|  | /* | 
|  | * Universal Host Controller Interface driver for USB. | 
|  | * | 
|  | * Maintainer: Alan Stern <stern@rowland.harvard.edu> | 
|  | * | 
|  | * (C) Copyright 1999 Linus Torvalds | 
|  | * (C) Copyright 1999-2002 Johannes Erdfelt, johannes@erdfelt.com | 
|  | * (C) Copyright 1999 Randy Dunlap | 
|  | * (C) Copyright 1999 Georg Acher, acher@in.tum.de | 
|  | * (C) Copyright 1999 Deti Fliegl, deti@fliegl.de | 
|  | * (C) Copyright 1999 Thomas Sailer, sailer@ife.ee.ethz.ch | 
|  | * (C) Copyright 1999 Roman Weissgaerber, weissg@vienna.at | 
|  | * (C) Copyright 2000 Yggdrasil Computing, Inc. (port of new PCI interface | 
|  | *               support from usb-ohci.c by Adam Richter, adam@yggdrasil.com). | 
|  | * (C) Copyright 1999 Gregory P. Smith (from usb-ohci.c) | 
|  | * (C) Copyright 2004-2007 Alan Stern, stern@rowland.harvard.edu | 
|  | */ | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Technically, updating td->status here is a race, but it's not really a | 
|  | * problem. The worst that can happen is that we set the IOC bit again | 
|  | * generating a spurious interrupt. We could fix this by creating another | 
|  | * QH and leaving the IOC bit always set, but then we would have to play | 
|  | * games with the FSBR code to make sure we get the correct order in all | 
|  | * the cases. I don't think it's worth the effort | 
|  | */ | 
|  | static void uhci_set_next_interrupt(struct uhci_hcd *uhci) | 
|  | { | 
|  | if (uhci->is_stopped) | 
|  | mod_timer(&uhci_to_hcd(uhci)->rh_timer, jiffies); | 
|  | uhci->term_td->status |= cpu_to_hc32(uhci, TD_CTRL_IOC); | 
|  | } | 
|  |  | 
|  | static inline void uhci_clear_next_interrupt(struct uhci_hcd *uhci) | 
|  | { | 
|  | uhci->term_td->status &= ~cpu_to_hc32(uhci, TD_CTRL_IOC); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Full-Speed Bandwidth Reclamation (FSBR). | 
|  | * We turn on FSBR whenever a queue that wants it is advancing, | 
|  | * and leave it on for a short time thereafter. | 
|  | */ | 
|  | static void uhci_fsbr_on(struct uhci_hcd *uhci) | 
|  | { | 
|  | struct uhci_qh *lqh; | 
|  |  | 
|  | /* The terminating skeleton QH always points back to the first | 
|  | * FSBR QH.  Make the last async QH point to the terminating | 
|  | * skeleton QH. */ | 
|  | uhci->fsbr_is_on = 1; | 
|  | lqh = list_entry(uhci->skel_async_qh->node.prev, | 
|  | struct uhci_qh, node); | 
|  | lqh->link = LINK_TO_QH(uhci, uhci->skel_term_qh); | 
|  | } | 
|  |  | 
|  | static void uhci_fsbr_off(struct uhci_hcd *uhci) | 
|  | { | 
|  | struct uhci_qh *lqh; | 
|  |  | 
|  | /* Remove the link from the last async QH to the terminating | 
|  | * skeleton QH. */ | 
|  | uhci->fsbr_is_on = 0; | 
|  | lqh = list_entry(uhci->skel_async_qh->node.prev, | 
|  | struct uhci_qh, node); | 
|  | lqh->link = UHCI_PTR_TERM(uhci); | 
|  | } | 
|  |  | 
|  | static void uhci_add_fsbr(struct uhci_hcd *uhci, struct urb *urb) | 
|  | { | 
|  | struct urb_priv *urbp = urb->hcpriv; | 
|  |  | 
|  | if (!(urb->transfer_flags & URB_NO_FSBR)) | 
|  | urbp->fsbr = 1; | 
|  | } | 
|  |  | 
|  | static void uhci_urbp_wants_fsbr(struct uhci_hcd *uhci, struct urb_priv *urbp) | 
|  | { | 
|  | if (urbp->fsbr) { | 
|  | uhci->fsbr_is_wanted = 1; | 
|  | if (!uhci->fsbr_is_on) | 
|  | uhci_fsbr_on(uhci); | 
|  | else if (uhci->fsbr_expiring) { | 
|  | uhci->fsbr_expiring = 0; | 
|  | del_timer(&uhci->fsbr_timer); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void uhci_fsbr_timeout(unsigned long _uhci) | 
|  | { | 
|  | struct uhci_hcd *uhci = (struct uhci_hcd *) _uhci; | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&uhci->lock, flags); | 
|  | if (uhci->fsbr_expiring) { | 
|  | uhci->fsbr_expiring = 0; | 
|  | uhci_fsbr_off(uhci); | 
|  | } | 
|  | spin_unlock_irqrestore(&uhci->lock, flags); | 
|  | } | 
|  |  | 
|  |  | 
|  | static struct uhci_td *uhci_alloc_td(struct uhci_hcd *uhci) | 
|  | { | 
|  | dma_addr_t dma_handle; | 
|  | struct uhci_td *td; | 
|  |  | 
|  | td = dma_pool_alloc(uhci->td_pool, GFP_ATOMIC, &dma_handle); | 
|  | if (!td) | 
|  | return NULL; | 
|  |  | 
|  | td->dma_handle = dma_handle; | 
|  | td->frame = -1; | 
|  |  | 
|  | INIT_LIST_HEAD(&td->list); | 
|  | INIT_LIST_HEAD(&td->fl_list); | 
|  |  | 
|  | return td; | 
|  | } | 
|  |  | 
|  | static void uhci_free_td(struct uhci_hcd *uhci, struct uhci_td *td) | 
|  | { | 
|  | if (!list_empty(&td->list)) | 
|  | dev_WARN(uhci_dev(uhci), "td %p still in list!\n", td); | 
|  | if (!list_empty(&td->fl_list)) | 
|  | dev_WARN(uhci_dev(uhci), "td %p still in fl_list!\n", td); | 
|  |  | 
|  | dma_pool_free(uhci->td_pool, td, td->dma_handle); | 
|  | } | 
|  |  | 
|  | static inline void uhci_fill_td(struct uhci_hcd *uhci, struct uhci_td *td, | 
|  | u32 status, u32 token, u32 buffer) | 
|  | { | 
|  | td->status = cpu_to_hc32(uhci, status); | 
|  | td->token = cpu_to_hc32(uhci, token); | 
|  | td->buffer = cpu_to_hc32(uhci, buffer); | 
|  | } | 
|  |  | 
|  | static void uhci_add_td_to_urbp(struct uhci_td *td, struct urb_priv *urbp) | 
|  | { | 
|  | list_add_tail(&td->list, &urbp->td_list); | 
|  | } | 
|  |  | 
|  | static void uhci_remove_td_from_urbp(struct uhci_td *td) | 
|  | { | 
|  | list_del_init(&td->list); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We insert Isochronous URBs directly into the frame list at the beginning | 
