blob: ba804f519950f8540320f9b30cccd5e093e9362f [file] [log] [blame]
/*
* This is the latest version of hackbench.c, that tests scheduler and
* unix-socket (or pipe) performance.
*
* Usage: hackbench [-pipe] <num groups> [process|thread] [loops]
*
* Build it with:
* gcc -g -Wall -O2 -o hackbench hackbench.c -lpthread
*
* Downloaded from http://people.redhat.com/mingo/cfs-scheduler/tools/hackbench.c
* February 19 2010.
*
*/
/* Test groups of 20 processes spraying to 20 receivers */
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/wait.h>
#include <sys/time.h>
#include <sys/poll.h>
#include <limits.h>
#include <getopt.h>
#include <signal.h>
#include <setjmp.h>
#include <sched.h>
static unsigned int datasize = 100;
static unsigned int loops = 100;
static unsigned int num_groups = 10;
static unsigned int num_fds = 20;
static unsigned int fifo = 0;
/*
* 0 means thread mode and others mean process (default)
*/
#define THREAD_MODE 0
#define PROCESS_MODE 1
static unsigned int process_mode = PROCESS_MODE;
static int use_pipes = 0;
struct sender_context {
unsigned int num_fds;
int ready_out;
int wakefd;
int out_fds[0];
};
struct receiver_context {
unsigned int num_packets;
int in_fds[2];
int ready_out;
int wakefd;
};
typedef union {
pthread_t threadid;
pid_t pid;
} childinfo_t;
childinfo_t *child_tab = NULL;
unsigned int total_children = 0;
unsigned int signal_caught = 0;
static jmp_buf jmpbuf;
inline static void sneeze(const char *msg) {
/* Avoid calling these functions when called from a code path
* which involves sigcatcher(), as they are not reentrant safe.
*/
if( !signal_caught ) {
fprintf(stderr, "%s (error: %s)\n", msg, strerror(errno));
}
}
static void barf(const char *msg)
{
sneeze(msg);
exit(1);
}
static void print_usage_exit()
{
printf("Usage: hackbench [-p|--pipe] [-s|--datasize <bytes>] [-l|--loops <num loops>]\n"
"\t\t [-g|--groups <num groups] [-f|--fds <num fds>]\n"
"\t\t [-T|--threads] [-P|--process] [--help]\n");
exit(1);
}
static void fdpair(int fds[2])
{
if (use_pipes) {
if (pipe(fds) == 0)
return;
} else {
if (socketpair(AF_UNIX, SOCK_STREAM, 0, fds) == 0)
return;
}
barf("Creating fdpair");
}
/* Block until we're ready to go */
static void ready(int ready_out, int wakefd)
{
char dummy = '*';
struct pollfd pollfd = { .fd = wakefd, .events = POLLIN };
/* Tell them we're ready. */
if (write(ready_out, &dummy, 1) != 1)
barf("CLIENT: ready write");
/* Wait for "GO" signal */
if (poll(&pollfd, 1, -1) != 1)
barf("poll");
}
static void reset_worker_signals(void)
{
signal(SIGTERM, SIG_DFL);
signal(SIGINT, SIG_DFL);
}
/* Sender sprays loops messages down each file descriptor */
static void *sender(struct sender_context *ctx)
{
char data[datasize];
unsigned int i, j;
reset_worker_signals();
ready(ctx->ready_out, ctx->wakefd);
memset(&data, '-', datasize);
/* Now pump to every receiver. */
for (i = 0; i < loops; i++) {
for (j = 0; j < ctx->num_fds; j++) {
int ret, done = 0;
again:
ret = write(ctx->out_fds[j], data + done, sizeof(data)-done);
if (ret < 0)
barf("SENDER: write");
done += ret;
if (done < sizeof(data))
goto again;
}
}
return NULL;
}
/* One receiver per fd */
static void *receiver(struct receiver_context* ctx)
{
unsigned int i;
reset_worker_signals();
if (process_mode == PROCESS_MODE)
close(ctx->in_fds[1]);
/* Wait for start... */
ready(ctx->ready_out, ctx->wakefd);
/* Receive them all */
for (i = 0; i < ctx->num_packets; i++) {
char data[datasize];
int ret, done = 0;
again:
