blob: 3e6436c140bcfd7bb6787d10f683021b21d8613a [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2000-2005 Silicon Graphics, Inc.
* All Rights Reserved.
*/
#include <sys/stat.h>
#include "init.h"
#include "libxfs_priv.h"
#include "xfs_fs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
#include "xfs_mount.h"
#include "xfs_defer.h"
#include "xfs_inode_buf.h"
#include "xfs_inode_fork.h"
#include "xfs_inode.h"
#include "xfs_trans.h"
#include "xfs_rmap_btree.h"
#include "xfs_refcount_btree.h"
#include "libfrog/platform.h"
#include "libxfs.h" /* for now */
char *progname = "libxfs"; /* default, changed by each tool */
struct cache *libxfs_bcache; /* global buffer cache */
int libxfs_bhash_size; /* #buckets in bcache */
int use_xfs_buf_lock; /* global flag: use xfs_buf_t locks for MT */
/*
* dev_map - map open devices to fd.
*/
#define MAX_DEVS 10 /* arbitary maximum */
static int nextfakedev = -1; /* device number to give to next fake device */
static struct dev_to_fd {
dev_t dev;
int fd;
} dev_map[MAX_DEVS]={{0}};
/*
* Checks whether a given device has a mounted, writable
* filesystem, returns 1 if it does & fatal (just warns
* if not fatal, but allows us to proceed).
*
* Useful to tools which will produce uncertain results
* if the filesystem is active - repair, check, logprint.
*/
static int
check_isactive(char *name, char *block, int fatal)
{
struct stat st;
if (stat(block, &st) < 0)
return 0;
if ((st.st_mode & S_IFMT) != S_IFBLK)
return 0;
if (platform_check_ismounted(name, block, &st, 0) == 0)
return 0;
if (platform_check_iswritable(name, block, &st))
return fatal ? 1 : 0;
return 0;
}
/* libxfs_device_to_fd:
* lookup a device number in the device map
* return the associated fd
*/
int
libxfs_device_to_fd(dev_t device)
{
int d;
for (d = 0; d < MAX_DEVS; d++)
if (dev_map[d].dev == device)
return dev_map[d].fd;
fprintf(stderr, _("%s: %s: device %lld is not open\n"),
progname, __FUNCTION__, (long long)device);
exit(1);
/* NOTREACHED */
}
/* libxfs_device_open:
* open a device and return its device number
*/
dev_t
libxfs_device_open(char *path, int creat, int xflags, int setblksize)
{
dev_t dev;
int fd, d, flags;
int readonly, dio, excl;
struct stat statb;
readonly = (xflags & LIBXFS_ISREADONLY);
excl = (xflags & LIBXFS_EXCLUSIVELY) && !creat;
dio = (xflags & LIBXFS_DIRECT) && !creat && platform_direct_blockdev();
retry:
flags = (readonly ? O_RDONLY : O_RDWR) | \
(creat ? (O_CREAT|O_TRUNC) : 0) | \
(dio ? O_DIRECT : 0) | \
(excl ? O_EXCL : 0);
if ((fd = open(path, flags, 0666)) < 0) {
if (errno == EINVAL && --dio == 0)
goto retry;
fprintf(stderr, _("%s: cannot open %s: %s\n"),
progname, path, strerror(errno));
exit(1);
}
if (fstat(fd, &statb) < 0) {
fprintf(stderr, _("%s: cannot stat %s: %s\n"),
progname, path, strerror(errno));
exit(1);
}
if (!readonly && setblksize && (statb.st_mode & S_IFMT) == S_IFBLK) {
if (setblksize == 1)
/* use the default blocksize */
(void)platform_set_blocksize(fd, path, statb.st_rdev, XFS_MIN_SECTORSIZE, 0);
else {
/* given an explicit blocksize to use */
if (platform_set_blocksize(fd, path, statb.st_rdev, setblksize, 1))
exit(1);
}
}
/*
* Get the device number from the stat buf - unless
* we're not opening a real device, in which case
* choose a new fake device number.
