blob: fd2e6f9dfbd99beec2dc24366e8ac1abd7905195 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2000-2001,2005-2006 Silicon Graphics, Inc.
* Copyright (C) 2010 Red Hat, Inc.
* All Rights Reserved.
*/
#include "libxfs_priv.h"
#include "xfs_fs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
#include "xfs_mount.h"
#include "xfs_inode_buf.h"
#include "xfs_inode_fork.h"
#include "xfs_inode.h"
#include "xfs_trans.h"
#include "xfs_sb.h"
#include "xfs_defer.h"
#include "xfs_trace.h"
static void xfs_trans_free_items(struct xfs_trans *tp);
STATIC struct xfs_trans *xfs_trans_dup(struct xfs_trans *tp);
static int xfs_trans_reserve(struct xfs_trans *tp, struct xfs_trans_res *resp,
uint blocks, uint rtextents);
static int __xfs_trans_commit(struct xfs_trans *tp, bool regrant);
/*
* Simple transaction interface
*/
kmem_zone_t *xfs_trans_zone;
/*
* Initialize the precomputed transaction reservation values
* in the mount structure.
*/
void
libxfs_trans_init(
struct xfs_mount *mp)
{
xfs_trans_resv_calc(mp, &mp->m_resv);
}
/*
* Add the given log item to the transaction's list of log items.
*/
void
libxfs_trans_add_item(
struct xfs_trans *tp,
struct xfs_log_item *lip)
{
ASSERT(lip->li_mountp == tp->t_mountp);
ASSERT(lip->li_ailp == tp->t_mountp->m_ail);
ASSERT(list_empty(&lip->li_trans));
ASSERT(!test_bit(XFS_LI_DIRTY, &lip->li_flags));
list_add_tail(&lip->li_trans, &tp->t_items);
}
/*
* Unlink and free the given descriptor.
*/
void
libxfs_trans_del_item(
struct xfs_log_item *lip)
{
clear_bit(XFS_LI_DIRTY, &lip->li_flags);
list_del_init(&lip->li_trans);
}
/*
* Roll from one trans in the sequence of PERMANENT transactions to
* the next: permanent transactions are only flushed out when
* committed with XFS_TRANS_RELEASE_LOG_RES, but we still want as soon
* as possible to let chunks of it go to the log. So we commit the
* chunk we've been working on and get a new transaction to continue.
*/
int
libxfs_trans_roll(
struct xfs_trans **tpp)
{
struct xfs_trans *trans = *tpp;
struct xfs_trans_res tres;
int error;
/*
* Copy the critical parameters from one trans to the next.
*/
tres.tr_logres = trans->t_log_res;
tres.tr_logcount = trans->t_log_count;
*tpp = xfs_trans_dup(trans);
/*
* Commit the current transaction.
* If this commit failed, then it'd just unlock those items that
* are marked to be released. That also means that a filesystem shutdown
* is in progress. The caller takes the responsibility to cancel
* the duplicate transaction that gets returned.
*/
error = __xfs_trans_commit(trans, true);
if (error)
return error;
/*
* Reserve space in the log for the next transaction.
* This also pushes items in the "AIL", the list of logged items,
* out to disk if they are taking up space at the tail of the log
* that we want to use. This requires that either nothing be locked
* across this call, or that anything that is locked be logged in
* the prior and the next transactions.
*/
tres.tr_logflags = XFS_TRANS_PERM_LOG_RES;
return xfs_trans_reserve(*tpp, &tres, 0, 0);
}
/*
* Free the transaction structure. If there is more clean up
* to do when the structure is freed, add it here.
*/
static void
xfs_trans_free(
struct xfs_trans *tp)
{
kmem_cache_free(xfs_trans_zone, tp);
}
/*
* This is called to create a new transaction which will share the
* permanent log reservation of the given transaction. The remaining
* unused block and rt extent reservations are also inherited. This
* implies that the original transaction is no longer allowed to allocate
* blocks. Locks and log items, however, are no inherited. They must
* be added to the new transaction explicitly.
*/
STATIC struct xfs_trans *
xfs_trans_dup(
struct xfs_trans *tp)
{
struct xfs_trans *ntp;
ntp = kmem_cache_zalloc(xfs_trans_zone, 0);
/*
* Initialize the new transaction structure.
