| // SPDX-License-Identifier: GPL-2.0 | 
 | /* | 
 |  * Copyright (C) 2008 Oracle.  All rights reserved. | 
 |  */ | 
 |  | 
 | #include <linux/kernel.h> | 
 | #include <linux/bio.h> | 
 | #include <linux/file.h> | 
 | #include <linux/fs.h> | 
 | #include <linux/pagemap.h> | 
 | #include <linux/highmem.h> | 
 | #include <linux/time.h> | 
 | #include <linux/init.h> | 
 | #include <linux/string.h> | 
 | #include <linux/backing-dev.h> | 
 | #include <linux/writeback.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/sched/mm.h> | 
 | #include <linux/log2.h> | 
 | #include <crypto/hash.h> | 
 | #include "misc.h" | 
 | #include "ctree.h" | 
 | #include "disk-io.h" | 
 | #include "transaction.h" | 
 | #include "btrfs_inode.h" | 
 | #include "volumes.h" | 
 | #include "ordered-data.h" | 
 | #include "compression.h" | 
 | #include "extent_io.h" | 
 | #include "extent_map.h" | 
 |  | 
 | static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" }; | 
 |  | 
 | const char* btrfs_compress_type2str(enum btrfs_compression_type type) | 
 | { | 
 | 	switch (type) { | 
 | 	case BTRFS_COMPRESS_ZLIB: | 
 | 	case BTRFS_COMPRESS_LZO: | 
 | 	case BTRFS_COMPRESS_ZSTD: | 
 | 	case BTRFS_COMPRESS_NONE: | 
 | 		return btrfs_compress_types[type]; | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | bool btrfs_compress_is_valid_type(const char *str, size_t len) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) { | 
 | 		size_t comp_len = strlen(btrfs_compress_types[i]); | 
 |  | 
 | 		if (len < comp_len) | 
 | 			continue; | 
 |  | 
 | 		if (!strncmp(btrfs_compress_types[i], str, comp_len)) | 
 | 			return true; | 
 | 	} | 
 | 	return false; | 
 | } | 
 |  | 
 | static int compression_compress_pages(int type, struct list_head *ws, | 
 |                struct address_space *mapping, u64 start, struct page **pages, | 
 |                unsigned long *out_pages, unsigned long *total_in, | 
 |                unsigned long *total_out) | 
 | { | 
 | 	switch (type) { | 
 | 	case BTRFS_COMPRESS_ZLIB: | 
 | 		return zlib_compress_pages(ws, mapping, start, pages, | 
 | 				out_pages, total_in, total_out); | 
 | 	case BTRFS_COMPRESS_LZO: | 
 | 		return lzo_compress_pages(ws, mapping, start, pages, | 
 | 				out_pages, total_in, total_out); | 
 | 	case BTRFS_COMPRESS_ZSTD: | 
 | 		return zstd_compress_pages(ws, mapping, start, pages, | 
 | 				out_pages, total_in, total_out); | 
 | 	case BTRFS_COMPRESS_NONE: | 
 | 	default: | 
 | 		/* | 
 | 		 * This can happen when compression races with remount setting | 
 | 		 * it to 'no compress', while caller doesn't call | 
 | 		 * inode_need_compress() to check if we really need to | 
 | 		 * compress. | 
 | 		 * | 
 | 		 * Not a big deal, just need to inform caller that we | 
 | 		 * haven't allocated any pages yet. | 
 | 		 */ | 
 | 		*out_pages = 0; | 
 | 		return -E2BIG; | 
 | 	} | 
 | } | 
 |  | 
 | static int compression_decompress_bio(int type, struct list_head *ws, | 
 | 		struct compressed_bio *cb) | 
 | { | 
 | 	switch (type) { | 
 | 	case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb); | 
 | 	case BTRFS_COMPRESS_LZO:  return lzo_decompress_bio(ws, cb); | 
 | 	case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb); | 
 | 	case BTRFS_COMPRESS_NONE: | 
 | 	default: | 
 | 		/* | 
 | 		 * This can't happen, the type is validated several times | 
 | 		 * before we get here. | 
 | 		 */ | 
 | 		BUG(); | 
 | 	} | 
 | } | 
 |  | 
 | static int compression_decompress(int type, struct list_head *ws, | 
 |                unsigned char *data_in, struct page *dest_page, | 
 |                unsigned long start_byte, size_t srclen, size_t destlen) | 
 | { | 
 | 	switch (type) { | 
 | 	case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page, | 
 | 						start_byte, srclen, destlen); | 
 | 	case BTRFS_COMPRESS_LZO:  return lzo_decompress(ws, data_in, dest_page, | 
 | 						start_byte, srclen, destlen); | 
 | 	case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page, | 
 | 						start_byte, srclen, destlen); | 
 | 	case BTRFS_COMPRESS_NONE: | 
 | 	default: | 
 | 		/* | 
 | 		 * This can't happen, the type is validated several times | 
 | 		 * before we get here. | 
 | 		 */ | 
 | 		BUG(); | 
 | 	} | 
 | } | 
 |  | 
 | static int btrfs_decompress_bio(struct compressed_bio *cb); | 
 |  | 
 | static inline int compressed_bio_size(struct btrfs_fs_info *fs_info, | 
 | 				      unsigned long disk_size) | 
 | { | 
 | 	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); | 
 |  | 
 | 	return sizeof(struct compressed_bio) + | 
 | 		(DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * csum_size; | 
 | } | 
 |  | 
 | static int check_compressed_csum(struct btrfs_inode *inode, struct bio *bio, | 
 | 				 u64 disk_start) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = inode->root->fs_info; | 
 | 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); | 
 | 	const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); | 
 | 	struct page *page; | 
 | 	unsigned long i; | 
 | 	char *kaddr; | 
 | 	u8 csum[BTRFS_CSUM_SIZE]; | 
 | 	struct compressed_bio *cb = bio->bi_private; | 
 | 	u8 *cb_sum = cb->sums; | 
 |  | 
 | 	if (inode->flags & BTRFS_INODE_NODATASUM) | 
 | 		return 0; | 
 |  | 
 | 	shash->tfm = fs_info->csum_shash; | 
 |  | 
 | 	for (i = 0; i < cb->nr_pages; i++) { | 
 | 		page = cb->compressed_pages[i]; | 
 |  | 
 | 		kaddr = kmap_atomic(page); | 
 | 		crypto_shash_digest(shash, kaddr, PAGE_SIZE, csum); | 
 | 		kunmap_atomic(kaddr); | 
 |  | 
 | 		if (memcmp(&csum, cb_sum, csum_size)) { | 
 | 			btrfs_print_data_csum_error(inode, disk_start, | 
 | 					csum, cb_sum, cb->mirror_num); | 
 | 			if (btrfs_io_bio(bio)->device) | 
 | 				btrfs_dev_stat_inc_and_print( | 
 | 					btrfs_io_bio(bio)->device, | 
 | 					BTRFS_DEV_STAT_CORRUPTION_ERRS); | 
 | 			return -EIO; | 
 | 		} | 
 | 		cb_sum += csum_size; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* when we finish reading compressed pages from the disk, we | 
 |  * decompress them and then run the bio end_io routines on the | 
 |  * decompressed pages (in the inode address space). | 
 |  * | 
 |  * This allows the checksumming and other IO error handling routines | 
 |  * to work normally | 
 |  * | 
 |  * The compressed pages are freed here, and it must be run | 
 |  * in process context | 
 |  */ | 
 | static void end_compressed_bio_read(struct bio *bio) | 
 | { | 
 | 	struct compressed_bio *cb = bio->bi_private; | 
 | 	struct inode *inode; | 
 | 	struct page *page; | 
 | 	unsigned long index; | 
 | 	unsigned int mirror = btrfs_io_bio(bio)->mirror_num; | 
 | 	int ret = 0; | 
 |  | 
 | 	if (bio->bi_status) | 
 | 		cb->errors = 1; | 
 |  | 
 | 	/* if there are more bios still pending for this compressed | 
 | 	 * extent, just exit | 
 | 	 */ | 
 | 	if (!refcount_dec_and_test(&cb->pending_bios)) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * Record the correct mirror_num in cb->orig_bio so that | 
