|  | /* | 
|  | Montage Technology TS2020 - Silicon Tuner driver | 
|  | Copyright (C) 2009-2012 Konstantin Dimitrov <kosio.dimitrov@gmail.com> | 
|  |  | 
|  | Copyright (C) 2009-2012 TurboSight.com | 
|  |  | 
|  | This program is free software; you can redistribute it and/or modify | 
|  | it under the terms of the GNU General Public License as published by | 
|  | the Free Software Foundation; either version 2 of the License, or | 
|  | (at your option) any later version. | 
|  |  | 
|  | This program is distributed in the hope that it will be useful, | 
|  | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | GNU General Public License for more details. | 
|  |  | 
|  | You should have received a copy of the GNU General Public License | 
|  | along with this program; if not, write to the Free Software | 
|  | Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | 
|  | */ | 
|  |  | 
|  | #include "dvb_frontend.h" | 
|  | #include "ts2020.h" | 
|  |  | 
|  | #define TS2020_XTAL_FREQ   27000 /* in kHz */ | 
|  | #define FREQ_OFFSET_LOW_SYM_RATE 3000 | 
|  |  | 
|  | struct ts2020_priv { | 
|  | /* i2c details */ | 
|  | int i2c_address; | 
|  | struct i2c_adapter *i2c; | 
|  | u8 clk_out_div; | 
|  | u32 frequency; | 
|  | u32 frequency_div; | 
|  | }; | 
|  |  | 
|  | static int ts2020_release(struct dvb_frontend *fe) | 
|  | { | 
|  | kfree(fe->tuner_priv); | 
|  | fe->tuner_priv = NULL; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int ts2020_writereg(struct dvb_frontend *fe, int reg, int data) | 
|  | { | 
|  | struct ts2020_priv *priv = fe->tuner_priv; | 
|  | u8 buf[] = { reg, data }; | 
|  | struct i2c_msg msg[] = { | 
|  | { | 
|  | .addr = priv->i2c_address, | 
|  | .flags = 0, | 
|  | .buf = buf, | 
|  | .len = 2 | 
|  | } | 
|  | }; | 
|  | int err; | 
|  |  | 
|  | if (fe->ops.i2c_gate_ctrl) | 
|  | fe->ops.i2c_gate_ctrl(fe, 1); | 
|  |  | 
|  | err = i2c_transfer(priv->i2c, msg, 1); | 
|  | if (err != 1) { | 
|  | printk(KERN_ERR | 
|  | "%s: writereg error(err == %i, reg == 0x%02x, value == 0x%02x)\n", | 
|  | __func__, err, reg, data); | 
|  | return -EREMOTEIO; | 
|  | } | 
|  |  | 
|  | if (fe->ops.i2c_gate_ctrl) | 
|  | fe->ops.i2c_gate_ctrl(fe, 0); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int ts2020_readreg(struct dvb_frontend *fe, u8 reg) | 
|  | { | 
|  | struct ts2020_priv *priv = fe->tuner_priv; | 
|  | int ret; | 
|  | u8 b0[] = { reg }; | 
|  | u8 b1[] = { 0 }; | 
|  | struct i2c_msg msg[] = { | 
|  | { | 
|  | .addr = priv->i2c_address, | 
|  | .flags = 0, | 
|  | .buf = b0, | 
|  | .len = 1 | 
|  | }, { | 
|  | .addr = priv->i2c_address, | 
|  | .flags = I2C_M_RD, | 
|  | .buf = b1, | 
|  | .len = 1 | 
|  | } | 
|  | }; | 
|  |  | 
|  | if (fe->ops.i2c_gate_ctrl) | 
|  | fe->ops.i2c_gate_ctrl(fe, 1); | 
