| // SPDX-License-Identifier: GPL-2.0 | 
 | /* | 
 |  * linux/mm/compaction.c | 
 |  * | 
 |  * Memory compaction for the reduction of external fragmentation. Note that | 
 |  * this heavily depends upon page migration to do all the real heavy | 
 |  * lifting | 
 |  * | 
 |  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie> | 
 |  */ | 
 | #include <linux/cpu.h> | 
 | #include <linux/swap.h> | 
 | #include <linux/migrate.h> | 
 | #include <linux/compaction.h> | 
 | #include <linux/mm_inline.h> | 
 | #include <linux/sched/signal.h> | 
 | #include <linux/backing-dev.h> | 
 | #include <linux/sysctl.h> | 
 | #include <linux/sysfs.h> | 
 | #include <linux/page-isolation.h> | 
 | #include <linux/kasan.h> | 
 | #include <linux/kthread.h> | 
 | #include <linux/freezer.h> | 
 | #include <linux/page_owner.h> | 
 | #include <linux/psi.h> | 
 | #include "internal.h" | 
 |  | 
 | #ifdef CONFIG_COMPACTION | 
 | /* | 
 |  * Fragmentation score check interval for proactive compaction purposes. | 
 |  */ | 
 | #define HPAGE_FRAG_CHECK_INTERVAL_MSEC	(500) | 
 |  | 
 | static inline void count_compact_event(enum vm_event_item item) | 
 | { | 
 | 	count_vm_event(item); | 
 | } | 
 |  | 
 | static inline void count_compact_events(enum vm_event_item item, long delta) | 
 | { | 
 | 	count_vm_events(item, delta); | 
 | } | 
 | #else | 
 | #define count_compact_event(item) do { } while (0) | 
 | #define count_compact_events(item, delta) do { } while (0) | 
 | #endif | 
 |  | 
 | #if defined CONFIG_COMPACTION || defined CONFIG_CMA | 
 |  | 
 | #define CREATE_TRACE_POINTS | 
 | #include <trace/events/compaction.h> | 
 |  | 
 | #define block_start_pfn(pfn, order)	round_down(pfn, 1UL << (order)) | 
 | #define block_end_pfn(pfn, order)	ALIGN((pfn) + 1, 1UL << (order)) | 
 |  | 
 | /* | 
 |  * Page order with-respect-to which proactive compaction | 
 |  * calculates external fragmentation, which is used as | 
 |  * the "fragmentation score" of a node/zone. | 
 |  */ | 
 | #if defined CONFIG_TRANSPARENT_HUGEPAGE | 
 | #define COMPACTION_HPAGE_ORDER	HPAGE_PMD_ORDER | 
 | #elif defined CONFIG_HUGETLBFS | 
 | #define COMPACTION_HPAGE_ORDER	HUGETLB_PAGE_ORDER | 
 | #else | 
 | #define COMPACTION_HPAGE_ORDER	(PMD_SHIFT - PAGE_SHIFT) | 
 | #endif | 
 |  | 
 | static unsigned long release_freepages(struct list_head *freelist) | 
 | { | 
 | 	struct page *page, *next; | 
 | 	unsigned long high_pfn = 0; | 
 |  | 
 | 	list_for_each_entry_safe(page, next, freelist, lru) { | 
 | 		unsigned long pfn = page_to_pfn(page); | 
 | 		list_del(&page->lru); | 
 | 		__free_page(page); | 
 | 		if (pfn > high_pfn) | 
 | 			high_pfn = pfn; | 
 | 	} | 
 |  | 
 | 	return high_pfn; | 
 | } | 
 |  | 
 | static void split_map_pages(struct list_head *list) | 
 | { | 
 | 	unsigned int i, order, nr_pages; | 
 | 	struct page *page, *next; | 
 | 	LIST_HEAD(tmp_list); | 
 |  | 
 | 	list_for_each_entry_safe(page, next, list, lru) { | 
 | 		list_del(&page->lru); | 
 |  | 
 | 		order = page_private(page); | 
 | 		nr_pages = 1 << order; | 
 |  | 
 | 		post_alloc_hook(page, order, __GFP_MOVABLE); | 
 | 		if (order) | 
 | 			split_page(page, order); | 
 |  | 
 | 		for (i = 0; i < nr_pages; i++) { | 
 | 			list_add(&page->lru, &tmp_list); | 
 | 			page++; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	list_splice(&tmp_list, list); | 
 | } | 
 |  | 
 | #ifdef CONFIG_COMPACTION | 
 | bool PageMovable(struct page *page) | 
 | { | 
 | 	const struct movable_operations *mops; | 
 |  | 
 | 	VM_BUG_ON_PAGE(!PageLocked(page), page); | 
 | 	if (!__PageMovable(page)) | 
 | 		return false; | 
 |  | 
 | 	mops = page_movable_ops(page); | 
 | 	if (mops) | 
 | 		return true; | 
 |  | 
 | 	return false; | 
 | } | 
 | EXPORT_SYMBOL(PageMovable); | 
 |  | 
 | void __SetPageMovable(struct page *page, const struct movable_operations *mops) | 
 | { | 
 | 	VM_BUG_ON_PAGE(!PageLocked(page), page); | 
 | 	VM_BUG_ON_PAGE((unsigned long)mops & PAGE_MAPPING_MOVABLE, page); | 
 | 	page->mapping = (void *)((unsigned long)mops | PAGE_MAPPING_MOVABLE); | 
 | } | 
 | EXPORT_SYMBOL(__SetPageMovable); | 
 |  | 
 | void __ClearPageMovable(struct page *page) | 
 | { | 
 | 	VM_BUG_ON_PAGE(!PageMovable(page), page); | 
 | 	/* | 
 | 	 * This page still has the type of a movable page, but it's | 
 | 	 * actually not movable any more. | 
 | 	 */ | 
 | 	page->mapping = (void *)PAGE_MAPPING_MOVABLE; | 
 | } | 
 | EXPORT_SYMBOL(__ClearPageMovable); | 
 |  | 
 | /* Do not skip compaction more than 64 times */ | 
 | #define COMPACT_MAX_DEFER_SHIFT 6 | 
 |  | 
 | /* | 
 |  * Compaction is deferred when compaction fails to result in a page | 
 |  * allocation success. 1 << compact_defer_shift, compactions are skipped up | 
 |  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT | 
 |  */ | 
 | static void defer_compaction(struct zone *zone, int order) | 
 | { | 
 | 	zone->compact_considered = 0; | 
 | 	zone->compact_defer_shift++; | 
 |  | 
 | 	if (order < zone->compact_order_failed) | 
 | 		zone->compact_order_failed = order; | 
 |  | 
 | 	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT) | 
 | 		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT; | 
 |  | 
 | 	trace_mm_compaction_defer_compaction(zone, order); | 
 | } | 
 |  | 
 | /* Returns true if compaction should be skipped this time */ | 
 | static bool compaction_deferred(struct zone *zone, int order) | 
 | { | 
 | 	unsigned long defer_limit = 1UL << zone->compact_defer_shift; | 
 |  | 
 | 	if (order < zone->compact_order_failed) | 
 | 		return false; | 
 |  | 
 | 	/* Avoid possible overflow */ | 
 | 	if (++zone->compact_considered >= defer_limit) { | 
 | 		zone->compact_considered = defer_limit; | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	trace_mm_compaction_deferred(zone, order); | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | /* | 
 |  * Update defer tracking counters after successful compaction of given order, | 
 |  * which means an allocation either succeeded (alloc_success == true) or is | 
 |  * expected to succeed. | 
 |  */ | 
 | void compaction_defer_reset(struct zone *zone, int order, | 
 | 		bool alloc_success) | 
 | { | 
 | 	if (alloc_success) { | 
 | 		zone->compact_considered = 0; | 
 | 		zone->compact_defer_shift = 0; | 
 | 	} | 
 | 	if (order >= zone->compact_order_failed) | 
 | 		zone->compact_order_failed = order + 1; | 
 |  | 
 | 	trace_mm_compaction_defer_reset(zone, order); | 
 | } | 
 |  | 
 | /* Returns true if restarting compaction after many failures */ | 
 | static bool compaction_restarting(struct zone *zone, int order) | 
 | { | 
 | 	if (order < zone->compact_order_failed) | 
 | 		return false; | 
 |  | 
 | 	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT && | 
 | 		zone->compact_considered >= 1UL << zone->compact_defer_shift; | 
 | } | 
 |  | 
 | /* Returns true if the pageblock should be scanned for pages to isolate. */ | 
 | static inline bool isolation_suitable(struct compact_control *cc, | 
 | 					struct page *page) | 
 | { | 
 | 	if (cc->ignore_skip_hint) | 
 | 		return true; | 
 |  | 
 | 	return !get_pageblock_skip(page); | 
 | } | 
 |  | 
 | static void reset_cached_positions(struct zone *zone) | 
 | { | 
 | 	zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn; | 
 | 	zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn; | 
 | 	zone->compact_cached_free_pfn = | 
 | 				pageblock_start_pfn(zone_end_pfn(zone) - 1); | 
 | } | 
 |  | 
 | /* | 
 |  * Compound pages of >= pageblock_order should consistently be skipped until | 
 |  * released. It is always pointless to compact pages of such order (if they are | 
 |  * migratable), and the pageblocks they occupy cannot contain any free pages. | 
 |  */ | 
 | static bool pageblock_skip_persistent(struct page *page) | 
 | { | 
 | 	if (!PageCompound(page)) | 
 | 		return false; | 
 |  | 
 | 	page = compound_head(page); | 
 |  | 
 | 	if (compound_order(page) >= pageblock_order) | 
 | 		return true; | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | static bool | 
 | __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source, | 
 | 							bool check_target) | 
 | { | 
 | 	struct page *page = pfn_to_online_page(pfn); | 
 | 	struct page *block_page; | 
 | 	struct page *end_page; | 
 | 	unsigned long block_pfn; | 
 |  | 
 | 	if (!page) | 
 | 		return false; | 
 | 	if (zone != page_zone(page)) | 
 | 		return false; | 
 | 	if (pageblock_skip_persistent(page)) | 
 | 		return false; | 
 |  | 
 | 	/* | 
 | 	 * If skip is already cleared do no further checking once the | 
 | 	 * restart points have been set. | 
 | 	 */ | 
 | 	if (check_source && check_target && !get_pageblock_skip(page)) | 
 | 		return true; | 
 |  | 
 | 	/* | 
 | 	 * If clearing skip for the target scanner, do not select a | 
 | 	 * non-movable pageblock as the starting point. | 
 | 	 */ | 
 | 	if (!check_source && check_target && | 
 | 	    get_pageblock_migratetype(page) != MIGRATE_MOVABLE) | 
 | 		return false; | 
 |  | 
 | 	/* Ensure the start of the pageblock or zone is online and valid */ | 
 | 	block_pfn = pageblock_start_pfn(pfn); | 
 | 	block_pfn = max(block_pfn, zone->zone_start_pfn); | 
 | 	block_page = pfn_to_online_page(block_pfn); | 
 | 	if (block_page) { | 
 | 		page = block_page; | 
 | 		pfn = block_pfn; | 
 | 	} | 
 |  | 
 | 	/* Ensure the end of the pageblock or zone is online and valid */ | 
 | 	block_pfn = pageblock_end_pfn(pfn) - 1; | 
 | 	block_pfn = min(block_pfn, zone_end_pfn(zone) - 1); | 
 | 	end_page = pfn_to_online_page(block_pfn); | 
 | 	if (!end_page) | 
 | 		return false; | 
 |  | 
 | 	/* | 
 | 	 * Only clear the hint if a sample indicates there is either a | 
 | 	 * free page or an LRU page in the block. One or other condition | 
 | 	 * is necessary for the block to be a migration source/target. | 
 | 	 */ | 
 | 	do { | 
 | 		if (check_source && PageLRU(page)) { | 
 | 			clear_pageblock_skip(page); | 
 | 			return true; | 
 | 		} | 
 |  | 
 | 		if (check_target && PageBuddy(page)) { | 
 | 			clear_pageblock_skip(page); | 
 | 			return true; | 
 | 		} | 
 |  | 
 | 		page += (1 << PAGE_ALLOC_COSTLY_ORDER); | 
 | 	} while (page <= end_page); | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | /* | 
 |  * This function is called to clear all cached information on pageblocks that | 
 |  * should be skipped for page isolation when the migrate and free page scanner | 
 |  * meet. | 
 |  */ | 
 | static void __reset_isolation_suitable(struct zone *zone) | 
 | { | 
 | 	unsigned long migrate_pfn = zone->zone_start_pfn; | 
 | 	unsigned long free_pfn = zone_end_pfn(zone) - 1; | 
 | 	unsigned long reset_migrate = free_pfn; | 
 | 	unsigned long reset_free = migrate_pfn; | 
 | 	bool source_set = false; | 
 | 	bool free_set = false; | 
 |  | 
 | 	if (!zone->compact_blockskip_flush) | 
 | 		return; | 
 |  | 
 | 	zone->compact_blockskip_flush = false; | 
 |  | 
 | 	/* | 
 | 	 * Walk the zone and update pageblock skip information. Source looks | 
 | 	 * for PageLRU while target looks for PageBuddy. When the scanner | 
 | 	 * is found, both PageBuddy and PageLRU are checked as the pageblock | 
 | 	 * is suitable as both source and target. | 
 | 	 */ | 
 | 	for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages, | 
 | 					free_pfn -= pageblock_nr_pages) { | 
 | 		cond_resched(); | 
 |  | 
 | 		/* Update the migrate PFN */ | 
 | 		if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) && | 
 | 		    migrate_pfn < reset_migrate) { | 
 | 			source_set = true; | 
 | 			reset_migrate = migrate_pfn; | 
 | 			zone->compact_init_migrate_pfn = reset_migrate; | 
 | 			zone->compact_cached_migrate_pfn[0] = reset_migrate; | 
 | 			zone->compact_cached_migrate_pfn[1] = reset_migrate; | 
 | 		} | 
 |  | 
 | 		/* Update the free PFN */ | 
 | 		if (__reset_isolation_pfn(zone, free_pfn, free_set, true) && | 
 | 		    free_pfn > reset_free) { | 
 | 			free_set = true; | 
 | 			reset_free = free_pfn; | 
 | 			zone->compact_init_free_pfn = reset_free; | 
 | 			zone->compact_cached_free_pfn = reset_free; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Leave no distance if no suitable block was reset */ | 
 | 	if (reset_migrate >= reset_free) { | 
 | 		zone->compact_cached_migrate_pfn[0] = migrate_pfn; | 
 | 		zone->compact_cached_migrate_pfn[1] = migrate_pfn; | 
 | 		zone->compact_cached_free_pfn = free_pfn; | 
 | 	} | 
 | } | 
 |  | 
 | void reset_isolation_suitable(pg_data_t *pgdat) | 
 | { | 
 | 	int zoneid; | 
 |  | 
 | 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { | 
 | 		struct zone *zone = &pgdat->node_zones[zoneid]; | 
 | 		if (!populated_zone(zone)) | 
 | 			continue; | 
 |  | 
 | 		/* Only flush if a full compaction finished recently */ | 
 | 		if (zone->compact_blockskip_flush) | 
 | 			__reset_isolation_suitable(zone); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Sets the pageblock skip bit if it was clear. Note that this is a hint as | 
 |  * locks are not required for read/writers. Returns true if it was already set. | 
 |  */ | 
 | static bool test_and_set_skip(struct compact_control *cc, struct page *page, | 