*/
ntp->t_mountp = tp->t_mountp;
INIT_LIST_HEAD(&ntp->t_items);
INIT_LIST_HEAD(&ntp->t_dfops);
ntp->t_firstblock = NULLFSBLOCK;
ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
ntp->t_flags = XFS_TRANS_PERM_LOG_RES |
(tp->t_flags & XFS_TRANS_RESERVE) |
(tp->t_flags & XFS_TRANS_NO_WRITECOUNT);
/* We gave our writer reference to the new transaction */
tp->t_flags |= XFS_TRANS_NO_WRITECOUNT;
ntp->t_blk_res = tp->t_blk_res - tp->t_blk_res_used;
tp->t_blk_res = tp->t_blk_res_used;
/* move deferred ops over to the new tp */
xfs_defer_move(ntp, tp);
return ntp;
}
/*
* This is called to reserve free disk blocks and log space for the
* given transaction. This must be done before allocating any resources
* within the transaction.
*
* This will return ENOSPC if there are not enough blocks available.
* It will sleep waiting for available log space.
* The only valid value for the flags parameter is XFS_RES_LOG_PERM, which
* is used by long running transactions. If any one of the reservations
* fails then they will all be backed out.
*
* This does not do quota reservations. That typically is done by the
* caller afterwards.
*/
static int
xfs_trans_reserve(
struct xfs_trans *tp,
struct xfs_trans_res *resp,
uint blocks,
uint rtextents)
{
int error = 0;
/*
* Attempt to reserve the needed disk blocks by decrementing
* the number needed from the number available. This will
* fail if the count would go below zero.
*/
if (blocks > 0) {
if (tp->t_mountp->m_sb.sb_fdblocks < blocks)
return -ENOSPC;
tp->t_blk_res += blocks;
}
/*
* Reserve the log space needed for this transaction.
*/
if (resp->tr_logres > 0) {
ASSERT(tp->t_log_res == 0 ||
tp->t_log_res == resp->tr_logres);
ASSERT(tp->t_log_count == 0 ||
tp->t_log_count == resp->tr_logcount);
if (resp->tr_logflags & XFS_TRANS_PERM_LOG_RES)
tp->t_flags |= XFS_TRANS_PERM_LOG_RES;
else
ASSERT(!(tp->t_flags & XFS_TRANS_PERM_LOG_RES));
tp->t_log_res = resp->tr_logres;
tp->t_log_count = resp->tr_logcount;
}
/*
* Attempt to reserve the needed realtime extents by decrementing
* the number needed from the number available. This will
* fail if the count would go below zero.
*/
if (rtextents > 0) {
if (tp->t_mountp->m_sb.sb_rextents < rtextents) {
error = -ENOSPC;
goto undo_blocks;
}
tp->t_rtx_res += rtextents;
}
return 0;
/*
* Error cases jump to one of these labels to undo any
* reservations which have already been performed.
*/
undo_blocks:
if (blocks > 0)
tp->t_blk_res = 0;
return error;
}
int
libxfs_trans_alloc(
struct xfs_mount *mp,
struct xfs_trans_res *resp,
unsigned int blocks,
unsigned int rtextents,
unsigned int flags,
struct xfs_trans **tpp)
{
struct xfs_trans *tp;
int error;
tp = kmem_cache_zalloc(xfs_trans_zone, 0);
tp->t_mountp = mp;
INIT_LIST_HEAD(&tp->t_items);
INIT_LIST_HEAD(&tp->t_dfops);
tp->t_firstblock = NULLFSBLOCK;
error = xfs_trans_reserve(tp, resp, blocks, rtextents);
if (error) {
xfs_trans_cancel(tp);
return error;
}
trace_xfs_trans_alloc(tp, _RET_IP_);
*tpp = tp;
return 0;
}
/*
* Create an empty transaction with no reservation. This is a defensive
* mechanism for routines that query metadata without actually modifying
* them -- if the metadata being queried is somehow cross-linked (think a
* btree block pointer that points higher in the tree), we risk deadlock.
* However, blocks grabbed as part of a transaction can be re-grabbed.
