blob: 81d338d3f53f78482171322d56393991fb746e29 [file] [log] [blame]
/*
* Intel IXP4xx HSS (synchronous serial port) driver for Linux
*
* Copyright (C) 2007-2010 Krzysztof HaƂasa <khc@pm.waw.pl>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License
* as published by the Free Software Foundation.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>
#include <linux/bitops.h>
#include <linux/cdev.h>
#include <linux/dma-mapping.h>
#include <linux/dmapool.h>
#include <linux/fs.h>
#include <linux/hdlc.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/mutex.h>
#include <linux/platform_device.h>
#include <linux/poll.h>
#include <linux/rtnetlink.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <mach/npe.h>
#include <mach/qmgr.h>
#define DEBUG_DESC 0
#define DEBUG_RX 0
#define DEBUG_TX 0
#define DEBUG_PKT_BYTES 0
#define DEBUG_CLOSE 0
#define DEBUG_FRAMER 0
#define DRV_NAME "ixp4xx_hss"
#define PKT_EXTRA_FLAGS 0 /* orig 1 */
#define TX_FRAME_SYNC_OFFSET 0 /* channelized */
#define PKT_NUM_PIPES 1 /* 1, 2 or 4 */
#define PKT_PIPE_FIFO_SIZEW 4 /* total 4 dwords per HSS */
#define RX_DESCS 16 /* also length of all RX queues */
#define TX_DESCS 16 /* also length of all TX queues */
#define POOL_ALLOC_SIZE (sizeof(struct desc) * (RX_DESCS + TX_DESCS))
#define RX_SIZE (HDLC_MAX_MRU + 4) /* NPE needs more space */
#define MAX_CLOSE_WAIT 1000 /* microseconds */
#define HSS_COUNT 2
#define MIN_FRAME_SIZE 16 /* bits */
#define MAX_FRAME_SIZE 257 /* 256 bits + framing bit */
#define MAX_CHANNELS (MAX_FRAME_SIZE / 8)
#define MAX_CHAN_DEVICES 32
#define CHANNEL_HDLC 0xFE
#define CHANNEL_UNUSED 0xFF
#define NAPI_WEIGHT 16
#define CHAN_RX_TRIGGER 16 /* 8 RX frames = 1 ms @ E1 */
#define CHAN_RX_FRAMES 64
#define G704_FRAME_SIZE 256 /* E1 only */
#define CHAN_TX_LIST_FRAMES 16 /* bytes/channel per list, 16 - 48 */
#define CHAN_TX_LISTS 8
#define CHAN_TX_FRAMES (CHAN_TX_LIST_FRAMES * CHAN_TX_LISTS)
#define CHAN_QUEUE_LEN 16 /* minimum possible */
/* Queue IDs */
#define HSS0_CHL_RXTRIG_QUEUE 12 /* orig size = 32 dwords */
#define HSS0_PKT_RX_QUEUE 13 /* orig size = 32 dwords */
#define HSS0_PKT_TX0_QUEUE 14 /* orig size = 16 dwords */
#define HSS0_PKT_TX1_QUEUE 15
#define HSS0_PKT_TX2_QUEUE 16
#define HSS0_PKT_TX3_QUEUE 17
#define HSS0_PKT_RXFREE0_QUEUE 18 /* orig size = 16 dwords */
#define HSS0_PKT_RXFREE1_QUEUE 19
#define HSS0_PKT_RXFREE2_QUEUE 20
#define HSS0_PKT_RXFREE3_QUEUE 21
#define HSS0_PKT_TXDONE_QUEUE 22 /* orig size = 64 dwords */
#define HSS1_CHL_RXTRIG_QUEUE 10
#define HSS1_PKT_RX_QUEUE 0
#define HSS1_PKT_TX0_QUEUE 5
#define HSS1_PKT_TX1_QUEUE 6
#define HSS1_PKT_TX2_QUEUE 7
#define HSS1_PKT_TX3_QUEUE 8
#define HSS1_PKT_RXFREE0_QUEUE 1
#define HSS1_PKT_RXFREE1_QUEUE 2
#define HSS1_PKT_RXFREE2_QUEUE 3
#define HSS1_PKT_RXFREE3_QUEUE 4
#define HSS1_PKT_TXDONE_QUEUE 9
#define NPE_PKT_MODE_HDLC 0
#define NPE_PKT_MODE_RAW 1
#define NPE_PKT_MODE_56KMODE 2
#define NPE_PKT_MODE_56KENDIAN_MSB 4
/* PKT_PIPE_HDLC_CFG_WRITE flags */
#define PKT_HDLC_IDLE_ONES 0x1 /* default = flags */
#define PKT_HDLC_CRC_32 0x2 /* default = CRC-16 */
#define PKT_HDLC_MSB_ENDIAN 0x4 /* default = LE */
/* hss_config, PCRs */
/* Frame sync sampling, default = active low */
#define PCR_FRM_SYNC_ACTIVE_HIGH 0x40000000
#define PCR_FRM_SYNC_FALLINGEDGE 0x80000000
#define PCR_FRM_SYNC_RISINGEDGE 0xC0000000
/* Frame sync pin: input (default) or output generated off a given clk edge */
#define PCR_FRM_SYNC_OUTPUT_FALLING 0x20000000
#define PCR_FRM_SYNC_OUTPUT_RISING 0x30000000
/* Frame and data clock sampling on edge, default = falling */
#define PCR_FCLK_EDGE_RISING 0x08000000
#define PCR_DCLK_EDGE_RISING 0x04000000
/* Clock direction, default = input */
#define PCR_SYNC_CLK_DIR_OUTPUT 0x02000000
/* Generate/Receive frame pulses, default = enabled */
#define PCR_FRM_PULSE_DISABLED 0x01000000
/* Data rate is full (default) or half the configured clk speed */
#define PCR_HALF_CLK_RATE 0x00200000
/* Invert data between NPE and HSS FIFOs? (default = no) */
#define PCR_DATA_POLARITY_INVERT 0x00100000
/* TX/RX endianness, default = LSB */
#define PCR_MSB_ENDIAN 0x00080000
/* Normal (default) / open drain mode (TX only) */
#define PCR_TX_PINS_OPEN_DRAIN 0x00040000
/* No framing bit transmitted and expected on RX? (default = framing bit) */
#define PCR_SOF_NO_FBIT 0x00020000
/* Drive data pins? */
#define PCR_TX_DATA_ENABLE 0x00010000
/* Voice 56k type: drive the data pins low (default), high, high Z */
#define PCR_TX_V56K_HIGH 0x00002000
#define PCR_TX_V56K_HIGH_IMP 0x00004000
/* Unassigned type: drive the data pins low (default), high, high Z */
#define PCR_TX_UNASS_HIGH 0x00000800
#define PCR_TX_UNASS_HIGH_IMP 0x00001000
/* T1 @ 1.544MHz only: Fbit dictated in FIFO (default) or high Z */
#define PCR_TX_FB_HIGH_IMP 0x00000400
/* 56k data endiannes - which bit unused: high (default) or low */
#define PCR_TX_56KE_BIT_0_UNUSED 0x00000200
/* 56k data transmission type: 32/8 bit data (default) or 56K data */
#define PCR_TX_56KS_56K_DATA 0x00000100
/* hss_config, cCR */
/* Number of packetized clients, default = 1 */
#define CCR_NPE_HFIFO_2_HDLC 0x04000000
#define CCR_NPE_HFIFO_3_OR_4HDLC 0x08000000
/* default = no loopback */
#define CCR_LOOPBACK 0x02000000
/* HSS number, default = 0 (first) */
#define CCR_SECOND_HSS 0x01000000
/* hss_config, clkCR: main:10, num:10, denom:12 */
#define CLK42X_SPEED_EXP ((0x3FF << 22) | ( 2 << 12) | 15) /*65 KHz*/
#define CLK42X_SPEED_512KHZ (( 130 << 22) | ( 2 << 12) | 15)
#define CLK42X_SPEED_1536KHZ (( 43 << 22) | ( 18 << 12) | 47)
#define CLK42X_SPEED_1544KHZ (( 43 << 22) | ( 33 << 12) | 192)
#define CLK42X_SPEED_2048KHZ (( 32 << 22) | ( 34 << 12) | 63)
#define CLK42X_SPEED_4096KHZ (( 16 << 22) | ( 34 << 12) | 127)
#define CLK42X_SPEED_8192KHZ (( 8 << 22) | ( 34 << 12) | 255)
#define CLK46X_SPEED_512KHZ (( 130 << 22) | ( 24 << 12) | 127)
#define CLK46X_SPEED_1536KHZ (( 43 << 22) | (152 << 12) | 383)
#define CLK46X_SPEED_1544KHZ (( 43 << 22) | ( 66 << 12) | 385)
#define CLK46X_SPEED_2048KHZ (( 32 << 22) | (280 << 12) | 511)
#define CLK46X_SPEED_4096KHZ (( 16 << 22) | (280 << 12) | 1023)
#define CLK46X_SPEED_8192KHZ (( 8 << 22) | (280 << 12) | 2047)
/*
* HSS_CONFIG_CLOCK_CR register consists of 3 parts:
* A (10 bits), B (10 bits) and C (12 bits).
* IXP42x HSS clock generator operation (verified with an oscilloscope):
* Each clock bit takes 7.5 ns (1 / 133.xx MHz).
* The clock sequence consists of (C - B) states of 0s and 1s, each state is
* A bits wide. It's followed by (B + 1) states of 0s and 1s, each state is
* (A + 1) bits wide.
*
* The resulting average clock frequency (assuming 33.333 MHz oscillator) is:
* freq = 66.666 MHz / (A + (B + 1) / (C + 1))
* minimum freq = 66.666 MHz / (A + 1)
* maximum freq = 66.666 MHz / A
*
* Example: A = 2, B = 2, C = 7, CLOCK_CR register = 2 << 22 | 2 << 12 | 7
* freq = 66.666 MHz / (2 + (2 + 1) / (7 + 1)) = 28.07 MHz (Mb/s).
* The clock sequence is: 1100110011 (5 doubles) 000111000 (3 triples).
* The sequence takes (C - B) * A + (B + 1) * (A + 1) = 5 * 2 + 3 * 3 bits
* = 19 bits (each 7.5 ns long) = 142.5 ns (then the sequence repeats).
* The sequence consists of 4 complete clock periods, thus the average
* frequency (= clock rate) is 4 / 142.5 ns = 28.07 MHz (Mb/s).
* (max specified clock rate for IXP42x HSS is 8.192 Mb/s).