 | 							unsigned long pfn) | 
 | { | 
 | 	bool skip; | 
 |  | 
 | 	/* Do no update if skip hint is being ignored */ | 
 | 	if (cc->ignore_skip_hint) | 
 | 		return false; | 
 |  | 
 | 	if (!pageblock_aligned(pfn)) | 
 | 		return false; | 
 |  | 
 | 	skip = get_pageblock_skip(page); | 
 | 	if (!skip && !cc->no_set_skip_hint) | 
 | 		set_pageblock_skip(page); | 
 |  | 
 | 	return skip; | 
 | } | 
 |  | 
 | static void update_cached_migrate(struct compact_control *cc, unsigned long pfn) | 
 | { | 
 | 	struct zone *zone = cc->zone; | 
 |  | 
 | 	pfn = pageblock_end_pfn(pfn); | 
 |  | 
 | 	/* Set for isolation rather than compaction */ | 
 | 	if (cc->no_set_skip_hint) | 
 | 		return; | 
 |  | 
 | 	if (pfn > zone->compact_cached_migrate_pfn[0]) | 
 | 		zone->compact_cached_migrate_pfn[0] = pfn; | 
 | 	if (cc->mode != MIGRATE_ASYNC && | 
 | 	    pfn > zone->compact_cached_migrate_pfn[1]) | 
 | 		zone->compact_cached_migrate_pfn[1] = pfn; | 
 | } | 
 |  | 
 | /* | 
 |  * If no pages were isolated then mark this pageblock to be skipped in the | 
 |  * future. The information is later cleared by __reset_isolation_suitable(). | 
 |  */ | 
 | static void update_pageblock_skip(struct compact_control *cc, | 
 | 			struct page *page, unsigned long pfn) | 
 | { | 
 | 	struct zone *zone = cc->zone; | 
 |  | 
 | 	if (cc->no_set_skip_hint) | 
 | 		return; | 
 |  | 
 | 	if (!page) | 
 | 		return; | 
 |  | 
 | 	set_pageblock_skip(page); | 
 |  | 
 | 	/* Update where async and sync compaction should restart */ | 
 | 	if (pfn < zone->compact_cached_free_pfn) | 
 | 		zone->compact_cached_free_pfn = pfn; | 
 | } | 
 | #else | 
 | static inline bool isolation_suitable(struct compact_control *cc, | 
 | 					struct page *page) | 
 | { | 
 | 	return true; | 
 | } | 
 |  | 
 | static inline bool pageblock_skip_persistent(struct page *page) | 
 | { | 
 | 	return false; | 
 | } | 
 |  | 
 | static inline void update_pageblock_skip(struct compact_control *cc, | 
 | 			struct page *page, unsigned long pfn) | 
 | { | 
 | } | 
 |  | 
 | static void update_cached_migrate(struct compact_control *cc, unsigned long pfn) | 
 | { | 
 | } | 
 |  | 
 | static bool test_and_set_skip(struct compact_control *cc, struct page *page, | 
 | 							unsigned long pfn) | 
 | { | 
 | 	return false; | 
 | } | 
 | #endif /* CONFIG_COMPACTION */ | 
 |  | 
 | /* | 
 |  * Compaction requires the taking of some coarse locks that are potentially | 
 |  * very heavily contended. For async compaction, trylock and record if the | 
 |  * lock is contended. The lock will still be acquired but compaction will | 
 |  * abort when the current block is finished regardless of success rate. | 
 |  * Sync compaction acquires the lock. | 
 |  * | 
 |  * Always returns true which makes it easier to track lock state in callers. | 
 |  */ | 
 | static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags, | 
 | 						struct compact_control *cc) | 
 | 	__acquires(lock) | 
 | { | 
 | 	/* Track if the lock is contended in async mode */ | 
 | 	if (cc->mode == MIGRATE_ASYNC && !cc->contended) { | 
 | 		if (spin_trylock_irqsave(lock, *flags)) | 
 | 			return true; | 
 |  | 
 | 		cc->contended = true; | 
 | 	} | 
 |  | 
 | 	spin_lock_irqsave(lock, *flags); | 
 | 	return true; | 
 | } | 
 |  | 
 | /* | 
 |  * Compaction requires the taking of some coarse locks that are potentially | 
 |  * very heavily contended. The lock should be periodically unlocked to avoid | 
 |  * having disabled IRQs for a long time, even when there is nobody waiting on | 
 |  * the lock. It might also be that allowing the IRQs will result in | 
 |  * need_resched() becoming true. If scheduling is needed, compaction schedules. | 
 |  * Either compaction type will also abort if a fatal signal is pending. | 
 |  * In either case if the lock was locked, it is dropped and not regained. | 
 |  * | 
 |  * Returns true if compaction should abort due to fatal signal pending. | 
 |  * Returns false when compaction can continue. | 
 |  */ | 
 | static bool compact_unlock_should_abort(spinlock_t *lock, | 
 | 		unsigned long flags, bool *locked, struct compact_control *cc) | 
 | { | 
 | 	if (*locked) { | 
 | 		spin_unlock_irqrestore(lock, flags); | 
 | 		*locked = false; | 
 | 	} | 
 |  | 
 | 	if (fatal_signal_pending(current)) { | 
 | 		cc->contended = true; | 
 | 		return true; | 
 | 	} | 
 |  | 
 | 	cond_resched(); | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | /* | 
 |  * Isolate free pages onto a private freelist. If @strict is true, will abort | 
 |  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock | 
 |  * (even though it may still end up isolating some pages). | 
 |  */ | 
 | static unsigned long isolate_freepages_block(struct compact_control *cc, | 
 | 				unsigned long *start_pfn, | 
 | 				unsigned long end_pfn, | 
 | 				struct list_head *freelist, | 
 | 				unsigned int stride, | 
 | 				bool strict) | 
 | { | 
 | 	int nr_scanned = 0, total_isolated = 0; | 
 | 	struct page *cursor; | 
 | 	unsigned long flags = 0; | 
 | 	bool locked = false; | 
 | 	unsigned long blockpfn = *start_pfn; | 
 | 	unsigned int order; | 
 |  | 
 | 	/* Strict mode is for isolation, speed is secondary */ | 
 | 	if (strict) | 
 | 		stride = 1; | 
 |  | 
 | 	cursor = pfn_to_page(blockpfn); | 
 |  | 
 | 	/* Isolate free pages. */ | 
 | 	for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) { | 
 | 		int isolated; | 
 | 		struct page *page = cursor; | 
 |  | 
 | 		/* | 
 | 		 * Periodically drop the lock (if held) regardless of its | 
 | 		 * contention, to give chance to IRQs. Abort if fatal signal | 
 | 		 * pending. | 
 | 		 */ | 
 | 		if (!(blockpfn % COMPACT_CLUSTER_MAX) | 
 | 		    && compact_unlock_should_abort(&cc->zone->lock, flags, | 
 | 								&locked, cc)) | 
 | 			break; | 
 |  | 
 | 		nr_scanned++; | 
 |  | 
 | 		/* | 
 | 		 * For compound pages such as THP and hugetlbfs, we can save | 
 | 		 * potentially a lot of iterations if we skip them at once. | 
 | 		 * The check is racy, but we can consider only valid values | 
 | 		 * and the only danger is skipping too much. | 
 | 		 */ | 
 | 		if (PageCompound(page)) { | 
 | 			const unsigned int order = compound_order(page); | 
 |  | 
 | 			if (likely(order < MAX_ORDER)) { | 
 | 				blockpfn += (1UL << order) - 1; | 
 | 				cursor += (1UL << order) - 1; | 
 | 			} | 
 | 			goto isolate_fail; | 
 | 		} | 
 |  | 
 | 		if (!PageBuddy(page)) | 
 | 			goto isolate_fail; | 
 |  | 
 | 		/* If we already hold the lock, we can skip some rechecking. */ | 
 | 		if (!locked) { | 
 | 			locked = compact_lock_irqsave(&cc->zone->lock, | 
 | 								&flags, cc); | 
 |  | 
 | 			/* Recheck this is a buddy page under lock */ | 
 | 			if (!PageBuddy(page)) | 
 | 				goto isolate_fail; | 
 | 		} | 
 |  | 
 | 		/* Found a free page, will break it into order-0 pages */ | 
 | 		order = buddy_order(page); | 
 | 		isolated = __isolate_free_page(page, order); | 
 | 		if (!isolated) | 
 | 			break; | 
 | 		set_page_private(page, order); | 
 |  | 
 | 		nr_scanned += isolated - 1; | 
 | 		total_isolated += isolated; | 
 | 		cc->nr_freepages += isolated; | 
 | 		list_add_tail(&page->lru, freelist); | 
 |  | 
 | 		if (!strict && cc->nr_migratepages <= cc->nr_freepages) { | 
 | 			blockpfn += isolated; | 
 | 			break; | 
 | 		} | 
 | 		/* Advance to the end of split page */ | 
 | 		blockpfn += isolated - 1; | 
 | 		cursor += isolated - 1; | 
 | 		continue; | 
 |  | 
 | isolate_fail: | 
 | 		if (strict) | 
 | 			break; | 
 | 		else | 
 | 			continue; | 
 |  | 
 | 	} | 
 |  | 
 | 	if (locked) | 
 | 		spin_unlock_irqrestore(&cc->zone->lock, flags); | 
 |  | 
 | 	/* | 
 | 	 * There is a tiny chance that we have read bogus compound_order(), | 
 | 	 * so be careful to not go outside of the pageblock. | 
 | 	 */ | 
 | 	if (unlikely(blockpfn > end_pfn)) | 
 | 		blockpfn = end_pfn; | 
 |  | 
 | 	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn, | 
 | 					nr_scanned, total_isolated); | 
 |  | 
 | 	/* Record how far we have got within the block */ | 
 | 	*start_pfn = blockpfn; | 
 |  | 
 | 	/* | 
 | 	 * If strict isolation is requested by CMA then check that all the | 
 | 	 * pages requested were isolated. If there were any failures, 0 is | 
 | 	 * returned and CMA will fail. | 
 | 	 */ | 
 | 	if (strict && blockpfn < end_pfn) | 
 | 		total_isolated = 0; | 
 |  | 
 | 	cc->total_free_scanned += nr_scanned; | 
 | 	if (total_isolated) | 
 | 		count_compact_events(COMPACTISOLATED, total_isolated); | 
 | 	return total_isolated; | 
 | } | 
 |  | 
 | /** | 
 |  * isolate_freepages_range() - isolate free pages. | 
 |  * @cc:        Compaction control structure. | 
 |  * @start_pfn: The first PFN to start isolating. | 
 |  * @end_pfn:   The one-past-last PFN. | 
 |  * | 
 |  * Non-free pages, invalid PFNs, or zone boundaries within the | 
 |  * [start_pfn, end_pfn) range are considered errors, cause function to | 
 |  * undo its actions and return zero. | 
 |  * | 
 |  * Otherwise, function returns one-past-the-last PFN of isolated page | 
 |  * (which may be greater then end_pfn if end fell in a middle of | 
 |  * a free page). | 
 |  */ | 
 | unsigned long | 
 | isolate_freepages_range(struct compact_control *cc, | 
 | 			unsigned long start_pfn, unsigned long end_pfn) | 
 | { | 
 | 	unsigned long isolated, pfn, block_start_pfn, block_end_pfn; | 
 | 	LIST_HEAD(freelist); | 
 |  | 
 | 	pfn = start_pfn; | 
 | 	block_start_pfn = pageblock_start_pfn(pfn); | 
 | 	if (block_start_pfn < cc->zone->zone_start_pfn) | 
 | 		block_start_pfn = cc->zone->zone_start_pfn; | 
 | 	block_end_pfn = pageblock_end_pfn(pfn); | 
 |  | 
 | 	for (; pfn < end_pfn; pfn += isolated, | 
 | 				block_start_pfn = block_end_pfn, | 
 | 				block_end_pfn += pageblock_nr_pages) { | 
 | 		/* Protect pfn from changing by isolate_freepages_block */ | 
 | 		unsigned long isolate_start_pfn = pfn; | 
 |  | 
 | 		block_end_pfn = min(block_end_pfn, end_pfn); | 
 |  | 
 | 		/* | 
 | 		 * pfn could pass the block_end_pfn if isolated freepage | 
 | 		 * is more than pageblock order. In this case, we adjust | 
 | 		 * scanning range to right one. | 
 | 		 */ | 
 | 		if (pfn >= block_end_pfn) { | 
 | 			block_start_pfn = pageblock_start_pfn(pfn); | 
 | 			block_end_pfn = pageblock_end_pfn(pfn); | 
 | 			block_end_pfn = min(block_end_pfn, end_pfn); | 
 | 		} | 
 |  | 
 | 		if (!pageblock_pfn_to_page(block_start_pfn, | 
 | 					block_end_pfn, cc->zone)) | 
 | 			break; | 
 |  | 
 | 		isolated = isolate_freepages_block(cc, &isolate_start_pfn, | 
 | 					block_end_pfn, &freelist, 0, true); | 
 |  | 
 | 		/* | 
 | 		 * In strict mode, isolate_freepages_block() returns 0 if | 
 | 		 * there are any holes in the block (ie. invalid PFNs or | 
 | 		 * non-free pages). | 
 | 		 */ | 
 | 		if (!isolated) | 
 | 			break; | 
 |  | 
 | 		/* | 
 | 		 * If we managed to isolate pages, it is always (1 << n) * | 
 | 		 * pageblock_nr_pages for some non-negative n.  (Max order | 
 | 		 * page may span two pageblocks). | 
 | 		 */ | 
 | 	} | 
 |  | 
 | 	/* __isolate_free_page() does not map the pages */ | 
 | 	split_map_pages(&freelist); | 
 |  | 
 | 	if (pfn < end_pfn) { | 
 | 		/* Loop terminated early, cleanup. */ | 
 | 		release_freepages(&freelist); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* We don't use freelists for anything. */ | 
 | 	return pfn; | 
 | } | 
 |  | 
 | /* Similar to reclaim, but different enough that they don't share logic */ | 
 | static bool too_many_isolated(pg_data_t *pgdat) | 
 | { | 
 | 	bool too_many; | 
 |  | 
 | 	unsigned long active, inactive, isolated; | 
 |  | 
 | 	inactive = node_page_state(pgdat, NR_INACTIVE_FILE) + | 
 | 			node_page_state(pgdat, NR_INACTIVE_ANON); | 
 | 	active = node_page_state(pgdat, NR_ACTIVE_FILE) + | 
 | 			node_page_state(pgdat, NR_ACTIVE_ANON); | 
 | 	isolated = node_page_state(pgdat, NR_ISOLATED_FILE) + | 
 | 			node_page_state(pgdat, NR_ISOLATED_ANON); | 
 |  | 
 | 	too_many = isolated > (inactive + active) / 2; | 
 | 	if (!too_many) | 
 | 		wake_throttle_isolated(pgdat); | 
 |  | 
 | 	return too_many; | 
 | } | 
 |  | 
 | /** | 
 |  * isolate_migratepages_block() - isolate all migrate-able pages within | 
 |  *				  a single pageblock | 
 |  * @cc:		Compaction control structure. | 
 |  * @low_pfn:	The first PFN to isolate | 
 |  * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock | 
 |  * @mode:	Isolation mode to be used. | 
 |  * | 
 |  * Isolate all pages that can be migrated from the range specified by | 
 |  * [low_pfn, end_pfn). The range is expected to be within same pageblock. | 
 |  * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion, | 
 |  * -ENOMEM in case we could not allocate a page, or 0. | 
 |  * cc->migrate_pfn will contain the next pfn to scan. | 
 |  * | 
 |  * The pages are isolated on cc->migratepages list (not required to be empty), | 
 |  * and cc->nr_migratepages is updated accordingly. | 
 |  */ | 
 | static int | 
 | isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn, | 