* The verifiers will notice the corrupt block and the operation will fail
* back to userspace without deadlocking.
*
* Note the zero-length reservation; this transaction MUST be cancelled
* without any dirty data.
*/
int
libxfs_trans_alloc_empty(
struct xfs_mount *mp,
struct xfs_trans **tpp)
{
struct xfs_trans_res resv = {0};
return xfs_trans_alloc(mp, &resv, 0, 0, XFS_TRANS_NO_WRITECOUNT, tpp);
}
/*
* Allocate a transaction that can be rolled. Since userspace doesn't have
* a need for log reservations, we really only tr_itruncate to get the
* permanent log reservation flag to avoid blowing asserts.
*/
int
libxfs_trans_alloc_rollable(
struct xfs_mount *mp,
unsigned int blocks,
struct xfs_trans **tpp)
{
return libxfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, blocks,
0, 0, tpp);
}
void
libxfs_trans_cancel(
struct xfs_trans *tp)
{
trace_xfs_trans_cancel(tp, _RET_IP_);
if (tp == NULL)
return;
if (tp->t_flags & XFS_TRANS_PERM_LOG_RES)
xfs_defer_cancel(tp);
xfs_trans_free_items(tp);
xfs_trans_free(tp);
}
static void
xfs_buf_item_put(
struct xfs_buf_log_item *bip)
{
struct xfs_buf *bp = bip->bli_buf;
bp->b_log_item = NULL;
kmem_cache_free(xfs_buf_item_zone, bip);
}
/* from xfs_trans_buf.c */
/*
* Add the locked buffer to the transaction.
*
* The buffer must be locked, and it cannot be associated with any
* transaction.
*
* If the buffer does not yet have a buf log item associated with it,
* then allocate one for it. Then add the buf item to the transaction.
*/
STATIC void
_libxfs_trans_bjoin(
struct xfs_trans *tp,
struct xfs_buf *bp,
int reset_recur)
{
struct xfs_buf_log_item *bip;
ASSERT(bp->b_transp == NULL);
/*
* The xfs_buf_log_item pointer is stored in b_log_item. If
* it doesn't have one yet, then allocate one and initialize it.
* The checks to see if one is there are in xfs_buf_item_init().
*/
xfs_buf_item_init(bp, tp->t_mountp);
bip = bp->b_log_item;
if (reset_recur)
bip->bli_recur = 0;
/*
* Attach the item to the transaction so we can find it in
* xfs_trans_get_buf() and friends.
*/
xfs_trans_add_item(tp, &bip->bli_item);
bp->b_transp = tp;
}
void
libxfs_trans_bjoin(
struct xfs_trans *tp,
struct xfs_buf *bp)
{
_libxfs_trans_bjoin(tp, bp, 0);
trace_xfs_trans_bjoin(bp->b_log_item);
}
/*
* Cancel the previous buffer hold request made on this buffer
* for this transaction.
*/
void
libxfs_trans_bhold_release(
xfs_trans_t *tp,
struct xfs_buf *bp)
{
struct xfs_buf_log_item *bip = bp->b_log_item;
ASSERT(bp->b_transp == tp);
ASSERT(bip != NULL);
bip->bli_flags &= ~XFS_BLI_HOLD;
trace_xfs_trans_bhold_release(bip);
}
/*
* Get and lock the buffer for the caller if it is not already
* locked within the given transaction. If it is already locked
* within the transaction, just increment its lock recursion count
* and return a pointer to it.
*
* If the transaction pointer is NULL, make this just a normal
* get_buf() call.
*/
int
libxfs_trans_get_buf_map(
struct xfs_trans *tp,
struct xfs_buftarg *target,
struct xfs_buf_map *map,
int nmaps,
xfs_buf_flags_t flags,
struct xfs_buf **bpp)
{
struct xfs_buf *bp;
struct xfs_buf_log_item *bip;
int error;
*bpp = NULL;
if (!tp)
return libxfs_buf_get_map(target, map, nmaps, 0, bpp);
/*
* If we find the buffer in the cache with this transaction
* pointer in its b_fsprivate2 field, then we know we already
* have it locked. In this case we just increment the lock
* recursion count and return the buffer to the caller.