|  | */ | 
|  | static inline void uhci_insert_td_in_frame_list(struct uhci_hcd *uhci, | 
|  | struct uhci_td *td, unsigned framenum) | 
|  | { | 
|  | framenum &= (UHCI_NUMFRAMES - 1); | 
|  |  | 
|  | td->frame = framenum; | 
|  |  | 
|  | /* Is there a TD already mapped there? */ | 
|  | if (uhci->frame_cpu[framenum]) { | 
|  | struct uhci_td *ftd, *ltd; | 
|  |  | 
|  | ftd = uhci->frame_cpu[framenum]; | 
|  | ltd = list_entry(ftd->fl_list.prev, struct uhci_td, fl_list); | 
|  |  | 
|  | list_add_tail(&td->fl_list, &ftd->fl_list); | 
|  |  | 
|  | td->link = ltd->link; | 
|  | wmb(); | 
|  | ltd->link = LINK_TO_TD(uhci, td); | 
|  | } else { | 
|  | td->link = uhci->frame[framenum]; | 
|  | wmb(); | 
|  | uhci->frame[framenum] = LINK_TO_TD(uhci, td); | 
|  | uhci->frame_cpu[framenum] = td; | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void uhci_remove_td_from_frame_list(struct uhci_hcd *uhci, | 
|  | struct uhci_td *td) | 
|  | { | 
|  | /* If it's not inserted, don't remove it */ | 
|  | if (td->frame == -1) { | 
|  | WARN_ON(!list_empty(&td->fl_list)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (uhci->frame_cpu[td->frame] == td) { | 
|  | if (list_empty(&td->fl_list)) { | 
|  | uhci->frame[td->frame] = td->link; | 
|  | uhci->frame_cpu[td->frame] = NULL; | 
|  | } else { | 
|  | struct uhci_td *ntd; | 
|  |  | 
|  | ntd = list_entry(td->fl_list.next, | 
|  | struct uhci_td, | 
|  | fl_list); | 
|  | uhci->frame[td->frame] = LINK_TO_TD(uhci, ntd); | 
|  | uhci->frame_cpu[td->frame] = ntd; | 
|  | } | 
|  | } else { | 
|  | struct uhci_td *ptd; | 
|  |  | 
|  | ptd = list_entry(td->fl_list.prev, struct uhci_td, fl_list); | 
|  | ptd->link = td->link; | 
|  | } | 
|  |  | 
|  | list_del_init(&td->fl_list); | 
|  | td->frame = -1; | 
|  | } | 
|  |  | 
|  | static inline void uhci_remove_tds_from_frame(struct uhci_hcd *uhci, | 
|  | unsigned int framenum) | 
|  | { | 
|  | struct uhci_td *ftd, *ltd; | 
|  |  | 
|  | framenum &= (UHCI_NUMFRAMES - 1); | 
|  |  | 
|  | ftd = uhci->frame_cpu[framenum]; | 
|  | if (ftd) { | 
|  | ltd = list_entry(ftd->fl_list.prev, struct uhci_td, fl_list); | 
|  | uhci->frame[framenum] = ltd->link; | 
|  | uhci->frame_cpu[framenum] = NULL; | 
|  |  | 
|  | while (!list_empty(&ftd->fl_list)) | 
|  | list_del_init(ftd->fl_list.prev); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Remove all the TDs for an Isochronous URB from the frame list | 
|  | */ | 
|  | static void uhci_unlink_isochronous_tds(struct uhci_hcd *uhci, struct urb *urb) | 
|  | { | 
|  | struct urb_priv *urbp = (struct urb_priv *) urb->hcpriv; | 
|  | struct uhci_td *td; | 
|  |  | 
|  | list_for_each_entry(td, &urbp->td_list, list) | 
|  | uhci_remove_td_from_frame_list(uhci, td); | 
|  | } | 
|  |  | 
|  | static struct uhci_qh *uhci_alloc_qh(struct uhci_hcd *uhci, | 
|  | struct usb_device *udev, struct usb_host_endpoint *hep) | 
|  | { | 
|  | dma_addr_t dma_handle; | 
|  | struct uhci_qh *qh; | 
|  |  | 
|  | qh = dma_pool_alloc(uhci->qh_pool, GFP_ATOMIC, &dma_handle); | 
|  | if (!qh) | 
|  | return NULL; | 
|  |  | 
|  | memset(qh, 0, sizeof(*qh)); | 
|  | qh->dma_handle = dma_handle; | 
|  |  | 
|  | qh->element = UHCI_PTR_TERM(uhci); | 
|  | qh->link = UHCI_PTR_TERM(uhci); | 
|  |  | 
|  | INIT_LIST_HEAD(&qh->queue); | 
|  | INIT_LIST_HEAD(&qh->node); | 
|  |  | 
|  | if (udev) {		/* Normal QH */ | 
|  | qh->type = usb_endpoint_type(&hep->desc); | 
|  | if (qh->type != USB_ENDPOINT_XFER_ISOC) { | 
|  | qh->dummy_td = uhci_alloc_td(uhci); | 
|  | if (!qh->dummy_td) { | 
|  | dma_pool_free(uhci->qh_pool, qh, dma_handle); | 
|  | return NULL; | 
|  | } | 
|  | } | 
|  | qh->state = QH_STATE_IDLE; | 
|  | qh->hep = hep; | 
|  | qh->udev = udev; | 
|  | hep->hcpriv = qh; | 
|  |  | 
|  | if (qh->type == USB_ENDPOINT_XFER_INT || | 
|  | qh->type == USB_ENDPOINT_XFER_ISOC) | 
|  | qh->load = usb_calc_bus_time(udev->speed, | 
|  | usb_endpoint_dir_in(&hep->desc), | 
|  | qh->type == USB_ENDPOINT_XFER_ISOC, | 
|  | usb_endpoint_maxp(&hep->desc)) | 
|  | / 1000 + 1; | 
|  |  | 
|  | } else {		/* Skeleton QH */ | 
|  | qh->state = QH_STATE_ACTIVE; | 
|  | qh->type = -1; | 
|  | } | 
|  | return qh; | 
|  | } | 
|  |  | 
|  | static void uhci_free_qh(struct uhci_hcd *uhci, struct uhci_qh *qh) | 
|  | { | 
|  | WARN_ON(qh->state != QH_STATE_IDLE && qh->udev); | 
|  | if (!list_empty(&qh->queue)) | 
|  | dev_WARN(uhci_dev(uhci), "qh %p list not empty!\n", qh); | 
|  |  | 
|  | list_del(&qh->node); | 
|  | if (qh->udev) { | 
|  | qh->hep->hcpriv = NULL; | 
|  | if (qh->dummy_td) | 
|  | uhci_free_td(uhci, qh->dummy_td); | 
|  | } | 
|  | dma_pool_free(uhci->qh_pool, qh, qh->dma_handle); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When a queue is stopped and a dequeued URB is given back, adjust | 
|  | * the previous TD link (if the URB isn't first on the queue) or | 
|  | * save its toggle value (if it is first and is currently executing). | 
|  | * | 
|  | * Returns 0 if the URB should not yet be given back, 1 otherwise. | 
|  | */ | 
|  | static int uhci_cleanup_queue(struct uhci_hcd *uhci, struct uhci_qh *qh, | 
|  | struct urb *urb) | 
|  | { | 
|  | struct urb_priv *urbp = urb->hcpriv; | 
|  | struct uhci_td *td; | 
|  | int ret = 1; | 
|  |  | 