*/
/* hss_config, LUT entries */
#define TDMMAP_UNASSIGNED 0
#define TDMMAP_HDLC 1 /* HDLC - packetized */
#define TDMMAP_VOICE56K 2 /* Voice56K - 7-bit channelized */
#define TDMMAP_VOICE64K 3 /* Voice64K - 8-bit channelized */
/* offsets into HSS config */
#define HSS_CONFIG_TX_PCR 0x00 /* port configuration registers */
#define HSS_CONFIG_RX_PCR 0x04
#define HSS_CONFIG_CORE_CR 0x08 /* loopback control, HSS# */
#define HSS_CONFIG_CLOCK_CR 0x0C /* clock generator control */
#define HSS_CONFIG_TX_FCR 0x10 /* frame configuration registers */
#define HSS_CONFIG_RX_FCR 0x14
#define HSS_CONFIG_TX_LUT 0x18 /* channel look-up tables */
#define HSS_CONFIG_RX_LUT 0x38
/* NPE command codes */
/* writes the ConfigWord value to the location specified by offset */
#define PORT_CONFIG_WRITE 0x40
/* triggers the NPE to load the contents of the configuration table */
#define PORT_CONFIG_LOAD 0x41
/* triggers the NPE to return an HssErrorReadResponse message */
#define PORT_ERROR_READ 0x42
/* reset NPE internal status and enable the HssChannelized operation */
#define CHAN_FLOW_ENABLE 0x43
#define CHAN_FLOW_DISABLE 0x44
#define CHAN_IDLE_PATTERN_WRITE 0x45
#define CHAN_NUM_CHANS_WRITE 0x46
#define CHAN_RX_BUF_ADDR_WRITE 0x47
#define CHAN_RX_BUF_CFG_WRITE 0x48
#define CHAN_TX_BLK_CFG_WRITE 0x49
#define CHAN_TX_BUF_ADDR_WRITE 0x4A
#define CHAN_TX_BUF_SIZE_WRITE 0x4B
#define CHAN_TSLOTSWITCH_ENABLE 0x4C
#define CHAN_TSLOTSWITCH_DISABLE 0x4D
/* downloads the gainWord value for a timeslot switching channel associated
with bypassNum */
#define CHAN_TSLOTSWITCH_GCT_DOWNLOAD 0x4E
/* triggers the NPE to reset internal status and enable the HssPacketized
operation for the flow specified by pPipe */
#define PKT_PIPE_FLOW_ENABLE 0x50
#define PKT_PIPE_FLOW_DISABLE 0x51
#define PKT_NUM_PIPES_WRITE 0x52
#define PKT_PIPE_FIFO_SIZEW_WRITE 0x53
#define PKT_PIPE_HDLC_CFG_WRITE 0x54
#define PKT_PIPE_IDLE_PATTERN_WRITE 0x55
#define PKT_PIPE_RX_SIZE_WRITE 0x56
#define PKT_PIPE_MODE_WRITE 0x57
/* HDLC packet status values - desc->status */
#define ERR_SHUTDOWN 1 /* stop or shutdown occurrence */
#define ERR_HDLC_ALIGN 2 /* HDLC alignment error */
#define ERR_HDLC_FCS 3 /* HDLC Frame Check Sum error */
#define ERR_RXFREE_Q_EMPTY 4 /* RX-free queue became empty while receiving
this packet (if buf_len < pkt_len) */
#define ERR_HDLC_TOO_LONG 5 /* HDLC frame size too long */
#define ERR_HDLC_ABORT 6 /* abort sequence received */
#define ERR_DISCONNECTING 7 /* disconnect is in progress */
enum mode {MODE_HDLC = 0, MODE_RAW, MODE_G704};
enum error_bit {TX_ERROR_BIT = 0, RX_ERROR_BIT = 1};
#ifdef __ARMEB__
typedef struct sk_buff buffer_t;
#define free_buffer dev_kfree_skb
#define free_buffer_irq dev_kfree_skb_irq
#else
typedef void buffer_t;
#define free_buffer kfree
#define free_buffer_irq kfree
#endif
struct chan_device {
struct cdev cdev;
struct device *dev;
struct port *port;
unsigned int open_count, excl_open;
unsigned int tx_first, tx_count, rx_first, rx_count; /* bytes */
unsigned long errors_bitmap;
u8 id, chan_count;
u8 log_channels[MAX_CHANNELS];
};
struct port {
struct device *dev;
struct npe *npe;
struct net_device *netdev;
struct napi_struct napi;
struct hss_plat_info *plat;
buffer_t *rx_buff_tab[RX_DESCS], *tx_buff_tab[TX_DESCS];
struct desc *desc_tab; /* coherent */
u32 desc_tab_phys;
unsigned int id;
atomic_t chan_tx_irq_number, chan_rx_irq_number;
wait_queue_head_t chan_tx_waitq, chan_rx_waitq;
u8 hdlc_cfg;
unsigned int initialized; /* protected by firmware_mutex */
/* the following fields must be protected by rtnl */
enum mode mode; /* RW: set_mode() */
unsigned int port_open_count; /* RW: hss_port_open() and hss_port_close() */
unsigned int chan_open_count; /* hss_chan_open() and hss_chan_close() */
unsigned int hdlc_open; /* RW: hss_hdlc_open() and hss_hdlc_close() */
unsigned int clock_rate; /* RW: hss_hdlc_ioctl() */
/* the following fields must be protected by rtnl or npe_lock (read) and both (write) */
unsigned int clock_type, frame_size, loopback;
u32 clock_reg;
/* the following fields must be protected by npe_lock */
unsigned int aligned, carrier, frame_sync_offset, sync_counter;
struct chan_device *chan_devices[MAX_CHAN_DEVICES];
u8 *chan_buf;
u32 chan_tx_buf_phys, chan_rx_buf_phys;
unsigned int chan_started, chan_last_rx, chan_last_tx;
/* assigned channels, may be invalid with given frame length or mode */
u8 channels[MAX_CHANNELS];
int msg_count;
};
/* NPE message structure */
struct msg {
#ifdef __ARMEB__
u8 cmd, unused, hss_port, index;
union {
struct { u8 data8a, data8b, data8c, data8d; };
struct { u16 data16a, data16b; };
struct { u32 data32; };
};
#else
u8 index, hss_port, unused, cmd;
union {
struct { u8 data8d, data8c, data8b, data8a; };
struct { u16 data16b, data16a; };
struct { u32 data32; };
};
#endif
};
/* HDLC packet descriptor */
struct desc {
u32 next; /* pointer to next buffer, unused */
#ifdef __ARMEB__
u16 buf_len; /* buffer length */
u16 pkt_len; /* packet length */
u32 data; /* pointer to data buffer in RAM */
u8 status;
u8 error_count;
u16 __reserved;
#else
u16 pkt_len; /* packet length */
u16 buf_len; /* buffer length */
u32 data; /* pointer to data buffer in RAM */
u16 __reserved;
u8 error_count;
u8 status;
#endif
u32 __reserved1[4];
};
#define rx_desc_phys(port, n) ((port)->desc_tab_phys + \
(n) * sizeof(struct desc))
#define rx_desc_ptr(port, n) (&(port)->desc_tab[n])
#define tx_desc_phys(port, n) ((port)->desc_tab_phys + \
((n) + RX_DESCS) * sizeof(struct desc))
#define tx_desc_ptr(port, n) (&(port)->desc_tab[(n) + RX_DESCS])
#define chan_tx_buf_len(port) (port->frame_size / 8 * CHAN_TX_FRAMES)
#define chan_tx_lists_len(port) (port->frame_size / 8 * CHAN_TX_LISTS * \
sizeof(u32))
#define chan_rx_buf_len(port) (port->frame_size / 8 * CHAN_RX_FRAMES)
#define chan_tx_buf(port) ((port)->chan_buf)
#define chan_tx_lists(port) (chan_tx_buf(port) + chan_tx_buf_len(port))
#define chan_rx_buf(port) (chan_tx_lists(port) + chan_tx_lists_len(port))
#define chan_tx_lists_phys(port) ((port)->chan_tx_buf_phys + \
chan_tx_buf_len(port))
static int hss_chan_open(struct port *port);
void hss_chan_close(struct port *port);
/*****************************************************************************
* global variables
****************************************************************************/
static struct class *hss_class;
static int chan_major;
static unsigned int dma_pool_use_count; /* protected by rtnl */
static struct dma_pool *dma_pool;
static spinlock_t npe_lock;
static DEFINE_MUTEX(firmware_mutex);
static const struct {
int tx, txdone, rx, rxfree, chan;
}queue_ids[2] = {{HSS0_PKT_TX0_QUEUE, HSS0_PKT_TXDONE_QUEUE, HSS0_PKT_RX_QUEUE,
HSS0_PKT_RXFREE0_QUEUE, HSS0_CHL_RXTRIG_QUEUE},
{HSS1_PKT_TX0_QUEUE, HSS1_PKT_TXDONE_QUEUE, HSS1_PKT_RX_QUEUE,
HSS1_PKT_RXFREE0_QUEUE, HSS1_CHL_RXTRIG_QUEUE},
};
/*****************************************************************************
* utility functions
****************************************************************************/
static inline struct port* dev_to_port(struct net_device *dev)
{
return dev_to_hdlc(dev)->priv;
}
static inline struct chan_device* inode_to_chan_dev(struct inode *inode)
{
return container_of(inode->i_cdev, struct chan_device, cdev);
}
#ifndef __ARMEB__
static inline void memcpy_swab32(u32 *dest, u32 *src, int cnt)
{
int i;
for (i = 0; i < cnt; i++)
dest[i] = swab32(src[i]);
}
#endif
static int get_number(const char **buf, size_t *len, unsigned int *ptr,
unsigned int min, unsigned int max)
{
char *endp;
unsigned long val = simple_strtoul(*buf, &endp, 10);
if (endp == *buf || endp - *buf > *len || val < min || val > max)
return -EINVAL;
*len -= endp - *buf;
*buf = endp;
*ptr = val;
return 0;
}
static int parse_channels(const char **buf, size_t *len, u8 *channels)
{
unsigned int ch, next = 0;
if (*len && (*buf)[*len - 1] == '\n')
(*len)--;
memset(channels, 0, MAX_CHANNELS);
if (!*len)
return 0;
/* Format: "A,B-C,...", A > B > C */
while (1) {
if (get_number(buf, len, &ch, next, MAX_CHANNELS - 1))
return -EINVAL;
channels[ch] = 1;
next = ch + 1;
if (!*len)
break;
if (**buf == ',') {
(*buf)++;
(*len)--;
continue;
}
if (**buf != '-')
return -EINVAL;
(*buf)++;
(*len)--;
if (get_number(buf, len, &ch, next, MAX_CHANNELS - 1))
return -EINVAL;
while (next <= ch)
channels[next++] = 1;
if (!*len)
break;
if (**buf != ',')
return -EINVAL;
(*buf)++;
(*len)--;
}
return 1;
}
static size_t print_channels(struct port *port, char *buf, u8 id)
{
unsigned int ch, cnt = 0;
size_t len = 0;
for (ch = 0; ch < MAX_CHANNELS; ch++)
if (port->channels[ch] == id) {
if (cnt == 0) {
sprintf(buf + len, "%s%u", len ? "," : "", ch);
len += strlen(buf + len);
}
cnt++;
} else {
if (cnt > 1) {
sprintf(buf + len, "-%u", ch - 1);
len += strlen(buf + len);
}
cnt = 0;
}
if (cnt > 1) {
sprintf(buf + len, "-%u", ch - 1);
len += strlen(buf + len);
}
buf[len++] = '\n';
return len;
}
static inline unsigned int sub_offset(unsigned int a, unsigned int b,
unsigned int modulo)
{
return (modulo /* make sure the result >= 0 */ + a - b) % modulo;
}
/*****************************************************************************
* HSS access
****************************************************************************/
static void hss_npe_send(struct port *port, struct msg *msg, const char* what)
{
u32 *val = (u32*)msg;
if (npe_send_message(port->npe, msg, what)) {
pr_crit("HSS-%i: unable to send command [%08X:%08X] to %s\n",
port->id, val[0], val[1], npe_name(port->npe));
BUG();
}
}
static void hss_config_lut(struct port *port)
{
struct msg msg;
int chan_count = 0, log_chan = 0, i, ch;
for (i = 0; i < MAX_CHAN_DEVICES; i++)
if (port->chan_devices[i])
port->chan_devices[i]->chan_count = 0;
memset(&msg, 0, sizeof(msg));
msg.cmd = PORT_CONFIG_WRITE;
msg.hss_port = port->id;
for (ch = 0; ch < MAX_CHANNELS; ch++) {
struct chan_device *chdev = NULL;