*/
bp = xfs_trans_buf_item_match(tp, target, map, nmaps);
if (bp != NULL) {
ASSERT(bp->b_transp == tp);
bip = bp->b_log_item;
ASSERT(bip != NULL);
bip->bli_recur++;
trace_xfs_trans_get_buf_recur(bip);
*bpp = bp;
return 0;
}
error = libxfs_buf_get_map(target, map, nmaps, 0, &bp);
if (error)
return error;
ASSERT(!bp->b_error);
_libxfs_trans_bjoin(tp, bp, 1);
trace_xfs_trans_get_buf(bp->b_log_item);
*bpp = bp;
return 0;
}
struct xfs_buf *
libxfs_trans_getsb(
struct xfs_trans *tp)
{
struct xfs_mount *mp = tp->t_mountp;
struct xfs_buf *bp;
struct xfs_buf_log_item *bip;
int len = XFS_FSS_TO_BB(mp, 1);
DEFINE_SINGLE_BUF_MAP(map, XFS_SB_DADDR, len);
if (tp == NULL)
return libxfs_getsb(mp);
bp = xfs_trans_buf_item_match(tp, mp->m_dev, &map, 1);
if (bp != NULL) {
ASSERT(bp->b_transp == tp);
bip = bp->b_log_item;
ASSERT(bip != NULL);
bip->bli_recur++;
trace_xfs_trans_getsb_recur(bip);
return bp;
}
bp = libxfs_getsb(mp);
if (bp == NULL)
return NULL;
_libxfs_trans_bjoin(tp, bp, 1);
trace_xfs_trans_getsb(bp->b_log_item);
return bp;
}
int
libxfs_trans_read_buf_map(
struct xfs_mount *mp,
struct xfs_trans *tp,
struct xfs_buftarg *target,
struct xfs_buf_map *map,
int nmaps,
xfs_buf_flags_t flags,
struct xfs_buf **bpp,
const struct xfs_buf_ops *ops)
{
struct xfs_buf *bp;
struct xfs_buf_log_item *bip;
int error;
*bpp = NULL;
if (tp == NULL)
return libxfs_buf_read_map(target, map, nmaps, flags, bpp, ops);
bp = xfs_trans_buf_item_match(tp, target, map, nmaps);
if (bp) {
ASSERT(bp->b_transp == tp);
ASSERT(bp->b_log_item != NULL);
bip = bp->b_log_item;
bip->bli_recur++;
trace_xfs_trans_read_buf_recur(bip);
goto done;
}
error = libxfs_buf_read_map(target, map, nmaps, flags, &bp, ops);
if (error)
return error;
_libxfs_trans_bjoin(tp, bp, 1);
done:
trace_xfs_trans_read_buf(bp->b_log_item);
*bpp = bp;
return 0;
}
/*
* Release a buffer previously joined to the transaction. If the buffer is
* modified within this transaction, decrement the recursion count but do not
* release the buffer even if the count goes to 0. If the buffer is not modified
* within the transaction, decrement the recursion count and release the buffer
* if the recursion count goes to 0.
*
* If the buffer is to be released and it was not already dirty before this
* transaction began, then also free the buf_log_item associated with it.
*
* If the transaction pointer is NULL, this is a normal xfs_buf_relse() call.
*/
void
libxfs_trans_brelse(
struct xfs_trans *tp,
struct xfs_buf *bp)
{
struct xfs_buf_log_item *bip = bp->b_log_item;
ASSERT(bp->b_transp == tp);
if (!tp) {
libxfs_buf_relse(bp);
return;
}
trace_xfs_trans_brelse(bip);
ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
/*
* If the release is for a recursive lookup, then decrement the count
* and return.
*/
if (bip->bli_recur > 0) {
bip->bli_recur--;
return;
}
/*
* If the buffer is invalidated or dirty in this transaction, we can't
* release it until we commit.
*/
if (test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags))
return;
if (bip->bli_flags & XFS_BLI_STALE)
return;
/*
* Unlink the log item from the transaction and clear the hold flag, if
* set. We wouldn't want the next user of the buffer to get confused.