|  | /* Isochronous pipes don't use toggles and their TD link pointers | 
|  | * get adjusted during uhci_urb_dequeue().  But since their queues | 
|  | * cannot truly be stopped, we have to watch out for dequeues | 
|  | * occurring after the nominal unlink frame. */ | 
|  | if (qh->type == USB_ENDPOINT_XFER_ISOC) { | 
|  | ret = (uhci->frame_number + uhci->is_stopped != | 
|  | qh->unlink_frame); | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | /* If the URB isn't first on its queue, adjust the link pointer | 
|  | * of the last TD in the previous URB.  The toggle doesn't need | 
|  | * to be saved since this URB can't be executing yet. */ | 
|  | if (qh->queue.next != &urbp->node) { | 
|  | struct urb_priv *purbp; | 
|  | struct uhci_td *ptd; | 
|  |  | 
|  | purbp = list_entry(urbp->node.prev, struct urb_priv, node); | 
|  | WARN_ON(list_empty(&purbp->td_list)); | 
|  | ptd = list_entry(purbp->td_list.prev, struct uhci_td, | 
|  | list); | 
|  | td = list_entry(urbp->td_list.prev, struct uhci_td, | 
|  | list); | 
|  | ptd->link = td->link; | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | /* If the QH element pointer is UHCI_PTR_TERM then then currently | 
|  | * executing URB has already been unlinked, so this one isn't it. */ | 
|  | if (qh_element(qh) == UHCI_PTR_TERM(uhci)) | 
|  | goto done; | 
|  | qh->element = UHCI_PTR_TERM(uhci); | 
|  |  | 
|  | /* Control pipes don't have to worry about toggles */ | 
|  | if (qh->type == USB_ENDPOINT_XFER_CONTROL) | 
|  | goto done; | 
|  |  | 
|  | /* Save the next toggle value */ | 
|  | WARN_ON(list_empty(&urbp->td_list)); | 
|  | td = list_entry(urbp->td_list.next, struct uhci_td, list); | 
|  | qh->needs_fixup = 1; | 
|  | qh->initial_toggle = uhci_toggle(td_token(uhci, td)); | 
|  |  | 
|  | done: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Fix up the data toggles for URBs in a queue, when one of them | 
|  | * terminates early (short transfer, error, or dequeued). | 
|  | */ | 
|  | static void uhci_fixup_toggles(struct uhci_hcd *uhci, struct uhci_qh *qh, | 
|  | int skip_first) | 
|  | { | 
|  | struct urb_priv *urbp = NULL; | 
|  | struct uhci_td *td; | 
|  | unsigned int toggle = qh->initial_toggle; | 
|  | unsigned int pipe; | 
|  |  | 
|  | /* Fixups for a short transfer start with the second URB in the | 
|  | * queue (the short URB is the first). */ | 
|  | if (skip_first) | 
|  | urbp = list_entry(qh->queue.next, struct urb_priv, node); | 
|  |  | 
|  | /* When starting with the first URB, if the QH element pointer is | 
|  | * still valid then we know the URB's toggles are okay. */ | 
|  | else if (qh_element(qh) != UHCI_PTR_TERM(uhci)) | 
|  | toggle = 2; | 
|  |  | 
|  | /* Fix up the toggle for the URBs in the queue.  Normally this | 
|  | * loop won't run more than once: When an error or short transfer | 
|  | * occurs, the queue usually gets emptied. */ | 
|  | urbp = list_prepare_entry(urbp, &qh->queue, node); | 
|  | list_for_each_entry_continue(urbp, &qh->queue, node) { | 
|  |  | 
|  | /* If the first TD has the right toggle value, we don't | 
|  | * need to change any toggles in this URB */ | 
|  | td = list_entry(urbp->td_list.next, struct uhci_td, list); | 
|  | if (toggle > 1 || uhci_toggle(td_token(uhci, td)) == toggle) { | 
|  | td = list_entry(urbp->td_list.prev, struct uhci_td, | 
|  | list); | 
|  | toggle = uhci_toggle(td_token(uhci, td)) ^ 1; | 
|  |  | 
|  | /* Otherwise all the toggles in the URB have to be switched */ | 
|  | } else { | 
|  | list_for_each_entry(td, &urbp->td_list, list) { | 
|  | td->token ^= cpu_to_hc32(uhci, | 
|  | TD_TOKEN_TOGGLE); | 
|  | toggle ^= 1; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | wmb(); | 
|  | pipe = list_entry(qh->queue.next, struct urb_priv, node)->urb->pipe; | 
|  | usb_settoggle(qh->udev, usb_pipeendpoint(pipe), | 
|  | usb_pipeout(pipe), toggle); | 
|  | qh->needs_fixup = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Link an Isochronous QH into its skeleton's list | 
|  | */ | 
|  | static inline void link_iso(struct uhci_hcd *uhci, struct uhci_qh *qh) | 
|  | { | 
|  | list_add_tail(&qh->node, &uhci->skel_iso_qh->node); | 
|  |  | 
|  | /* Isochronous QHs aren't linked by the hardware */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Link a high-period interrupt QH into the schedule at the end of its | 
|  | * skeleton's list | 
|  | */ | 
|  | static void link_interrupt(struct uhci_hcd *uhci, struct uhci_qh *qh) | 
|  | { | 
|  | struct uhci_qh *pqh; | 
|  |  | 
|  | list_add_tail(&qh->node, &uhci->skelqh[qh->skel]->node); | 
|  |  | 
|  | pqh = list_entry(qh->node.prev, struct uhci_qh, node); | 
|  | qh->link = pqh->link; | 
|  | wmb(); | 
|  | pqh->link = LINK_TO_QH(uhci, qh); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Link a period-1 interrupt or async QH into the schedule at the | 
|  | * correct spot in the async skeleton's list, and update the FSBR link | 
|  | */ | 
|  | static void link_async(struct uhci_hcd *uhci, struct uhci_qh *qh) | 
|  | { | 
|  | struct uhci_qh *pqh; | 
|  | __hc32 link_to_new_qh; | 
|  |  | 
|  | /* Find the predecessor QH for our new one and insert it in the list. | 
|  | * The list of QHs is expected to be short, so linear search won't | 
|  | * take too long. */ | 
|  | list_for_each_entry_reverse(pqh, &uhci->skel_async_qh->node, node) { | 