 | 			unsigned long end_pfn, isolate_mode_t mode) | 
 | { | 
 | 	pg_data_t *pgdat = cc->zone->zone_pgdat; | 
 | 	unsigned long nr_scanned = 0, nr_isolated = 0; | 
 | 	struct lruvec *lruvec; | 
 | 	unsigned long flags = 0; | 
 | 	struct lruvec *locked = NULL; | 
 | 	struct page *page = NULL, *valid_page = NULL; | 
 | 	struct address_space *mapping; | 
 | 	unsigned long start_pfn = low_pfn; | 
 | 	bool skip_on_failure = false; | 
 | 	unsigned long next_skip_pfn = 0; | 
 | 	bool skip_updated = false; | 
 | 	int ret = 0; | 
 |  | 
 | 	cc->migrate_pfn = low_pfn; | 
 |  | 
 | 	/* | 
 | 	 * Ensure that there are not too many pages isolated from the LRU | 
 | 	 * list by either parallel reclaimers or compaction. If there are, | 
 | 	 * delay for some time until fewer pages are isolated | 
 | 	 */ | 
 | 	while (unlikely(too_many_isolated(pgdat))) { | 
 | 		/* stop isolation if there are still pages not migrated */ | 
 | 		if (cc->nr_migratepages) | 
 | 			return -EAGAIN; | 
 |  | 
 | 		/* async migration should just abort */ | 
 | 		if (cc->mode == MIGRATE_ASYNC) | 
 | 			return -EAGAIN; | 
 |  | 
 | 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED); | 
 |  | 
 | 		if (fatal_signal_pending(current)) | 
 | 			return -EINTR; | 
 | 	} | 
 |  | 
 | 	cond_resched(); | 
 |  | 
 | 	if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) { | 
 | 		skip_on_failure = true; | 
 | 		next_skip_pfn = block_end_pfn(low_pfn, cc->order); | 
 | 	} | 
 |  | 
 | 	/* Time to isolate some pages for migration */ | 
 | 	for (; low_pfn < end_pfn; low_pfn++) { | 
 |  | 
 | 		if (skip_on_failure && low_pfn >= next_skip_pfn) { | 
 | 			/* | 
 | 			 * We have isolated all migration candidates in the | 
 | 			 * previous order-aligned block, and did not skip it due | 
 | 			 * to failure. We should migrate the pages now and | 
 | 			 * hopefully succeed compaction. | 
 | 			 */ | 
 | 			if (nr_isolated) | 
 | 				break; | 
 |  | 
 | 			/* | 
 | 			 * We failed to isolate in the previous order-aligned | 
 | 			 * block. Set the new boundary to the end of the | 
 | 			 * current block. Note we can't simply increase | 
 | 			 * next_skip_pfn by 1 << order, as low_pfn might have | 
 | 			 * been incremented by a higher number due to skipping | 
 | 			 * a compound or a high-order buddy page in the | 
 | 			 * previous loop iteration. | 
 | 			 */ | 
 | 			next_skip_pfn = block_end_pfn(low_pfn, cc->order); | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Periodically drop the lock (if held) regardless of its | 
 | 		 * contention, to give chance to IRQs. Abort completely if | 
 | 		 * a fatal signal is pending. | 
 | 		 */ | 
 | 		if (!(low_pfn % COMPACT_CLUSTER_MAX)) { | 
 | 			if (locked) { | 
 | 				unlock_page_lruvec_irqrestore(locked, flags); | 
 | 				locked = NULL; | 
 | 			} | 
 |  | 
 | 			if (fatal_signal_pending(current)) { | 
 | 				cc->contended = true; | 
 | 				ret = -EINTR; | 
 |  | 
 | 				goto fatal_pending; | 
 | 			} | 
 |  | 
 | 			cond_resched(); | 
 | 		} | 
 |  | 
 | 		nr_scanned++; | 
 |  | 
 | 		page = pfn_to_page(low_pfn); | 
 |  | 
 | 		/* | 
 | 		 * Check if the pageblock has already been marked skipped. | 
 | 		 * Only the aligned PFN is checked as the caller isolates | 
 | 		 * COMPACT_CLUSTER_MAX at a time so the second call must | 
 | 		 * not falsely conclude that the block should be skipped. | 
 | 		 */ | 
 | 		if (!valid_page && pageblock_aligned(low_pfn)) { | 
 | 			if (!isolation_suitable(cc, page)) { | 
 | 				low_pfn = end_pfn; | 
 | 				page = NULL; | 
 | 				goto isolate_abort; | 
 | 			} | 
 | 			valid_page = page; | 
 | 		} | 
 |  | 
 | 		if (PageHuge(page) && cc->alloc_contig) { | 
 | 			ret = isolate_or_dissolve_huge_page(page, &cc->migratepages); | 
 |  | 
 | 			/* | 
 | 			 * Fail isolation in case isolate_or_dissolve_huge_page() | 
 | 			 * reports an error. In case of -ENOMEM, abort right away. | 
 | 			 */ | 
 | 			if (ret < 0) { | 
 | 				 /* Do not report -EBUSY down the chain */ | 
 | 				if (ret == -EBUSY) | 
 | 					ret = 0; | 
 | 				low_pfn += compound_nr(page) - 1; | 
 | 				goto isolate_fail; | 
 | 			} | 
 |  | 
 | 			if (PageHuge(page)) { | 
 | 				/* | 
 | 				 * Hugepage was successfully isolated and placed | 
 | 				 * on the cc->migratepages list. | 
 | 				 */ | 
 | 				low_pfn += compound_nr(page) - 1; | 
 | 				goto isolate_success_no_list; | 
 | 			} | 
 |  | 
 | 			/* | 
 | 			 * Ok, the hugepage was dissolved. Now these pages are | 
 | 			 * Buddy and cannot be re-allocated because they are | 
 | 			 * isolated. Fall-through as the check below handles | 
 | 			 * Buddy pages. | 
 | 			 */ | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Skip if free. We read page order here without zone lock | 
 | 		 * which is generally unsafe, but the race window is small and | 
 | 		 * the worst thing that can happen is that we skip some | 
 | 		 * potential isolation targets. | 
 | 		 */ | 
 | 		if (PageBuddy(page)) { | 
 | 			unsigned long freepage_order = buddy_order_unsafe(page); | 
 |  | 
 | 			/* | 
 | 			 * Without lock, we cannot be sure that what we got is | 
 | 			 * a valid page order. Consider only values in the | 
 | 			 * valid order range to prevent low_pfn overflow. | 
 | 			 */ | 
 | 			if (freepage_order > 0 && freepage_order < MAX_ORDER) | 
 | 				low_pfn += (1UL << freepage_order) - 1; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Regardless of being on LRU, compound pages such as THP and | 
 | 		 * hugetlbfs are not to be compacted unless we are attempting | 
 | 		 * an allocation much larger than the huge page size (eg CMA). | 
 | 		 * We can potentially save a lot of iterations if we skip them | 
 | 		 * at once. The check is racy, but we can consider only valid | 
 | 		 * values and the only danger is skipping too much. | 
 | 		 */ | 
 | 		if (PageCompound(page) && !cc->alloc_contig) { | 
 | 			const unsigned int order = compound_order(page); | 
 |  | 
 | 			if (likely(order < MAX_ORDER)) | 
 | 				low_pfn += (1UL << order) - 1; | 
 | 			goto isolate_fail; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Check may be lockless but that's ok as we recheck later. | 
 | 		 * It's possible to migrate LRU and non-lru movable pages. | 
 | 		 * Skip any other type of page | 
 | 		 */ | 
 | 		if (!PageLRU(page)) { | 
 | 			/* | 
 | 			 * __PageMovable can return false positive so we need | 
 | 			 * to verify it under page_lock. | 
 | 			 */ | 
 | 			if (unlikely(__PageMovable(page)) && | 
 | 					!PageIsolated(page)) { | 
 | 				if (locked) { | 
 | 					unlock_page_lruvec_irqrestore(locked, flags); | 
 | 					locked = NULL; | 
 | 				} | 
 |  | 
 | 				if (!isolate_movable_page(page, mode)) | 
 | 					goto isolate_success; | 
 | 			} | 
 |  | 
 | 			goto isolate_fail; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Migration will fail if an anonymous page is pinned in memory, | 
 | 		 * so avoid taking lru_lock and isolating it unnecessarily in an | 
 | 		 * admittedly racy check. | 
 | 		 */ | 
 | 		mapping = page_mapping(page); | 
 | 		if (!mapping && page_count(page) > page_mapcount(page)) | 
 | 			goto isolate_fail; | 
 |  | 
 | 		/* | 
 | 		 * Only allow to migrate anonymous pages in GFP_NOFS context | 
 | 		 * because those do not depend on fs locks. | 
 | 		 */ | 
 | 		if (!(cc->gfp_mask & __GFP_FS) && mapping) | 
 | 			goto isolate_fail; | 
 |  | 
 | 		/* | 
 | 		 * Be careful not to clear PageLRU until after we're | 
 | 		 * sure the page is not being freed elsewhere -- the | 
 | 		 * page release code relies on it. | 
 | 		 */ | 
 | 		if (unlikely(!get_page_unless_zero(page))) | 
 | 			goto isolate_fail; | 
 |  | 
 | 		/* Only take pages on LRU: a check now makes later tests safe */ | 
 | 		if (!PageLRU(page)) | 
 | 			goto isolate_fail_put; | 
 |  | 
 | 		/* Compaction might skip unevictable pages but CMA takes them */ | 
 | 		if (!(mode & ISOLATE_UNEVICTABLE) && PageUnevictable(page)) | 
 | 			goto isolate_fail_put; | 
 |  | 
 | 		/* | 
 | 		 * To minimise LRU disruption, the caller can indicate with | 
 | 		 * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages | 
 | 		 * it will be able to migrate without blocking - clean pages | 
 | 		 * for the most part.  PageWriteback would require blocking. | 
 | 		 */ | 
 | 		if ((mode & ISOLATE_ASYNC_MIGRATE) && PageWriteback(page)) | 
 | 			goto isolate_fail_put; | 
 |  | 
 | 		if ((mode & ISOLATE_ASYNC_MIGRATE) && PageDirty(page)) { | 
 | 			bool migrate_dirty; | 
 |  | 
 | 			/* | 
 | 			 * Only pages without mappings or that have a | 
 | 			 * ->migrate_folio callback are possible to migrate | 
 | 			 * without blocking. However, we can be racing with | 
 | 			 * truncation so it's necessary to lock the page | 
 | 			 * to stabilise the mapping as truncation holds | 
 | 			 * the page lock until after the page is removed | 
 | 			 * from the page cache. | 
 | 			 */ | 
 | 			if (!trylock_page(page)) | 
 | 				goto isolate_fail_put; | 
 |  | 
 | 			mapping = page_mapping(page); | 
 | 			migrate_dirty = !mapping || | 
 | 					mapping->a_ops->migrate_folio; | 
 | 			unlock_page(page); | 
 | 			if (!migrate_dirty) | 
 | 				goto isolate_fail_put; | 
 | 		} | 
 |  | 
 | 		/* Try isolate the page */ | 
 | 		if (!TestClearPageLRU(page)) | 
 | 			goto isolate_fail_put; | 
 |  | 
 | 		lruvec = folio_lruvec(page_folio(page)); | 
 |  | 
 | 		/* If we already hold the lock, we can skip some rechecking */ | 
 | 		if (lruvec != locked) { | 
 | 			if (locked) | 
 | 				unlock_page_lruvec_irqrestore(locked, flags); | 
 |  | 
 | 			compact_lock_irqsave(&lruvec->lru_lock, &flags, cc); | 
 | 			locked = lruvec; | 
 |  | 
 | 			lruvec_memcg_debug(lruvec, page_folio(page)); | 
 |  | 
 | 			/* Try get exclusive access under lock */ | 
 | 			if (!skip_updated) { | 
 | 				skip_updated = true; | 
 | 				if (test_and_set_skip(cc, page, low_pfn)) | 
 | 					goto isolate_abort; | 
 | 			} | 
 |  | 
 | 			/* | 
 | 			 * Page become compound since the non-locked check, | 
 | 			 * and it's on LRU. It can only be a THP so the order | 
 | 			 * is safe to read and it's 0 for tail pages. | 
 | 			 */ | 
 | 			if (unlikely(PageCompound(page) && !cc->alloc_contig)) { | 
 | 				low_pfn += compound_nr(page) - 1; | 
 | 				SetPageLRU(page); | 
 | 				goto isolate_fail_put; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		/* The whole page is taken off the LRU; skip the tail pages. */ | 
 | 		if (PageCompound(page)) | 
 | 			low_pfn += compound_nr(page) - 1; | 
 |  | 
 | 		/* Successfully isolated */ | 
 | 		del_page_from_lru_list(page, lruvec); | 
 | 		mod_node_page_state(page_pgdat(page), | 
 | 				NR_ISOLATED_ANON + page_is_file_lru(page), | 
 | 				thp_nr_pages(page)); | 
 |  | 
 | isolate_success: | 
 | 		list_add(&page->lru, &cc->migratepages); | 
 | isolate_success_no_list: | 
 | 		cc->nr_migratepages += compound_nr(page); | 
 | 		nr_isolated += compound_nr(page); | 
 | 		nr_scanned += compound_nr(page) - 1; | 
 |  | 
 | 		/* | 
 | 		 * Avoid isolating too much unless this block is being | 
 | 		 * rescanned (e.g. dirty/writeback pages, parallel allocation) | 
 | 		 * or a lock is contended. For contention, isolate quickly to | 
 | 		 * potentially remove one source of contention. | 
 | 		 */ | 
 | 		if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX && | 
 | 		    !cc->rescan && !cc->contended) { | 
 | 			++low_pfn; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		continue; | 
 |  | 
 | isolate_fail_put: | 
 | 		/* Avoid potential deadlock in freeing page under lru_lock */ | 
 | 		if (locked) { | 
 | 			unlock_page_lruvec_irqrestore(locked, flags); | 
 | 			locked = NULL; | 
 | 		} | 
 | 		put_page(page); | 
 |  | 
 | isolate_fail: | 
 | 		if (!skip_on_failure && ret != -ENOMEM) | 
 | 			continue; | 
 |  | 
 | 		/* | 
 | 		 * We have isolated some pages, but then failed. Release them | 
 | 		 * instead of migrating, as we cannot form the cc->order buddy | 
 | 		 * page anyway. | 
 | 		 */ | 
 | 		if (nr_isolated) { | 
 | 			if (locked) { | 
 | 				unlock_page_lruvec_irqrestore(locked, flags); | 
 | 				locked = NULL; | 
 | 			} | 
 | 			putback_movable_pages(&cc->migratepages); | 
 | 			cc->nr_migratepages = 0; | 
 | 			nr_isolated = 0; | 
 | 		} | 
 |  | 
 | 		if (low_pfn < next_skip_pfn) { | 
 | 			low_pfn = next_skip_pfn - 1; | 
 | 			/* | 
 | 			 * The check near the loop beginning would have updated | 
 | 			 * next_skip_pfn too, but this is a bit simpler. | 
 | 			 */ | 
 | 			next_skip_pfn += 1UL << cc->order; | 
 | 		} | 
 |  | 
 | 		if (ret == -ENOMEM) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * The PageBuddy() check could have potentially brought us outside | 
 | 	 * the range to be scanned. | 
 | 	 */ | 
 | 	if (unlikely(low_pfn > end_pfn)) | 
 | 		low_pfn = end_pfn; | 
 |  | 
 | 	page = NULL; | 
 |  | 
 | isolate_abort: | 
 | 	if (locked) | 
 | 		unlock_page_lruvec_irqrestore(locked, flags); | 
 | 	if (page) { | 
 | 		SetPageLRU(page); | 
 | 		put_page(page); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Updated the cached scanner pfn once the pageblock has been scanned | 