 | 	 * read-repair can work properly. | 
 | 	 */ | 
 | 	btrfs_io_bio(cb->orig_bio)->mirror_num = mirror; | 
 | 	cb->mirror_num = mirror; | 
 |  | 
 | 	/* | 
 | 	 * Some IO in this cb have failed, just skip checksum as there | 
 | 	 * is no way it could be correct. | 
 | 	 */ | 
 | 	if (cb->errors == 1) | 
 | 		goto csum_failed; | 
 |  | 
 | 	inode = cb->inode; | 
 | 	ret = check_compressed_csum(BTRFS_I(inode), bio, | 
 | 				    (u64)bio->bi_iter.bi_sector << 9); | 
 | 	if (ret) | 
 | 		goto csum_failed; | 
 |  | 
 | 	/* ok, we're the last bio for this extent, lets start | 
 | 	 * the decompression. | 
 | 	 */ | 
 | 	ret = btrfs_decompress_bio(cb); | 
 |  | 
 | csum_failed: | 
 | 	if (ret) | 
 | 		cb->errors = 1; | 
 |  | 
 | 	/* release the compressed pages */ | 
 | 	index = 0; | 
 | 	for (index = 0; index < cb->nr_pages; index++) { | 
 | 		page = cb->compressed_pages[index]; | 
 | 		page->mapping = NULL; | 
 | 		put_page(page); | 
 | 	} | 
 |  | 
 | 	/* do io completion on the original bio */ | 
 | 	if (cb->errors) { | 
 | 		bio_io_error(cb->orig_bio); | 
 | 	} else { | 
 | 		struct bio_vec *bvec; | 
 | 		struct bvec_iter_all iter_all; | 
 |  | 
 | 		/* | 
 | 		 * we have verified the checksum already, set page | 
 | 		 * checked so the end_io handlers know about it | 
 | 		 */ | 
 | 		ASSERT(!bio_flagged(bio, BIO_CLONED)); | 
 | 		bio_for_each_segment_all(bvec, cb->orig_bio, iter_all) | 
 | 			SetPageChecked(bvec->bv_page); | 
 |  | 
 | 		bio_endio(cb->orig_bio); | 
 | 	} | 
 |  | 
 | 	/* finally free the cb struct */ | 
 | 	kfree(cb->compressed_pages); | 
 | 	kfree(cb); | 
 | out: | 
 | 	bio_put(bio); | 
 | } | 
 |  | 
 | /* | 
 |  * Clear the writeback bits on all of the file | 
 |  * pages for a compressed write | 
 |  */ | 
 | static noinline void end_compressed_writeback(struct inode *inode, | 
 | 					      const struct compressed_bio *cb) | 
 | { | 
 | 	unsigned long index = cb->start >> PAGE_SHIFT; | 
 | 	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT; | 
 | 	struct page *pages[16]; | 
 | 	unsigned long nr_pages = end_index - index + 1; | 
 | 	int i; | 
 | 	int ret; | 
 |  | 
 | 	if (cb->errors) | 
 | 		mapping_set_error(inode->i_mapping, -EIO); | 
 |  | 
 | 	while (nr_pages > 0) { | 
 | 		ret = find_get_pages_contig(inode->i_mapping, index, | 
 | 				     min_t(unsigned long, | 
 | 				     nr_pages, ARRAY_SIZE(pages)), pages); | 
 | 		if (ret == 0) { | 
 | 			nr_pages -= 1; | 
 | 			index += 1; | 
 | 			continue; | 
 | 		} | 
 | 		for (i = 0; i < ret; i++) { | 
 | 			if (cb->errors) | 
 | 				SetPageError(pages[i]); | 
 | 			end_page_writeback(pages[i]); | 
 | 			put_page(pages[i]); | 
 | 		} | 
 | 		nr_pages -= ret; | 
 | 		index += ret; | 
 | 	} | 
 | 	/* the inode may be gone now */ | 
 | } | 
 |  | 
 | /* | 
 |  * do the cleanup once all the compressed pages hit the disk. | 
 |  * This will clear writeback on the file pages and free the compressed | 
 |  * pages. | 
 |  * | 
 |  * This also calls the writeback end hooks for the file pages so that | 
 |  * metadata and checksums can be updated in the file. | 
 |  */ | 
 | static void end_compressed_bio_write(struct bio *bio) | 
 | { | 
 | 	struct compressed_bio *cb = bio->bi_private; | 
 | 	struct inode *inode; | 
 | 	struct page *page; | 
 | 	unsigned long index; | 
 |  | 
 | 	if (bio->bi_status) | 
 | 		cb->errors = 1; | 
 |  | 
 | 	/* if there are more bios still pending for this compressed | 
 | 	 * extent, just exit | 
 | 	 */ | 
 | 	if (!refcount_dec_and_test(&cb->pending_bios)) | 
 | 		goto out; | 
 |  | 
 | 	/* ok, we're the last bio for this extent, step one is to | 
 | 	 * call back into the FS and do all the end_io operations | 
 | 	 */ | 
 | 	inode = cb->inode; | 
 | 	cb->compressed_pages[0]->mapping = cb->inode->i_mapping; | 
 | 	btrfs_writepage_endio_finish_ordered(cb->compressed_pages[0], | 
 | 			cb->start, cb->start + cb->len - 1, | 
 | 			!cb->errors); | 
 | 	cb->compressed_pages[0]->mapping = NULL; | 
 |  | 
 | 	end_compressed_writeback(inode, cb); | 
 | 	/* note, our inode could be gone now */ | 
 |  | 
 | 	/* | 
 | 	 * release the compressed pages, these came from alloc_page and | 
 | 	 * are not attached to the inode at all | 
 | 	 */ | 
 | 	index = 0; | 
 | 	for (index = 0; index < cb->nr_pages; index++) { | 
 | 		page = cb->compressed_pages[index]; | 
 | 		page->mapping = NULL; | 
 | 		put_page(page); | 
 | 	} | 
 |  | 
 | 	/* finally free the cb struct */ | 
 | 	kfree(cb->compressed_pages); | 
 | 	kfree(cb); | 
 | out: | 
 | 	bio_put(bio); | 
 | } | 
 |  | 
 | /* | 
 |  * worker function to build and submit bios for previously compressed pages. | 
 |  * The corresponding pages in the inode should be marked for writeback | 
 |  * and the compressed pages should have a reference on them for dropping | 
 |  * when the IO is complete. | 
 |  * | 
 |  * This also checksums the file bytes and gets things ready for | 
 |  * the end io hooks. | 
 |  */ | 
 | blk_status_t btrfs_submit_compressed_write(struct btrfs_inode *inode, u64 start, | 
 | 				 unsigned long len, u64 disk_start, | 
 | 				 unsigned long compressed_len, | 
 | 				 struct page **compressed_pages, | 
 | 				 unsigned long nr_pages, | 
 | 				 unsigned int write_flags, | 
 | 				 struct cgroup_subsys_state *blkcg_css) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = inode->root->fs_info; | 
 | 	struct bio *bio = NULL; | 
 | 	struct compressed_bio *cb; | 
 | 	unsigned long bytes_left; | 
 | 	int pg_index = 0; | 
 | 	struct page *page; | 
 | 	u64 first_byte = disk_start; | 
 | 	blk_status_t ret; | 
 | 	int skip_sum = inode->flags & BTRFS_INODE_NODATASUM; | 
 |  | 
 | 	WARN_ON(!PAGE_ALIGNED(start)); | 
 | 	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS); | 
 | 	if (!cb) | 
 | 		return BLK_STS_RESOURCE; | 
 | 	refcount_set(&cb->pending_bios, 0); | 
 | 	cb->errors = 0; | 
 | 	cb->inode = &inode->vfs_inode; | 
 | 	cb->start = start; | 
 | 	cb->len = len; | 
 | 	cb->mirror_num = 0; | 
 | 	cb->compressed_pages = compressed_pages; | 
 | 	cb->compressed_len = compressed_len; | 
 | 	cb->orig_bio = NULL; | 
 | 	cb->nr_pages = nr_pages; | 
 |  | 
 | 	bio = btrfs_bio_alloc(first_byte); | 
 | 	bio->bi_opf = REQ_OP_WRITE | write_flags; | 
 | 	bio->bi_private = cb; | 
 | 	bio->bi_end_io = end_compressed_bio_write; | 
 |  | 
 | 	if (blkcg_css) { | 
 | 		bio->bi_opf |= REQ_CGROUP_PUNT; | 
 | 		kthread_associate_blkcg(blkcg_css); | 
 | 	} | 
 | 	refcount_set(&cb->pending_bios, 1); | 
 |  | 
 | 	/* create and submit bios for the compressed pages */ | 
 | 	bytes_left = compressed_len; | 
 | 	for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) { | 
 | 		int submit = 0; | 
 |  | 
 | 		page = compressed_pages[pg_index]; | 
 | 		page->mapping = inode->vfs_inode.i_mapping; | 
 | 		if (bio->bi_iter.bi_size) | 
 | 			submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE, bio, | 
 | 							  0); | 
 |  | 