|  | if (pqh->skel <= qh->skel) | 
|  | break; | 
|  | } | 
|  | list_add(&qh->node, &pqh->node); | 
|  |  | 
|  | /* Link it into the schedule */ | 
|  | qh->link = pqh->link; | 
|  | wmb(); | 
|  | link_to_new_qh = LINK_TO_QH(uhci, qh); | 
|  | pqh->link = link_to_new_qh; | 
|  |  | 
|  | /* If this is now the first FSBR QH, link the terminating skeleton | 
|  | * QH to it. */ | 
|  | if (pqh->skel < SKEL_FSBR && qh->skel >= SKEL_FSBR) | 
|  | uhci->skel_term_qh->link = link_to_new_qh; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Put a QH on the schedule in both hardware and software | 
|  | */ | 
|  | static void uhci_activate_qh(struct uhci_hcd *uhci, struct uhci_qh *qh) | 
|  | { | 
|  | WARN_ON(list_empty(&qh->queue)); | 
|  |  | 
|  | /* Set the element pointer if it isn't set already. | 
|  | * This isn't needed for Isochronous queues, but it doesn't hurt. */ | 
|  | if (qh_element(qh) == UHCI_PTR_TERM(uhci)) { | 
|  | struct urb_priv *urbp = list_entry(qh->queue.next, | 
|  | struct urb_priv, node); | 
|  | struct uhci_td *td = list_entry(urbp->td_list.next, | 
|  | struct uhci_td, list); | 
|  |  | 
|  | qh->element = LINK_TO_TD(uhci, td); | 
|  | } | 
|  |  | 
|  | /* Treat the queue as if it has just advanced */ | 
|  | qh->wait_expired = 0; | 
|  | qh->advance_jiffies = jiffies; | 
|  |  | 
|  | if (qh->state == QH_STATE_ACTIVE) | 
|  | return; | 
|  | qh->state = QH_STATE_ACTIVE; | 
|  |  | 
|  | /* Move the QH from its old list to the correct spot in the appropriate | 
|  | * skeleton's list */ | 
|  | if (qh == uhci->next_qh) | 
|  | uhci->next_qh = list_entry(qh->node.next, struct uhci_qh, | 
|  | node); | 
|  | list_del(&qh->node); | 
|  |  | 
|  | if (qh->skel == SKEL_ISO) | 
|  | link_iso(uhci, qh); | 
|  | else if (qh->skel < SKEL_ASYNC) | 
|  | link_interrupt(uhci, qh); | 
|  | else | 
|  | link_async(uhci, qh); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Unlink a high-period interrupt QH from the schedule | 
|  | */ | 
|  | static void unlink_interrupt(struct uhci_hcd *uhci, struct uhci_qh *qh) | 
|  | { | 
|  | struct uhci_qh *pqh; | 
|  |  | 
|  | pqh = list_entry(qh->node.prev, struct uhci_qh, node); | 
|  | pqh->link = qh->link; | 
|  | mb(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Unlink a period-1 interrupt or async QH from the schedule | 
|  | */ | 
|  | static void unlink_async(struct uhci_hcd *uhci, struct uhci_qh *qh) | 
|  | { | 
|  | struct uhci_qh *pqh; | 
|  | __hc32 link_to_next_qh = qh->link; | 
|  |  | 
|  | pqh = list_entry(qh->node.prev, struct uhci_qh, node); | 
|  | pqh->link = link_to_next_qh; | 
|  |  | 
|  | /* If this was the old first FSBR QH, link the terminating skeleton | 
|  | * QH to the next (new first FSBR) QH. */ | 
|  | if (pqh->skel < SKEL_FSBR && qh->skel >= SKEL_FSBR) | 
|  | uhci->skel_term_qh->link = link_to_next_qh; | 
|  | mb(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Take a QH off the hardware schedule | 
|  | */ | 
|  | static void uhci_unlink_qh(struct uhci_hcd *uhci, struct uhci_qh *qh) | 
|  | { | 
|  | if (qh->state == QH_STATE_UNLINKING) | 
|  | return; | 
|  | WARN_ON(qh->state != QH_STATE_ACTIVE || !qh->udev); | 
|  | qh->state = QH_STATE_UNLINKING; | 
|  |  | 
|  | /* Unlink the QH from the schedule and record when we did it */ | 
|  | if (qh->skel == SKEL_ISO) | 
|  | ; | 
|  | else if (qh->skel < SKEL_ASYNC) | 
|  | unlink_interrupt(uhci, qh); | 
|  | else | 
|  | unlink_async(uhci, qh); | 
|  |  | 
|  | uhci_get_current_frame_number(uhci); | 
|  | qh->unlink_frame = uhci->frame_number; | 
|  |  | 
|  | /* Force an interrupt so we know when the QH is fully unlinked */ | 
|  | if (list_empty(&uhci->skel_unlink_qh->node) || uhci->is_stopped) | 
|  | uhci_set_next_interrupt(uhci); | 
|  |  | 
|  | /* Move the QH from its old list to the end of the unlinking list */ | 
|  | if (qh == uhci->next_qh) | 
|  | uhci->next_qh = list_entry(qh->node.next, struct uhci_qh, | 
|  | node); | 
|  | list_move_tail(&qh->node, &uhci->skel_unlink_qh->node); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When we and the controller are through with a QH, it becomes IDLE. | 
|  | * This happens when a QH has been off the schedule (on the unlinking | 
|  | * list) for more than one frame, or when an error occurs while adding | 
|  | * the first URB onto a new QH. | 
|  | */ | 
|  | static void uhci_make_qh_idle(struct uhci_hcd *uhci, struct uhci_qh *qh) | 
|  | { | 
|  | WARN_ON(qh->state == QH_STATE_ACTIVE); | 
|  |  | 
|  | if (qh == uhci->next_qh) | 
|  | uhci->next_qh = list_entry(qh->node.next, struct uhci_qh, | 
|  | node); | 
|  | list_move(&qh->node, &uhci->idle_qh_list); | 
|  | qh->state = QH_STATE_IDLE; | 
|  |  | 
|  | /* Now that the QH is idle, its post_td isn't being used */ | 
|  | if (qh->post_td) { | 
|  | uhci_free_td(uhci, qh->post_td); | 
|  | qh->post_td = NULL; | 
|  | } | 
|  |  | 
|  | /* If anyone is waiting for a QH to become idle, wake them up */ | 
|  | if (uhci->num_waiting) | 
|  | wake_up_all(&uhci->waitqh); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find the highest existing bandwidth load for a given phase and period. | 
|  | */ | 
|  | static int uhci_highest_load(struct uhci_hcd *uhci, int phase, int period) | 
|  | { | 
|  | int highest_load = uhci->load[phase]; | 
|  |  | 
