|  | /* | 
|  | *  fs/ext4/extents_status.c | 
|  | * | 
|  | * Written by Yongqiang Yang <xiaoqiangnk@gmail.com> | 
|  | * Modified by | 
|  | *	Allison Henderson <achender@linux.vnet.ibm.com> | 
|  | *	Hugh Dickins <hughd@google.com> | 
|  | *	Zheng Liu <wenqing.lz@taobao.com> | 
|  | * | 
|  | * Ext4 extents status tree core functions. | 
|  | */ | 
|  | #include <linux/list_sort.h> | 
|  | #include <linux/proc_fs.h> | 
|  | #include <linux/seq_file.h> | 
|  | #include "ext4.h" | 
|  |  | 
|  | #include <trace/events/ext4.h> | 
|  |  | 
|  | /* | 
|  | * According to previous discussion in Ext4 Developer Workshop, we | 
|  | * will introduce a new structure called io tree to track all extent | 
|  | * status in order to solve some problems that we have met | 
|  | * (e.g. Reservation space warning), and provide extent-level locking. | 
|  | * Delay extent tree is the first step to achieve this goal.  It is | 
|  | * original built by Yongqiang Yang.  At that time it is called delay | 
|  | * extent tree, whose goal is only track delayed extents in memory to | 
|  | * simplify the implementation of fiemap and bigalloc, and introduce | 
|  | * lseek SEEK_DATA/SEEK_HOLE support.  That is why it is still called | 
|  | * delay extent tree at the first commit.  But for better understand | 
|  | * what it does, it has been rename to extent status tree. | 
|  | * | 
|  | * Step1: | 
|  | * Currently the first step has been done.  All delayed extents are | 
|  | * tracked in the tree.  It maintains the delayed extent when a delayed | 
|  | * allocation is issued, and the delayed extent is written out or | 
|  | * invalidated.  Therefore the implementation of fiemap and bigalloc | 
|  | * are simplified, and SEEK_DATA/SEEK_HOLE are introduced. | 
|  | * | 
|  | * The following comment describes the implemenmtation of extent | 
|  | * status tree and future works. | 
|  | * | 
|  | * Step2: | 
|  | * In this step all extent status are tracked by extent status tree. | 
|  | * Thus, we can first try to lookup a block mapping in this tree before | 
|  | * finding it in extent tree.  Hence, single extent cache can be removed | 
|  | * because extent status tree can do a better job.  Extents in status | 
|  | * tree are loaded on-demand.  Therefore, the extent status tree may not | 
|  | * contain all of the extents in a file.  Meanwhile we define a shrinker | 
|  | * to reclaim memory from extent status tree because fragmented extent | 
|  | * tree will make status tree cost too much memory.  written/unwritten/- | 
|  | * hole extents in the tree will be reclaimed by this shrinker when we | 
|  | * are under high memory pressure.  Delayed extents will not be | 
|  | * reclimed because fiemap, bigalloc, and seek_data/hole need it. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Extent status tree implementation for ext4. | 
|  | * | 
|  | * | 
|  | * ========================================================================== | 
|  | * Extent status tree tracks all extent status. | 
|  | * | 
|  | * 1. Why we need to implement extent status tree? | 
|  | * | 
|  | * Without extent status tree, ext4 identifies a delayed extent by looking | 
|  | * up page cache, this has several deficiencies - complicated, buggy, | 
|  | * and inefficient code. | 
|  | * | 
|  | * FIEMAP, SEEK_HOLE/DATA, bigalloc, and writeout all need to know if a | 
|  | * block or a range of blocks are belonged to a delayed extent. | 
|  | * | 
|  | * Let us have a look at how they do without extent status tree. | 
|  | *   --	FIEMAP | 
|  | *	FIEMAP looks up page cache to identify delayed allocations from holes. | 
|  | * | 
|  | *   --	SEEK_HOLE/DATA | 
|  | *	SEEK_HOLE/DATA has the same problem as FIEMAP. | 
|  | * | 
|  | *   --	bigalloc | 
|  | *	bigalloc looks up page cache to figure out if a block is | 
|  | *	already under delayed allocation or not to determine whether | 
|  | *	quota reserving is needed for the cluster. | 
|  | * | 
|  | *   --	writeout | 
|  | *	Writeout looks up whole page cache to see if a buffer is | 
|  | *	mapped, If there are not very many delayed buffers, then it is | 
|  | *	time comsuming. | 
|  | * | 
|  | * With extent status tree implementation, FIEMAP, SEEK_HOLE/DATA, | 
|  | * bigalloc and writeout can figure out if a block or a range of | 
|  | * blocks is under delayed allocation(belonged to a delayed extent) or | 
|  | * not by searching the extent tree. | 
|  | * | 
|  | * | 
|  | * ========================================================================== | 
|  | * 2. Ext4 extent status tree impelmentation | 
|  | * | 
|  | *   --	extent | 
|  | *	A extent is a range of blocks which are contiguous logically and | 
|  | *	physically.  Unlike extent in extent tree, this extent in ext4 is | 
|  | *	a in-memory struct, there is no corresponding on-disk data.  There | 
|  | *	is no limit on length of extent, so an extent can contain as many | 
|  | *	blocks as they are contiguous logically and physically. | 
|  | * | 
|  | *   --	extent status tree | 
|  | *	Every inode has an extent status tree and all allocation blocks | 
|  | *	are added to the tree with different status.  The extent in the | 
|  | *	tree are ordered by logical block no. | 
|  | * | 
|  | *   --	operations on a extent status tree | 
|  | *	There are three important operations on a delayed extent tree: find | 