*/
dev = (statb.st_rdev) ? (statb.st_rdev) : (nextfakedev--);
for (d = 0; d < MAX_DEVS; d++)
if (dev_map[d].dev == dev) {
fprintf(stderr, _("%s: device %lld is already open\n"),
progname, (long long)dev);
exit(1);
}
for (d = 0; d < MAX_DEVS; d++)
if (!dev_map[d].dev) {
dev_map[d].dev = dev;
dev_map[d].fd = fd;
return dev;
}
fprintf(stderr, _("%s: %s: too many open devices\n"),
progname, __FUNCTION__);
exit(1);
/* NOTREACHED */
}
void
libxfs_device_close(dev_t dev)
{
int d;
for (d = 0; d < MAX_DEVS; d++)
if (dev_map[d].dev == dev) {
int fd;
fd = dev_map[d].fd;
dev_map[d].dev = dev_map[d].fd = 0;
fsync(fd);
platform_flush_device(fd, dev);
close(fd);
return;
}
fprintf(stderr, _("%s: %s: device %lld is not open\n"),
progname, __FUNCTION__, (long long)dev);
exit(1);
}
static int
check_open(char *path, int flags, char **rawfile, char **blockfile)
{
int readonly = (flags & LIBXFS_ISREADONLY);
int inactive = (flags & LIBXFS_ISINACTIVE);
int dangerously = (flags & LIBXFS_DANGEROUSLY);
struct stat stbuf;
if (stat(path, &stbuf) < 0) {
perror(path);
return 0;
}
if (!(*rawfile = platform_findrawpath(path))) {
fprintf(stderr, _("%s: "
"can't find a character device matching %s\n"),
progname, path);
return 0;
}
if (!(*blockfile = platform_findblockpath(path))) {
fprintf(stderr, _("%s: "
"can't find a block device matching %s\n"),
progname, path);
return 0;
}
if (!readonly && !inactive && platform_check_ismounted(path, *blockfile, NULL, 1))
return 0;
if (inactive && check_isactive(path, *blockfile, ((readonly|dangerously)?1:0)))
return 0;
return 1;
}
/*
* Initialize/destroy all of the zone allocators we use.
*/
static void
init_zones(void)
{
/* initialise zone allocation */
xfs_buf_zone = kmem_zone_init(sizeof(struct xfs_buf), "xfs_buffer");
xfs_inode_zone = kmem_zone_init(sizeof(struct xfs_inode), "xfs_inode");
xfs_ifork_zone = kmem_zone_init(sizeof(struct xfs_ifork), "xfs_ifork");
xfs_ili_zone = kmem_zone_init(
sizeof(struct xfs_inode_log_item),"xfs_inode_log_item");
xfs_buf_item_zone = kmem_zone_init(
sizeof(struct xfs_buf_log_item), "xfs_buf_log_item");
xfs_da_state_zone = kmem_zone_init(
sizeof(struct xfs_da_state), "xfs_da_state");
xfs_btree_cur_zone = kmem_zone_init(
sizeof(struct xfs_btree_cur), "xfs_btree_cur");
xfs_bmap_free_item_zone = kmem_zone_init(
sizeof(struct xfs_extent_free_item),
"xfs_bmap_free_item");
xfs_trans_zone = kmem_zone_init(
sizeof(struct xfs_trans), "xfs_trans");
}
static int
destroy_zones(void)
{
int leaked = 0;
leaked += kmem_zone_destroy(xfs_buf_zone);
leaked += kmem_zone_destroy(xfs_ili_zone);
leaked += kmem_zone_destroy(xfs_inode_zone);
leaked += kmem_zone_destroy(xfs_ifork_zone);
leaked += kmem_zone_destroy(xfs_buf_item_zone);
leaked += kmem_zone_destroy(xfs_da_state_zone);
leaked += kmem_zone_destroy(xfs_btree_cur_zone);
leaked += kmem_zone_destroy(xfs_bmap_free_item_zone);
leaked += kmem_zone_destroy(xfs_trans_zone);
return leaked;
}
static void
libxfs_close_devices(
struct libxfs_xinit *li)
{
if (li->ddev)
libxfs_device_close(li->ddev);
if (li->logdev && li->logdev != li->ddev)
libxfs_device_close(li->logdev);
if (li->rtdev)
libxfs_device_close(li->rtdev);
li->ddev = li->logdev = li->rtdev = 0;
li->dfd = li->logfd = li->rtfd = -1;
}
/*
* libxfs initialization.