|  | for (phase += period; phase < MAX_PHASE; phase += period) | 
|  | highest_load = max_t(int, highest_load, uhci->load[phase]); | 
|  | return highest_load; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set qh->phase to the optimal phase for a periodic transfer and | 
|  | * check whether the bandwidth requirement is acceptable. | 
|  | */ | 
|  | static int uhci_check_bandwidth(struct uhci_hcd *uhci, struct uhci_qh *qh) | 
|  | { | 
|  | int minimax_load; | 
|  |  | 
|  | /* Find the optimal phase (unless it is already set) and get | 
|  | * its load value. */ | 
|  | if (qh->phase >= 0) | 
|  | minimax_load = uhci_highest_load(uhci, qh->phase, qh->period); | 
|  | else { | 
|  | int phase, load; | 
|  | int max_phase = min_t(int, MAX_PHASE, qh->period); | 
|  |  | 
|  | qh->phase = 0; | 
|  | minimax_load = uhci_highest_load(uhci, qh->phase, qh->period); | 
|  | for (phase = 1; phase < max_phase; ++phase) { | 
|  | load = uhci_highest_load(uhci, phase, qh->period); | 
|  | if (load < minimax_load) { | 
|  | minimax_load = load; | 
|  | qh->phase = phase; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Maximum allowable periodic bandwidth is 90%, or 900 us per frame */ | 
|  | if (minimax_load + qh->load > 900) { | 
|  | dev_dbg(uhci_dev(uhci), "bandwidth allocation failed: " | 
|  | "period %d, phase %d, %d + %d us\n", | 
|  | qh->period, qh->phase, minimax_load, qh->load); | 
|  | return -ENOSPC; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Reserve a periodic QH's bandwidth in the schedule | 
|  | */ | 
|  | static void uhci_reserve_bandwidth(struct uhci_hcd *uhci, struct uhci_qh *qh) | 
|  | { | 
|  | int i; | 
|  | int load = qh->load; | 
|  | char *p = "??"; | 
|  |  | 
|  | for (i = qh->phase; i < MAX_PHASE; i += qh->period) { | 
|  | uhci->load[i] += load; | 
|  | uhci->total_load += load; | 
|  | } | 
|  | uhci_to_hcd(uhci)->self.bandwidth_allocated = | 
|  | uhci->total_load / MAX_PHASE; | 
|  | switch (qh->type) { | 
|  | case USB_ENDPOINT_XFER_INT: | 
|  | ++uhci_to_hcd(uhci)->self.bandwidth_int_reqs; | 
|  | p = "INT"; | 
|  | break; | 
|  | case USB_ENDPOINT_XFER_ISOC: | 
|  | ++uhci_to_hcd(uhci)->self.bandwidth_isoc_reqs; | 
|  | p = "ISO"; | 
|  | break; | 
|  | } | 
|  | qh->bandwidth_reserved = 1; | 
|  | dev_dbg(uhci_dev(uhci), | 
|  | "%s dev %d ep%02x-%s, period %d, phase %d, %d us\n", | 
|  | "reserve", qh->udev->devnum, | 
|  | qh->hep->desc.bEndpointAddress, p, | 
|  | qh->period, qh->phase, load); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Release a periodic QH's bandwidth reservation | 
|  | */ | 
|  | static void uhci_release_bandwidth(struct uhci_hcd *uhci, struct uhci_qh *qh) | 
|  | { | 
|  | int i; | 
|  | int load = qh->load; | 
|  | char *p = "??"; | 
|  |  | 
|  | for (i = qh->phase; i < MAX_PHASE; i += qh->period) { | 
|  | uhci->load[i] -= load; | 
|  | uhci->total_load -= load; | 
|  | } | 
|  | uhci_to_hcd(uhci)->self.bandwidth_allocated = | 
|  | uhci->total_load / MAX_PHASE; | 
|  | switch (qh->type) { | 
|  | case USB_ENDPOINT_XFER_INT: | 
|  | --uhci_to_hcd(uhci)->self.bandwidth_int_reqs; | 
|  | p = "INT"; | 
|  | break; | 
|  | case USB_ENDPOINT_XFER_ISOC: | 
|  | --uhci_to_hcd(uhci)->self.bandwidth_isoc_reqs; | 
|  | p = "ISO"; | 
|  | break; | 
|  | } | 
|  | qh->bandwidth_reserved = 0; | 
|  | dev_dbg(uhci_dev(uhci), | 
|  | "%s dev %d ep%02x-%s, period %d, phase %d, %d us\n", | 
|  | "release", qh->udev->devnum, | 
|  | qh->hep->desc.bEndpointAddress, p, | 
|  | qh->period, qh->phase, load); | 
|  | } | 
|  |  | 
|  | static inline struct urb_priv *uhci_alloc_urb_priv(struct uhci_hcd *uhci, | 
|  | struct urb *urb) | 
|  | { | 
|  | struct urb_priv *urbp; | 
|  |  | 
|  | urbp = kmem_cache_zalloc(uhci_up_cachep, GFP_ATOMIC); | 
|  | if (!urbp) | 
|  | return NULL; | 
|  |  | 
|  | urbp->urb = urb; | 
|  | urb->hcpriv = urbp; | 
|  |  | 
|  | INIT_LIST_HEAD(&urbp->node); | 
|  | INIT_LIST_HEAD(&urbp->td_list); | 
|  |  | 
|  | return urbp; | 
|  | } | 
|  |  | 
|  | static void uhci_free_urb_priv(struct uhci_hcd *uhci, | 
|  | struct urb_priv *urbp) | 
|  | { | 
|  | struct uhci_td *td, *tmp; | 
|  |  | 
|  | if (!list_empty(&urbp->node)) | 
|  | dev_WARN(uhci_dev(uhci), "urb %p still on QH's list!\n", | 
|  | urbp->urb); | 
|  |  | 
|  | list_for_each_entry_safe(td, tmp, &urbp->td_list, list) { | 
|  | uhci_remove_td_from_urbp(td); | 
|  | uhci_free_td(uhci, td); | 
|  | } | 
|  |  | 
|  | kmem_cache_free(uhci_up_cachep, urbp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Map status to standard result codes | 
|  | * | 
|  | * <status> is (td_status(uhci, td) & 0xF60000), a.k.a. | 
|  | * uhci_status_bits(td_status(uhci, td)). | 
|  | * Note: <status> does not include the TD_CTRL_NAK bit. | 
|  | * <dir_out> is True for output TDs and False for input TDs. | 
|  | */ | 
|  | static int uhci_map_status(int status, int dir_out) | 
|  | { | 
|  | if (!status) | 
|  | return 0; | 
|  | if (status & TD_CTRL_BITSTUFF)			/* Bitstuff error */ | 
|  | return -EPROTO; | 
|  | if (status & TD_CTRL_CRCTIMEO) {		/* CRC/Timeout */ | 
|  | if (dir_out) | 
|  | return -EPROTO; | 
|  | else | 
|  | return -EILSEQ; | 
|  | } | 
|  | if (status & TD_CTRL_BABBLE)			/* Babble */ | 
|  | return -EOVERFLOW; | 
|  | if (status & TD_CTRL_DBUFERR)			/* Buffer error */ | 
|  | return -ENOSR; | 