 | 	 * Pages will either be migrated in which case there is no point | 
 | 	 * scanning in the near future or migration failed in which case the | 
 | 	 * failure reason may persist. The block is marked for skipping if | 
 | 	 * there were no pages isolated in the block or if the block is | 
 | 	 * rescanned twice in a row. | 
 | 	 */ | 
 | 	if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) { | 
 | 		if (valid_page && !skip_updated) | 
 | 			set_pageblock_skip(valid_page); | 
 | 		update_cached_migrate(cc, low_pfn); | 
 | 	} | 
 |  | 
 | 	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn, | 
 | 						nr_scanned, nr_isolated); | 
 |  | 
 | fatal_pending: | 
 | 	cc->total_migrate_scanned += nr_scanned; | 
 | 	if (nr_isolated) | 
 | 		count_compact_events(COMPACTISOLATED, nr_isolated); | 
 |  | 
 | 	cc->migrate_pfn = low_pfn; | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range | 
 |  * @cc:        Compaction control structure. | 
 |  * @start_pfn: The first PFN to start isolating. | 
 |  * @end_pfn:   The one-past-last PFN. | 
 |  * | 
 |  * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM | 
 |  * in case we could not allocate a page, or 0. | 
 |  */ | 
 | int | 
 | isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn, | 
 | 							unsigned long end_pfn) | 
 | { | 
 | 	unsigned long pfn, block_start_pfn, block_end_pfn; | 
 | 	int ret = 0; | 
 |  | 
 | 	/* Scan block by block. First and last block may be incomplete */ | 
 | 	pfn = start_pfn; | 
 | 	block_start_pfn = pageblock_start_pfn(pfn); | 
 | 	if (block_start_pfn < cc->zone->zone_start_pfn) | 
 | 		block_start_pfn = cc->zone->zone_start_pfn; | 
 | 	block_end_pfn = pageblock_end_pfn(pfn); | 
 |  | 
 | 	for (; pfn < end_pfn; pfn = block_end_pfn, | 
 | 				block_start_pfn = block_end_pfn, | 
 | 				block_end_pfn += pageblock_nr_pages) { | 
 |  | 
 | 		block_end_pfn = min(block_end_pfn, end_pfn); | 
 |  | 
 | 		if (!pageblock_pfn_to_page(block_start_pfn, | 
 | 					block_end_pfn, cc->zone)) | 
 | 			continue; | 
 |  | 
 | 		ret = isolate_migratepages_block(cc, pfn, block_end_pfn, | 
 | 						 ISOLATE_UNEVICTABLE); | 
 |  | 
 | 		if (ret) | 
 | 			break; | 
 |  | 
 | 		if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | #endif /* CONFIG_COMPACTION || CONFIG_CMA */ | 
 | #ifdef CONFIG_COMPACTION | 
 |  | 
 | static bool suitable_migration_source(struct compact_control *cc, | 
 | 							struct page *page) | 
 | { | 
 | 	int block_mt; | 
 |  | 
 | 	if (pageblock_skip_persistent(page)) | 
 | 		return false; | 
 |  | 
 | 	if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction) | 
 | 		return true; | 
 |  | 
 | 	block_mt = get_pageblock_migratetype(page); | 
 |  | 
 | 	if (cc->migratetype == MIGRATE_MOVABLE) | 
 | 		return is_migrate_movable(block_mt); | 
 | 	else | 
 | 		return block_mt == cc->migratetype; | 
 | } | 
 |  | 
 | /* Returns true if the page is within a block suitable for migration to */ | 
 | static bool suitable_migration_target(struct compact_control *cc, | 
 | 							struct page *page) | 
 | { | 
 | 	/* If the page is a large free page, then disallow migration */ | 
 | 	if (PageBuddy(page)) { | 
 | 		/* | 
 | 		 * We are checking page_order without zone->lock taken. But | 
 | 		 * the only small danger is that we skip a potentially suitable | 
 | 		 * pageblock, so it's not worth to check order for valid range. | 
 | 		 */ | 
 | 		if (buddy_order_unsafe(page) >= pageblock_order) | 
 | 			return false; | 
 | 	} | 
 |  | 
 | 	if (cc->ignore_block_suitable) | 
 | 		return true; | 
 |  | 
 | 	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */ | 
 | 	if (is_migrate_movable(get_pageblock_migratetype(page))) | 
 | 		return true; | 
 |  | 
 | 	/* Otherwise skip the block */ | 
 | 	return false; | 
 | } | 
 |  | 
 | static inline unsigned int | 
 | freelist_scan_limit(struct compact_control *cc) | 
 | { | 
 | 	unsigned short shift = BITS_PER_LONG - 1; | 
 |  | 
 | 	return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1; | 
 | } | 
 |  | 
 | /* | 
 |  * Test whether the free scanner has reached the same or lower pageblock than | 
 |  * the migration scanner, and compaction should thus terminate. | 
 |  */ | 
 | static inline bool compact_scanners_met(struct compact_control *cc) | 
 | { | 
 | 	return (cc->free_pfn >> pageblock_order) | 
 | 		<= (cc->migrate_pfn >> pageblock_order); | 
 | } | 
 |  | 
 | /* | 
 |  * Used when scanning for a suitable migration target which scans freelists | 
 |  * in reverse. Reorders the list such as the unscanned pages are scanned | 
 |  * first on the next iteration of the free scanner | 
 |  */ | 
 | static void | 
 | move_freelist_head(struct list_head *freelist, struct page *freepage) | 
 | { | 
 | 	LIST_HEAD(sublist); | 
 |  | 
 | 	if (!list_is_last(freelist, &freepage->lru)) { | 
 | 		list_cut_before(&sublist, freelist, &freepage->lru); | 
 | 		list_splice_tail(&sublist, freelist); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Similar to move_freelist_head except used by the migration scanner | 
 |  * when scanning forward. It's possible for these list operations to | 
 |  * move against each other if they search the free list exactly in | 
 |  * lockstep. | 
 |  */ | 
 | static void | 
 | move_freelist_tail(struct list_head *freelist, struct page *freepage) | 
 | { | 
 | 	LIST_HEAD(sublist); | 
 |  | 
 | 	if (!list_is_first(freelist, &freepage->lru)) { | 
 | 		list_cut_position(&sublist, freelist, &freepage->lru); | 
 | 		list_splice_tail(&sublist, freelist); | 
 | 	} | 
 | } | 
 |  | 
 | static void | 
 | fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated) | 
 | { | 
 | 	unsigned long start_pfn, end_pfn; | 
 | 	struct page *page; | 
 |  | 
 | 	/* Do not search around if there are enough pages already */ | 
 | 	if (cc->nr_freepages >= cc->nr_migratepages) | 
 | 		return; | 
 |  | 
 | 	/* Minimise scanning during async compaction */ | 
 | 	if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC) | 
 | 		return; | 
 |  | 
 | 	/* Pageblock boundaries */ | 
 | 	start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn); | 
 | 	end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone)); | 
 |  | 
 | 	page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone); | 
 | 	if (!page) | 
 | 		return; | 
 |  | 
 | 	/* Scan before */ | 
 | 	if (start_pfn != pfn) { | 
 | 		isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, 1, false); | 
 | 		if (cc->nr_freepages >= cc->nr_migratepages) | 
 | 			return; | 
 | 	} | 
 |  | 
 | 	/* Scan after */ | 
 | 	start_pfn = pfn + nr_isolated; | 
 | 	if (start_pfn < end_pfn) | 
 | 		isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false); | 
 |  | 
 | 	/* Skip this pageblock in the future as it's full or nearly full */ | 
 | 	if (cc->nr_freepages < cc->nr_migratepages) | 
 | 		set_pageblock_skip(page); | 
 | } | 
 |  | 
 | /* Search orders in round-robin fashion */ | 
 | static int next_search_order(struct compact_control *cc, int order) | 
 | { | 
 | 	order--; | 
 | 	if (order < 0) | 
 | 		order = cc->order - 1; | 
 |  | 
 | 	/* Search wrapped around? */ | 
 | 	if (order == cc->search_order) { | 
 | 		cc->search_order--; | 
 | 		if (cc->search_order < 0) | 
 | 			cc->search_order = cc->order - 1; | 
 | 		return -1; | 
 | 	} | 
 |  | 
 | 	return order; | 
 | } | 
 |  | 
 | static unsigned long | 
 | fast_isolate_freepages(struct compact_control *cc) | 
 | { | 
 | 	unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1); | 
 | 	unsigned int nr_scanned = 0; | 
 | 	unsigned long low_pfn, min_pfn, highest = 0; | 
 | 	unsigned long nr_isolated = 0; | 
 | 	unsigned long distance; | 
 | 	struct page *page = NULL; | 
 | 	bool scan_start = false; | 
 | 	int order; | 
 |  | 
 | 	/* Full compaction passes in a negative order */ | 
 | 	if (cc->order <= 0) | 
 | 		return cc->free_pfn; | 
 |  | 
 | 	/* | 
 | 	 * If starting the scan, use a deeper search and use the highest | 
 | 	 * PFN found if a suitable one is not found. | 
 | 	 */ | 
 | 	if (cc->free_pfn >= cc->zone->compact_init_free_pfn) { | 
 | 		limit = pageblock_nr_pages >> 1; | 
 | 		scan_start = true; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Preferred point is in the top quarter of the scan space but take | 
 | 	 * a pfn from the top half if the search is problematic. | 
 | 	 */ | 
 | 	distance = (cc->free_pfn - cc->migrate_pfn); | 
 | 	low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2)); | 
 | 	min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1)); | 
 |  | 
 | 	if (WARN_ON_ONCE(min_pfn > low_pfn)) | 
 | 		low_pfn = min_pfn; | 
 |  | 
 | 	/* | 
 | 	 * Search starts from the last successful isolation order or the next | 
 | 	 * order to search after a previous failure | 
 | 	 */ | 
 | 	cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order); | 
 |  | 
 | 	for (order = cc->search_order; | 
 | 	     !page && order >= 0; | 
 | 	     order = next_search_order(cc, order)) { | 
 | 		struct free_area *area = &cc->zone->free_area[order]; | 
 | 		struct list_head *freelist; | 
 | 		struct page *freepage; | 
 | 		unsigned long flags; | 
 | 		unsigned int order_scanned = 0; | 
 | 		unsigned long high_pfn = 0; | 
 |  | 
 | 		if (!area->nr_free) | 
 | 			continue; | 
 |  | 
 | 		spin_lock_irqsave(&cc->zone->lock, flags); | 
 | 		freelist = &area->free_list[MIGRATE_MOVABLE]; | 
 | 		list_for_each_entry_reverse(freepage, freelist, lru) { | 
 | 			unsigned long pfn; | 
 |  | 
 | 			order_scanned++; | 
 | 			nr_scanned++; | 
 | 			pfn = page_to_pfn(freepage); | 
 |  | 
 | 			if (pfn >= highest) | 
 | 				highest = max(pageblock_start_pfn(pfn), | 
 | 					      cc->zone->zone_start_pfn); | 
 |  | 
 | 			if (pfn >= low_pfn) { | 
 | 				cc->fast_search_fail = 0; | 
 | 				cc->search_order = order; | 
 | 				page = freepage; | 
 | 				break; | 
 | 			} | 
 |  | 
 | 			if (pfn >= min_pfn && pfn > high_pfn) { | 
 | 				high_pfn = pfn; | 
 |  | 
 | 				/* Shorten the scan if a candidate is found */ | 
 | 				limit >>= 1; | 
 | 			} | 
 |  | 
 | 			if (order_scanned >= limit) | 
 | 				break; | 
 | 		} | 
 |  | 
 | 		/* Use a minimum pfn if a preferred one was not found */ | 
 | 		if (!page && high_pfn) { | 
 | 			page = pfn_to_page(high_pfn); | 
 |  | 
 | 			/* Update freepage for the list reorder below */ | 
 | 			freepage = page; | 
 | 		} | 
 |  | 
 | 		/* Reorder to so a future search skips recent pages */ | 
 | 		move_freelist_head(freelist, freepage); | 
 |  | 
 | 		/* Isolate the page if available */ | 
 | 		if (page) { | 
 | 			if (__isolate_free_page(page, order)) { | 
 | 				set_page_private(page, order); | 
 | 				nr_isolated = 1 << order; | 
 | 				nr_scanned += nr_isolated - 1; | 
 | 				cc->nr_freepages += nr_isolated; | 
 | 				list_add_tail(&page->lru, &cc->freepages); | 
 | 				count_compact_events(COMPACTISOLATED, nr_isolated); | 
 | 			} else { | 
 | 				/* If isolation fails, abort the search */ | 
 | 				order = cc->search_order + 1; | 
 | 				page = NULL; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		spin_unlock_irqrestore(&cc->zone->lock, flags); | 
 |  | 
 | 		/* | 
 | 		 * Smaller scan on next order so the total scan is related | 
 | 		 * to freelist_scan_limit. | 
 | 		 */ | 
 | 		if (order_scanned >= limit) | 
 | 			limit = max(1U, limit >> 1); | 
 | 	} | 
 |  | 
 | 	if (!page) { | 
 | 		cc->fast_search_fail++; | 
 | 		if (scan_start) { | 
 | 			/* | 
 | 			 * Use the highest PFN found above min. If one was | 
 | 			 * not found, be pessimistic for direct compaction | 
 | 			 * and use the min mark. | 
 | 			 */ | 
 | 			if (highest >= min_pfn) { | 
 | 				page = pfn_to_page(highest); | 
 | 				cc->free_pfn = highest; | 
 | 			} else { | 
 | 				if (cc->direct_compaction && pfn_valid(min_pfn)) { | 
 | 					page = pageblock_pfn_to_page(min_pfn, | 
 | 						min(pageblock_end_pfn(min_pfn), | 
 | 						    zone_end_pfn(cc->zone)), | 
 | 						cc->zone); | 
 | 					cc->free_pfn = min_pfn; | 
 | 				} | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (highest && highest >= cc->zone->compact_cached_free_pfn) { | 
 | 		highest -= pageblock_nr_pages; | 
 | 		cc->zone->compact_cached_free_pfn = highest; | 
 | 	} | 
 |  | 
 | 	cc->total_free_scanned += nr_scanned; | 
 | 	if (!page) | 
 | 		return cc->free_pfn; | 
 |  | 
 | 	low_pfn = page_to_pfn(page); | 
 | 	fast_isolate_around(cc, low_pfn, nr_isolated); | 
 | 	return low_pfn; | 
 | } | 
 |  | 
 | /* | 
 |  * Based on information in the current compact_control, find blocks | 
 |  * suitable for isolating free pages from and then isolate them. | 
 |  */ | 
 | static void isolate_freepages(struct compact_control *cc) | 
 | { | 
 | 	struct zone *zone = cc->zone; | 
 | 	struct page *page; | 
 | 	unsigned long block_start_pfn;	/* start of current pageblock */ | 
 | 	unsigned long isolate_start_pfn; /* exact pfn we start at */ | 
 | 	unsigned long block_end_pfn;	/* end of current pageblock */ | 
 | 	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */ | 
 | 	struct list_head *freelist = &cc->freepages; | 