|  |  | 
|  | ret = i2c_transfer(priv->i2c, msg, 2); | 
|  |  | 
|  | if (ret != 2) { | 
|  | printk(KERN_ERR "%s: reg=0x%x(error=%d)\n", | 
|  | __func__, reg, ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (fe->ops.i2c_gate_ctrl) | 
|  | fe->ops.i2c_gate_ctrl(fe, 0); | 
|  |  | 
|  | return b1[0]; | 
|  | } | 
|  |  | 
|  | static int ts2020_sleep(struct dvb_frontend *fe) | 
|  | { | 
|  | struct ts2020_priv *priv = fe->tuner_priv; | 
|  | int ret; | 
|  | u8 buf[] = { 10, 0 }; | 
|  | struct i2c_msg msg = { | 
|  | .addr = priv->i2c_address, | 
|  | .flags = 0, | 
|  | .buf = buf, | 
|  | .len = 2 | 
|  | }; | 
|  |  | 
|  | if (fe->ops.i2c_gate_ctrl) | 
|  | fe->ops.i2c_gate_ctrl(fe, 1); | 
|  |  | 
|  | ret = i2c_transfer(priv->i2c, &msg, 1); | 
|  | if (ret != 1) | 
|  | printk(KERN_ERR "%s: i2c error\n", __func__); | 
|  |  | 
|  | if (fe->ops.i2c_gate_ctrl) | 
|  | fe->ops.i2c_gate_ctrl(fe, 0); | 
|  |  | 
|  | return (ret == 1) ? 0 : ret; | 
|  | } | 
|  |  | 
|  | static int ts2020_init(struct dvb_frontend *fe) | 
|  | { | 
|  | struct ts2020_priv *priv = fe->tuner_priv; | 
|  |  | 
|  | ts2020_writereg(fe, 0x42, 0x73); | 
|  | ts2020_writereg(fe, 0x05, priv->clk_out_div); | 
|  | ts2020_writereg(fe, 0x20, 0x27); | 
|  | ts2020_writereg(fe, 0x07, 0x02); | 
|  | ts2020_writereg(fe, 0x11, 0xff); | 
|  | ts2020_writereg(fe, 0x60, 0xf9); | 
|  | ts2020_writereg(fe, 0x08, 0x01); | 
|  | ts2020_writereg(fe, 0x00, 0x41); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int ts2020_tuner_gate_ctrl(struct dvb_frontend *fe, u8 offset) | 
|  | { | 
|  | int ret; | 
|  | ret = ts2020_writereg(fe, 0x51, 0x1f - offset); | 
|  | ret |= ts2020_writereg(fe, 0x51, 0x1f); | 
|  | ret |= ts2020_writereg(fe, 0x50, offset); | 
|  | ret |= ts2020_writereg(fe, 0x50, 0x00); | 
|  | msleep(20); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int ts2020_set_tuner_rf(struct dvb_frontend *fe) | 
|  | { | 
|  | int reg; | 
|  |  | 
|  | reg = ts2020_readreg(fe, 0x3d); | 
|  | reg &= 0x7f; | 
|  | if (reg < 0x16) | 
|  | reg = 0xa1; | 
|  | else if (reg == 0x16) | 
|  | reg = 0x99; | 
|  | else | 
|  | reg = 0xf9; | 
|  |  | 
|  | ts2020_writereg(fe, 0x60, reg); | 
|  | reg = ts2020_tuner_gate_ctrl(fe, 0x08); | 
|  |  | 
|  | return reg; | 
|  | } | 
|  |  | 
|  | static int ts2020_set_params(struct dvb_frontend *fe) | 
|  | { | 
|  | struct dtv_frontend_properties *c = &fe->dtv_property_cache; | 
|  | struct ts2020_priv *priv = fe->tuner_priv; | 
|  | int ret; | 
|  | u32 frequency = c->frequency; | 
|  | s32 offset_khz; | 
|  | u32 symbol_rate = (c->symbol_rate / 1000); | 
|  | u32 f3db, gdiv28; | 
|  | u16 value, ndiv, lpf_coeff; | 
|  | u8 lpf_mxdiv, mlpf_max, mlpf_min, nlpf; | 
|  | u8 lo = 0x01, div4 = 0x0; | 
|  |  | 
|  | /* Calculate frequency divider */ | 