 | 		page->mapping = NULL; | 
 | 		if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) < | 
 | 		    PAGE_SIZE) { | 
 | 			/* | 
 | 			 * inc the count before we submit the bio so | 
 | 			 * we know the end IO handler won't happen before | 
 | 			 * we inc the count.  Otherwise, the cb might get | 
 | 			 * freed before we're done setting it up | 
 | 			 */ | 
 | 			refcount_inc(&cb->pending_bios); | 
 | 			ret = btrfs_bio_wq_end_io(fs_info, bio, | 
 | 						  BTRFS_WQ_ENDIO_DATA); | 
 | 			BUG_ON(ret); /* -ENOMEM */ | 
 |  | 
 | 			if (!skip_sum) { | 
 | 				ret = btrfs_csum_one_bio(inode, bio, start, 1); | 
 | 				BUG_ON(ret); /* -ENOMEM */ | 
 | 			} | 
 |  | 
 | 			ret = btrfs_map_bio(fs_info, bio, 0); | 
 | 			if (ret) { | 
 | 				bio->bi_status = ret; | 
 | 				bio_endio(bio); | 
 | 			} | 
 |  | 
 | 			bio = btrfs_bio_alloc(first_byte); | 
 | 			bio->bi_opf = REQ_OP_WRITE | write_flags; | 
 | 			bio->bi_private = cb; | 
 | 			bio->bi_end_io = end_compressed_bio_write; | 
 | 			if (blkcg_css) | 
 | 				bio->bi_opf |= REQ_CGROUP_PUNT; | 
 | 			bio_add_page(bio, page, PAGE_SIZE, 0); | 
 | 		} | 
 | 		if (bytes_left < PAGE_SIZE) { | 
 | 			btrfs_info(fs_info, | 
 | 					"bytes left %lu compress len %lu nr %lu", | 
 | 			       bytes_left, cb->compressed_len, cb->nr_pages); | 
 | 		} | 
 | 		bytes_left -= PAGE_SIZE; | 
 | 		first_byte += PAGE_SIZE; | 
 | 		cond_resched(); | 
 | 	} | 
 |  | 
 | 	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); | 
 | 	BUG_ON(ret); /* -ENOMEM */ | 
 |  | 
 | 	if (!skip_sum) { | 
 | 		ret = btrfs_csum_one_bio(inode, bio, start, 1); | 
 | 		BUG_ON(ret); /* -ENOMEM */ | 
 | 	} | 
 |  | 
 | 	ret = btrfs_map_bio(fs_info, bio, 0); | 
 | 	if (ret) { | 
 | 		bio->bi_status = ret; | 
 | 		bio_endio(bio); | 
 | 	} | 
 |  | 
 | 	if (blkcg_css) | 
 | 		kthread_associate_blkcg(NULL); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static u64 bio_end_offset(struct bio *bio) | 
 | { | 
 | 	struct bio_vec *last = bio_last_bvec_all(bio); | 
 |  | 
 | 	return page_offset(last->bv_page) + last->bv_len + last->bv_offset; | 
 | } | 
 |  | 
 | static noinline int add_ra_bio_pages(struct inode *inode, | 
 | 				     u64 compressed_end, | 
 | 				     struct compressed_bio *cb) | 
 | { | 
 | 	unsigned long end_index; | 
 | 	unsigned long pg_index; | 
 | 	u64 last_offset; | 
 | 	u64 isize = i_size_read(inode); | 
 | 	int ret; | 
 | 	struct page *page; | 
 | 	unsigned long nr_pages = 0; | 
 | 	struct extent_map *em; | 
 | 	struct address_space *mapping = inode->i_mapping; | 
 | 	struct extent_map_tree *em_tree; | 
 | 	struct extent_io_tree *tree; | 
 | 	u64 end; | 
 | 	int misses = 0; | 
 |  | 
 | 	last_offset = bio_end_offset(cb->orig_bio); | 
 | 	em_tree = &BTRFS_I(inode)->extent_tree; | 
 | 	tree = &BTRFS_I(inode)->io_tree; | 
 |  | 
 | 	if (isize == 0) | 
 | 		return 0; | 
 |  | 
 | 	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT; | 
 |  | 
 | 	while (last_offset < compressed_end) { | 
 | 		pg_index = last_offset >> PAGE_SHIFT; | 
 |  | 
 | 		if (pg_index > end_index) | 
 | 			break; | 
 |  | 
 | 		page = xa_load(&mapping->i_pages, pg_index); | 
 | 		if (page && !xa_is_value(page)) { | 
 | 			misses++; | 
 | 			if (misses > 4) | 
 | 				break; | 
 | 			goto next; | 
 | 		} | 
 |  | 
 | 		page = __page_cache_alloc(mapping_gfp_constraint(mapping, | 
 | 								 ~__GFP_FS)); | 
 | 		if (!page) | 
 | 			break; | 
 |  | 
 | 		if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) { | 
 | 			put_page(page); | 
 | 			goto next; | 
 | 		} | 
 |  | 
 | 		end = last_offset + PAGE_SIZE - 1; | 
 | 		/* | 
 | 		 * at this point, we have a locked page in the page cache | 
 | 		 * for these bytes in the file.  But, we have to make | 
 | 		 * sure they map to this compressed extent on disk. | 
 | 		 */ | 
 | 		set_page_extent_mapped(page); | 
 | 		lock_extent(tree, last_offset, end); | 
 | 		read_lock(&em_tree->lock); | 
 | 		em = lookup_extent_mapping(em_tree, last_offset, | 
 | 					   PAGE_SIZE); | 
 | 		read_unlock(&em_tree->lock); | 
 |  | 
 | 		if (!em || last_offset < em->start || | 
 | 		    (last_offset + PAGE_SIZE > extent_map_end(em)) || | 
 | 		    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) { | 
 | 			free_extent_map(em); | 
 | 			unlock_extent(tree, last_offset, end); | 
 | 			unlock_page(page); | 
 | 			put_page(page); | 
 | 			break; | 
 | 		} | 
 | 		free_extent_map(em); | 
 |  | 
 | 		if (page->index == end_index) { | 
 | 			char *userpage; | 
 | 			size_t zero_offset = offset_in_page(isize); | 
 |  | 
 | 			if (zero_offset) { | 
 | 				int zeros; | 
 | 				zeros = PAGE_SIZE - zero_offset; | 
 | 				userpage = kmap_atomic(page); | 
 | 				memset(userpage + zero_offset, 0, zeros); | 
 | 				flush_dcache_page(page); | 
 | 				kunmap_atomic(userpage); | 
 | 			} | 
 | 		} | 
 |  | 
 | 		ret = bio_add_page(cb->orig_bio, page, | 
 | 				   PAGE_SIZE, 0); | 
 |  | 
 | 		if (ret == PAGE_SIZE) { | 
 | 			nr_pages++; | 
 | 			put_page(page); | 
 | 		} else { | 
 | 			unlock_extent(tree, last_offset, end); | 
 | 			unlock_page(page); | 
 | 			put_page(page); | 
 | 			break; | 
 | 		} | 
 | next: | 
 | 		last_offset += PAGE_SIZE; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * for a compressed read, the bio we get passed has all the inode pages | 
 |  * in it.  We don't actually do IO on those pages but allocate new ones | 
 |  * to hold the compressed pages on disk. | 
 |  * | 
 |  * bio->bi_iter.bi_sector points to the compressed extent on disk | 
 |  * bio->bi_io_vec points to all of the inode pages | 
 |  * | 
 |  * After the compressed pages are read, we copy the bytes into the | 
 |  * bio we were passed and then call the bio end_io calls | 
 |  */ | 
 | blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio, | 
 | 				 int mirror_num, unsigned long bio_flags) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
 | 	struct extent_map_tree *em_tree; | 
 | 	struct compressed_bio *cb; | 
 | 	unsigned long compressed_len; | 
 | 	unsigned long nr_pages; | 
 | 	unsigned long pg_index; | 
 | 	struct page *page; | 
 | 	struct bio *comp_bio; | 
 | 	u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9; | 
 | 	u64 em_len; | 
 | 	u64 em_start; | 
 | 	struct extent_map *em; | 
 | 	blk_status_t ret = BLK_STS_RESOURCE; | 
 | 	int faili = 0; | 
 | 	const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); | 
 | 	u8 *sums; | 
 |  | 
 | 	em_tree = &BTRFS_I(inode)->extent_tree; | 
 |  | 
 | 	/* we need the actual starting offset of this extent in the file */ | 
 | 	read_lock(&em_tree->lock); | 
 | 	em = lookup_extent_mapping(em_tree, | 
 | 				   page_offset(bio_first_page_all(bio)), | 
 | 				   PAGE_SIZE); | 
 | 	read_unlock(&em_tree->lock); | 
 | 	if (!em) | 
 | 		return BLK_STS_IOERR; | 
 |  | 
 | 	compressed_len = em->block_len; | 
 | 	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS); | 
 | 	if (!cb) | 
 | 		goto out; | 
 |  | 