 | 	unsigned int stride; | 
 |  | 
 | 	/* Try a small search of the free lists for a candidate */ | 
 | 	fast_isolate_freepages(cc); | 
 | 	if (cc->nr_freepages) | 
 | 		goto splitmap; | 
 |  | 
 | 	/* | 
 | 	 * Initialise the free scanner. The starting point is where we last | 
 | 	 * successfully isolated from, zone-cached value, or the end of the | 
 | 	 * zone when isolating for the first time. For looping we also need | 
 | 	 * this pfn aligned down to the pageblock boundary, because we do | 
 | 	 * block_start_pfn -= pageblock_nr_pages in the for loop. | 
 | 	 * For ending point, take care when isolating in last pageblock of a | 
 | 	 * zone which ends in the middle of a pageblock. | 
 | 	 * The low boundary is the end of the pageblock the migration scanner | 
 | 	 * is using. | 
 | 	 */ | 
 | 	isolate_start_pfn = cc->free_pfn; | 
 | 	block_start_pfn = pageblock_start_pfn(isolate_start_pfn); | 
 | 	block_end_pfn = min(block_start_pfn + pageblock_nr_pages, | 
 | 						zone_end_pfn(zone)); | 
 | 	low_pfn = pageblock_end_pfn(cc->migrate_pfn); | 
 | 	stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1; | 
 |  | 
 | 	/* | 
 | 	 * Isolate free pages until enough are available to migrate the | 
 | 	 * pages on cc->migratepages. We stop searching if the migrate | 
 | 	 * and free page scanners meet or enough free pages are isolated. | 
 | 	 */ | 
 | 	for (; block_start_pfn >= low_pfn; | 
 | 				block_end_pfn = block_start_pfn, | 
 | 				block_start_pfn -= pageblock_nr_pages, | 
 | 				isolate_start_pfn = block_start_pfn) { | 
 | 		unsigned long nr_isolated; | 
 |  | 
 | 		/* | 
 | 		 * This can iterate a massively long zone without finding any | 
 | 		 * suitable migration targets, so periodically check resched. | 
 | 		 */ | 
 | 		if (!(block_start_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages))) | 
 | 			cond_resched(); | 
 |  | 
 | 		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn, | 
 | 									zone); | 
 | 		if (!page) | 
 | 			continue; | 
 |  | 
 | 		/* Check the block is suitable for migration */ | 
 | 		if (!suitable_migration_target(cc, page)) | 
 | 			continue; | 
 |  | 
 | 		/* If isolation recently failed, do not retry */ | 
 | 		if (!isolation_suitable(cc, page)) | 
 | 			continue; | 
 |  | 
 | 		/* Found a block suitable for isolating free pages from. */ | 
 | 		nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn, | 
 | 					block_end_pfn, freelist, stride, false); | 
 |  | 
 | 		/* Update the skip hint if the full pageblock was scanned */ | 
 | 		if (isolate_start_pfn == block_end_pfn) | 
 | 			update_pageblock_skip(cc, page, block_start_pfn); | 
 |  | 
 | 		/* Are enough freepages isolated? */ | 
 | 		if (cc->nr_freepages >= cc->nr_migratepages) { | 
 | 			if (isolate_start_pfn >= block_end_pfn) { | 
 | 				/* | 
 | 				 * Restart at previous pageblock if more | 
 | 				 * freepages can be isolated next time. | 
 | 				 */ | 
 | 				isolate_start_pfn = | 
 | 					block_start_pfn - pageblock_nr_pages; | 
 | 			} | 
 | 			break; | 
 | 		} else if (isolate_start_pfn < block_end_pfn) { | 
 | 			/* | 
 | 			 * If isolation failed early, do not continue | 
 | 			 * needlessly. | 
 | 			 */ | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		/* Adjust stride depending on isolation */ | 
 | 		if (nr_isolated) { | 
 | 			stride = 1; | 
 | 			continue; | 
 | 		} | 
 | 		stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Record where the free scanner will restart next time. Either we | 
 | 	 * broke from the loop and set isolate_start_pfn based on the last | 
 | 	 * call to isolate_freepages_block(), or we met the migration scanner | 
 | 	 * and the loop terminated due to isolate_start_pfn < low_pfn | 
 | 	 */ | 
 | 	cc->free_pfn = isolate_start_pfn; | 
 |  | 
 | splitmap: | 
 | 	/* __isolate_free_page() does not map the pages */ | 
 | 	split_map_pages(freelist); | 
 | } | 
 |  | 
 | /* | 
 |  * This is a migrate-callback that "allocates" freepages by taking pages | 
 |  * from the isolated freelists in the block we are migrating to. | 
 |  */ | 
 | static struct page *compaction_alloc(struct page *migratepage, | 
 | 					unsigned long data) | 
 | { | 
 | 	struct compact_control *cc = (struct compact_control *)data; | 
 | 	struct page *freepage; | 
 |  | 
 | 	if (list_empty(&cc->freepages)) { | 
 | 		isolate_freepages(cc); | 
 |  | 
 | 		if (list_empty(&cc->freepages)) | 
 | 			return NULL; | 
 | 	} | 
 |  | 
 | 	freepage = list_entry(cc->freepages.next, struct page, lru); | 
 | 	list_del(&freepage->lru); | 
 | 	cc->nr_freepages--; | 
 |  | 
 | 	return freepage; | 
 | } | 
 |  | 
 | /* | 
 |  * This is a migrate-callback that "frees" freepages back to the isolated | 
 |  * freelist.  All pages on the freelist are from the same zone, so there is no | 
 |  * special handling needed for NUMA. | 
 |  */ | 
 | static void compaction_free(struct page *page, unsigned long data) | 
 | { | 
 | 	struct compact_control *cc = (struct compact_control *)data; | 
 |  | 
 | 	list_add(&page->lru, &cc->freepages); | 
 | 	cc->nr_freepages++; | 
 | } | 
 |  | 
 | /* possible outcome of isolate_migratepages */ | 
 | typedef enum { | 
 | 	ISOLATE_ABORT,		/* Abort compaction now */ | 
 | 	ISOLATE_NONE,		/* No pages isolated, continue scanning */ | 
 | 	ISOLATE_SUCCESS,	/* Pages isolated, migrate */ | 
 | } isolate_migrate_t; | 
 |  | 
 | /* | 
 |  * Allow userspace to control policy on scanning the unevictable LRU for | 
 |  * compactable pages. | 
 |  */ | 
 | int sysctl_compact_unevictable_allowed __read_mostly = CONFIG_COMPACT_UNEVICTABLE_DEFAULT; | 
 |  | 
 | static inline void | 
 | update_fast_start_pfn(struct compact_control *cc, unsigned long pfn) | 
 | { | 
 | 	if (cc->fast_start_pfn == ULONG_MAX) | 
 | 		return; | 
 |  | 
 | 	if (!cc->fast_start_pfn) | 
 | 		cc->fast_start_pfn = pfn; | 
 |  | 
 | 	cc->fast_start_pfn = min(cc->fast_start_pfn, pfn); | 
 | } | 
 |  | 
 | static inline unsigned long | 
 | reinit_migrate_pfn(struct compact_control *cc) | 
 | { | 
 | 	if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX) | 
 | 		return cc->migrate_pfn; | 
 |  | 
 | 	cc->migrate_pfn = cc->fast_start_pfn; | 
 | 	cc->fast_start_pfn = ULONG_MAX; | 
 |  | 
 | 	return cc->migrate_pfn; | 
 | } | 
 |  | 
 | /* | 
 |  * Briefly search the free lists for a migration source that already has | 
 |  * some free pages to reduce the number of pages that need migration | 
 |  * before a pageblock is free. | 
 |  */ | 
 | static unsigned long fast_find_migrateblock(struct compact_control *cc) | 
 | { | 
 | 	unsigned int limit = freelist_scan_limit(cc); | 
 | 	unsigned int nr_scanned = 0; | 
 | 	unsigned long distance; | 
 | 	unsigned long pfn = cc->migrate_pfn; | 
 | 	unsigned long high_pfn; | 
 | 	int order; | 
 | 	bool found_block = false; | 
 |  | 
 | 	/* Skip hints are relied on to avoid repeats on the fast search */ | 
 | 	if (cc->ignore_skip_hint) | 
 | 		return pfn; | 
 |  | 
 | 	/* | 
 | 	 * If the migrate_pfn is not at the start of a zone or the start | 
 | 	 * of a pageblock then assume this is a continuation of a previous | 
 | 	 * scan restarted due to COMPACT_CLUSTER_MAX. | 
 | 	 */ | 
 | 	if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn)) | 
 | 		return pfn; | 
 |  | 
 | 	/* | 
 | 	 * For smaller orders, just linearly scan as the number of pages | 
 | 	 * to migrate should be relatively small and does not necessarily | 
 | 	 * justify freeing up a large block for a small allocation. | 
 | 	 */ | 
 | 	if (cc->order <= PAGE_ALLOC_COSTLY_ORDER) | 
 | 		return pfn; | 
 |  | 
 | 	/* | 
 | 	 * Only allow kcompactd and direct requests for movable pages to | 
 | 	 * quickly clear out a MOVABLE pageblock for allocation. This | 
 | 	 * reduces the risk that a large movable pageblock is freed for | 
 | 	 * an unmovable/reclaimable small allocation. | 
 | 	 */ | 
 | 	if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE) | 
 | 		return pfn; | 
 |  | 
 | 	/* | 
 | 	 * When starting the migration scanner, pick any pageblock within the | 
 | 	 * first half of the search space. Otherwise try and pick a pageblock | 
 | 	 * within the first eighth to reduce the chances that a migration | 
 | 	 * target later becomes a source. | 
 | 	 */ | 
 | 	distance = (cc->free_pfn - cc->migrate_pfn) >> 1; | 
 | 	if (cc->migrate_pfn != cc->zone->zone_start_pfn) | 
 | 		distance >>= 2; | 
 | 	high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance); | 
 |  | 
 | 	for (order = cc->order - 1; | 
 | 	     order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit; | 
 | 	     order--) { | 
 | 		struct free_area *area = &cc->zone->free_area[order]; | 
 | 		struct list_head *freelist; | 
 | 		unsigned long flags; | 
 | 		struct page *freepage; | 
 |  | 
 | 		if (!area->nr_free) | 
 | 			continue; | 
 |  | 
 | 		spin_lock_irqsave(&cc->zone->lock, flags); | 
 | 		freelist = &area->free_list[MIGRATE_MOVABLE]; | 
 | 		list_for_each_entry(freepage, freelist, lru) { | 
 | 			unsigned long free_pfn; | 
 |  | 
 | 			if (nr_scanned++ >= limit) { | 
 | 				move_freelist_tail(freelist, freepage); | 
 | 				break; | 
 | 			} | 
 |  | 
 | 			free_pfn = page_to_pfn(freepage); | 
 | 			if (free_pfn < high_pfn) { | 
 | 				/* | 
 | 				 * Avoid if skipped recently. Ideally it would | 
 | 				 * move to the tail but even safe iteration of | 
 | 				 * the list assumes an entry is deleted, not | 
 | 				 * reordered. | 
 | 				 */ | 
 | 				if (get_pageblock_skip(freepage)) | 
 | 					continue; | 
 |  | 
 | 				/* Reorder to so a future search skips recent pages */ | 
 | 				move_freelist_tail(freelist, freepage); | 
 |  | 
 | 				update_fast_start_pfn(cc, free_pfn); | 
 | 				pfn = pageblock_start_pfn(free_pfn); | 
 | 				if (pfn < cc->zone->zone_start_pfn) | 
 | 					pfn = cc->zone->zone_start_pfn; | 
 | 				cc->fast_search_fail = 0; | 
 | 				found_block = true; | 
 | 				break; | 
 | 			} | 
 | 		} | 
 | 		spin_unlock_irqrestore(&cc->zone->lock, flags); | 
 | 	} | 
 |  | 
 | 	cc->total_migrate_scanned += nr_scanned; | 
 |  | 
 | 	/* | 
 | 	 * If fast scanning failed then use a cached entry for a page block | 
 | 	 * that had free pages as the basis for starting a linear scan. | 
 | 	 */ | 
 | 	if (!found_block) { | 
 | 		cc->fast_search_fail++; | 
 | 		pfn = reinit_migrate_pfn(cc); | 
 | 	} | 
 | 	return pfn; | 
 | } | 
 |  | 
 | /* | 
 |  * Isolate all pages that can be migrated from the first suitable block, | 
 |  * starting at the block pointed to by the migrate scanner pfn within | 
 |  * compact_control. | 
 |  */ | 
 | static isolate_migrate_t isolate_migratepages(struct compact_control *cc) | 
 | { | 
 | 	unsigned long block_start_pfn; | 
 | 	unsigned long block_end_pfn; | 
 | 	unsigned long low_pfn; | 
 | 	struct page *page; | 
 | 	const isolate_mode_t isolate_mode = | 
 | 		(sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) | | 
 | 		(cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0); | 
 | 	bool fast_find_block; | 
 |  | 
 | 	/* | 
 | 	 * Start at where we last stopped, or beginning of the zone as | 
 | 	 * initialized by compact_zone(). The first failure will use | 
 | 	 * the lowest PFN as the starting point for linear scanning. | 
 | 	 */ | 
 | 	low_pfn = fast_find_migrateblock(cc); | 
 | 	block_start_pfn = pageblock_start_pfn(low_pfn); | 
 | 	if (block_start_pfn < cc->zone->zone_start_pfn) | 
 | 		block_start_pfn = cc->zone->zone_start_pfn; | 
 |  | 
 | 	/* | 
 | 	 * fast_find_migrateblock marks a pageblock skipped so to avoid | 
 | 	 * the isolation_suitable check below, check whether the fast | 
 | 	 * search was successful. | 
 | 	 */ | 
 | 	fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail; | 
 |  | 
 | 	/* Only scan within a pageblock boundary */ | 
 | 	block_end_pfn = pageblock_end_pfn(low_pfn); | 
 |  | 
 | 	/* | 
 | 	 * Iterate over whole pageblocks until we find the first suitable. | 
 | 	 * Do not cross the free scanner. | 
 | 	 */ | 
 | 	for (; block_end_pfn <= cc->free_pfn; | 
 | 			fast_find_block = false, | 
 | 			cc->migrate_pfn = low_pfn = block_end_pfn, | 
 | 			block_start_pfn = block_end_pfn, | 
 | 			block_end_pfn += pageblock_nr_pages) { | 
 |  | 
 | 		/* | 
 | 		 * This can potentially iterate a massively long zone with | 
 | 		 * many pageblocks unsuitable, so periodically check if we | 
 | 		 * need to schedule. | 
 | 		 */ | 
 | 		if (!(low_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages))) | 
 | 			cond_resched(); | 
 |  | 
 | 		page = pageblock_pfn_to_page(block_start_pfn, | 
 | 						block_end_pfn, cc->zone); | 
 | 		if (!page) | 
 | 			continue; | 
 |  | 
 | 		/* | 
 | 		 * If isolation recently failed, do not retry. Only check the | 
 | 		 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock | 
 | 		 * to be visited multiple times. Assume skip was checked | 
 | 		 * before making it "skip" so other compaction instances do | 
 | 		 * not scan the same block. | 
 | 		 */ | 
 | 		if (pageblock_aligned(low_pfn) && | 
 | 		    !fast_find_block && !isolation_suitable(cc, page)) | 