|  | *	next extent, adding a extent(a range of blocks) and removing a extent. | 
|  | * | 
|  | *   --	race on a extent status tree | 
|  | *	Extent status tree is protected by inode->i_es_lock. | 
|  | * | 
|  | *   --	memory consumption | 
|  | *      Fragmented extent tree will make extent status tree cost too much | 
|  | *      memory.  Hence, we will reclaim written/unwritten/hole extents from | 
|  | *      the tree under a heavy memory pressure. | 
|  | * | 
|  | * | 
|  | * ========================================================================== | 
|  | * 3. Performance analysis | 
|  | * | 
|  | *   --	overhead | 
|  | *	1. There is a cache extent for write access, so if writes are | 
|  | *	not very random, adding space operaions are in O(1) time. | 
|  | * | 
|  | *   --	gain | 
|  | *	2. Code is much simpler, more readable, more maintainable and | 
|  | *	more efficient. | 
|  | * | 
|  | * | 
|  | * ========================================================================== | 
|  | * 4. TODO list | 
|  | * | 
|  | *   -- Refactor delayed space reservation | 
|  | * | 
|  | *   -- Extent-level locking | 
|  | */ | 
|  |  | 
|  | static struct kmem_cache *ext4_es_cachep; | 
|  |  | 
|  | static int __es_insert_extent(struct inode *inode, struct extent_status *newes); | 
|  | static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk, | 
|  | ext4_lblk_t end); | 
|  | static int es_reclaim_extents(struct ext4_inode_info *ei, int *nr_to_scan); | 
|  | static int __es_shrink(struct ext4_sb_info *sbi, int nr_to_scan, | 
|  | struct ext4_inode_info *locked_ei); | 
|  |  | 
|  | int __init ext4_init_es(void) | 
|  | { | 
|  | ext4_es_cachep = kmem_cache_create("ext4_extent_status", | 
|  | sizeof(struct extent_status), | 
|  | 0, (SLAB_RECLAIM_ACCOUNT), NULL); | 
|  | if (ext4_es_cachep == NULL) | 
|  | return -ENOMEM; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void ext4_exit_es(void) | 
|  | { | 
|  | if (ext4_es_cachep) | 
|  | kmem_cache_destroy(ext4_es_cachep); | 
|  | } | 
|  |  | 
|  | void ext4_es_init_tree(struct ext4_es_tree *tree) | 
|  | { | 
|  | tree->root = RB_ROOT; | 
|  | tree->cache_es = NULL; | 
|  | } | 
|  |  | 
|  | #ifdef ES_DEBUG__ | 
|  | static void ext4_es_print_tree(struct inode *inode) | 
|  | { | 
|  | struct ext4_es_tree *tree; | 
|  | struct rb_node *node; | 
|  |  | 
|  | printk(KERN_DEBUG "status extents for inode %lu:", inode->i_ino); | 
|  | tree = &EXT4_I(inode)->i_es_tree; | 
|  | node = rb_first(&tree->root); | 
|  | while (node) { | 
|  | struct extent_status *es; | 
|  | es = rb_entry(node, struct extent_status, rb_node); | 
|  | printk(KERN_DEBUG " [%u/%u) %llu %x", | 
|  | es->es_lblk, es->es_len, | 
|  | ext4_es_pblock(es), ext4_es_status(es)); | 
|  | node = rb_next(node); | 
|  | } | 
|  | printk(KERN_DEBUG "\n"); | 
|  | } | 
|  | #else | 
|  | #define ext4_es_print_tree(inode) | 
|  | #endif | 
|  |  | 
|  | static inline ext4_lblk_t ext4_es_end(struct extent_status *es) | 
|  | { | 
|  | BUG_ON(es->es_lblk + es->es_len < es->es_lblk); | 
|  | return es->es_lblk + es->es_len - 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * search through the tree for an delayed extent with a given offset.  If | 
|  | * it can't be found, try to find next extent. | 
|  | */ | 
|  | static struct extent_status *__es_tree_search(struct rb_root *root, | 
|  | ext4_lblk_t lblk) | 
|  | { | 
|  | struct rb_node *node = root->rb_node; | 
|  | struct extent_status *es = NULL; | 
|  |  | 
|  | while (node) { | 
|  | es = rb_entry(node, struct extent_status, rb_node); | 
|  | if (lblk < es->es_lblk) | 
|  | node = node->rb_left; | 
|  | else if (lblk > ext4_es_end(es)) | 
|  | node = node->rb_right; | 
|  | else | 
|  | return es; | 
|  | } | 
|  |  | 
|  | if (es && lblk < es->es_lblk) | 
|  | return es; | 
|  |  | 
|  | if (es && lblk > ext4_es_end(es)) { | 
|  | node = rb_next(&es->rb_node); | 
|  | return node ? rb_entry(node, struct extent_status, rb_node) : | 
|  | NULL; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ext4_es_find_delayed_extent_range: find the 1st delayed extent covering | 
|  | * @es->lblk if it exists, otherwise, the next extent after @es->lblk. | 
|  | * | 
|  | * @inode: the inode which owns delayed extents | 
|  | * @lblk: the offset where we start to search | 
|  | * @end: the offset where we stop to search | 
|  | * @es: delayed extent that we found | 
|  | */ | 
|  | void ext4_es_find_delayed_extent_range(struct inode *inode, | 
|  | ext4_lblk_t lblk, ext4_lblk_t end, | 
|  | struct extent_status *es) | 
|  | { | 
|  | struct ext4_es_tree *tree = NULL; | 
|  | struct extent_status *es1 = NULL; | 
|  | struct rb_node *node; | 
|  |  | 
|  | BUG_ON(es == NULL); | 
|  | BUG_ON(end < lblk); | 
|  | trace_ext4_es_find_delayed_extent_range_enter(inode, lblk); | 
|  |  | 
|  | read_lock(&EXT4_I(inode)->i_es_lock); | 
|  | tree = &EXT4_I(inode)->i_es_tree; | 
|  |  | 
|  | /* find extent in cache firstly */ | 
|  | es->es_lblk = es->es_len = es->es_pblk = 0; | 
|  | if (tree->cache_es) { | 
|  | es1 = tree->cache_es; | 
|  | if (in_range(lblk, es1->es_lblk, es1->es_len)) { | 
|  | es_debug("%u cached by [%u/%u) %llu %x\n", | 
|  | lblk, es1->es_lblk, es1->es_len, | 