ret = read(ctx->in_fds[0], data + done, datasize - done);
if (ret < 0)
barf("SERVER: read");
done += ret;
if (done < datasize)
goto again;
}
if (ctx) {
free(ctx);
}
return NULL;
}
static int create_worker(childinfo_t *child, void *ctx, void *(*func)(void *))
{
pthread_attr_t attr;
int err;
switch (process_mode) {
case PROCESS_MODE: /* process mode */
/* Fork the sender/receiver child. */
switch ((child->pid = fork())) {
case -1:
sneeze("fork()");
return -1;
case 0:
(*func) (ctx);
exit(0);
}
break;
case THREAD_MODE: /* threaded mode */
if (pthread_attr_init(&attr) != 0) {
sneeze("pthread_attr_init()");
return -1;
}
#ifndef __ia64__
if (pthread_attr_setstacksize(&attr, PTHREAD_STACK_MIN) != 0) {
sneeze("pthread_attr_setstacksize()");
return -1;
}
#endif
if ((err=pthread_create(&child->threadid, &attr, func, ctx)) != 0) {
sneeze("pthread_create failed()");
return -1;
}
break;
}
return 0;
}
void signal_workers(childinfo_t *children, unsigned int num_children)
{
int i;
printf("signaling %d worker threads to terminate\n", num_children);
for (i=0; i < num_children; i++) {
kill(children[i].pid, SIGTERM);
}
}
unsigned int reap_workers(childinfo_t *child, unsigned int totchld, unsigned int dokill)
{
unsigned int i, rc = 0;
int status, err;
void *thr_status;
if (dokill) {
fprintf(stderr, "sending SIGTERM to all child processes\n");
signal(SIGTERM, SIG_IGN);
signal_workers(child, totchld);
}
for( i = 0; i < totchld; i++ ) {
int pid;
switch( process_mode ) {
case PROCESS_MODE: /* process mode */
fflush(stdout);
pid = wait(&status);
if (pid == -1 && errno == ECHILD)
break;
if (!WIFEXITED(status))
rc++;
break;
case THREAD_MODE: /* threaded mode */
err = pthread_join(child[i].threadid, &thr_status);
if( err != 0 ) {
sneeze("pthread_join()");
rc++;
}
break;
}
}
return rc;
}
/* One group of senders and receivers */
static unsigned int group(childinfo_t *child,
unsigned int tab_offset,
unsigned int num_fds,
int ready_out,
int wakefd)
{
unsigned int i;
struct sender_context* snd_ctx = malloc (sizeof(struct sender_context)
+num_fds*sizeof(int));
int err;
if (!snd_ctx) {
sneeze("malloc() [sender ctx]");
return 0;
}
for (i = 0; i < num_fds; i++) {
int fds[2];
struct receiver_context* ctx = malloc (sizeof(*ctx));
if (!ctx) {
sneeze("malloc() [receiver ctx]");
return (i > 0 ? i-1 : 0);
}
/* Create the pipe between client and server */
fdpair(fds);
ctx->num_packets = num_fds*loops;
ctx->in_fds[0] = fds[0];
ctx->in_fds[1] = fds[1];
ctx->ready_out = ready_out;
ctx->wakefd = wakefd;
err = create_worker(&child[tab_offset+i], ctx,
(void *)(void *)receiver);
if(err) {
return (i > 0 ? i-1 : 0);
}
snd_ctx->out_fds[i] = fds[1];
if (process_mode == PROCESS_MODE)
close(fds[0]);
}
snd_ctx->ready_out = ready_out;
snd_ctx->wakefd = wakefd;
snd_ctx->num_fds = num_fds;
/* Now we have all the fds, fork the senders */
for (i = 0; i < num_fds; i++) {
err = create_worker(&child[tab_offset+num_fds+i], snd_ctx,
(void *)(void *)sender);
if(err) {
return (num_fds+i)-1;
}
}
/* Close the fds we have left */
if (process_mode == PROCESS_MODE)
for (i = 0; i < num_fds; i++)
close(snd_ctx->out_fds[i]);
/* Return number of children to reap */
return num_fds * 2;
}
static void process_options (int argc, char *argv[])
{
int error = 0;
while( 1 ) {
int optind = 0;
static struct option longopts[] = {
{"pipe", no_argument, NULL, 'p'},
{"datasize", required_argument, NULL, 's'},
{"loops", required_argument, NULL, 'l'},
{"groups", required_argument, NULL, 'g'},