 | 	refcount_set(&cb->pending_bios, 0); | 
 | 	cb->errors = 0; | 
 | 	cb->inode = inode; | 
 | 	cb->mirror_num = mirror_num; | 
 | 	sums = cb->sums; | 
 |  | 
 | 	cb->start = em->orig_start; | 
 | 	em_len = em->len; | 
 | 	em_start = em->start; | 
 |  | 
 | 	free_extent_map(em); | 
 | 	em = NULL; | 
 |  | 
 | 	cb->len = bio->bi_iter.bi_size; | 
 | 	cb->compressed_len = compressed_len; | 
 | 	cb->compress_type = extent_compress_type(bio_flags); | 
 | 	cb->orig_bio = bio; | 
 |  | 
 | 	nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE); | 
 | 	cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *), | 
 | 				       GFP_NOFS); | 
 | 	if (!cb->compressed_pages) | 
 | 		goto fail1; | 
 |  | 
 | 	for (pg_index = 0; pg_index < nr_pages; pg_index++) { | 
 | 		cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS | | 
 | 							      __GFP_HIGHMEM); | 
 | 		if (!cb->compressed_pages[pg_index]) { | 
 | 			faili = pg_index - 1; | 
 | 			ret = BLK_STS_RESOURCE; | 
 | 			goto fail2; | 
 | 		} | 
 | 	} | 
 | 	faili = nr_pages - 1; | 
 | 	cb->nr_pages = nr_pages; | 
 |  | 
 | 	add_ra_bio_pages(inode, em_start + em_len, cb); | 
 |  | 
 | 	/* include any pages we added in add_ra-bio_pages */ | 
 | 	cb->len = bio->bi_iter.bi_size; | 
 |  | 
 | 	comp_bio = btrfs_bio_alloc(cur_disk_byte); | 
 | 	comp_bio->bi_opf = REQ_OP_READ; | 
 | 	comp_bio->bi_private = cb; | 
 | 	comp_bio->bi_end_io = end_compressed_bio_read; | 
 | 	refcount_set(&cb->pending_bios, 1); | 
 |  | 
 | 	for (pg_index = 0; pg_index < nr_pages; pg_index++) { | 
 | 		int submit = 0; | 
 |  | 
 | 		page = cb->compressed_pages[pg_index]; | 
 | 		page->mapping = inode->i_mapping; | 
 | 		page->index = em_start >> PAGE_SHIFT; | 
 |  | 
 | 		if (comp_bio->bi_iter.bi_size) | 
 | 			submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE, | 
 | 							  comp_bio, 0); | 
 |  | 
 | 		page->mapping = NULL; | 
 | 		if (submit || bio_add_page(comp_bio, page, PAGE_SIZE, 0) < | 
 | 		    PAGE_SIZE) { | 
 | 			unsigned int nr_sectors; | 
 |  | 
 | 			ret = btrfs_bio_wq_end_io(fs_info, comp_bio, | 
 | 						  BTRFS_WQ_ENDIO_DATA); | 
 | 			BUG_ON(ret); /* -ENOMEM */ | 
 |  | 
 | 			/* | 
 | 			 * inc the count before we submit the bio so | 
 | 			 * we know the end IO handler won't happen before | 
 | 			 * we inc the count.  Otherwise, the cb might get | 
 | 			 * freed before we're done setting it up | 
 | 			 */ | 
 | 			refcount_inc(&cb->pending_bios); | 
 |  | 
 | 			if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { | 
 | 				ret = btrfs_lookup_bio_sums(inode, comp_bio, | 
 | 							    (u64)-1, sums); | 
 | 				BUG_ON(ret); /* -ENOMEM */ | 
 | 			} | 
 |  | 
 | 			nr_sectors = DIV_ROUND_UP(comp_bio->bi_iter.bi_size, | 
 | 						  fs_info->sectorsize); | 
 | 			sums += csum_size * nr_sectors; | 
 |  | 
 | 			ret = btrfs_map_bio(fs_info, comp_bio, mirror_num); | 
 | 			if (ret) { | 
 | 				comp_bio->bi_status = ret; | 
 | 				bio_endio(comp_bio); | 
 | 			} | 
 |  | 
 | 			comp_bio = btrfs_bio_alloc(cur_disk_byte); | 
 | 			comp_bio->bi_opf = REQ_OP_READ; | 
 | 			comp_bio->bi_private = cb; | 
 | 			comp_bio->bi_end_io = end_compressed_bio_read; | 
 |  | 
 | 			bio_add_page(comp_bio, page, PAGE_SIZE, 0); | 
 | 		} | 
 | 		cur_disk_byte += PAGE_SIZE; | 
 | 	} | 
 |  | 
 | 	ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA); | 
 | 	BUG_ON(ret); /* -ENOMEM */ | 
 |  | 
 | 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { | 
 | 		ret = btrfs_lookup_bio_sums(inode, comp_bio, (u64)-1, sums); | 
 | 		BUG_ON(ret); /* -ENOMEM */ | 
 | 	} | 
 |  | 
 | 	ret = btrfs_map_bio(fs_info, comp_bio, mirror_num); | 
 | 	if (ret) { | 
 | 		comp_bio->bi_status = ret; | 
 | 		bio_endio(comp_bio); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 |  | 
 | fail2: | 
 | 	while (faili >= 0) { | 
 | 		__free_page(cb->compressed_pages[faili]); | 
 | 		faili--; | 
 | 	} | 
 |  | 
 | 	kfree(cb->compressed_pages); | 
 | fail1: | 
 | 	kfree(cb); | 
 | out: | 
 | 	free_extent_map(em); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Heuristic uses systematic sampling to collect data from the input data | 
 |  * range, the logic can be tuned by the following constants: | 
 |  * | 
 |  * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample | 
 |  * @SAMPLING_INTERVAL  - range from which the sampled data can be collected | 
 |  */ | 
 | #define SAMPLING_READ_SIZE	(16) | 
 | #define SAMPLING_INTERVAL	(256) | 
 |  | 
 | /* | 
 |  * For statistical analysis of the input data we consider bytes that form a | 
 |  * Galois Field of 256 objects. Each object has an attribute count, ie. how | 
 |  * many times the object appeared in the sample. | 
 |  */ | 
 | #define BUCKET_SIZE		(256) | 
 |  | 
 | /* | 
 |  * The size of the sample is based on a statistical sampling rule of thumb. | 
 |  * The common way is to perform sampling tests as long as the number of | 
 |  * elements in each cell is at least 5. | 
 |  * | 
 |  * Instead of 5, we choose 32 to obtain more accurate results. | 
 |  * If the data contain the maximum number of symbols, which is 256, we obtain a | 
 |  * sample size bound by 8192. | 
 |  * | 
 |  * For a sample of at most 8KB of data per data range: 16 consecutive bytes | 
 |  * from up to 512 locations. | 
 |  */ | 
 | #define MAX_SAMPLE_SIZE		(BTRFS_MAX_UNCOMPRESSED *		\ | 
 | 				 SAMPLING_READ_SIZE / SAMPLING_INTERVAL) | 
 |  | 
 | struct bucket_item { | 
 | 	u32 count; | 
 | }; | 
 |  | 
 | struct heuristic_ws { | 
 | 	/* Partial copy of input data */ | 
 | 	u8 *sample; | 
 | 	u32 sample_size; | 
 | 	/* Buckets store counters for each byte value */ | 
 | 	struct bucket_item *bucket; | 
 | 	/* Sorting buffer */ | 
 | 	struct bucket_item *bucket_b; | 
 | 	struct list_head list; | 
 | }; | 
 |  | 
 | static struct workspace_manager heuristic_wsm; | 
 |  | 
 | static void free_heuristic_ws(struct list_head *ws) | 
 | { | 
 | 	struct heuristic_ws *workspace; | 
 |  | 
 | 	workspace = list_entry(ws, struct heuristic_ws, list); | 
 |  | 
 | 	kvfree(workspace->sample); | 
 | 	kfree(workspace->bucket); | 
 | 	kfree(workspace->bucket_b); | 
 | 	kfree(workspace); | 
 | } | 
 |  | 
 | static struct list_head *alloc_heuristic_ws(unsigned int level) | 
 | { | 
 | 	struct heuristic_ws *ws; | 
 |  | 
 | 	ws = kzalloc(sizeof(*ws), GFP_KERNEL); | 
 | 	if (!ws) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL); | 
 | 	if (!ws->sample) | 
 | 		goto fail; | 
 |  | 
 | 	ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL); | 
 | 	if (!ws->bucket) | 
 | 		goto fail; | 
 |  | 
 | 	ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL); | 
 | 	if (!ws->bucket_b) | 
 | 		goto fail; | 
 |  | 
 | 	INIT_LIST_HEAD(&ws->list); | 
 | 	return &ws->list; | 
 | fail: | 
 | 	free_heuristic_ws(&ws->list); | 
 | 	return ERR_PTR(-ENOMEM); | 
 | } | 
 |  | 
 | const struct btrfs_compress_op btrfs_heuristic_compress = { | 
 | 	.workspace_manager = &heuristic_wsm, | 
 | }; | 