|  | ext4_es_pblock(es1), ext4_es_status(es1)); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | es1 = __es_tree_search(&tree->root, lblk); | 
|  |  | 
|  | out: | 
|  | if (es1 && !ext4_es_is_delayed(es1)) { | 
|  | while ((node = rb_next(&es1->rb_node)) != NULL) { | 
|  | es1 = rb_entry(node, struct extent_status, rb_node); | 
|  | if (es1->es_lblk > end) { | 
|  | es1 = NULL; | 
|  | break; | 
|  | } | 
|  | if (ext4_es_is_delayed(es1)) | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (es1 && ext4_es_is_delayed(es1)) { | 
|  | tree->cache_es = es1; | 
|  | es->es_lblk = es1->es_lblk; | 
|  | es->es_len = es1->es_len; | 
|  | es->es_pblk = es1->es_pblk; | 
|  | } | 
|  |  | 
|  | read_unlock(&EXT4_I(inode)->i_es_lock); | 
|  |  | 
|  | trace_ext4_es_find_delayed_extent_range_exit(inode, es); | 
|  | } | 
|  |  | 
|  | static void ext4_es_list_add(struct inode *inode) | 
|  | { | 
|  | struct ext4_inode_info *ei = EXT4_I(inode); | 
|  | struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); | 
|  |  | 
|  | if (!list_empty(&ei->i_es_list)) | 
|  | return; | 
|  |  | 
|  | spin_lock(&sbi->s_es_lock); | 
|  | if (list_empty(&ei->i_es_list)) { | 
|  | list_add_tail(&ei->i_es_list, &sbi->s_es_list); | 
|  | sbi->s_es_nr_inode++; | 
|  | } | 
|  | spin_unlock(&sbi->s_es_lock); | 
|  | } | 
|  |  | 
|  | static void ext4_es_list_del(struct inode *inode) | 
|  | { | 
|  | struct ext4_inode_info *ei = EXT4_I(inode); | 
|  | struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); | 
|  |  | 
|  | spin_lock(&sbi->s_es_lock); | 
|  | if (!list_empty(&ei->i_es_list)) { | 
|  | list_del_init(&ei->i_es_list); | 
|  | sbi->s_es_nr_inode--; | 
|  | WARN_ON_ONCE(sbi->s_es_nr_inode < 0); | 
|  | } | 
|  | spin_unlock(&sbi->s_es_lock); | 
|  | } | 
|  |  | 
|  | static struct extent_status * | 
|  | ext4_es_alloc_extent(struct inode *inode, ext4_lblk_t lblk, ext4_lblk_t len, | 
|  | ext4_fsblk_t pblk) | 
|  | { | 
|  | struct extent_status *es; | 
|  | es = kmem_cache_alloc(ext4_es_cachep, GFP_ATOMIC); | 
|  | if (es == NULL) | 
|  | return NULL; | 
|  | es->es_lblk = lblk; | 
|  | es->es_len = len; | 
|  | es->es_pblk = pblk; | 
|  |  | 
|  | /* | 
|  | * We don't count delayed extent because we never try to reclaim them | 
|  | */ | 
|  | if (!ext4_es_is_delayed(es)) { | 
|  | if (!EXT4_I(inode)->i_es_shk_nr++) | 
|  | ext4_es_list_add(inode); | 
|  | percpu_counter_inc(&EXT4_SB(inode->i_sb)-> | 
|  | s_es_stats.es_stats_shk_cnt); | 
|  | } | 
|  |  | 
|  | EXT4_I(inode)->i_es_all_nr++; | 
|  | percpu_counter_inc(&EXT4_SB(inode->i_sb)->s_es_stats.es_stats_all_cnt); | 
|  |  | 
|  | return es; | 
|  | } | 
|  |  | 
|  | static void ext4_es_free_extent(struct inode *inode, struct extent_status *es) | 
|  | { | 
|  | EXT4_I(inode)->i_es_all_nr--; | 
|  | percpu_counter_dec(&EXT4_SB(inode->i_sb)->s_es_stats.es_stats_all_cnt); | 
|  |  | 
|  | /* Decrease the shrink counter when this es is not delayed */ | 
|  | if (!ext4_es_is_delayed(es)) { | 
|  | BUG_ON(EXT4_I(inode)->i_es_shk_nr == 0); | 
|  | if (!--EXT4_I(inode)->i_es_shk_nr) | 
|  | ext4_es_list_del(inode); | 
|  | percpu_counter_dec(&EXT4_SB(inode->i_sb)-> | 
|  | s_es_stats.es_stats_shk_cnt); | 
|  | } | 
|  |  | 
|  | kmem_cache_free(ext4_es_cachep, es); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check whether or not two extents can be merged | 
|  | * Condition: | 
|  | *  - logical block number is contiguous | 
|  | *  - physical block number is contiguous | 
|  | *  - status is equal | 
|  | */ | 
|  | static int ext4_es_can_be_merged(struct extent_status *es1, | 
|  | struct extent_status *es2) | 
|  | { | 
|  | if (ext4_es_type(es1) != ext4_es_type(es2)) | 
|  | return 0; | 
|  |  | 
|  | if (((__u64) es1->es_len) + es2->es_len > EXT_MAX_BLOCKS) { | 
|  | pr_warn("ES assertion failed when merging extents. " | 
|  | "The sum of lengths of es1 (%d) and es2 (%d) " | 
|  | "is bigger than allowed file size (%d)\n", | 
|  | es1->es_len, es2->es_len, EXT_MAX_BLOCKS); | 
|  | WARN_ON(1); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (((__u64) es1->es_lblk) + es1->es_len != es2->es_lblk) | 
|  | return 0; | 
|  |  | 
|  | if ((ext4_es_is_written(es1) || ext4_es_is_unwritten(es1)) && | 
|  | (ext4_es_pblock(es1) + es1->es_len == ext4_es_pblock(es2))) | 
|  | return 1; | 
|  |  | 
|  | if (ext4_es_is_hole(es1)) | 
|  | return 1; | 
|  |  | 
|  | /* we need to check delayed extent is without unwritten status */ | 
|  | if (ext4_es_is_delayed(es1) && !ext4_es_is_unwritten(es1)) | 
|  | return 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct extent_status * | 
|  | ext4_es_try_to_merge_left(struct inode *inode, struct extent_status *es) | 
|  | { | 
|  | struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree; | 
|  | struct extent_status *es1; | 
|  | struct rb_node *node; | 
|  |  | 
|  | node = rb_prev(&es->rb_node); | 
|  | if (!node) | 
|  | return es; | 
|  |  | 
|  | es1 = rb_entry(node, struct extent_status, rb_node); | 
|  | if (ext4_es_can_be_merged(es1, es)) { | 
|  | es1->es_len += es->es_len; | 
|  | if (ext4_es_is_referenced(es)) | 
|  | ext4_es_set_referenced(es1); | 
|  | rb_erase(&es->rb_node, &tree->root); | 
|  | ext4_es_free_extent(inode, es); | 
|  | es = es1; | 
|  | } | 
|  |  | 
|  | return es; | 
|  | } | 
|  |  | 
|  | static struct extent_status * | 
|  | ext4_es_try_to_merge_right(struct inode *inode, struct extent_status *es) | 