|  | if (status & TD_CTRL_STALLED)			/* Stalled */ | 
|  | return -EPIPE; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Control transfers | 
|  | */ | 
|  | static int uhci_submit_control(struct uhci_hcd *uhci, struct urb *urb, | 
|  | struct uhci_qh *qh) | 
|  | { | 
|  | struct uhci_td *td; | 
|  | unsigned long destination, status; | 
|  | int maxsze = usb_endpoint_maxp(&qh->hep->desc); | 
|  | int len = urb->transfer_buffer_length; | 
|  | dma_addr_t data = urb->transfer_dma; | 
|  | __hc32 *plink; | 
|  | struct urb_priv *urbp = urb->hcpriv; | 
|  | int skel; | 
|  |  | 
|  | /* The "pipe" thing contains the destination in bits 8--18 */ | 
|  | destination = (urb->pipe & PIPE_DEVEP_MASK) | USB_PID_SETUP; | 
|  |  | 
|  | /* 3 errors, dummy TD remains inactive */ | 
|  | status = uhci_maxerr(3); | 
|  | if (urb->dev->speed == USB_SPEED_LOW) | 
|  | status |= TD_CTRL_LS; | 
|  |  | 
|  | /* | 
|  | * Build the TD for the control request setup packet | 
|  | */ | 
|  | td = qh->dummy_td; | 
|  | uhci_add_td_to_urbp(td, urbp); | 
|  | uhci_fill_td(uhci, td, status, destination | uhci_explen(8), | 
|  | urb->setup_dma); | 
|  | plink = &td->link; | 
|  | status |= TD_CTRL_ACTIVE; | 
|  |  | 
|  | /* | 
|  | * If direction is "send", change the packet ID from SETUP (0x2D) | 
|  | * to OUT (0xE1).  Else change it from SETUP to IN (0x69) and | 
|  | * set Short Packet Detect (SPD) for all data packets. | 
|  | * | 
|  | * 0-length transfers always get treated as "send". | 
|  | */ | 
|  | if (usb_pipeout(urb->pipe) || len == 0) | 
|  | destination ^= (USB_PID_SETUP ^ USB_PID_OUT); | 
|  | else { | 
|  | destination ^= (USB_PID_SETUP ^ USB_PID_IN); | 
|  | status |= TD_CTRL_SPD; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Build the DATA TDs | 
|  | */ | 
|  | while (len > 0) { | 
|  | int pktsze = maxsze; | 
|  |  | 
|  | if (len <= pktsze) {		/* The last data packet */ | 
|  | pktsze = len; | 
|  | status &= ~TD_CTRL_SPD; | 
|  | } | 
|  |  | 
|  | td = uhci_alloc_td(uhci); | 
|  | if (!td) | 
|  | goto nomem; | 
|  | *plink = LINK_TO_TD(uhci, td); | 
|  |  | 
|  | /* Alternate Data0/1 (start with Data1) */ | 
|  | destination ^= TD_TOKEN_TOGGLE; | 
|  |  | 
|  | uhci_add_td_to_urbp(td, urbp); | 
|  | uhci_fill_td(uhci, td, status, | 
|  | destination | uhci_explen(pktsze), data); | 
|  | plink = &td->link; | 
|  |  | 
|  | data += pktsze; | 
|  | len -= pktsze; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Build the final TD for control status | 
|  | */ | 
|  | td = uhci_alloc_td(uhci); | 
|  | if (!td) | 
|  | goto nomem; | 
|  | *plink = LINK_TO_TD(uhci, td); | 
|  |  | 
|  | /* Change direction for the status transaction */ | 
|  | destination ^= (USB_PID_IN ^ USB_PID_OUT); | 
|  | destination |= TD_TOKEN_TOGGLE;		/* End in Data1 */ | 
|  |  | 
|  | uhci_add_td_to_urbp(td, urbp); | 
|  | uhci_fill_td(uhci, td, status | TD_CTRL_IOC, | 
|  | destination | uhci_explen(0), 0); | 
|  | plink = &td->link; | 
|  |  | 
|  | /* | 
|  | * Build the new dummy TD and activate the old one | 
|  | */ | 
|  | td = uhci_alloc_td(uhci); | 
|  | if (!td) | 
|  | goto nomem; | 
|  | *plink = LINK_TO_TD(uhci, td); | 
|  |  | 
|  | uhci_fill_td(uhci, td, 0, USB_PID_OUT | uhci_explen(0), 0); | 
|  | wmb(); | 
|  | qh->dummy_td->status |= cpu_to_hc32(uhci, TD_CTRL_ACTIVE); | 
|  | qh->dummy_td = td; | 
|  |  | 
|  | /* Low-speed transfers get a different queue, and won't hog the bus. | 
|  | * Also, some devices enumerate better without FSBR; the easiest way | 
|  | * to do that is to put URBs on the low-speed queue while the device | 
|  | * isn't in the CONFIGURED state. */ | 
|  | if (urb->dev->speed == USB_SPEED_LOW || | 
|  | urb->dev->state != USB_STATE_CONFIGURED) | 
|  | skel = SKEL_LS_CONTROL; | 
|  | else { | 
|  | skel = SKEL_FS_CONTROL; | 
|  | uhci_add_fsbr(uhci, urb); | 
|  | } | 
|  | if (qh->state != QH_STATE_ACTIVE) | 
|  | qh->skel = skel; | 
|  | return 0; | 
|  |  | 
|  | nomem: | 
|  | /* Remove the dummy TD from the td_list so it doesn't get freed */ | 
|  | uhci_remove_td_from_urbp(qh->dummy_td); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Common submit for bulk and interrupt | 
|  | */ | 
|  | static int uhci_submit_common(struct uhci_hcd *uhci, struct urb *urb, | 
|  | struct uhci_qh *qh) | 
|  | { | 
|  | struct uhci_td *td; | 
|  | unsigned long destination, status; | 
|  | int maxsze = usb_endpoint_maxp(&qh->hep->desc); | 
|  | int len = urb->transfer_buffer_length; | 
|  | int this_sg_len; | 
|  | dma_addr_t data; | 
|  | __hc32 *plink; | 
|  | struct urb_priv *urbp = urb->hcpriv; | 
|  | unsigned int toggle; | 
|  | struct scatterlist  *sg; | 
|  | int i; | 
|  |  | 
|  | if (len < 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* The "pipe" thing contains the destination in bits 8--18 */ | 
|  | destination = (urb->pipe & PIPE_DEVEP_MASK) | usb_packetid(urb->pipe); | 
|  | toggle = usb_gettoggle(urb->dev, usb_pipeendpoint(urb->pipe), | 
|  | usb_pipeout(urb->pipe)); | 
|  |  | 
|  | /* 3 errors, dummy TD remains inactive */ | 
|  | status = uhci_maxerr(3); | 
|  | if (urb->dev->speed == USB_SPEED_LOW) | 
|  | status |= TD_CTRL_LS; | 
|  | if (usb_pipein(urb->pipe)) | 
|  | status |= TD_CTRL_SPD; | 
|  |  | 
|  | i = urb->num_mapped_sgs; | 
|  | if (len > 0 && i > 0) { | 
|  | sg = urb->sg; | 