* Caller gets a 0 on failure (and we print a message), 1 on success.
*/
int
libxfs_init(libxfs_init_t *a)
{
char *blockfile;
char *dname;
char dpath[25];
int fd;
char *logname;
char logpath[25];
char *rawfile;
char *rtname;
char rtpath[25];
int rval = 0;
int flags;
dpath[0] = logpath[0] = rtpath[0] = '\0';
dname = a->dname;
logname = a->logname;
rtname = a->rtname;
a->dfd = a->logfd = a->rtfd = -1;
a->ddev = a->logdev = a->rtdev = 0;
a->dsize = a->lbsize = a->rtbsize = 0;
a->dbsize = a->logBBsize = a->logBBstart = a->rtsize = 0;
fd = -1;
flags = (a->isreadonly | a->isdirect);
radix_tree_init();
if (a->volname) {
if(!check_open(a->volname,flags,&rawfile,&blockfile))
goto done;
fd = open(rawfile, O_RDONLY);
dname = a->dname = a->volname;
a->volname = NULL;
}
if (dname) {
if (a->disfile) {
a->ddev= libxfs_device_open(dname, a->dcreat, flags,
a->setblksize);
a->dfd = libxfs_device_to_fd(a->ddev);
platform_findsizes(dname, a->dfd, &a->dsize,
&a->dbsize);
} else {
if (!check_open(dname, flags, &rawfile, &blockfile))
goto done;
a->ddev = libxfs_device_open(rawfile,
a->dcreat, flags, a->setblksize);
a->dfd = libxfs_device_to_fd(a->ddev);
platform_findsizes(rawfile, a->dfd,
&a->dsize, &a->dbsize);
}
} else
a->dsize = 0;
if (logname) {
if (a->lisfile) {
a->logdev = libxfs_device_open(logname,
a->lcreat, flags, a->setblksize);
a->logfd = libxfs_device_to_fd(a->logdev);
platform_findsizes(dname, a->logfd, &a->logBBsize,
&a->lbsize);
} else {
if (!check_open(logname, flags, &rawfile, &blockfile))
goto done;
a->logdev = libxfs_device_open(rawfile,
a->lcreat, flags, a->setblksize);
a->logfd = libxfs_device_to_fd(a->logdev);
platform_findsizes(rawfile, a->logfd,
&a->logBBsize, &a->lbsize);
}
} else
a->logBBsize = 0;
if (rtname) {
if (a->risfile) {
a->rtdev = libxfs_device_open(rtname,
a->rcreat, flags, a->setblksize);
a->rtfd = libxfs_device_to_fd(a->rtdev);
platform_findsizes(dname, a->rtfd, &a->rtsize,
&a->rtbsize);
} else {
if (!check_open(rtname, flags, &rawfile, &blockfile))
goto done;
a->rtdev = libxfs_device_open(rawfile,
a->rcreat, flags, a->setblksize);
a->rtfd = libxfs_device_to_fd(a->rtdev);
platform_findsizes(rawfile, a->rtfd,
&a->rtsize, &a->rtbsize);
}
} else
a->rtsize = 0;
if (a->dsize < 0) {
fprintf(stderr, _("%s: can't get size for data subvolume\n"),
progname);
goto done;
}
if (a->logBBsize < 0) {
fprintf(stderr, _("%s: can't get size for log subvolume\n"),
progname);
goto done;
}
if (a->rtsize < 0) {
fprintf(stderr, _("%s: can't get size for realtime subvolume\n"),
progname);
goto done;
}
if (!libxfs_bhash_size)
libxfs_bhash_size = LIBXFS_BHASHSIZE(sbp);
libxfs_bcache = cache_init(a->bcache_flags, libxfs_bhash_size,
&libxfs_bcache_operations);
use_xfs_buf_lock = a->usebuflock;
xfs_dir_startup();
init_zones();
rval = 1;
done:
if (dpath[0])
unlink(dpath);
if (logpath[0])
unlink(logpath);
if (rtpath[0])
unlink(rtpath);
if (fd >= 0)
close(fd);
if (!rval)
libxfs_close_devices(a);
return rval;
}
/*
* Initialize realtime fields in the mount structure.