 |  | 
 | static const struct btrfs_compress_op * const btrfs_compress_op[] = { | 
 | 	/* The heuristic is represented as compression type 0 */ | 
 | 	&btrfs_heuristic_compress, | 
 | 	&btrfs_zlib_compress, | 
 | 	&btrfs_lzo_compress, | 
 | 	&btrfs_zstd_compress, | 
 | }; | 
 |  | 
 | static struct list_head *alloc_workspace(int type, unsigned int level) | 
 | { | 
 | 	switch (type) { | 
 | 	case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level); | 
 | 	case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level); | 
 | 	case BTRFS_COMPRESS_LZO:  return lzo_alloc_workspace(level); | 
 | 	case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level); | 
 | 	default: | 
 | 		/* | 
 | 		 * This can't happen, the type is validated several times | 
 | 		 * before we get here. | 
 | 		 */ | 
 | 		BUG(); | 
 | 	} | 
 | } | 
 |  | 
 | static void free_workspace(int type, struct list_head *ws) | 
 | { | 
 | 	switch (type) { | 
 | 	case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws); | 
 | 	case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws); | 
 | 	case BTRFS_COMPRESS_LZO:  return lzo_free_workspace(ws); | 
 | 	case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws); | 
 | 	default: | 
 | 		/* | 
 | 		 * This can't happen, the type is validated several times | 
 | 		 * before we get here. | 
 | 		 */ | 
 | 		BUG(); | 
 | 	} | 
 | } | 
 |  | 
 | static void btrfs_init_workspace_manager(int type) | 
 | { | 
 | 	struct workspace_manager *wsm; | 
 | 	struct list_head *workspace; | 
 |  | 
 | 	wsm = btrfs_compress_op[type]->workspace_manager; | 
 | 	INIT_LIST_HEAD(&wsm->idle_ws); | 
 | 	spin_lock_init(&wsm->ws_lock); | 
 | 	atomic_set(&wsm->total_ws, 0); | 
 | 	init_waitqueue_head(&wsm->ws_wait); | 
 |  | 
 | 	/* | 
 | 	 * Preallocate one workspace for each compression type so we can | 
 | 	 * guarantee forward progress in the worst case | 
 | 	 */ | 
 | 	workspace = alloc_workspace(type, 0); | 
 | 	if (IS_ERR(workspace)) { | 
 | 		pr_warn( | 
 | 	"BTRFS: cannot preallocate compression workspace, will try later\n"); | 
 | 	} else { | 
 | 		atomic_set(&wsm->total_ws, 1); | 
 | 		wsm->free_ws = 1; | 
 | 		list_add(workspace, &wsm->idle_ws); | 
 | 	} | 
 | } | 
 |  | 
 | static void btrfs_cleanup_workspace_manager(int type) | 
 | { | 
 | 	struct workspace_manager *wsman; | 
 | 	struct list_head *ws; | 
 |  | 
 | 	wsman = btrfs_compress_op[type]->workspace_manager; | 
 | 	while (!list_empty(&wsman->idle_ws)) { | 
 | 		ws = wsman->idle_ws.next; | 
 | 		list_del(ws); | 
 | 		free_workspace(type, ws); | 
 | 		atomic_dec(&wsman->total_ws); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * This finds an available workspace or allocates a new one. | 
 |  * If it's not possible to allocate a new one, waits until there's one. | 
 |  * Preallocation makes a forward progress guarantees and we do not return | 
 |  * errors. | 
 |  */ | 
 | struct list_head *btrfs_get_workspace(int type, unsigned int level) | 
 | { | 
 | 	struct workspace_manager *wsm; | 
 | 	struct list_head *workspace; | 
 | 	int cpus = num_online_cpus(); | 
 | 	unsigned nofs_flag; | 
 | 	struct list_head *idle_ws; | 
 | 	spinlock_t *ws_lock; | 
 | 	atomic_t *total_ws; | 
 | 	wait_queue_head_t *ws_wait; | 
 | 	int *free_ws; | 
 |  | 
 | 	wsm = btrfs_compress_op[type]->workspace_manager; | 
 | 	idle_ws	 = &wsm->idle_ws; | 
 | 	ws_lock	 = &wsm->ws_lock; | 
 | 	total_ws = &wsm->total_ws; | 
 | 	ws_wait	 = &wsm->ws_wait; | 
 | 	free_ws	 = &wsm->free_ws; | 
 |  | 
 | again: | 
 | 	spin_lock(ws_lock); | 
 | 	if (!list_empty(idle_ws)) { | 
 | 		workspace = idle_ws->next; | 
 | 		list_del(workspace); | 
 | 		(*free_ws)--; | 
 | 		spin_unlock(ws_lock); | 
 | 		return workspace; | 
 |  | 
 | 	} | 
 | 	if (atomic_read(total_ws) > cpus) { | 
 | 		DEFINE_WAIT(wait); | 
 |  | 
 | 		spin_unlock(ws_lock); | 
 | 		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE); | 
 | 		if (atomic_read(total_ws) > cpus && !*free_ws) | 
 | 			schedule(); | 
 | 		finish_wait(ws_wait, &wait); | 
 | 		goto again; | 
 | 	} | 
 | 	atomic_inc(total_ws); | 
 | 	spin_unlock(ws_lock); | 
 |  | 
 | 	/* | 
 | 	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have | 
 | 	 * to turn it off here because we might get called from the restricted | 
 | 	 * context of btrfs_compress_bio/btrfs_compress_pages | 
 | 	 */ | 
 | 	nofs_flag = memalloc_nofs_save(); | 
 | 	workspace = alloc_workspace(type, level); | 
 | 	memalloc_nofs_restore(nofs_flag); | 
 |  | 
 | 	if (IS_ERR(workspace)) { | 
 | 		atomic_dec(total_ws); | 
 | 		wake_up(ws_wait); | 
 |  | 
 | 		/* | 
 | 		 * Do not return the error but go back to waiting. There's a | 
 | 		 * workspace preallocated for each type and the compression | 
 | 		 * time is bounded so we get to a workspace eventually. This | 
 | 		 * makes our caller's life easier. | 
 | 		 * | 
 | 		 * To prevent silent and low-probability deadlocks (when the | 
 | 		 * initial preallocation fails), check if there are any | 
 | 		 * workspaces at all. | 
 | 		 */ | 
 | 		if (atomic_read(total_ws) == 0) { | 
 | 			static DEFINE_RATELIMIT_STATE(_rs, | 
 | 					/* once per minute */ 60 * HZ, | 
 | 					/* no burst */ 1); | 
 |  | 
 | 			if (__ratelimit(&_rs)) { | 
 | 				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n"); | 
 | 			} | 
 | 		} | 
 | 		goto again; | 
 | 	} | 
 | 	return workspace; | 
 | } | 
 |  | 
 | static struct list_head *get_workspace(int type, int level) | 
 | { | 
 | 	switch (type) { | 
 | 	case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level); | 
 | 	case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level); | 
 | 	case BTRFS_COMPRESS_LZO:  return btrfs_get_workspace(type, level); | 
 | 	case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level); | 
 | 	default: | 
 | 		/* | 
 | 		 * This can't happen, the type is validated several times | 
 | 		 * before we get here. | 
 | 		 */ | 
 | 		BUG(); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * put a workspace struct back on the list or free it if we have enough | 
 |  * idle ones sitting around | 
 |  */ | 
 | void btrfs_put_workspace(int type, struct list_head *ws) | 
 | { | 
 | 	struct workspace_manager *wsm; | 
 | 	struct list_head *idle_ws; | 
 | 	spinlock_t *ws_lock; | 
 | 	atomic_t *total_ws; | 
 | 	wait_queue_head_t *ws_wait; | 
 | 	int *free_ws; | 
 |  | 
 | 	wsm = btrfs_compress_op[type]->workspace_manager; | 
 | 	idle_ws	 = &wsm->idle_ws; | 
 | 	ws_lock	 = &wsm->ws_lock; | 
 | 	total_ws = &wsm->total_ws; | 
 | 	ws_wait	 = &wsm->ws_wait; | 
 | 	free_ws	 = &wsm->free_ws; | 
 |  | 
 | 	spin_lock(ws_lock); | 
 | 	if (*free_ws <= num_online_cpus()) { | 
 | 		list_add(ws, idle_ws); | 
 | 		(*free_ws)++; | 
 | 		spin_unlock(ws_lock); | 
 | 		goto wake; | 
 | 	} | 
 | 	spin_unlock(ws_lock); | 
 |  | 
 | 	free_workspace(type, ws); | 
 | 	atomic_dec(total_ws); | 
 | wake: | 
 | 	cond_wake_up(ws_wait); | 
 | } | 
 |  | 