*/
xfs_trans_del_item(&bip->bli_item);
bip->bli_flags &= ~XFS_BLI_HOLD;
/* drop the reference to the bli */
xfs_buf_item_put(bip);
bp->b_transp = NULL;
libxfs_buf_relse(bp);
}
/*
* Mark the buffer as not needing to be unlocked when the buf item's
* iop_unlock() routine is called. The buffer must already be locked
* and associated with the given transaction.
*/
/* ARGSUSED */
void
libxfs_trans_bhold(
xfs_trans_t *tp,
struct xfs_buf *bp)
{
struct xfs_buf_log_item *bip = bp->b_log_item;
ASSERT(bp->b_transp == tp);
ASSERT(bip != NULL);
bip->bli_flags |= XFS_BLI_HOLD;
trace_xfs_trans_bhold(bip);
}
/*
* Mark a buffer dirty in the transaction.
*/
void
libxfs_trans_dirty_buf(
struct xfs_trans *tp,
struct xfs_buf *bp)
{
struct xfs_buf_log_item *bip = bp->b_log_item;
ASSERT(bp->b_transp == tp);
ASSERT(bip != NULL);
tp->t_flags |= XFS_TRANS_DIRTY;
set_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags);
}
/*
* This is called to mark bytes first through last inclusive of the given
* buffer as needing to be logged when the transaction is committed.
* The buffer must already be associated with the given transaction.
*
* First and last are numbers relative to the beginning of this buffer,
* so the first byte in the buffer is numbered 0 regardless of the
* value of b_blkno.
*/
void
libxfs_trans_log_buf(
struct xfs_trans *tp,
struct xfs_buf *bp,
uint first,
uint last)
{
struct xfs_buf_log_item *bip = bp->b_log_item;
ASSERT(first <= last && last < BBTOB(bp->b_length));
xfs_trans_dirty_buf(tp, bp);
trace_xfs_trans_log_buf(bip);
xfs_buf_item_log(bip, first, last);
}
void
libxfs_trans_binval(
xfs_trans_t *tp,
struct xfs_buf *bp)
{
struct xfs_buf_log_item *bip = bp->b_log_item;
ASSERT(bp->b_transp == tp);
ASSERT(bip != NULL);
trace_xfs_trans_binval(bip);
if (bip->bli_flags & XFS_BLI_STALE)
return;
XFS_BUF_UNDELAYWRITE(bp);
xfs_buf_stale(bp);
bip->bli_flags |= XFS_BLI_STALE;
bip->bli_flags &= ~XFS_BLI_DIRTY;
bip->__bli_format.blf_flags &= ~XFS_BLF_INODE_BUF;
bip->__bli_format.blf_flags |= XFS_BLF_CANCEL;
set_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags);
tp->t_flags |= XFS_TRANS_DIRTY;
}
/*
* Mark the buffer as being one which contains newly allocated
* inodes. We need to make sure that even if this buffer is
* relogged as an 'inode buf' we still recover all of the inode
* images in the face of a crash. This works in coordination with
* xfs_buf_item_committed() to ensure that the buffer remains in the
* AIL at its original location even after it has been relogged.
*/
/* ARGSUSED */
void
libxfs_trans_inode_alloc_buf(
xfs_trans_t *tp,
struct xfs_buf *bp)
{
struct xfs_buf_log_item *bip = bp->b_log_item;
ASSERT(bp->b_transp == tp);
ASSERT(bip != NULL);
bip->bli_flags |= XFS_BLI_INODE_ALLOC_BUF;
xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
}
/*
* For userspace, ordered buffers just need to be marked dirty so
* the transaction commit will write them and mark them up-to-date.
* In essence, they are just like any other logged buffer in userspace.
*
* If the buffer is already dirty, trigger the "already logged" return condition.
*/
bool
libxfs_trans_ordered_buf(
struct xfs_trans *tp,
struct xfs_buf *bp)
{
struct xfs_buf_log_item *bip = bp->b_log_item;
bool ret;
ret = test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags);
libxfs_trans_log_buf(tp, bp, 0, BBTOB(bp->b_length));
return ret;
}
/* end of xfs_trans_buf.c */
/*
* Record the indicated change to the given field for application
* to the file system's superblock when the transaction commits.
* For now, just store the change in the transaction structure.
* Mark the transaction structure to indicate that the superblock
* needs to be updated before committing.