|  | { | 
|  | struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree; | 
|  | struct extent_status *es1; | 
|  | struct rb_node *node; | 
|  |  | 
|  | node = rb_next(&es->rb_node); | 
|  | if (!node) | 
|  | return es; | 
|  |  | 
|  | es1 = rb_entry(node, struct extent_status, rb_node); | 
|  | if (ext4_es_can_be_merged(es, es1)) { | 
|  | es->es_len += es1->es_len; | 
|  | if (ext4_es_is_referenced(es1)) | 
|  | ext4_es_set_referenced(es); | 
|  | rb_erase(node, &tree->root); | 
|  | ext4_es_free_extent(inode, es1); | 
|  | } | 
|  |  | 
|  | return es; | 
|  | } | 
|  |  | 
|  | #ifdef ES_AGGRESSIVE_TEST | 
|  | #include "ext4_extents.h"	/* Needed when ES_AGGRESSIVE_TEST is defined */ | 
|  |  | 
|  | static void ext4_es_insert_extent_ext_check(struct inode *inode, | 
|  | struct extent_status *es) | 
|  | { | 
|  | struct ext4_ext_path *path = NULL; | 
|  | struct ext4_extent *ex; | 
|  | ext4_lblk_t ee_block; | 
|  | ext4_fsblk_t ee_start; | 
|  | unsigned short ee_len; | 
|  | int depth, ee_status, es_status; | 
|  |  | 
|  | path = ext4_find_extent(inode, es->es_lblk, NULL, EXT4_EX_NOCACHE); | 
|  | if (IS_ERR(path)) | 
|  | return; | 
|  |  | 
|  | depth = ext_depth(inode); | 
|  | ex = path[depth].p_ext; | 
|  |  | 
|  | if (ex) { | 
|  |  | 
|  | ee_block = le32_to_cpu(ex->ee_block); | 
|  | ee_start = ext4_ext_pblock(ex); | 
|  | ee_len = ext4_ext_get_actual_len(ex); | 
|  |  | 
|  | ee_status = ext4_ext_is_unwritten(ex) ? 1 : 0; | 
|  | es_status = ext4_es_is_unwritten(es) ? 1 : 0; | 
|  |  | 
|  | /* | 
|  | * Make sure ex and es are not overlap when we try to insert | 
|  | * a delayed/hole extent. | 
|  | */ | 
|  | if (!ext4_es_is_written(es) && !ext4_es_is_unwritten(es)) { | 
|  | if (in_range(es->es_lblk, ee_block, ee_len)) { | 
|  | pr_warn("ES insert assertion failed for " | 
|  | "inode: %lu we can find an extent " | 
|  | "at block [%d/%d/%llu/%c], but we " | 
|  | "want to add a delayed/hole extent " | 
|  | "[%d/%d/%llu/%x]\n", | 
|  | inode->i_ino, ee_block, ee_len, | 
|  | ee_start, ee_status ? 'u' : 'w', | 
|  | es->es_lblk, es->es_len, | 
|  | ext4_es_pblock(es), ext4_es_status(es)); | 
|  | } | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We don't check ee_block == es->es_lblk, etc. because es | 
|  | * might be a part of whole extent, vice versa. | 
|  | */ | 
|  | if (es->es_lblk < ee_block || | 
|  | ext4_es_pblock(es) != ee_start + es->es_lblk - ee_block) { | 
|  | pr_warn("ES insert assertion failed for inode: %lu " | 
|  | "ex_status [%d/%d/%llu/%c] != " | 
|  | "es_status [%d/%d/%llu/%c]\n", inode->i_ino, | 
|  | ee_block, ee_len, ee_start, | 
|  | ee_status ? 'u' : 'w', es->es_lblk, es->es_len, | 
|  | ext4_es_pblock(es), es_status ? 'u' : 'w'); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (ee_status ^ es_status) { | 
|  | pr_warn("ES insert assertion failed for inode: %lu " | 
|  | "ex_status [%d/%d/%llu/%c] != " | 
|  | "es_status [%d/%d/%llu/%c]\n", inode->i_ino, | 
|  | ee_block, ee_len, ee_start, | 
|  | ee_status ? 'u' : 'w', es->es_lblk, es->es_len, | 
|  | ext4_es_pblock(es), es_status ? 'u' : 'w'); | 
|  | } | 
|  | } else { | 
|  | /* | 
|  | * We can't find an extent on disk.  So we need to make sure | 
|  | * that we don't want to add an written/unwritten extent. | 
|  | */ | 
|  | if (!ext4_es_is_delayed(es) && !ext4_es_is_hole(es)) { | 
|  | pr_warn("ES insert assertion failed for inode: %lu " | 
|  | "can't find an extent at block %d but we want " | 
|  | "to add a written/unwritten extent " | 
|  | "[%d/%d/%llu/%x]\n", inode->i_ino, | 
|  | es->es_lblk, es->es_lblk, es->es_len, | 
|  | ext4_es_pblock(es), ext4_es_status(es)); | 
|  | } | 
|  | } | 
|  | out: | 
|  | ext4_ext_drop_refs(path); | 
|  | kfree(path); | 
|  | } | 
|  |  | 
|  | static void ext4_es_insert_extent_ind_check(struct inode *inode, | 
|  | struct extent_status *es) | 
|  | { | 
|  | struct ext4_map_blocks map; | 
|  | int retval; | 
|  |  | 
|  | /* | 
|  | * Here we call ext4_ind_map_blocks to lookup a block mapping because | 
|  | * 'Indirect' structure is defined in indirect.c.  So we couldn't | 
|  | * access direct/indirect tree from outside.  It is too dirty to define | 
|  | * this function in indirect.c file. | 
|  | */ | 
|  |  | 
|  | map.m_lblk = es->es_lblk; | 
|  | map.m_len = es->es_len; | 
|  |  | 
|  | retval = ext4_ind_map_blocks(NULL, inode, &map, 0); | 
|  | if (retval > 0) { | 
|  | if (ext4_es_is_delayed(es) || ext4_es_is_hole(es)) { | 
|  | /* | 
|  | * We want to add a delayed/hole extent but this | 
|  | * block has been allocated. | 
|  | */ | 
|  | pr_warn("ES insert assertion failed for inode: %lu " | 
|  | "We can find blocks but we want to add a " | 
|  | "delayed/hole extent [%d/%d/%llu/%x]\n", | 
|  | inode->i_ino, es->es_lblk, es->es_len, | 
|  | ext4_es_pblock(es), ext4_es_status(es)); | 
|  | return; | 
|  | } else if (ext4_es_is_written(es)) { | 
|  | if (retval != es->es_len) { | 
|  | pr_warn("ES insert assertion failed for " | 
|  | "inode: %lu retval %d != es_len %d\n", | 
|  | inode->i_ino, retval, es->es_len); | 
|  | return; | 
|  | } | 
|  | if (map.m_pblk != ext4_es_pblock(es)) { | 
|  | pr_warn("ES insert assertion failed for " | 
|  | "inode: %lu m_pblk %llu != " | 
|  | "es_pblk %llu\n", | 
|  | inode->i_ino, map.m_pblk, | 