|  | data = sg_dma_address(sg); | 
|  |  | 
|  | /* urb->transfer_buffer_length may be smaller than the | 
|  | * size of the scatterlist (or vice versa) | 
|  | */ | 
|  | this_sg_len = min_t(int, sg_dma_len(sg), len); | 
|  | } else { | 
|  | sg = NULL; | 
|  | data = urb->transfer_dma; | 
|  | this_sg_len = len; | 
|  | } | 
|  | /* | 
|  | * Build the DATA TDs | 
|  | */ | 
|  | plink = NULL; | 
|  | td = qh->dummy_td; | 
|  | for (;;) {	/* Allow zero length packets */ | 
|  | int pktsze = maxsze; | 
|  |  | 
|  | if (len <= pktsze) {		/* The last packet */ | 
|  | pktsze = len; | 
|  | if (!(urb->transfer_flags & URB_SHORT_NOT_OK)) | 
|  | status &= ~TD_CTRL_SPD; | 
|  | } | 
|  |  | 
|  | if (plink) { | 
|  | td = uhci_alloc_td(uhci); | 
|  | if (!td) | 
|  | goto nomem; | 
|  | *plink = LINK_TO_TD(uhci, td); | 
|  | } | 
|  | uhci_add_td_to_urbp(td, urbp); | 
|  | uhci_fill_td(uhci, td, status, | 
|  | destination | uhci_explen(pktsze) | | 
|  | (toggle << TD_TOKEN_TOGGLE_SHIFT), | 
|  | data); | 
|  | plink = &td->link; | 
|  | status |= TD_CTRL_ACTIVE; | 
|  |  | 
|  | toggle ^= 1; | 
|  | data += pktsze; | 
|  | this_sg_len -= pktsze; | 
|  | len -= maxsze; | 
|  | if (this_sg_len <= 0) { | 
|  | if (--i <= 0 || len <= 0) | 
|  | break; | 
|  | sg = sg_next(sg); | 
|  | data = sg_dma_address(sg); | 
|  | this_sg_len = min_t(int, sg_dma_len(sg), len); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * URB_ZERO_PACKET means adding a 0-length packet, if direction | 
|  | * is OUT and the transfer_length was an exact multiple of maxsze, | 
|  | * hence (len = transfer_length - N * maxsze) == 0 | 
|  | * however, if transfer_length == 0, the zero packet was already | 
|  | * prepared above. | 
|  | */ | 
|  | if ((urb->transfer_flags & URB_ZERO_PACKET) && | 
|  | usb_pipeout(urb->pipe) && len == 0 && | 
|  | urb->transfer_buffer_length > 0) { | 
|  | td = uhci_alloc_td(uhci); | 
|  | if (!td) | 
|  | goto nomem; | 
|  | *plink = LINK_TO_TD(uhci, td); | 
|  |  | 
|  | uhci_add_td_to_urbp(td, urbp); | 
|  | uhci_fill_td(uhci, td, status, | 
|  | destination | uhci_explen(0) | | 
|  | (toggle << TD_TOKEN_TOGGLE_SHIFT), | 
|  | data); | 
|  | plink = &td->link; | 
|  |  | 
|  | toggle ^= 1; | 
|  | } | 
|  |  | 
|  | /* Set the interrupt-on-completion flag on the last packet. | 
|  | * A more-or-less typical 4 KB URB (= size of one memory page) | 
|  | * will require about 3 ms to transfer; that's a little on the | 
|  | * fast side but not enough to justify delaying an interrupt | 
|  | * more than 2 or 3 URBs, so we will ignore the URB_NO_INTERRUPT | 
|  | * flag setting. */ | 
|  | td->status |= cpu_to_hc32(uhci, TD_CTRL_IOC); | 
|  |  | 
|  | /* | 
|  | * Build the new dummy TD and activate the old one | 
|  | */ | 
|  | td = uhci_alloc_td(uhci); | 
|  | if (!td) | 
|  | goto nomem; | 
|  | *plink = LINK_TO_TD(uhci, td); | 
|  |  | 
|  | uhci_fill_td(uhci, td, 0, USB_PID_OUT | uhci_explen(0), 0); | 
|  | wmb(); | 
|  | qh->dummy_td->status |= cpu_to_hc32(uhci, TD_CTRL_ACTIVE); | 
|  | qh->dummy_td = td; | 
|  |  | 
|  | usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), | 
|  | usb_pipeout(urb->pipe), toggle); | 
|  | return 0; | 
|  |  | 
|  | nomem: | 
|  | /* Remove the dummy TD from the td_list so it doesn't get freed */ | 
|  | uhci_remove_td_from_urbp(qh->dummy_td); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | static int uhci_submit_bulk(struct uhci_hcd *uhci, struct urb *urb, | 
|  | struct uhci_qh *qh) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | /* Can't have low-speed bulk transfers */ | 
|  | if (urb->dev->speed == USB_SPEED_LOW) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (qh->state != QH_STATE_ACTIVE) | 
|  | qh->skel = SKEL_BULK; | 
|  | ret = uhci_submit_common(uhci, urb, qh); | 
|  | if (ret == 0) | 
|  | uhci_add_fsbr(uhci, urb); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int uhci_submit_interrupt(struct uhci_hcd *uhci, struct urb *urb, | 
|  | struct uhci_qh *qh) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | /* USB 1.1 interrupt transfers only involve one packet per interval. | 
|  | * Drivers can submit URBs of any length, but longer ones will need | 
|  | * multiple intervals to complete. | 
|  | */ | 
|  |  | 
|  | if (!qh->bandwidth_reserved) { | 
|  | int exponent; | 
|  |  | 
|  | /* Figure out which power-of-two queue to use */ | 
|  | for (exponent = 7; exponent >= 0; --exponent) { | 
|  | if ((1 << exponent) <= urb->interval) | 
|  | break; | 
|  | } | 
|  | if (exponent < 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* If the slot is full, try a lower period */ | 
|  | do { | 
|  | qh->period = 1 << exponent; | 
|  | qh->skel = SKEL_INDEX(exponent); | 
|  |  | 
|  | /* For now, interrupt phase is fixed by the layout | 
|  | * of the QH lists. | 
|  | */ | 
|  | qh->phase = (qh->period / 2) & (MAX_PHASE - 1); | 
|  | ret = uhci_check_bandwidth(uhci, qh); | 
|  | } while (ret != 0 && --exponent >= 0); | 
|  | if (ret) | 
|  | return ret; | 
|  | } else if (qh->period > urb->interval) | 
|  | return -EINVAL;		/* Can't decrease the period */ | 
|  |  | 
|  | ret = uhci_submit_common(uhci, urb, qh); | 
|  | if (ret == 0) { | 
|  | urb->interval = qh->period; | 
|  | if (!qh->bandwidth_reserved) | 