*
* Originally derived from xfs_trans_mod_sb().
*/
void
libxfs_trans_mod_sb(
xfs_trans_t *tp,
uint field,
long delta)
{
switch (field) {
case XFS_TRANS_SB_RES_FDBLOCKS:
return;
case XFS_TRANS_SB_FDBLOCKS:
if (delta < 0) {
tp->t_blk_res_used += (uint)-delta;
if (tp->t_blk_res_used > tp->t_blk_res) {
fprintf(stderr,
_("Transaction block reservation exceeded! %u > %u\n"),
tp->t_blk_res_used, tp->t_blk_res);
ASSERT(0);
}
}
tp->t_fdblocks_delta += delta;
break;
case XFS_TRANS_SB_ICOUNT:
ASSERT(delta > 0);
tp->t_icount_delta += delta;
break;
case XFS_TRANS_SB_IFREE:
tp->t_ifree_delta += delta;
break;
case XFS_TRANS_SB_FREXTENTS:
/*
* Track the number of rt extents allocated in the transaction.
* Make sure it does not exceed the number reserved.
*/
if (delta < 0) {
tp->t_rtx_res_used += (uint)-delta;
if (tp->t_rtx_res_used > tp->t_rtx_res) {
fprintf(stderr,
_("Transaction rt block reservation exceeded! %u > %u\n"),
tp->t_rtx_res_used, tp->t_rtx_res);
ASSERT(0);
}
}
tp->t_frextents_delta += delta;
break;
default:
ASSERT(0);
return;
}
tp->t_flags |= (XFS_TRANS_SB_DIRTY | XFS_TRANS_DIRTY);
}
static void
xfs_inode_item_put(
struct xfs_inode_log_item *iip)
{
struct xfs_inode *ip = iip->ili_inode;
ASSERT(iip->ili_item.li_buf == NULL);
ip->i_itemp = NULL;
list_del_init(&iip->ili_item.li_bio_list);
kmem_cache_free(xfs_ili_zone, iip);
}
/*
* Transaction commital code follows (i.e. write to disk in libxfs)
*
* XXX (dgc): should failure to flush the inode (e.g. due to uncorrected
* corruption) result in transaction commit failure w/ EFSCORRUPTED?
*/
static void
inode_item_done(
struct xfs_inode_log_item *iip)
{
struct xfs_buf *bp;
int error;
ASSERT(iip->ili_inode != NULL);
if (!(iip->ili_fields & XFS_ILOG_ALL))
goto free_item;
bp = iip->ili_item.li_buf;
iip->ili_item.li_buf = NULL;
/*
* Flush the inode and disassociate it from the transaction regardless
* of whether the flush succeed or not. If we fail the flush, make sure
* we still release the buffer reference we currently hold.
*/
error = libxfs_iflush_int(iip->ili_inode, bp);
bp->b_transp = NULL; /* remove xact ptr */
if (error) {
fprintf(stderr, _("%s: warning - iflush_int failed (%d)\n"),
progname, error);
goto free;
}
libxfs_buf_mark_dirty(bp);
free:
libxfs_buf_relse(bp);
free_item:
xfs_inode_item_put(iip);
}
static void
buf_item_done(
xfs_buf_log_item_t *bip)
{
struct xfs_buf *bp;
int hold;
extern kmem_zone_t *xfs_buf_item_zone;
bp = bip->bli_buf;
ASSERT(bp != NULL);
bp->b_transp = NULL; /* remove xact ptr */
hold = (bip->bli_flags & XFS_BLI_HOLD);
if (bip->bli_flags & XFS_BLI_DIRTY)
libxfs_buf_mark_dirty(bp);
bip->bli_flags &= ~XFS_BLI_HOLD;
xfs_buf_item_put(bip);
if (hold)
return;
libxfs_buf_relse(bp);
}
static void
trans_committed(
xfs_trans_t *tp)
{
struct xfs_log_item *lip, *next;
list_for_each_entry_safe(lip, next, &tp->t_items, li_trans) {
xfs_trans_del_item(lip);
if (lip->li_type == XFS_LI_BUF)
buf_item_done((xfs_buf_log_item_t *)lip);
else if (lip->li_type == XFS_LI_INODE)