|  | ext4_es_pblock(es)); | 
|  | return; | 
|  | } | 
|  | } else { | 
|  | /* | 
|  | * We don't need to check unwritten extent because | 
|  | * indirect-based file doesn't have it. | 
|  | */ | 
|  | BUG_ON(1); | 
|  | } | 
|  | } else if (retval == 0) { | 
|  | if (ext4_es_is_written(es)) { | 
|  | pr_warn("ES insert assertion failed for inode: %lu " | 
|  | "We can't find the block but we want to add " | 
|  | "a written extent [%d/%d/%llu/%x]\n", | 
|  | inode->i_ino, es->es_lblk, es->es_len, | 
|  | ext4_es_pblock(es), ext4_es_status(es)); | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void ext4_es_insert_extent_check(struct inode *inode, | 
|  | struct extent_status *es) | 
|  | { | 
|  | /* | 
|  | * We don't need to worry about the race condition because | 
|  | * caller takes i_data_sem locking. | 
|  | */ | 
|  | BUG_ON(!rwsem_is_locked(&EXT4_I(inode)->i_data_sem)); | 
|  | if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) | 
|  | ext4_es_insert_extent_ext_check(inode, es); | 
|  | else | 
|  | ext4_es_insert_extent_ind_check(inode, es); | 
|  | } | 
|  | #else | 
|  | static inline void ext4_es_insert_extent_check(struct inode *inode, | 
|  | struct extent_status *es) | 
|  | { | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static int __es_insert_extent(struct inode *inode, struct extent_status *newes) | 
|  | { | 
|  | struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree; | 
|  | struct rb_node **p = &tree->root.rb_node; | 
|  | struct rb_node *parent = NULL; | 
|  | struct extent_status *es; | 
|  |  | 
|  | while (*p) { | 
|  | parent = *p; | 
|  | es = rb_entry(parent, struct extent_status, rb_node); | 
|  |  | 
|  | if (newes->es_lblk < es->es_lblk) { | 
|  | if (ext4_es_can_be_merged(newes, es)) { | 
|  | /* | 
|  | * Here we can modify es_lblk directly | 
|  | * because it isn't overlapped. | 
|  | */ | 
|  | es->es_lblk = newes->es_lblk; | 
|  | es->es_len += newes->es_len; | 
|  | if (ext4_es_is_written(es) || | 
|  | ext4_es_is_unwritten(es)) | 
|  | ext4_es_store_pblock(es, | 
|  | newes->es_pblk); | 
|  | es = ext4_es_try_to_merge_left(inode, es); | 
|  | goto out; | 
|  | } | 
|  | p = &(*p)->rb_left; | 
|  | } else if (newes->es_lblk > ext4_es_end(es)) { | 
|  | if (ext4_es_can_be_merged(es, newes)) { | 
|  | es->es_len += newes->es_len; | 
|  | es = ext4_es_try_to_merge_right(inode, es); | 
|  | goto out; | 
|  | } | 
|  | p = &(*p)->rb_right; | 
|  | } else { | 
|  | BUG_ON(1); | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | es = ext4_es_alloc_extent(inode, newes->es_lblk, newes->es_len, | 
|  | newes->es_pblk); | 
|  | if (!es) | 
|  | return -ENOMEM; | 
|  | rb_link_node(&es->rb_node, parent, p); | 
|  | rb_insert_color(&es->rb_node, &tree->root); | 
|  |  | 
|  | out: | 
|  | tree->cache_es = es; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ext4_es_insert_extent() adds information to an inode's extent | 
|  | * status tree. | 
|  | * | 
|  | * Return 0 on success, error code on failure. | 
|  | */ | 
|  | int ext4_es_insert_extent(struct inode *inode, ext4_lblk_t lblk, | 
|  | ext4_lblk_t len, ext4_fsblk_t pblk, | 
|  | unsigned int status) | 
|  | { | 
|  | struct extent_status newes; | 
|  | ext4_lblk_t end = lblk + len - 1; | 
|  | int err = 0; | 
|  |  | 
|  | es_debug("add [%u/%u) %llu %x to extent status tree of inode %lu\n", | 
|  | lblk, len, pblk, status, inode->i_ino); | 
|  |  | 
|  | if (!len) | 
|  | return 0; | 
|  |  | 
|  | BUG_ON(end < lblk); | 
|  |  | 
|  | if ((status & EXTENT_STATUS_DELAYED) && | 
|  | (status & EXTENT_STATUS_WRITTEN)) { | 
|  | ext4_warning(inode->i_sb, "Inserting extent [%u/%u] as " | 
|  | " delayed and written which can potentially " | 
|  | " cause data loss.", lblk, len); | 
|  | WARN_ON(1); | 
|  | } | 
|  |  | 
|  | newes.es_lblk = lblk; | 
|  | newes.es_len = len; | 
|  | ext4_es_store_pblock_status(&newes, pblk, status); | 
|  | trace_ext4_es_insert_extent(inode, &newes); | 
|  |  | 
|  | ext4_es_insert_extent_check(inode, &newes); | 
|  |  | 
|  | write_lock(&EXT4_I(inode)->i_es_lock); | 
|  | err = __es_remove_extent(inode, lblk, end); | 
|  | if (err != 0) | 
|  | goto error; | 
|  | retry: | 
|  | err = __es_insert_extent(inode, &newes); | 
|  | if (err == -ENOMEM && __es_shrink(EXT4_SB(inode->i_sb), | 
|  | 128, EXT4_I(inode))) | 
|  | goto retry; | 
|  | if (err == -ENOMEM && !ext4_es_is_delayed(&newes)) | 
|  | err = 0; | 
|  |  | 
|  | error: | 
|  | write_unlock(&EXT4_I(inode)->i_es_lock); | 
|  |  | 
|  | ext4_es_print_tree(inode); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ext4_es_cache_extent() inserts information into the extent status | 
|  | * tree if and only if there isn't information about the range in | 
|  | * question already. | 
|  | */ | 
|  | void ext4_es_cache_extent(struct inode *inode, ext4_lblk_t lblk, | 
|  | ext4_lblk_t len, ext4_fsblk_t pblk, | 
|  | unsigned int status) | 
|  | { | 
|  | struct extent_status *es; | 
|  | struct extent_status newes; | 
|  | ext4_lblk_t end = lblk + len - 1; | 
|  |  | 
|  | newes.es_lblk = lblk; | 
|  | newes.es_len = len; | 
|  | ext4_es_store_pblock_status(&newes, pblk, status); | 
|  | trace_ext4_es_cache_extent(inode, &newes); | 
|  |  | 
|  | if (!len) | 
|  | return; | 
|  |  | 
|  | BUG_ON(end < lblk); | 
|  |  | 
|  | write_lock(&EXT4_I(inode)->i_es_lock); | 