|  | if (frequency < priv->frequency_div) { | 
|  | lo |= 0x10; | 
|  | div4 = 0x1; | 
|  | ndiv = (frequency * 14 * 4) / TS2020_XTAL_FREQ; | 
|  | } else | 
|  | ndiv = (frequency * 14 * 2) / TS2020_XTAL_FREQ; | 
|  | ndiv = ndiv + ndiv % 2; | 
|  | ndiv = ndiv - 1024; | 
|  |  | 
|  | ret = ts2020_writereg(fe, 0x10, 0x80 | lo); | 
|  |  | 
|  | /* Set frequency divider */ | 
|  | ret |= ts2020_writereg(fe, 0x01, (ndiv >> 8) & 0xf); | 
|  | ret |= ts2020_writereg(fe, 0x02, ndiv & 0xff); | 
|  |  | 
|  | ret |= ts2020_writereg(fe, 0x03, 0x06); | 
|  | ret |= ts2020_tuner_gate_ctrl(fe, 0x10); | 
|  | if (ret < 0) | 
|  | return -ENODEV; | 
|  |  | 
|  | /* Tuner Frequency Range */ | 
|  | ret = ts2020_writereg(fe, 0x10, lo); | 
|  |  | 
|  | ret |= ts2020_tuner_gate_ctrl(fe, 0x08); | 
|  |  | 
|  | /* Tuner RF */ | 
|  | ret |= ts2020_set_tuner_rf(fe); | 
|  |  | 
|  | gdiv28 = (TS2020_XTAL_FREQ / 1000 * 1694 + 500) / 1000; | 
|  | ret |= ts2020_writereg(fe, 0x04, gdiv28 & 0xff); | 
|  | ret |= ts2020_tuner_gate_ctrl(fe, 0x04); | 
|  | if (ret < 0) | 
|  | return -ENODEV; | 
|  |  | 
|  | value = ts2020_readreg(fe, 0x26); | 
|  |  | 
|  | f3db = (symbol_rate * 135) / 200 + 2000; | 
|  | f3db += FREQ_OFFSET_LOW_SYM_RATE; | 
|  | if (f3db < 7000) | 
|  | f3db = 7000; | 
|  | if (f3db > 40000) | 
|  | f3db = 40000; | 
|  |  | 
|  | gdiv28 = gdiv28 * 207 / (value * 2 + 151); | 
|  | mlpf_max = gdiv28 * 135 / 100; | 
|  | mlpf_min = gdiv28 * 78 / 100; | 
|  | if (mlpf_max > 63) | 
|  | mlpf_max = 63; | 
|  |  | 
|  | lpf_coeff = 2766; | 
|  |  | 
|  | nlpf = (f3db * gdiv28 * 2 / lpf_coeff / | 
|  | (TS2020_XTAL_FREQ / 1000)  + 1) / 2; | 
|  | if (nlpf > 23) | 
|  | nlpf = 23; | 
|  | if (nlpf < 1) | 
|  | nlpf = 1; | 
|  |  | 
|  | lpf_mxdiv = (nlpf * (TS2020_XTAL_FREQ / 1000) | 
|  | * lpf_coeff * 2  / f3db + 1) / 2; | 
|  |  | 
|  | if (lpf_mxdiv < mlpf_min) { | 
|  | nlpf++; | 
|  | lpf_mxdiv = (nlpf * (TS2020_XTAL_FREQ / 1000) | 
|  | * lpf_coeff * 2  / f3db + 1) / 2; | 
|  | } | 
|  |  | 
|  | if (lpf_mxdiv > mlpf_max) | 
|  | lpf_mxdiv = mlpf_max; | 
|  |  | 
|  | ret = ts2020_writereg(fe, 0x04, lpf_mxdiv); | 
|  | ret |= ts2020_writereg(fe, 0x06, nlpf); | 
|  |  | 
|  | ret |= ts2020_tuner_gate_ctrl(fe, 0x04); | 
|  |  | 
|  | ret |= ts2020_tuner_gate_ctrl(fe, 0x01); | 
|  |  | 
|  | msleep(80); | 
|  | /* calculate offset assuming 96000kHz*/ | 
|  | offset_khz = (ndiv - ndiv % 2 + 1024) * TS2020_XTAL_FREQ | 
|  | / (6 + 8) / (div4 + 1) / 2; | 
|  |  | 
|  | priv->frequency = offset_khz; | 
|  |  | 
|  | return (ret < 0) ? -EINVAL : 0; | 
|  | } | 
|  |  | 
|  | static int ts2020_get_frequency(struct dvb_frontend *fe, u32 *frequency) | 
|  | { | 
|  | struct ts2020_priv *priv = fe->tuner_priv; | 