*/
static int
rtmount_init(
xfs_mount_t *mp, /* file system mount structure */
int flags)
{
struct xfs_buf *bp; /* buffer for last block of subvolume */
struct xfs_sb *sbp; /* filesystem superblock copy in mount */
xfs_daddr_t d; /* address of last block of subvolume */
int error;
sbp = &mp->m_sb;
if (sbp->sb_rblocks == 0)
return 0;
if (mp->m_rtdev_targp->dev == 0 && !(flags & LIBXFS_MOUNT_DEBUGGER)) {
fprintf(stderr, _("%s: filesystem has a realtime subvolume\n"),
progname);
return -1;
}
mp->m_rsumlevels = sbp->sb_rextslog + 1;
mp->m_rsumsize =
(uint)sizeof(xfs_suminfo_t) * mp->m_rsumlevels *
sbp->sb_rbmblocks;
mp->m_rsumsize = roundup(mp->m_rsumsize, sbp->sb_blocksize);
mp->m_rbmip = mp->m_rsumip = NULL;
/*
* Allow debugger to be run without the realtime device present.
*/
if (flags & LIBXFS_MOUNT_DEBUGGER)
return 0;
/*
* Check that the realtime section is an ok size.
*/
d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_rblocks);
if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_rblocks) {
fprintf(stderr, _("%s: realtime init - %llu != %llu\n"),
progname, (unsigned long long) XFS_BB_TO_FSB(mp, d),
(unsigned long long) mp->m_sb.sb_rblocks);
return -1;
}
error = libxfs_buf_read(mp->m_rtdev, d - XFS_FSB_TO_BB(mp, 1),
XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
if (error) {
fprintf(stderr, _("%s: realtime size check failed\n"),
progname);
return -1;
}
libxfs_buf_relse(bp);
return 0;
}
static int
libxfs_initialize_perag(
xfs_mount_t *mp,
xfs_agnumber_t agcount,
xfs_agnumber_t *maxagi)
{
xfs_agnumber_t index, max_metadata;
xfs_agnumber_t first_initialised = 0;
xfs_perag_t *pag;
xfs_agino_t agino;
xfs_ino_t ino;
xfs_sb_t *sbp = &mp->m_sb;
int error = -ENOMEM;
/*
* Walk the current per-ag tree so we don't try to initialise AGs
* that already exist (growfs case). Allocate and insert all the
* AGs we don't find ready for initialisation.
*/
for (index = 0; index < agcount; index++) {
pag = xfs_perag_get(mp, index);
if (pag) {
xfs_perag_put(pag);
continue;
}
if (!first_initialised)
first_initialised = index;
pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
if (!pag)
goto out_unwind;
pag->pag_agno = index;
pag->pag_mount = mp;
if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
error = -EEXIST;
goto out_unwind;
}
}
/*
* If we mount with the inode64 option, or no inode overflows
* the legacy 32-bit address space clear the inode32 option.
*/
agino = XFS_AGB_TO_AGINO(mp, sbp->sb_agblocks - 1);
ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32)
mp->m_flags |= XFS_MOUNT_32BITINODES;
else
mp->m_flags &= ~XFS_MOUNT_32BITINODES;
if (mp->m_flags & XFS_MOUNT_32BITINODES) {
/*
* Calculate how much should be reserved for inodes to meet
* the max inode percentage.