|  |  | 
|  | es = __es_tree_search(&EXT4_I(inode)->i_es_tree.root, lblk); | 
|  | if (!es || es->es_lblk > end) | 
|  | __es_insert_extent(inode, &newes); | 
|  | write_unlock(&EXT4_I(inode)->i_es_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ext4_es_lookup_extent() looks up an extent in extent status tree. | 
|  | * | 
|  | * ext4_es_lookup_extent is called by ext4_map_blocks/ext4_da_map_blocks. | 
|  | * | 
|  | * Return: 1 on found, 0 on not | 
|  | */ | 
|  | int ext4_es_lookup_extent(struct inode *inode, ext4_lblk_t lblk, | 
|  | struct extent_status *es) | 
|  | { | 
|  | struct ext4_es_tree *tree; | 
|  | struct ext4_es_stats *stats; | 
|  | struct extent_status *es1 = NULL; | 
|  | struct rb_node *node; | 
|  | int found = 0; | 
|  |  | 
|  | trace_ext4_es_lookup_extent_enter(inode, lblk); | 
|  | es_debug("lookup extent in block %u\n", lblk); | 
|  |  | 
|  | tree = &EXT4_I(inode)->i_es_tree; | 
|  | read_lock(&EXT4_I(inode)->i_es_lock); | 
|  |  | 
|  | /* find extent in cache firstly */ | 
|  | es->es_lblk = es->es_len = es->es_pblk = 0; | 
|  | if (tree->cache_es) { | 
|  | es1 = tree->cache_es; | 
|  | if (in_range(lblk, es1->es_lblk, es1->es_len)) { | 
|  | es_debug("%u cached by [%u/%u)\n", | 
|  | lblk, es1->es_lblk, es1->es_len); | 
|  | found = 1; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | node = tree->root.rb_node; | 
|  | while (node) { | 
|  | es1 = rb_entry(node, struct extent_status, rb_node); | 
|  | if (lblk < es1->es_lblk) | 
|  | node = node->rb_left; | 
|  | else if (lblk > ext4_es_end(es1)) | 
|  | node = node->rb_right; | 
|  | else { | 
|  | found = 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | out: | 
|  | stats = &EXT4_SB(inode->i_sb)->s_es_stats; | 
|  | if (found) { | 
|  | BUG_ON(!es1); | 
|  | es->es_lblk = es1->es_lblk; | 
|  | es->es_len = es1->es_len; | 
|  | es->es_pblk = es1->es_pblk; | 
|  | if (!ext4_es_is_referenced(es1)) | 
|  | ext4_es_set_referenced(es1); | 
|  | stats->es_stats_cache_hits++; | 
|  | } else { | 
|  | stats->es_stats_cache_misses++; | 
|  | } | 
|  |  | 
|  | read_unlock(&EXT4_I(inode)->i_es_lock); | 
|  |  | 
|  | trace_ext4_es_lookup_extent_exit(inode, es, found); | 
|  | return found; | 
|  | } | 
|  |  | 
|  | static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk, | 
|  | ext4_lblk_t end) | 
|  | { | 
|  | struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree; | 
|  | struct rb_node *node; | 
|  | struct extent_status *es; | 
|  | struct extent_status orig_es; | 
|  | ext4_lblk_t len1, len2; | 
|  | ext4_fsblk_t block; | 
|  | int err; | 
|  |  | 
|  | retry: | 
|  | err = 0; | 
|  | es = __es_tree_search(&tree->root, lblk); | 
|  | if (!es) | 
|  | goto out; | 
|  | if (es->es_lblk > end) | 
|  | goto out; | 
|  |  | 
|  | /* Simply invalidate cache_es. */ | 
|  | tree->cache_es = NULL; | 
|  |  | 
|  | orig_es.es_lblk = es->es_lblk; | 
|  | orig_es.es_len = es->es_len; | 
|  | orig_es.es_pblk = es->es_pblk; | 
|  |  | 
|  | len1 = lblk > es->es_lblk ? lblk - es->es_lblk : 0; | 
|  | len2 = ext4_es_end(es) > end ? ext4_es_end(es) - end : 0; | 
|  | if (len1 > 0) | 
|  | es->es_len = len1; | 
|  | if (len2 > 0) { | 
|  | if (len1 > 0) { | 
|  | struct extent_status newes; | 
|  |  | 
|  | newes.es_lblk = end + 1; | 
|  | newes.es_len = len2; | 
|  | block = 0x7FDEADBEEFULL; | 
|  | if (ext4_es_is_written(&orig_es) || | 
|  | ext4_es_is_unwritten(&orig_es)) | 
|  | block = ext4_es_pblock(&orig_es) + | 
|  | orig_es.es_len - len2; | 
|  | ext4_es_store_pblock_status(&newes, block, | 
|  | ext4_es_status(&orig_es)); | 
|  | err = __es_insert_extent(inode, &newes); | 
|  | if (err) { | 
|  | es->es_lblk = orig_es.es_lblk; | 
|  | es->es_len = orig_es.es_len; | 
|  | if ((err == -ENOMEM) && | 
|  | __es_shrink(EXT4_SB(inode->i_sb), | 
|  | 128, EXT4_I(inode))) | 
|  | goto retry; | 
|  | goto out; | 
|  | } | 
|  | } else { | 
|  | es->es_lblk = end + 1; | 
|  | es->es_len = len2; | 
|  | if (ext4_es_is_written(es) || | 
|  | ext4_es_is_unwritten(es)) { | 
|  | block = orig_es.es_pblk + orig_es.es_len - len2; | 
|  | ext4_es_store_pblock(es, block); | 
|  | } | 
|  | } | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (len1 > 0) { | 
|  | node = rb_next(&es->rb_node); | 
|  | if (node) | 
|  | es = rb_entry(node, struct extent_status, rb_node); | 
|  | else | 
|  | es = NULL; | 
|  | } | 
|  |  | 
|  | while (es && ext4_es_end(es) <= end) { | 
|  | node = rb_next(&es->rb_node); | 
|  | rb_erase(&es->rb_node, &tree->root); | 
|  | ext4_es_free_extent(inode, es); | 
|  | if (!node) { | 
|  | es = NULL; | 
|  | break; | 
|  | } | 
|  | es = rb_entry(node, struct extent_status, rb_node); | 
|  | } | 
|  |  | 
|  | if (es && es->es_lblk < end + 1) { | 
|  | ext4_lblk_t orig_len = es->es_len; | 
|  |  | 
|  | len1 = ext4_es_end(es) - end; | 
|  | es->es_lblk = end + 1; | 
|  | es->es_len = len1; | 
|  | if (ext4_es_is_written(es) || ext4_es_is_unwritten(es)) { | 
|  | block = es->es_pblk + orig_len - len1; | 
|  | ext4_es_store_pblock(es, block); | 
|  | } | 
|  | } | 
|  |  | 
|  | out: | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ext4_es_remove_extent() removes a space from a extent status tree. | 
|  | * | 
|  | * Return 0 on success, error code on failure. | 
|  | */ | 