inode_item_done((struct xfs_inode_log_item *)lip);
else {
fprintf(stderr, _("%s: unrecognised log item type\n"),
progname);
ASSERT(0);
}
}
}
static void
buf_item_unlock(
xfs_buf_log_item_t *bip)
{
struct xfs_buf *bp = bip->bli_buf;
uint hold;
/* Clear the buffer's association with this transaction. */
bip->bli_buf->b_transp = NULL;
hold = bip->bli_flags & XFS_BLI_HOLD;
bip->bli_flags &= ~XFS_BLI_HOLD;
xfs_buf_item_put(bip);
if (!hold)
libxfs_buf_relse(bp);
}
static void
inode_item_unlock(
struct xfs_inode_log_item *iip)
{
xfs_inode_item_put(iip);
}
/* Detach and unlock all of the items in a transaction */
static void
xfs_trans_free_items(
struct xfs_trans *tp)
{
struct xfs_log_item *lip, *next;
list_for_each_entry_safe(lip, next, &tp->t_items, li_trans) {
xfs_trans_del_item(lip);
if (lip->li_type == XFS_LI_BUF)
buf_item_unlock((xfs_buf_log_item_t *)lip);
else if (lip->li_type == XFS_LI_INODE)
inode_item_unlock((struct xfs_inode_log_item *)lip);
else {
fprintf(stderr, _("%s: unrecognised log item type\n"),
progname);
ASSERT(0);
}
}
}
/*
* Commit the changes represented by this transaction
*/
static int
__xfs_trans_commit(
struct xfs_trans *tp,
bool regrant)
{
struct xfs_sb *sbp;
int error = 0;
trace_xfs_trans_commit(tp, _RET_IP_);
if (tp == NULL)
return 0;
/*
* Finish deferred items on final commit. Only permanent transactions
* should ever have deferred ops.
*/
WARN_ON_ONCE(!list_empty(&tp->t_dfops) &&
!(tp->t_flags & XFS_TRANS_PERM_LOG_RES));
if (!regrant && (tp->t_flags & XFS_TRANS_PERM_LOG_RES)) {
error = xfs_defer_finish_noroll(&tp);
if (error)
goto out_unreserve;
}
if (!(tp->t_flags & XFS_TRANS_DIRTY))
goto out_unreserve;
if (tp->t_flags & XFS_TRANS_SB_DIRTY) {
sbp = &(tp->t_mountp->m_sb);
if (tp->t_icount_delta)
sbp->sb_icount += tp->t_icount_delta;
if (tp->t_ifree_delta)
sbp->sb_ifree += tp->t_ifree_delta;
if (tp->t_fdblocks_delta)
sbp->sb_fdblocks += tp->t_fdblocks_delta;
if (tp->t_frextents_delta)
sbp->sb_frextents += tp->t_frextents_delta;
xfs_log_sb(tp);
}
trans_committed(tp);
/* That's it for the transaction structure. Free it. */
xfs_trans_free(tp);
return 0;
out_unreserve:
xfs_trans_free_items(tp);
xfs_trans_free(tp);
return error;
}
int
libxfs_trans_commit(
struct xfs_trans *tp)
{
return __xfs_trans_commit(tp, false);
}
/*
* Allocate an transaction, lock and join the inode to it, and reserve quota.
*
* The caller must ensure that the on-disk dquots attached to this inode have
* already been allocated and initialized. The caller is responsible for
* releasing ILOCK_EXCL if a new transaction is returned.
*/
int
libxfs_trans_alloc_inode(
struct xfs_inode *ip,
struct xfs_trans_res *resv,
unsigned int dblocks,
unsigned int rblocks,
bool force,
struct xfs_trans **tpp)
{
struct xfs_trans *tp;
struct xfs_mount *mp = ip->i_mount;
int error;
error = libxfs_trans_alloc(mp, resv, dblocks,
rblocks / mp->m_sb.sb_rextsize,
force ? XFS_TRANS_RESERVE : 0, &tp);
if (error)
return error;
xfs_ilock(ip, XFS_ILOCK_EXCL);
xfs_trans_ijoin(tp, ip, 0);
*tpp = tp;
return 0;
}