 | 			continue; | 
 |  | 
 | 		/* | 
 | 		 * For async direct compaction, only scan the pageblocks of the | 
 | 		 * same migratetype without huge pages. Async direct compaction | 
 | 		 * is optimistic to see if the minimum amount of work satisfies | 
 | 		 * the allocation. The cached PFN is updated as it's possible | 
 | 		 * that all remaining blocks between source and target are | 
 | 		 * unsuitable and the compaction scanners fail to meet. | 
 | 		 */ | 
 | 		if (!suitable_migration_source(cc, page)) { | 
 | 			update_cached_migrate(cc, block_end_pfn); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* Perform the isolation */ | 
 | 		if (isolate_migratepages_block(cc, low_pfn, block_end_pfn, | 
 | 						isolate_mode)) | 
 | 			return ISOLATE_ABORT; | 
 |  | 
 | 		/* | 
 | 		 * Either we isolated something and proceed with migration. Or | 
 | 		 * we failed and compact_zone should decide if we should | 
 | 		 * continue or not. | 
 | 		 */ | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE; | 
 | } | 
 |  | 
 | /* | 
 |  * order == -1 is expected when compacting via | 
 |  * /proc/sys/vm/compact_memory | 
 |  */ | 
 | static inline bool is_via_compact_memory(int order) | 
 | { | 
 | 	return order == -1; | 
 | } | 
 |  | 
 | /* | 
 |  * Determine whether kswapd is (or recently was!) running on this node. | 
 |  * | 
 |  * pgdat_kswapd_lock() pins pgdat->kswapd, so a concurrent kswapd_stop() can't | 
 |  * zero it. | 
 |  */ | 
 | static bool kswapd_is_running(pg_data_t *pgdat) | 
 | { | 
 | 	bool running; | 
 |  | 
 | 	pgdat_kswapd_lock(pgdat); | 
 | 	running = pgdat->kswapd && task_is_running(pgdat->kswapd); | 
 | 	pgdat_kswapd_unlock(pgdat); | 
 |  | 
 | 	return running; | 
 | } | 
 |  | 
 | /* | 
 |  * A zone's fragmentation score is the external fragmentation wrt to the | 
 |  * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100]. | 
 |  */ | 
 | static unsigned int fragmentation_score_zone(struct zone *zone) | 
 | { | 
 | 	return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER); | 
 | } | 
 |  | 
 | /* | 
 |  * A weighted zone's fragmentation score is the external fragmentation | 
 |  * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It | 
 |  * returns a value in the range [0, 100]. | 
 |  * | 
 |  * The scaling factor ensures that proactive compaction focuses on larger | 
 |  * zones like ZONE_NORMAL, rather than smaller, specialized zones like | 
 |  * ZONE_DMA32. For smaller zones, the score value remains close to zero, | 
 |  * and thus never exceeds the high threshold for proactive compaction. | 
 |  */ | 
 | static unsigned int fragmentation_score_zone_weighted(struct zone *zone) | 
 | { | 
 | 	unsigned long score; | 
 |  | 
 | 	score = zone->present_pages * fragmentation_score_zone(zone); | 
 | 	return div64_ul(score, zone->zone_pgdat->node_present_pages + 1); | 
 | } | 
 |  | 
 | /* | 
 |  * The per-node proactive (background) compaction process is started by its | 
 |  * corresponding kcompactd thread when the node's fragmentation score | 
 |  * exceeds the high threshold. The compaction process remains active till | 
 |  * the node's score falls below the low threshold, or one of the back-off | 
 |  * conditions is met. | 
 |  */ | 
 | static unsigned int fragmentation_score_node(pg_data_t *pgdat) | 
 | { | 
 | 	unsigned int score = 0; | 
 | 	int zoneid; | 
 |  | 
 | 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { | 
 | 		struct zone *zone; | 
 |  | 
 | 		zone = &pgdat->node_zones[zoneid]; | 
 | 		score += fragmentation_score_zone_weighted(zone); | 
 | 	} | 
 |  | 
 | 	return score; | 
 | } | 
 |  | 
 | static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low) | 
 | { | 
 | 	unsigned int wmark_low; | 
 |  | 
 | 	/* | 
 | 	 * Cap the low watermark to avoid excessive compaction | 
 | 	 * activity in case a user sets the proactiveness tunable | 
 | 	 * close to 100 (maximum). | 
 | 	 */ | 
 | 	wmark_low = max(100U - sysctl_compaction_proactiveness, 5U); | 
 | 	return low ? wmark_low : min(wmark_low + 10, 100U); | 
 | } | 
 |  | 
 | static bool should_proactive_compact_node(pg_data_t *pgdat) | 
 | { | 
 | 	int wmark_high; | 
 |  | 
 | 	if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat)) | 
 | 		return false; | 
 |  | 
 | 	wmark_high = fragmentation_score_wmark(pgdat, false); | 
 | 	return fragmentation_score_node(pgdat) > wmark_high; | 
 | } | 
 |  | 
 | static enum compact_result __compact_finished(struct compact_control *cc) | 
 | { | 
 | 	unsigned int order; | 
 | 	const int migratetype = cc->migratetype; | 
 | 	int ret; | 
 |  | 
 | 	/* Compaction run completes if the migrate and free scanner meet */ | 
 | 	if (compact_scanners_met(cc)) { | 
 | 		/* Let the next compaction start anew. */ | 
 | 		reset_cached_positions(cc->zone); | 
 |  | 
 | 		/* | 
 | 		 * Mark that the PG_migrate_skip information should be cleared | 
 | 		 * by kswapd when it goes to sleep. kcompactd does not set the | 
 | 		 * flag itself as the decision to be clear should be directly | 
 | 		 * based on an allocation request. | 
 | 		 */ | 
 | 		if (cc->direct_compaction) | 
 | 			cc->zone->compact_blockskip_flush = true; | 
 |  | 
 | 		if (cc->whole_zone) | 
 | 			return COMPACT_COMPLETE; | 
 | 		else | 
 | 			return COMPACT_PARTIAL_SKIPPED; | 
 | 	} | 
 |  | 
 | 	if (cc->proactive_compaction) { | 
 | 		int score, wmark_low; | 
 | 		pg_data_t *pgdat; | 
 |  | 
 | 		pgdat = cc->zone->zone_pgdat; | 
 | 		if (kswapd_is_running(pgdat)) | 
 | 			return COMPACT_PARTIAL_SKIPPED; | 
 |  | 
 | 		score = fragmentation_score_zone(cc->zone); | 
 | 		wmark_low = fragmentation_score_wmark(pgdat, true); | 
 |  | 
 | 		if (score > wmark_low) | 
 | 			ret = COMPACT_CONTINUE; | 
 | 		else | 
 | 			ret = COMPACT_SUCCESS; | 
 |  | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (is_via_compact_memory(cc->order)) | 
 | 		return COMPACT_CONTINUE; | 
 |  | 
 | 	/* | 
 | 	 * Always finish scanning a pageblock to reduce the possibility of | 
 | 	 * fallbacks in the future. This is particularly important when | 
 | 	 * migration source is unmovable/reclaimable but it's not worth | 
 | 	 * special casing. | 
 | 	 */ | 
 | 	if (!pageblock_aligned(cc->migrate_pfn)) | 
 | 		return COMPACT_CONTINUE; | 
 |  | 
 | 	/* Direct compactor: Is a suitable page free? */ | 
 | 	ret = COMPACT_NO_SUITABLE_PAGE; | 
 | 	for (order = cc->order; order < MAX_ORDER; order++) { | 
 | 		struct free_area *area = &cc->zone->free_area[order]; | 
 | 		bool can_steal; | 
 |  | 
 | 		/* Job done if page is free of the right migratetype */ | 
 | 		if (!free_area_empty(area, migratetype)) | 
 | 			return COMPACT_SUCCESS; | 
 |  | 
 | #ifdef CONFIG_CMA | 
 | 		/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */ | 
 | 		if (migratetype == MIGRATE_MOVABLE && | 
 | 			!free_area_empty(area, MIGRATE_CMA)) | 
 | 			return COMPACT_SUCCESS; | 
 | #endif | 
 | 		/* | 
 | 		 * Job done if allocation would steal freepages from | 
 | 		 * other migratetype buddy lists. | 
 | 		 */ | 
 | 		if (find_suitable_fallback(area, order, migratetype, | 
 | 						true, &can_steal) != -1) | 
 | 			/* | 
 | 			 * Movable pages are OK in any pageblock. If we are | 
 | 			 * stealing for a non-movable allocation, make sure | 
 | 			 * we finish compacting the current pageblock first | 
 | 			 * (which is assured by the above migrate_pfn align | 
 | 			 * check) so it is as free as possible and we won't | 
 | 			 * have to steal another one soon. | 
 | 			 */ | 
 | 			return COMPACT_SUCCESS; | 
 | 	} | 
 |  | 
 | out: | 
 | 	if (cc->contended || fatal_signal_pending(current)) | 
 | 		ret = COMPACT_CONTENDED; | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static enum compact_result compact_finished(struct compact_control *cc) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	ret = __compact_finished(cc); | 
 | 	trace_mm_compaction_finished(cc->zone, cc->order, ret); | 
 | 	if (ret == COMPACT_NO_SUITABLE_PAGE) | 
 | 		ret = COMPACT_CONTINUE; | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static enum compact_result __compaction_suitable(struct zone *zone, int order, | 
 | 					unsigned int alloc_flags, | 
 | 					int highest_zoneidx, | 
 | 					unsigned long wmark_target) | 
 | { | 
 | 	unsigned long watermark; | 
 |  | 
 | 	if (is_via_compact_memory(order)) | 
 | 		return COMPACT_CONTINUE; | 
 |  | 
 | 	watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); | 
 | 	/* | 
 | 	 * If watermarks for high-order allocation are already met, there | 
 | 	 * should be no need for compaction at all. | 
 | 	 */ | 
 | 	if (zone_watermark_ok(zone, order, watermark, highest_zoneidx, | 
 | 								alloc_flags)) | 
 | 		return COMPACT_SUCCESS; | 
 |  | 
 | 	/* | 
 | 	 * Watermarks for order-0 must be met for compaction to be able to | 
 | 	 * isolate free pages for migration targets. This means that the | 
 | 	 * watermark and alloc_flags have to match, or be more pessimistic than | 
 | 	 * the check in __isolate_free_page(). We don't use the direct | 
 | 	 * compactor's alloc_flags, as they are not relevant for freepage | 
 | 	 * isolation. We however do use the direct compactor's highest_zoneidx | 
 | 	 * to skip over zones where lowmem reserves would prevent allocation | 
 | 	 * even if compaction succeeds. | 
 | 	 * For costly orders, we require low watermark instead of min for | 
 | 	 * compaction to proceed to increase its chances. | 
 | 	 * ALLOC_CMA is used, as pages in CMA pageblocks are considered | 
 | 	 * suitable migration targets | 
 | 	 */ | 
 | 	watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ? | 
 | 				low_wmark_pages(zone) : min_wmark_pages(zone); | 
 | 	watermark += compact_gap(order); | 
 | 	if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx, | 
 | 						ALLOC_CMA, wmark_target)) | 
 | 		return COMPACT_SKIPPED; | 
 |  | 
 | 	return COMPACT_CONTINUE; | 
 | } | 
 |  | 
 | /* | 
 |  * compaction_suitable: Is this suitable to run compaction on this zone now? | 
 |  * Returns | 
 |  *   COMPACT_SKIPPED  - If there are too few free pages for compaction | 
 |  *   COMPACT_SUCCESS  - If the allocation would succeed without compaction | 
 |  *   COMPACT_CONTINUE - If compaction should run now | 
 |  */ | 
 | enum compact_result compaction_suitable(struct zone *zone, int order, | 
 | 					unsigned int alloc_flags, | 
 | 					int highest_zoneidx) | 
 | { | 
 | 	enum compact_result ret; | 
 | 	int fragindex; | 
 |  | 
 | 	ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx, | 
 | 				    zone_page_state(zone, NR_FREE_PAGES)); | 
 | 	/* | 
 | 	 * fragmentation index determines if allocation failures are due to | 
 | 	 * low memory or external fragmentation | 
 | 	 * | 
 | 	 * index of -1000 would imply allocations might succeed depending on | 
 | 	 * watermarks, but we already failed the high-order watermark check | 
 | 	 * index towards 0 implies failure is due to lack of memory | 
 | 	 * index towards 1000 implies failure is due to fragmentation | 
 | 	 * | 
 | 	 * Only compact if a failure would be due to fragmentation. Also | 
 | 	 * ignore fragindex for non-costly orders where the alternative to | 
 | 	 * a successful reclaim/compaction is OOM. Fragindex and the | 
 | 	 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent | 
 | 	 * excessive compaction for costly orders, but it should not be at the | 
 | 	 * expense of system stability. | 
 | 	 */ | 
 | 	if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) { | 
 | 		fragindex = fragmentation_index(zone, order); | 
 | 		if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold) | 
 | 			ret = COMPACT_NOT_SUITABLE_ZONE; | 
 | 	} | 
 |  | 
 | 	trace_mm_compaction_suitable(zone, order, ret); | 
 | 	if (ret == COMPACT_NOT_SUITABLE_ZONE) | 
 | 		ret = COMPACT_SKIPPED; | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | bool compaction_zonelist_suitable(struct alloc_context *ac, int order, | 
 | 		int alloc_flags) | 
 | { | 
 | 	struct zone *zone; | 
 | 	struct zoneref *z; | 
 |  | 
 | 	/* | 
 | 	 * Make sure at least one zone would pass __compaction_suitable if we continue | 
 | 	 * retrying the reclaim. | 
 | 	 */ | 
 | 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, | 
 | 				ac->highest_zoneidx, ac->nodemask) { | 
 | 		unsigned long available; | 
 | 		enum compact_result compact_result; | 
 |  | 
 | 		/* | 
 | 		 * Do not consider all the reclaimable memory because we do not | 
 | 		 * want to trash just for a single high order allocation which | 
 | 		 * is even not guaranteed to appear even if __compaction_suitable | 
 | 		 * is happy about the watermark check. | 
 | 		 */ | 
 | 		available = zone_reclaimable_pages(zone) / order; | 
 | 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES); | 
 | 		compact_result = __compaction_suitable(zone, order, alloc_flags, | 
 | 				ac->highest_zoneidx, available); | 
 | 		if (compact_result == COMPACT_CONTINUE) | 
 | 			return true; | 
 | 	} | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | static enum compact_result | 
 | compact_zone(struct compact_control *cc, struct capture_control *capc) | 
