| // SPDX-License-Identifier: GPL-2.0 | 
 | /* | 
 |  * xHCI host controller driver | 
 |  * | 
 |  * Copyright (C) 2008 Intel Corp. | 
 |  * | 
 |  * Author: Sarah Sharp | 
 |  * Some code borrowed from the Linux EHCI driver. | 
 |  */ | 
 |  | 
 | /* | 
 |  * Ring initialization rules: | 
 |  * 1. Each segment is initialized to zero, except for link TRBs. | 
 |  * 2. Ring cycle state = 0.  This represents Producer Cycle State (PCS) or | 
 |  *    Consumer Cycle State (CCS), depending on ring function. | 
 |  * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment. | 
 |  * | 
 |  * Ring behavior rules: | 
 |  * 1. A ring is empty if enqueue == dequeue.  This means there will always be at | 
 |  *    least one free TRB in the ring.  This is useful if you want to turn that | 
 |  *    into a link TRB and expand the ring. | 
 |  * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a | 
 |  *    link TRB, then load the pointer with the address in the link TRB.  If the | 
 |  *    link TRB had its toggle bit set, you may need to update the ring cycle | 
 |  *    state (see cycle bit rules).  You may have to do this multiple times | 
 |  *    until you reach a non-link TRB. | 
 |  * 3. A ring is full if enqueue++ (for the definition of increment above) | 
 |  *    equals the dequeue pointer. | 
 |  * | 
 |  * Cycle bit rules: | 
 |  * 1. When a consumer increments a dequeue pointer and encounters a toggle bit | 
 |  *    in a link TRB, it must toggle the ring cycle state. | 
 |  * 2. When a producer increments an enqueue pointer and encounters a toggle bit | 
 |  *    in a link TRB, it must toggle the ring cycle state. | 
 |  * | 
 |  * Producer rules: | 
 |  * 1. Check if ring is full before you enqueue. | 
 |  * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing. | 
 |  *    Update enqueue pointer between each write (which may update the ring | 
 |  *    cycle state). | 
 |  * 3. Notify consumer.  If SW is producer, it rings the doorbell for command | 
 |  *    and endpoint rings.  If HC is the producer for the event ring, | 
 |  *    and it generates an interrupt according to interrupt modulation rules. | 
 |  * | 
 |  * Consumer rules: | 
 |  * 1. Check if TRB belongs to you.  If the cycle bit == your ring cycle state, | 
 |  *    the TRB is owned by the consumer. | 
 |  * 2. Update dequeue pointer (which may update the ring cycle state) and | 
 |  *    continue processing TRBs until you reach a TRB which is not owned by you. | 
 |  * 3. Notify the producer.  SW is the consumer for the event ring, and it | 
 |  *   updates event ring dequeue pointer.  HC is the consumer for the command and | 
 |  *   endpoint rings; it generates events on the event ring for these. | 
 |  */ | 
 |  | 
 | #include <linux/jiffies.h> | 
 | #include <linux/scatterlist.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/string_choices.h> | 
 | #include <linux/dma-mapping.h> | 
 | #include "xhci.h" | 
 | #include "xhci-trace.h" | 
 |  | 
 | static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd, | 
 | 			 u32 field1, u32 field2, | 
 | 			 u32 field3, u32 field4, bool command_must_succeed); | 
 |  | 
 | /* | 
 |  * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA | 
 |  * address of the TRB. | 
 |  */ | 
 | dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg, | 
 | 		union xhci_trb *trb) | 
 | { | 
 | 	unsigned long segment_offset; | 
 |  | 
 | 	if (!seg || !trb || trb < seg->trbs) | 
 | 		return 0; | 
 | 	/* offset in TRBs */ | 
 | 	segment_offset = trb - seg->trbs; | 
 | 	if (segment_offset >= TRBS_PER_SEGMENT) | 
 | 		return 0; | 
 | 	return seg->dma + (segment_offset * sizeof(*trb)); | 
 | } | 
 |  | 
 | static bool trb_is_noop(union xhci_trb *trb) | 
 | { | 
 | 	return TRB_TYPE_NOOP_LE32(trb->generic.field[3]); | 
 | } | 
 |  | 
 | static bool trb_is_link(union xhci_trb *trb) | 
 | { | 
 | 	return TRB_TYPE_LINK_LE32(trb->link.control); | 
 | } | 
 |  | 
 | static bool last_trb_on_seg(struct xhci_segment *seg, union xhci_trb *trb) | 
 | { | 
 | 	return trb == &seg->trbs[TRBS_PER_SEGMENT - 1]; | 
 | } | 
 |  | 
 | static bool last_trb_on_ring(struct xhci_ring *ring, | 
 | 			struct xhci_segment *seg, union xhci_trb *trb) | 
 | { | 
 | 	return last_trb_on_seg(seg, trb) && (seg->next == ring->first_seg); | 
 | } | 
 |  | 
 | static bool link_trb_toggles_cycle(union xhci_trb *trb) | 
 | { | 
 | 	return le32_to_cpu(trb->link.control) & LINK_TOGGLE; | 
 | } | 
 |  | 
 | static bool last_td_in_urb(struct xhci_td *td) | 
 | { | 
 | 	struct urb_priv *urb_priv = td->urb->hcpriv; | 
 |  | 
 | 	return urb_priv->num_tds_done == urb_priv->num_tds; | 
 | } | 
 |  | 
 | static bool unhandled_event_trb(struct xhci_ring *ring) | 
 | { | 
 | 	return ((le32_to_cpu(ring->dequeue->event_cmd.flags) & TRB_CYCLE) == | 
 | 		ring->cycle_state); | 
 | } | 
 |  | 
 | static void inc_td_cnt(struct urb *urb) | 
 | { | 
 | 	struct urb_priv *urb_priv = urb->hcpriv; | 
 |  | 
 | 	urb_priv->num_tds_done++; | 
 | } | 
 |  | 
 | static void trb_to_noop(union xhci_trb *trb, u32 noop_type) | 
 | { | 
 | 	if (trb_is_link(trb)) { | 
 | 		/* unchain chained link TRBs */ | 
 | 		trb->link.control &= cpu_to_le32(~TRB_CHAIN); | 
 | 	} else { | 
 | 		trb->generic.field[0] = 0; | 
 | 		trb->generic.field[1] = 0; | 
 | 		trb->generic.field[2] = 0; | 
 | 		/* Preserve only the cycle bit of this TRB */ | 
 | 		trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE); | 
 | 		trb->generic.field[3] |= cpu_to_le32(TRB_TYPE(noop_type)); | 
 | 	} | 
 | } | 
 |  | 
 | /* Updates trb to point to the next TRB in the ring, and updates seg if the next | 
 |  * TRB is in a new segment.  This does not skip over link TRBs, and it does not | 
 |  * effect the ring dequeue or enqueue pointers. | 
 |  */ | 
 | static void next_trb(struct xhci_segment **seg, | 
 | 			union xhci_trb **trb) | 
 | { | 
 | 	if (trb_is_link(*trb) || last_trb_on_seg(*seg, *trb)) { | 
 | 		*seg = (*seg)->next; | 
 | 		*trb = ((*seg)->trbs); | 
 | 	} else { | 
 | 		(*trb)++; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * See Cycle bit rules. SW is the consumer for the event ring only. | 
 |  */ | 
 | void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring) | 
 | { | 
 | 	unsigned int link_trb_count = 0; | 
 |  | 
 | 	/* event ring doesn't have link trbs, check for last trb */ | 
 | 	if (ring->type == TYPE_EVENT) { | 
 | 		if (!last_trb_on_seg(ring->deq_seg, ring->dequeue)) { | 
 | 			ring->dequeue++; | 
 | 			return; | 
 | 		} | 
 | 		if (last_trb_on_ring(ring, ring->deq_seg, ring->dequeue)) | 
 | 			ring->cycle_state ^= 1; | 
 | 		ring->deq_seg = ring->deq_seg->next; | 
 | 		ring->dequeue = ring->deq_seg->trbs; | 
 |  | 
 | 		trace_xhci_inc_deq(ring); | 
 |  | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* All other rings have link trbs */ | 
 | 	if (!trb_is_link(ring->dequeue)) { | 
 | 		if (last_trb_on_seg(ring->deq_seg, ring->dequeue)) | 
 | 			xhci_warn(xhci, "Missing link TRB at end of segment\n"); | 
 | 		else | 
 | 			ring->dequeue++; | 
 | 	} | 
 |  | 
 | 	while (trb_is_link(ring->dequeue)) { | 
 | 		ring->deq_seg = ring->deq_seg->next; | 
 | 		ring->dequeue = ring->deq_seg->trbs; | 
 |  | 
 | 		trace_xhci_inc_deq(ring); | 
 |  | 
 | 		if (link_trb_count++ > ring->num_segs) { | 
 | 			xhci_warn(xhci, "Ring is an endless link TRB loop\n"); | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	return; | 
 | } | 
 |  | 
 | /* | 
 |  * If enqueue points at a link TRB, follow links until an ordinary TRB is reached. | 
 |  * Toggle the cycle bit of passed link TRBs and optionally chain them. | 
 |  */ | 
 | static void inc_enq_past_link(struct xhci_hcd *xhci, struct xhci_ring *ring, u32 chain) | 
 | { | 
 | 	unsigned int link_trb_count = 0; | 
 |  | 
 | 	while (trb_is_link(ring->enqueue)) { | 
 |  | 
 | 		/* | 
 | 		 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit | 
 | 		 * set, but other sections talk about dealing with the chain bit set. This was | 
 | 		 * fixed in the 0.96 specification errata, but we have to assume that all 0.95 | 
 | 		 * xHCI hardware can't handle the chain bit being cleared on a link TRB. | 
 | 		 * | 
 | 		 * On 0.95 and some 0.96 HCs the chain bit is set once at segment initalization | 
 | 		 * and never changed here. On all others, modify it as requested by the caller. | 
 | 		 */ | 
 | 		if (!xhci_link_chain_quirk(xhci, ring->type)) { | 
 | 			ring->enqueue->link.control &= cpu_to_le32(~TRB_CHAIN); | 
 | 			ring->enqueue->link.control |= cpu_to_le32(chain); | 
 | 		} | 
 |  | 
 | 		/* Give this link TRB to the hardware */ | 
 | 		wmb(); | 
 | 		ring->enqueue->link.control ^= cpu_to_le32(TRB_CYCLE); | 
 |  | 
 | 		/* Toggle the cycle bit after the last ring segment. */ | 
 | 		if (link_trb_toggles_cycle(ring->enqueue)) | 
 | 			ring->cycle_state ^= 1; | 
 |  | 
 | 		ring->enq_seg = ring->enq_seg->next; | 
 | 		ring->enqueue = ring->enq_seg->trbs; | 
 |  | 
 | 		trace_xhci_inc_enq(ring); | 
 |  | 
 | 		if (link_trb_count++ > ring->num_segs) { | 
 | 			xhci_warn(xhci, "Link TRB loop at enqueue\n"); | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * See Cycle bit rules. SW is the consumer for the event ring only. | 
 |  * | 
 |  * If we've just enqueued a TRB that is in the middle of a TD (meaning the | 
 |  * chain bit is set), then set the chain bit in all the following link TRBs. | 
 |  * If we've enqueued the last TRB in a TD, make sure the following link TRBs | 
 |  * have their chain bit cleared (so that each Link TRB is a separate TD). | 
 |  * | 
 |  * @more_trbs_coming:	Will you enqueue more TRBs before calling | 
 |  *			prepare_transfer()? | 
 |  */ | 
 | static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring, | 
 | 			bool more_trbs_coming) | 
 | { | 
 | 	u32 chain; | 
 |  | 
 | 	chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN; | 
 |  | 
 | 	if (last_trb_on_seg(ring->enq_seg, ring->enqueue)) { | 
 | 		xhci_err(xhci, "Tried to move enqueue past ring segment\n"); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	ring->enqueue++; | 
 |  | 
 | 	/* | 
 | 	 * If we are in the middle of a TD or the caller plans to enqueue more | 
 | 	 * TDs as one transfer (eg. control), traverse any link TRBs right now. | 
 | 	 * Otherwise, enqueue can stay on a link until the next prepare_ring(). | 
 | 	 * This avoids enqueue entering deq_seg and simplifies ring expansion. | 
 | 	 */ | 
 | 	if (trb_is_link(ring->enqueue) && (chain || more_trbs_coming)) | 
 | 		inc_enq_past_link(xhci, ring, chain); | 
 | } | 
 |  | 
 | /* | 
 |  * If the suspect DMA address is a TRB in this TD, this function returns that | 
 |  * TRB's segment. Otherwise it returns 0. | 
 |  */ | 
 | static struct xhci_segment *trb_in_td(struct xhci_td *td, dma_addr_t suspect_dma) | 
 | { | 
 | 	dma_addr_t start_dma; | 
 | 	dma_addr_t end_seg_dma; | 
 | 	dma_addr_t end_trb_dma; | 
 | 	struct xhci_segment *cur_seg; | 
 |  | 
 | 	start_dma = xhci_trb_virt_to_dma(td->start_seg, td->start_trb); | 
 | 	cur_seg = td->start_seg; | 
 |  | 
 | 	do { | 
 | 		if (start_dma == 0) | 
 | 			return NULL; | 
 | 		/* We may get an event for a Link TRB in the middle of a TD */ | 
 | 		end_seg_dma = xhci_trb_virt_to_dma(cur_seg, | 
 | 				&cur_seg->trbs[TRBS_PER_SEGMENT - 1]); | 
 | 		/* If the end TRB isn't in this segment, this is set to 0 */ | 
 | 		end_trb_dma = xhci_trb_virt_to_dma(cur_seg, td->end_trb); | 
 |  | 
 | 		if (end_trb_dma > 0) { | 
 | 			/* The end TRB is in this segment, so suspect should be here */ | 
 | 			if (start_dma <= end_trb_dma) { | 
 | 				if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma) | 
 | 					return cur_seg; | 
 | 			} else { | 
 | 				/* Case for one segment with | 
 | 				 * a TD wrapped around to the top | 
 | 				 */ | 
 | 				if ((suspect_dma >= start_dma && | 
 | 							suspect_dma <= end_seg_dma) || | 
 | 						(suspect_dma >= cur_seg->dma && | 
 | 						 suspect_dma <= end_trb_dma)) | 
 | 					return cur_seg; | 
 | 			} | 
 | 			return NULL; | 
 | 		} | 
 | 		/* Might still be somewhere in this segment */ | 
 | 		if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma) | 
 | 			return cur_seg; | 
 |  | 
 | 		cur_seg = cur_seg->next; | 
 | 		start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]); | 
 | 	} while (cur_seg != td->start_seg); | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * Return number of free normal TRBs from enqueue to dequeue pointer on ring. | 
 |  * Not counting an assumed link TRB at end of each TRBS_PER_SEGMENT sized segment. | 
 |  * Only for transfer and command rings where driver is the producer, not for | 
 |  * event rings. | 
 |  */ | 
 | static unsigned int xhci_num_trbs_free(struct xhci_ring *ring) | 
 | { | 
 | 	struct xhci_segment *enq_seg = ring->enq_seg; | 
 | 	union xhci_trb *enq = ring->enqueue; | 
 | 	union xhci_trb *last_on_seg; | 
 | 	unsigned int free = 0; | 
 | 	int i = 0; | 
 |  | 
 | 	/* Ring might be empty even if enq != deq if enq is left on a link trb */ | 
 | 	if (trb_is_link(enq)) { | 
 | 		enq_seg = enq_seg->next; | 
 | 		enq = enq_seg->trbs; | 
 | 	} | 
 |  | 
 | 	/* Empty ring, common case, don't walk the segments */ | 
 | 	if (enq == ring->dequeue) | 
 | 		return ring->num_segs * (TRBS_PER_SEGMENT - 1); | 
 |  | 
 | 	do { | 
 | 		if (ring->deq_seg == enq_seg && ring->dequeue >= enq) | 
 | 			return free + (ring->dequeue - enq); | 
 | 		last_on_seg = &enq_seg->trbs[TRBS_PER_SEGMENT - 1]; | 
 | 		free += last_on_seg - enq; | 
 | 		enq_seg = enq_seg->next; | 
 | 		enq = enq_seg->trbs; | 
 | 	} while (i++ < ring->num_segs); | 
 |  | 
 | 	return free; | 
 | } | 
 |  | 
 | /* | 
 |  * Check to see if there's room to enqueue num_trbs on the ring and make sure | 
 |  * enqueue pointer will not advance into dequeue segment. See rules above. | 
 |  * return number of new segments needed to ensure this. | 
 |  */ | 
 |  | 
 | static unsigned int xhci_ring_expansion_needed(struct xhci_hcd *xhci, struct xhci_ring *ring, | 
 | 					       unsigned int num_trbs) | 
 | { | 
 | 	struct xhci_segment *seg; | 
 | 	int trbs_past_seg; | 
 | 	int enq_used; | 
 | 	int new_segs; | 
 |  | 
 | 	enq_used = ring->enqueue - ring->enq_seg->trbs; | 
 |  | 
 | 	/* how many trbs will be queued past the enqueue segment? */ | 
 | 	trbs_past_seg = enq_used + num_trbs - (TRBS_PER_SEGMENT - 1); | 
 |  | 
 | 	/* | 
 | 	 * Consider expanding the ring already if num_trbs fills the current | 
 | 	 * segment (i.e. trbs_past_seg == 0), not only when num_trbs goes into | 
 | 	 * the next segment. Avoids confusing full ring with special empty ring | 
 | 	 * case below | 
 | 	 */ | 
 | 	if (trbs_past_seg < 0) | 
 | 		return 0; | 
 |  | 
 | 	/* Empty ring special case, enqueue stuck on link trb while dequeue advanced */ | 
 | 	if (trb_is_link(ring->enqueue) && ring->enq_seg->next->trbs == ring->dequeue) | 
 | 		return 0; | 
 |  | 
 | 	new_segs = 1 + (trbs_past_seg / (TRBS_PER_SEGMENT - 1)); | 
 | 	seg = ring->enq_seg; | 
 |  | 
 | 	while (new_segs > 0) { | 
 | 		seg = seg->next; | 
 | 		if (seg == ring->deq_seg) { | 
 | 			xhci_dbg(xhci, "Adding %d trbs requires expanding ring by %d segments\n", | 
 | 				 num_trbs, new_segs); | 
 | 			return new_segs; | 
 | 		} | 
 | 		new_segs--; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Ring the host controller doorbell after placing a command on the ring */ | 
 | void xhci_ring_cmd_db(struct xhci_hcd *xhci) | 
 | { | 
 | 	if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING)) | 
 | 		return; | 
 |  | 
 | 	xhci_dbg(xhci, "// Ding dong!\n"); | 
 |  | 
 | 	trace_xhci_ring_host_doorbell(0, DB_VALUE_HOST); | 
 |  | 
 | 	writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]); | 
 | 	/* Flush PCI posted writes */ | 
 | 	readl(&xhci->dba->doorbell[0]); | 
 | } | 
 |  | 
 | static bool xhci_mod_cmd_timer(struct xhci_hcd *xhci) | 
 | { | 
 | 	return mod_delayed_work(system_wq, &xhci->cmd_timer, | 
 | 			msecs_to_jiffies(xhci->current_cmd->timeout_ms)); | 
 | } | 
 |  | 
 | static struct xhci_command *xhci_next_queued_cmd(struct xhci_hcd *xhci) | 
 | { | 
 | 	return list_first_entry_or_null(&xhci->cmd_list, struct xhci_command, | 
 | 					cmd_list); | 
 | } | 
 |  | 
 | /* | 
 |  * Turn all commands on command ring with status set to "aborted" to no-op trbs. | 
 |  * If there are other commands waiting then restart the ring and kick the timer. | 
 |  * This must be called with command ring stopped and xhci->lock held. | 
 |  */ | 
 | static void xhci_handle_stopped_cmd_ring(struct xhci_hcd *xhci, | 
 | 					 struct xhci_command *cur_cmd) | 
 | { | 
 | 	struct xhci_command *i_cmd; | 
 |  | 
 | 	/* Turn all aborted commands in list to no-ops, then restart */ | 
 | 	list_for_each_entry(i_cmd, &xhci->cmd_list, cmd_list) { | 
 |  | 
 | 		if (i_cmd->status != COMP_COMMAND_ABORTED) | 
 | 			continue; | 
 |  | 
 | 		i_cmd->status = COMP_COMMAND_RING_STOPPED; | 
 |  | 
 | 		xhci_dbg(xhci, "Turn aborted command %p to no-op\n", | 
 | 			 i_cmd->command_trb); | 
 |  | 
 | 		trb_to_noop(i_cmd->command_trb, TRB_CMD_NOOP); | 
 |  | 
 | 		/* | 
 | 		 * caller waiting for completion is called when command | 
 | 		 *  completion event is received for these no-op commands | 
 | 		 */ | 
 | 	} | 
 |  | 
 | 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; | 
 |  | 
 | 	/* ring command ring doorbell to restart the command ring */ | 
 | 	if ((xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) && | 
 | 	    !(xhci->xhc_state & XHCI_STATE_DYING)) { | 
 | 		xhci->current_cmd = cur_cmd; | 
 | 		if (cur_cmd) | 
 | 			xhci_mod_cmd_timer(xhci); | 
 | 		xhci_ring_cmd_db(xhci); | 
 | 	} | 
 | } | 
 |  | 
 | /* Must be called with xhci->lock held, releases and acquires lock back */ | 
 | static int xhci_abort_cmd_ring(struct xhci_hcd *xhci, unsigned long flags) | 
 | { | 
 | 	struct xhci_segment *new_seg	= xhci->cmd_ring->deq_seg; | 
 | 	union xhci_trb *new_deq		= xhci->cmd_ring->dequeue; | 
 | 	u64 crcr; | 
 | 	int ret; | 
 |  | 
 | 	xhci_dbg(xhci, "Abort command ring\n"); | 
 |  | 
 | 	reinit_completion(&xhci->cmd_ring_stop_completion); | 
 |  | 
 | 	/* | 
 | 	 * The control bits like command stop, abort are located in lower | 
 | 	 * dword of the command ring control register. | 
 | 	 * Some controllers require all 64 bits to be written to abort the ring. | 
 | 	 * Make sure the upper dword is valid, pointing to the next command, | 
 | 	 * avoiding corrupting the command ring pointer in case the command ring | 
 | 	 * is stopped by the time the upper dword is written. | 
 | 	 */ | 
 | 	next_trb(&new_seg, &new_deq); | 
 | 	if (trb_is_link(new_deq)) | 
 | 		next_trb(&new_seg, &new_deq); | 
 |  | 
 | 	crcr = xhci_trb_virt_to_dma(new_seg, new_deq); | 
 | 	xhci_write_64(xhci, crcr | CMD_RING_ABORT, &xhci->op_regs->cmd_ring); | 
 |  | 
 | 	/* Section 4.6.1.2 of xHCI 1.0 spec says software should also time the | 
 | 	 * completion of the Command Abort operation. If CRR is not negated in 5 | 
 | 	 * seconds then driver handles it as if host died (-ENODEV). | 
 | 	 * In the future we should distinguish between -ENODEV and -ETIMEDOUT | 
 | 	 * and try to recover a -ETIMEDOUT with a host controller reset. | 
 | 	 */ | 
 | 	ret = xhci_handshake(&xhci->op_regs->cmd_ring, | 
 | 			CMD_RING_RUNNING, 0, 5 * 1000 * 1000); | 
 | 	if (ret < 0) { | 
 | 		xhci_err(xhci, "Abort failed to stop command ring: %d\n", ret); | 
 | 		xhci_halt(xhci); | 
 | 		xhci_hc_died(xhci); | 
 | 		return ret; | 
 | 	} | 
 | 	/* | 
 | 	 * Writing the CMD_RING_ABORT bit should cause a cmd completion event, | 
 | 	 * however on some host hw the CMD_RING_RUNNING bit is correctly cleared | 
 | 	 * but the completion event in never sent. Wait 2 secs (arbitrary | 
 | 	 * number) to handle those cases after negation of CMD_RING_RUNNING. | 
 | 	 */ | 
 | 	spin_unlock_irqrestore(&xhci->lock, flags); | 
 | 	ret = wait_for_completion_timeout(&xhci->cmd_ring_stop_completion, | 
 | 					  msecs_to_jiffies(2000)); | 
 | 	spin_lock_irqsave(&xhci->lock, flags); | 
 | 	if (!ret) { | 
 | 		xhci_dbg(xhci, "No stop event for abort, ring start fail?\n"); | 
 | 		xhci_cleanup_command_queue(xhci); | 
 | 	} else { | 
 | 		xhci_handle_stopped_cmd_ring(xhci, xhci_next_queued_cmd(xhci)); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | void xhci_ring_ep_doorbell(struct xhci_hcd *xhci, | 
 | 		unsigned int slot_id, | 
 | 		unsigned int ep_index, | 
 | 		unsigned int stream_id) | 
 | { | 
 | 	__le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id]; | 
 | 	struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; | 
 | 	unsigned int ep_state = ep->ep_state; | 