unsigned int entry;
if (port->channels[ch] < MAX_CHAN_DEVICES /* assigned */)
chdev = port->chan_devices[port->channels[ch]];
if (port->mode == MODE_G704 && ch == 0)
entry = TDMMAP_VOICE64K; /* PCM-31 pattern */
else if (port->mode == MODE_HDLC ||
port->channels[ch] == CHANNEL_HDLC)
entry = TDMMAP_HDLC;
else if (chdev && chdev->open_count) {
entry = TDMMAP_VOICE64K;
chdev->log_channels[chdev->chan_count++] = log_chan;
} else
entry = TDMMAP_UNASSIGNED;
if (entry == TDMMAP_VOICE64K) {
chan_count++;
log_chan++;
}
msg.data32 >>= 2;
msg.data32 |= entry << 30;
if (ch % 16 == 15) {
msg.index = HSS_CONFIG_TX_LUT + ((ch / 4) & ~3);
hss_npe_send(port, &msg, "HSS_SET_TX_LUT");
msg.index += HSS_CONFIG_RX_LUT - HSS_CONFIG_TX_LUT;
hss_npe_send(port, &msg, "HSS_SET_RX_LUT");
}
}
if (!chan_count)
return;
memset(&msg, 0, sizeof(msg));
msg.cmd = CHAN_NUM_CHANS_WRITE;
msg.hss_port = port->id;
msg.data8a = chan_count;
hss_npe_send(port, &msg, "CHAN_NUM_CHANS_WRITE");
dma_sync_single_for_cpu(port->dev, port->chan_tx_buf_phys,
chan_tx_buf_len(port) + chan_tx_lists_len(port),
DMA_TO_DEVICE);
/* don't leak data */
// FIXME memset(chan_tx_buf(port), 0, CHAN_TX_FRAMES * chan_count);
if (port->mode == MODE_G704) /* G.704 PCM-31 sync pattern */
for (i = 0; i < CHAN_TX_FRAMES; i += 4)
*(u32*)(chan_tx_buf(port) + i) = 0x9BDF9BDF;
for (i = 0; i < CHAN_TX_LISTS; i++) {
u32 phys = port->chan_tx_buf_phys + i * CHAN_TX_LIST_FRAMES;
u32 *list = ((u32 *)chan_tx_lists(port)) + i * chan_count;
for (ch = 0; ch < chan_count; ch++)
list[ch] = phys + ch * CHAN_TX_FRAMES;
}
dma_sync_single_for_device(port->dev, port->chan_tx_buf_phys,
chan_tx_buf_len(port) + chan_tx_lists_len(port),
DMA_TO_DEVICE);
}
static u32 hss_get_status(struct port *port);
static void hss_config_main(struct port *port)
{
struct msg msg;
memset(&msg, 0, sizeof(msg));
msg.cmd = PORT_CONFIG_WRITE;
msg.hss_port = port->id;
msg.index = HSS_CONFIG_TX_PCR;
msg.data32 = PCR_DCLK_EDGE_RISING | PCR_MSB_ENDIAN | PCR_TX_DATA_ENABLE;
if (port->mode == MODE_HDLC)
msg.data32 |= PCR_FRM_PULSE_DISABLED;
else
msg.data32 |= PCR_FRM_SYNC_OUTPUT_RISING;
if (port->frame_size % 8 == 0)
msg.data32 |= PCR_SOF_NO_FBIT;
if ((port->clock_type & CLOCK_TYPE_MASK) == CLOCK_INT)
msg.data32 |= PCR_SYNC_CLK_DIR_OUTPUT;
if (port->clock_type & CLOCK_TX_INVERTED)
msg.data32 ^= PCR_DCLK_EDGE_RISING;
hss_npe_send(port, &msg, "HSS_SET_TX_PCR");
msg.index = HSS_CONFIG_RX_PCR;
msg.data32 &= ~(PCR_TX_DATA_ENABLE | PCR_DCLK_EDGE_RISING);
if (port->clock_type & CLOCK_RX_INVERTED)
msg.data32 ^= PCR_DCLK_EDGE_RISING;
hss_npe_send(port, &msg, "HSS_SET_RX_PCR");
memset(&msg, 0, sizeof(msg));
msg.cmd = PORT_CONFIG_WRITE;
msg.hss_port = port->id;
msg.index = HSS_CONFIG_CORE_CR;
msg.data32 = (port->loopback ? CCR_LOOPBACK : 0) |
(port->id ? CCR_SECOND_HSS : 0);
hss_npe_send(port, &msg, "HSS_SET_CORE_CR");
memset(&msg, 0, sizeof(msg));
msg.cmd = PORT_CONFIG_WRITE;
msg.hss_port = port->id;
msg.index = HSS_CONFIG_CLOCK_CR;
msg.data32 = port->clock_reg;
hss_npe_send(port, &msg, "HSS_SET_CLOCK_CR");
memset(&msg, 0, sizeof(msg));
msg.cmd = PORT_CONFIG_WRITE;
msg.hss_port = port->id;
msg.index = HSS_CONFIG_TX_FCR;
msg.data16a = TX_FRAME_SYNC_OFFSET;
msg.data16b = port->frame_size - 1;
hss_npe_send(port, &msg, "HSS_SET_TX_FCR");
memset(&msg, 0, sizeof(msg));
msg.cmd = PORT_CONFIG_WRITE;
msg.hss_port = port->id;
msg.index = HSS_CONFIG_RX_FCR;
msg.data16a = port->frame_sync_offset;
msg.data16b = port->frame_size - 1;
hss_npe_send(port, &msg, "HSS_SET_RX_FCR");
}
static void hss_config_load(struct port *port)
{
struct msg msg;
memset(&msg, 0, sizeof(msg));
msg.cmd = PORT_CONFIG_LOAD;
msg.hss_port = port->id;
hss_npe_send(port, &msg, "HSS_LOAD_CONFIG");
if (npe_recv_message(port->npe, &msg, "HSS_LOAD_CONFIG") ||
/* HSS_LOAD_CONFIG for port #1 returns port_id = #4 */
msg.cmd != PORT_CONFIG_LOAD || msg.data32) {
pr_crit("HSS-%i: HSS_LOAD_CONFIG failed\n", port->id);
BUG();
}
/* HDLC may stop working without this - check FIXME */
npe_recv_message(port->npe, &msg, "FLUSH_IT");
}
static void hss_config(struct port *port)
{
struct msg msg;
int started = port->chan_started;
if (started) {
hss_get_status(port);
memset(&msg, 0, sizeof(msg));
msg.hss_port = port->id;
msg.cmd = CHAN_FLOW_DISABLE;
hss_npe_send(port, &msg, "CHAN_FLOW_DISABLE");
/* HDLC mode configuration */
memset(&msg, 0, sizeof(msg));
msg.cmd = PKT_NUM_PIPES_WRITE;
msg.hss_port = port->id;
msg.data8a = PKT_NUM_PIPES;
hss_npe_send(port, &msg, "HSS_SET_PKT_PIPES");
msg.cmd = PKT_PIPE_FIFO_SIZEW_WRITE;
msg.data8a = PKT_PIPE_FIFO_SIZEW;
hss_npe_send(port, &msg, "HSS_SET_PKT_FIFO");
msg.cmd = PKT_PIPE_MODE_WRITE;
msg.data8a = NPE_PKT_MODE_HDLC;
/* msg.data8b = inv_mask */
/* msg.data8c = or_mask */
hss_npe_send(port, &msg, "HSS_SET_PKT_MODE");
msg.cmd = PKT_PIPE_RX_SIZE_WRITE;
msg.data16a = HDLC_MAX_MRU; /* including CRC */
hss_npe_send(port, &msg, "HSS_SET_PKT_RX_SIZE");
msg.cmd = PKT_PIPE_IDLE_PATTERN_WRITE;
msg.data32 = 0x7F7F7F7F; /* ??? FIXME */
hss_npe_send(port, &msg, "HSS_SET_PKT_IDLE");
/* Channelized operation settings */
memset(&msg, 0, sizeof(msg));
msg.cmd = CHAN_TX_BLK_CFG_WRITE;
msg.hss_port = port->id;
msg.data8b = (CHAN_TX_LIST_FRAMES & ~7) / 2;
msg.data8a = msg.data8b / 4;
msg.data8d = CHAN_TX_LIST_FRAMES - msg.data8b;
msg.data8c = msg.data8d / 4;
hss_npe_send(port, &msg, "CHAN_TX_BLK_CFG_WRITE");
memset(&msg, 0, sizeof(msg));
msg.cmd = CHAN_RX_BUF_CFG_WRITE;
msg.hss_port = port->id;
msg.data8a = CHAN_RX_TRIGGER / 8;
msg.data8b = CHAN_RX_FRAMES;
hss_npe_send(port, &msg, "CHAN_RX_BUF_CFG_WRITE");
memset(&msg, 0, sizeof(msg));
msg.cmd = CHAN_TX_BUF_SIZE_WRITE;
msg.hss_port = port->id;
msg.data8a = CHAN_TX_LISTS;
hss_npe_send(port, &msg, "CHAN_TX_BUF_SIZE_WRITE");
}
hss_config_main(port);
hss_config_lut(port);
hss_config_load(port);
if (started) {
memset(&msg, 0, sizeof(msg));
msg.cmd = CHAN_RX_BUF_ADDR_WRITE;
msg.hss_port = port->id;
msg.data32 = port->chan_rx_buf_phys;
hss_npe_send(port, &msg, "CHAN_RX_BUF_ADDR_WRITE");
memset(&msg, 0, sizeof(msg));
msg.cmd = CHAN_TX_BUF_ADDR_WRITE;
msg.hss_port = port->id;
msg.data32 = chan_tx_lists_phys(port);
hss_npe_send(port, &msg, "CHAN_TX_BUF_ADDR_WRITE");
memset(&msg, 0, sizeof(msg));
msg.hss_port = port->id;
msg.cmd = CHAN_FLOW_ENABLE;
hss_npe_send(port, &msg, "CHAN_FLOW_ENABLE");
}
}
static void hss_config_hdlc(struct port *port)
{
struct msg msg;
memset(&msg, 0, sizeof(msg));
msg.cmd = PKT_PIPE_HDLC_CFG_WRITE;
msg.hss_port = port->id;
msg.data8a = port->hdlc_cfg; /* rx_cfg */
msg.data8b = port->hdlc_cfg | (PKT_EXTRA_FLAGS << 3); /* tx_cfg */
hss_npe_send(port, &msg, "HSS_HDLC_CFG_WRITE");
}
static u32 hss_get_status(struct port *port)
{
struct msg msg;
memset(&msg, 0, sizeof(msg));
msg.cmd = PORT_ERROR_READ;
msg.hss_port = port->id;
hss_npe_send(port, &msg, "PORT_ERROR_READ");
if (npe_recv_message(port->npe, &msg, "PORT_ERROR_READ")) {
pr_crit("HSS-%i: unable to read HSS status\n", port->id);
BUG();
}
/*
data8a: last RX error bitmap
data8b: last RX error bitmap
data8c: error count
last error bitmap:
- x3: 0 or 2 = no error, 1 = FRM sync error, 3 = overrun (6x = port)
- 1C: 0 = no error, 4 = chan error, 8 = packet error (6x = port)
*/
#if 0
printk(KERN_CRIT "HSS-%i: status RX %02X TX %02X error count %u\n", port->id,
msg.data8a, msg.data8b, msg.data8c);
#endif
return msg.data32;
}
static void hss_chan_start(struct port *port)
{
struct msg msg;
port->chan_last_tx = 0;
port->chan_last_rx = 0;
port->chan_started = 1;
port->sync_counter = 0;
memset(&msg, 0, sizeof(msg));
msg.cmd = CHAN_RX_BUF_ADDR_WRITE;
msg.hss_port = port->id;
msg.data32 = port->chan_rx_buf_phys;
hss_npe_send(port, &msg, "CHAN_RX_BUF_ADDR_WRITE");
memset(&msg, 0, sizeof(msg));
msg.cmd = CHAN_TX_BUF_ADDR_WRITE;
msg.hss_port = port->id;
msg.data32 = chan_tx_lists_phys(port);
hss_npe_send(port, &msg, "CHAN_TX_BUF_ADDR_WRITE");
memset(&msg, 0, sizeof(msg));
msg.cmd = CHAN_FLOW_ENABLE;
msg.hss_port = port->id;
hss_npe_send(port, &msg, "CHAN_FLOW_ENABLE");
}
static void hss_chan_stop(struct port *port)
{
struct msg msg;
if (!port->chan_started)
return;
memset(&msg, 0, sizeof(msg));
msg.cmd = CHAN_FLOW_DISABLE;
msg.hss_port = port->id;
hss_npe_send(port, &msg, "CHAN_FLOW_DISABLE");
hss_get_status(port); /* make sure it's halted */
port->chan_started = 0;
}
static void hss_hdlc_start(struct port *port)
{
struct msg msg;
memset(&msg, 0, sizeof(msg));
msg.cmd = PKT_PIPE_FLOW_ENABLE;
msg.hss_port = port->id;
msg.data32 = 0;
hss_npe_send(port, &msg, "HSS_ENABLE_PKT_PIPE");
}
static void hss_hdlc_stop(struct port *port)
{
struct msg msg;
memset(&msg, 0, sizeof(msg));
msg.cmd = PKT_PIPE_FLOW_DISABLE;
msg.hss_port = port->id;
hss_npe_send(port, &msg, "HSS_DISABLE_PKT_PIPE");
hss_get_status(port); /* make sure it's halted */
}
static int hss_load_firmware(struct port *port)
{
struct msg msg;
int err;
if ((err = mutex_lock_interruptible(&firmware_mutex)))
return err;
if (port->initialized)
goto out;
if (!npe_running(port->npe) &&
(err = npe_load_firmware(port->npe, npe_name(port->npe),
port->dev)))
goto out;
/* HDLC mode configuration */
memset(&msg, 0, sizeof(msg));
msg.cmd = PKT_NUM_PIPES_WRITE;
msg.hss_port = port->id;
msg.data8a = PKT_NUM_PIPES;
hss_npe_send(port, &msg, "HSS_SET_PKT_PIPES");
msg.cmd = PKT_PIPE_FIFO_SIZEW_WRITE;
msg.data8a = PKT_PIPE_FIFO_SIZEW;
hss_npe_send(port, &msg, "HSS_SET_PKT_FIFO");
msg.cmd = PKT_PIPE_MODE_WRITE;
msg.data8a = NPE_PKT_MODE_HDLC;
/* msg.data8b = inv_mask */
/* msg.data8c = or_mask */
hss_npe_send(port, &msg, "HSS_SET_PKT_MODE");
msg.cmd = PKT_PIPE_RX_SIZE_WRITE;
msg.data16a = HDLC_MAX_MRU; /* including CRC */
hss_npe_send(port, &msg, "HSS_SET_PKT_RX_SIZE");
msg.cmd = PKT_PIPE_IDLE_PATTERN_WRITE;
msg.data32 = 0x7F7F7F7F; /* ??? FIXME */
hss_npe_send(port, &msg, "HSS_SET_PKT_IDLE");
/* Channelized operation settings */
memset(&msg, 0, sizeof(msg));