|  | int ext4_es_remove_extent(struct inode *inode, ext4_lblk_t lblk, | 
|  | ext4_lblk_t len) | 
|  | { | 
|  | ext4_lblk_t end; | 
|  | int err = 0; | 
|  |  | 
|  | trace_ext4_es_remove_extent(inode, lblk, len); | 
|  | es_debug("remove [%u/%u) from extent status tree of inode %lu\n", | 
|  | lblk, len, inode->i_ino); | 
|  |  | 
|  | if (!len) | 
|  | return err; | 
|  |  | 
|  | end = lblk + len - 1; | 
|  | BUG_ON(end < lblk); | 
|  |  | 
|  | /* | 
|  | * ext4_clear_inode() depends on us taking i_es_lock unconditionally | 
|  | * so that we are sure __es_shrink() is done with the inode before it | 
|  | * is reclaimed. | 
|  | */ | 
|  | write_lock(&EXT4_I(inode)->i_es_lock); | 
|  | err = __es_remove_extent(inode, lblk, end); | 
|  | write_unlock(&EXT4_I(inode)->i_es_lock); | 
|  | ext4_es_print_tree(inode); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int __es_shrink(struct ext4_sb_info *sbi, int nr_to_scan, | 
|  | struct ext4_inode_info *locked_ei) | 
|  | { | 
|  | struct ext4_inode_info *ei; | 
|  | struct ext4_es_stats *es_stats; | 
|  | ktime_t start_time; | 
|  | u64 scan_time; | 
|  | int nr_to_walk; | 
|  | int nr_shrunk = 0; | 
|  | int retried = 0, nr_skipped = 0; | 
|  |  | 
|  | es_stats = &sbi->s_es_stats; | 
|  | start_time = ktime_get(); | 
|  |  | 
|  | retry: | 
|  | spin_lock(&sbi->s_es_lock); | 
|  | nr_to_walk = sbi->s_es_nr_inode; | 
|  | while (nr_to_walk-- > 0) { | 
|  | if (list_empty(&sbi->s_es_list)) { | 
|  | spin_unlock(&sbi->s_es_lock); | 
|  | goto out; | 
|  | } | 
|  | ei = list_first_entry(&sbi->s_es_list, struct ext4_inode_info, | 
|  | i_es_list); | 
|  | /* Move the inode to the tail */ | 
|  | list_move_tail(&ei->i_es_list, &sbi->s_es_list); | 
|  |  | 
|  | /* | 
|  | * Normally we try hard to avoid shrinking precached inodes, | 
|  | * but we will as a last resort. | 
|  | */ | 
|  | if (!retried && ext4_test_inode_state(&ei->vfs_inode, | 
|  | EXT4_STATE_EXT_PRECACHED)) { | 
|  | nr_skipped++; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (ei == locked_ei || !write_trylock(&ei->i_es_lock)) { | 
|  | nr_skipped++; | 
|  | continue; | 
|  | } | 
|  | /* | 
|  | * Now we hold i_es_lock which protects us from inode reclaim | 
|  | * freeing inode under us | 
|  | */ | 
|  | spin_unlock(&sbi->s_es_lock); | 
|  |  | 
|  | nr_shrunk += es_reclaim_extents(ei, &nr_to_scan); | 
|  | write_unlock(&ei->i_es_lock); | 
|  |  | 
|  | if (nr_to_scan <= 0) | 
|  | goto out; | 
|  | spin_lock(&sbi->s_es_lock); | 
|  | } | 
|  | spin_unlock(&sbi->s_es_lock); | 
|  |  | 
|  | /* | 
|  | * If we skipped any inodes, and we weren't able to make any | 
|  | * forward progress, try again to scan precached inodes. | 
|  | */ | 
|  | if ((nr_shrunk == 0) && nr_skipped && !retried) { | 
|  | retried++; | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | if (locked_ei && nr_shrunk == 0) | 
|  | nr_shrunk = es_reclaim_extents(locked_ei, &nr_to_scan); | 
|  |  | 
|  | out: | 
|  | scan_time = ktime_to_ns(ktime_sub(ktime_get(), start_time)); | 
|  | if (likely(es_stats->es_stats_scan_time)) | 
|  | es_stats->es_stats_scan_time = (scan_time + | 
|  | es_stats->es_stats_scan_time*3) / 4; | 
|  | else | 
|  | es_stats->es_stats_scan_time = scan_time; | 
|  | if (scan_time > es_stats->es_stats_max_scan_time) | 
|  | es_stats->es_stats_max_scan_time = scan_time; | 
|  | if (likely(es_stats->es_stats_shrunk)) | 
|  | es_stats->es_stats_shrunk = (nr_shrunk + | 
|  | es_stats->es_stats_shrunk*3) / 4; | 
|  | else | 
|  | es_stats->es_stats_shrunk = nr_shrunk; | 
|  |  | 
|  | trace_ext4_es_shrink(sbi->s_sb, nr_shrunk, scan_time, | 
|  | nr_skipped, retried); | 
|  | return nr_shrunk; | 
|  | } | 
|  |  | 
|  | static unsigned long ext4_es_count(struct shrinker *shrink, | 
|  | struct shrink_control *sc) | 
|  | { | 
|  | unsigned long nr; | 
|  | struct ext4_sb_info *sbi; | 
|  |  | 
|  | sbi = container_of(shrink, struct ext4_sb_info, s_es_shrinker); | 
|  | nr = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt); | 
|  | trace_ext4_es_shrink_count(sbi->s_sb, sc->nr_to_scan, nr); | 
|  | return nr; | 
|  | } | 
|  |  | 
|  | static unsigned long ext4_es_scan(struct shrinker *shrink, | 
|  | struct shrink_control *sc) | 
|  | { | 
|  | struct ext4_sb_info *sbi = container_of(shrink, | 
|  | struct ext4_sb_info, s_es_shrinker); | 
|  | int nr_to_scan = sc->nr_to_scan; | 
|  | int ret, nr_shrunk; | 
|  |  | 
|  | ret = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt); | 
|  | trace_ext4_es_shrink_scan_enter(sbi->s_sb, nr_to_scan, ret); | 
|  |  | 
|  | if (!nr_to_scan) | 
|  | return ret; | 
|  |  | 
|  | nr_shrunk = __es_shrink(sbi, nr_to_scan, NULL); | 
|  |  | 
|  | trace_ext4_es_shrink_scan_exit(sbi->s_sb, nr_shrunk, ret); | 
|  | return nr_shrunk; | 
|  | } | 
|  |  | 
|  | int ext4_seq_es_shrinker_info_show(struct seq_file *seq, void *v) | 
|  | { | 
|  | struct ext4_sb_info *sbi = EXT4_SB((struct super_block *) seq->private); | 
|  | struct ext4_es_stats *es_stats = &sbi->s_es_stats; | 
|  | struct ext4_inode_info *ei, *max = NULL; | 
|  | unsigned int inode_cnt = 0; | 
|  |  | 
|  | if (v != SEQ_START_TOKEN) | 
|  | return 0; | 
|  |  | 
|  | /* here we just find an inode that has the max nr. of objects */ | 
|  | spin_lock(&sbi->s_es_lock); | 
|  | list_for_each_entry(ei, &sbi->s_es_list, i_es_list) { | 
|  | inode_cnt++; | 