 |  | 
 | 	/* Don't ring the doorbell for this endpoint if there are pending | 
 | 	 * cancellations because we don't want to interrupt processing. | 
 | 	 * We don't want to restart any stream rings if there's a set dequeue | 
 | 	 * pointer command pending because the device can choose to start any | 
 | 	 * stream once the endpoint is on the HW schedule. | 
 | 	 */ | 
 | 	if ((ep_state & EP_STOP_CMD_PENDING) || (ep_state & SET_DEQ_PENDING) || | 
 | 	    (ep_state & EP_HALTED) || (ep_state & EP_CLEARING_TT)) | 
 | 		return; | 
 |  | 
 | 	trace_xhci_ring_ep_doorbell(slot_id, DB_VALUE(ep_index, stream_id)); | 
 |  | 
 | 	writel(DB_VALUE(ep_index, stream_id), db_addr); | 
 | 	/* flush the write */ | 
 | 	readl(db_addr); | 
 | } | 
 |  | 
 | /* Ring the doorbell for any rings with pending URBs */ | 
 | static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci, | 
 | 		unsigned int slot_id, | 
 | 		unsigned int ep_index) | 
 | { | 
 | 	unsigned int stream_id; | 
 | 	struct xhci_virt_ep *ep; | 
 |  | 
 | 	ep = &xhci->devs[slot_id]->eps[ep_index]; | 
 |  | 
 | 	/* A ring has pending URBs if its TD list is not empty */ | 
 | 	if (!(ep->ep_state & EP_HAS_STREAMS)) { | 
 | 		if (ep->ring && !(list_empty(&ep->ring->td_list))) | 
 | 			xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	for (stream_id = 1; stream_id < ep->stream_info->num_streams; | 
 | 			stream_id++) { | 
 | 		struct xhci_stream_info *stream_info = ep->stream_info; | 
 | 		if (!list_empty(&stream_info->stream_rings[stream_id]->td_list)) | 
 | 			xhci_ring_ep_doorbell(xhci, slot_id, ep_index, | 
 | 						stream_id); | 
 | 	} | 
 | } | 
 |  | 
 | void xhci_ring_doorbell_for_active_rings(struct xhci_hcd *xhci, | 
 | 		unsigned int slot_id, | 
 | 		unsigned int ep_index) | 
 | { | 
 | 	ring_doorbell_for_active_rings(xhci, slot_id, ep_index); | 
 | } | 
 |  | 
 | static struct xhci_virt_ep *xhci_get_virt_ep(struct xhci_hcd *xhci, | 
 | 					     unsigned int slot_id, | 
 | 					     unsigned int ep_index) | 
 | { | 
 | 	if (slot_id == 0 || slot_id >= MAX_HC_SLOTS) { | 
 | 		xhci_warn(xhci, "Invalid slot_id %u\n", slot_id); | 
 | 		return NULL; | 
 | 	} | 
 | 	if (ep_index >= EP_CTX_PER_DEV) { | 
 | 		xhci_warn(xhci, "Invalid endpoint index %u\n", ep_index); | 
 | 		return NULL; | 
 | 	} | 
 | 	if (!xhci->devs[slot_id]) { | 
 | 		xhci_warn(xhci, "No xhci virt device for slot_id %u\n", slot_id); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	return &xhci->devs[slot_id]->eps[ep_index]; | 
 | } | 
 |  | 
 | static struct xhci_ring *xhci_virt_ep_to_ring(struct xhci_hcd *xhci, | 
 | 					      struct xhci_virt_ep *ep, | 
 | 					      unsigned int stream_id) | 
 | { | 
 | 	/* common case, no streams */ | 
 | 	if (!(ep->ep_state & EP_HAS_STREAMS)) | 
 | 		return ep->ring; | 
 |  | 
 | 	if (!ep->stream_info) | 
 | 		return NULL; | 
 |  | 
 | 	if (stream_id == 0 || stream_id >= ep->stream_info->num_streams) { | 
 | 		xhci_warn(xhci, "Invalid stream_id %u request for slot_id %u ep_index %u\n", | 
 | 			  stream_id, ep->vdev->slot_id, ep->ep_index); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	return ep->stream_info->stream_rings[stream_id]; | 
 | } | 
 |  | 
 | /* Get the right ring for the given slot_id, ep_index and stream_id. | 
 |  * If the endpoint supports streams, boundary check the URB's stream ID. | 
 |  * If the endpoint doesn't support streams, return the singular endpoint ring. | 
 |  */ | 
 | struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci, | 
 | 		unsigned int slot_id, unsigned int ep_index, | 
 | 		unsigned int stream_id) | 
 | { | 
 | 	struct xhci_virt_ep *ep; | 
 |  | 
 | 	ep = xhci_get_virt_ep(xhci, slot_id, ep_index); | 
 | 	if (!ep) | 
 | 		return NULL; | 
 |  | 
 | 	return xhci_virt_ep_to_ring(xhci, ep, stream_id); | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Get the hw dequeue pointer xHC stopped on, either directly from the | 
 |  * endpoint context, or if streams are in use from the stream context. | 
 |  * The returned hw_dequeue contains the lowest four bits with cycle state | 
 |  * and possbile stream context type. | 
 |  */ | 
 | static u64 xhci_get_hw_deq(struct xhci_hcd *xhci, struct xhci_virt_device *vdev, | 
 | 			   unsigned int ep_index, unsigned int stream_id) | 
 | { | 
 | 	struct xhci_ep_ctx *ep_ctx; | 
 | 	struct xhci_stream_ctx *st_ctx; | 
 | 	struct xhci_virt_ep *ep; | 
 |  | 
 | 	ep = &vdev->eps[ep_index]; | 
 |  | 
 | 	if (ep->ep_state & EP_HAS_STREAMS) { | 
 | 		st_ctx = &ep->stream_info->stream_ctx_array[stream_id]; | 
 | 		return le64_to_cpu(st_ctx->stream_ring); | 
 | 	} | 
 | 	ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index); | 
 | 	return le64_to_cpu(ep_ctx->deq); | 
 | } | 
 |  | 
 | static int xhci_move_dequeue_past_td(struct xhci_hcd *xhci, | 
 | 				unsigned int slot_id, unsigned int ep_index, | 
 | 				unsigned int stream_id, struct xhci_td *td) | 
 | { | 
 | 	struct xhci_virt_device *dev = xhci->devs[slot_id]; | 
 | 	struct xhci_virt_ep *ep = &dev->eps[ep_index]; | 
 | 	struct xhci_ring *ep_ring; | 
 | 	struct xhci_command *cmd; | 
 | 	struct xhci_segment *new_seg; | 
 | 	union xhci_trb *new_deq; | 
 | 	int new_cycle; | 
 | 	dma_addr_t addr; | 
 | 	u64 hw_dequeue; | 
 | 	bool hw_dequeue_found = false; | 
 | 	bool td_last_trb_found = false; | 
 | 	u32 trb_sct = 0; | 
 | 	int ret; | 
 |  | 
 | 	ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id, | 
 | 			ep_index, stream_id); | 
 | 	if (!ep_ring) { | 
 | 		xhci_warn(xhci, "WARN can't find new dequeue, invalid stream ID %u\n", | 
 | 			  stream_id); | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	hw_dequeue = xhci_get_hw_deq(xhci, dev, ep_index, stream_id); | 
 | 	new_seg = ep_ring->deq_seg; | 
 | 	new_deq = ep_ring->dequeue; | 
 | 	new_cycle = le32_to_cpu(td->end_trb->generic.field[3]) & TRB_CYCLE; | 
 |  | 
 | 	/* | 
 | 	 * Walk the ring until both the next TRB and hw_dequeue are found (don't | 
 | 	 * move hw_dequeue back if it went forward due to a HW bug). Cycle state | 
 | 	 * is loaded from a known good TRB, track later toggles to maintain it. | 
 | 	 */ | 
 | 	do { | 
 | 		if (!hw_dequeue_found && xhci_trb_virt_to_dma(new_seg, new_deq) | 
 | 		    == (dma_addr_t)(hw_dequeue & ~0xf)) { | 
 | 			hw_dequeue_found = true; | 
 | 			if (td_last_trb_found) | 
 | 				break; | 
 | 		} | 
 | 		if (new_deq == td->end_trb) | 
 | 			td_last_trb_found = true; | 
 |  | 
 | 		if (td_last_trb_found && trb_is_link(new_deq) && | 
 | 		    link_trb_toggles_cycle(new_deq)) | 
 | 			new_cycle ^= 0x1; | 
 |  | 
 | 		next_trb(&new_seg, &new_deq); | 
 |  | 
 | 		/* Search wrapped around, bail out */ | 
 | 		if (new_deq == ep->ring->dequeue) { | 
 | 			xhci_err(xhci, "Error: Failed finding new dequeue state\n"); | 
 | 			return -EINVAL; | 
 | 		} | 
 |  | 
 | 	} while (!hw_dequeue_found || !td_last_trb_found); | 
 |  | 
 | 	/* Don't update the ring cycle state for the producer (us). */ | 
 | 	addr = xhci_trb_virt_to_dma(new_seg, new_deq); | 
 | 	if (addr == 0) { | 
 | 		xhci_warn(xhci, "Can't find dma of new dequeue ptr\n"); | 
 | 		xhci_warn(xhci, "deq seg = %p, deq ptr = %p\n", new_seg, new_deq); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if ((ep->ep_state & SET_DEQ_PENDING)) { | 
 | 		xhci_warn(xhci, "Set TR Deq already pending, don't submit for 0x%pad\n", | 
 | 			  &addr); | 
 | 		return -EBUSY; | 
 | 	} | 
 |  | 
 | 	/* This function gets called from contexts where it cannot sleep */ | 
 | 	cmd = xhci_alloc_command(xhci, false, GFP_ATOMIC); | 
 | 	if (!cmd) { | 
 | 		xhci_warn(xhci, "Can't alloc Set TR Deq cmd 0x%pad\n", &addr); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	if (stream_id) | 
 | 		trb_sct = SCT_FOR_TRB(SCT_PRI_TR); | 
 | 	ret = queue_command(xhci, cmd, | 
 | 		lower_32_bits(addr) | trb_sct | new_cycle, | 
 | 		upper_32_bits(addr), | 
 | 		STREAM_ID_FOR_TRB(stream_id), SLOT_ID_FOR_TRB(slot_id) | | 
 | 		EP_INDEX_FOR_TRB(ep_index) | TRB_TYPE(TRB_SET_DEQ), false); | 
 | 	if (ret < 0) { | 
 | 		xhci_free_command(xhci, cmd); | 
 | 		return ret; | 
 | 	} | 
 | 	ep->queued_deq_seg = new_seg; | 
 | 	ep->queued_deq_ptr = new_deq; | 
 |  | 
 | 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, | 
 | 		       "Set TR Deq ptr 0x%llx, cycle %u\n", addr, new_cycle); | 
 |  | 
 | 	/* Stop the TD queueing code from ringing the doorbell until | 
 | 	 * this command completes.  The HC won't set the dequeue pointer | 
 | 	 * if the ring is running, and ringing the doorbell starts the | 
 | 	 * ring running. | 
 | 	 */ | 
 | 	ep->ep_state |= SET_DEQ_PENDING; | 
 | 	xhci_ring_cmd_db(xhci); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* flip_cycle means flip the cycle bit of all but the first and last TRB. | 
 |  * (The last TRB actually points to the ring enqueue pointer, which is not part | 
 |  * of this TD.)  This is used to remove partially enqueued isoc TDs from a ring. | 
 |  */ | 
 | static void td_to_noop(struct xhci_td *td, bool flip_cycle) | 
 | { | 
 | 	struct xhci_segment *seg	= td->start_seg; | 
 | 	union xhci_trb *trb		= td->start_trb; | 
 |  | 
 | 	while (1) { | 
 | 		trb_to_noop(trb, TRB_TR_NOOP); | 
 |  | 
 | 		/* flip cycle if asked to */ | 
 | 		if (flip_cycle && trb != td->start_trb && trb != td->end_trb) | 
 | 			trb->generic.field[3] ^= cpu_to_le32(TRB_CYCLE); | 
 |  | 
 | 		if (trb == td->end_trb) | 
 | 			break; | 
 |  | 
 | 		next_trb(&seg, &trb); | 
 | 	} | 
 | } | 
 |  | 
 | static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci, | 
 | 				     struct xhci_td *cur_td, int status) | 
 | { | 
 | 	struct urb	*urb		= cur_td->urb; | 
 | 	struct urb_priv	*urb_priv	= urb->hcpriv; | 
 | 	struct usb_hcd	*hcd		= bus_to_hcd(urb->dev->bus); | 
 |  | 
 | 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { | 
 | 		xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; | 
 | 		if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs	== 0) { | 
 | 			if (xhci->quirks & XHCI_AMD_PLL_FIX) | 
 | 				usb_amd_quirk_pll_enable(); | 
 | 		} | 
 | 	} | 
 | 	xhci_urb_free_priv(urb_priv); | 
 | 	usb_hcd_unlink_urb_from_ep(hcd, urb); | 
 | 	trace_xhci_urb_giveback(urb); | 
 | 	usb_hcd_giveback_urb(hcd, urb, status); | 
 | } | 
 |  | 
 | static void xhci_unmap_td_bounce_buffer(struct xhci_hcd *xhci, | 
 | 		struct xhci_ring *ring, struct xhci_td *td) | 
 | { | 
 | 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev; | 
 | 	struct xhci_segment *seg = td->bounce_seg; | 
 | 	struct urb *urb = td->urb; | 
 | 	size_t len; | 
 |  | 
 | 	if (!ring || !seg || !urb) | 
 | 		return; | 
 |  | 
 | 	if (usb_urb_dir_out(urb)) { | 
 | 		dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len, | 
 | 				 DMA_TO_DEVICE); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len, | 
 | 			 DMA_FROM_DEVICE); | 
 | 	/* for in transfers we need to copy the data from bounce to sg */ | 
 | 	if (urb->num_sgs) { | 
 | 		len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs, seg->bounce_buf, | 
 | 					   seg->bounce_len, seg->bounce_offs); | 
 | 		if (len != seg->bounce_len) | 
 | 			xhci_warn(xhci, "WARN Wrong bounce buffer read length: %zu != %d\n", | 
 | 				  len, seg->bounce_len); | 
 | 	} else { | 
 | 		memcpy(urb->transfer_buffer + seg->bounce_offs, seg->bounce_buf, | 
 | 		       seg->bounce_len); | 
 | 	} | 
 | 	seg->bounce_len = 0; | 
 | 	seg->bounce_offs = 0; | 
 | } | 
 |  | 
 | static void xhci_td_cleanup(struct xhci_hcd *xhci, struct xhci_td *td, | 
 | 			    struct xhci_ring *ep_ring, int status) | 
 | { | 
 | 	struct urb *urb = NULL; | 
 |  | 
 | 	/* Clean up the endpoint's TD list */ | 
 | 	urb = td->urb; | 
 |  | 
 | 	/* if a bounce buffer was used to align this td then unmap it */ | 
 | 	xhci_unmap_td_bounce_buffer(xhci, ep_ring, td); | 
 |  | 
 | 	/* Do one last check of the actual transfer length. | 
 | 	 * If the host controller said we transferred more data than the buffer | 
 | 	 * length, urb->actual_length will be a very big number (since it's | 
 | 	 * unsigned).  Play it safe and say we didn't transfer anything. | 
 | 	 */ | 
 | 	if (urb->actual_length > urb->transfer_buffer_length) { | 
 | 		xhci_warn(xhci, "URB req %u and actual %u transfer length mismatch\n", | 
 | 			  urb->transfer_buffer_length, urb->actual_length); | 
 | 		urb->actual_length = 0; | 
 | 		status = 0; | 
 | 	} | 
 | 	/* TD might be removed from td_list if we are giving back a cancelled URB */ | 
 | 	if (!list_empty(&td->td_list)) | 
 | 		list_del_init(&td->td_list); | 
 | 	/* Giving back a cancelled URB, or if a slated TD completed anyway */ | 
 | 	if (!list_empty(&td->cancelled_td_list)) | 
 | 		list_del_init(&td->cancelled_td_list); | 
 |  | 
 | 	inc_td_cnt(urb); | 
 | 	/* Giveback the urb when all the tds are completed */ | 
 | 	if (last_td_in_urb(td)) { | 
 | 		if ((urb->actual_length != urb->transfer_buffer_length && | 
 | 		     (urb->transfer_flags & URB_SHORT_NOT_OK)) || | 
 | 		    (status != 0 && !usb_endpoint_xfer_isoc(&urb->ep->desc))) | 
 | 			xhci_dbg(xhci, "Giveback URB %p, len = %d, expected = %d, status = %d\n", | 
 | 				 urb, urb->actual_length, | 
 | 				 urb->transfer_buffer_length, status); | 
 |  | 
 | 		/* set isoc urb status to 0 just as EHCI, UHCI, and OHCI */ | 
 | 		if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) | 
 | 			status = 0; | 
 | 		xhci_giveback_urb_in_irq(xhci, td, status); | 
 | 	} | 
 | } | 
 |  | 
 | /* Give back previous TD and move on to the next TD. */ | 
 | static void xhci_dequeue_td(struct xhci_hcd *xhci, struct xhci_td *td, struct xhci_ring *ring, | 
 | 			    u32 status) | 
 | { | 
 | 	ring->dequeue = td->end_trb; | 
 | 	ring->deq_seg = td->end_seg; | 
 | 	inc_deq(xhci, ring); | 
 |  | 
 | 	xhci_td_cleanup(xhci, td, ring, status); | 
 | } | 
 |  | 
 | /* Complete the cancelled URBs we unlinked from td_list. */ | 
 | static void xhci_giveback_invalidated_tds(struct xhci_virt_ep *ep) | 
 | { | 
 | 	struct xhci_ring *ring; | 
 | 	struct xhci_td *td, *tmp_td; | 
 |  | 
 | 	list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, | 
 | 				 cancelled_td_list) { | 
 |  | 
 | 		ring = xhci_urb_to_transfer_ring(ep->xhci, td->urb); | 
 |  | 
 | 		if (td->cancel_status == TD_CLEARED) { | 
 | 			xhci_dbg(ep->xhci, "%s: Giveback cancelled URB %p TD\n", | 
 | 				 __func__, td->urb); | 
 | 			xhci_td_cleanup(ep->xhci, td, ring, td->status); | 
 | 		} else { | 
 | 			xhci_dbg(ep->xhci, "%s: Keep cancelled URB %p TD as cancel_status is %d\n", | 
 | 				 __func__, td->urb, td->cancel_status); | 
 | 		} | 
 | 		if (ep->xhci->xhc_state & XHCI_STATE_DYING) | 
 | 			return; | 
 | 	} | 
 | } | 
 |  | 
 | static int xhci_reset_halted_ep(struct xhci_hcd *xhci, unsigned int slot_id, | 
 | 				unsigned int ep_index, enum xhci_ep_reset_type reset_type) | 
 | { | 
 | 	struct xhci_command *command; | 
 | 	int ret = 0; | 
 |  | 
 | 	command = xhci_alloc_command(xhci, false, GFP_ATOMIC); | 
 | 	if (!command) { | 
 | 		ret = -ENOMEM; | 
 | 		goto done; | 
 | 	} | 
 |  | 
 | 	xhci_dbg(xhci, "%s-reset ep %u, slot %u\n", | 
 | 		 (reset_type == EP_HARD_RESET) ? "Hard" : "Soft", | 
 | 		 ep_index, slot_id); | 
 |  | 
 | 	ret = xhci_queue_reset_ep(xhci, command, slot_id, ep_index, reset_type); | 
 | done: | 
 | 	if (ret) | 
 | 		xhci_err(xhci, "ERROR queuing reset endpoint for slot %d ep_index %d, %d\n", | 
 | 			 slot_id, ep_index, ret); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int xhci_handle_halted_endpoint(struct xhci_hcd *xhci, | 
 | 				struct xhci_virt_ep *ep, | 
 | 				struct xhci_td *td, | 
 | 				enum xhci_ep_reset_type reset_type) | 
 | { | 
 | 	unsigned int slot_id = ep->vdev->slot_id; | 
 | 	int err; | 
 |  | 
 | 	/* | 
 | 	 * Avoid resetting endpoint if link is inactive. Can cause host hang. | 
 | 	 * Device will be reset soon to recover the link so don't do anything | 
 | 	 */ | 
 | 	if (ep->vdev->flags & VDEV_PORT_ERROR) | 
 | 		return -ENODEV; | 
 |  | 
 | 	/* add td to cancelled list and let reset ep handler take care of it */ | 
 | 	if (reset_type == EP_HARD_RESET) { | 
 | 		ep->ep_state |= EP_HARD_CLEAR_TOGGLE; | 
 | 		if (td && list_empty(&td->cancelled_td_list)) { | 
 | 			list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list); | 
 | 			td->cancel_status = TD_HALTED; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (ep->ep_state & EP_HALTED) { | 
 | 		xhci_dbg(xhci, "Reset ep command for ep_index %d already pending\n", | 
 | 			 ep->ep_index); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	err = xhci_reset_halted_ep(xhci, slot_id, ep->ep_index, reset_type); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	ep->ep_state |= EP_HALTED; | 
 |  | 
 | 	xhci_ring_cmd_db(xhci); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Fix up the ep ring first, so HW stops executing cancelled TDs. | 
 |  * We have the xHCI lock, so nothing can modify this list until we drop it. | 
 |  * We're also in the event handler, so we can't get re-interrupted if another | 
 |  * Stop Endpoint command completes. | 
 |  * | 
 |  * only call this when ring is not in a running state | 
 |  */ | 
 |  | 
 | static int xhci_invalidate_cancelled_tds(struct xhci_virt_ep *ep) | 
 | { | 
 | 	struct xhci_hcd		*xhci; | 
 | 	struct xhci_td		*td = NULL; | 
 | 	struct xhci_td		*tmp_td = NULL; | 
 | 	struct xhci_td		*cached_td = NULL; | 
 | 	struct xhci_ring	*ring; | 
 | 	u64			hw_deq; | 
 | 	unsigned int		slot_id = ep->vdev->slot_id; | 
 | 	int			err; | 
 |  | 
 | 	/* | 
 | 	 * This is not going to work if the hardware is changing its dequeue | 
 | 	 * pointers as we look at them. Completion handler will call us later. | 
 | 	 */ | 
 | 	if (ep->ep_state & SET_DEQ_PENDING) | 
 | 		return 0; | 
 |  | 
 | 	xhci = ep->xhci; | 
 |  | 
 | 	list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, cancelled_td_list) { | 
 | 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, | 
 | 			       "Removing canceled TD starting at 0x%llx (dma) in stream %u URB %p", | 
 | 			       (unsigned long long)xhci_trb_virt_to_dma( | 
 | 				       td->start_seg, td->start_trb), | 
 | 			       td->urb->stream_id, td->urb); | 
 | 		list_del_init(&td->td_list); | 
 | 		ring = xhci_urb_to_transfer_ring(xhci, td->urb); | 
 | 		if (!ring) { | 
 | 			xhci_warn(xhci, "WARN Cancelled URB %p has invalid stream ID %u.\n", | 
 | 				  td->urb, td->urb->stream_id); | 
 | 			continue; | 
 | 		} | 
 | 		/* | 
 | 		 * If a ring stopped on the TD we need to cancel then we have to | 
 | 		 * move the xHC endpoint ring dequeue pointer past this TD. | 
 | 		 * Rings halted due to STALL may show hw_deq is past the stalled | 
 | 		 * TD, but still require a set TR Deq command to flush xHC cache. | 
 | 		 */ | 
 | 		hw_deq = xhci_get_hw_deq(xhci, ep->vdev, ep->ep_index, | 
 | 					 td->urb->stream_id); | 
 | 		hw_deq &= ~0xf; | 
 |  | 
 | 		if (td->cancel_status == TD_HALTED || trb_in_td(td, hw_deq)) { | 
 | 			switch (td->cancel_status) { | 
 | 			case TD_CLEARED: /* TD is already no-op */ | 
 | 			case TD_CLEARING_CACHE: /* set TR deq command already queued */ | 
 | 				break; | 
 | 			case TD_DIRTY: /* TD is cached, clear it */ | 
 | 			case TD_HALTED: | 
 | 			case TD_CLEARING_CACHE_DEFERRED: | 
 | 				if (cached_td) { | 
 | 					if (cached_td->urb->stream_id != td->urb->stream_id) { | 
 | 						/* Multiple streams case, defer move dq */ | 
 | 						xhci_dbg(xhci, | 
 | 							 "Move dq deferred: stream %u URB %p\n", | 
 | 							 td->urb->stream_id, td->urb); | 
 | 						td->cancel_status = TD_CLEARING_CACHE_DEFERRED; | 
 | 						break; | 
 | 					} | 
 |  | 
 | 					/* Should never happen, but clear the TD if it does */ | 
 | 					xhci_warn(xhci, | 
 | 						  "Found multiple active URBs %p and %p in stream %u?\n", | 
 | 						  td->urb, cached_td->urb, | 
 | 						  td->urb->stream_id); | 
 | 					td_to_noop(cached_td, false); | 
 | 					cached_td->cancel_status = TD_CLEARED; | 
 | 				} | 
 | 				td_to_noop(td, false); | 
 | 				td->cancel_status = TD_CLEARING_CACHE; | 
 | 				cached_td = td; | 
 | 				break; | 
 | 			} | 
 | 		} else { | 
 | 			td_to_noop(td, false); | 
 | 			td->cancel_status = TD_CLEARED; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* If there's no need to move the dequeue pointer then we're done */ | 
 | 	if (!cached_td) | 
 | 		return 0; | 
 |  | 
 | 	err = xhci_move_dequeue_past_td(xhci, slot_id, ep->ep_index, | 
 | 					cached_td->urb->stream_id, | 
 | 					cached_td); | 
 | 	if (err) { | 
 | 		/* Failed to move past cached td, just set cached TDs to no-op */ | 
 | 		list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, cancelled_td_list) { | 
 | 			/* | 