msg.cmd = CHAN_TX_BLK_CFG_WRITE;
msg.hss_port = port->id;
msg.data8b = (CHAN_TX_LIST_FRAMES & ~7) / 2;
msg.data8a = msg.data8b / 4;
msg.data8d = CHAN_TX_LIST_FRAMES - msg.data8b;
msg.data8c = msg.data8d / 4;
hss_npe_send(port, &msg, "CHAN_TX_BLK_CFG_WRITE");
memset(&msg, 0, sizeof(msg));
msg.cmd = CHAN_RX_BUF_CFG_WRITE;
msg.hss_port = port->id;
msg.data8a = CHAN_RX_TRIGGER / 8;
msg.data8b = CHAN_RX_FRAMES;
hss_npe_send(port, &msg, "CHAN_RX_BUF_CFG_WRITE");
memset(&msg, 0, sizeof(msg));
msg.cmd = CHAN_TX_BUF_SIZE_WRITE;
msg.hss_port = port->id;
msg.data8a = CHAN_TX_LISTS;
hss_npe_send(port, &msg, "CHAN_TX_BUF_SIZE_WRITE");
port->initialized = 1;
out:
mutex_unlock(&firmware_mutex);
return err;
}
/*****************************************************************************
* packetized (HDLC) operation
****************************************************************************/
static inline void debug_pkt(struct net_device *dev, const char *func,
u8 *data, int len)
{
#if DEBUG_PKT_BYTES
int i;
printk(KERN_DEBUG "%s: %s(%i)", dev->name, func, len);
for (i = 0; i < len; i++) {
if (i >= DEBUG_PKT_BYTES)
break;
printk("%s%02X", !(i % 4) ? " " : "", data[i]);
}
printk("\n");
#endif
}
static inline void debug_desc(u32 phys, struct desc *desc)
{
#if DEBUG_DESC
printk(KERN_DEBUG "%X: %X %3X %3X %08X %X %X\n",
phys, desc->next, desc->buf_len, desc->pkt_len,
desc->data, desc->status, desc->error_count);
#endif
}
static inline int queue_get_desc(unsigned int queue, struct port *port,
int is_tx)
{
u32 phys, tab_phys, n_desc;
struct desc *tab;
if (!(phys = qmgr_get_entry(queue)))
return -1;
BUG_ON(phys & 0x1F);
tab_phys = is_tx ? tx_desc_phys(port, 0) : rx_desc_phys(port, 0);
tab = is_tx ? tx_desc_ptr(port, 0) : rx_desc_ptr(port, 0);
n_desc = (phys - tab_phys) / sizeof(struct desc);
BUG_ON(n_desc >= (is_tx ? TX_DESCS : RX_DESCS));
debug_desc(phys, &tab[n_desc]);
BUG_ON(tab[n_desc].next);
return n_desc;
}
static inline void queue_put_desc(unsigned int queue, u32 phys,
struct desc *desc)
{
debug_desc(phys, desc);
BUG_ON(phys & 0x1F);
qmgr_put_entry(queue, phys);
/* Don't check for queue overflow here, we've allocated sufficient
length and queues >= 32 don't support this check anyway. */
}
static inline void dma_unmap_tx(struct port *port, struct desc *desc)
{
#ifdef __ARMEB__
dma_unmap_single(&port->netdev->dev, desc->data,
desc->buf_len, DMA_TO_DEVICE);
#else
dma_unmap_single(&port->netdev->dev, desc->data & ~3,
ALIGN((desc->data & 3) + desc->buf_len, 4),
DMA_TO_DEVICE);
#endif
}
static void __hss_hdlc_set_carrier(struct port *port)
{
if (port->loopback || port->carrier)
netif_carrier_on(port->netdev);
else
netif_carrier_off(port->netdev);
}
static void hss_hdlc_set_carrier_cb(void *pdev, int carrier)
{
struct port *port = dev_to_port(pdev);
unsigned long flags;
spin_lock_irqsave(&npe_lock, flags);
port->carrier = carrier;
__hss_hdlc_set_carrier(port);
spin_unlock_irqrestore(&npe_lock, flags);
}
static void hss_hdlc_rx_irq(void *pdev)
{
struct net_device *dev = pdev;
struct port *port = dev_to_port(dev);
#if DEBUG_RX
printk(KERN_DEBUG "%s: hss_hdlc_rx_irq\n", dev->name);
#endif
qmgr_disable_irq(queue_ids[port->id].rx);
napi_schedule(&port->napi);
}
static int hss_hdlc_poll(struct napi_struct *napi, int budget)
{
struct port *port = container_of(napi, struct port, napi);
struct net_device *dev = port->netdev;
unsigned int rxq = queue_ids[port->id].rx;
unsigned int rxfreeq = queue_ids[port->id].rxfree;
int received = 0;
#if DEBUG_RX
printk(KERN_DEBUG "%s: hss_hdlc_poll\n", dev->name);
#endif
while (received < budget) {
struct sk_buff *skb;
struct desc *desc;
int n;
#ifdef __ARMEB__
struct sk_buff *temp;
u32 phys;
#endif
if ((n = queue_get_desc(rxq, port, 0)) < 0) {
#if DEBUG_RX
printk(KERN_DEBUG "%s: hss_hdlc_poll"
" napi_complete\n", dev->name);
#endif
napi_complete(napi);
qmgr_enable_irq(rxq);
if (!qmgr_stat_empty(rxq) &&
napi_reschedule(napi)) {
#if DEBUG_RX
printk(KERN_DEBUG "%s: hss_hdlc_poll"
" napi_reschedule succeeded\n",
dev->name);
#endif
qmgr_disable_irq(rxq);
continue;
}
#if DEBUG_RX
printk(KERN_DEBUG "%s: hss_hdlc_poll all done\n",
dev->name);
#endif
return received; /* all work done */
}
desc = rx_desc_ptr(port, n);
#if 0 /* FIXME - error_count counts modulo 256, perhaps we should use it */
if (desc->error_count)
printk(KERN_DEBUG "%s: hss_hdlc_poll status 0x%02X"
" errors %u\n", dev->name, desc->status,
desc->error_count);
#endif
skb = NULL;
switch (desc->status) {
case 0:
#ifdef __ARMEB__
if ((skb = netdev_alloc_skb(dev, RX_SIZE)) != NULL) {
phys = dma_map_single(&dev->dev, skb->data,
RX_SIZE,
DMA_FROM_DEVICE);
if (dma_mapping_error(&dev->dev, phys)) {
dev_kfree_skb(skb);
skb = NULL;
}
}
#else
skb = netdev_alloc_skb(dev, desc->pkt_len);
#endif
if (!skb)
dev->stats.rx_dropped++;
break;
case ERR_HDLC_ALIGN:
case ERR_HDLC_ABORT:
dev->stats.rx_frame_errors++;
dev->stats.rx_errors++;
break;
case ERR_HDLC_FCS:
dev->stats.rx_crc_errors++;
dev->stats.rx_errors++;
break;
case ERR_HDLC_TOO_LONG:
dev->stats.rx_length_errors++;
dev->stats.rx_errors++;
break;
default: /* FIXME - remove printk */
netdev_err(dev, "hss_hdlc_poll: status 0x%02X errors %u\n",
desc->status, desc->error_count);
dev->stats.rx_errors++;
}
if (!skb) {
/* put the desc back on RX-ready queue */
desc->buf_len = RX_SIZE;
desc->pkt_len = desc->status = 0;
queue_put_desc(rxfreeq, rx_desc_phys(port, n), desc);
continue;
}
/* process received frame */
#ifdef __ARMEB__
temp = skb;
skb = port->rx_buff_tab[n];
dma_unmap_single(&dev->dev, desc->data,
RX_SIZE, DMA_FROM_DEVICE);
#else
dma_sync_single_for_cpu(&dev->dev, desc->data,
RX_SIZE, DMA_FROM_DEVICE);
memcpy_swab32((u32 *)skb->data, (u32 *)port->rx_buff_tab[n],
ALIGN(desc->pkt_len, 4) / 4);
#endif
skb_put(skb, desc->pkt_len);
debug_pkt(dev, "hss_hdlc_poll", skb->data, skb->len);
skb->protocol = hdlc_type_trans(skb, dev);
dev->stats.rx_packets++;
dev->stats.rx_bytes += skb->len;
netif_receive_skb(skb);
/* put the new buffer on RX-free queue */
#ifdef __ARMEB__
port->rx_buff_tab[n] = temp;
desc->data = phys;
#endif
desc->buf_len = RX_SIZE;
desc->pkt_len = 0;
queue_put_desc(rxfreeq, rx_desc_phys(port, n), desc);
received++;
}
#if DEBUG_RX
printk(KERN_DEBUG "hss_hdlc_poll: end, not all work done\n");
#endif
return received; /* not all work done */
}
static void hss_hdlc_txdone_irq(void *pdev)
{
struct net_device *dev = pdev;
struct port *port = dev_to_port(dev);
int n_desc;
#if DEBUG_TX
printk(KERN_DEBUG DRV_NAME ": hss_hdlc_txdone_irq\n");
#endif
while ((n_desc = queue_get_desc(queue_ids[port->id].txdone,
port, 1)) >= 0) {
struct desc *desc;
int start;
desc = tx_desc_ptr(port, n_desc);
dev->stats.tx_packets++;
dev->stats.tx_bytes += desc->pkt_len;
dma_unmap_tx(port, desc);
#if DEBUG_TX
printk(KERN_DEBUG "%s: hss_hdlc_txdone_irq free %p\n",
dev->name, port->tx_buff_tab[n_desc]);
#endif
free_buffer_irq(port->tx_buff_tab[n_desc]);
port->tx_buff_tab[n_desc] = NULL;
start = qmgr_stat_below_low_watermark(port->plat->txreadyq);
queue_put_desc(port->plat->txreadyq,
tx_desc_phys(port, n_desc), desc);
if (start) { /* TX-ready queue was empty */
#if DEBUG_TX
printk(KERN_DEBUG "%s: hss_hdlc_txdone_irq xmit"
" ready\n", dev->name);
#endif
netif_wake_queue(dev);
}
}
}
static int hss_hdlc_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct port *port = dev_to_port(dev);
unsigned int txreadyq = port->plat->txreadyq;
int len, offset, bytes, n;
void *mem;
u32 phys;
struct desc *desc;
#if DEBUG_TX
printk(KERN_DEBUG "%s: hss_hdlc_xmit\n", dev->name);
#endif
if (unlikely(skb->len > HDLC_MAX_MRU)) {
dev_kfree_skb(skb);
dev->stats.tx_errors++;
return NETDEV_TX_OK;
}
debug_pkt(dev, "hss_hdlc_xmit", skb->data, skb->len);
len = skb->len;
#ifdef __ARMEB__
offset = 0; /* no need to keep alignment */
bytes = len;
mem = skb->data;
#else
offset = (int)skb->data & 3; /* keep 32-bit alignment */
bytes = ALIGN(offset + len, 4);
if (!(mem = kmalloc(bytes, GFP_ATOMIC))) {
dev_kfree_skb(skb);
dev->stats.tx_dropped++;
return NETDEV_TX_OK;
}
memcpy_swab32(mem, (u32 *)((int)skb->data & ~3), bytes / 4);
dev_kfree_skb(skb);
#endif
phys = dma_map_single(&dev->dev, mem, bytes, DMA_TO_DEVICE);
if (dma_mapping_error(&dev->dev, phys)) {
#ifdef __ARMEB__
dev_kfree_skb(skb);
#else
kfree(mem);
#endif
dev->stats.tx_dropped++;
return NETDEV_TX_OK;
}
n = queue_get_desc(txreadyq, port, 1);
BUG_ON(n < 0);
desc = tx_desc_ptr(port, n);
#ifdef __ARMEB__
port->tx_buff_tab[n] = skb;
#else
port->tx_buff_tab[n] = mem;
#endif
desc->data = phys + offset;
desc->buf_len = desc->pkt_len = len;
wmb();
queue_put_desc(queue_ids[port->id].tx, tx_desc_phys(port, n), desc);
if (qmgr_stat_below_low_watermark(txreadyq)) { /* empty */
#if DEBUG_TX
printk(KERN_DEBUG "%s: hss_hdlc_xmit queue full\n", dev->name);
#endif
netif_stop_queue(dev);
/* we could miss TX ready interrupt */
if (!qmgr_stat_below_low_watermark(txreadyq)) {
#if DEBUG_TX
printk(KERN_DEBUG "%s: hss_hdlc_xmit ready again\n",
dev->name);
#endif
netif_wake_queue(dev);
}
}
#if DEBUG_TX
printk(KERN_DEBUG "%s: hss_hdlc_xmit end\n", dev->name);
#endif
return NETDEV_TX_OK;
}
static int request_hdlc_queues(struct port *port)
{
int err;
might_sleep();
err = qmgr_request_queue(queue_ids[port->id].rxfree, RX_DESCS, 0, 0,
"%s:RX-free", port->netdev->name);
if (err)
return err;
err = qmgr_request_queue(queue_ids[port->id].rx, RX_DESCS, 0, 0,
"%s:RX", port->netdev->name);
if (err)
goto rel_rxfree;
err = qmgr_request_queue(queue_ids[port->id].tx, TX_DESCS, 0, 0,
"%s:TX", port->netdev->name);
if (err)
goto rel_rx;
err = qmgr_request_queue(port->plat->txreadyq, TX_DESCS, 0, 0,
"%s:TX-ready", port->netdev->name);
if (err)
goto rel_tx;
err = qmgr_request_queue(queue_ids[port->id].txdone, TX_DESCS, 0, 0,
"%s:TX-done", port->netdev->name);
if (err)
goto rel_txready;
return 0;
rel_txready:
qmgr_release_queue(port->plat->txreadyq);
rel_tx:
qmgr_release_queue(queue_ids[port->id].tx);