|  | *frequency = priv->frequency; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* read TS2020 signal strength */ | 
|  | static int ts2020_read_signal_strength(struct dvb_frontend *fe, | 
|  | u16 *signal_strength) | 
|  | { | 
|  | u16 sig_reading, sig_strength; | 
|  | u8 rfgain, bbgain; | 
|  |  | 
|  | rfgain = ts2020_readreg(fe, 0x3d) & 0x1f; | 
|  | bbgain = ts2020_readreg(fe, 0x21) & 0x1f; | 
|  |  | 
|  | if (rfgain > 15) | 
|  | rfgain = 15; | 
|  | if (bbgain > 13) | 
|  | bbgain = 13; | 
|  |  | 
|  | sig_reading = rfgain * 2 + bbgain * 3; | 
|  |  | 
|  | sig_strength = 40 + (64 - sig_reading) * 50 / 64 ; | 
|  |  | 
|  | /* cook the value to be suitable for szap-s2 human readable output */ | 
|  | *signal_strength = sig_strength * 1000; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct dvb_tuner_ops ts2020_tuner_ops = { | 
|  | .info = { | 
|  | .name = "TS2020", | 
|  | .frequency_min = 950000, | 
|  | .frequency_max = 2150000 | 
|  | }, | 
|  | .init = ts2020_init, | 
|  | .release = ts2020_release, | 
|  | .sleep = ts2020_sleep, | 
|  | .set_params = ts2020_set_params, | 
|  | .get_frequency = ts2020_get_frequency, | 
|  | .get_rf_strength = ts2020_read_signal_strength, | 
|  | }; | 
|  |  | 
|  | struct dvb_frontend *ts2020_attach(struct dvb_frontend *fe, | 
|  | const struct ts2020_config *config, | 
|  | struct i2c_adapter *i2c) | 
|  | { | 
|  | struct ts2020_priv *priv = NULL; | 
|  | u8 buf; | 
|  |  | 
|  | priv = kzalloc(sizeof(struct ts2020_priv), GFP_KERNEL); | 
|  | if (priv == NULL) | 
|  | return NULL; | 
|  |  | 
|  | priv->i2c_address = config->tuner_address; | 
|  | priv->i2c = i2c; | 
|  | priv->clk_out_div = config->clk_out_div; | 
|  | priv->frequency_div = config->frequency_div; | 
|  | fe->tuner_priv = priv; | 
|  |  | 
|  | if (!priv->frequency_div) | 
|  | priv->frequency_div = 1060000; | 
|  |  | 
|  | /* Wake Up the tuner */ | 
|  | if ((0x03 & ts2020_readreg(fe, 0x00)) == 0x00) { | 
|  | ts2020_writereg(fe, 0x00, 0x01); | 
|  | msleep(2); | 
|  | } | 
|  |  | 
|  | ts2020_writereg(fe, 0x00, 0x03); | 
|  | msleep(2); | 
|  |  | 
|  | /* Check the tuner version */ | 
|  | buf = ts2020_readreg(fe, 0x00); | 
|  | if ((buf == 0x01) || (buf == 0x41) || (buf == 0x81)) | 
|  | printk(KERN_INFO "%s: Find tuner TS2020!\n", __func__); | 
|  | else { | 
|  | printk(KERN_ERR "%s: Read tuner reg[0] = %d\n", __func__, buf); | 
|  | kfree(priv); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | memcpy(&fe->ops.tuner_ops, &ts2020_tuner_ops, | 
|  | sizeof(struct dvb_tuner_ops)); | 
|  |  | 
|  | return fe; | 
|  | } | 
|  | EXPORT_SYMBOL(ts2020_attach); | 
|  |  | 
|  | MODULE_AUTHOR("Konstantin Dimitrov <kosio.dimitrov@gmail.com>"); | 
|  | MODULE_DESCRIPTION("Montage Technology TS2020 - Silicon tuner driver module"); | 
|  | MODULE_LICENSE("GPL"); |