 | 			 * Deferred TDs need to have the deq pointer set after the above command | 
 | 			 * completes, so if that failed we just give up on all of them (and | 
 | 			 * complain loudly since this could cause issues due to caching). | 
 | 			 */ | 
 | 			if (td->cancel_status != TD_CLEARING_CACHE && | 
 | 			    td->cancel_status != TD_CLEARING_CACHE_DEFERRED) | 
 | 				continue; | 
 | 			xhci_warn(xhci, "Failed to clear cancelled cached URB %p, mark clear anyway\n", | 
 | 				  td->urb); | 
 | 			td_to_noop(td, false); | 
 | 			td->cancel_status = TD_CLEARED; | 
 | 		} | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Erase queued TDs from transfer ring(s) and give back those the xHC didn't | 
 |  * stop on. If necessary, queue commands to move the xHC off cancelled TDs it | 
 |  * stopped on. Those will be given back later when the commands complete. | 
 |  * | 
 |  * Call under xhci->lock on a stopped endpoint. | 
 |  */ | 
 | void xhci_process_cancelled_tds(struct xhci_virt_ep *ep) | 
 | { | 
 | 	xhci_invalidate_cancelled_tds(ep); | 
 | 	xhci_giveback_invalidated_tds(ep); | 
 | } | 
 |  | 
 | /* | 
 |  * Returns the TD the endpoint ring halted on. | 
 |  * Only call for non-running rings without streams. | 
 |  */ | 
 | static struct xhci_td *find_halted_td(struct xhci_virt_ep *ep) | 
 | { | 
 | 	struct xhci_td	*td; | 
 | 	u64		hw_deq; | 
 |  | 
 | 	if (!list_empty(&ep->ring->td_list)) { /* Not streams compatible */ | 
 | 		hw_deq = xhci_get_hw_deq(ep->xhci, ep->vdev, ep->ep_index, 0); | 
 | 		hw_deq &= ~0xf; | 
 | 		td = list_first_entry(&ep->ring->td_list, struct xhci_td, td_list); | 
 | 		if (trb_in_td(td, hw_deq)) | 
 | 			return td; | 
 | 	} | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * When we get a command completion for a Stop Endpoint Command, we need to | 
 |  * unlink any cancelled TDs from the ring.  There are two ways to do that: | 
 |  * | 
 |  *  1. If the HW was in the middle of processing the TD that needs to be | 
 |  *     cancelled, then we must move the ring's dequeue pointer past the last TRB | 
 |  *     in the TD with a Set Dequeue Pointer Command. | 
 |  *  2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain | 
 |  *     bit cleared) so that the HW will skip over them. | 
 |  */ | 
 | static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id, | 
 | 				    union xhci_trb *trb, u32 comp_code) | 
 | { | 
 | 	unsigned int ep_index; | 
 | 	struct xhci_virt_ep *ep; | 
 | 	struct xhci_ep_ctx *ep_ctx; | 
 | 	struct xhci_td *td = NULL; | 
 | 	enum xhci_ep_reset_type reset_type; | 
 | 	struct xhci_command *command; | 
 | 	int err; | 
 |  | 
 | 	if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) { | 
 | 		if (!xhci->devs[slot_id]) | 
 | 			xhci_warn(xhci, "Stop endpoint command completion for disabled slot %u\n", | 
 | 				  slot_id); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); | 
 | 	ep = xhci_get_virt_ep(xhci, slot_id, ep_index); | 
 | 	if (!ep) | 
 | 		return; | 
 |  | 
 | 	ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); | 
 |  | 
 | 	trace_xhci_handle_cmd_stop_ep(ep_ctx); | 
 |  | 
 | 	if (comp_code == COMP_CONTEXT_STATE_ERROR) { | 
 | 	/* | 
 | 	 * If stop endpoint command raced with a halting endpoint we need to | 
 | 	 * reset the host side endpoint first. | 
 | 	 * If the TD we halted on isn't cancelled the TD should be given back | 
 | 	 * with a proper error code, and the ring dequeue moved past the TD. | 
 | 	 * If streams case we can't find hw_deq, or the TD we halted on so do a | 
 | 	 * soft reset. | 
 | 	 * | 
 | 	 * Proper error code is unknown here, it would be -EPIPE if device side | 
 | 	 * of enadpoit halted (aka STALL), and -EPROTO if not (transaction error) | 
 | 	 * We use -EPROTO, if device is stalled it should return a stall error on | 
 | 	 * next transfer, which then will return -EPIPE, and device side stall is | 
 | 	 * noted and cleared by class driver. | 
 | 	 */ | 
 | 		switch (GET_EP_CTX_STATE(ep_ctx)) { | 
 | 		case EP_STATE_HALTED: | 
 | 			xhci_dbg(xhci, "Stop ep completion raced with stall\n"); | 
 | 			/* | 
 | 			 * If the halt happened before Stop Endpoint failed, its transfer event | 
 | 			 * should have already been handled and Reset Endpoint should be pending. | 
 | 			 */ | 
 | 			if (ep->ep_state & EP_HALTED) | 
 | 				goto reset_done; | 
 |  | 
 | 			if (ep->ep_state & EP_HAS_STREAMS) { | 
 | 				reset_type = EP_SOFT_RESET; | 
 | 			} else { | 
 | 				reset_type = EP_HARD_RESET; | 
 | 				td = find_halted_td(ep); | 
 | 				if (td) | 
 | 					td->status = -EPROTO; | 
 | 			} | 
 | 			/* reset ep, reset handler cleans up cancelled tds */ | 
 | 			err = xhci_handle_halted_endpoint(xhci, ep, td, reset_type); | 
 | 			xhci_dbg(xhci, "Stop ep completion resetting ep, status %d\n", err); | 
 | 			if (err) | 
 | 				break; | 
 | reset_done: | 
 | 			/* Reset EP handler will clean up cancelled TDs */ | 
 | 			ep->ep_state &= ~EP_STOP_CMD_PENDING; | 
 | 			return; | 
 | 		case EP_STATE_STOPPED: | 
 | 			/* | 
 | 			 * Per xHCI 4.6.9, Stop Endpoint command on a Stopped | 
 | 			 * EP is a Context State Error, and EP stays Stopped. | 
 | 			 * | 
 | 			 * But maybe it failed on Halted, and somebody ran Reset | 
 | 			 * Endpoint later. EP state is now Stopped and EP_HALTED | 
 | 			 * still set because Reset EP handler will run after us. | 
 | 			 */ | 
 | 			if (ep->ep_state & EP_HALTED) | 
 | 				break; | 
 | 			/* | 
 | 			 * On some HCs EP state remains Stopped for some tens of | 
 | 			 * us to a few ms or more after a doorbell ring, and any | 
 | 			 * new Stop Endpoint fails without aborting the restart. | 
 | 			 * This handler may run quickly enough to still see this | 
 | 			 * Stopped state, but it will soon change to Running. | 
 | 			 * | 
 | 			 * Assume this bug on unexpected Stop Endpoint failures. | 
 | 			 * Keep retrying until the EP starts and stops again. | 
 | 			 */ | 
 | 			fallthrough; | 
 | 		case EP_STATE_RUNNING: | 
 | 			/* Race, HW handled stop ep cmd before ep was running */ | 
 | 			xhci_dbg(xhci, "Stop ep completion ctx error, ctx_state %d\n", | 
 | 					GET_EP_CTX_STATE(ep_ctx)); | 
 | 			/* | 
 | 			 * Don't retry forever if we guessed wrong or a defective HC never starts | 
 | 			 * the EP or says 'Running' but fails the command. We must give back TDs. | 
 | 			 */ | 
 | 			if (time_is_before_jiffies(ep->stop_time + msecs_to_jiffies(100))) | 
 | 				break; | 
 |  | 
 | 			command = xhci_alloc_command(xhci, false, GFP_ATOMIC); | 
 | 			if (!command) { | 
 | 				ep->ep_state &= ~EP_STOP_CMD_PENDING; | 
 | 				return; | 
 | 			} | 
 | 			xhci_queue_stop_endpoint(xhci, command, slot_id, ep_index, 0); | 
 | 			xhci_ring_cmd_db(xhci); | 
 |  | 
 | 			return; | 
 | 		default: | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* will queue a set TR deq if stopped on a cancelled, uncleared TD */ | 
 | 	xhci_invalidate_cancelled_tds(ep); | 
 | 	ep->ep_state &= ~EP_STOP_CMD_PENDING; | 
 |  | 
 | 	/* Otherwise ring the doorbell(s) to restart queued transfers */ | 
 | 	xhci_giveback_invalidated_tds(ep); | 
 | 	ring_doorbell_for_active_rings(xhci, slot_id, ep_index); | 
 | } | 
 |  | 
 | static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring) | 
 | { | 
 | 	struct xhci_td *cur_td; | 
 | 	struct xhci_td *tmp; | 
 |  | 
 | 	list_for_each_entry_safe(cur_td, tmp, &ring->td_list, td_list) { | 
 | 		list_del_init(&cur_td->td_list); | 
 |  | 
 | 		if (!list_empty(&cur_td->cancelled_td_list)) | 
 | 			list_del_init(&cur_td->cancelled_td_list); | 
 |  | 
 | 		xhci_unmap_td_bounce_buffer(xhci, ring, cur_td); | 
 |  | 
 | 		inc_td_cnt(cur_td->urb); | 
 | 		if (last_td_in_urb(cur_td)) | 
 | 			xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); | 
 | 	} | 
 | } | 
 |  | 
 | static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci, | 
 | 		int slot_id, int ep_index) | 
 | { | 
 | 	struct xhci_td *cur_td; | 
 | 	struct xhci_td *tmp; | 
 | 	struct xhci_virt_ep *ep; | 
 | 	struct xhci_ring *ring; | 
 |  | 
 | 	ep = xhci_get_virt_ep(xhci, slot_id, ep_index); | 
 | 	if (!ep) | 
 | 		return; | 
 |  | 
 | 	if ((ep->ep_state & EP_HAS_STREAMS) || | 
 | 			(ep->ep_state & EP_GETTING_NO_STREAMS)) { | 
 | 		int stream_id; | 
 |  | 
 | 		for (stream_id = 1; stream_id < ep->stream_info->num_streams; | 
 | 				stream_id++) { | 
 | 			ring = ep->stream_info->stream_rings[stream_id]; | 
 | 			if (!ring) | 
 | 				continue; | 
 |  | 
 | 			xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, | 
 | 					"Killing URBs for slot ID %u, ep index %u, stream %u", | 
 | 					slot_id, ep_index, stream_id); | 
 | 			xhci_kill_ring_urbs(xhci, ring); | 
 | 		} | 
 | 	} else { | 
 | 		ring = ep->ring; | 
 | 		if (!ring) | 
 | 			return; | 
 | 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, | 
 | 				"Killing URBs for slot ID %u, ep index %u", | 
 | 				slot_id, ep_index); | 
 | 		xhci_kill_ring_urbs(xhci, ring); | 
 | 	} | 
 |  | 
 | 	list_for_each_entry_safe(cur_td, tmp, &ep->cancelled_td_list, | 
 | 			cancelled_td_list) { | 
 | 		list_del_init(&cur_td->cancelled_td_list); | 
 | 		inc_td_cnt(cur_td->urb); | 
 |  | 
 | 		if (last_td_in_urb(cur_td)) | 
 | 			xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * host controller died, register read returns 0xffffffff | 
 |  * Complete pending commands, mark them ABORTED. | 
 |  * URBs need to be given back as usb core might be waiting with device locks | 
 |  * held for the URBs to finish during device disconnect, blocking host remove. | 
 |  * | 
 |  * Call with xhci->lock held. | 
 |  * lock is relased and re-acquired while giving back urb. | 
 |  */ | 
 | void xhci_hc_died(struct xhci_hcd *xhci) | 
 | { | 
 | 	bool notify; | 
 | 	int i, j; | 
 |  | 
 | 	if (xhci->xhc_state & XHCI_STATE_DYING) | 
 | 		return; | 
 |  | 
 | 	notify = !(xhci->xhc_state & XHCI_STATE_REMOVING); | 
 | 	if (notify) | 
 | 		xhci_err(xhci, "xHCI host controller not responding, assume dead\n"); | 
 | 	xhci->xhc_state |= XHCI_STATE_DYING; | 
 |  | 
 | 	xhci_cleanup_command_queue(xhci); | 
 |  | 
 | 	/* return any pending urbs, remove may be waiting for them */ | 
 | 	for (i = 0; i <= HCS_MAX_SLOTS(xhci->hcs_params1); i++) { | 
 | 		if (!xhci->devs[i]) | 
 | 			continue; | 
 | 		for (j = 0; j < 31; j++) | 
 | 			xhci_kill_endpoint_urbs(xhci, i, j); | 
 | 	} | 
 |  | 
 | 	/* inform usb core hc died if PCI remove isn't already handling it */ | 
 | 	if (notify) | 
 | 		usb_hc_died(xhci_to_hcd(xhci)); | 
 | } | 
 |  | 
 | /* | 
 |  * When we get a completion for a Set Transfer Ring Dequeue Pointer command, | 
 |  * we need to clear the set deq pending flag in the endpoint ring state, so that | 
 |  * the TD queueing code can ring the doorbell again.  We also need to ring the | 
 |  * endpoint doorbell to restart the ring, but only if there aren't more | 
 |  * cancellations pending. | 
 |  */ | 
 | static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id, | 
 | 		union xhci_trb *trb, u32 cmd_comp_code) | 
 | { | 
 | 	unsigned int ep_index; | 
 | 	unsigned int stream_id; | 
 | 	struct xhci_ring *ep_ring; | 
 | 	struct xhci_virt_ep *ep; | 
 | 	struct xhci_ep_ctx *ep_ctx; | 
 | 	struct xhci_slot_ctx *slot_ctx; | 
 | 	struct xhci_stream_ctx *stream_ctx; | 
 | 	struct xhci_td *td, *tmp_td; | 
 |  | 
 | 	ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); | 
 | 	stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2])); | 
 | 	ep = xhci_get_virt_ep(xhci, slot_id, ep_index); | 
 | 	if (!ep) | 
 | 		return; | 
 |  | 
 | 	ep_ring = xhci_virt_ep_to_ring(xhci, ep, stream_id); | 
 | 	if (!ep_ring) { | 
 | 		xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n", | 
 | 				stream_id); | 
 | 		/* XXX: Harmless??? */ | 
 | 		goto cleanup; | 
 | 	} | 
 |  | 
 | 	ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); | 
 | 	slot_ctx = xhci_get_slot_ctx(xhci, ep->vdev->out_ctx); | 
 | 	trace_xhci_handle_cmd_set_deq(slot_ctx); | 
 | 	trace_xhci_handle_cmd_set_deq_ep(ep_ctx); | 
 |  | 
 | 	if (ep->ep_state & EP_HAS_STREAMS) { | 
 | 		stream_ctx = &ep->stream_info->stream_ctx_array[stream_id]; | 
 | 		trace_xhci_handle_cmd_set_deq_stream(ep->stream_info, stream_id); | 
 | 	} | 
 |  | 
 | 	if (cmd_comp_code != COMP_SUCCESS) { | 
 | 		unsigned int ep_state; | 
 | 		unsigned int slot_state; | 
 |  | 
 | 		switch (cmd_comp_code) { | 
 | 		case COMP_TRB_ERROR: | 
 | 			xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n"); | 
 | 			break; | 
 | 		case COMP_CONTEXT_STATE_ERROR: | 
 | 			xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n"); | 
 | 			ep_state = GET_EP_CTX_STATE(ep_ctx); | 
 | 			slot_state = le32_to_cpu(slot_ctx->dev_state); | 
 | 			slot_state = GET_SLOT_STATE(slot_state); | 
 | 			xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, | 
 | 					"Slot state = %u, EP state = %u", | 
 | 					slot_state, ep_state); | 
 | 			break; | 
 | 		case COMP_SLOT_NOT_ENABLED_ERROR: | 
 | 			xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n", | 
 | 					slot_id); | 
 | 			break; | 
 | 		default: | 
 | 			xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n", | 
 | 					cmd_comp_code); | 
 | 			break; | 
 | 		} | 
 | 		/* OK what do we do now?  The endpoint state is hosed, and we | 
 | 		 * should never get to this point if the synchronization between | 
 | 		 * queueing, and endpoint state are correct.  This might happen | 
 | 		 * if the device gets disconnected after we've finished | 
 | 		 * cancelling URBs, which might not be an error... | 
 | 		 */ | 
 | 	} else { | 
 | 		u64 deq; | 
 | 		/* 4.6.10 deq ptr is written to the stream ctx for streams */ | 
 | 		if (ep->ep_state & EP_HAS_STREAMS) { | 
 | 			deq = le64_to_cpu(stream_ctx->stream_ring) & SCTX_DEQ_MASK; | 
 |  | 
 | 			/* | 
 | 			 * Cadence xHCI controllers store some endpoint state | 
 | 			 * information within Rsvd0 fields of Stream Endpoint | 
 | 			 * context. This field is not cleared during Set TR | 
 | 			 * Dequeue Pointer command which causes XDMA to skip | 
 | 			 * over transfer ring and leads to data loss on stream | 
 | 			 * pipe. | 
 | 			 * To fix this issue driver must clear Rsvd0 field. | 
 | 			 */ | 
 | 			if (xhci->quirks & XHCI_CDNS_SCTX_QUIRK) { | 
 | 				stream_ctx->reserved[0] = 0; | 
 | 				stream_ctx->reserved[1] = 0; | 
 | 			} | 
 | 		} else { | 
 | 			deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK; | 
 | 		} | 
 | 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, | 
 | 			"Successful Set TR Deq Ptr cmd, deq = @%08llx", deq); | 
 | 		if (xhci_trb_virt_to_dma(ep->queued_deq_seg, | 
 | 					 ep->queued_deq_ptr) == deq) { | 
 | 			/* Update the ring's dequeue segment and dequeue pointer | 
 | 			 * to reflect the new position. | 
 | 			 */ | 
 | 			ep_ring->deq_seg = ep->queued_deq_seg; | 
 | 			ep_ring->dequeue = ep->queued_deq_ptr; | 
 | 		} else { | 
 | 			xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n"); | 
 | 			xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n", | 
 | 				  ep->queued_deq_seg, ep->queued_deq_ptr); | 
 | 		} | 
 | 	} | 
 | 	/* HW cached TDs cleared from cache, give them back */ | 
 | 	list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, | 
 | 				 cancelled_td_list) { | 
 | 		ep_ring = xhci_urb_to_transfer_ring(ep->xhci, td->urb); | 
 | 		if (td->cancel_status == TD_CLEARING_CACHE) { | 
 | 			td->cancel_status = TD_CLEARED; | 
 | 			xhci_dbg(ep->xhci, "%s: Giveback cancelled URB %p TD\n", | 
 | 				 __func__, td->urb); | 
 | 			xhci_td_cleanup(ep->xhci, td, ep_ring, td->status); | 
 | 		} else { | 
 | 			xhci_dbg(ep->xhci, "%s: Keep cancelled URB %p TD as cancel_status is %d\n", | 
 | 				 __func__, td->urb, td->cancel_status); | 
 | 		} | 
 | 	} | 
 | cleanup: | 
 | 	ep->ep_state &= ~SET_DEQ_PENDING; | 
 | 	ep->queued_deq_seg = NULL; | 
 | 	ep->queued_deq_ptr = NULL; | 
 |  | 
 | 	/* Check for deferred or newly cancelled TDs */ | 
 | 	if (!list_empty(&ep->cancelled_td_list)) { | 
 | 		xhci_dbg(ep->xhci, "%s: Pending TDs to clear, continuing with invalidation\n", | 
 | 			 __func__); | 
 | 		xhci_invalidate_cancelled_tds(ep); | 
 | 		/* Try to restart the endpoint if all is done */ | 
 | 		ring_doorbell_for_active_rings(xhci, slot_id, ep_index); | 
 | 		/* Start giving back any TDs invalidated above */ | 
 | 		xhci_giveback_invalidated_tds(ep); | 
 | 	} else { | 
 | 		/* Restart any rings with pending URBs */ | 
 | 		xhci_dbg(ep->xhci, "%s: All TDs cleared, ring doorbell\n", __func__); | 
 | 		ring_doorbell_for_active_rings(xhci, slot_id, ep_index); | 
 | 	} | 
 | } | 
 |  | 
 | static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id, | 
 | 		union xhci_trb *trb, u32 cmd_comp_code) | 
 | { | 
 | 	struct xhci_virt_ep *ep; | 
 | 	struct xhci_ep_ctx *ep_ctx; | 
 | 	unsigned int ep_index; | 
 |  | 
 | 	ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); | 
 | 	ep = xhci_get_virt_ep(xhci, slot_id, ep_index); | 
 | 	if (!ep) | 
 | 		return; | 
 |  | 
 | 	ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); | 
 | 	trace_xhci_handle_cmd_reset_ep(ep_ctx); | 
 |  | 
 | 	/* This command will only fail if the endpoint wasn't halted, | 
 | 	 * but we don't care. | 
 | 	 */ | 
 | 	xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, | 
 | 		"Ignoring reset ep completion code of %u", cmd_comp_code); | 
 |  | 
 | 	/* Cleanup cancelled TDs as ep is stopped. May queue a Set TR Deq cmd */ | 
 | 	xhci_invalidate_cancelled_tds(ep); | 
 |  | 
 | 	/* Clear our internal halted state */ | 
 | 	ep->ep_state &= ~EP_HALTED; | 
 |  | 
 | 	xhci_giveback_invalidated_tds(ep); | 
 |  | 
 | 	/* if this was a soft reset, then restart */ | 
 | 	if ((le32_to_cpu(trb->generic.field[3])) & TRB_TSP) | 
 | 		ring_doorbell_for_active_rings(xhci, slot_id, ep_index); | 
 | } | 
 |  | 
 | static void xhci_handle_cmd_enable_slot(int slot_id, struct xhci_command *command, | 
 | 					u32 cmd_comp_code) | 
 | { | 
 | 	if (cmd_comp_code == COMP_SUCCESS) | 
 | 		command->slot_id = slot_id; | 
 | 	else | 
 | 		command->slot_id = 0; | 
 | } | 
 |  | 
 | static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id) | 
 | { | 
 | 	struct xhci_virt_device *virt_dev; | 
 | 	struct xhci_slot_ctx *slot_ctx; | 
 |  | 
 | 	virt_dev = xhci->devs[slot_id]; | 
 | 	if (!virt_dev) | 
 | 		return; | 
 |  | 
 | 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); | 
 | 	trace_xhci_handle_cmd_disable_slot(slot_ctx); | 
 |  | 
 | 	if (xhci->quirks & XHCI_EP_LIMIT_QUIRK) | 
 | 		/* Delete default control endpoint resources */ | 
 | 		xhci_free_device_endpoint_resources(xhci, virt_dev, true); | 
 | } | 
 |  | 
 | static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id) | 
 | { | 
 | 	struct xhci_virt_device *virt_dev; | 
 | 	struct xhci_input_control_ctx *ctrl_ctx; | 
 | 	struct xhci_ep_ctx *ep_ctx; | 
 | 	unsigned int ep_index; | 
 | 	u32 add_flags; | 
 |  | 
 | 	/* | 
 | 	 * Configure endpoint commands can come from the USB core configuration | 
 | 	 * or alt setting changes, or when streams were being configured. | 
 | 	 */ | 
 |  | 
 | 	virt_dev = xhci->devs[slot_id]; | 
 | 	if (!virt_dev) | 
 | 		return; | 
 | 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); | 
 | 	if (!ctrl_ctx) { | 
 | 		xhci_warn(xhci, "Could not get input context, bad type.\n"); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	add_flags = le32_to_cpu(ctrl_ctx->add_flags); | 
 |  | 
 | 	/* Input ctx add_flags are the endpoint index plus one */ | 
 | 	ep_index = xhci_last_valid_endpoint(add_flags) - 1; | 
 |  | 
 | 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->out_ctx, ep_index); | 
 | 	trace_xhci_handle_cmd_config_ep(ep_ctx); | 
 |  | 
 | 	return; | 
 | } | 
 |  | 
 | static void xhci_handle_cmd_addr_dev(struct xhci_hcd *xhci, int slot_id) | 
 | { | 
 | 	struct xhci_virt_device *vdev; | 
 | 	struct xhci_slot_ctx *slot_ctx; | 
 |  | 
 | 	vdev = xhci->devs[slot_id]; | 
 | 	if (!vdev) | 
 | 		return; | 
 | 	slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); | 
 | 	trace_xhci_handle_cmd_addr_dev(slot_ctx); | 
 | } | 
 |  | 
 | static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id) | 
 | { | 
 | 	struct xhci_virt_device *vdev; | 
 | 	struct xhci_slot_ctx *slot_ctx; | 
 |  | 
 | 	vdev = xhci->devs[slot_id]; | 
 | 	if (!vdev) { | 
 | 		xhci_warn(xhci, "Reset device command completion for disabled slot %u\n", | 
 | 			  slot_id); | 
 | 		return; | 
 | 	} | 
 | 	slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); | 
 | 	trace_xhci_handle_cmd_reset_dev(slot_ctx); | 
 |  | 
 | 	xhci_dbg(xhci, "Completed reset device command.\n"); | 
 | } | 
 |  | 
 | static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci, | 