rel_rx:
qmgr_release_queue(queue_ids[port->id].rx);
rel_rxfree:
qmgr_release_queue(queue_ids[port->id].rxfree);
printk(KERN_DEBUG "%s: unable to request hardware queues\n",
port->netdev->name);
return err;
}
static void release_hdlc_queues(struct port *port)
{
might_sleep();
qmgr_release_queue(queue_ids[port->id].rxfree);
qmgr_release_queue(queue_ids[port->id].rx);
qmgr_release_queue(queue_ids[port->id].txdone);
qmgr_release_queue(queue_ids[port->id].tx);
qmgr_release_queue(port->plat->txreadyq);
}
static void destroy_hdlc_buffs(struct port *port)
{
int i;
if (port->desc_tab) {
for (i = 0; i < RX_DESCS; i++) {
struct desc *desc = rx_desc_ptr(port, i);
buffer_t *buff = port->rx_buff_tab[i];
if (buff) {
dma_unmap_single(&port->netdev->dev,
desc->data, RX_SIZE,
DMA_FROM_DEVICE);
free_buffer(buff);
}
}
for (i = 0; i < TX_DESCS; i++) {
struct desc *desc = tx_desc_ptr(port, i);
buffer_t *buff = port->tx_buff_tab[i];
if (buff) {
dma_unmap_tx(port, desc);
free_buffer(buff);
}
}
dma_pool_free(dma_pool, port->desc_tab, port->desc_tab_phys);
port->desc_tab = NULL;
}
if (!dma_pool_use_count && dma_pool) {
dma_pool_destroy(dma_pool);
dma_pool = NULL;
}
}
static int init_hdlc_buffs(struct port *port)
{
int i, err = -ENOMEM;
if (!dma_pool_use_count) {
dma_pool = dma_pool_create(DRV_NAME, &port->netdev->dev,
POOL_ALLOC_SIZE, 32, 0);
if (!dma_pool)
return -ENOMEM;
}
if (!(port->desc_tab = dma_pool_alloc(dma_pool, GFP_KERNEL,
&port->desc_tab_phys)))
goto rel_dma_pool;
memset(port->desc_tab, 0, POOL_ALLOC_SIZE);
memset(port->rx_buff_tab, 0, sizeof(port->rx_buff_tab)); /* tables */
memset(port->tx_buff_tab, 0, sizeof(port->tx_buff_tab));
/* Setup RX buffers */
for (i = 0; i < RX_DESCS; i++) {
struct desc *desc = rx_desc_ptr(port, i);
buffer_t *buff;
void *data;
#ifdef __ARMEB__
if (!(buff = netdev_alloc_skb(port->netdev, RX_SIZE)))
goto rel_queues;
data = buff->data;
#else
if (!(buff = kmalloc(RX_SIZE, GFP_KERNEL)))
goto rel_queues;
data = buff;
#endif
desc->buf_len = RX_SIZE;
desc->data = dma_map_single(&port->netdev->dev, data,
RX_SIZE, DMA_FROM_DEVICE);
if (dma_mapping_error(&port->netdev->dev, desc->data)) {
free_buffer(buff);
err = -EIO;
goto rel_queues;
}
port->rx_buff_tab[i] = buff;
}
dma_pool_use_count++;
return 0;
rel_queues:
destroy_hdlc_buffs(port);
rel_dma_pool:
dma_pool_destroy(dma_pool);
return err;
}
static void hss_port_open(struct port *port)
{
might_sleep();
if (!port->port_open_count++ && port->plat->open)
port->plat->open(port->id, port->netdev, hss_hdlc_set_carrier_cb);
}
static void hss_port_close(struct port *port)
{
might_sleep();
if (!--port->port_open_count && port->plat->close)
port->plat->close(port->id, port->netdev);
}
static int hss_hdlc_open(struct net_device *dev)
{
struct port *port = dev_to_port(dev);
int i, err = 0;
if (port->mode == MODE_G704 && port->channels[0] == CHANNEL_HDLC)
return -EBUSY; /* channel #0 is used for G.704 framing */
if (port->mode != MODE_HDLC)
for (i = port->frame_size / 8; i < MAX_CHANNELS; i++)
if (port->channels[i] == CHANNEL_HDLC)
return -ECHRNG; /* frame too short */
if ((err = hss_load_firmware(port)))
return err;
if ((err = hdlc_open(dev)))
return err;
if ((err = request_hdlc_queues(port))) {
printk(KERN_INFO "HSS-%i: Unable to request QMgr HDLC queues\n", port->id);
goto err_hdlc_close;
}
if ((err = init_hdlc_buffs(port)))
goto err_destroy_queues;
if (port->mode == MODE_G704)
if ((err = hss_chan_open(port)))
goto free_buffs;
hss_port_open(port);
/* Populate queues with buffers, no failure after this point */
for (i = 0; i < TX_DESCS; i++)
queue_put_desc(port->plat->txreadyq,
tx_desc_phys(port, i), tx_desc_ptr(port, i));
for (i = 0; i < RX_DESCS; i++)
queue_put_desc(queue_ids[port->id].rxfree,
rx_desc_phys(port, i), rx_desc_ptr(port, i));
napi_enable(&port->napi);
netif_start_queue(dev);
qmgr_set_irq(queue_ids[port->id].rx, QUEUE_IRQ_SRC_NOT_EMPTY,
hss_hdlc_rx_irq, dev);
qmgr_set_irq(queue_ids[port->id].txdone, QUEUE_IRQ_SRC_NOT_EMPTY,
hss_hdlc_txdone_irq, dev);
qmgr_enable_irq(queue_ids[port->id].txdone);
dma_pool_use_count++;
port->hdlc_open = 1;
spin_lock_irq(&npe_lock);
hss_config_hdlc(port);
hss_config(port);
if (port->mode == MODE_G704)
hss_chan_start(port);
hss_hdlc_start(port);
port->carrier = port->plat->get_carrier ? port->plat->get_carrier(port->id) : 1;
__hss_hdlc_set_carrier(port);
spin_unlock_irq(&npe_lock);
/* we may already have RX data, enables IRQ */
napi_schedule(&port->napi);
return 0;
free_buffs:
destroy_hdlc_buffs(port);
err_destroy_queues:
release_hdlc_queues(port);
err_hdlc_close:
hdlc_close(dev);
return err;
}
static int hss_hdlc_close(struct net_device *dev)
{
struct port *port = dev_to_port(dev);
int i, buffs = RX_DESCS; /* allocated RX buffers */
dma_pool_use_count--;
port->hdlc_open = 0;
qmgr_disable_irq(queue_ids[port->id].rx);
netif_stop_queue(dev);
napi_disable(&port->napi);
if (port->mode == MODE_G704)
hss_chan_close(port);
spin_lock_irq(&npe_lock);
hss_hdlc_stop(port);
while (queue_get_desc(queue_ids[port->id].rxfree, port, 0) >= 0)
buffs--;
while (queue_get_desc(queue_ids[port->id].rx, port, 0) >= 0)
buffs--;
if (buffs)
netdev_crit(dev, "unable to drain RX queue, %i buffer(s) left in NPE\n",
buffs);
buffs = TX_DESCS;
while (queue_get_desc(queue_ids[port->id].tx, port, 1) >= 0)
buffs--; /* cancel TX */
i = 0;
do {
while (queue_get_desc(port->plat->txreadyq, port, 1) >= 0)
buffs--;
if (!buffs)
break;
} while (++i < MAX_CLOSE_WAIT);
if (buffs)
netdev_crit(dev, "unable to drain TX queue, %i buffer(s) left in NPE\n",
buffs);
#if DEBUG_CLOSE
if (!buffs)
printk(KERN_DEBUG "Draining TX queues took %i cycles\n", i);
#endif
qmgr_disable_irq(queue_ids[port->id].txdone);
spin_unlock_irq(&npe_lock);
destroy_hdlc_buffs(port);
release_hdlc_queues(port);
hss_port_close(port);
hdlc_close(dev);
return 0;
}
static int hss_hdlc_attach(struct net_device *dev, unsigned short encoding,
unsigned short parity)
{
struct port *port = dev_to_port(dev);
if (encoding != ENCODING_NRZ)
return -EINVAL;
switch(parity) {
case PARITY_CRC16_PR1_CCITT:
port->hdlc_cfg = 0;
return 0;
case PARITY_CRC32_PR1_CCITT:
port->hdlc_cfg = PKT_HDLC_CRC_32;
return 0;
default:
return -EINVAL;
}
}
static u32 check_clock(u32 rate, u32 a, u32 b, u32 c,
u32 *best, u32 *best_diff, u32 *reg)
{
/* a is 10-bit, b is 10-bit, c is 12-bit */
u64 new_rate;
u32 new_diff;
new_rate = ixp4xx_timer_freq * (u64)(c + 1);
do_div(new_rate, a * (c + 1) + b + 1);
new_diff = abs((u32)new_rate - rate);
if (new_diff < *best_diff) {
*best = new_rate;
*best_diff = new_diff;
*reg = (a << 22) | (b << 12) | c;
}
return new_diff;
}
static void find_best_clock(u32 rate, u32 *best, u32 *reg)
{
u32 a, b, diff = 0xFFFFFFFF;
a = ixp4xx_timer_freq / rate;
if (a > 0x3FF) { /* 10-bit value - we can go as slow as ca. 65 kb/s */
check_clock(rate, 0x3FF, 1, 1, best, &diff, reg);
return;
}
if (a == 0) { /* > 66.666 MHz */
a = 1; /* minimum divider is 1 (a = 0, b = 1, c = 1) */
rate = ixp4xx_timer_freq;
}
if (rate * a == ixp4xx_timer_freq) { /* don't divide by 0 later */
check_clock(rate, a - 1, 1, 1, best, &diff, reg);
return;
}
for (b = 0; b < 0x400; b++) {
u64 c = (b + 1) * (u64)rate;
do_div(c, ixp4xx_timer_freq - rate * a);
c--;
if (c >= 0xFFF) { /* 12-bit - no need to check more 'b's */
if (b == 0 && /* also try a bit higher rate */
!check_clock(rate, a - 1, 1, 1, best, &diff, reg))
return;
check_clock(rate, a, b, 0xFFF, best, &diff, reg);
return;
}
if (!check_clock(rate, a, b, c, best, &diff, reg))
return;
if (!check_clock(rate, a, b, c + 1, best, &diff, reg))
return;
}
}
static int hss_hdlc_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
const size_t size = sizeof(sync_serial_settings);
sync_serial_settings new_line;
sync_serial_settings __user *line = ifr->ifr_settings.ifs_ifsu.sync;
struct port *port = dev_to_port(dev);
int clk;
if (cmd != SIOCWANDEV)
return hdlc_ioctl(dev, ifr, cmd);
switch(ifr->ifr_settings.type) {
case IF_GET_IFACE:
ifr->ifr_settings.type = IF_IFACE_V35;
if (ifr->ifr_settings.size < size) {
ifr->ifr_settings.size = size; /* data size wanted */
return -ENOBUFS;
}
memset(&new_line, 0, sizeof(new_line));
new_line.clock_type = port->clock_type;
new_line.clock_rate = port->clock_rate;
new_line.loopback = port->loopback;
if (copy_to_user(line, &new_line, size))
return -EFAULT;
#if 0
if (!port->chan_buf)
return 0;
dma_sync_single_for_cpu(&dev->dev, port->chan_rx_buf_phys,
chan_rx_buf_len(port), DMA_FROM_DEVICE);
printk(KERN_DEBUG "RX:\n");
int i;
for (i = 0; i < chan_rx_buf_len(port); i++) {
if (i % 32 == 0)
printk(KERN_DEBUG "%03X ", i);
printk("%02X%c", chan_rx_buf(port)[i],
(i + 1) % 32 ? ' ' : '\n');
}
printk(KERN_DEBUG "TX:\n");
for (i = 0; i < /*CHAN_TX_FRAMES * 2*/ chan_tx_buf_len(port)
+ chan_tx_lists_len(port); i++) {
if (i % 32 == 0)
printk(KERN_DEBUG "%03X ", i);
printk("%02X%c", chan_tx_buf(port)[i],
(i + 1) % 32 ? ' ' : '\n');
}
port->msg_count = 10;
#endif
return 0;
case IF_IFACE_SYNC_SERIAL:
case IF_IFACE_V35:
if(!capable(CAP_NET_ADMIN))
return -EPERM;
if (copy_from_user(&new_line, line, size))
return -EFAULT;
clk = new_line.clock_type;
if (port->plat->set_clock)
clk = port->plat->set_clock(port->id, clk);
if ((clk & ~(CLOCK_RX_INVERTED |
CLOCK_TX_INVERTED)) != CLOCK_EXT &&
(clk & ~(CLOCK_RX_INVERTED |
CLOCK_TX_INVERTED)) != CLOCK_INT)
return -EINVAL; /* No such clock setting */
if (new_line.loopback != 0 && new_line.loopback != 1)
return -EINVAL;
spin_lock_irq(&npe_lock);
port->clock_type = clk; /* Update settings */
if ((clk & CLOCK_TYPE_MASK) == CLOCK_INT)
find_best_clock(new_line.clock_rate, &port->clock_rate,
&port->clock_reg);
else {
port->clock_rate = 0;
port->clock_reg = CLK42X_SPEED_2048KHZ;
}
port->loopback = new_line.loopback;
if (port->port_open_count)
hss_config(port);
__hss_hdlc_set_carrier(port);
spin_unlock_irq(&npe_lock);
return 0;
default:
return hdlc_ioctl(dev, ifr, cmd);
}
}