*/
if (M_IGEO(mp)->maxicount) {
uint64_t icount;
icount = sbp->sb_dblocks * sbp->sb_imax_pct;
do_div(icount, 100);
icount += sbp->sb_agblocks - 1;
do_div(icount, sbp->sb_agblocks);
max_metadata = icount;
} else {
max_metadata = agcount;
}
for (index = 0; index < agcount; index++) {
ino = XFS_AGINO_TO_INO(mp, index, agino);
if (ino > XFS_MAXINUMBER_32) {
index++;
break;
}
pag = xfs_perag_get(mp, index);
pag->pagi_inodeok = 1;
if (index < max_metadata)
pag->pagf_metadata = 1;
xfs_perag_put(pag);
}
} else {
for (index = 0; index < agcount; index++) {
pag = xfs_perag_get(mp, index);
pag->pagi_inodeok = 1;
xfs_perag_put(pag);
}
}
if (maxagi)
*maxagi = index;
mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp);
return 0;
out_unwind:
kmem_free(pag);
for (; index > first_initialised; index--) {
pag = radix_tree_delete(&mp->m_perag_tree, index);
kmem_free(pag);
}
return error;
}
static struct xfs_buftarg *
libxfs_buftarg_alloc(
struct xfs_mount *mp,
dev_t dev)
{
struct xfs_buftarg *btp;
btp = malloc(sizeof(*btp));
if (!btp) {
fprintf(stderr, _("%s: buftarg init failed\n"),
progname);
exit(1);
}
btp->bt_mount = mp;
btp->dev = dev;
btp->flags = 0;
return btp;
}
void
libxfs_buftarg_init(
struct xfs_mount *mp,
dev_t dev,
dev_t logdev,
dev_t rtdev)
{
if (mp->m_ddev_targp) {
/* should already have all buftargs initialised */
if (mp->m_ddev_targp->dev != dev ||
mp->m_ddev_targp->bt_mount != mp) {
fprintf(stderr,
_("%s: bad buftarg reinit, ddev\n"),
progname);
exit(1);
}
if (!logdev || logdev == dev) {
if (mp->m_logdev_targp != mp->m_ddev_targp) {
fprintf(stderr,
_("%s: bad buftarg reinit, ldev mismatch\n"),
progname);
exit(1);
}
} else if (mp->m_logdev_targp->dev != logdev ||
mp->m_logdev_targp->bt_mount != mp) {
fprintf(stderr,
_("%s: bad buftarg reinit, logdev\n"),
progname);
exit(1);
}
if (rtdev && (mp->m_rtdev_targp->dev != rtdev ||
mp->m_rtdev_targp->bt_mount != mp)) {
fprintf(stderr,
_("%s: bad buftarg reinit, rtdev\n"),
progname);
exit(1);
}
return;
}
mp->m_ddev_targp = libxfs_buftarg_alloc(mp, dev);
if (!logdev || logdev == dev)
mp->m_logdev_targp = mp->m_ddev_targp;
else
mp->m_logdev_targp = libxfs_buftarg_alloc(mp, logdev);
mp->m_rtdev_targp = libxfs_buftarg_alloc(mp, rtdev);
}
/*
* Mount structure initialization, provides a filled-in xfs_mount_t
* such that the numerous XFS_* macros can be used. If dev is zero,
* no IO will be performed (no size checks, read root inodes).
*/
struct xfs_mount *
libxfs_mount(
struct xfs_mount *mp,
struct xfs_sb *sb,
dev_t dev,
dev_t logdev,
dev_t rtdev,
int flags)
{
struct xfs_buf *bp;
struct xfs_sb *sbp;
xfs_daddr_t d;
bool debugger = (flags & LIBXFS_MOUNT_DEBUGGER);
int error;
libxfs_buftarg_init(mp, dev, logdev, rtdev);
mp->m_finobt_nores = true;
mp->m_flags = (LIBXFS_MOUNT_32BITINODES|LIBXFS_MOUNT_32BITINOOPT);
mp->m_sb = *sb;
INIT_RADIX_TREE(&mp->m_perag_tree, GFP_KERNEL);
sbp = &(mp->m_sb);
xfs_sb_mount_common(mp, sb);
/*
* Set whether we're using stripe alignment.