 | static void put_workspace(int type, struct list_head *ws) | 
 | { | 
 | 	switch (type) { | 
 | 	case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws); | 
 | 	case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws); | 
 | 	case BTRFS_COMPRESS_LZO:  return btrfs_put_workspace(type, ws); | 
 | 	case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws); | 
 | 	default: | 
 | 		/* | 
 | 		 * This can't happen, the type is validated several times | 
 | 		 * before we get here. | 
 | 		 */ | 
 | 		BUG(); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Adjust @level according to the limits of the compression algorithm or | 
 |  * fallback to default | 
 |  */ | 
 | static unsigned int btrfs_compress_set_level(int type, unsigned level) | 
 | { | 
 | 	const struct btrfs_compress_op *ops = btrfs_compress_op[type]; | 
 |  | 
 | 	if (level == 0) | 
 | 		level = ops->default_level; | 
 | 	else | 
 | 		level = min(level, ops->max_level); | 
 |  | 
 | 	return level; | 
 | } | 
 |  | 
 | /* | 
 |  * Given an address space and start and length, compress the bytes into @pages | 
 |  * that are allocated on demand. | 
 |  * | 
 |  * @type_level is encoded algorithm and level, where level 0 means whatever | 
 |  * default the algorithm chooses and is opaque here; | 
 |  * - compression algo are 0-3 | 
 |  * - the level are bits 4-7 | 
 |  * | 
 |  * @out_pages is an in/out parameter, holds maximum number of pages to allocate | 
 |  * and returns number of actually allocated pages | 
 |  * | 
 |  * @total_in is used to return the number of bytes actually read.  It | 
 |  * may be smaller than the input length if we had to exit early because we | 
 |  * ran out of room in the pages array or because we cross the | 
 |  * max_out threshold. | 
 |  * | 
 |  * @total_out is an in/out parameter, must be set to the input length and will | 
 |  * be also used to return the total number of compressed bytes | 
 |  * | 
 |  * @max_out tells us the max number of bytes that we're allowed to | 
 |  * stuff into pages | 
 |  */ | 
 | int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping, | 
 | 			 u64 start, struct page **pages, | 
 | 			 unsigned long *out_pages, | 
 | 			 unsigned long *total_in, | 
 | 			 unsigned long *total_out) | 
 | { | 
 | 	int type = btrfs_compress_type(type_level); | 
 | 	int level = btrfs_compress_level(type_level); | 
 | 	struct list_head *workspace; | 
 | 	int ret; | 
 |  | 
 | 	level = btrfs_compress_set_level(type, level); | 
 | 	workspace = get_workspace(type, level); | 
 | 	ret = compression_compress_pages(type, workspace, mapping, start, pages, | 
 | 					 out_pages, total_in, total_out); | 
 | 	put_workspace(type, workspace); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * pages_in is an array of pages with compressed data. | 
 |  * | 
 |  * disk_start is the starting logical offset of this array in the file | 
 |  * | 
 |  * orig_bio contains the pages from the file that we want to decompress into | 
 |  * | 
 |  * srclen is the number of bytes in pages_in | 
 |  * | 
 |  * The basic idea is that we have a bio that was created by readpages. | 
 |  * The pages in the bio are for the uncompressed data, and they may not | 
 |  * be contiguous.  They all correspond to the range of bytes covered by | 
 |  * the compressed extent. | 
 |  */ | 
 | static int btrfs_decompress_bio(struct compressed_bio *cb) | 
 | { | 
 | 	struct list_head *workspace; | 
 | 	int ret; | 
 | 	int type = cb->compress_type; | 
 |  | 
 | 	workspace = get_workspace(type, 0); | 
 | 	ret = compression_decompress_bio(type, workspace, cb); | 
 | 	put_workspace(type, workspace); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * a less complex decompression routine.  Our compressed data fits in a | 
 |  * single page, and we want to read a single page out of it. | 
 |  * start_byte tells us the offset into the compressed data we're interested in | 
 |  */ | 
 | int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page, | 
 | 		     unsigned long start_byte, size_t srclen, size_t destlen) | 
 | { | 
 | 	struct list_head *workspace; | 
 | 	int ret; | 
 |  | 
 | 	workspace = get_workspace(type, 0); | 
 | 	ret = compression_decompress(type, workspace, data_in, dest_page, | 
 | 				     start_byte, srclen, destlen); | 
 | 	put_workspace(type, workspace); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | void __init btrfs_init_compress(void) | 
 | { | 
 | 	btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE); | 
 | 	btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB); | 
 | 	btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO); | 
 | 	zstd_init_workspace_manager(); | 
 | } | 
 |  | 
 | void __cold btrfs_exit_compress(void) | 
 | { | 
 | 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE); | 
 | 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB); | 
 | 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO); | 
 | 	zstd_cleanup_workspace_manager(); | 
 | } | 
 |  | 
 | /* | 
 |  * Copy uncompressed data from working buffer to pages. | 
 |  * | 
 |  * buf_start is the byte offset we're of the start of our workspace buffer. | 
 |  * | 
 |  * total_out is the last byte of the buffer | 
 |  */ | 
 | int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start, | 
 | 			      unsigned long total_out, u64 disk_start, | 
 | 			      struct bio *bio) | 
 | { | 
 | 	unsigned long buf_offset; | 
 | 	unsigned long current_buf_start; | 
 | 	unsigned long start_byte; | 
 | 	unsigned long prev_start_byte; | 
 | 	unsigned long working_bytes = total_out - buf_start; | 
 | 	unsigned long bytes; | 
 | 	char *kaddr; | 
 | 	struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter); | 
 |  | 
 | 	/* | 
 | 	 * start byte is the first byte of the page we're currently | 
 | 	 * copying into relative to the start of the compressed data. | 
 | 	 */ | 
 | 	start_byte = page_offset(bvec.bv_page) - disk_start; | 
 |  | 
 | 	/* we haven't yet hit data corresponding to this page */ | 
 | 	if (total_out <= start_byte) | 
 | 		return 1; | 
 |  | 
 | 	/* | 
 | 	 * the start of the data we care about is offset into | 
 | 	 * the middle of our working buffer | 
 | 	 */ | 
 | 	if (total_out > start_byte && buf_start < start_byte) { | 
 | 		buf_offset = start_byte - buf_start; | 
 | 		working_bytes -= buf_offset; | 
 | 	} else { | 
 | 		buf_offset = 0; | 
 | 	} | 
 | 	current_buf_start = buf_start; | 
 |  | 
 | 	/* copy bytes from the working buffer into the pages */ | 
 | 	while (working_bytes > 0) { | 
 | 		bytes = min_t(unsigned long, bvec.bv_len, | 
 | 				PAGE_SIZE - (buf_offset % PAGE_SIZE)); | 
 | 		bytes = min(bytes, working_bytes); | 
 |  | 
 | 		kaddr = kmap_atomic(bvec.bv_page); | 
 | 		memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes); | 
 | 		kunmap_atomic(kaddr); | 
 | 		flush_dcache_page(bvec.bv_page); | 
 |  | 
 | 		buf_offset += bytes; | 
 | 		working_bytes -= bytes; | 