 | 		struct xhci_event_cmd *event) | 
 | { | 
 | 	if (!(xhci->quirks & XHCI_NEC_HOST)) { | 
 | 		xhci_warn(xhci, "WARN NEC_GET_FW command on non-NEC host\n"); | 
 | 		return; | 
 | 	} | 
 | 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, | 
 | 			"NEC firmware version %2x.%02x", | 
 | 			NEC_FW_MAJOR(le32_to_cpu(event->status)), | 
 | 			NEC_FW_MINOR(le32_to_cpu(event->status))); | 
 | } | 
 |  | 
 | static void xhci_complete_del_and_free_cmd(struct xhci_command *cmd, u32 comp_code, u32 comp_param) | 
 | { | 
 | 	list_del(&cmd->cmd_list); | 
 |  | 
 | 	if (cmd->completion) { | 
 | 		cmd->status = comp_code; | 
 | 		cmd->comp_param = comp_param; | 
 | 		complete(cmd->completion); | 
 | 	} else { | 
 | 		kfree(cmd); | 
 | 	} | 
 | } | 
 |  | 
 | void xhci_cleanup_command_queue(struct xhci_hcd *xhci) | 
 | { | 
 | 	struct xhci_command *cur_cmd, *tmp_cmd; | 
 | 	xhci->current_cmd = NULL; | 
 | 	list_for_each_entry_safe(cur_cmd, tmp_cmd, &xhci->cmd_list, cmd_list) | 
 | 		xhci_complete_del_and_free_cmd(cur_cmd, COMP_COMMAND_ABORTED, 0); | 
 | } | 
 |  | 
 | void xhci_handle_command_timeout(struct work_struct *work) | 
 | { | 
 | 	struct xhci_hcd	*xhci; | 
 | 	unsigned long	flags; | 
 | 	char		str[XHCI_MSG_MAX]; | 
 | 	u64		hw_ring_state; | 
 | 	u32		cmd_field3; | 
 | 	u32		usbsts; | 
 |  | 
 | 	xhci = container_of(to_delayed_work(work), struct xhci_hcd, cmd_timer); | 
 |  | 
 | 	spin_lock_irqsave(&xhci->lock, flags); | 
 |  | 
 | 	/* | 
 | 	 * If timeout work is pending, or current_cmd is NULL, it means we | 
 | 	 * raced with command completion. Command is handled so just return. | 
 | 	 */ | 
 | 	if (!xhci->current_cmd || delayed_work_pending(&xhci->cmd_timer)) { | 
 | 		spin_unlock_irqrestore(&xhci->lock, flags); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	cmd_field3 = le32_to_cpu(xhci->current_cmd->command_trb->generic.field[3]); | 
 | 	usbsts = readl(&xhci->op_regs->status); | 
 | 	xhci_dbg(xhci, "Command timeout, USBSTS:%s\n", xhci_decode_usbsts(str, usbsts)); | 
 |  | 
 | 	/* Bail out and tear down xhci if a stop endpoint command failed */ | 
 | 	if (TRB_FIELD_TO_TYPE(cmd_field3) == TRB_STOP_RING) { | 
 | 		struct xhci_virt_ep	*ep; | 
 |  | 
 | 		xhci_warn(xhci, "xHCI host not responding to stop endpoint command\n"); | 
 |  | 
 | 		ep = xhci_get_virt_ep(xhci, TRB_TO_SLOT_ID(cmd_field3), | 
 | 				      TRB_TO_EP_INDEX(cmd_field3)); | 
 | 		if (ep) | 
 | 			ep->ep_state &= ~EP_STOP_CMD_PENDING; | 
 |  | 
 | 		xhci_halt(xhci); | 
 | 		xhci_hc_died(xhci); | 
 | 		goto time_out_completed; | 
 | 	} | 
 |  | 
 | 	/* mark this command to be cancelled */ | 
 | 	xhci->current_cmd->status = COMP_COMMAND_ABORTED; | 
 |  | 
 | 	/* Make sure command ring is running before aborting it */ | 
 | 	hw_ring_state = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); | 
 | 	if (hw_ring_state == ~(u64)0) { | 
 | 		xhci_hc_died(xhci); | 
 | 		goto time_out_completed; | 
 | 	} | 
 |  | 
 | 	if ((xhci->cmd_ring_state & CMD_RING_STATE_RUNNING) && | 
 | 	    (hw_ring_state & CMD_RING_RUNNING))  { | 
 | 		/* Prevent new doorbell, and start command abort */ | 
 | 		xhci->cmd_ring_state = CMD_RING_STATE_ABORTED; | 
 | 		xhci_dbg(xhci, "Command timeout\n"); | 
 | 		xhci_abort_cmd_ring(xhci, flags); | 
 | 		goto time_out_completed; | 
 | 	} | 
 |  | 
 | 	/* host removed. Bail out */ | 
 | 	if (xhci->xhc_state & XHCI_STATE_REMOVING) { | 
 | 		xhci_dbg(xhci, "host removed, ring start fail?\n"); | 
 | 		xhci_cleanup_command_queue(xhci); | 
 |  | 
 | 		goto time_out_completed; | 
 | 	} | 
 |  | 
 | 	/* command timeout on stopped ring, ring can't be aborted */ | 
 | 	xhci_dbg(xhci, "Command timeout on stopped ring\n"); | 
 | 	xhci_handle_stopped_cmd_ring(xhci, xhci->current_cmd); | 
 |  | 
 | time_out_completed: | 
 | 	spin_unlock_irqrestore(&xhci->lock, flags); | 
 | 	return; | 
 | } | 
 |  | 
 | static void handle_cmd_completion(struct xhci_hcd *xhci, | 
 | 		struct xhci_event_cmd *event) | 
 | { | 
 | 	unsigned int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); | 
 | 	u32 status = le32_to_cpu(event->status); | 
 | 	u64 cmd_dma; | 
 | 	dma_addr_t cmd_dequeue_dma; | 
 | 	u32 cmd_comp_code; | 
 | 	union xhci_trb *cmd_trb; | 
 | 	struct xhci_command *cmd; | 
 | 	u32 cmd_type; | 
 |  | 
 | 	if (slot_id >= MAX_HC_SLOTS) { | 
 | 		xhci_warn(xhci, "Invalid slot_id %u\n", slot_id); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	cmd_dma = le64_to_cpu(event->cmd_trb); | 
 | 	cmd_trb = xhci->cmd_ring->dequeue; | 
 |  | 
 | 	trace_xhci_handle_command(xhci->cmd_ring, &cmd_trb->generic, cmd_dma); | 
 |  | 
 | 	cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status)); | 
 |  | 
 | 	/* If CMD ring stopped we own the trbs between enqueue and dequeue */ | 
 | 	if (cmd_comp_code == COMP_COMMAND_RING_STOPPED) { | 
 | 		complete_all(&xhci->cmd_ring_stop_completion); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, | 
 | 			cmd_trb); | 
 | 	/* | 
 | 	 * Check whether the completion event is for our internal kept | 
 | 	 * command. | 
 | 	 */ | 
 | 	if (!cmd_dequeue_dma || cmd_dma != (u64)cmd_dequeue_dma) { | 
 | 		xhci_warn(xhci, | 
 | 			  "ERROR mismatched command completion event\n"); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	cmd = list_first_entry(&xhci->cmd_list, struct xhci_command, cmd_list); | 
 |  | 
 | 	cancel_delayed_work(&xhci->cmd_timer); | 
 |  | 
 | 	if (cmd->command_trb != xhci->cmd_ring->dequeue) { | 
 | 		xhci_err(xhci, | 
 | 			 "Command completion event does not match command\n"); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Host aborted the command ring, check if the current command was | 
 | 	 * supposed to be aborted, otherwise continue normally. | 
 | 	 * The command ring is stopped now, but the xHC will issue a Command | 
 | 	 * Ring Stopped event which will cause us to restart it. | 
 | 	 */ | 
 | 	if (cmd_comp_code == COMP_COMMAND_ABORTED) { | 
 | 		xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; | 
 | 		if (cmd->status == COMP_COMMAND_ABORTED) { | 
 | 			if (xhci->current_cmd == cmd) | 
 | 				xhci->current_cmd = NULL; | 
 | 			goto event_handled; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3])); | 
 | 	switch (cmd_type) { | 
 | 	case TRB_ENABLE_SLOT: | 
 | 		xhci_handle_cmd_enable_slot(slot_id, cmd, cmd_comp_code); | 
 | 		break; | 
 | 	case TRB_DISABLE_SLOT: | 
 | 		xhci_handle_cmd_disable_slot(xhci, slot_id); | 
 | 		break; | 
 | 	case TRB_CONFIG_EP: | 
 | 		if (!cmd->completion) | 
 | 			xhci_handle_cmd_config_ep(xhci, slot_id); | 
 | 		break; | 
 | 	case TRB_EVAL_CONTEXT: | 
 | 		break; | 
 | 	case TRB_ADDR_DEV: | 
 | 		xhci_handle_cmd_addr_dev(xhci, slot_id); | 
 | 		break; | 
 | 	case TRB_STOP_RING: | 
 | 		WARN_ON(slot_id != TRB_TO_SLOT_ID( | 
 | 				le32_to_cpu(cmd_trb->generic.field[3]))); | 
 | 		if (!cmd->completion) | 
 | 			xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, | 
 | 						cmd_comp_code); | 
 | 		break; | 
 | 	case TRB_SET_DEQ: | 
 | 		WARN_ON(slot_id != TRB_TO_SLOT_ID( | 
 | 				le32_to_cpu(cmd_trb->generic.field[3]))); | 
 | 		xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code); | 
 | 		break; | 
 | 	case TRB_CMD_NOOP: | 
 | 		/* Is this an aborted command turned to NO-OP? */ | 
 | 		if (cmd->status == COMP_COMMAND_RING_STOPPED) | 
 | 			cmd_comp_code = COMP_COMMAND_RING_STOPPED; | 
 | 		break; | 
 | 	case TRB_RESET_EP: | 
 | 		WARN_ON(slot_id != TRB_TO_SLOT_ID( | 
 | 				le32_to_cpu(cmd_trb->generic.field[3]))); | 
 | 		xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code); | 
 | 		break; | 
 | 	case TRB_RESET_DEV: | 
 | 		/* SLOT_ID field in reset device cmd completion event TRB is 0. | 
 | 		 * Use the SLOT_ID from the command TRB instead (xhci 4.6.11) | 
 | 		 */ | 
 | 		slot_id = TRB_TO_SLOT_ID( | 
 | 				le32_to_cpu(cmd_trb->generic.field[3])); | 
 | 		xhci_handle_cmd_reset_dev(xhci, slot_id); | 
 | 		break; | 
 | 	case TRB_NEC_GET_FW: | 
 | 		xhci_handle_cmd_nec_get_fw(xhci, event); | 
 | 		break; | 
 | 	case TRB_GET_BW: | 
 | 		break; | 
 | 	default: | 
 | 		/* Skip over unknown commands on the event ring */ | 
 | 		xhci_info(xhci, "INFO unknown command type %d\n", cmd_type); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	/* restart timer if this wasn't the last command */ | 
 | 	if (!list_is_singular(&xhci->cmd_list)) { | 
 | 		xhci->current_cmd = list_first_entry(&cmd->cmd_list, | 
 | 						struct xhci_command, cmd_list); | 
 | 		xhci_mod_cmd_timer(xhci); | 
 | 	} else if (xhci->current_cmd == cmd) { | 
 | 		xhci->current_cmd = NULL; | 
 | 	} | 
 |  | 
 | event_handled: | 
 | 	xhci_complete_del_and_free_cmd(cmd, cmd_comp_code, COMP_PARAM(status)); | 
 |  | 
 | 	inc_deq(xhci, xhci->cmd_ring); | 
 | } | 
 |  | 
 | static void handle_vendor_event(struct xhci_hcd *xhci, | 
 | 				union xhci_trb *event, u32 trb_type) | 
 | { | 
 | 	xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type); | 
 | 	if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST)) | 
 | 		handle_cmd_completion(xhci, &event->event_cmd); | 
 | } | 
 |  | 
 | static void handle_device_notification(struct xhci_hcd *xhci, | 
 | 		union xhci_trb *event) | 
 | { | 
 | 	u32 slot_id; | 
 | 	struct usb_device *udev; | 
 |  | 
 | 	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3])); | 
 | 	if (!xhci->devs[slot_id]) { | 
 | 		xhci_warn(xhci, "Device Notification event for " | 
 | 				"unused slot %u\n", slot_id); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n", | 
 | 			slot_id); | 
 | 	udev = xhci->devs[slot_id]->udev; | 
 | 	if (udev && udev->parent) | 
 | 		usb_wakeup_notification(udev->parent, udev->portnum); | 
 | } | 
 |  | 
 | /* | 
 |  * Quirk hanlder for errata seen on Cavium ThunderX2 processor XHCI | 
 |  * Controller. | 
 |  * As per ThunderX2errata-129 USB 2 device may come up as USB 1 | 
 |  * If a connection to a USB 1 device is followed by another connection | 
 |  * to a USB 2 device. | 
 |  * | 
 |  * Reset the PHY after the USB device is disconnected if device speed | 
 |  * is less than HCD_USB3. | 
 |  * Retry the reset sequence max of 4 times checking the PLL lock status. | 
 |  * | 
 |  */ | 
 | static void xhci_cavium_reset_phy_quirk(struct xhci_hcd *xhci) | 
 | { | 
 | 	struct usb_hcd *hcd = xhci_to_hcd(xhci); | 
 | 	u32 pll_lock_check; | 
 | 	u32 retry_count = 4; | 
 |  | 
 | 	do { | 
 | 		/* Assert PHY reset */ | 
 | 		writel(0x6F, hcd->regs + 0x1048); | 
 | 		udelay(10); | 
 | 		/* De-assert the PHY reset */ | 
 | 		writel(0x7F, hcd->regs + 0x1048); | 
 | 		udelay(200); | 
 | 		pll_lock_check = readl(hcd->regs + 0x1070); | 
 | 	} while (!(pll_lock_check & 0x1) && --retry_count); | 
 | } | 
 |  | 
 | static void handle_port_status(struct xhci_hcd *xhci, union xhci_trb *event) | 
 | { | 
 | 	struct usb_hcd *hcd; | 
 | 	u32 port_id; | 
 | 	u32 portsc, cmd_reg; | 
 | 	int max_ports; | 
 | 	unsigned int hcd_portnum; | 
 | 	struct xhci_bus_state *bus_state; | 
 | 	bool bogus_port_status = false; | 
 | 	struct xhci_port *port; | 
 |  | 
 | 	/* Port status change events always have a successful completion code */ | 
 | 	if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) | 
 | 		xhci_warn(xhci, | 
 | 			  "WARN: xHC returned failed port status event\n"); | 
 |  | 
 | 	port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0])); | 
 | 	max_ports = HCS_MAX_PORTS(xhci->hcs_params1); | 
 |  | 
 | 	if ((port_id <= 0) || (port_id > max_ports)) { | 
 | 		xhci_warn(xhci, "Port change event with invalid port ID %d\n", | 
 | 			  port_id); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	port = &xhci->hw_ports[port_id - 1]; | 
 | 	if (!port || !port->rhub || port->hcd_portnum == DUPLICATE_ENTRY) { | 
 | 		xhci_warn(xhci, "Port change event, no port for port ID %u\n", | 
 | 			  port_id); | 
 | 		bogus_port_status = true; | 
 | 		goto cleanup; | 
 | 	} | 
 |  | 
 | 	/* We might get interrupts after shared_hcd is removed */ | 
 | 	if (port->rhub == &xhci->usb3_rhub && xhci->shared_hcd == NULL) { | 
 | 		xhci_dbg(xhci, "ignore port event for removed USB3 hcd\n"); | 
 | 		bogus_port_status = true; | 
 | 		goto cleanup; | 
 | 	} | 
 |  | 
 | 	hcd = port->rhub->hcd; | 
 | 	bus_state = &port->rhub->bus_state; | 
 | 	hcd_portnum = port->hcd_portnum; | 
 | 	portsc = readl(port->addr); | 
 |  | 
 | 	xhci_dbg(xhci, "Port change event, %d-%d, id %d, portsc: 0x%x\n", | 
 | 		 hcd->self.busnum, hcd_portnum + 1, port_id, portsc); | 
 |  | 
 | 	trace_xhci_handle_port_status(port, portsc); | 
 |  | 
 | 	if (hcd->state == HC_STATE_SUSPENDED) { | 
 | 		xhci_dbg(xhci, "resume root hub\n"); | 
 | 		usb_hcd_resume_root_hub(hcd); | 
 | 	} | 
 |  | 
 | 	if (hcd->speed >= HCD_USB3 && | 
 | 	    (portsc & PORT_PLS_MASK) == XDEV_INACTIVE) { | 
 | 		if (port->slot_id && xhci->devs[port->slot_id]) | 
 | 			xhci->devs[port->slot_id]->flags |= VDEV_PORT_ERROR; | 
 | 	} | 
 |  | 
 | 	if ((portsc & PORT_PLC) && (portsc & PORT_PLS_MASK) == XDEV_RESUME) { | 
 | 		xhci_dbg(xhci, "port resume event for port %d\n", port_id); | 
 |  | 
 | 		cmd_reg = readl(&xhci->op_regs->command); | 
 | 		if (!(cmd_reg & CMD_RUN)) { | 
 | 			xhci_warn(xhci, "xHC is not running.\n"); | 
 | 			goto cleanup; | 
 | 		} | 
 |  | 
 | 		if (DEV_SUPERSPEED_ANY(portsc)) { | 
 | 			xhci_dbg(xhci, "remote wake SS port %d\n", port_id); | 
 | 			/* Set a flag to say the port signaled remote wakeup, | 
 | 			 * so we can tell the difference between the end of | 
 | 			 * device and host initiated resume. | 
 | 			 */ | 
 | 			bus_state->port_remote_wakeup |= 1 << hcd_portnum; | 
 | 			xhci_test_and_clear_bit(xhci, port, PORT_PLC); | 
 | 			usb_hcd_start_port_resume(&hcd->self, hcd_portnum); | 
 | 			xhci_set_link_state(xhci, port, XDEV_U0); | 
 | 			/* Need to wait until the next link state change | 
 | 			 * indicates the device is actually in U0. | 
 | 			 */ | 
 | 			bogus_port_status = true; | 
 | 			goto cleanup; | 
 | 		} else if (!test_bit(hcd_portnum, &bus_state->resuming_ports)) { | 
 | 			xhci_dbg(xhci, "resume HS port %d\n", port_id); | 
 | 			port->resume_timestamp = jiffies + | 
 | 				msecs_to_jiffies(USB_RESUME_TIMEOUT); | 
 | 			set_bit(hcd_portnum, &bus_state->resuming_ports); | 
 | 			/* Do the rest in GetPortStatus after resume time delay. | 
 | 			 * Avoid polling roothub status before that so that a | 
 | 			 * usb device auto-resume latency around ~40ms. | 
 | 			 */ | 
 | 			set_bit(HCD_FLAG_POLL_RH, &hcd->flags); | 
 | 			mod_timer(&hcd->rh_timer, | 
 | 				  port->resume_timestamp); | 
 | 			usb_hcd_start_port_resume(&hcd->self, hcd_portnum); | 
 | 			bogus_port_status = true; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if ((portsc & PORT_PLC) && | 
 | 	    DEV_SUPERSPEED_ANY(portsc) && | 
 | 	    ((portsc & PORT_PLS_MASK) == XDEV_U0 || | 
 | 	     (portsc & PORT_PLS_MASK) == XDEV_U1 || | 
 | 	     (portsc & PORT_PLS_MASK) == XDEV_U2)) { | 
 | 		xhci_dbg(xhci, "resume SS port %d finished\n", port_id); | 
 | 		complete(&port->u3exit_done); | 
 | 		/* We've just brought the device into U0/1/2 through either the | 
 | 		 * Resume state after a device remote wakeup, or through the | 
 | 		 * U3Exit state after a host-initiated resume.  If it's a device | 
 | 		 * initiated remote wake, don't pass up the link state change, | 
 | 		 * so the roothub behavior is consistent with external | 
 | 		 * USB 3.0 hub behavior. | 
 | 		 */ | 
 | 		if (port->slot_id && xhci->devs[port->slot_id]) | 
 | 			xhci_ring_device(xhci, port->slot_id); | 
 | 		if (bus_state->port_remote_wakeup & (1 << hcd_portnum)) { | 
 | 			xhci_test_and_clear_bit(xhci, port, PORT_PLC); | 
 | 			usb_wakeup_notification(hcd->self.root_hub, | 
 | 					hcd_portnum + 1); | 
 | 			bogus_port_status = true; | 
 | 			goto cleanup; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or | 
 | 	 * RExit to a disconnect state).  If so, let the driver know it's | 
 | 	 * out of the RExit state. | 
 | 	 */ | 
 | 	if (hcd->speed < HCD_USB3 && port->rexit_active) { | 
 | 		complete(&port->rexit_done); | 
 | 		port->rexit_active = false; | 
 | 		bogus_port_status = true; | 
 | 		goto cleanup; | 
 | 	} | 
 |  | 
 | 	if (hcd->speed < HCD_USB3) { | 
 | 		xhci_test_and_clear_bit(xhci, port, PORT_PLC); | 
 | 		if ((xhci->quirks & XHCI_RESET_PLL_ON_DISCONNECT) && | 
 | 		    (portsc & PORT_CSC) && !(portsc & PORT_CONNECT)) | 
 | 			xhci_cavium_reset_phy_quirk(xhci); | 
 | 	} | 
 |  | 
 | cleanup: | 
 |  | 
 | 	/* Don't make the USB core poll the roothub if we got a bad port status | 
 | 	 * change event.  Besides, at that point we can't tell which roothub | 
 | 	 * (USB 2.0 or USB 3.0) to kick. | 
 | 	 */ | 
 | 	if (bogus_port_status) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * xHCI port-status-change events occur when the "or" of all the | 
 | 	 * status-change bits in the portsc register changes from 0 to 1. | 
 | 	 * New status changes won't cause an event if any other change | 
 | 	 * bits are still set.  When an event occurs, switch over to | 
 | 	 * polling to avoid losing status changes. | 
 | 	 */ | 
 | 	xhci_dbg(xhci, "%s: starting usb%d port polling.\n", | 
 | 		 __func__, hcd->self.busnum); | 
 | 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags); | 
 | 	spin_unlock(&xhci->lock); | 
 | 	/* Pass this up to the core */ | 
 | 	usb_hcd_poll_rh_status(hcd); | 
 | 	spin_lock(&xhci->lock); | 
 | } | 
 |  | 
 | static void xhci_clear_hub_tt_buffer(struct xhci_hcd *xhci, struct xhci_td *td, | 
 | 		struct xhci_virt_ep *ep) | 
 | { | 
 | 	/* | 
 | 	 * As part of low/full-speed endpoint-halt processing | 
 | 	 * we must clear the TT buffer (USB 2.0 specification 11.17.5). | 
 | 	 */ | 
 | 	if (td->urb->dev->tt && !usb_pipeint(td->urb->pipe) && | 
 | 	    (td->urb->dev->tt->hub != xhci_to_hcd(xhci)->self.root_hub) && | 
 | 	    !(ep->ep_state & EP_CLEARING_TT)) { | 
 | 		ep->ep_state |= EP_CLEARING_TT; | 
 | 		td->urb->ep->hcpriv = td->urb->dev; | 
 | 		if (usb_hub_clear_tt_buffer(td->urb)) | 
 | 			ep->ep_state &= ~EP_CLEARING_TT; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Check if xhci internal endpoint state has gone to a "halt" state due to an | 
 |  * error or stall, including default control pipe protocol stall. | 
 |  * The internal halt needs to be cleared with a reset endpoint command. | 
 |  * | 
 |  * External device side is also halted in functional stall cases. Class driver | 
 |  * will clear the device halt with a CLEAR_FEATURE(ENDPOINT_HALT) request later. | 
 |  */ | 
 | static bool xhci_halted_host_endpoint(struct xhci_ep_ctx *ep_ctx, unsigned int comp_code) | 
 | { | 
 | 	/* Stall halts both internal and device side endpoint */ | 
 | 	if (comp_code == COMP_STALL_ERROR) | 
 | 		return true; | 
 |  | 
 | 	/* TRB completion codes that may require internal halt cleanup */ | 
 | 	if (comp_code == COMP_USB_TRANSACTION_ERROR || | 
 | 	    comp_code == COMP_BABBLE_DETECTED_ERROR || | 
 | 	    comp_code == COMP_SPLIT_TRANSACTION_ERROR) | 
 | 		/* | 
 | 		 * The 0.95 spec says a babbling control endpoint is not halted. | 
 | 		 * The 0.96 spec says it is. Some HW claims to be 0.95 | 
 | 		 * compliant, but it halts the control endpoint anyway. | 
 | 		 * Check endpoint context if endpoint is halted. | 
 | 		 */ | 
 | 		if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_HALTED) | 
 | 			return true; | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code) | 
 | { | 
 | 	if (trb_comp_code >= 224 && trb_comp_code <= 255) { | 
 | 		/* Vendor defined "informational" completion code, | 
 | 		 * treat as not-an-error. | 
 | 		 */ | 
 | 		xhci_dbg(xhci, "Vendor defined info completion code %u\n", | 
 | 				trb_comp_code); | 
 | 		xhci_dbg(xhci, "Treating code as success.\n"); | 
 | 		return 1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void finish_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, | 
 | 		      struct xhci_ring *ep_ring, struct xhci_td *td, | 
 | 		      u32 trb_comp_code) | 
 | { | 
 | 	struct xhci_ep_ctx *ep_ctx; | 
 |  | 
 | 	ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep->ep_index); | 
 |  | 
 | 	switch (trb_comp_code) { | 
 | 	case COMP_STOPPED_LENGTH_INVALID: | 
 | 	case COMP_STOPPED_SHORT_PACKET: | 
 | 	case COMP_STOPPED: | 
 | 		/* | 
 | 		 * The "Stop Endpoint" completion will take care of any | 
 | 		 * stopped TDs. A stopped TD may be restarted, so don't update | 
 | 		 * the ring dequeue pointer or take this TD off any lists yet. | 
 | 		 */ | 
 | 		return; | 
 | 	case COMP_USB_TRANSACTION_ERROR: | 
 | 	case COMP_BABBLE_DETECTED_ERROR: | 
 | 	case COMP_SPLIT_TRANSACTION_ERROR: | 
 | 		/* | 