/*****************************************************************************
* channelized (G.704) operation
****************************************************************************/
static void g704_rx_framer_debug(struct port *port, u8 *data, unsigned int offset)
{
#if DEBUG_FRAMER
int i;
printk(KERN_DEBUG "HSS-%u %u (%u %u)\n", port->id, port->frame_sync_offset,
offset, port->sync_counter);
printk(KERN_DEBUG);
for (i = 0; i < CHAN_RX_FRAMES; i++)
printk(" %02X", chan_rx_buf(port)[i]);
printk("\n");
#endif
}
static void g704_rx_framer(struct port *port, unsigned int offset)
{
u8 *data = chan_rx_buf(port) + sub_offset(offset, CHAN_RX_TRIGGER,
CHAN_RX_FRAMES);
unsigned int bit, frame, cnt, aligned = 0;
u8 zeros_even, zeros_odd, ones_even, ones_odd, good = 0;
if (port->sync_counter < 10000)
port->sync_counter++;
/* discard the first frame set after changing the offset,
the offset used there is unknown */
if (port->sync_counter == 1)
return;
dma_sync_single_for_cpu(port->dev, port->chan_rx_buf_phys,
CHAN_RX_FRAMES, DMA_FROM_DEVICE);
/* check if aligned first */
for (frame = 0; frame < CHAN_RX_TRIGGER; frame += 2) {
u8 ve = data[frame];
u8 vo = data[frame + 1];
if (((ve & 0x7F) == 0x1B && (vo & 0x40)) ||
((vo & 0x7F) == 0x1B && (ve & 0x40)))
good++;
}
if (good >= 3)
aligned = 1;
#if DEBUG_FRAMER
if ((port->aligned && good != CHAN_RX_TRIGGER / 2) ||
(!port->aligned && good))
g704_rx_framer_debug(port, data, offset);
#endif
if (aligned) {
if (port->aligned)
goto out; /* no change */
if (printk_ratelimit())
printk(KERN_INFO "HSS-%i: synchronized at %u\n", port->id,
port->frame_sync_offset);
g704_rx_framer_debug(port, data, offset);
port->aligned = 1;
atomic_inc(&port->chan_tx_irq_number);
wake_up_interruptible(&port->chan_tx_waitq);
atomic_inc(&port->chan_rx_irq_number);
wake_up_interruptible(&port->chan_rx_waitq);
goto out;
}
if (port->sync_counter < 4)
goto out;
/* not aligned */
if (port->aligned && printk_ratelimit()) {
printk(KERN_INFO "HSS-%i: lost alignment\n", port->id);
port->aligned = 0;
g704_rx_framer_debug(port, data, offset);
for (cnt = 0; cnt < MAX_CHAN_DEVICES; cnt++)
if (port->chan_devices[cnt]) {
set_bit(TX_ERROR_BIT, &port->chan_devices[cnt]->errors_bitmap);
set_bit(RX_ERROR_BIT, &port->chan_devices[cnt]->errors_bitmap);
}
atomic_inc(&port->chan_tx_irq_number);
wake_up_interruptible(&port->chan_tx_waitq);
atomic_inc(&port->chan_rx_irq_number);
wake_up_interruptible(&port->chan_rx_waitq);
}
zeros_even = zeros_odd = 0;
ones_even = ones_odd = 0xFF;
for (frame = 0; frame < CHAN_RX_TRIGGER; frame += 2) {
zeros_even |= data[frame];
zeros_odd |= data[frame + 1];
ones_even &= data[frame];
ones_odd &= data[frame + 1];
}
for (bit = 0; bit < 7; bit++) {
if ((zeros_even & ~0x9B) == 0 && (ones_even & 0x1B) == 0x1B &&
(ones_odd & 0x40) == 0x40)
break;
if ((zeros_odd & ~0x9B) == 0 && (ones_odd & 0x1B) == 0x1B &&
(ones_even & 0x40) == 0x40)
break;
zeros_even <<= 1;
ones_even = ones_even << 1 | 1;
zeros_odd <<= 1;
ones_odd = ones_odd << 1 | 1;
}
bit = 1;
port->frame_sync_offset += port->frame_size - bit;
port->frame_sync_offset %= port->frame_size;
#if DEBUG_FRAMER
if (bit == 7)
printk(KERN_DEBUG "HSS-%i: trying frame sync at %u\n",
port->id, port->frame_sync_offset);
else
printk(KERN_DEBUG "HSS-%i: found possible frame sync pattern at %u\n",
port->id, port->frame_sync_offset);
#endif
if (!bit)
goto out; /* possible change in sync frame order */
hss_config_main(port);
hss_config_load(port);
port->sync_counter = 0;
out:
dma_sync_single_for_device(port->dev, port->chan_rx_buf_phys,
CHAN_RX_FRAMES, DMA_FROM_DEVICE);
}
static void chan_process_tx_irq(struct chan_device *chan_dev, int offset)
{
/* in bytes */
unsigned int buff_len = CHAN_TX_FRAMES * chan_dev->chan_count;
unsigned int list_len = CHAN_TX_LIST_FRAMES * chan_dev->chan_count;
int eaten, last_offset = chan_dev->port->chan_last_tx * list_len;
offset *= list_len;
eaten = sub_offset(offset, last_offset, buff_len);
if (chan_dev->tx_count > eaten + 2 * list_len) {
/* two pages must be reserved for the transmitter */
chan_dev->tx_first += eaten;
chan_dev->tx_first %= buff_len;
chan_dev->tx_count -= eaten;
} else {
/* FIXME check
0
1 tx_first (may still be transmited)
2 tx_offset (currently reported by the NPE)
3 tx_first + 2 * list_len (free to write here)
4
5
*/
/* printk(KERN_DEBUG "TX buffer underflow\n"); */
chan_dev->tx_first = sub_offset(offset, list_len, buff_len);
chan_dev->tx_count = 2 * list_len; /* reserve */
set_bit(TX_ERROR_BIT, &chan_dev->errors_bitmap);
}
}
static void chan_process_rx_irq(struct chan_device *chan_dev, int offset)
{
/* in bytes */
unsigned int buff_len = CHAN_RX_FRAMES * chan_dev->chan_count;
unsigned int trig_len = CHAN_RX_TRIGGER * chan_dev->chan_count;
int last_offset = chan_dev->port->chan_last_rx * chan_dev->chan_count;
offset *= chan_dev->chan_count;
chan_dev->rx_count += sub_offset(offset, last_offset + trig_len,
buff_len) + trig_len;
if (chan_dev->rx_count > buff_len - 2 * trig_len) {
/* two pages - offset[0] and offset[1] are lost - FIXME check */
/* printk(KERN_DEBUG "RX buffer overflow\n"); */
chan_dev->rx_first = (offset + 2 * trig_len) % buff_len;
chan_dev->rx_count = buff_len - 2 * trig_len;
set_bit(RX_ERROR_BIT, &chan_dev->errors_bitmap);
}
}
static void hss_chan_irq(void *pdev)
{
struct port *port = pdev;
u32 v;
#if DEBUG_RX
printk(KERN_DEBUG DRV_NAME ": hss_chan_irq\n");
#endif
spin_lock(&npe_lock);
while ((v = qmgr_get_entry(queue_ids[port->id].chan))) {
unsigned int first, errors, tx_list, rx_frame;
int i, bad;
first = v >> 24;
errors = (v >> 16) & 0xFF;
tx_list = (v >> 8) & 0xFF;
rx_frame = v & 0xFF;
if (port->msg_count) {
printk(KERN_DEBUG "chan_irq hss %i jiffies %lu first"
" 0x%02X errors 0x%02X tx_list 0x%02X rx_frame"
" 0x%02X\n", port->id, jiffies, first, errors,
tx_list, rx_frame);
port->msg_count--;
}
BUG_ON(rx_frame % CHAN_RX_TRIGGER);
BUG_ON(rx_frame >= CHAN_RX_FRAMES);
BUG_ON(tx_list >= CHAN_TX_LISTS);
bad = port->mode == MODE_G704 && !port->aligned;
if (!bad && tx_list != port->chan_last_tx) {
if (tx_list != (port->chan_last_tx + 1) % CHAN_TX_LISTS)
printk(KERN_DEBUG "HSS-%u: skipped IRQ: Tx last %i current %i\n",
port->id, port->chan_last_tx, tx_list);
for (i = 0; i < MAX_CHAN_DEVICES; i++) {
if (!port->chan_devices[i] ||
!port->chan_devices[i]->open_count)
continue;
chan_process_tx_irq(port->chan_devices[i], tx_list);
}
atomic_inc(&port->chan_tx_irq_number);
#if 0
printk(KERN_DEBUG "wakeing up TX jiff %lu\n",
jiffies, errors);
#endif
wake_up_interruptible(&port->chan_tx_waitq);
}
if (rx_frame != (port->chan_last_rx + CHAN_RX_TRIGGER) % CHAN_RX_FRAMES)
printk(KERN_DEBUG "HSS-%u: skipped IRQ: Rx last %i current %i\n",
port->id, port->chan_last_rx, rx_frame);
if (port->mode == MODE_G704)
g704_rx_framer(port, rx_frame);
if (!bad && (port->mode != MODE_G704 || port->aligned)) {
for (i = 0; i < MAX_CHAN_DEVICES; i++) {
if (!port->chan_devices[i] ||
!port->chan_devices[i]->open_count)
continue;
chan_process_rx_irq(port->chan_devices[i], rx_frame);
}
atomic_inc(&port->chan_rx_irq_number);
wake_up_interruptible(&port->chan_rx_waitq);
}
port->chan_last_tx = tx_list;
port->chan_last_rx = rx_frame;
}
spin_unlock(&npe_lock);
}
static int hss_chan_open(struct port *port)
{
int err;
might_sleep();
if (port->chan_open_count++)
return 0; /* channelized mode already initialized */
if ((err = qmgr_request_queue(queue_ids[port->id].chan, CHAN_QUEUE_LEN,
0, 0, "hss%i:chan", port->id)))
return err;
if (!(port->chan_buf = kmalloc(chan_tx_buf_len(port) +
chan_tx_lists_len(port) +
chan_rx_buf_len(port), GFP_KERNEL))) {
goto release_queue;
err = -ENOBUFS;
}
port->chan_tx_buf_phys = dma_map_single(port->dev, chan_tx_buf(port),
chan_tx_buf_len(port) +
chan_tx_lists_len(port),
DMA_TO_DEVICE);
if (dma_mapping_error(port->dev, port->chan_tx_buf_phys)) {
err = -EIO;
goto free;
}
port->chan_rx_buf_phys = dma_map_single(port->dev, chan_rx_buf(port),
chan_rx_buf_len(port),
DMA_FROM_DEVICE);
if (dma_mapping_error(port->dev, port->chan_rx_buf_phys)) {
err = -EIO;
goto unmap_tx;
}
qmgr_set_irq(queue_ids[port->id].chan, QUEUE_IRQ_SRC_NOT_EMPTY,
hss_chan_irq, port);
qmgr_enable_irq(queue_ids[port->id].chan);
return 0;
unmap_tx:
dma_unmap_single(port->dev, port->chan_tx_buf_phys,
chan_tx_buf_len(port) + chan_tx_lists_len(port),
DMA_TO_DEVICE);
free:
kfree(port->chan_buf);
port->chan_buf = NULL;
release_queue:
qmgr_release_queue(queue_ids[port->id].chan);
return err;
}
void hss_chan_close(struct port *port)
{
might_sleep();
if (--port->chan_open_count)
return; /* channelized mode already stopped */
hss_chan_stop(port);
qmgr_disable_irq(queue_ids[port->id].chan);
dma_unmap_single(port->dev, port->chan_tx_buf_phys,
chan_tx_buf_len(port) + chan_tx_lists_len(port),
DMA_TO_DEVICE);
dma_unmap_single(port->dev, port->chan_rx_buf_phys,
chan_rx_buf_len(port), DMA_FROM_DEVICE);
kfree(port->chan_buf);
port->chan_buf = NULL;
while (qmgr_get_entry(queue_ids[port->id].chan))
; /* drain all entries */
qmgr_release_queue(queue_ids[port->id].chan);
}
static int hss_char_open(struct inode *inode, struct file *file)
{
struct chan_device *chan_dev = inode_to_chan_dev(inode);
struct port *port = chan_dev->port;
int i, err = 0;
if ((err = hss_load_firmware(port)))
return err;
rtnl_lock();
if (port->mode == MODE_HDLC) {
err = -ENODEV;
goto out;
}
if (port->mode == MODE_G704 && port->channels[0] == chan_dev->id) {
err = -EBUSY; /* channel #0 is used for G.704 signaling */
goto out;
}
for (i = MAX_CHANNELS; i > port->frame_size / 8; i--)
if (port->channels[i - 1] == chan_dev->id) {
err = -ECHRNG; /* frame too short */
goto out;
}
if (chan_dev->open_count && (chan_dev->excl_open || (file->f_flags & O_EXCL))) {
err = -EBUSY;
goto out;
}
if ((err = hss_chan_open(port)))
goto out;
spin_lock_irq(&npe_lock);
if (chan_dev->open_count) {
chan_dev->open_count++;
goto out_unlock;
}