{"fds", required_argument, NULL, 'f'},
{"threads", no_argument, NULL, 'T'},
{"processes", no_argument, NULL, 'P'},
{"fifo", no_argument, NULL, 'F'},
{"help", no_argument, NULL, 'h'},
{NULL, 0, NULL, 0}
};
int c = getopt_long(argc, argv, "ps:l:g:f:TPFh",
longopts, &optind);
if (c == -1) {
break;
}
switch (c) {
case 'p':
use_pipes = 1;
break;
case 's':
if (!(argv[optind] && (datasize = atoi(optarg)) > 0)) {
fprintf(stderr, "%s: --datasize|-s requires an integer > 0\n", argv[0]);
error = 1;
}
break;
case 'l':
if (!(argv[optind] && (loops = atoi(optarg)) > 0)) {
fprintf(stderr, "%s: --loops|-l requires an integer > 0\n", argv[0]);
error = 1;
}
break;
case 'g':
if (!(argv[optind] && (num_groups = atoi(optarg)) > 0)) {
fprintf(stderr, "%s: --groups|-g requires an integer > 0\n", argv[0]);
error = 1;
}
break;
case 'f':
if (!(argv[optind] && (num_fds = atoi(optarg)) > 0)) {
fprintf(stderr, "%s: --fds|-f requires an integer > 0\n", argv[0]);
error = 1;
}
break;
case 'T':
process_mode = THREAD_MODE;
break;
case 'P':
process_mode = PROCESS_MODE;
break;
case 'F':
fifo = 1;
break;
case 'h':
print_usage_exit();
default:
error = 1;
}
}
if( error ) {
exit(1);
}
}
void sigcatcher(int sig) {
/* All caught signals will cause the program to exit */
signal_caught = 1;
fprintf(stderr, "Signal %d caught, longjmp'ing out!\n", sig);
signal(sig, SIG_IGN);
longjmp(jmpbuf, 1);
}
int main(int argc, char *argv[])
{
unsigned int i;
struct timeval start, stop, diff;
int readyfds[2], wakefds[2];
char dummy;
int timer_started = 0;
struct sched_param sp;
process_options (argc, argv);
printf("Running in %s mode with %d groups using %d file descriptors each (== %d tasks)\n",
(process_mode == THREAD_MODE ? "threaded" : "process"),
num_groups, 2*num_fds, num_groups*(num_fds*2));
printf("Each sender will pass %d messages of %d bytes\n", loops, datasize);
fflush(NULL);
child_tab = calloc(num_fds * 2 * num_groups, sizeof(childinfo_t));
if (!child_tab)
barf("main:malloc()");
fdpair(readyfds);
fdpair(wakefds);
/* Catch some signals */
signal(SIGINT, sigcatcher);
signal(SIGTERM, sigcatcher);
signal(SIGHUP, SIG_IGN);
if (setjmp(jmpbuf) == 0) {
total_children = 0;
for (i = 0; i < num_groups; i++) {
int c = group(child_tab, total_children, num_fds, readyfds[1], wakefds[0]);
if( c != (num_fds*2) ) {
fprintf(stderr, "%i children started. Expected %i\n", c, num_fds*2);
reap_workers(child_tab, total_children + c, 1);
barf("Creating workers");
}
total_children += c;
}
if (fifo) {
/* make main a realtime task so that we can manage the workers */
sp.sched_priority = 1;
if (sched_setscheduler(0, SCHED_FIFO, &sp) < 0)
barf("can't change to fifo in main");
}
/* Wait for everyone to be ready */
for (i = 0; i < total_children; i++)
if (read(readyfds[0], &dummy, 1) != 1) {
reap_workers(child_tab, total_children, 1);
barf("Reading for readyfds");
}
gettimeofday(&start, NULL);
timer_started = 1;
/* Kick them off */
if (write(wakefds[1], &dummy, 1) != 1) {
reap_workers(child_tab, total_children, 1);
barf("Writing to start senders");
}
}
else {
fprintf(stderr, "longjmp'ed out, reaping children\n");
signal(SIGINT, SIG_IGN);
signal(SIGTERM, SIG_IGN);
}
/* Reap them all */
reap_workers(child_tab, total_children, signal_caught);
gettimeofday(&stop, NULL);
/* Print time... */
if (timer_started) {
timersub(&stop, &start, &diff);
printf("Time: %lu.%03lu\n", diff.tv_sec, diff.tv_usec/1000);
}
else
fprintf(stderr, "No measurements available\n");
free(child_tab);
exit(0);
}