|  | if (max && max->i_es_all_nr < ei->i_es_all_nr) | 
|  | max = ei; | 
|  | else if (!max) | 
|  | max = ei; | 
|  | } | 
|  | spin_unlock(&sbi->s_es_lock); | 
|  |  | 
|  | seq_printf(seq, "stats:\n  %lld objects\n  %lld reclaimable objects\n", | 
|  | percpu_counter_sum_positive(&es_stats->es_stats_all_cnt), | 
|  | percpu_counter_sum_positive(&es_stats->es_stats_shk_cnt)); | 
|  | seq_printf(seq, "  %lu/%lu cache hits/misses\n", | 
|  | es_stats->es_stats_cache_hits, | 
|  | es_stats->es_stats_cache_misses); | 
|  | if (inode_cnt) | 
|  | seq_printf(seq, "  %d inodes on list\n", inode_cnt); | 
|  |  | 
|  | seq_printf(seq, "average:\n  %llu us scan time\n", | 
|  | div_u64(es_stats->es_stats_scan_time, 1000)); | 
|  | seq_printf(seq, "  %lu shrunk objects\n", es_stats->es_stats_shrunk); | 
|  | if (inode_cnt) | 
|  | seq_printf(seq, | 
|  | "maximum:\n  %lu inode (%u objects, %u reclaimable)\n" | 
|  | "  %llu us max scan time\n", | 
|  | max->vfs_inode.i_ino, max->i_es_all_nr, max->i_es_shk_nr, | 
|  | div_u64(es_stats->es_stats_max_scan_time, 1000)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int ext4_es_register_shrinker(struct ext4_sb_info *sbi) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | /* Make sure we have enough bits for physical block number */ | 
|  | BUILD_BUG_ON(ES_SHIFT < 48); | 
|  | INIT_LIST_HEAD(&sbi->s_es_list); | 
|  | sbi->s_es_nr_inode = 0; | 
|  | spin_lock_init(&sbi->s_es_lock); | 
|  | sbi->s_es_stats.es_stats_shrunk = 0; | 
|  | sbi->s_es_stats.es_stats_cache_hits = 0; | 
|  | sbi->s_es_stats.es_stats_cache_misses = 0; | 
|  | sbi->s_es_stats.es_stats_scan_time = 0; | 
|  | sbi->s_es_stats.es_stats_max_scan_time = 0; | 
|  | err = percpu_counter_init(&sbi->s_es_stats.es_stats_all_cnt, 0, GFP_KERNEL); | 
|  | if (err) | 
|  | return err; | 
|  | err = percpu_counter_init(&sbi->s_es_stats.es_stats_shk_cnt, 0, GFP_KERNEL); | 
|  | if (err) | 
|  | goto err1; | 
|  |  | 
|  | sbi->s_es_shrinker.scan_objects = ext4_es_scan; | 
|  | sbi->s_es_shrinker.count_objects = ext4_es_count; | 
|  | sbi->s_es_shrinker.seeks = DEFAULT_SEEKS; | 
|  | err = register_shrinker(&sbi->s_es_shrinker); | 
|  | if (err) | 
|  | goto err2; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err2: | 
|  | percpu_counter_destroy(&sbi->s_es_stats.es_stats_shk_cnt); | 
|  | err1: | 
|  | percpu_counter_destroy(&sbi->s_es_stats.es_stats_all_cnt); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | void ext4_es_unregister_shrinker(struct ext4_sb_info *sbi) | 
|  | { | 
|  | percpu_counter_destroy(&sbi->s_es_stats.es_stats_all_cnt); | 
|  | percpu_counter_destroy(&sbi->s_es_stats.es_stats_shk_cnt); | 
|  | unregister_shrinker(&sbi->s_es_shrinker); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Shrink extents in given inode from ei->i_es_shrink_lblk till end. Scan at | 
|  | * most *nr_to_scan extents, update *nr_to_scan accordingly. | 
|  | * | 
|  | * Return 0 if we hit end of tree / interval, 1 if we exhausted nr_to_scan. | 
|  | * Increment *nr_shrunk by the number of reclaimed extents. Also update | 
|  | * ei->i_es_shrink_lblk to where we should continue scanning. | 
|  | */ | 
|  | static int es_do_reclaim_extents(struct ext4_inode_info *ei, ext4_lblk_t end, | 
|  | int *nr_to_scan, int *nr_shrunk) | 
|  | { | 
|  | struct inode *inode = &ei->vfs_inode; | 
|  | struct ext4_es_tree *tree = &ei->i_es_tree; | 
|  | struct extent_status *es; | 
|  | struct rb_node *node; | 
|  |  | 
|  | es = __es_tree_search(&tree->root, ei->i_es_shrink_lblk); | 
|  | if (!es) | 
|  | goto out_wrap; | 
|  | node = &es->rb_node; | 
|  | while (*nr_to_scan > 0) { | 
|  | if (es->es_lblk > end) { | 
|  | ei->i_es_shrink_lblk = end + 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | (*nr_to_scan)--; | 
|  | node = rb_next(&es->rb_node); | 
|  | /* | 
|  | * We can't reclaim delayed extent from status tree because | 
|  | * fiemap, bigallic, and seek_data/hole need to use it. | 
|  | */ | 
|  | if (ext4_es_is_delayed(es)) | 
|  | goto next; | 
|  | if (ext4_es_is_referenced(es)) { | 
|  | ext4_es_clear_referenced(es); | 
|  | goto next; | 
|  | } | 
|  |  | 
|  | rb_erase(&es->rb_node, &tree->root); | 
|  | ext4_es_free_extent(inode, es); | 
|  | (*nr_shrunk)++; | 
|  | next: | 
|  | if (!node) | 
|  | goto out_wrap; | 
|  | es = rb_entry(node, struct extent_status, rb_node); | 
|  | } | 
|  | ei->i_es_shrink_lblk = es->es_lblk; | 
|  | return 1; | 
|  | out_wrap: | 
|  | ei->i_es_shrink_lblk = 0; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int es_reclaim_extents(struct ext4_inode_info *ei, int *nr_to_scan) | 
|  | { | 
|  | struct inode *inode = &ei->vfs_inode; | 
|  | int nr_shrunk = 0; | 
|  | ext4_lblk_t start = ei->i_es_shrink_lblk; | 
|  | static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL, | 
|  | DEFAULT_RATELIMIT_BURST); | 
|  |  | 
|  | if (ei->i_es_shk_nr == 0) | 
|  | return 0; | 
|  |  | 
|  | if (ext4_test_inode_state(inode, EXT4_STATE_EXT_PRECACHED) && | 
|  | __ratelimit(&_rs)) | 
|  | ext4_warning(inode->i_sb, "forced shrink of precached extents"); | 
|  |  | 
|  | if (!es_do_reclaim_extents(ei, EXT_MAX_BLOCKS, nr_to_scan, &nr_shrunk) && | 
|  | start != 0) | 
|  | es_do_reclaim_extents(ei, start - 1, nr_to_scan, &nr_shrunk); | 
|  |  | 
|  | ei->i_es_tree.cache_es = NULL; | 
|  | return nr_shrunk; | 
|  | } |