 | 		 * If endpoint context state is not halted we might be | 
 | 		 * racing with a reset endpoint command issued by a unsuccessful | 
 | 		 * stop endpoint completion (context error). In that case the | 
 | 		 * td should be on the cancelled list, and EP_HALTED flag set. | 
 | 		 * | 
 | 		 * Or then it's not halted due to the 0.95 spec stating that a | 
 | 		 * babbling control endpoint should not halt. The 0.96 spec | 
 | 		 * again says it should.  Some HW claims to be 0.95 compliant, | 
 | 		 * but it halts the control endpoint anyway. | 
 | 		 */ | 
 | 		if (GET_EP_CTX_STATE(ep_ctx) != EP_STATE_HALTED) { | 
 | 			/* | 
 | 			 * If EP_HALTED is set and TD is on the cancelled list | 
 | 			 * the TD and dequeue pointer will be handled by reset | 
 | 			 * ep command completion | 
 | 			 */ | 
 | 			if ((ep->ep_state & EP_HALTED) && | 
 | 			    !list_empty(&td->cancelled_td_list)) { | 
 | 				xhci_dbg(xhci, "Already resolving halted ep for 0x%llx\n", | 
 | 					 (unsigned long long)xhci_trb_virt_to_dma( | 
 | 						 td->start_seg, td->start_trb)); | 
 | 				return; | 
 | 			} | 
 | 			/* endpoint not halted, don't reset it */ | 
 | 			break; | 
 | 		} | 
 | 		/* Almost same procedure as for STALL_ERROR below */ | 
 | 		xhci_clear_hub_tt_buffer(xhci, td, ep); | 
 | 		xhci_handle_halted_endpoint(xhci, ep, td, EP_HARD_RESET); | 
 | 		return; | 
 | 	case COMP_STALL_ERROR: | 
 | 		/* | 
 | 		 * xhci internal endpoint state will go to a "halt" state for | 
 | 		 * any stall, including default control pipe protocol stall. | 
 | 		 * To clear the host side halt we need to issue a reset endpoint | 
 | 		 * command, followed by a set dequeue command to move past the | 
 | 		 * TD. | 
 | 		 * Class drivers clear the device side halt from a functional | 
 | 		 * stall later. Hub TT buffer should only be cleared for FS/LS | 
 | 		 * devices behind HS hubs for functional stalls. | 
 | 		 */ | 
 | 		if (ep->ep_index != 0) | 
 | 			xhci_clear_hub_tt_buffer(xhci, td, ep); | 
 |  | 
 | 		xhci_handle_halted_endpoint(xhci, ep, td, EP_HARD_RESET); | 
 |  | 
 | 		return; /* xhci_handle_halted_endpoint marked td cancelled */ | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	xhci_dequeue_td(xhci, td, ep_ring, td->status); | 
 | } | 
 |  | 
 | /* sum trb lengths from the first trb up to stop_trb, _excluding_ stop_trb */ | 
 | static u32 sum_trb_lengths(struct xhci_td *td, union xhci_trb *stop_trb) | 
 | { | 
 | 	u32 sum; | 
 | 	union xhci_trb *trb = td->start_trb; | 
 | 	struct xhci_segment *seg = td->start_seg; | 
 |  | 
 | 	for (sum = 0; trb != stop_trb; next_trb(&seg, &trb)) { | 
 | 		if (!trb_is_noop(trb) && !trb_is_link(trb)) | 
 | 			sum += TRB_LEN(le32_to_cpu(trb->generic.field[2])); | 
 | 	} | 
 | 	return sum; | 
 | } | 
 |  | 
 | /* | 
 |  * Process control tds, update urb status and actual_length. | 
 |  */ | 
 | static void process_ctrl_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, | 
 | 			    struct xhci_ring *ep_ring,  struct xhci_td *td, | 
 | 			    union xhci_trb *ep_trb, struct xhci_transfer_event *event) | 
 | { | 
 | 	struct xhci_ep_ctx *ep_ctx; | 
 | 	u32 trb_comp_code; | 
 | 	u32 remaining, requested; | 
 | 	u32 trb_type; | 
 |  | 
 | 	trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(ep_trb->generic.field[3])); | 
 | 	ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep->ep_index); | 
 | 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); | 
 | 	requested = td->urb->transfer_buffer_length; | 
 | 	remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); | 
 |  | 
 | 	switch (trb_comp_code) { | 
 | 	case COMP_SUCCESS: | 
 | 		if (trb_type != TRB_STATUS) { | 
 | 			xhci_warn(xhci, "WARN: Success on ctrl %s TRB without IOC set?\n", | 
 | 				  (trb_type == TRB_DATA) ? "data" : "setup"); | 
 | 			td->status = -ESHUTDOWN; | 
 | 			break; | 
 | 		} | 
 | 		td->status = 0; | 
 | 		break; | 
 | 	case COMP_SHORT_PACKET: | 
 | 		td->status = 0; | 
 | 		break; | 
 | 	case COMP_STOPPED_SHORT_PACKET: | 
 | 		if (trb_type == TRB_DATA || trb_type == TRB_NORMAL) | 
 | 			td->urb->actual_length = remaining; | 
 | 		else | 
 | 			xhci_warn(xhci, "WARN: Stopped Short Packet on ctrl setup or status TRB\n"); | 
 | 		goto finish_td; | 
 | 	case COMP_STOPPED: | 
 | 		switch (trb_type) { | 
 | 		case TRB_SETUP: | 
 | 			td->urb->actual_length = 0; | 
 | 			goto finish_td; | 
 | 		case TRB_DATA: | 
 | 		case TRB_NORMAL: | 
 | 			td->urb->actual_length = requested - remaining; | 
 | 			goto finish_td; | 
 | 		case TRB_STATUS: | 
 | 			td->urb->actual_length = requested; | 
 | 			goto finish_td; | 
 | 		default: | 
 | 			xhci_warn(xhci, "WARN: unexpected TRB Type %d\n", | 
 | 				  trb_type); | 
 | 			goto finish_td; | 
 | 		} | 
 | 	case COMP_STOPPED_LENGTH_INVALID: | 
 | 		goto finish_td; | 
 | 	default: | 
 | 		if (!xhci_halted_host_endpoint(ep_ctx, trb_comp_code)) | 
 | 			break; | 
 | 		xhci_dbg(xhci, "TRB error %u, halted endpoint index = %u\n", | 
 | 			 trb_comp_code, ep->ep_index); | 
 | 		fallthrough; | 
 | 	case COMP_STALL_ERROR: | 
 | 		/* Did we transfer part of the data (middle) phase? */ | 
 | 		if (trb_type == TRB_DATA || trb_type == TRB_NORMAL) | 
 | 			td->urb->actual_length = requested - remaining; | 
 | 		else if (!td->urb_length_set) | 
 | 			td->urb->actual_length = 0; | 
 | 		goto finish_td; | 
 | 	} | 
 |  | 
 | 	/* stopped at setup stage, no data transferred */ | 
 | 	if (trb_type == TRB_SETUP) | 
 | 		goto finish_td; | 
 |  | 
 | 	/* | 
 | 	 * if on data stage then update the actual_length of the URB and flag it | 
 | 	 * as set, so it won't be overwritten in the event for the last TRB. | 
 | 	 */ | 
 | 	if (trb_type == TRB_DATA || | 
 | 		trb_type == TRB_NORMAL) { | 
 | 		td->urb_length_set = true; | 
 | 		td->urb->actual_length = requested - remaining; | 
 | 		xhci_dbg(xhci, "Waiting for status stage event\n"); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* at status stage */ | 
 | 	if (!td->urb_length_set) | 
 | 		td->urb->actual_length = requested; | 
 |  | 
 | finish_td: | 
 | 	finish_td(xhci, ep, ep_ring, td, trb_comp_code); | 
 | } | 
 |  | 
 | /* | 
 |  * Process isochronous tds, update urb packet status and actual_length. | 
 |  */ | 
 | static void process_isoc_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, | 
 | 			    struct xhci_ring *ep_ring, struct xhci_td *td, | 
 | 			    union xhci_trb *ep_trb, struct xhci_transfer_event *event) | 
 | { | 
 | 	struct urb_priv *urb_priv; | 
 | 	int idx; | 
 | 	struct usb_iso_packet_descriptor *frame; | 
 | 	u32 trb_comp_code; | 
 | 	bool sum_trbs_for_length = false; | 
 | 	u32 remaining, requested, ep_trb_len; | 
 | 	int short_framestatus; | 
 |  | 
 | 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); | 
 | 	urb_priv = td->urb->hcpriv; | 
 | 	idx = urb_priv->num_tds_done; | 
 | 	frame = &td->urb->iso_frame_desc[idx]; | 
 | 	requested = frame->length; | 
 | 	remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); | 
 | 	ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2])); | 
 | 	short_framestatus = td->urb->transfer_flags & URB_SHORT_NOT_OK ? | 
 | 		-EREMOTEIO : 0; | 
 |  | 
 | 	/* handle completion code */ | 
 | 	switch (trb_comp_code) { | 
 | 	case COMP_SUCCESS: | 
 | 		/* Don't overwrite status if TD had an error, see xHCI 4.9.1 */ | 
 | 		if (td->error_mid_td) | 
 | 			break; | 
 | 		if (remaining) { | 
 | 			frame->status = short_framestatus; | 
 | 			sum_trbs_for_length = true; | 
 | 			break; | 
 | 		} | 
 | 		frame->status = 0; | 
 | 		break; | 
 | 	case COMP_SHORT_PACKET: | 
 | 		frame->status = short_framestatus; | 
 | 		sum_trbs_for_length = true; | 
 | 		break; | 
 | 	case COMP_BANDWIDTH_OVERRUN_ERROR: | 
 | 		frame->status = -ECOMM; | 
 | 		break; | 
 | 	case COMP_BABBLE_DETECTED_ERROR: | 
 | 		sum_trbs_for_length = true; | 
 | 		fallthrough; | 
 | 	case COMP_ISOCH_BUFFER_OVERRUN: | 
 | 		frame->status = -EOVERFLOW; | 
 | 		if (ep_trb != td->end_trb) | 
 | 			td->error_mid_td = true; | 
 | 		break; | 
 | 	case COMP_MISSED_SERVICE_ERROR: | 
 | 		frame->status = -EXDEV; | 
 | 		sum_trbs_for_length = true; | 
 | 		if (ep_trb != td->end_trb) | 
 | 			td->error_mid_td = true; | 
 | 		break; | 
 | 	case COMP_INCOMPATIBLE_DEVICE_ERROR: | 
 | 	case COMP_STALL_ERROR: | 
 | 		frame->status = -EPROTO; | 
 | 		break; | 
 | 	case COMP_USB_TRANSACTION_ERROR: | 
 | 		frame->status = -EPROTO; | 
 | 		sum_trbs_for_length = true; | 
 | 		if (ep_trb != td->end_trb) | 
 | 			td->error_mid_td = true; | 
 | 		break; | 
 | 	case COMP_STOPPED: | 
 | 		sum_trbs_for_length = true; | 
 | 		break; | 
 | 	case COMP_STOPPED_SHORT_PACKET: | 
 | 		/* field normally containing residue now contains transferred */ | 
 | 		frame->status = short_framestatus; | 
 | 		requested = remaining; | 
 | 		break; | 
 | 	case COMP_STOPPED_LENGTH_INVALID: | 
 | 		/* exclude stopped trb with invalid length from length sum */ | 
 | 		sum_trbs_for_length = true; | 
 | 		ep_trb_len = 0; | 
 | 		remaining = 0; | 
 | 		break; | 
 | 	default: | 
 | 		sum_trbs_for_length = true; | 
 | 		frame->status = -1; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	if (td->urb_length_set) | 
 | 		goto finish_td; | 
 |  | 
 | 	if (sum_trbs_for_length) | 
 | 		frame->actual_length = sum_trb_lengths(td, ep_trb) + | 
 | 			ep_trb_len - remaining; | 
 | 	else | 
 | 		frame->actual_length = requested; | 
 |  | 
 | 	td->urb->actual_length += frame->actual_length; | 
 |  | 
 | finish_td: | 
 | 	/* Don't give back TD yet if we encountered an error mid TD */ | 
 | 	if (td->error_mid_td && ep_trb != td->end_trb) { | 
 | 		xhci_dbg(xhci, "Error mid isoc TD, wait for final completion event\n"); | 
 | 		td->urb_length_set = true; | 
 | 		return; | 
 | 	} | 
 | 	finish_td(xhci, ep, ep_ring, td, trb_comp_code); | 
 | } | 
 |  | 
 | static void skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, | 
 | 			 struct xhci_virt_ep *ep, int status) | 
 | { | 
 | 	struct urb_priv *urb_priv; | 
 | 	struct usb_iso_packet_descriptor *frame; | 
 | 	int idx; | 
 |  | 
 | 	urb_priv = td->urb->hcpriv; | 
 | 	idx = urb_priv->num_tds_done; | 
 | 	frame = &td->urb->iso_frame_desc[idx]; | 
 |  | 
 | 	/* The transfer is partly done. */ | 
 | 	frame->status = -EXDEV; | 
 |  | 
 | 	/* calc actual length */ | 
 | 	frame->actual_length = 0; | 
 |  | 
 | 	xhci_dequeue_td(xhci, td, ep->ring, status); | 
 | } | 
 |  | 
 | /* | 
 |  * Process bulk and interrupt tds, update urb status and actual_length. | 
 |  */ | 
 | static void process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, | 
 | 				 struct xhci_ring *ep_ring, struct xhci_td *td, | 
 | 				 union xhci_trb *ep_trb, struct xhci_transfer_event *event) | 
 | { | 
 | 	struct xhci_slot_ctx *slot_ctx; | 
 | 	u32 trb_comp_code; | 
 | 	u32 remaining, requested, ep_trb_len; | 
 |  | 
 | 	slot_ctx = xhci_get_slot_ctx(xhci, ep->vdev->out_ctx); | 
 | 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); | 
 | 	remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); | 
 | 	ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2])); | 
 | 	requested = td->urb->transfer_buffer_length; | 
 |  | 
 | 	switch (trb_comp_code) { | 
 | 	case COMP_SUCCESS: | 
 | 		ep->err_count = 0; | 
 | 		/* handle success with untransferred data as short packet */ | 
 | 		if (ep_trb != td->end_trb || remaining) { | 
 | 			xhci_warn(xhci, "WARN Successful completion on short TX\n"); | 
 | 			xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n", | 
 | 				 td->urb->ep->desc.bEndpointAddress, | 
 | 				 requested, remaining); | 
 | 		} | 
 | 		td->status = 0; | 
 | 		break; | 
 | 	case COMP_SHORT_PACKET: | 
 | 		td->status = 0; | 
 | 		break; | 
 | 	case COMP_STOPPED_SHORT_PACKET: | 
 | 		td->urb->actual_length = remaining; | 
 | 		goto finish_td; | 
 | 	case COMP_STOPPED_LENGTH_INVALID: | 
 | 		/* stopped on ep trb with invalid length, exclude it */ | 
 | 		td->urb->actual_length = sum_trb_lengths(td, ep_trb); | 
 | 		goto finish_td; | 
 | 	case COMP_USB_TRANSACTION_ERROR: | 
 | 		if (xhci->quirks & XHCI_NO_SOFT_RETRY || | 
 | 		    (ep->err_count++ > MAX_SOFT_RETRY) || | 
 | 		    le32_to_cpu(slot_ctx->tt_info) & TT_SLOT) | 
 | 			break; | 
 |  | 
 | 		td->status = 0; | 
 |  | 
 | 		xhci_handle_halted_endpoint(xhci, ep, td, EP_SOFT_RESET); | 
 | 		return; | 
 | 	default: | 
 | 		/* do nothing */ | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	if (ep_trb == td->end_trb) | 
 | 		td->urb->actual_length = requested - remaining; | 
 | 	else | 
 | 		td->urb->actual_length = | 
 | 			sum_trb_lengths(td, ep_trb) + | 
 | 			ep_trb_len - remaining; | 
 | finish_td: | 
 | 	if (remaining > requested) { | 
 | 		xhci_warn(xhci, "bad transfer trb length %d in event trb\n", | 
 | 			  remaining); | 
 | 		td->urb->actual_length = 0; | 
 | 	} | 
 |  | 
 | 	finish_td(xhci, ep, ep_ring, td, trb_comp_code); | 
 | } | 
 |  | 
 | /* Transfer events which don't point to a transfer TRB, see xhci 4.17.4 */ | 
 | static int handle_transferless_tx_event(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, | 
 | 					u32 trb_comp_code) | 
 | { | 
 | 	switch (trb_comp_code) { | 
 | 	case COMP_STALL_ERROR: | 
 | 	case COMP_USB_TRANSACTION_ERROR: | 
 | 	case COMP_INVALID_STREAM_TYPE_ERROR: | 
 | 	case COMP_INVALID_STREAM_ID_ERROR: | 
 | 		xhci_dbg(xhci, "Stream transaction error ep %u no id\n", ep->ep_index); | 
 | 		if (ep->err_count++ > MAX_SOFT_RETRY) | 
 | 			xhci_handle_halted_endpoint(xhci, ep, NULL, EP_HARD_RESET); | 
 | 		else | 
 | 			xhci_handle_halted_endpoint(xhci, ep, NULL, EP_SOFT_RESET); | 
 | 		break; | 
 | 	case COMP_RING_UNDERRUN: | 
 | 	case COMP_RING_OVERRUN: | 
 | 	case COMP_STOPPED_LENGTH_INVALID: | 
 | 		break; | 
 | 	default: | 
 | 		xhci_err(xhci, "Transfer event %u for unknown stream ring slot %u ep %u\n", | 
 | 			 trb_comp_code, ep->vdev->slot_id, ep->ep_index); | 
 | 		return -ENODEV; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static bool xhci_spurious_success_tx_event(struct xhci_hcd *xhci, | 
 | 					   struct xhci_ring *ring) | 
 | { | 
 | 	switch (ring->old_trb_comp_code) { | 
 | 	case COMP_SHORT_PACKET: | 
 | 		return xhci->quirks & XHCI_SPURIOUS_SUCCESS; | 
 | 	case COMP_USB_TRANSACTION_ERROR: | 
 | 	case COMP_BABBLE_DETECTED_ERROR: | 
 | 	case COMP_ISOCH_BUFFER_OVERRUN: | 
 | 		return xhci->quirks & XHCI_ETRON_HOST && | 
 | 			ring->type == TYPE_ISOC; | 
 | 	default: | 
 | 		return false; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * If this function returns an error condition, it means it got a Transfer | 
 |  * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address. | 
 |  * At this point, the host controller is probably hosed and should be reset. | 
 |  */ | 
 | static int handle_tx_event(struct xhci_hcd *xhci, | 
 | 			   struct xhci_interrupter *ir, | 
 | 			   struct xhci_transfer_event *event) | 
 | { | 
 | 	struct xhci_virt_ep *ep; | 
 | 	struct xhci_ring *ep_ring; | 
 | 	unsigned int slot_id; | 
 | 	int ep_index; | 
 | 	struct xhci_td *td = NULL; | 
 | 	dma_addr_t ep_trb_dma; | 
 | 	struct xhci_segment *ep_seg; | 
 | 	union xhci_trb *ep_trb; | 
 | 	int status = -EINPROGRESS; | 
 | 	struct xhci_ep_ctx *ep_ctx; | 
 | 	u32 trb_comp_code; | 
 | 	bool ring_xrun_event = false; | 
 |  | 
 | 	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); | 
 | 	ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; | 
 | 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); | 
 | 	ep_trb_dma = le64_to_cpu(event->buffer); | 
 |  | 
 | 	ep = xhci_get_virt_ep(xhci, slot_id, ep_index); | 
 | 	if (!ep) { | 
 | 		xhci_err(xhci, "ERROR Invalid Transfer event\n"); | 
 | 		goto err_out; | 
 | 	} | 
 |  | 
 | 	ep_ring = xhci_dma_to_transfer_ring(ep, ep_trb_dma); | 
 | 	ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); | 
 |  | 
 | 	if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) { | 
 | 		xhci_err(xhci, | 
 | 			 "ERROR Transfer event for disabled endpoint slot %u ep %u\n", | 
 | 			  slot_id, ep_index); | 
 | 		goto err_out; | 
 | 	} | 
 |  | 
 | 	if (!ep_ring) | 
 | 		return handle_transferless_tx_event(xhci, ep, trb_comp_code); | 
 |  | 
 | 	/* Look for common error cases */ | 
 | 	switch (trb_comp_code) { | 
 | 	/* Skip codes that require special handling depending on | 
 | 	 * transfer type | 
 | 	 */ | 
 | 	case COMP_SUCCESS: | 
 | 		if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) { | 
 | 			trb_comp_code = COMP_SHORT_PACKET; | 
 | 			xhci_dbg(xhci, "Successful completion on short TX for slot %u ep %u with last td comp code %d\n", | 
 | 				 slot_id, ep_index, ep_ring->old_trb_comp_code); | 
 | 		} | 
 | 		break; | 
 | 	case COMP_SHORT_PACKET: | 
 | 		break; | 
 | 	/* Completion codes for endpoint stopped state */ | 
 | 	case COMP_STOPPED: | 
 | 		xhci_dbg(xhci, "Stopped on Transfer TRB for slot %u ep %u\n", | 
 | 			 slot_id, ep_index); | 
 | 		break; | 
 | 	case COMP_STOPPED_LENGTH_INVALID: | 
 | 		xhci_dbg(xhci, | 
 | 			 "Stopped on No-op or Link TRB for slot %u ep %u\n", | 
 | 			 slot_id, ep_index); | 
 | 		break; | 
 | 	case COMP_STOPPED_SHORT_PACKET: | 
 | 		xhci_dbg(xhci, | 
 | 			 "Stopped with short packet transfer detected for slot %u ep %u\n", | 
 | 			 slot_id, ep_index); | 
 | 		break; | 
 | 	/* Completion codes for endpoint halted state */ | 
 | 	case COMP_STALL_ERROR: | 
 | 		xhci_dbg(xhci, "Stalled endpoint for slot %u ep %u\n", slot_id, | 
 | 			 ep_index); | 
 | 		status = -EPIPE; | 
 | 		break; | 
 | 	case COMP_SPLIT_TRANSACTION_ERROR: | 
 | 		xhci_dbg(xhci, "Split transaction error for slot %u ep %u\n", | 
 | 			 slot_id, ep_index); | 
 | 		status = -EPROTO; | 
 | 		break; | 
 | 	case COMP_USB_TRANSACTION_ERROR: | 
 | 		xhci_dbg(xhci, "Transfer error for slot %u ep %u on endpoint\n", | 
 | 			 slot_id, ep_index); | 
 | 		status = -EPROTO; | 
 | 		break; | 
 | 	case COMP_BABBLE_DETECTED_ERROR: | 
 | 		xhci_dbg(xhci, "Babble error for slot %u ep %u on endpoint\n", | 
 | 			 slot_id, ep_index); | 
 | 		status = -EOVERFLOW; | 
 | 		break; | 
 | 	/* Completion codes for endpoint error state */ | 
 | 	case COMP_TRB_ERROR: | 
 | 		xhci_warn(xhci, | 
 | 			  "WARN: TRB error for slot %u ep %u on endpoint\n", | 
 | 			  slot_id, ep_index); | 
 | 		status = -EILSEQ; | 
 | 		break; | 
 | 	/* completion codes not indicating endpoint state change */ | 
 | 	case COMP_DATA_BUFFER_ERROR: | 
 | 		xhci_warn(xhci, | 
 | 			  "WARN: HC couldn't access mem fast enough for slot %u ep %u\n", | 
 | 			  slot_id, ep_index); | 
 | 		status = -ENOSR; | 
 | 		break; | 
 | 	case COMP_BANDWIDTH_OVERRUN_ERROR: | 
 | 		xhci_warn(xhci, | 
 | 			  "WARN: bandwidth overrun event for slot %u ep %u on endpoint\n", | 
 | 			  slot_id, ep_index); | 
 | 		break; | 
 | 	case COMP_ISOCH_BUFFER_OVERRUN: | 
 | 		xhci_warn(xhci, | 
 | 			  "WARN: buffer overrun event for slot %u ep %u on endpoint", | 
 | 			  slot_id, ep_index); | 
 | 		break; | 
 | 	case COMP_RING_UNDERRUN: | 
 | 		/* | 
 | 		 * When the Isoch ring is empty, the xHC will generate | 
 | 		 * a Ring Overrun Event for IN Isoch endpoint or Ring | 
 | 		 * Underrun Event for OUT Isoch endpoint. | 
 | 		 */ | 
 | 		xhci_dbg(xhci, "Underrun event on slot %u ep %u\n", slot_id, ep_index); | 
 | 		ring_xrun_event = true; | 
 | 		break; | 
 | 	case COMP_RING_OVERRUN: | 
 | 		xhci_dbg(xhci, "Overrun event on slot %u ep %u\n", slot_id, ep_index); | 
 | 		ring_xrun_event = true; | 
 | 		break; | 
 | 	case COMP_MISSED_SERVICE_ERROR: | 
 | 		/* | 
 | 		 * When encounter missed service error, one or more isoc tds | 
 | 		 * may be missed by xHC. | 
 | 		 * Set skip flag of the ep_ring; Complete the missed tds as | 
 | 		 * short transfer when process the ep_ring next time. | 
 | 		 */ | 
 | 		ep->skip = true; | 
 | 		xhci_dbg(xhci, | 
 | 			 "Miss service interval error for slot %u ep %u, set skip flag%s\n", | 
 | 			 slot_id, ep_index, ep_trb_dma ? ", skip now" : ""); | 
 | 		break; | 
 | 	case COMP_NO_PING_RESPONSE_ERROR: | 
 | 		ep->skip = true; | 
 | 		xhci_dbg(xhci, | 
 | 			 "No Ping response error for slot %u ep %u, Skip one Isoc TD\n", | 
 | 			 slot_id, ep_index); | 
 | 		return 0; | 
 |  | 
 | 	case COMP_INCOMPATIBLE_DEVICE_ERROR: | 
 | 		/* needs disable slot command to recover */ | 
 | 		xhci_warn(xhci, | 
 | 			  "WARN: detect an incompatible device for slot %u ep %u", | 
 | 			  slot_id, ep_index); | 
 | 		status = -EPROTO; | 
 | 		break; | 
 | 	default: | 
 | 		if (xhci_is_vendor_info_code(xhci, trb_comp_code)) { | 
 | 			status = 0; | 
 | 			break; | 
 | 		} | 
 | 		xhci_warn(xhci, | 
 | 			  "ERROR Unknown event condition %u for slot %u ep %u , HC probably busted\n", | 
 | 			  trb_comp_code, slot_id, ep_index); | 