*/
if (xfs_sb_version_hasdalign(&mp->m_sb)) {
mp->m_dalign = sbp->sb_unit;
mp->m_swidth = sbp->sb_width;
}
xfs_alloc_compute_maxlevels(mp);
xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
xfs_ialloc_setup_geometry(mp);
xfs_rmapbt_compute_maxlevels(mp);
xfs_refcountbt_compute_maxlevels(mp);
/*
* Check that the data (and log if separate) are an ok size.
*/
d = (xfs_daddr_t) XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
fprintf(stderr, _("%s: size check failed\n"), progname);
if (!(flags & LIBXFS_MOUNT_DEBUGGER))
return NULL;
}
/*
* We automatically convert v1 inodes to v2 inodes now, so if
* the NLINK bit is not set we can't operate on the filesystem.
*/
if (!(sbp->sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
fprintf(stderr, _(
"%s: V1 inodes unsupported. Please try an older xfsprogs.\n"),
progname);
exit(1);
}
/* Check for supported directory formats */
if (!(sbp->sb_versionnum & XFS_SB_VERSION_DIRV2BIT)) {
fprintf(stderr, _(
"%s: V1 directories unsupported. Please try an older xfsprogs.\n"),
progname);
exit(1);
}
/* check for unsupported other features */
if (!xfs_sb_good_version(sbp)) {
fprintf(stderr, _(
"%s: Unsupported features detected. Please try a newer xfsprogs.\n"),
progname);
exit(1);
}
xfs_da_mount(mp);
if (xfs_sb_version_hasattr2(&mp->m_sb))
mp->m_flags |= LIBXFS_MOUNT_ATTR2;
/* Initialize the precomputed transaction reservations values */
xfs_trans_init(mp);
if (dev == 0) /* maxtrres, we have no device so leave now */
return mp;
/* device size checks must pass unless we're a debugger. */
error = libxfs_buf_read(mp->m_dev, d - XFS_FSS_TO_BB(mp, 1),
XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
if (error) {
fprintf(stderr, _("%s: data size check failed\n"), progname);
if (!debugger)
return NULL;
} else
libxfs_buf_relse(bp);
if (mp->m_logdev_targp->dev &&
mp->m_logdev_targp->dev != mp->m_ddev_targp->dev) {
d = (xfs_daddr_t) XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks ||
libxfs_buf_read(mp->m_logdev_targp,
d - XFS_FSB_TO_BB(mp, 1), XFS_FSB_TO_BB(mp, 1),
0, &bp, NULL)) {
fprintf(stderr, _("%s: log size checks failed\n"),
progname);
if (!debugger)
return NULL;
}
if (bp)
libxfs_buf_relse(bp);
}
/* Initialize realtime fields in the mount structure */
if (rtmount_init(mp, flags)) {
fprintf(stderr, _("%s: realtime device init failed\n"),
progname);
return NULL;
}
/*
* libxfs_initialize_perag will allocate a perag structure for each ag.
* If agcount is corrupted and insanely high, this will OOM the box.
* If the agount seems (arbitrarily) high, try to read what would be
* the last AG, and if that fails for a relatively high agcount, just
* read the first one and let the user know to check the geometry.
*/
if (sbp->sb_agcount > 1000000) {
error = libxfs_buf_read(mp->m_dev,
XFS_AG_DADDR(mp, sbp->sb_agcount - 1, 0), 1,
0, &bp, NULL);
if (error) {
fprintf(stderr, _("%s: read of AG %u failed\n"),
progname, sbp->sb_agcount);
if (!debugger)
return NULL;
fprintf(stderr, _("%s: limiting reads to AG 0\n"),
progname);
sbp->sb_agcount = 1;
} else
libxfs_buf_relse(bp);
}
error = libxfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
if (error) {
fprintf(stderr, _("%s: perag init failed\n"),
progname);
exit(1);
}
return mp;
}
void
libxfs_rtmount_destroy(xfs_mount_t *mp)
{
if (mp->m_rsumip)
libxfs_irele(mp->m_rsumip);
if (mp->m_rbmip)
libxfs_irele(mp->m_rbmip);
mp->m_rsumip = mp->m_rbmip = NULL;
}
/* Flush a device and report on writes that didn't make it to stable storage. */
static inline int
libxfs_flush_buftarg(
struct xfs_buftarg *btp,
const char *buftarg_descr)
{
int error = 0;
int err2;
/*
* Write verifier failures are evidence of a buggy program. Make sure
* that this state is always reported to the caller.