 | { | 
 | 	enum compact_result ret; | 
 | 	unsigned long start_pfn = cc->zone->zone_start_pfn; | 
 | 	unsigned long end_pfn = zone_end_pfn(cc->zone); | 
 | 	unsigned long last_migrated_pfn; | 
 | 	const bool sync = cc->mode != MIGRATE_ASYNC; | 
 | 	bool update_cached; | 
 | 	unsigned int nr_succeeded = 0; | 
 |  | 
 | 	/* | 
 | 	 * These counters track activities during zone compaction.  Initialize | 
 | 	 * them before compacting a new zone. | 
 | 	 */ | 
 | 	cc->total_migrate_scanned = 0; | 
 | 	cc->total_free_scanned = 0; | 
 | 	cc->nr_migratepages = 0; | 
 | 	cc->nr_freepages = 0; | 
 | 	INIT_LIST_HEAD(&cc->freepages); | 
 | 	INIT_LIST_HEAD(&cc->migratepages); | 
 |  | 
 | 	cc->migratetype = gfp_migratetype(cc->gfp_mask); | 
 | 	ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags, | 
 | 							cc->highest_zoneidx); | 
 | 	/* Compaction is likely to fail */ | 
 | 	if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED) | 
 | 		return ret; | 
 |  | 
 | 	/* huh, compaction_suitable is returning something unexpected */ | 
 | 	VM_BUG_ON(ret != COMPACT_CONTINUE); | 
 |  | 
 | 	/* | 
 | 	 * Clear pageblock skip if there were failures recently and compaction | 
 | 	 * is about to be retried after being deferred. | 
 | 	 */ | 
 | 	if (compaction_restarting(cc->zone, cc->order)) | 
 | 		__reset_isolation_suitable(cc->zone); | 
 |  | 
 | 	/* | 
 | 	 * Setup to move all movable pages to the end of the zone. Used cached | 
 | 	 * information on where the scanners should start (unless we explicitly | 
 | 	 * want to compact the whole zone), but check that it is initialised | 
 | 	 * by ensuring the values are within zone boundaries. | 
 | 	 */ | 
 | 	cc->fast_start_pfn = 0; | 
 | 	if (cc->whole_zone) { | 
 | 		cc->migrate_pfn = start_pfn; | 
 | 		cc->free_pfn = pageblock_start_pfn(end_pfn - 1); | 
 | 	} else { | 
 | 		cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync]; | 
 | 		cc->free_pfn = cc->zone->compact_cached_free_pfn; | 
 | 		if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) { | 
 | 			cc->free_pfn = pageblock_start_pfn(end_pfn - 1); | 
 | 			cc->zone->compact_cached_free_pfn = cc->free_pfn; | 
 | 		} | 
 | 		if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) { | 
 | 			cc->migrate_pfn = start_pfn; | 
 | 			cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn; | 
 | 			cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn; | 
 | 		} | 
 |  | 
 | 		if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn) | 
 | 			cc->whole_zone = true; | 
 | 	} | 
 |  | 
 | 	last_migrated_pfn = 0; | 
 |  | 
 | 	/* | 
 | 	 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on | 
 | 	 * the basis that some migrations will fail in ASYNC mode. However, | 
 | 	 * if the cached PFNs match and pageblocks are skipped due to having | 
 | 	 * no isolation candidates, then the sync state does not matter. | 
 | 	 * Until a pageblock with isolation candidates is found, keep the | 
 | 	 * cached PFNs in sync to avoid revisiting the same blocks. | 
 | 	 */ | 
 | 	update_cached = !sync && | 
 | 		cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1]; | 
 |  | 
 | 	trace_mm_compaction_begin(cc, start_pfn, end_pfn, sync); | 
 |  | 
 | 	/* lru_add_drain_all could be expensive with involving other CPUs */ | 
 | 	lru_add_drain(); | 
 |  | 
 | 	while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) { | 
 | 		int err; | 
 | 		unsigned long iteration_start_pfn = cc->migrate_pfn; | 
 |  | 
 | 		/* | 
 | 		 * Avoid multiple rescans which can happen if a page cannot be | 
 | 		 * isolated (dirty/writeback in async mode) or if the migrated | 
 | 		 * pages are being allocated before the pageblock is cleared. | 
 | 		 * The first rescan will capture the entire pageblock for | 
 | 		 * migration. If it fails, it'll be marked skip and scanning | 
 | 		 * will proceed as normal. | 
 | 		 */ | 
 | 		cc->rescan = false; | 
 | 		if (pageblock_start_pfn(last_migrated_pfn) == | 
 | 		    pageblock_start_pfn(iteration_start_pfn)) { | 
 | 			cc->rescan = true; | 
 | 		} | 
 |  | 
 | 		switch (isolate_migratepages(cc)) { | 
 | 		case ISOLATE_ABORT: | 
 | 			ret = COMPACT_CONTENDED; | 
 | 			putback_movable_pages(&cc->migratepages); | 
 | 			cc->nr_migratepages = 0; | 
 | 			goto out; | 
 | 		case ISOLATE_NONE: | 
 | 			if (update_cached) { | 
 | 				cc->zone->compact_cached_migrate_pfn[1] = | 
 | 					cc->zone->compact_cached_migrate_pfn[0]; | 
 | 			} | 
 |  | 
 | 			/* | 
 | 			 * We haven't isolated and migrated anything, but | 
 | 			 * there might still be unflushed migrations from | 
 | 			 * previous cc->order aligned block. | 
 | 			 */ | 
 | 			goto check_drain; | 
 | 		case ISOLATE_SUCCESS: | 
 | 			update_cached = false; | 
 | 			last_migrated_pfn = iteration_start_pfn; | 
 | 		} | 
 |  | 
 | 		err = migrate_pages(&cc->migratepages, compaction_alloc, | 
 | 				compaction_free, (unsigned long)cc, cc->mode, | 
 | 				MR_COMPACTION, &nr_succeeded); | 
 |  | 
 | 		trace_mm_compaction_migratepages(cc, nr_succeeded); | 
 |  | 
 | 		/* All pages were either migrated or will be released */ | 
 | 		cc->nr_migratepages = 0; | 
 | 		if (err) { | 
 | 			putback_movable_pages(&cc->migratepages); | 
 | 			/* | 
 | 			 * migrate_pages() may return -ENOMEM when scanners meet | 
 | 			 * and we want compact_finished() to detect it | 
 | 			 */ | 
 | 			if (err == -ENOMEM && !compact_scanners_met(cc)) { | 
 | 				ret = COMPACT_CONTENDED; | 
 | 				goto out; | 
 | 			} | 
 | 			/* | 
 | 			 * We failed to migrate at least one page in the current | 
 | 			 * order-aligned block, so skip the rest of it. | 
 | 			 */ | 
 | 			if (cc->direct_compaction && | 
 | 						(cc->mode == MIGRATE_ASYNC)) { | 
 | 				cc->migrate_pfn = block_end_pfn( | 
 | 						cc->migrate_pfn - 1, cc->order); | 
 | 				/* Draining pcplists is useless in this case */ | 
 | 				last_migrated_pfn = 0; | 
 | 			} | 
 | 		} | 
 |  | 
 | check_drain: | 
 | 		/* | 
 | 		 * Has the migration scanner moved away from the previous | 
 | 		 * cc->order aligned block where we migrated from? If yes, | 
 | 		 * flush the pages that were freed, so that they can merge and | 
 | 		 * compact_finished() can detect immediately if allocation | 
 | 		 * would succeed. | 
 | 		 */ | 
 | 		if (cc->order > 0 && last_migrated_pfn) { | 
 | 			unsigned long current_block_start = | 
 | 				block_start_pfn(cc->migrate_pfn, cc->order); | 
 |  | 
 | 			if (last_migrated_pfn < current_block_start) { | 
 | 				lru_add_drain_cpu_zone(cc->zone); | 
 | 				/* No more flushing until we migrate again */ | 
 | 				last_migrated_pfn = 0; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		/* Stop if a page has been captured */ | 
 | 		if (capc && capc->page) { | 
 | 			ret = COMPACT_SUCCESS; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | out: | 
 | 	/* | 
 | 	 * Release free pages and update where the free scanner should restart, | 
 | 	 * so we don't leave any returned pages behind in the next attempt. | 
 | 	 */ | 
 | 	if (cc->nr_freepages > 0) { | 
 | 		unsigned long free_pfn = release_freepages(&cc->freepages); | 
 |  | 
 | 		cc->nr_freepages = 0; | 
 | 		VM_BUG_ON(free_pfn == 0); | 
 | 		/* The cached pfn is always the first in a pageblock */ | 
 | 		free_pfn = pageblock_start_pfn(free_pfn); | 
 | 		/* | 
 | 		 * Only go back, not forward. The cached pfn might have been | 
 | 		 * already reset to zone end in compact_finished() | 
 | 		 */ | 
 | 		if (free_pfn > cc->zone->compact_cached_free_pfn) | 
 | 			cc->zone->compact_cached_free_pfn = free_pfn; | 
 | 	} | 
 |  | 
 | 	count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned); | 
 | 	count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned); | 
 |  | 
 | 	trace_mm_compaction_end(cc, start_pfn, end_pfn, sync, ret); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static enum compact_result compact_zone_order(struct zone *zone, int order, | 
 | 		gfp_t gfp_mask, enum compact_priority prio, | 
 | 		unsigned int alloc_flags, int highest_zoneidx, | 
 | 		struct page **capture) | 
 | { | 
 | 	enum compact_result ret; | 
 | 	struct compact_control cc = { | 
 | 		.order = order, | 
 | 		.search_order = order, | 
 | 		.gfp_mask = gfp_mask, | 
 | 		.zone = zone, | 
 | 		.mode = (prio == COMPACT_PRIO_ASYNC) ? | 
 | 					MIGRATE_ASYNC :	MIGRATE_SYNC_LIGHT, | 
 | 		.alloc_flags = alloc_flags, | 
 | 		.highest_zoneidx = highest_zoneidx, | 
 | 		.direct_compaction = true, | 
 | 		.whole_zone = (prio == MIN_COMPACT_PRIORITY), | 
 | 		.ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY), | 
 | 		.ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY) | 
 | 	}; | 
 | 	struct capture_control capc = { | 
 | 		.cc = &cc, | 
 | 		.page = NULL, | 
 | 	}; | 
 |  | 
 | 	/* | 
 | 	 * Make sure the structs are really initialized before we expose the | 
 | 	 * capture control, in case we are interrupted and the interrupt handler | 
 | 	 * frees a page. | 
 | 	 */ | 
 | 	barrier(); | 
 | 	WRITE_ONCE(current->capture_control, &capc); | 
 |  | 
 | 	ret = compact_zone(&cc, &capc); | 
 |  | 
 | 	VM_BUG_ON(!list_empty(&cc.freepages)); | 
 | 	VM_BUG_ON(!list_empty(&cc.migratepages)); | 
 |  | 
 | 	/* | 
 | 	 * Make sure we hide capture control first before we read the captured | 
 | 	 * page pointer, otherwise an interrupt could free and capture a page | 
 | 	 * and we would leak it. | 
 | 	 */ | 
 | 	WRITE_ONCE(current->capture_control, NULL); | 
 | 	*capture = READ_ONCE(capc.page); | 
 | 	/* | 
 | 	 * Technically, it is also possible that compaction is skipped but | 
 | 	 * the page is still captured out of luck(IRQ came and freed the page). | 
 | 	 * Returning COMPACT_SUCCESS in such cases helps in properly accounting | 
 | 	 * the COMPACT[STALL|FAIL] when compaction is skipped. | 
 | 	 */ | 
 | 	if (*capture) | 
 | 		ret = COMPACT_SUCCESS; | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | int sysctl_extfrag_threshold = 500; | 
 |  | 
 | /** | 
 |  * try_to_compact_pages - Direct compact to satisfy a high-order allocation | 
 |  * @gfp_mask: The GFP mask of the current allocation | 
 |  * @order: The order of the current allocation | 
 |  * @alloc_flags: The allocation flags of the current allocation | 
 |  * @ac: The context of current allocation | 
 |  * @prio: Determines how hard direct compaction should try to succeed | 
 |  * @capture: Pointer to free page created by compaction will be stored here | 
 |  * | 
 |  * This is the main entry point for direct page compaction. | 
 |  */ | 
 | enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order, | 
 | 		unsigned int alloc_flags, const struct alloc_context *ac, | 
 | 		enum compact_priority prio, struct page **capture) | 
 | { | 
 | 	int may_perform_io = (__force int)(gfp_mask & __GFP_IO); | 
 | 	struct zoneref *z; | 
 | 	struct zone *zone; | 
 | 	enum compact_result rc = COMPACT_SKIPPED; | 
 |  | 
 | 	/* | 
 | 	 * Check if the GFP flags allow compaction - GFP_NOIO is really | 
 | 	 * tricky context because the migration might require IO | 
 | 	 */ | 
 | 	if (!may_perform_io) | 
 | 		return COMPACT_SKIPPED; | 
 |  | 
 | 	trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio); | 
 |  | 
 | 	/* Compact each zone in the list */ | 
 | 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, | 
 | 					ac->highest_zoneidx, ac->nodemask) { | 
 | 		enum compact_result status; | 
 |  | 
 | 		if (prio > MIN_COMPACT_PRIORITY | 
 | 					&& compaction_deferred(zone, order)) { | 
 | 			rc = max_t(enum compact_result, COMPACT_DEFERRED, rc); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		status = compact_zone_order(zone, order, gfp_mask, prio, | 
 | 				alloc_flags, ac->highest_zoneidx, capture); | 
 | 		rc = max(status, rc); | 
 |  | 
 | 		/* The allocation should succeed, stop compacting */ | 
 | 		if (status == COMPACT_SUCCESS) { | 
 | 			/* | 
 | 			 * We think the allocation will succeed in this zone, | 
 | 			 * but it is not certain, hence the false. The caller | 
 | 			 * will repeat this with true if allocation indeed | 
 | 			 * succeeds in this zone. | 
 | 			 */ | 
 | 			compaction_defer_reset(zone, order, false); | 
 |  | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE || | 
 | 					status == COMPACT_PARTIAL_SKIPPED)) | 
 | 			/* | 
 | 			 * We think that allocation won't succeed in this zone | 
 | 			 * so we defer compaction there. If it ends up | 
 | 			 * succeeding after all, it will be reset. | 
 | 			 */ | 
 | 			defer_compaction(zone, order); | 
 |  | 
 | 		/* | 
 | 		 * We might have stopped compacting due to need_resched() in | 
 | 		 * async compaction, or due to a fatal signal detected. In that | 
 | 		 * case do not try further zones | 
 | 		 */ | 
 | 		if ((prio == COMPACT_PRIO_ASYNC && need_resched()) | 
 | 					|| fatal_signal_pending(current)) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	return rc; | 
 | } | 
 |  | 
 | /* | 
 |  * Compact all zones within a node till each zone's fragmentation score | 
 |  * reaches within proactive compaction thresholds (as determined by the | 