chan_dev->rx_first = chan_dev->tx_first = 0;
chan_dev->rx_count = chan_dev->tx_count = 0;
clear_bit(TX_ERROR_BIT, &chan_dev->errors_bitmap);
clear_bit(RX_ERROR_BIT, &chan_dev->errors_bitmap);
hss_chan_stop(port);
chan_dev->open_count++;
chan_dev->excl_open = !!(file->f_flags & O_EXCL);
hss_config(port);
hss_chan_start(port);
out_unlock:
spin_unlock_irq(&npe_lock);
if (!err)
hss_port_open(port);
out:
rtnl_unlock();
return err;
}
static int hss_char_close(struct inode *inode, struct file *file)
{
struct chan_device *chan_dev = inode_to_chan_dev(inode);
struct port *port = chan_dev->port;
rtnl_lock();
spin_lock_irq(&npe_lock);
if (--chan_dev->open_count) {
hss_chan_stop(port);
hss_config(port);
hss_chan_start(port);
}
spin_unlock_irq(&npe_lock);
if (!chan_dev->open_count) {
hss_chan_close(port);
hss_port_close(port);
}
rtnl_unlock();
return 0;
}
static ssize_t hss_char_read(struct file *file, char __user *buf, size_t count,
loff_t *f_pos)
{
struct chan_device *chan_dev = inode_to_chan_dev(file->f_path.dentry->d_inode);
struct port *port = chan_dev->port;
int res = 0, prev_irq, loops = 0;
/* wait for data */
while (1) {
#if 0
if (test_and_clear_bit(RX_ERROR_BIT, &chan_dev->errors_bitmap))
return -EIO;
#endif
if (count == 0)
return 0; /* no data requested */
prev_irq = atomic_read(&port->chan_rx_irq_number);
spin_lock_irq(&npe_lock);
if (chan_dev->rx_count) {
u8 *rx_buf = chan_rx_buf(port), *output;
if (count > chan_dev->rx_count)
count = chan_dev->rx_count;
#if 0
if (loops > 1)
printk(KERN_DEBUG "ENTRY rx_first %u rx_count %u count %i"
" last_rx %u loops %i\n", chan_dev->rx_first,
chan_dev->rx_count, count, port->chan_last_rx, loops);
#endif
if (!(output = kmalloc(count, GFP_ATOMIC))) {
spin_unlock_irq(&npe_lock);
return -ENOMEM;
}
dma_sync_single_for_cpu(port->dev, port->chan_rx_buf_phys,
chan_rx_buf_len(port), DMA_FROM_DEVICE);
for (res = 0; res < count; res++) {
unsigned int chan = chan_dev->rx_first % chan_dev->chan_count;
unsigned int frame = chan_dev->rx_first / chan_dev->chan_count;
chan = chan_dev->log_channels[chan];
output[res] = rx_buf[chan * CHAN_RX_FRAMES + frame];
chan_dev->rx_first++;
chan_dev->rx_first %= CHAN_RX_FRAMES * chan_dev->chan_count;
chan_dev->rx_count--;
}
dma_sync_single_for_device(port->dev, port->chan_rx_buf_phys,
chan_rx_buf_len(port), DMA_FROM_DEVICE);
spin_unlock_irq(&npe_lock);
#if 0
printk(KERN_DEBUG "EXIT rx_first %u rx_count %u res %i\n",
chan_dev->rx_first, chan_dev->rx_count, res);
#endif
if (copy_to_user(buf, output, count))
res = -EFAULT;
kfree(output);
return res;
}
spin_unlock_irq(&npe_lock);
loops++;
if (wait_event_interruptible(port->chan_rx_waitq,
atomic_read(&port->chan_rx_irq_number) != prev_irq))
return -ERESTARTSYS;
}
}
static ssize_t hss_char_write(struct file *file, const char __user *buf,
size_t count, loff_t *f_pos)
{
struct chan_device *chan_dev = inode_to_chan_dev(file->f_path.dentry->d_inode);
struct port *port = chan_dev->port;
int res = 0, prev_irq, loops = 0;
/* wait for room */
while (1) {
#if 0
if (test_and_clear_bit(TX_ERROR_BIT, &chan_dev->errors_bitmap))
return -EIO;
#endif
if (count == 0)
return 0; /* no data to send */
prev_irq = atomic_read(&port->chan_tx_irq_number);
spin_lock_irq(&npe_lock);
if (chan_dev->tx_count < CHAN_TX_FRAMES * chan_dev->chan_count) {
u8 *tx_buf = chan_tx_buf(port), *input;
if (count > CHAN_TX_FRAMES * chan_dev->chan_count)
count = CHAN_TX_FRAMES * chan_dev->chan_count;
#if 0
if (loops > 1)
printk(KERN_DEBUG "ENTRY TX_first %u tx_count %u count %i"
" last_tx %u loops %i\n", chan_dev->tx_first,
chan_dev->tx_count, count, port->chan_last_tx, loops);
#endif
if (!(input = kmalloc(count, GFP_ATOMIC))) {
spin_unlock_irq(&npe_lock);
return -ENOMEM;
}
dma_sync_single_for_cpu(port->dev, port->chan_tx_buf_phys,
chan_tx_buf_len(port), DMA_TO_DEVICE);
if (copy_from_user(input, buf, count))
res = -EFAULT;
else
for (res = 0; res < count; res++) {
unsigned int tail, chan, frame;
tail = (chan_dev->tx_first + chan_dev->tx_count) %
(CHAN_TX_FRAMES * chan_dev->chan_count);
chan = tail % chan_dev->chan_count;
frame = tail / chan_dev->chan_count;
chan = chan_dev->log_channels[chan];
tx_buf[chan * CHAN_TX_FRAMES + frame] = input[res];
chan_dev->tx_count++;
}
dma_sync_single_for_device(port->dev, port->chan_tx_buf_phys,
chan_tx_buf_len(port), DMA_TO_DEVICE);
spin_unlock_irq(&npe_lock);
#if 0
printk(KERN_DEBUG "EXIT TX_first %u tx_count %u res %i\n",
chan_dev->tx_first, chan_dev->tx_count, res);
#endif
kfree(input);
return res;
}
spin_unlock_irq(&npe_lock);
loops++;
if (wait_event_interruptible(port->chan_tx_waitq,
atomic_read(&port->chan_tx_irq_number) != prev_irq))
return -ERESTARTSYS;
}
}
static unsigned int hss_char_poll(struct file *file, poll_table *wait)
{
struct chan_device *chan_dev = inode_to_chan_dev
(file->f_path.dentry->d_inode);
struct port *port = chan_dev->port;
unsigned int mask = 0;
spin_lock_irq(&npe_lock);
poll_wait(file, &port->chan_tx_waitq, wait);
poll_wait(file, &port->chan_rx_waitq, wait);
if (chan_dev->tx_count < CHAN_TX_FRAMES * chan_dev->chan_count)
mask |= POLLOUT | POLLWRNORM;
if (chan_dev->rx_count)
mask |= POLLIN | POLLRDNORM;
spin_unlock_irq(&npe_lock);
return mask;
}
/*****************************************************************************
* channelized device sysfs attributes
****************************************************************************/
static ssize_t chan_show_chan(struct device *dev, struct device_attribute *attr,
char *buf)
{
int ret;
struct chan_device *chan_dev = dev_get_drvdata(dev);
rtnl_lock();
ret = print_channels(chan_dev->port, buf, chan_dev->id);
rtnl_unlock();
return ret;
}
static ssize_t chan_set_chan(struct device *dev, struct device_attribute *attr,
const char *buf, size_t len)
{
struct chan_device *chan_dev = dev_get_drvdata(dev);
struct port *port = chan_dev->port;
int ret = len;
if (len && buf[len - 1] == '\n')
len--;
if (len != 7 || memcmp(buf, "destroy", 7))
return -EINVAL;
rtnl_lock();
if (chan_dev->open_count)
ret = -EBUSY;
else {
unsigned int ch;
cdev_del(&chan_dev->cdev);
for (ch = 0; ch < MAX_CHANNELS; ch++)
if (port->channels[ch] == chan_dev->id)
port->channels[ch] = CHANNEL_UNUSED;
port->chan_devices[chan_dev->id] = NULL;
kfree(chan_dev);
BUG_ON(device_schedule_callback(dev, device_unregister));
}
rtnl_unlock();
return ret;
}
static struct device_attribute chan_attr =
__ATTR(channels, 0644, chan_show_chan, chan_set_chan);
/*****************************************************************************
* main sysfs attributes
****************************************************************************/
static const struct file_operations chan_fops = {
.owner = THIS_MODULE,
.llseek = no_llseek,
.read = hss_char_read,
.write = hss_char_write,
.poll = hss_char_poll,
.open = hss_char_open,
.release = hss_char_close,
};
static ssize_t create_chan(struct device *dev, struct device_attribute *attr,
const char *buf, size_t len)
{
struct port *port = dev_get_drvdata(dev);
struct chan_device *chan_dev;
u8 channels[MAX_CHANNELS];
size_t orig_len = len;
unsigned int ch, id, first_channel;
int minor, err;
if ((err = parse_channels(&buf, &len, channels)) < 1)
return err;
if (!(chan_dev = kzalloc(sizeof(struct chan_device), GFP_KERNEL)))
return -ENOBUFS;
rtnl_lock();
if (port->mode != MODE_RAW && port->mode != MODE_G704) {
err = -EINVAL;
goto free;
}
for (ch = 0; ch < MAX_CHANNELS; ch++)
if (channels[ch] && port->channels[ch] != CHANNEL_UNUSED) {
printk(KERN_DEBUG "Channel #%i already in use\n", ch);
err = -EBUSY;
goto free;
}
for (id = 0; id < MAX_CHAN_DEVICES; id++)
if (port->chan_devices[id] == NULL)
break;
if (id == MAX_CHAN_DEVICES) {
err = -EBUSY;
goto free;
}
for (first_channel = 0; first_channel < MAX_CHANNELS; first_channel++)
if (channels[first_channel])
break;
minor = port->id * MAX_CHAN_DEVICES + first_channel;
chan_dev->id = id;
chan_dev->port = port;
cdev_init(&chan_dev->cdev, &chan_fops);
chan_dev->cdev.owner = THIS_MODULE;
if ((err = cdev_add(&chan_dev->cdev, MKDEV(chan_major, minor), 1)))
goto free;
spin_lock_irq(&npe_lock);
for (ch = first_channel; ch < MAX_CHANNELS; ch++)
if (channels[ch])
port->channels[ch] = id;
port->chan_devices[id] = chan_dev;
spin_unlock_irq(&npe_lock);
chan_dev->dev = device_create(hss_class, dev, MKDEV(chan_major, minor),
chan_dev, "hss%uch%u", port->id, first_channel);
BUG_ON(!chan_dev->dev);
BUG_ON(device_create_file(chan_dev->dev, &chan_attr));
rtnl_unlock();
return orig_len;
free:
kfree(chan_dev);
rtnl_unlock();
return err;
}
static ssize_t show_hdlc_chan(struct device *dev, struct device_attribute *attr,
char *buf)
{
int ret;
rtnl_unlock();
ret = print_channels(dev_get_drvdata(dev), buf, CHANNEL_HDLC);
rtnl_unlock();
return ret;
}
static ssize_t set_hdlc_chan(struct device *dev, struct device_attribute *attr,
const char *buf, size_t len)
{
struct port *port = dev_get_drvdata(dev);
u8 channels[MAX_CHANNELS];
size_t orig_len = len;
unsigned int ch;
int err;
if ((err = parse_channels(&buf, &len, channels)) < 0)
return err;
rtnl_lock();
spin_lock_irq(&npe_lock);
if (port->mode != MODE_RAW && port->mode != MODE_G704) {
err = -EINVAL;
goto err;
}
for (ch = 0; ch < MAX_CHANNELS; ch++)
if (channels[ch] &&
port->channels[ch] != CHANNEL_UNUSED &&
port->channels[ch] != CHANNEL_HDLC) {
printk(KERN_DEBUG "Channel #%i already in use\n", ch);
err = -EBUSY;
goto err;
}
for (ch = 0; ch < MAX_CHANNELS; ch++)
if (channels[ch])
port->channels[ch] = CHANNEL_HDLC;
else if (port->channels[ch] == CHANNEL_HDLC)
port->channels[ch] = CHANNEL_UNUSED;
if (port->hdlc_open)
hss_config(port);
spin_unlock_irq(&npe_lock);
rtnl_unlock();
return orig_len;
err:
spin_unlock_irq(&npe_lock);
rtnl_unlock();
return err;
}
static ssize_t show_clock_type(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct port *port = dev_get_drvdata(dev);
rtnl_lock();
strcpy(buf, (port->clock_type & CLOCK_TYPE_MASK) == CLOCK_INT ?
