | case OPT_BLOCK_NUMBER: | 
|  | errno = 0; | 
|  | params.block_number = strtoull(optarg, &tmp, 10); | 
|  | if (*tmp || errno) | 
|  | die("Invalid block number: %s", optarg); | 
|  | break; | 
|  | case OPT_BLOCK_SIZE: | 
|  | errno = 0; | 
|  | block_size = strtoul(optarg, &tmp, 10); | 
|  | if (block_size <= 0 || *tmp || errno) | 
|  | die("Invalid block size: %s", optarg); | 
|  | break; | 
|  | case OPT_DECRYPT: | 
|  | decrypting = true; | 
|  | break; | 
|  | case OPT_FILE_NONCE: | 
|  | if (hex2bin(optarg, params.file_nonce, FILE_NONCE_SIZE) | 
|  | != FILE_NONCE_SIZE) | 
|  | die("Invalid file nonce: %s", optarg); | 
|  | params.file_nonce_specified = true; | 
|  | break; | 
|  | case OPT_FS_UUID: | 
|  | if (hex2bin(optarg, params.fs_uuid, UUID_SIZE) | 
|  | != UUID_SIZE) | 
|  | die("Invalid filesystem UUID: %s", optarg); | 
|  | params.fs_uuid_specified = true; | 
|  | break; | 
|  | case OPT_HELP: | 
|  | usage(stdout); | 
|  | return 0; | 
|  | case OPT_INODE_NUMBER: | 
|  | errno = 0; | 
|  | params.inode_number = strtoull(optarg, &tmp, 10); | 
|  | if (params.inode_number <= 0 || *tmp || errno) | 
|  | die("Invalid inode number: %s", optarg); | 
|  | break; | 
|  | case OPT_IV_INO_LBLK_32: | 
|  | params.iv_ino_lblk_32 = true; | 
|  | break; | 
|  | case OPT_IV_INO_LBLK_64: | 
|  | params.iv_ino_lblk_64 = true; | 
|  | break; | 
|  | case OPT_KDF: | 
|  | params.kdf = parse_kdf_algorithm(optarg); | 
|  | break; | 
|  | case OPT_MODE_NUM: | 
|  | params.mode_num = parse_mode_number(optarg); | 
|  | break; | 
|  | case OPT_PADDING: | 
|  | padding = strtoul(optarg, &tmp, 10); | 
|  | if (padding <= 0 || *tmp || !is_power_of_2(padding) || | 
|  | padding > INT_MAX) | 
|  | die("Invalid padding amount: %s", optarg); | 
|  | break; | 
|  | default: | 
|  | usage(stderr); | 
|  | return 2; | 
|  | } | 
|  | } | 
|  | argc -= optind; | 
|  | argv += optind; | 
|  |  | 
|  | if (argc != 2) { | 
|  | usage(stderr); | 
|  | return 2; | 
|  | } | 
|  |  | 
|  | cipher = find_fscrypt_cipher(argv[0]); | 
|  | if (cipher == NULL) | 
|  | die("Unknown cipher: %s", argv[0]); | 
|  |  | 
|  | if (block_size < cipher->min_input_size) | 
|  | die("Block size of %zu bytes is too small for cipher %s", | 
|  | block_size, cipher->name); | 
|  |  | 
|  | params.master_key_size = hex2bin(argv[1], params.master_key, | 
|  | MAX_KEY_SIZE); | 
|  | if (params.master_key_size < 0) | 
|  | die("Invalid master_key: %s", argv[1]); | 
|  | if (params.master_key_size < cipher->keysize) | 
|  | die("Master key is too short for cipher %s", cipher->name); | 
|  |  | 
|  | get_key_and_iv(¶ms, real_key, cipher->keysize, &iv); | 
|  |  | 
|  | crypt_loop(cipher, real_key, &iv, decrypting, block_size, padding, | 
|  | params.iv_ino_lblk_64 || params.iv_ino_lblk_32); | 
|  | return 0; | 
|  | } |