*/
if (btp->flags & XFS_BUFTARG_CORRUPT_WRITE) {
fprintf(stderr,
_("%s: Refusing to write a corrupt buffer to the %s!\n"),
progname, buftarg_descr);
error = -EFSCORRUPTED;
}
if (btp->flags & XFS_BUFTARG_LOST_WRITE) {
fprintf(stderr,
_("%s: Lost a write to the %s!\n"),
progname, buftarg_descr);
if (!error)
error = -EIO;
}
err2 = libxfs_blkdev_issue_flush(btp);
if (err2) {
fprintf(stderr,
_("%s: Flushing the %s failed, err=%d!\n"),
progname, buftarg_descr, -err2);
}
if (!error)
error = err2;
return error;
}
/*
* Flush all dirty buffers to stable storage and report on writes that didn't
* make it to stable storage.
*/
static int
libxfs_flush_mount(
struct xfs_mount *mp)
{
int error = 0;
int err2;
/*
* Purge the buffer cache to write all dirty buffers to disk and free
* all incore buffers. Buffers that fail write verification will cause
* the CORRUPT_WRITE flag to be set in the buftarg. Buffers that
* cannot be written will cause the LOST_WRITE flag to be set in the
* buftarg.
*/
libxfs_bcache_purge();
/* Flush all kernel and disk write caches, and report failures. */
if (mp->m_ddev_targp) {
err2 = libxfs_flush_buftarg(mp->m_ddev_targp, _("data device"));
if (!error)
error = err2;
}
if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) {
err2 = libxfs_flush_buftarg(mp->m_logdev_targp,
_("log device"));
if (!error)
error = err2;
}
if (mp->m_rtdev_targp) {
err2 = libxfs_flush_buftarg(mp->m_rtdev_targp,
_("realtime device"));
if (!error)
error = err2;
}
return error;
}
/*
* Release any resource obtained during a mount.
*/
int
libxfs_umount(
struct xfs_mount *mp)
{
struct xfs_perag *pag;
int agno;
int error;
libxfs_rtmount_destroy(mp);
error = libxfs_flush_mount(mp);
for (agno = 0; agno < mp->m_maxagi; agno++) {
pag = radix_tree_delete(&mp->m_perag_tree, agno);
kmem_free(pag);
}
kmem_free(mp->m_attr_geo);
kmem_free(mp->m_dir_geo);
kmem_free(mp->m_rtdev_targp);
if (mp->m_logdev_targp != mp->m_ddev_targp)
kmem_free(mp->m_logdev_targp);
kmem_free(mp->m_ddev_targp);
return error;
}
/*
* Release any global resources used by libxfs.
*/
void
libxfs_destroy(
struct libxfs_xinit *li)
{
int leaked;
libxfs_close_devices(li);
/* Free everything from the buffer cache before freeing buffer zone */
libxfs_bcache_purge();
libxfs_bcache_free();
cache_destroy(libxfs_bcache);
leaked = destroy_zones();
if (getenv("LIBXFS_LEAK_CHECK") && leaked)
exit(1);
}
int
libxfs_device_alignment(void)
{
return platform_align_blockdev();
}
void
libxfs_report(FILE *fp)
{
time_t t;
char *c;
cache_report(fp, "libxfs_bcache", libxfs_bcache);
t = time(NULL);
c = asctime(localtime(&t));
fprintf(fp, "%s", c);
}