 |  * proactiveness tunable). | 
 |  * | 
 |  * It is possible that the function returns before reaching score targets | 
 |  * due to various back-off conditions, such as, contention on per-node or | 
 |  * per-zone locks. | 
 |  */ | 
 | static void proactive_compact_node(pg_data_t *pgdat) | 
 | { | 
 | 	int zoneid; | 
 | 	struct zone *zone; | 
 | 	struct compact_control cc = { | 
 | 		.order = -1, | 
 | 		.mode = MIGRATE_SYNC_LIGHT, | 
 | 		.ignore_skip_hint = true, | 
 | 		.whole_zone = true, | 
 | 		.gfp_mask = GFP_KERNEL, | 
 | 		.proactive_compaction = true, | 
 | 	}; | 
 |  | 
 | 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { | 
 | 		zone = &pgdat->node_zones[zoneid]; | 
 | 		if (!populated_zone(zone)) | 
 | 			continue; | 
 |  | 
 | 		cc.zone = zone; | 
 |  | 
 | 		compact_zone(&cc, NULL); | 
 |  | 
 | 		VM_BUG_ON(!list_empty(&cc.freepages)); | 
 | 		VM_BUG_ON(!list_empty(&cc.migratepages)); | 
 | 	} | 
 | } | 
 |  | 
 | /* Compact all zones within a node */ | 
 | static void compact_node(int nid) | 
 | { | 
 | 	pg_data_t *pgdat = NODE_DATA(nid); | 
 | 	int zoneid; | 
 | 	struct zone *zone; | 
 | 	struct compact_control cc = { | 
 | 		.order = -1, | 
 | 		.mode = MIGRATE_SYNC, | 
 | 		.ignore_skip_hint = true, | 
 | 		.whole_zone = true, | 
 | 		.gfp_mask = GFP_KERNEL, | 
 | 	}; | 
 |  | 
 |  | 
 | 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { | 
 |  | 
 | 		zone = &pgdat->node_zones[zoneid]; | 
 | 		if (!populated_zone(zone)) | 
 | 			continue; | 
 |  | 
 | 		cc.zone = zone; | 
 |  | 
 | 		compact_zone(&cc, NULL); | 
 |  | 
 | 		VM_BUG_ON(!list_empty(&cc.freepages)); | 
 | 		VM_BUG_ON(!list_empty(&cc.migratepages)); | 
 | 	} | 
 | } | 
 |  | 
 | /* Compact all nodes in the system */ | 
 | static void compact_nodes(void) | 
 | { | 
 | 	int nid; | 
 |  | 
 | 	/* Flush pending updates to the LRU lists */ | 
 | 	lru_add_drain_all(); | 
 |  | 
 | 	for_each_online_node(nid) | 
 | 		compact_node(nid); | 
 | } | 
 |  | 
 | /* | 
 |  * Tunable for proactive compaction. It determines how | 
 |  * aggressively the kernel should compact memory in the | 
 |  * background. It takes values in the range [0, 100]. | 
 |  */ | 
 | unsigned int __read_mostly sysctl_compaction_proactiveness = 20; | 
 |  | 
 | int compaction_proactiveness_sysctl_handler(struct ctl_table *table, int write, | 
 | 		void *buffer, size_t *length, loff_t *ppos) | 
 | { | 
 | 	int rc, nid; | 
 |  | 
 | 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos); | 
 | 	if (rc) | 
 | 		return rc; | 
 |  | 
 | 	if (write && sysctl_compaction_proactiveness) { | 
 | 		for_each_online_node(nid) { | 
 | 			pg_data_t *pgdat = NODE_DATA(nid); | 
 |  | 
 | 			if (pgdat->proactive_compact_trigger) | 
 | 				continue; | 
 |  | 
 | 			pgdat->proactive_compact_trigger = true; | 
 | 			wake_up_interruptible(&pgdat->kcompactd_wait); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * This is the entry point for compacting all nodes via | 
 |  * /proc/sys/vm/compact_memory | 
 |  */ | 
 | int sysctl_compaction_handler(struct ctl_table *table, int write, | 
 | 			void *buffer, size_t *length, loff_t *ppos) | 
 | { | 
 | 	if (write) | 
 | 		compact_nodes(); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA) | 
 | static ssize_t compact_store(struct device *dev, | 
 | 			     struct device_attribute *attr, | 
 | 			     const char *buf, size_t count) | 
 | { | 
 | 	int nid = dev->id; | 
 |  | 
 | 	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) { | 
 | 		/* Flush pending updates to the LRU lists */ | 
 | 		lru_add_drain_all(); | 
 |  | 
 | 		compact_node(nid); | 
 | 	} | 
 |  | 
 | 	return count; | 
 | } | 
 | static DEVICE_ATTR_WO(compact); | 
 |  | 
 | int compaction_register_node(struct node *node) | 
 | { | 
 | 	return device_create_file(&node->dev, &dev_attr_compact); | 
 | } | 
 |  | 
 | void compaction_unregister_node(struct node *node) | 
 | { | 
 | 	return device_remove_file(&node->dev, &dev_attr_compact); | 
 | } | 
 | #endif /* CONFIG_SYSFS && CONFIG_NUMA */ | 
 |  | 
 | static inline bool kcompactd_work_requested(pg_data_t *pgdat) | 
 | { | 
 | 	return pgdat->kcompactd_max_order > 0 || kthread_should_stop() || | 
 | 		pgdat->proactive_compact_trigger; | 
 | } | 
 |  | 
 | static bool kcompactd_node_suitable(pg_data_t *pgdat) | 
 | { | 
 | 	int zoneid; | 
 | 	struct zone *zone; | 
 | 	enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx; | 
 |  | 
 | 	for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) { | 
 | 		zone = &pgdat->node_zones[zoneid]; | 
 |  | 
 | 		if (!populated_zone(zone)) | 
 | 			continue; | 
 |  | 
 | 		if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0, | 
 | 					highest_zoneidx) == COMPACT_CONTINUE) | 
 | 			return true; | 
 | 	} | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | static void kcompactd_do_work(pg_data_t *pgdat) | 
 | { | 
 | 	/* | 
 | 	 * With no special task, compact all zones so that a page of requested | 
 | 	 * order is allocatable. | 
 | 	 */ | 
 | 	int zoneid; | 
 | 	struct zone *zone; | 
 | 	struct compact_control cc = { | 
 | 		.order = pgdat->kcompactd_max_order, | 
 | 		.search_order = pgdat->kcompactd_max_order, | 
 | 		.highest_zoneidx = pgdat->kcompactd_highest_zoneidx, | 
 | 		.mode = MIGRATE_SYNC_LIGHT, | 
 | 		.ignore_skip_hint = false, | 
 | 		.gfp_mask = GFP_KERNEL, | 
 | 	}; | 
 | 	trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order, | 
 | 							cc.highest_zoneidx); | 
 | 	count_compact_event(KCOMPACTD_WAKE); | 
 |  | 
 | 	for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) { | 
 | 		int status; | 
 |  | 
 | 		zone = &pgdat->node_zones[zoneid]; | 
 | 		if (!populated_zone(zone)) | 
 | 			continue; | 
 |  | 
 | 		if (compaction_deferred(zone, cc.order)) | 
 | 			continue; | 
 |  | 
 | 		if (compaction_suitable(zone, cc.order, 0, zoneid) != | 
 | 							COMPACT_CONTINUE) | 
 | 			continue; | 
 |  | 
 | 		if (kthread_should_stop()) | 
 | 			return; | 
 |  | 
 | 		cc.zone = zone; | 
 | 		status = compact_zone(&cc, NULL); | 
 |  | 
 | 		if (status == COMPACT_SUCCESS) { | 
 | 			compaction_defer_reset(zone, cc.order, false); | 
 | 		} else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) { | 
 | 			/* | 
 | 			 * Buddy pages may become stranded on pcps that could | 
 | 			 * otherwise coalesce on the zone's free area for | 
 | 			 * order >= cc.order.  This is ratelimited by the | 
 | 			 * upcoming deferral. | 
 | 			 */ | 
 | 			drain_all_pages(zone); | 
 |  | 
 | 			/* | 
 | 			 * We use sync migration mode here, so we defer like | 
 | 			 * sync direct compaction does. | 
 | 			 */ | 
 | 			defer_compaction(zone, cc.order); | 
 | 		} | 
 |  | 
 | 		count_compact_events(KCOMPACTD_MIGRATE_SCANNED, | 
 | 				     cc.total_migrate_scanned); | 
 | 		count_compact_events(KCOMPACTD_FREE_SCANNED, | 
 | 				     cc.total_free_scanned); | 
 |  | 
 | 		VM_BUG_ON(!list_empty(&cc.freepages)); | 
 | 		VM_BUG_ON(!list_empty(&cc.migratepages)); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Regardless of success, we are done until woken up next. But remember | 
 | 	 * the requested order/highest_zoneidx in case it was higher/tighter | 
 | 	 * than our current ones | 
 | 	 */ | 
 | 	if (pgdat->kcompactd_max_order <= cc.order) | 
 | 		pgdat->kcompactd_max_order = 0; | 
 | 	if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx) | 
 | 		pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1; | 
 | } | 
 |  | 
 | void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx) | 
 | { | 
 | 	if (!order) | 
 | 		return; | 
 |  | 
 | 	if (pgdat->kcompactd_max_order < order) | 
 | 		pgdat->kcompactd_max_order = order; | 
 |  | 
 | 	if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx) | 
 | 		pgdat->kcompactd_highest_zoneidx = highest_zoneidx; | 
 |  | 
 | 	/* | 
 | 	 * Pairs with implicit barrier in wait_event_freezable() | 
 | 	 * such that wakeups are not missed. | 
 | 	 */ | 
 | 	if (!wq_has_sleeper(&pgdat->kcompactd_wait)) | 
 | 		return; | 
 |  | 
 | 	if (!kcompactd_node_suitable(pgdat)) | 
 | 		return; | 
 |  | 
 | 	trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order, | 
 | 							highest_zoneidx); | 
 | 	wake_up_interruptible(&pgdat->kcompactd_wait); | 
 | } | 
 |  | 
 | /* | 
 |  * The background compaction daemon, started as a kernel thread | 
 |  * from the init process. | 
 |  */ | 
 | static int kcompactd(void *p) | 
 | { | 
 | 	pg_data_t *pgdat = (pg_data_t *)p; | 
 | 	struct task_struct *tsk = current; | 
 | 	long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC); | 
 | 	long timeout = default_timeout; | 
 |  | 
 | 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); | 
 |  | 
 | 	if (!cpumask_empty(cpumask)) | 
 | 		set_cpus_allowed_ptr(tsk, cpumask); | 
 |  | 
 | 	set_freezable(); | 
 |  | 
 | 	pgdat->kcompactd_max_order = 0; | 
 | 	pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1; | 
 |  | 
 | 	while (!kthread_should_stop()) { | 
 | 		unsigned long pflags; | 
 |  | 
 | 		/* | 
 | 		 * Avoid the unnecessary wakeup for proactive compaction | 
 | 		 * when it is disabled. | 
 | 		 */ | 
 | 		if (!sysctl_compaction_proactiveness) | 
 | 			timeout = MAX_SCHEDULE_TIMEOUT; | 
 | 		trace_mm_compaction_kcompactd_sleep(pgdat->node_id); | 
 | 		if (wait_event_freezable_timeout(pgdat->kcompactd_wait, | 
 | 			kcompactd_work_requested(pgdat), timeout) && | 
 | 			!pgdat->proactive_compact_trigger) { | 
 |  | 
 | 			psi_memstall_enter(&pflags); | 
 | 			kcompactd_do_work(pgdat); | 
 | 			psi_memstall_leave(&pflags); | 
 | 			/* | 
 | 			 * Reset the timeout value. The defer timeout from | 
 | 			 * proactive compaction is lost here but that is fine | 
 | 			 * as the condition of the zone changing substantionally | 
 | 			 * then carrying on with the previous defer interval is | 
 | 			 * not useful. | 
 | 			 */ | 
 | 			timeout = default_timeout; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Start the proactive work with default timeout. Based | 
 | 		 * on the fragmentation score, this timeout is updated. | 
 | 		 */ | 
 | 		timeout = default_timeout; | 
 | 		if (should_proactive_compact_node(pgdat)) { | 
 | 			unsigned int prev_score, score; | 
 |  | 
 | 			prev_score = fragmentation_score_node(pgdat); | 
 | 			proactive_compact_node(pgdat); | 
 | 			score = fragmentation_score_node(pgdat); | 
 | 			/* | 
 | 			 * Defer proactive compaction if the fragmentation | 
 | 			 * score did not go down i.e. no progress made. | 
 | 			 */ | 
 | 			if (unlikely(score >= prev_score)) | 
 | 				timeout = | 
 | 				   default_timeout << COMPACT_MAX_DEFER_SHIFT; | 
 | 		} | 
 | 		if (unlikely(pgdat->proactive_compact_trigger)) | 
 | 			pgdat->proactive_compact_trigger = false; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * This kcompactd start function will be called by init and node-hot-add. | 
 |  * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added. | 
 |  */ | 
 | void kcompactd_run(int nid) | 
 | { | 
 | 	pg_data_t *pgdat = NODE_DATA(nid); | 
 |  | 
 | 	if (pgdat->kcompactd) | 
 | 		return; | 
 |  | 
 | 	pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid); | 
 | 	if (IS_ERR(pgdat->kcompactd)) { | 
 | 		pr_err("Failed to start kcompactd on node %d\n", nid); | 
 | 		pgdat->kcompactd = NULL; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Called by memory hotplug when all memory in a node is offlined. Caller must | 
 |  * be holding mem_hotplug_begin/done(). | 
 |  */ | 
 | void kcompactd_stop(int nid) | 
 | { | 
 | 	struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd; | 
 |  | 
 | 	if (kcompactd) { | 
 | 		kthread_stop(kcompactd); | 
 | 		NODE_DATA(nid)->kcompactd = NULL; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * It's optimal to keep kcompactd on the same CPUs as their memory, but | 
 |  * not required for correctness. So if the last cpu in a node goes | 
 |  * away, we get changed to run anywhere: as the first one comes back, | 
 |  * restore their cpu bindings. | 
 |  */ | 
 | static int kcompactd_cpu_online(unsigned int cpu) | 
 | { | 
 | 	int nid; | 
 |  | 
 | 	for_each_node_state(nid, N_MEMORY) { | 
 | 		pg_data_t *pgdat = NODE_DATA(nid); | 
 | 		const struct cpumask *mask; | 
 |  | 
 | 		mask = cpumask_of_node(pgdat->node_id); | 
 |  | 
 | 		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) | 
 | 			/* One of our CPUs online: restore mask */ | 
 | 			if (pgdat->kcompactd) | 
 | 				set_cpus_allowed_ptr(pgdat->kcompactd, mask); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int __init kcompactd_init(void) | 
 | { | 
 | 	int nid; | 
 | 	int ret; | 
 |  | 
 | 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, | 
 | 					"mm/compaction:online", | 
 | 					kcompactd_cpu_online, NULL); | 
 | 	if (ret < 0) { | 
 | 		pr_err("kcompactd: failed to register hotplug callbacks.\n"); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	for_each_node_state(nid, N_MEMORY) | 
 | 		kcompactd_run(nid); | 
 | 	return 0; | 
 | } | 
 | subsys_initcall(kcompactd_init) | 
 |  | 
 | #endif /* CONFIG_COMPACTION */ |