 | 		if (ep->skip) | 
 | 			break; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * xhci 4.10.2 states isoc endpoints should continue | 
 | 	 * processing the next TD if there was an error mid TD. | 
 | 	 * So host like NEC don't generate an event for the last | 
 | 	 * isoc TRB even if the IOC flag is set. | 
 | 	 * xhci 4.9.1 states that if there are errors in mult-TRB | 
 | 	 * TDs xHC should generate an error for that TRB, and if xHC | 
 | 	 * proceeds to the next TD it should genete an event for | 
 | 	 * any TRB with IOC flag on the way. Other host follow this. | 
 | 	 * | 
 | 	 * We wait for the final IOC event, but if we get an event | 
 | 	 * anywhere outside this TD, just give it back already. | 
 | 	 */ | 
 | 	td = list_first_entry_or_null(&ep_ring->td_list, struct xhci_td, td_list); | 
 |  | 
 | 	if (td && td->error_mid_td && !trb_in_td(td, ep_trb_dma)) { | 
 | 		xhci_dbg(xhci, "Missing TD completion event after mid TD error\n"); | 
 | 		xhci_dequeue_td(xhci, td, ep_ring, td->status); | 
 | 	} | 
 |  | 
 | 	/* If the TRB pointer is NULL, missed TDs will be skipped on the next event */ | 
 | 	if (trb_comp_code == COMP_MISSED_SERVICE_ERROR && !ep_trb_dma) | 
 | 		return 0; | 
 |  | 
 | 	if (list_empty(&ep_ring->td_list)) { | 
 | 		/* | 
 | 		 * Don't print wanings if ring is empty due to a stopped endpoint generating an | 
 | 		 * extra completion event if the device was suspended. Or, a event for the last TRB | 
 | 		 * of a short TD we already got a short event for. The short TD is already removed | 
 | 		 * from the TD list. | 
 | 		 */ | 
 | 		if (trb_comp_code != COMP_STOPPED && | 
 | 		    trb_comp_code != COMP_STOPPED_LENGTH_INVALID && | 
 | 		    !ring_xrun_event && | 
 | 		    !xhci_spurious_success_tx_event(xhci, ep_ring)) { | 
 | 			xhci_warn(xhci, "Event TRB for slot %u ep %u with no TDs queued\n", | 
 | 				  slot_id, ep_index); | 
 | 		} | 
 |  | 
 | 		ep->skip = false; | 
 | 		goto check_endpoint_halted; | 
 | 	} | 
 |  | 
 | 	do { | 
 | 		td = list_first_entry(&ep_ring->td_list, struct xhci_td, | 
 | 				      td_list); | 
 |  | 
 | 		/* Is this a TRB in the currently executing TD? */ | 
 | 		ep_seg = trb_in_td(td, ep_trb_dma); | 
 |  | 
 | 		if (!ep_seg) { | 
 |  | 
 | 			if (ep->skip && usb_endpoint_xfer_isoc(&td->urb->ep->desc)) { | 
 | 				/* this event is unlikely to match any TD, don't skip them all */ | 
 | 				if (trb_comp_code == COMP_STOPPED_LENGTH_INVALID) | 
 | 					return 0; | 
 |  | 
 | 				skip_isoc_td(xhci, td, ep, status); | 
 |  | 
 | 				if (!list_empty(&ep_ring->td_list)) { | 
 | 					if (ring_xrun_event) { | 
 | 						/* | 
 | 						 * If we are here, we are on xHCI 1.0 host with no | 
 | 						 * idea how many TDs were missed or where the xrun | 
 | 						 * occurred. New TDs may have been added after the | 
 | 						 * xrun, so skip only one TD to be safe. | 
 | 						 */ | 
 | 						xhci_dbg(xhci, "Skipped one TD for slot %u ep %u", | 
 | 								slot_id, ep_index); | 
 | 						return 0; | 
 | 					} | 
 | 					continue; | 
 | 				} | 
 |  | 
 | 				xhci_dbg(xhci, "All TDs skipped for slot %u ep %u. Clear skip flag.\n", | 
 | 					 slot_id, ep_index); | 
 | 				ep->skip = false; | 
 | 				td = NULL; | 
 | 				goto check_endpoint_halted; | 
 | 			} | 
 |  | 
 | 			/* TD was queued after xrun, maybe xrun was on a link, don't panic yet */ | 
 | 			if (ring_xrun_event) | 
 | 				return 0; | 
 |  | 
 | 			/* | 
 | 			 * Skip the Force Stopped Event. The 'ep_trb' of FSE is not in the current | 
 | 			 * TD pointed by 'ep_ring->dequeue' because that the hardware dequeue | 
 | 			 * pointer still at the previous TRB of the current TD. The previous TRB | 
 | 			 * maybe a Link TD or the last TRB of the previous TD. The command | 
 | 			 * completion handle will take care the rest. | 
 | 			 */ | 
 | 			if (trb_comp_code == COMP_STOPPED || | 
 | 			    trb_comp_code == COMP_STOPPED_LENGTH_INVALID) { | 
 | 				return 0; | 
 | 			} | 
 |  | 
 | 			/* | 
 | 			 * Some hosts give a spurious success event after a short | 
 | 			 * transfer or error on last TRB. Ignore it. | 
 | 			 */ | 
 | 			if (xhci_spurious_success_tx_event(xhci, ep_ring)) { | 
 | 				xhci_dbg(xhci, "Spurious event dma %pad, comp_code %u after %u\n", | 
 | 					 &ep_trb_dma, trb_comp_code, ep_ring->old_trb_comp_code); | 
 | 				ep_ring->old_trb_comp_code = 0; | 
 | 				return 0; | 
 | 			} | 
 |  | 
 | 			/* HC is busted, give up! */ | 
 | 			goto debug_finding_td; | 
 | 		} | 
 |  | 
 | 		if (ep->skip) { | 
 | 			xhci_dbg(xhci, | 
 | 				 "Found td. Clear skip flag for slot %u ep %u.\n", | 
 | 				 slot_id, ep_index); | 
 | 			ep->skip = false; | 
 | 		} | 
 |  | 
 | 	/* | 
 | 	 * If ep->skip is set, it means there are missed tds on the | 
 | 	 * endpoint ring need to take care of. | 
 | 	 * Process them as short transfer until reach the td pointed by | 
 | 	 * the event. | 
 | 	 */ | 
 | 	} while (ep->skip); | 
 |  | 
 | 	ep_ring->old_trb_comp_code = trb_comp_code; | 
 |  | 
 | 	/* Get out if a TD was queued at enqueue after the xrun occurred */ | 
 | 	if (ring_xrun_event) | 
 | 		return 0; | 
 |  | 
 | 	ep_trb = &ep_seg->trbs[(ep_trb_dma - ep_seg->dma) / sizeof(*ep_trb)]; | 
 | 	trace_xhci_handle_transfer(ep_ring, (struct xhci_generic_trb *) ep_trb, ep_trb_dma); | 
 |  | 
 | 	/* | 
 | 	 * No-op TRB could trigger interrupts in a case where a URB was killed | 
 | 	 * and a STALL_ERROR happens right after the endpoint ring stopped. | 
 | 	 * Reset the halted endpoint. Otherwise, the endpoint remains stalled | 
 | 	 * indefinitely. | 
 | 	 */ | 
 |  | 
 | 	if (trb_is_noop(ep_trb)) | 
 | 		goto check_endpoint_halted; | 
 |  | 
 | 	td->status = status; | 
 |  | 
 | 	/* update the urb's actual_length and give back to the core */ | 
 | 	if (usb_endpoint_xfer_control(&td->urb->ep->desc)) | 
 | 		process_ctrl_td(xhci, ep, ep_ring, td, ep_trb, event); | 
 | 	else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc)) | 
 | 		process_isoc_td(xhci, ep, ep_ring, td, ep_trb, event); | 
 | 	else | 
 | 		process_bulk_intr_td(xhci, ep, ep_ring, td, ep_trb, event); | 
 | 	return 0; | 
 |  | 
 | check_endpoint_halted: | 
 | 	if (xhci_halted_host_endpoint(ep_ctx, trb_comp_code)) | 
 | 		xhci_handle_halted_endpoint(xhci, ep, td, EP_HARD_RESET); | 
 |  | 
 | 	return 0; | 
 |  | 
 | debug_finding_td: | 
 | 	xhci_err(xhci, "Event dma %pad for ep %d status %d not part of TD at %016llx - %016llx\n", | 
 | 		 &ep_trb_dma, ep_index, trb_comp_code, | 
 | 		 (unsigned long long)xhci_trb_virt_to_dma(td->start_seg, td->start_trb), | 
 | 		 (unsigned long long)xhci_trb_virt_to_dma(td->end_seg, td->end_trb)); | 
 |  | 
 | 	return -ESHUTDOWN; | 
 |  | 
 | err_out: | 
 | 	xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n", | 
 | 		 (unsigned long long) xhci_trb_virt_to_dma( | 
 | 			 ir->event_ring->deq_seg, | 
 | 			 ir->event_ring->dequeue), | 
 | 		 lower_32_bits(le64_to_cpu(event->buffer)), | 
 | 		 upper_32_bits(le64_to_cpu(event->buffer)), | 
 | 		 le32_to_cpu(event->transfer_len), | 
 | 		 le32_to_cpu(event->flags)); | 
 | 	return -ENODEV; | 
 | } | 
 |  | 
 | /* | 
 |  * This function handles one OS-owned event on the event ring. It may drop | 
 |  * xhci->lock between event processing (e.g. to pass up port status changes). | 
 |  */ | 
 | static int xhci_handle_event_trb(struct xhci_hcd *xhci, struct xhci_interrupter *ir, | 
 | 				 union xhci_trb *event) | 
 | { | 
 | 	u32 trb_type; | 
 |  | 
 | 	trace_xhci_handle_event(ir->event_ring, &event->generic, | 
 | 				xhci_trb_virt_to_dma(ir->event_ring->deq_seg, | 
 | 						     ir->event_ring->dequeue)); | 
 |  | 
 | 	/* | 
 | 	 * Barrier between reading the TRB_CYCLE (valid) flag before, and any | 
 | 	 * speculative reads of the event's flags/data below. | 
 | 	 */ | 
 | 	rmb(); | 
 | 	trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->event_cmd.flags)); | 
 | 	/* FIXME: Handle more event types. */ | 
 |  | 
 | 	switch (trb_type) { | 
 | 	case TRB_COMPLETION: | 
 | 		handle_cmd_completion(xhci, &event->event_cmd); | 
 | 		break; | 
 | 	case TRB_PORT_STATUS: | 
 | 		handle_port_status(xhci, event); | 
 | 		break; | 
 | 	case TRB_TRANSFER: | 
 | 		handle_tx_event(xhci, ir, &event->trans_event); | 
 | 		break; | 
 | 	case TRB_DEV_NOTE: | 
 | 		handle_device_notification(xhci, event); | 
 | 		break; | 
 | 	default: | 
 | 		if (trb_type >= TRB_VENDOR_DEFINED_LOW) | 
 | 			handle_vendor_event(xhci, event, trb_type); | 
 | 		else | 
 | 			xhci_warn(xhci, "ERROR unknown event type %d\n", trb_type); | 
 | 	} | 
 | 	/* Any of the above functions may drop and re-acquire the lock, so check | 
 | 	 * to make sure a watchdog timer didn't mark the host as non-responsive. | 
 | 	 */ | 
 | 	if (xhci->xhc_state & XHCI_STATE_DYING) { | 
 | 		xhci_dbg(xhci, "xHCI host dying, returning from event handler.\n"); | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Update Event Ring Dequeue Pointer: | 
 |  * - When all events have finished | 
 |  * - To avoid "Event Ring Full Error" condition | 
 |  */ | 
 | void xhci_update_erst_dequeue(struct xhci_hcd *xhci, | 
 | 			      struct xhci_interrupter *ir, | 
 | 			      bool clear_ehb) | 
 | { | 
 | 	u64 temp_64; | 
 | 	dma_addr_t deq; | 
 |  | 
 | 	temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); | 
 | 	deq = xhci_trb_virt_to_dma(ir->event_ring->deq_seg, | 
 | 				   ir->event_ring->dequeue); | 
 | 	if (deq == 0) | 
 | 		xhci_warn(xhci, "WARN something wrong with SW event ring dequeue ptr\n"); | 
 | 	/* | 
 | 	 * Per 4.9.4, Software writes to the ERDP register shall always advance | 
 | 	 * the Event Ring Dequeue Pointer value. | 
 | 	 */ | 
 | 	if ((temp_64 & ERST_PTR_MASK) == (deq & ERST_PTR_MASK) && !clear_ehb) | 
 | 		return; | 
 |  | 
 | 	/* Update HC event ring dequeue pointer */ | 
 | 	temp_64 = ir->event_ring->deq_seg->num & ERST_DESI_MASK; | 
 | 	temp_64 |= deq & ERST_PTR_MASK; | 
 |  | 
 | 	/* Clear the event handler busy flag (RW1C) */ | 
 | 	if (clear_ehb) | 
 | 		temp_64 |= ERST_EHB; | 
 | 	xhci_write_64(xhci, temp_64, &ir->ir_set->erst_dequeue); | 
 | } | 
 |  | 
 | /* Clear the interrupt pending bit for a specific interrupter. */ | 
 | static void xhci_clear_interrupt_pending(struct xhci_interrupter *ir) | 
 | { | 
 | 	if (!ir->ip_autoclear) { | 
 | 		u32 iman; | 
 |  | 
 | 		iman = readl(&ir->ir_set->iman); | 
 | 		iman |= IMAN_IP; | 
 | 		writel(iman, &ir->ir_set->iman); | 
 |  | 
 | 		/* Read operation to guarantee the write has been flushed from posted buffers */ | 
 | 		readl(&ir->ir_set->iman); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Handle all OS-owned events on an interrupter event ring. It may drop | 
 |  * and reaquire xhci->lock between event processing. | 
 |  */ | 
 | static int xhci_handle_events(struct xhci_hcd *xhci, struct xhci_interrupter *ir, | 
 | 			      bool skip_events) | 
 | { | 
 | 	int event_loop = 0; | 
 | 	int err = 0; | 
 | 	u64 temp; | 
 |  | 
 | 	xhci_clear_interrupt_pending(ir); | 
 |  | 
 | 	/* Event ring hasn't been allocated yet. */ | 
 | 	if (!ir->event_ring || !ir->event_ring->dequeue) { | 
 | 		xhci_err(xhci, "ERROR interrupter event ring not ready\n"); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	if (xhci->xhc_state & XHCI_STATE_DYING || | 
 | 	    xhci->xhc_state & XHCI_STATE_HALTED) { | 
 | 		xhci_dbg(xhci, "xHCI dying, ignoring interrupt. Shouldn't IRQs be disabled?\n"); | 
 |  | 
 | 		/* Clear the event handler busy flag (RW1C) */ | 
 | 		temp = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); | 
 | 		xhci_write_64(xhci, temp | ERST_EHB, &ir->ir_set->erst_dequeue); | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	/* Process all OS owned event TRBs on this event ring */ | 
 | 	while (unhandled_event_trb(ir->event_ring)) { | 
 | 		if (!skip_events) | 
 | 			err = xhci_handle_event_trb(xhci, ir, ir->event_ring->dequeue); | 
 |  | 
 | 		/* | 
 | 		 * If half a segment of events have been handled in one go then | 
 | 		 * update ERDP, and force isoc trbs to interrupt more often | 
 | 		 */ | 
 | 		if (event_loop++ > TRBS_PER_SEGMENT / 2) { | 
 | 			xhci_update_erst_dequeue(xhci, ir, false); | 
 |  | 
 | 			if (ir->isoc_bei_interval > AVOID_BEI_INTERVAL_MIN) | 
 | 				ir->isoc_bei_interval = ir->isoc_bei_interval / 2; | 
 |  | 
 | 			event_loop = 0; | 
 | 		} | 
 |  | 
 | 		/* Update SW event ring dequeue pointer */ | 
 | 		inc_deq(xhci, ir->event_ring); | 
 |  | 
 | 		if (err) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	xhci_update_erst_dequeue(xhci, ir, true); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Move the event ring dequeue pointer to skip events kept in the secondary | 
 |  * event ring.  This is used to ensure that pending events in the ring are | 
 |  * acknowledged, so the xHCI HCD can properly enter suspend/resume.  The | 
 |  * secondary ring is typically maintained by an external component. | 
 |  */ | 
 | void xhci_skip_sec_intr_events(struct xhci_hcd *xhci, | 
 | 			       struct xhci_ring *ring,	struct xhci_interrupter *ir) | 
 | { | 
 | 	union xhci_trb *current_trb; | 
 | 	u64 erdp_reg; | 
 | 	dma_addr_t deq; | 
 |  | 
 | 	/* disable irq, ack pending interrupt and ack all pending events */ | 
 | 	xhci_disable_interrupter(xhci, ir); | 
 |  | 
 | 	/* last acked event trb is in erdp reg  */ | 
 | 	erdp_reg = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); | 
 | 	deq = (dma_addr_t)(erdp_reg & ERST_PTR_MASK); | 
 | 	if (!deq) { | 
 | 		xhci_err(xhci, "event ring handling not required\n"); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	current_trb = ir->event_ring->dequeue; | 
 | 	/* read cycle state of the last acked trb to find out CCS */ | 
 | 	ring->cycle_state = le32_to_cpu(current_trb->event_cmd.flags) & TRB_CYCLE; | 
 |  | 
 | 	xhci_handle_events(xhci, ir, true); | 
 | } | 
 |  | 
 | /* | 
 |  * xHCI spec says we can get an interrupt, and if the HC has an error condition, | 
 |  * we might get bad data out of the event ring.  Section 4.10.2.7 has a list of | 
 |  * indicators of an event TRB error, but we check the status *first* to be safe. | 
 |  */ | 
 | irqreturn_t xhci_irq(struct usb_hcd *hcd) | 
 | { | 
 | 	struct xhci_hcd *xhci = hcd_to_xhci(hcd); | 
 | 	irqreturn_t ret = IRQ_HANDLED; | 
 | 	u32 status; | 
 |  | 
 | 	spin_lock(&xhci->lock); | 
 | 	/* Check if the xHC generated the interrupt, or the irq is shared */ | 
 | 	status = readl(&xhci->op_regs->status); | 
 | 	if (status == ~(u32)0) { | 
 | 		xhci_hc_died(xhci); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (!(status & STS_EINT)) { | 
 | 		ret = IRQ_NONE; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (status & STS_HCE) { | 
 | 		xhci_warn(xhci, "WARNING: Host Controller Error\n"); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (status & STS_FATAL) { | 
 | 		xhci_warn(xhci, "WARNING: Host System Error\n"); | 
 | 		xhci_halt(xhci); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Clear the op reg interrupt status first, | 
 | 	 * so we can receive interrupts from other MSI-X interrupters. | 
 | 	 * Write 1 to clear the interrupt status. | 
 | 	 */ | 
 | 	status |= STS_EINT; | 
 | 	writel(status, &xhci->op_regs->status); | 
 |  | 
 | 	/* This is the handler of the primary interrupter */ | 
 | 	xhci_handle_events(xhci, xhci->interrupters[0], false); | 
 | out: | 
 | 	spin_unlock(&xhci->lock); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | irqreturn_t xhci_msi_irq(int irq, void *hcd) | 
 | { | 
 | 	return xhci_irq(hcd); | 
 | } | 
 | EXPORT_SYMBOL_GPL(xhci_msi_irq); | 
 |  | 
 | /****		Endpoint Ring Operations	****/ | 
 |  | 
 | /* | 
 |  * Generic function for queueing a TRB on a ring. | 
 |  * The caller must have checked to make sure there's room on the ring. | 
 |  * | 
 |  * @more_trbs_coming:	Will you enqueue more TRBs before calling | 
 |  *			prepare_transfer()? | 
 |  */ | 
 | static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, | 
 | 		bool more_trbs_coming, | 
 | 		u32 field1, u32 field2, u32 field3, u32 field4) | 
 | { | 
 | 	struct xhci_generic_trb *trb; | 
 |  | 
 | 	trb = &ring->enqueue->generic; | 
 | 	trb->field[0] = cpu_to_le32(field1); | 
 | 	trb->field[1] = cpu_to_le32(field2); | 
 | 	trb->field[2] = cpu_to_le32(field3); | 
 | 	/* make sure TRB is fully written before giving it to the controller */ | 
 | 	wmb(); | 
 | 	trb->field[3] = cpu_to_le32(field4); | 
 |  | 
 | 	trace_xhci_queue_trb(ring, trb, | 
 | 			     xhci_trb_virt_to_dma(ring->enq_seg, ring->enqueue)); | 
 |  | 
 | 	inc_enq(xhci, ring, more_trbs_coming); | 
 | } | 
 |  | 
 | /* | 
 |  * Does various checks on the endpoint ring, and makes it ready to queue num_trbs. | 
 |  * expand ring if it start to be full. | 
 |  */ | 
 | static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, | 
 | 		u32 ep_state, unsigned int num_trbs, gfp_t mem_flags) | 
 | { | 
 | 	unsigned int new_segs = 0; | 
 |  | 
 | 	/* Make sure the endpoint has been added to xHC schedule */ | 
 | 	switch (ep_state) { | 
 | 	case EP_STATE_DISABLED: | 
 | 		/* | 
 | 		 * USB core changed config/interfaces without notifying us, | 
 | 		 * or hardware is reporting the wrong state. | 
 | 		 */ | 
 | 		xhci_warn(xhci, "WARN urb submitted to disabled ep\n"); | 
 | 		return -ENOENT; | 
 | 	case EP_STATE_ERROR: | 
 | 		xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n"); | 
 | 		/* FIXME event handling code for error needs to clear it */ | 
 | 		/* XXX not sure if this should be -ENOENT or not */ | 
 | 		return -EINVAL; | 
 | 	case EP_STATE_HALTED: | 
 | 		xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n"); | 
 | 		break; | 
 | 	case EP_STATE_STOPPED: | 
 | 	case EP_STATE_RUNNING: | 
 | 		break; | 
 | 	default: | 
 | 		xhci_err(xhci, "ERROR unknown endpoint state for ep\n"); | 
 | 		/* | 
 | 		 * FIXME issue Configure Endpoint command to try to get the HC | 
 | 		 * back into a known state. | 
 | 		 */ | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (ep_ring != xhci->cmd_ring) { | 
 | 		new_segs = xhci_ring_expansion_needed(xhci, ep_ring, num_trbs); | 
 | 	} else if (xhci_num_trbs_free(ep_ring) <= num_trbs) { | 
 | 		xhci_err(xhci, "Do not support expand command ring\n"); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	if (new_segs) { | 
 | 		xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion, | 
 | 				"ERROR no room on ep ring, try ring expansion"); | 
 | 		if (xhci_ring_expansion(xhci, ep_ring, new_segs, mem_flags)) { | 
 | 			xhci_err(xhci, "Ring expansion failed\n"); | 
 | 			return -ENOMEM; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Ensure that new TRBs won't overwrite a link */ | 
 | 	if (trb_is_link(ep_ring->enqueue)) | 
 | 		inc_enq_past_link(xhci, ep_ring, 0); | 
 |  | 
 | 	if (last_trb_on_seg(ep_ring->enq_seg, ep_ring->enqueue)) { | 
 | 		xhci_warn(xhci, "Missing link TRB at end of ring segment\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int prepare_transfer(struct xhci_hcd *xhci, | 
 | 		struct xhci_virt_device *xdev, | 
 | 		unsigned int ep_index, | 
 | 		unsigned int stream_id, | 
 | 		unsigned int num_trbs, | 
 | 		struct urb *urb, | 
 | 		unsigned int td_index, | 
 | 		gfp_t mem_flags) | 
 | { | 
 | 	int ret; | 
 | 	struct urb_priv *urb_priv; | 
 | 	struct xhci_td	*td; | 
 | 	struct xhci_ring *ep_ring; | 
 | 	struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); | 
 |  | 
 | 	ep_ring = xhci_triad_to_transfer_ring(xhci, xdev->slot_id, ep_index, | 
 | 					      stream_id); | 
 | 	if (!ep_ring) { | 
 | 		xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n", | 
 | 				stream_id); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx), | 
 | 			   num_trbs, mem_flags); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	urb_priv = urb->hcpriv; | 
 | 	td = &urb_priv->td[td_index]; | 
 |  | 
 | 	INIT_LIST_HEAD(&td->td_list); | 
 | 	INIT_LIST_HEAD(&td->cancelled_td_list); | 
 |  | 
 | 	if (td_index == 0) { | 
 | 		ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb); | 
 | 		if (unlikely(ret)) | 
 | 			return ret; | 
 | 	} | 
 |  | 
 | 	td->urb = urb; | 
 | 	/* Add this TD to the tail of the endpoint ring's TD list */ | 
 | 	list_add_tail(&td->td_list, &ep_ring->td_list); | 
 | 	td->start_seg = ep_ring->enq_seg; | 
 | 	td->start_trb = ep_ring->enqueue; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | unsigned int count_trbs(u64 addr, u64 len) | 
 | { | 
 | 	unsigned int num_trbs; | 
 |  | 
 | 	num_trbs = DIV_ROUND_UP(len + (addr & (TRB_MAX_BUFF_SIZE - 1)), | 
 | 			TRB_MAX_BUFF_SIZE); | 
 | 	if (num_trbs == 0) | 
 | 		num_trbs++; | 
 |  | 
 | 	return num_trbs; | 
 | } | 
 |  | 