"int\n" : "ext\n");
rtnl_unlock();
return 5;
}
static ssize_t set_clock_type(struct device *dev, struct device_attribute *attr,
const char *buf, size_t len)
{
struct port *port = dev_get_drvdata(dev);
unsigned int clk;
int ret = len;
if (len && buf[len - 1] == '\n')
len--;
if (len != 3)
return -EINVAL;
if (!memcmp(buf, "ext", 3))
clk = CLOCK_EXT;
else if (!memcmp(buf, "int", 3))
clk = CLOCK_INT;
else
return -EINVAL;
rtnl_lock();
spin_lock_irq(&npe_lock);
if (port->plat->set_clock)
clk = port->plat->set_clock(port->id, clk);
if (clk != CLOCK_EXT && clk != CLOCK_INT) {
ret = -EINVAL; /* plat->set_clock shouldn't change the state */
goto err;
}
port->clock_type = clk;
if (port->port_open_count)
hss_config(port);
err:
spin_unlock_irq(&npe_lock);
rtnl_unlock();
return ret;
}
static ssize_t show_clock_rate(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct port *port = dev_get_drvdata(dev);
rtnl_unlock();
sprintf(buf, "%u\n", port->clock_rate);
rtnl_lock();
return strlen(buf) + 1;
}
static ssize_t set_clock_rate(struct device *dev, struct device_attribute *attr,
const char *buf, size_t len)
{
#if 0
struct port *port = dev_get_drvdata(dev);
size_t orig_len = len;
unsigned int rate;
if (len && buf[len - 1] == '\n')
len--;
if (get_number(&buf, &len, &rate, 1, 0xFFFFFFFFu))
return -EINVAL;
if (len)
return -EINVAL;
rtnl_unlock();
spin_lock_irq(&npe_lock);
port->clock_rate = rate;
spin_unlock_irq(&npe_lock);
rtnl_lock();
return orig_len;
#endif
return -EINVAL; /* FIXME not yet supported */
}
static ssize_t show_frame_size(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct port *port = dev_get_drvdata(dev);
int ret;
rtnl_lock();
if (port->mode != MODE_RAW)
ret = -EINVAL;
else {
sprintf(buf, "%u\n", port->frame_size);
ret = strlen(buf) + 1;
}
rtnl_unlock();
return ret;
}
static ssize_t set_frame_size(struct device *dev, struct device_attribute *attr,
const char *buf, size_t len)
{
struct port *port = dev_get_drvdata(dev);
size_t ret = len;
unsigned int size;
if (len && buf[len - 1] == '\n')
len--;
if (get_number(&buf, &len, &size, MIN_FRAME_SIZE, MAX_FRAME_SIZE))
return -EINVAL;
if (len || size % 8 > 1)
return -EINVAL;
rtnl_lock();
if (port->mode != MODE_RAW)
ret = -EINVAL;
else if (port->port_open_count)
ret = -EBUSY;
else {
spin_lock_irq(&npe_lock);
port->frame_size = size;
port->frame_sync_offset = 0;
spin_unlock_irq(&npe_lock);
}
rtnl_unlock();
return ret;
}
static ssize_t show_frame_offset(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct port *port = dev_get_drvdata(dev);
int ret;
rtnl_lock();
if (port->mode != MODE_RAW && port->mode != MODE_G704)
ret = -EINVAL;
else {
spin_lock_irq(&npe_lock);
sprintf(buf, "%u\n", port->frame_sync_offset);
spin_unlock_irq(&npe_lock);
ret = strlen(buf) + 1;
}
rtnl_unlock();
return ret;
}
static ssize_t set_frame_offset(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t len)
{
struct port *port = dev_get_drvdata(dev);
size_t ret = len;
unsigned int offset;
if (len && buf[len - 1] == '\n')
len--;
rtnl_lock();
if ((port->mode != MODE_RAW) ||
get_number(&buf, &len, &offset, 0, port->frame_size - 1) || len)
ret = -EINVAL;
else {
spin_lock_irq(&npe_lock);
port->frame_sync_offset = offset;
if (port->port_open_count) {
hss_config_main(port);
hss_config_load(port);
}
spin_unlock_irq(&npe_lock);
}
rtnl_unlock();
return ret;
}
static ssize_t show_loopback(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct port *port = dev_get_drvdata(dev);
rtnl_lock();
sprintf(buf, "%u\n", port->loopback);
rtnl_unlock();
return strlen(buf) + 1;
}
static ssize_t set_loopback(struct device *dev, struct device_attribute *attr,
const char *buf, size_t len)
{
struct port *port = dev_get_drvdata(dev);
size_t orig_len = len;
unsigned int lb;
if (len && buf[len - 1] == '\n')
len--;
if (get_number(&buf, &len, &lb, 0, 1))
return -EINVAL;
if (len)
return -EINVAL;
rtnl_lock();
spin_lock_irq(&npe_lock);
if (port->loopback != lb) {
port->loopback = lb;
if (port->port_open_count)
hss_config(port);
__hss_hdlc_set_carrier(port);
}
spin_unlock_irq(&npe_lock);
rtnl_unlock();
return orig_len;
}
static ssize_t show_mode(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct port *port = dev_get_drvdata(dev);
rtnl_lock();
switch(port->mode) {
case MODE_RAW:
strcpy(buf, "raw\n");
break;
case MODE_G704:
strcpy(buf, "g704\n");
break;
default:
strcpy(buf, "hdlc\n");
break;
}
rtnl_unlock();
return strlen(buf) + 1;
}
static ssize_t set_mode(struct device *dev, struct device_attribute *attr,
const char *buf, size_t len)
{
struct port *port = dev_get_drvdata(dev);
size_t ret = len;
if (len && buf[len - 1] == '\n')
len--;
rtnl_lock();
if (port->port_open_count)
ret = -EBUSY;
else if (len == 4 && !memcmp(buf, "hdlc", 4))
port->mode = MODE_HDLC;
else if (len == 3 && !memcmp(buf, "raw", 3))
port->mode = MODE_RAW;
else if (len == 4 && !memcmp(buf, "g704", 4)) {
port->mode = MODE_G704;
port->frame_size = 256;
port->frame_sync_offset = 0;
} else
ret = -EINVAL;
rtnl_unlock();
return ret;
}
static struct device_attribute hss_attrs[] = {
__ATTR(create_chan, 0200, NULL, create_chan),
__ATTR(hdlc_chan, 0644, show_hdlc_chan, set_hdlc_chan),
__ATTR(clock_type, 0644, show_clock_type, set_clock_type),
__ATTR(clock_rate, 0644, show_clock_rate, set_clock_rate),
__ATTR(frame_size, 0644, show_frame_size, set_frame_size),
__ATTR(frame_offset, 0644, show_frame_offset, set_frame_offset),
__ATTR(loopback, 0644, show_loopback, set_loopback),
__ATTR(mode, 0644, show_mode, set_mode),
};
/*****************************************************************************
* initialization
****************************************************************************/
static const struct net_device_ops hss_hdlc_ops = {
.ndo_open = hss_hdlc_open,
.ndo_stop = hss_hdlc_close,
.ndo_change_mtu = hdlc_change_mtu,
.ndo_start_xmit = hdlc_start_xmit,
.ndo_do_ioctl = hss_hdlc_ioctl,
};
static int hss_init_one(struct platform_device *pdev)
{
struct port *port;
struct net_device *dev;
hdlc_device *hdlc;
int i, err;
if ((port = kzalloc(sizeof(*port), GFP_KERNEL)) == NULL)
return -ENOMEM;
if ((port->npe = npe_request(0)) == NULL) {
err = -ENODEV;
goto err_free;
}
if ((port->netdev = dev = alloc_hdlcdev(port)) == NULL) {
err = -ENOMEM;
goto err_plat;
}
SET_NETDEV_DEV(dev, &pdev->dev);
hdlc = dev_to_hdlc(dev);
hdlc->attach = hss_hdlc_attach;
hdlc->xmit = hss_hdlc_xmit;
dev->netdev_ops = &hss_hdlc_ops;
dev->tx_queue_len = 100;
port->clock_type = CLOCK_EXT;
port->clock_rate = 0;
port->clock_reg = CLK42X_SPEED_2048KHZ;
port->frame_size = 256; /* E1 */
port->id = pdev->id;
port->dev = &pdev->dev;
port->plat = pdev->dev.platform_data;
memset(port->channels, CHANNEL_UNUSED, sizeof(port->channels));
init_waitqueue_head(&port->chan_tx_waitq);
init_waitqueue_head(&port->chan_rx_waitq);
netif_napi_add(dev, &port->napi, hss_hdlc_poll, NAPI_WEIGHT);
if ((err = register_hdlc_device(dev))) /* HDLC mode by default */
goto err_free_netdev;
platform_set_drvdata(pdev, port);
for (i = 0; i < ARRAY_SIZE(hss_attrs); i++)
BUG_ON(device_create_file(port->dev, &hss_attrs[i]));
netdev_info(dev, "initialized\n");
return 0;
err_free_netdev:
free_netdev(dev);
err_plat:
npe_release(port->npe);
err_free:
kfree(port);
return err;
}
static int hss_remove_one(struct platform_device *pdev)
{
struct port *port = platform_get_drvdata(pdev);
int i;
for (i = 0; i < ARRAY_SIZE(hss_attrs); i++)
device_remove_file(port->dev, &hss_attrs[i]);
for (i = 0; i < MAX_CHAN_DEVICES; i++)
if (port->chan_devices[i]) {
device_unregister(port->chan_devices[i]->dev);
cdev_del(&port->chan_devices[i]->cdev);
}
unregister_hdlc_device(port->netdev);
free_netdev(port->netdev);
npe_release(port->npe);
platform_set_drvdata(pdev, NULL);
kfree(port);
return 0;
}
static struct platform_driver ixp4xx_hss_driver = {
.driver.name = DRV_NAME,
.probe = hss_init_one,
.remove = hss_remove_one,
};
static int __init hss_init_module(void)
{
int err;
dev_t rdev;
if ((ixp4xx_read_feature_bits() &
(IXP4XX_FEATURE_HDLC | IXP4XX_FEATURE_HSS)) !=
(IXP4XX_FEATURE_HDLC | IXP4XX_FEATURE_HSS))
return -ENODEV;
if ((err = alloc_chrdev_region(&rdev, 0, HSS_COUNT * MAX_CHAN_DEVICES,
"hss")))
return err;
spin_lock_init(&npe_lock);
if (IS_ERR(hss_class = class_create(THIS_MODULE, "hss"))) {
printk(KERN_ERR "Can't register device class 'hss'\n");
err = PTR_ERR(hss_class);
goto free_chrdev;
}
if ((err = platform_driver_register(&ixp4xx_hss_driver)))
goto destroy_class;
chan_major = MAJOR(rdev);
return 0;
destroy_class:
class_destroy(hss_class);
free_chrdev:
unregister_chrdev_region(MKDEV(chan_major, 0),
HSS_COUNT * MAX_CHAN_DEVICES);
return err;
}
static void __exit hss_cleanup_module(void)
{
platform_driver_unregister(&ixp4xx_hss_driver);
class_destroy(hss_class);
unregister_chrdev_region(MKDEV(chan_major, 0),
HSS_COUNT * MAX_CHAN_DEVICES);
}
MODULE_AUTHOR("Krzysztof Halasa");
MODULE_DESCRIPTION("Intel IXP4xx HSS driver");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:ixp4xx_hss");
module_init(hss_init_module);
module_exit(hss_cleanup_module);