 | 		current_buf_start += bytes; | 
 |  | 
 | 		/* check if we need to pick another page */ | 
 | 		bio_advance(bio, bytes); | 
 | 		if (!bio->bi_iter.bi_size) | 
 | 			return 0; | 
 | 		bvec = bio_iter_iovec(bio, bio->bi_iter); | 
 | 		prev_start_byte = start_byte; | 
 | 		start_byte = page_offset(bvec.bv_page) - disk_start; | 
 |  | 
 | 		/* | 
 | 		 * We need to make sure we're only adjusting | 
 | 		 * our offset into compression working buffer when | 
 | 		 * we're switching pages.  Otherwise we can incorrectly | 
 | 		 * keep copying when we were actually done. | 
 | 		 */ | 
 | 		if (start_byte != prev_start_byte) { | 
 | 			/* | 
 | 			 * make sure our new page is covered by this | 
 | 			 * working buffer | 
 | 			 */ | 
 | 			if (total_out <= start_byte) | 
 | 				return 1; | 
 |  | 
 | 			/* | 
 | 			 * the next page in the biovec might not be adjacent | 
 | 			 * to the last page, but it might still be found | 
 | 			 * inside this working buffer. bump our offset pointer | 
 | 			 */ | 
 | 			if (total_out > start_byte && | 
 | 			    current_buf_start < start_byte) { | 
 | 				buf_offset = start_byte - buf_start; | 
 | 				working_bytes = total_out - start_byte; | 
 | 				current_buf_start = buf_start + buf_offset; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * Shannon Entropy calculation | 
 |  * | 
 |  * Pure byte distribution analysis fails to determine compressibility of data. | 
 |  * Try calculating entropy to estimate the average minimum number of bits | 
 |  * needed to encode the sampled data. | 
 |  * | 
 |  * For convenience, return the percentage of needed bits, instead of amount of | 
 |  * bits directly. | 
 |  * | 
 |  * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy | 
 |  *			    and can be compressible with high probability | 
 |  * | 
 |  * @ENTROPY_LVL_HIGH - data are not compressible with high probability | 
 |  * | 
 |  * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate. | 
 |  */ | 
 | #define ENTROPY_LVL_ACEPTABLE		(65) | 
 | #define ENTROPY_LVL_HIGH		(80) | 
 |  | 
 | /* | 
 |  * For increasead precision in shannon_entropy calculation, | 
 |  * let's do pow(n, M) to save more digits after comma: | 
 |  * | 
 |  * - maximum int bit length is 64 | 
 |  * - ilog2(MAX_SAMPLE_SIZE)	-> 13 | 
 |  * - 13 * 4 = 52 < 64		-> M = 4 | 
 |  * | 
 |  * So use pow(n, 4). | 
 |  */ | 
 | static inline u32 ilog2_w(u64 n) | 
 | { | 
 | 	return ilog2(n * n * n * n); | 
 | } | 
 |  | 
 | static u32 shannon_entropy(struct heuristic_ws *ws) | 
 | { | 
 | 	const u32 entropy_max = 8 * ilog2_w(2); | 
 | 	u32 entropy_sum = 0; | 
 | 	u32 p, p_base, sz_base; | 
 | 	u32 i; | 
 |  | 
 | 	sz_base = ilog2_w(ws->sample_size); | 
 | 	for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) { | 
 | 		p = ws->bucket[i].count; | 
 | 		p_base = ilog2_w(p); | 
 | 		entropy_sum += p * (sz_base - p_base); | 
 | 	} | 
 |  | 
 | 	entropy_sum /= ws->sample_size; | 
 | 	return entropy_sum * 100 / entropy_max; | 
 | } | 
 |  | 
 | #define RADIX_BASE		4U | 
 | #define COUNTERS_SIZE		(1U << RADIX_BASE) | 
 |  | 
 | static u8 get4bits(u64 num, int shift) { | 
 | 	u8 low4bits; | 
 |  | 
 | 	num >>= shift; | 
 | 	/* Reverse order */ | 
 | 	low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE); | 
 | 	return low4bits; | 
 | } | 
 |  | 
 | /* | 
 |  * Use 4 bits as radix base | 
 |  * Use 16 u32 counters for calculating new position in buf array | 
 |  * | 
 |  * @array     - array that will be sorted | 
 |  * @array_buf - buffer array to store sorting results | 
 |  *              must be equal in size to @array | 
 |  * @num       - array size | 
 |  */ | 
 | static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf, | 
 | 		       int num) | 
 | { | 
 | 	u64 max_num; | 
 | 	u64 buf_num; | 
 | 	u32 counters[COUNTERS_SIZE]; | 
 | 	u32 new_addr; | 
 | 	u32 addr; | 
 | 	int bitlen; | 
 | 	int shift; | 
 | 	int i; | 
 |  | 
 | 	/* | 
 | 	 * Try avoid useless loop iterations for small numbers stored in big | 
 | 	 * counters.  Example: 48 33 4 ... in 64bit array | 
 | 	 */ | 
 | 	max_num = array[0].count; | 
 | 	for (i = 1; i < num; i++) { | 
 | 		buf_num = array[i].count; | 
 | 		if (buf_num > max_num) | 
 | 			max_num = buf_num; | 
 | 	} | 
 |  | 
 | 	buf_num = ilog2(max_num); | 
 | 	bitlen = ALIGN(buf_num, RADIX_BASE * 2); | 
 |  | 
 | 	shift = 0; | 
 | 	while (shift < bitlen) { | 
 | 		memset(counters, 0, sizeof(counters)); | 
 |  | 
 | 		for (i = 0; i < num; i++) { | 
 | 			buf_num = array[i].count; | 
 | 			addr = get4bits(buf_num, shift); | 
 | 			counters[addr]++; | 
 | 		} | 
 |  | 
 | 		for (i = 1; i < COUNTERS_SIZE; i++) | 
 | 			counters[i] += counters[i - 1]; | 
 |  | 
 | 		for (i = num - 1; i >= 0; i--) { | 
 | 			buf_num = array[i].count; | 
 | 			addr = get4bits(buf_num, shift); | 
 | 			counters[addr]--; | 
 | 			new_addr = counters[addr]; | 
 | 			array_buf[new_addr] = array[i]; | 
 | 		} | 
 |  | 
 | 		shift += RADIX_BASE; | 
 |  | 
 | 		/* | 
 | 		 * Normal radix expects to move data from a temporary array, to | 
 | 		 * the main one.  But that requires some CPU time. Avoid that | 
 | 		 * by doing another sort iteration to original array instead of | 
 | 		 * memcpy() | 
 | 		 */ | 
 | 		memset(counters, 0, sizeof(counters)); | 
 |  | 
 | 		for (i = 0; i < num; i ++) { | 
 | 			buf_num = array_buf[i].count; | 
 | 			addr = get4bits(buf_num, shift); | 
 | 			counters[addr]++; | 
 | 		} | 
 |  | 
 | 		for (i = 1; i < COUNTERS_SIZE; i++) | 
 | 			counters[i] += counters[i - 1]; | 
 |  | 
 | 		for (i = num - 1; i >= 0; i--) { | 
 | 			buf_num = array_buf[i].count; | 
 | 			addr = get4bits(buf_num, shift); | 
 | 			counters[addr]--; | 
 | 			new_addr = counters[addr]; | 
 | 			array[new_addr] = array_buf[i]; | 
 | 		} | 
 |  | 
 | 		shift += RADIX_BASE; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Size of the core byte set - how many bytes cover 90% of the sample | 
 |  * | 
 |  * There are several types of structured binary data that use nearly all byte | 
 |  * values. The distribution can be uniform and counts in all buckets will be | 
 |  * nearly the same (eg. encrypted data). Unlikely to be compressible. | 
 |  * | 
 |  * Other possibility is normal (Gaussian) distribution, where the data could | 
 |  * be potentially compressible, but we have to take a few more steps to decide | 
 |  * how much. | 
 |  * | 
 |  * @BYTE_CORE_SET_LOW  - main part of byte values repeated frequently, | 
 |  *                       compression algo can easy fix that | 
 |  * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high | 
 |  *                       probability is not compressible | 
 |  */ | 
 | #define BYTE_CORE_SET_LOW		(64) | 
 | #define BYTE_CORE_SET_HIGH		(200) | 
 |  | 
 | static int byte_core_set_size(struct heuristic_ws *ws) | 
 | { | 
 | 	u32 i; | 
 | 	u32 coreset_sum = 0; | 
 | 	const u32 core_set_threshold = ws->sample_size * 90 / 100; | 