 | static inline unsigned int count_trbs_needed(struct urb *urb) | 
 | { | 
 | 	return count_trbs(urb->transfer_dma, urb->transfer_buffer_length); | 
 | } | 
 |  | 
 | static unsigned int count_sg_trbs_needed(struct urb *urb) | 
 | { | 
 | 	struct scatterlist *sg; | 
 | 	unsigned int i, len, full_len, num_trbs = 0; | 
 |  | 
 | 	full_len = urb->transfer_buffer_length; | 
 |  | 
 | 	for_each_sg(urb->sg, sg, urb->num_mapped_sgs, i) { | 
 | 		len = sg_dma_len(sg); | 
 | 		num_trbs += count_trbs(sg_dma_address(sg), len); | 
 | 		len = min_t(unsigned int, len, full_len); | 
 | 		full_len -= len; | 
 | 		if (full_len == 0) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	return num_trbs; | 
 | } | 
 |  | 
 | static unsigned int count_isoc_trbs_needed(struct urb *urb, int i) | 
 | { | 
 | 	u64 addr, len; | 
 |  | 
 | 	addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset); | 
 | 	len = urb->iso_frame_desc[i].length; | 
 |  | 
 | 	return count_trbs(addr, len); | 
 | } | 
 |  | 
 | static void check_trb_math(struct urb *urb, int running_total) | 
 | { | 
 | 	if (unlikely(running_total != urb->transfer_buffer_length)) | 
 | 		dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, " | 
 | 				"queued %#x (%d), asked for %#x (%d)\n", | 
 | 				__func__, | 
 | 				urb->ep->desc.bEndpointAddress, | 
 | 				running_total, running_total, | 
 | 				urb->transfer_buffer_length, | 
 | 				urb->transfer_buffer_length); | 
 | } | 
 |  | 
 | static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id, | 
 | 		unsigned int ep_index, unsigned int stream_id, int start_cycle, | 
 | 		struct xhci_generic_trb *start_trb) | 
 | { | 
 | 	/* | 
 | 	 * Pass all the TRBs to the hardware at once and make sure this write | 
 | 	 * isn't reordered. | 
 | 	 */ | 
 | 	wmb(); | 
 | 	if (start_cycle) | 
 | 		start_trb->field[3] |= cpu_to_le32(start_cycle); | 
 | 	else | 
 | 		start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE); | 
 | 	xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id); | 
 | } | 
 |  | 
 | static void check_interval(struct urb *urb, struct xhci_ep_ctx *ep_ctx) | 
 | { | 
 | 	int xhci_interval; | 
 | 	int ep_interval; | 
 |  | 
 | 	xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info)); | 
 | 	ep_interval = urb->interval; | 
 |  | 
 | 	/* Convert to microframes */ | 
 | 	if (urb->dev->speed == USB_SPEED_LOW || | 
 | 			urb->dev->speed == USB_SPEED_FULL) | 
 | 		ep_interval *= 8; | 
 |  | 
 | 	/* FIXME change this to a warning and a suggestion to use the new API | 
 | 	 * to set the polling interval (once the API is added). | 
 | 	 */ | 
 | 	if (xhci_interval != ep_interval) { | 
 | 		dev_dbg_ratelimited(&urb->dev->dev, | 
 | 				"Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n", | 
 | 				ep_interval, str_plural(ep_interval), | 
 | 				xhci_interval, str_plural(xhci_interval)); | 
 | 		urb->interval = xhci_interval; | 
 | 		/* Convert back to frames for LS/FS devices */ | 
 | 		if (urb->dev->speed == USB_SPEED_LOW || | 
 | 				urb->dev->speed == USB_SPEED_FULL) | 
 | 			urb->interval /= 8; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * xHCI uses normal TRBs for both bulk and interrupt.  When the interrupt | 
 |  * endpoint is to be serviced, the xHC will consume (at most) one TD.  A TD | 
 |  * (comprised of sg list entries) can take several service intervals to | 
 |  * transmit. | 
 |  */ | 
 | int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags, | 
 | 		struct urb *urb, int slot_id, unsigned int ep_index) | 
 | { | 
 | 	struct xhci_ep_ctx *ep_ctx; | 
 |  | 
 | 	ep_ctx = xhci_get_ep_ctx(xhci, xhci->devs[slot_id]->out_ctx, ep_index); | 
 | 	check_interval(urb, ep_ctx); | 
 |  | 
 | 	return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index); | 
 | } | 
 |  | 
 | /* | 
 |  * For xHCI 1.0 host controllers, TD size is the number of max packet sized | 
 |  * packets remaining in the TD (*not* including this TRB). | 
 |  * | 
 |  * Total TD packet count = total_packet_count = | 
 |  *     DIV_ROUND_UP(TD size in bytes / wMaxPacketSize) | 
 |  * | 
 |  * Packets transferred up to and including this TRB = packets_transferred = | 
 |  *     rounddown(total bytes transferred including this TRB / wMaxPacketSize) | 
 |  * | 
 |  * TD size = total_packet_count - packets_transferred | 
 |  * | 
 |  * For xHCI 0.96 and older, TD size field should be the remaining bytes | 
 |  * including this TRB, right shifted by 10 | 
 |  * | 
 |  * For all hosts it must fit in bits 21:17, so it can't be bigger than 31. | 
 |  * This is taken care of in the TRB_TD_SIZE() macro | 
 |  * | 
 |  * The last TRB in a TD must have the TD size set to zero. | 
 |  */ | 
 | static u32 xhci_td_remainder(struct xhci_hcd *xhci, int transferred, | 
 | 			      int trb_buff_len, unsigned int td_total_len, | 
 | 			      struct urb *urb, bool more_trbs_coming) | 
 | { | 
 | 	u32 maxp, total_packet_count; | 
 |  | 
 | 	/* MTK xHCI 0.96 contains some features from 1.0 */ | 
 | 	if (xhci->hci_version < 0x100 && !(xhci->quirks & XHCI_MTK_HOST)) | 
 | 		return ((td_total_len - transferred) >> 10); | 
 |  | 
 | 	/* One TRB with a zero-length data packet. */ | 
 | 	if (!more_trbs_coming || (transferred == 0 && trb_buff_len == 0) || | 
 | 	    trb_buff_len == td_total_len) | 
 | 		return 0; | 
 |  | 
 | 	/* for MTK xHCI 0.96, TD size include this TRB, but not in 1.x */ | 
 | 	if ((xhci->quirks & XHCI_MTK_HOST) && (xhci->hci_version < 0x100)) | 
 | 		trb_buff_len = 0; | 
 |  | 
 | 	maxp = usb_endpoint_maxp(&urb->ep->desc); | 
 | 	total_packet_count = DIV_ROUND_UP(td_total_len, maxp); | 
 |  | 
 | 	/* Queueing functions don't count the current TRB into transferred */ | 
 | 	return (total_packet_count - ((transferred + trb_buff_len) / maxp)); | 
 | } | 
 |  | 
 |  | 
 | static int xhci_align_td(struct xhci_hcd *xhci, struct urb *urb, u32 enqd_len, | 
 | 			 u32 *trb_buff_len, struct xhci_segment *seg) | 
 | { | 
 | 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev; | 
 | 	unsigned int unalign; | 
 | 	unsigned int max_pkt; | 
 | 	u32 new_buff_len; | 
 | 	size_t len; | 
 |  | 
 | 	max_pkt = usb_endpoint_maxp(&urb->ep->desc); | 
 | 	unalign = (enqd_len + *trb_buff_len) % max_pkt; | 
 |  | 
 | 	/* we got lucky, last normal TRB data on segment is packet aligned */ | 
 | 	if (unalign == 0) | 
 | 		return 0; | 
 |  | 
 | 	xhci_dbg(xhci, "Unaligned %d bytes, buff len %d\n", | 
 | 		 unalign, *trb_buff_len); | 
 |  | 
 | 	/* is the last nornal TRB alignable by splitting it */ | 
 | 	if (*trb_buff_len > unalign) { | 
 | 		*trb_buff_len -= unalign; | 
 | 		xhci_dbg(xhci, "split align, new buff len %d\n", *trb_buff_len); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We want enqd_len + trb_buff_len to sum up to a number aligned to | 
 | 	 * number which is divisible by the endpoint's wMaxPacketSize. IOW: | 
 | 	 * (size of currently enqueued TRBs + remainder) % wMaxPacketSize == 0. | 
 | 	 */ | 
 | 	new_buff_len = max_pkt - (enqd_len % max_pkt); | 
 |  | 
 | 	if (new_buff_len > (urb->transfer_buffer_length - enqd_len)) | 
 | 		new_buff_len = (urb->transfer_buffer_length - enqd_len); | 
 |  | 
 | 	/* create a max max_pkt sized bounce buffer pointed to by last trb */ | 
 | 	if (usb_urb_dir_out(urb)) { | 
 | 		if (urb->num_sgs) { | 
 | 			len = sg_pcopy_to_buffer(urb->sg, urb->num_sgs, | 
 | 						 seg->bounce_buf, new_buff_len, enqd_len); | 
 | 			if (len != new_buff_len) | 
 | 				xhci_warn(xhci, "WARN Wrong bounce buffer write length: %zu != %d\n", | 
 | 					  len, new_buff_len); | 
 | 		} else { | 
 | 			memcpy(seg->bounce_buf, urb->transfer_buffer + enqd_len, new_buff_len); | 
 | 		} | 
 |  | 
 | 		seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, | 
 | 						 max_pkt, DMA_TO_DEVICE); | 
 | 	} else { | 
 | 		seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, | 
 | 						 max_pkt, DMA_FROM_DEVICE); | 
 | 	} | 
 |  | 
 | 	if (dma_mapping_error(dev, seg->bounce_dma)) { | 
 | 		/* try without aligning. Some host controllers survive */ | 
 | 		xhci_warn(xhci, "Failed mapping bounce buffer, not aligning\n"); | 
 | 		return 0; | 
 | 	} | 
 | 	*trb_buff_len = new_buff_len; | 
 | 	seg->bounce_len = new_buff_len; | 
 | 	seg->bounce_offs = enqd_len; | 
 |  | 
 | 	xhci_dbg(xhci, "Bounce align, new buff len %d\n", *trb_buff_len); | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* This is very similar to what ehci-q.c qtd_fill() does */ | 
 | int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags, | 
 | 		struct urb *urb, int slot_id, unsigned int ep_index) | 
 | { | 
 | 	struct xhci_ring *ring; | 
 | 	struct urb_priv *urb_priv; | 
 | 	struct xhci_td *td; | 
 | 	struct xhci_generic_trb *start_trb; | 
 | 	struct scatterlist *sg = NULL; | 
 | 	bool more_trbs_coming = true; | 
 | 	bool need_zero_pkt = false; | 
 | 	bool first_trb = true; | 
 | 	unsigned int num_trbs; | 
 | 	unsigned int start_cycle, num_sgs = 0; | 
 | 	unsigned int enqd_len, block_len, trb_buff_len, full_len; | 
 | 	int sent_len, ret; | 
 | 	u32 field, length_field, remainder; | 
 | 	u64 addr, send_addr; | 
 |  | 
 | 	ring = xhci_urb_to_transfer_ring(xhci, urb); | 
 | 	if (!ring) | 
 | 		return -EINVAL; | 
 |  | 
 | 	full_len = urb->transfer_buffer_length; | 
 | 	/* If we have scatter/gather list, we use it. */ | 
 | 	if (urb->num_sgs && !(urb->transfer_flags & URB_DMA_MAP_SINGLE)) { | 
 | 		num_sgs = urb->num_mapped_sgs; | 
 | 		sg = urb->sg; | 
 | 		addr = (u64) sg_dma_address(sg); | 
 | 		block_len = sg_dma_len(sg); | 
 | 		num_trbs = count_sg_trbs_needed(urb); | 
 | 	} else { | 
 | 		num_trbs = count_trbs_needed(urb); | 
 | 		addr = (u64) urb->transfer_dma; | 
 | 		block_len = full_len; | 
 | 	} | 
 | 	ret = prepare_transfer(xhci, xhci->devs[slot_id], | 
 | 			ep_index, urb->stream_id, | 
 | 			num_trbs, urb, 0, mem_flags); | 
 | 	if (unlikely(ret < 0)) | 
 | 		return ret; | 
 |  | 
 | 	urb_priv = urb->hcpriv; | 
 |  | 
 | 	/* Deal with URB_ZERO_PACKET - need one more td/trb */ | 
 | 	if (urb->transfer_flags & URB_ZERO_PACKET && urb_priv->num_tds > 1) | 
 | 		need_zero_pkt = true; | 
 |  | 
 | 	td = &urb_priv->td[0]; | 
 |  | 
 | 	/* | 
 | 	 * Don't give the first TRB to the hardware (by toggling the cycle bit) | 
 | 	 * until we've finished creating all the other TRBs.  The ring's cycle | 
 | 	 * state may change as we enqueue the other TRBs, so save it too. | 
 | 	 */ | 
 | 	start_trb = &ring->enqueue->generic; | 
 | 	start_cycle = ring->cycle_state; | 
 | 	send_addr = addr; | 
 |  | 
 | 	/* Queue the TRBs, even if they are zero-length */ | 
 | 	for (enqd_len = 0; first_trb || enqd_len < full_len; | 
 | 			enqd_len += trb_buff_len) { | 
 | 		field = TRB_TYPE(TRB_NORMAL); | 
 |  | 
 | 		/* TRB buffer should not cross 64KB boundaries */ | 
 | 		trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); | 
 | 		trb_buff_len = min_t(unsigned int, trb_buff_len, block_len); | 
 |  | 
 | 		if (enqd_len + trb_buff_len > full_len) | 
 | 			trb_buff_len = full_len - enqd_len; | 
 |  | 
 | 		/* Don't change the cycle bit of the first TRB until later */ | 
 | 		if (first_trb) { | 
 | 			first_trb = false; | 
 | 			if (start_cycle == 0) | 
 | 				field |= TRB_CYCLE; | 
 | 		} else | 
 | 			field |= ring->cycle_state; | 
 |  | 
 | 		/* Chain all the TRBs together; clear the chain bit in the last | 
 | 		 * TRB to indicate it's the last TRB in the chain. | 
 | 		 */ | 
 | 		if (enqd_len + trb_buff_len < full_len) { | 
 | 			field |= TRB_CHAIN; | 
 | 			if (trb_is_link(ring->enqueue + 1)) { | 
 | 				if (xhci_align_td(xhci, urb, enqd_len, | 
 | 						  &trb_buff_len, | 
 | 						  ring->enq_seg)) { | 
 | 					send_addr = ring->enq_seg->bounce_dma; | 
 | 					/* assuming TD won't span 2 segs */ | 
 | 					td->bounce_seg = ring->enq_seg; | 
 | 				} | 
 | 			} | 
 | 		} | 
 | 		if (enqd_len + trb_buff_len >= full_len) { | 
 | 			field &= ~TRB_CHAIN; | 
 | 			field |= TRB_IOC; | 
 | 			more_trbs_coming = false; | 
 | 			td->end_trb = ring->enqueue; | 
 | 			td->end_seg = ring->enq_seg; | 
 | 			if (xhci_urb_suitable_for_idt(urb)) { | 
 | 				memcpy(&send_addr, urb->transfer_buffer, | 
 | 				       trb_buff_len); | 
 | 				le64_to_cpus(&send_addr); | 
 | 				field |= TRB_IDT; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		/* Only set interrupt on short packet for IN endpoints */ | 
 | 		if (usb_urb_dir_in(urb)) | 
 | 			field |= TRB_ISP; | 
 |  | 
 | 		/* Set the TRB length, TD size, and interrupter fields. */ | 
 | 		remainder = xhci_td_remainder(xhci, enqd_len, trb_buff_len, | 
 | 					      full_len, urb, more_trbs_coming); | 
 |  | 
 | 		length_field = TRB_LEN(trb_buff_len) | | 
 | 			TRB_TD_SIZE(remainder) | | 
 | 			TRB_INTR_TARGET(0); | 
 |  | 
 | 		queue_trb(xhci, ring, more_trbs_coming | need_zero_pkt, | 
 | 				lower_32_bits(send_addr), | 
 | 				upper_32_bits(send_addr), | 
 | 				length_field, | 
 | 				field); | 
 | 		addr += trb_buff_len; | 
 | 		sent_len = trb_buff_len; | 
 |  | 
 | 		while (sg && sent_len >= block_len) { | 
 | 			/* New sg entry */ | 
 | 			--num_sgs; | 
 | 			sent_len -= block_len; | 
 | 			sg = sg_next(sg); | 
 | 			if (num_sgs != 0 && sg) { | 
 | 				block_len = sg_dma_len(sg); | 
 | 				addr = (u64) sg_dma_address(sg); | 
 | 				addr += sent_len; | 
 | 			} | 
 | 		} | 
 | 		block_len -= sent_len; | 
 | 		send_addr = addr; | 
 | 	} | 
 |  | 
 | 	if (need_zero_pkt) { | 
 | 		ret = prepare_transfer(xhci, xhci->devs[slot_id], | 
 | 				       ep_index, urb->stream_id, | 
 | 				       1, urb, 1, mem_flags); | 
 | 		urb_priv->td[1].end_trb = ring->enqueue; | 
 | 		urb_priv->td[1].end_seg = ring->enq_seg; | 
 | 		field = TRB_TYPE(TRB_NORMAL) | ring->cycle_state | TRB_IOC; | 
 | 		queue_trb(xhci, ring, 0, 0, 0, TRB_INTR_TARGET(0), field); | 
 | 	} | 
 |  | 
 | 	check_trb_math(urb, enqd_len); | 
 | 	giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, | 
 | 			start_cycle, start_trb); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Caller must have locked xhci->lock */ | 
 | int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags, | 
 | 		struct urb *urb, int slot_id, unsigned int ep_index) | 
 | { | 
 | 	struct xhci_ring *ep_ring; | 
 | 	int num_trbs; | 
 | 	int ret; | 
 | 	struct usb_ctrlrequest *setup; | 
 | 	struct xhci_generic_trb *start_trb; | 
 | 	int start_cycle; | 
 | 	u32 field; | 
 | 	struct urb_priv *urb_priv; | 
 | 	struct xhci_td *td; | 
 |  | 
 | 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb); | 
 | 	if (!ep_ring) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* | 
 | 	 * Need to copy setup packet into setup TRB, so we can't use the setup | 
 | 	 * DMA address. | 
 | 	 */ | 
 | 	if (!urb->setup_packet) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if ((xhci->quirks & XHCI_ETRON_HOST) && | 
 | 	    urb->dev->speed >= USB_SPEED_SUPER) { | 
 | 		/* | 
 | 		 * If next available TRB is the Link TRB in the ring segment then | 
 | 		 * enqueue a No Op TRB, this can prevent the Setup and Data Stage | 
 | 		 * TRB to be breaked by the Link TRB. | 
 | 		 */ | 
 | 		if (last_trb_on_seg(ep_ring->enq_seg, ep_ring->enqueue + 1)) { | 
 | 			field = TRB_TYPE(TRB_TR_NOOP) | ep_ring->cycle_state; | 
 | 			queue_trb(xhci, ep_ring, false, 0, 0, | 
 | 					TRB_INTR_TARGET(0), field); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* 1 TRB for setup, 1 for status */ | 
 | 	num_trbs = 2; | 
 | 	/* | 
 | 	 * Don't need to check if we need additional event data and normal TRBs, | 
 | 	 * since data in control transfers will never get bigger than 16MB | 
 | 	 * XXX: can we get a buffer that crosses 64KB boundaries? | 
 | 	 */ | 
 | 	if (urb->transfer_buffer_length > 0) | 
 | 		num_trbs++; | 
 | 	ret = prepare_transfer(xhci, xhci->devs[slot_id], | 
 | 			ep_index, urb->stream_id, | 
 | 			num_trbs, urb, 0, mem_flags); | 
 | 	if (ret < 0) | 
 | 		return ret; | 
 |  | 
 | 	urb_priv = urb->hcpriv; | 
 | 	td = &urb_priv->td[0]; | 
 |  | 
 | 	/* | 
 | 	 * Don't give the first TRB to the hardware (by toggling the cycle bit) | 
 | 	 * until we've finished creating all the other TRBs.  The ring's cycle | 
 | 	 * state may change as we enqueue the other TRBs, so save it too. | 
 | 	 */ | 
 | 	start_trb = &ep_ring->enqueue->generic; | 
 | 	start_cycle = ep_ring->cycle_state; | 
 |  | 
 | 	/* Queue setup TRB - see section 6.4.1.2.1 */ | 
 | 	/* FIXME better way to translate setup_packet into two u32 fields? */ | 
 | 	setup = (struct usb_ctrlrequest *) urb->setup_packet; | 
 | 	field = 0; | 
 | 	field |= TRB_IDT | TRB_TYPE(TRB_SETUP); | 
 | 	if (start_cycle == 0) | 
 | 		field |= 0x1; | 
 |  | 
 | 	/* xHCI 1.0/1.1 6.4.1.2.1: Transfer Type field */ | 
 | 	if ((xhci->hci_version >= 0x100) || (xhci->quirks & XHCI_MTK_HOST)) { | 
 | 		if (urb->transfer_buffer_length > 0) { | 
 | 			if (setup->bRequestType & USB_DIR_IN) | 
 | 				field |= TRB_TX_TYPE(TRB_DATA_IN); | 
 | 			else | 
 | 				field |= TRB_TX_TYPE(TRB_DATA_OUT); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	queue_trb(xhci, ep_ring, true, | 
 | 		  setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16, | 
 | 		  le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16, | 
 | 		  TRB_LEN(8) | TRB_INTR_TARGET(0), | 
 | 		  /* Immediate data in pointer */ | 
 | 		  field); | 
 |  | 
 | 	/* If there's data, queue data TRBs */ | 
 | 	/* Only set interrupt on short packet for IN endpoints */ | 
 | 	if (usb_urb_dir_in(urb)) | 
 | 		field = TRB_ISP | TRB_TYPE(TRB_DATA); | 
 | 	else | 
 | 		field = TRB_TYPE(TRB_DATA); | 
 |  | 
 | 	if (urb->transfer_buffer_length > 0) { | 
 | 		u32 length_field, remainder; | 
 | 		u64 addr; | 
 |  | 
 | 		if (xhci_urb_suitable_for_idt(urb)) { | 
 | 			memcpy(&addr, urb->transfer_buffer, | 
 | 			       urb->transfer_buffer_length); | 
 | 			le64_to_cpus(&addr); | 
 | 			field |= TRB_IDT; | 
 | 		} else { | 
 | 			addr = (u64) urb->transfer_dma; | 
 | 		} | 
 |  | 
 | 		remainder = xhci_td_remainder(xhci, 0, | 
 | 				urb->transfer_buffer_length, | 
 | 				urb->transfer_buffer_length, | 
 | 				urb, 1); | 
 | 		length_field = TRB_LEN(urb->transfer_buffer_length) | | 
 | 				TRB_TD_SIZE(remainder) | | 
 | 				TRB_INTR_TARGET(0); | 
 | 		if (setup->bRequestType & USB_DIR_IN) | 
 | 			field |= TRB_DIR_IN; | 
 | 		queue_trb(xhci, ep_ring, true, | 
 | 				lower_32_bits(addr), | 
 | 				upper_32_bits(addr), | 
 | 				length_field, | 
 | 				field | ep_ring->cycle_state); | 
 | 	} | 
 |  | 
 | 	/* Save the DMA address of the last TRB in the TD */ | 
 | 	td->end_trb = ep_ring->enqueue; | 
 | 	td->end_seg = ep_ring->enq_seg; | 
 |  | 
 | 	/* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */ | 
 | 	/* If the device sent data, the status stage is an OUT transfer */ | 
 | 	if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN) | 
 | 		field = 0; | 
 | 	else | 
 | 		field = TRB_DIR_IN; | 
 | 	queue_trb(xhci, ep_ring, false, | 
 | 			0, | 
 | 			0, | 
 | 			TRB_INTR_TARGET(0), | 
 | 			/* Event on completion */ | 
 | 			field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state); | 
 |  | 
 | 	giveback_first_trb(xhci, slot_id, ep_index, 0, | 
 | 			start_cycle, start_trb); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * The transfer burst count field of the isochronous TRB defines the number of | 
 |  * bursts that are required to move all packets in this TD.  Only SuperSpeed | 
 |  * devices can burst up to bMaxBurst number of packets per service interval. | 
 |  * This field is zero based, meaning a value of zero in the field means one | 
 |  * burst.  Basically, for everything but SuperSpeed devices, this field will be | 
 |  * zero.  Only xHCI 1.0 host controllers support this field. | 
 |  */ | 
 | static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci, | 
 | 		struct urb *urb, unsigned int total_packet_count) | 
 | { | 
 | 	unsigned int max_burst; | 
 |  | 
 | 	if (xhci->hci_version < 0x100 || urb->dev->speed < USB_SPEED_SUPER) | 
 | 		return 0; | 
 |  | 
 | 	max_burst = urb->ep->ss_ep_comp.bMaxBurst; | 
 | 	return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1; | 
 | } | 
 |  | 
 | /* | 
 |  * Returns the number of packets in the last "burst" of packets.  This field is | 
 |  * valid for all speeds of devices.  USB 2.0 devices can only do one "burst", so | 
 |  * the last burst packet count is equal to the total number of packets in the | 
 |  * TD.  SuperSpeed endpoints can have up to 3 bursts.  All but the last burst | 
 |  * must contain (bMaxBurst + 1) number of packets, but the last burst can | 
 |  * contain 1 to (bMaxBurst + 1) packets. | 
 |  */ | 
 | static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci, | 
 | 		struct urb *urb, unsigned int total_packet_count) | 
 | { | 
 | 	unsigned int max_burst; | 
 | 	unsigned int residue; | 
 |  | 
 | 	if (xhci->hci_version < 0x100) | 
 | 		return 0; | 
 |  | 
 | 	if (urb->dev->speed >= USB_SPEED_SUPER) { | 
 | 		/* bMaxBurst is zero based: 0 means 1 packet per burst */ | 
 | 		max_burst = urb->ep->ss_ep_comp.bMaxBurst; | 
 | 		residue = total_packet_count % (max_burst + 1); | 
 | 		/* If residue is zero, the last burst contains (max_burst + 1) | 
 | 		 * number of packets, but the TLBPC field is zero-based. | 
 | 		 */ | 
 | 		if (residue == 0) | 
 | 			return max_burst; | 
 | 		return residue - 1; | 
 | 	} | 
 | 	if (total_packet_count == 0) | 
 | 		return 0; | 
 | 	return total_packet_count - 1; | 
 | } | 
 |  | 
 | /* | 
 |  * Calculates Frame ID field of the isochronous TRB identifies the | 
 |  * target frame that the Interval associated with this Isochronous | 
 |  * Transfer Descriptor will start on. Refer to 4.11.2.5 in 1.1 spec. | 
 |  * | 
 |  * Returns actual frame id on success, negative value on error. | 
 |  */ | 
 | static int xhci_get_isoc_frame_id(struct xhci_hcd *xhci, | 
 | 		struct urb *urb, int index) | 
 | { | 
 | 	int start_frame, ist, ret = 0; | 
 | 	int start_frame_id, end_frame_id, current_frame_id; | 
 |  | 
 | 	if (urb->dev->speed == USB_SPEED_LOW || | 
 | 			urb->dev->speed == USB_SPEED_FULL) | 
 | 		start_frame = urb->start_frame + index * urb->interval; | 
 | 	else | 
 | 		start_frame = (urb->start_frame + index * urb->interval) >> 3; | 
 |  | 
 | 	/* Isochronous Scheduling Threshold (IST, bits 0~3 in HCSPARAMS2): | 
 | 	 * | 
 | 	 * If bit [3] of IST is cleared to '0', software can add a TRB no | 
 | 	 * later than IST[2:0] Microframes before that TRB is scheduled to | 
 | 	 * be executed. | 
 | 	 * If bit [3] of IST is set to '1', software can add a TRB no later | 
 | 	 * than IST[2:0] Frames before that TRB is scheduled to be executed. | 
 | 	 */ | 
 | 	ist = HCS_IST(xhci->hcs_params2) & 0x7; | 
 | 	if (HCS_IST(xhci->hcs_params2) & (1 << 3)) | 
 | 		ist <<= 3; | 
 |  | 
 | 	/* Software shall not schedule an Isoch TD with a Frame ID value that | 
 | 	 * is less than the Start Frame ID or greater than the End Frame ID, | 
 | 	 * where: | 
 | 	 * | 
 | 	 * End Frame ID = (Current MFINDEX register value + 895 ms.) MOD 2048 | 
 | 	 * Start Frame ID = (Current MFINDEX register value + IST + 1) MOD 2048 | 
 | 	 * | 
 | 	 * Both the End Frame ID and Start Frame ID values are calculated | 
 | 	 * in microframes. When software determines the valid Frame ID value; | 
 | 	 * The End Frame ID value should be rounded down to the nearest Frame | 
 | 	 * boundary, and the Start Frame ID value should be rounded up to the | 
 | 	 * nearest Frame boundary. | 
 | 	 */ | 
 | 	current_frame_id = readl(&xhci->run_regs->microframe_index); | 
 | 	start_frame_id = roundup(current_frame_id + ist + 1, 8); | 
 | 	end_frame_id = rounddown(current_frame_id + 895 * 8, 8); | 
 |  | 
 | 	start_frame &= 0x7ff; | 
 | 	start_frame_id = (start_frame_id >> 3) & 0x7ff; | 
 | 	end_frame_id = (end_frame_id >> 3) & 0x7ff; | 
 |  | 
 | 	if (start_frame_id < end_frame_id) { | 
 | 		if (start_frame > end_frame_id || | 
 | 				start_frame < start_frame_id) | 
 | 			ret = -EINVAL; | 
 | 	} else if (start_frame_id > end_frame_id) { | 
 | 		if ((start_frame > end_frame_id && | 
 | 				start_frame < start_frame_id)) | 
 | 			ret = -EINVAL; | 
 | 	} else { | 
 | 			ret = -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (index == 0) { | 
 | 		if (ret == -EINVAL || start_frame == start_frame_id) { | 
 | 			start_frame = start_frame_id + 1; | 
 | 			if (urb->dev->speed == USB_SPEED_LOW || | 
 | 					urb->dev->speed == USB_SPEED_FULL) | 
 | 				urb->start_frame = start_frame; | 
 | 			else | 
 | 				urb->start_frame = start_frame << 3; | 
 | 			ret = 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (ret) { | 
 | 		xhci_warn(xhci, "Frame ID %d (reg %d, index %d) beyond range (%d, %d)\n", | 
 | 				start_frame, current_frame_id, index, | 
 | 				start_frame_id, end_frame_id); | 
 | 		xhci_warn(xhci, "Ignore frame ID field, use SIA bit instead\n"); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	return start_frame; | 
 | } | 
 |  | 
 | /* Check if we should generate event interrupt for a TD in an isoc URB */ | 
 | static bool trb_block_event_intr(struct xhci_hcd *xhci, int num_tds, int i, | 
 | 				 struct xhci_interrupter *ir) | 
 | { | 
 | 	if (xhci->hci_version < 0x100) | 
 | 		return false; | 
 | 	/* always generate an event interrupt for the last TD */ | 
 | 	if (i == num_tds - 1) | 
 | 		return false; | 
 | 	/* | 
 | 	 * If AVOID_BEI is set the host handles full event rings poorly, | 
 | 	 * generate an event at least every 8th TD to clear the event ring | 
 | 	 */ | 
 | 	if (i && ir->isoc_bei_interval && xhci->quirks & XHCI_AVOID_BEI) | 
 | 		return !!(i % ir->isoc_bei_interval); | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | /* This is for isoc transfer */ | 
 | static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags, | 
 | 		struct urb *urb, int slot_id, unsigned int ep_index) | 
 | { | 
 | 	struct xhci_interrupter *ir; | 
 | 	struct xhci_ring *ep_ring; | 
 | 	struct urb_priv *urb_priv; | 
 | 	struct xhci_td *td; | 
 | 	int num_tds, trbs_per_td; | 
 | 	struct xhci_generic_trb *start_trb; | 
 | 	bool first_trb; | 
 | 	int start_cycle; | 
 | 	u32 field, length_field; | 
 | 	int running_total, trb_buff_len, td_len, td_remain_len, ret; | 
 | 	u64 start_addr, addr; | 
 | 	int i, j; | 
 | 	bool more_trbs_coming; | 
 | 	struct xhci_virt_ep *xep; | 
 | 	int frame_id; | 
 |  | 
 | 	xep = &xhci->devs[slot_id]->eps[ep_index]; | 
 | 	ep_ring = xhci->devs[slot_id]->eps[ep_index].ring; | 
 | 	ir = xhci->interrupters[0]; | 
 |  | 
 | 	num_tds = urb->number_of_packets; | 
 | 	if (num_tds < 1) { | 
 | 		xhci_dbg(xhci, "Isoc URB with zero packets?\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	start_addr = (u64) urb->transfer_dma; | 
 | 	start_trb = &ep_ring->enqueue->generic; | 
 | 	start_cycle = ep_ring->cycle_state; | 
 |  | 
 | 	urb_priv = urb->hcpriv; | 
 | 	/* Queue the TRBs for each TD, even if they are zero-length */ | 
 | 	for (i = 0; i < num_tds; i++) { | 
 | 		unsigned int total_pkt_count, max_pkt; | 
 | 		unsigned int burst_count, last_burst_pkt_count; | 
 | 		u32 sia_frame_id; | 
 |  | 
 | 		first_trb = true; | 
 | 		running_total = 0; | 
 | 		addr = start_addr + urb->iso_frame_desc[i].offset; | 
 | 		td_len = urb->iso_frame_desc[i].length; | 
 | 		td_remain_len = td_len; | 
 | 		max_pkt = usb_endpoint_maxp(&urb->ep->desc); | 
 | 		total_pkt_count = DIV_ROUND_UP(td_len, max_pkt); | 
 |  | 
 | 		/* A zero-length transfer still involves at least one packet. */ | 
 | 		if (total_pkt_count == 0) | 
 | 			total_pkt_count++; | 
 | 		burst_count = xhci_get_burst_count(xhci, urb, total_pkt_count); | 
 | 		last_burst_pkt_count = xhci_get_last_burst_packet_count(xhci, | 
 | 							urb, total_pkt_count); | 
 |  | 
 | 		trbs_per_td = count_isoc_trbs_needed(urb, i); | 
 |  | 
 | 		ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index, | 
 | 				urb->stream_id, trbs_per_td, urb, i, mem_flags); | 
 | 		if (ret < 0) { | 
 | 			if (i == 0) | 
 | 				return ret; | 
 | 			goto cleanup; | 
 | 		} | 
 | 		td = &urb_priv->td[i]; | 
 | 		/* use SIA as default, if frame id is used overwrite it */ | 
 | 		sia_frame_id = TRB_SIA; | 
 | 		if (!(urb->transfer_flags & URB_ISO_ASAP) && | 
 | 		    HCC_CFC(xhci->hcc_params)) { | 
 | 			frame_id = xhci_get_isoc_frame_id(xhci, urb, i); | 
 | 			if (frame_id >= 0) | 
 | 				sia_frame_id = TRB_FRAME_ID(frame_id); | 
 | 		} | 
 | 		/* | 
 | 		 * Set isoc specific data for the first TRB in a TD. | 
 | 		 * Prevent HW from getting the TRBs by keeping the cycle state | 
 | 		 * inverted in the first TDs isoc TRB. | 
 | 		 */ | 
 | 		field = TRB_TYPE(TRB_ISOC) | | 
 | 			TRB_TLBPC(last_burst_pkt_count) | | 
 | 			sia_frame_id | | 
 | 			(i ? ep_ring->cycle_state : !start_cycle); | 
 |  | 
 | 		/* xhci 1.1 with ETE uses TD_Size field for TBC, old is Rsvdz */ | 
 | 		if (!xep->use_extended_tbc) | 
 | 			field |= TRB_TBC(burst_count); | 
 |  | 
 | 		/* fill the rest of the TRB fields, and remaining normal TRBs */ | 
 | 		for (j = 0; j < trbs_per_td; j++) { | 
 | 			u32 remainder = 0; | 
 |  | 
 | 			/* only first TRB is isoc, overwrite otherwise */ | 
 | 			if (!first_trb) | 
 | 				field = TRB_TYPE(TRB_NORMAL) | | 
 | 					ep_ring->cycle_state; | 
 |  | 
 | 			/* Only set interrupt on short packet for IN EPs */ | 
 | 			if (usb_urb_dir_in(urb)) | 
 | 				field |= TRB_ISP; | 
 |  | 
 | 			/* Set the chain bit for all except the last TRB  */ | 
 | 			if (j < trbs_per_td - 1) { | 
 | 				more_trbs_coming = true; | 
 | 				field |= TRB_CHAIN; | 
 | 			} else { | 
 | 				more_trbs_coming = false; | 
 | 				td->end_trb = ep_ring->enqueue; | 
 | 				td->end_seg = ep_ring->enq_seg; | 
 | 				field |= TRB_IOC; | 
 | 				if (trb_block_event_intr(xhci, num_tds, i, ir)) | 
 | 					field |= TRB_BEI; | 
 | 			} | 
 | 			/* Calculate TRB length */ | 
 | 			trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); | 
 | 			if (trb_buff_len > td_remain_len) | 
 | 				trb_buff_len = td_remain_len; | 
 |  | 
 | 			/* Set the TRB length, TD size, & interrupter fields. */ | 
 | 			remainder = xhci_td_remainder(xhci, running_total, | 
 | 						   trb_buff_len, td_len, | 
 | 						   urb, more_trbs_coming); | 
 |  | 
 | 			length_field = TRB_LEN(trb_buff_len) | | 
 | 				TRB_INTR_TARGET(0); | 
 |  | 
 | 			/* xhci 1.1 with ETE uses TD Size field for TBC */ | 
 | 			if (first_trb && xep->use_extended_tbc) | 
 | 				length_field |= TRB_TD_SIZE_TBC(burst_count); | 
 | 			else | 
 | 				length_field |= TRB_TD_SIZE(remainder); | 
 | 			first_trb = false; | 
 |  | 
 | 			queue_trb(xhci, ep_ring, more_trbs_coming, | 
 | 				lower_32_bits(addr), | 
 | 				upper_32_bits(addr), | 
 | 				length_field, | 
 | 				field); | 
 | 			running_total += trb_buff_len; | 
 |  | 
 | 			addr += trb_buff_len; | 
 | 			td_remain_len -= trb_buff_len; | 
 | 		} | 
 |  | 
 | 		/* Check TD length */ | 
 | 		if (running_total != td_len) { | 
 | 			xhci_err(xhci, "ISOC TD length unmatch\n"); | 
 | 			ret = -EINVAL; | 
 | 			goto cleanup; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* store the next frame id */ | 
 | 	if (HCC_CFC(xhci->hcc_params)) | 
 | 		xep->next_frame_id = urb->start_frame + num_tds * urb->interval; | 
 |  | 
 | 	if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { | 
 | 		if (xhci->quirks & XHCI_AMD_PLL_FIX) | 
 | 			usb_amd_quirk_pll_disable(); | 
 | 	} | 
 | 	xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++; | 
 |  | 
 | 	giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, | 
 | 			start_cycle, start_trb); | 
 | 	return 0; | 
 | cleanup: | 
 | 	/* Clean up a partially enqueued isoc transfer. */ | 
 |  | 
 | 	for (i--; i >= 0; i--) | 
 | 		list_del_init(&urb_priv->td[i].td_list); | 
 |  | 
 | 	/* Use the first TD as a temporary variable to turn the TDs we've queued | 
 | 	 * into No-ops with a software-owned cycle bit. That way the hardware | 
 | 	 * won't accidentally start executing bogus TDs when we partially | 
 | 	 * overwrite them.  td->start_trb and td->start_seg are already set. | 
 | 	 */ | 
 | 	urb_priv->td[0].end_trb = ep_ring->enqueue; | 
 | 	/* Every TRB except the first & last will have its cycle bit flipped. */ | 
 | 	td_to_noop(&urb_priv->td[0], true); | 
 |  | 
 | 	/* Reset the ring enqueue back to the first TRB and its cycle bit. */ | 
 | 	ep_ring->enqueue = urb_priv->td[0].start_trb; | 
 | 	ep_ring->enq_seg = urb_priv->td[0].start_seg; | 
 | 	ep_ring->cycle_state = start_cycle; | 
 | 	usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Check transfer ring to guarantee there is enough room for the urb. | 
 |  * Update ISO URB start_frame and interval. | 
 |  * Update interval as xhci_queue_intr_tx does. Use xhci frame_index to | 
 |  * update urb->start_frame if URB_ISO_ASAP is set in transfer_flags or | 
 |  * Contiguous Frame ID is not supported by HC. | 
 |  */ | 
 | int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags, | 
 | 		struct urb *urb, int slot_id, unsigned int ep_index) | 
 | { | 
 | 	struct xhci_virt_device *xdev; | 
 | 	struct xhci_ring *ep_ring; | 
 | 	struct xhci_ep_ctx *ep_ctx; | 
 | 	int start_frame; | 
 | 	int num_tds, num_trbs, i; | 
 | 	int ret; | 
 | 	struct xhci_virt_ep *xep; | 
 | 	int ist; | 
 |  | 
 | 	xdev = xhci->devs[slot_id]; | 
 | 	xep = &xhci->devs[slot_id]->eps[ep_index]; | 
 | 	ep_ring = xdev->eps[ep_index].ring; | 
 | 	ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); | 
 |  | 
 | 	num_trbs = 0; | 
 | 	num_tds = urb->number_of_packets; | 
 | 	for (i = 0; i < num_tds; i++) | 
 | 		num_trbs += count_isoc_trbs_needed(urb, i); | 
 |  | 
 | 	/* Check the ring to guarantee there is enough room for the whole urb. | 
 | 	 * Do not insert any td of the urb to the ring if the check failed. | 
 | 	 */ | 
 | 	ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx), | 
 | 			   num_trbs, mem_flags); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	/* | 
 | 	 * Check interval value. This should be done before we start to | 
 | 	 * calculate the start frame value. | 
 | 	 */ | 
 | 	check_interval(urb, ep_ctx); | 
 |  | 
 | 	/* Calculate the start frame and put it in urb->start_frame. */ | 
 | 	if (HCC_CFC(xhci->hcc_params) && !list_empty(&ep_ring->td_list)) { | 
 | 		if (GET_EP_CTX_STATE(ep_ctx) ==	EP_STATE_RUNNING) { | 
 | 			urb->start_frame = xep->next_frame_id; | 
 | 			goto skip_start_over; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	start_frame = readl(&xhci->run_regs->microframe_index); | 
 | 	start_frame &= 0x3fff; | 
 | 	/* | 
 | 	 * Round up to the next frame and consider the time before trb really | 
 | 	 * gets scheduled by hardare. | 
 | 	 */ | 
 | 	ist = HCS_IST(xhci->hcs_params2) & 0x7; | 
 | 	if (HCS_IST(xhci->hcs_params2) & (1 << 3)) | 
 | 		ist <<= 3; | 
 | 	start_frame += ist + XHCI_CFC_DELAY; | 
 | 	start_frame = roundup(start_frame, 8); | 
 |  | 
 | 	/* | 
 | 	 * Round up to the next ESIT (Endpoint Service Interval Time) if ESIT | 
 | 	 * is greate than 8 microframes. | 
 | 	 */ | 
 | 	if (urb->dev->speed == USB_SPEED_LOW || | 
 | 			urb->dev->speed == USB_SPEED_FULL) { | 
 | 		start_frame = roundup(start_frame, urb->interval << 3); | 
 | 		urb->start_frame = start_frame >> 3; | 
 | 	} else { | 
 | 		start_frame = roundup(start_frame, urb->interval); | 
 | 		urb->start_frame = start_frame; | 
 | 	} | 
 |  | 
 | skip_start_over: | 
 |  | 
 | 	return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index); | 
 | } | 
 |  | 
 | /****		Command Ring Operations		****/ | 
 |  | 
 | /* Generic function for queueing a command TRB on the command ring. | 
 |  * Check to make sure there's room on the command ring for one command TRB. | 
 |  * Also check that there's room reserved for commands that must not fail. | 
 |  * If this is a command that must not fail, meaning command_must_succeed = TRUE, | 
 |  * then only check for the number of reserved spots. | 
 |  * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB | 
 |  * because the command event handler may want to resubmit a failed command. | 
 |  */ | 
 | static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd, | 
 | 			 u32 field1, u32 field2, | 
 | 			 u32 field3, u32 field4, bool command_must_succeed) | 
 | { | 
 | 	int reserved_trbs = xhci->cmd_ring_reserved_trbs; | 
 | 	int ret; | 
 |  | 
 | 	if ((xhci->xhc_state & XHCI_STATE_DYING) || | 
 | 		(xhci->xhc_state & XHCI_STATE_HALTED)) { | 
 | 		xhci_dbg(xhci, "xHCI dying or halted, can't queue_command. state: 0x%x\n", | 
 | 			 xhci->xhc_state); | 
 | 		return -ESHUTDOWN; | 
 | 	} | 
 |  | 
 | 	if (!command_must_succeed) | 
 | 		reserved_trbs++; | 
 |  | 
 | 	ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING, | 
 | 			reserved_trbs, GFP_ATOMIC); | 
 | 	if (ret < 0) { | 
 | 		xhci_err(xhci, "ERR: No room for command on command ring\n"); | 
 | 		if (command_must_succeed) | 
 | 			xhci_err(xhci, "ERR: Reserved TRB counting for " | 
 | 					"unfailable commands failed.\n"); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	cmd->command_trb = xhci->cmd_ring->enqueue; | 
 |  | 
 | 	/* if there are no other commands queued we start the timeout timer */ | 
 | 	if (list_empty(&xhci->cmd_list)) { | 
 | 		xhci->current_cmd = cmd; | 
 | 		xhci_mod_cmd_timer(xhci); | 
 | 	} | 
 |  | 
 | 	list_add_tail(&cmd->cmd_list, &xhci->cmd_list); | 
 |  | 
 | 	queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3, | 
 | 			field4 | xhci->cmd_ring->cycle_state); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Queue a slot enable or disable request on the command ring */ | 
 | int xhci_queue_slot_control(struct xhci_hcd *xhci, struct xhci_command *cmd, | 
 | 		u32 trb_type, u32 slot_id) | 
 | { | 
 | 	return queue_command(xhci, cmd, 0, 0, 0, | 
 | 			TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false); | 
 | } | 
 |  | 
 | /* Queue an address device command TRB */ | 
 | int xhci_queue_address_device(struct xhci_hcd *xhci, struct xhci_command *cmd, | 
 | 		dma_addr_t in_ctx_ptr, u32 slot_id, enum xhci_setup_dev setup) | 
 | { | 
 | 	return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), | 
 | 			upper_32_bits(in_ctx_ptr), 0, | 
 | 			TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id) | 
 | 			| (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false); | 
 | } | 
 |  | 
 | int xhci_queue_vendor_command(struct xhci_hcd *xhci, struct xhci_command *cmd, | 
 | 		u32 field1, u32 field2, u32 field3, u32 field4) | 
 | { | 
 | 	return queue_command(xhci, cmd, field1, field2, field3, field4, false); | 
 | } | 
 |  | 
 | /* Queue a reset device command TRB */ | 
 | int xhci_queue_reset_device(struct xhci_hcd *xhci, struct xhci_command *cmd, | 
 | 		u32 slot_id) | 
 | { | 
 | 	return queue_command(xhci, cmd, 0, 0, 0, | 
 | 			TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id), | 
 | 			false); | 
 | } | 
 |  | 
 | /* Queue a configure endpoint command TRB */ | 
 | int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, | 
 | 		struct xhci_command *cmd, dma_addr_t in_ctx_ptr, | 
 | 		u32 slot_id, bool command_must_succeed) | 
 | { | 
 | 	return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), | 
 | 			upper_32_bits(in_ctx_ptr), 0, | 
 | 			TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id), | 
 | 			command_must_succeed); | 
 | } | 
 |  | 
 | /* Queue a get root hub port bandwidth command TRB */ | 
 | int xhci_queue_get_port_bw(struct xhci_hcd *xhci, | 
 | 		struct xhci_command *cmd, dma_addr_t in_ctx_ptr, | 
 | 		u8 dev_speed, bool command_must_succeed) | 
 | { | 
 | 	return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), | 
 | 		upper_32_bits(in_ctx_ptr), 0, | 
 | 		TRB_TYPE(TRB_GET_BW) | DEV_SPEED_FOR_TRB(dev_speed), | 
 | 		command_must_succeed); | 
 | } | 
 |  | 
 | /* Queue an evaluate context command TRB */ | 
 | int xhci_queue_evaluate_context(struct xhci_hcd *xhci, struct xhci_command *cmd, | 
 | 		dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed) | 
 | { | 
 | 	return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), | 
 | 			upper_32_bits(in_ctx_ptr), 0, | 
 | 			TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id), | 
 | 			command_must_succeed); | 
 | } | 
 |  | 
 | /* | 
 |  * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop | 
 |  * activity on an endpoint that is about to be suspended. | 
 |  */ | 
 | int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd, | 
 | 			     int slot_id, unsigned int ep_index, int suspend) | 
 | { | 
 | 	u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); | 
 | 	u32 trb_ep_index = EP_INDEX_FOR_TRB(ep_index); | 
 | 	u32 type = TRB_TYPE(TRB_STOP_RING); | 
 | 	u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend); | 
 |  | 
 | 	return queue_command(xhci, cmd, 0, 0, 0, | 
 | 			trb_slot_id | trb_ep_index | type | trb_suspend, false); | 
 | } | 
 |  | 
 | int xhci_queue_reset_ep(struct xhci_hcd *xhci, struct xhci_command *cmd, | 
 | 			int slot_id, unsigned int ep_index, | 
 | 			enum xhci_ep_reset_type reset_type) | 
 | { | 
 | 	u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); | 
 | 	u32 trb_ep_index = EP_INDEX_FOR_TRB(ep_index); | 
 | 	u32 type = TRB_TYPE(TRB_RESET_EP); | 
 |  | 
 | 	if (reset_type == EP_SOFT_RESET) | 
 | 		type |= TRB_TSP; | 
 |  | 
 | 	return queue_command(xhci, cmd, 0, 0, 0, | 
 | 			trb_slot_id | trb_ep_index | type, false); | 
 | } |