 | 	struct bucket_item *bucket = ws->bucket; | 
 |  | 
 | 	/* Sort in reverse order */ | 
 | 	radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE); | 
 |  | 
 | 	for (i = 0; i < BYTE_CORE_SET_LOW; i++) | 
 | 		coreset_sum += bucket[i].count; | 
 |  | 
 | 	if (coreset_sum > core_set_threshold) | 
 | 		return i; | 
 |  | 
 | 	for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) { | 
 | 		coreset_sum += bucket[i].count; | 
 | 		if (coreset_sum > core_set_threshold) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	return i; | 
 | } | 
 |  | 
 | /* | 
 |  * Count byte values in buckets. | 
 |  * This heuristic can detect textual data (configs, xml, json, html, etc). | 
 |  * Because in most text-like data byte set is restricted to limited number of | 
 |  * possible characters, and that restriction in most cases makes data easy to | 
 |  * compress. | 
 |  * | 
 |  * @BYTE_SET_THRESHOLD - consider all data within this byte set size: | 
 |  *	less - compressible | 
 |  *	more - need additional analysis | 
 |  */ | 
 | #define BYTE_SET_THRESHOLD		(64) | 
 |  | 
 | static u32 byte_set_size(const struct heuristic_ws *ws) | 
 | { | 
 | 	u32 i; | 
 | 	u32 byte_set_size = 0; | 
 |  | 
 | 	for (i = 0; i < BYTE_SET_THRESHOLD; i++) { | 
 | 		if (ws->bucket[i].count > 0) | 
 | 			byte_set_size++; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Continue collecting count of byte values in buckets.  If the byte | 
 | 	 * set size is bigger then the threshold, it's pointless to continue, | 
 | 	 * the detection technique would fail for this type of data. | 
 | 	 */ | 
 | 	for (; i < BUCKET_SIZE; i++) { | 
 | 		if (ws->bucket[i].count > 0) { | 
 | 			byte_set_size++; | 
 | 			if (byte_set_size > BYTE_SET_THRESHOLD) | 
 | 				return byte_set_size; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return byte_set_size; | 
 | } | 
 |  | 
 | static bool sample_repeated_patterns(struct heuristic_ws *ws) | 
 | { | 
 | 	const u32 half_of_sample = ws->sample_size / 2; | 
 | 	const u8 *data = ws->sample; | 
 |  | 
 | 	return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0; | 
 | } | 
 |  | 
 | static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end, | 
 | 				     struct heuristic_ws *ws) | 
 | { | 
 | 	struct page *page; | 
 | 	u64 index, index_end; | 
 | 	u32 i, curr_sample_pos; | 
 | 	u8 *in_data; | 
 |  | 
 | 	/* | 
 | 	 * Compression handles the input data by chunks of 128KiB | 
 | 	 * (defined by BTRFS_MAX_UNCOMPRESSED) | 
 | 	 * | 
 | 	 * We do the same for the heuristic and loop over the whole range. | 
 | 	 * | 
 | 	 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will | 
 | 	 * process no more than BTRFS_MAX_UNCOMPRESSED at a time. | 
 | 	 */ | 
 | 	if (end - start > BTRFS_MAX_UNCOMPRESSED) | 
 | 		end = start + BTRFS_MAX_UNCOMPRESSED; | 
 |  | 
 | 	index = start >> PAGE_SHIFT; | 
 | 	index_end = end >> PAGE_SHIFT; | 
 |  | 
 | 	/* Don't miss unaligned end */ | 
 | 	if (!IS_ALIGNED(end, PAGE_SIZE)) | 
 | 		index_end++; | 
 |  | 
 | 	curr_sample_pos = 0; | 
 | 	while (index < index_end) { | 
 | 		page = find_get_page(inode->i_mapping, index); | 
 | 		in_data = kmap(page); | 
 | 		/* Handle case where the start is not aligned to PAGE_SIZE */ | 
 | 		i = start % PAGE_SIZE; | 
 | 		while (i < PAGE_SIZE - SAMPLING_READ_SIZE) { | 
 | 			/* Don't sample any garbage from the last page */ | 
 | 			if (start > end - SAMPLING_READ_SIZE) | 
 | 				break; | 
 | 			memcpy(&ws->sample[curr_sample_pos], &in_data[i], | 
 | 					SAMPLING_READ_SIZE); | 
 | 			i += SAMPLING_INTERVAL; | 
 | 			start += SAMPLING_INTERVAL; | 
 | 			curr_sample_pos += SAMPLING_READ_SIZE; | 
 | 		} | 
 | 		kunmap(page); | 
 | 		put_page(page); | 
 |  | 
 | 		index++; | 
 | 	} | 
 |  | 
 | 	ws->sample_size = curr_sample_pos; | 
 | } | 
 |  | 
 | /* | 
 |  * Compression heuristic. | 
 |  * | 
 |  * For now is's a naive and optimistic 'return true', we'll extend the logic to | 
 |  * quickly (compared to direct compression) detect data characteristics | 
 |  * (compressible/uncompressible) to avoid wasting CPU time on uncompressible | 
 |  * data. | 
 |  * | 
 |  * The following types of analysis can be performed: | 
 |  * - detect mostly zero data | 
 |  * - detect data with low "byte set" size (text, etc) | 
 |  * - detect data with low/high "core byte" set | 
 |  * | 
 |  * Return non-zero if the compression should be done, 0 otherwise. | 
 |  */ | 
 | int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end) | 
 | { | 
 | 	struct list_head *ws_list = get_workspace(0, 0); | 
 | 	struct heuristic_ws *ws; | 
 | 	u32 i; | 
 | 	u8 byte; | 
 | 	int ret = 0; | 
 |  | 
 | 	ws = list_entry(ws_list, struct heuristic_ws, list); | 
 |  | 
 | 	heuristic_collect_sample(inode, start, end, ws); | 
 |  | 
 | 	if (sample_repeated_patterns(ws)) { | 
 | 		ret = 1; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE); | 
 |  | 
 | 	for (i = 0; i < ws->sample_size; i++) { | 
 | 		byte = ws->sample[i]; | 
 | 		ws->bucket[byte].count++; | 
 | 	} | 
 |  | 
 | 	i = byte_set_size(ws); | 
 | 	if (i < BYTE_SET_THRESHOLD) { | 
 | 		ret = 2; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	i = byte_core_set_size(ws); | 
 | 	if (i <= BYTE_CORE_SET_LOW) { | 
 | 		ret = 3; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (i >= BYTE_CORE_SET_HIGH) { | 
 | 		ret = 0; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	i = shannon_entropy(ws); | 
 | 	if (i <= ENTROPY_LVL_ACEPTABLE) { | 
 | 		ret = 4; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be | 
 | 	 * needed to give green light to compression. | 
 | 	 * | 
 | 	 * For now just assume that compression at that level is not worth the | 
 | 	 * resources because: | 
 | 	 * | 
 | 	 * 1. it is possible to defrag the data later | 
 | 	 * | 
 | 	 * 2. the data would turn out to be hardly compressible, eg. 150 byte | 
 | 	 * values, every bucket has counter at level ~54. The heuristic would | 
 | 	 * be confused. This can happen when data have some internal repeated | 
 | 	 * patterns like "abbacbbc...". This can be detected by analyzing | 
 | 	 * pairs of bytes, which is too costly. | 
 | 	 */ | 
 | 	if (i < ENTROPY_LVL_HIGH) { | 
 | 		ret = 5; | 
 | 		goto out; | 
 | 	} else { | 
 | 		ret = 0; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | out: | 
 | 	put_workspace(0, ws_list); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Convert the compression suffix (eg. after "zlib" starting with ":") to | 
 |  * level, unrecognized string will set the default level | 
 |  */ | 
 | unsigned int btrfs_compress_str2level(unsigned int type, const char *str) | 
 | { | 
 | 	unsigned int level = 0; | 
 | 	int ret; | 
 |  | 
 | 	if (!type) | 
 | 		return 0; | 
 |  | 
 | 	if (str[0] == ':') { | 
 | 		ret = kstrtouint(str + 1, 10, &level); | 
 | 		if (ret) | 
 | 			level = 0; | 
 | 	} | 
 |  | 
 | 	level = btrfs_compress_set_level(type, level); | 
 |  | 
 | 	return level; | 
 | } |