|  | uhci_reserve_bandwidth(uhci, qh); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Fix up the data structures following a short transfer | 
|  | */ | 
|  | static int uhci_fixup_short_transfer(struct uhci_hcd *uhci, | 
|  | struct uhci_qh *qh, struct urb_priv *urbp) | 
|  | { | 
|  | struct uhci_td *td; | 
|  | struct list_head *tmp; | 
|  | int ret; | 
|  |  | 
|  | td = list_entry(urbp->td_list.prev, struct uhci_td, list); | 
|  | if (qh->type == USB_ENDPOINT_XFER_CONTROL) { | 
|  |  | 
|  | /* When a control transfer is short, we have to restart | 
|  | * the queue at the status stage transaction, which is | 
|  | * the last TD. */ | 
|  | WARN_ON(list_empty(&urbp->td_list)); | 
|  | qh->element = LINK_TO_TD(uhci, td); | 
|  | tmp = td->list.prev; | 
|  | ret = -EINPROGRESS; | 
|  |  | 
|  | } else { | 
|  |  | 
|  | /* When a bulk/interrupt transfer is short, we have to | 
|  | * fix up the toggles of the following URBs on the queue | 
|  | * before restarting the queue at the next URB. */ | 
|  | qh->initial_toggle = | 
|  | uhci_toggle(td_token(uhci, qh->post_td)) ^ 1; | 
|  | uhci_fixup_toggles(uhci, qh, 1); | 
|  |  | 
|  | if (list_empty(&urbp->td_list)) | 
|  | td = qh->post_td; | 
|  | qh->element = td->link; | 
|  | tmp = urbp->td_list.prev; | 
|  | ret = 0; | 
|  | } | 
|  |  | 
|  | /* Remove all the TDs we skipped over, from tmp back to the start */ | 
|  | while (tmp != &urbp->td_list) { | 
|  | td = list_entry(tmp, struct uhci_td, list); | 
|  | tmp = tmp->prev; | 
|  |  | 
|  | uhci_remove_td_from_urbp(td); | 
|  | uhci_free_td(uhci, td); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Common result for control, bulk, and interrupt | 
|  | */ | 
|  | static int uhci_result_common(struct uhci_hcd *uhci, struct urb *urb) | 
|  | { | 
|  | struct urb_priv *urbp = urb->hcpriv; | 
|  | struct uhci_qh *qh = urbp->qh; | 
|  | struct uhci_td *td, *tmp; | 
|  | unsigned status; | 
|  | int ret = 0; | 
|  |  | 
|  | list_for_each_entry_safe(td, tmp, &urbp->td_list, list) { | 
|  | unsigned int ctrlstat; | 
|  | int len; | 
|  |  | 
|  | ctrlstat = td_status(uhci, td); | 
|  | status = uhci_status_bits(ctrlstat); | 
|  | if (status & TD_CTRL_ACTIVE) | 
|  | return -EINPROGRESS; | 
|  |  | 
|  | len = uhci_actual_length(ctrlstat); | 
|  | urb->actual_length += len; | 
|  |  | 
|  | if (status) { | 
|  | ret = uhci_map_status(status, | 
|  | uhci_packetout(td_token(uhci, td))); | 
|  | if ((debug == 1 && ret != -EPIPE) || debug > 1) { | 
|  | /* Some debugging code */ | 
|  | dev_dbg(&urb->dev->dev, | 
|  | "%s: failed with status %x\n", | 
|  | __func__, status); | 
|  |  | 
|  | if (debug > 1 && errbuf) { | 
|  | /* Print the chain for debugging */ | 
|  | uhci_show_qh(uhci, urbp->qh, errbuf, | 
|  | ERRBUF_LEN - EXTRA_SPACE, 0); | 
|  | lprintk(errbuf); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Did we receive a short packet? */ | 
|  | } else if (len < uhci_expected_length(td_token(uhci, td))) { | 
|  |  | 
|  | /* For control transfers, go to the status TD if | 
|  | * this isn't already the last data TD */ | 
|  | if (qh->type == USB_ENDPOINT_XFER_CONTROL) { | 
|  | if (td->list.next != urbp->td_list.prev) | 
|  | ret = 1; | 
|  | } | 
|  |  | 
|  | /* For bulk and interrupt, this may be an error */ | 
|  | else if (urb->transfer_flags & URB_SHORT_NOT_OK) | 
|  | ret = -EREMOTEIO; | 
|  |  | 
|  | /* Fixup needed only if this isn't the URB's last TD */ | 
|  | else if (&td->list != urbp->td_list.prev) | 
|  | ret = 1; | 
|  | } | 
|  |  | 
|  | uhci_remove_td_from_urbp(td); | 
|  | if (qh->post_td) | 
|  | uhci_free_td(uhci, qh->post_td); | 
|  | qh->post_td = td; | 
|  |  | 
|  | if (ret != 0) | 
|  | goto err; | 
|  | } | 
|  | return ret; | 
|  |  | 
|  | err: | 
|  | if (ret < 0) { | 
|  | /* Note that the queue has stopped and save | 
|  | * the next toggle value */ | 
|  | qh->element = UHCI_PTR_TERM(uhci); | 
|  | qh->is_stopped = 1; | 
|  | qh->needs_fixup = (qh->type != USB_ENDPOINT_XFER_CONTROL); | 
|  | qh->initial_toggle = uhci_toggle(td_token(uhci, td)) ^ | 
|  | (ret == -EREMOTEIO); | 
|  |  | 
|  | } else		/* Short packet received */ | 
|  | ret = uhci_fixup_short_transfer(uhci, qh, urbp); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Isochronous transfers | 
|  | */ | 
|  | static int uhci_submit_isochronous(struct uhci_hcd *uhci, struct urb *urb, | 
|  | struct uhci_qh *qh) | 
|  | { | 
|  | struct uhci_td *td = NULL;	/* Since urb->number_of_packets > 0 */ | 
|  | int i; | 
|  | unsigned frame, next; | 
|  | unsigned long destination, status; | 
|  | struct urb_priv *urbp = (struct urb_priv *) urb->hcpriv; | 
|  |  | 
|  | /* Values must not be too big (could overflow below) */ | 
|  | if (urb->interval >= UHCI_NUMFRAMES || | 
|  | urb->number_of_packets >= UHCI_NUMFRAMES) | 
|  | return -EFBIG; | 
|  |  | 
|  | uhci_get_current_frame_number(uhci); | 
|  |  | 
|  | /* Check the period and figure out the starting frame number */ | 
|  | if (!qh->bandwidth_reserved) { | 
|  | qh->period = urb->interval; | 
|  | qh->phase = -1;		/* Find the best phase */ | 
|  | i = uhci_check_bandwidth(uhci, qh); | 
|  | if (i) | 
|  | return i; | 
|  |  | 
|  | /* Allow a little time to allocate the TDs */ | 
|  | next = uhci->frame_number + 10; | 
|  | frame = qh->phase; | 
|  |  | 
|  | /* Round up to the first available slot */ | 
|  | frame += (next - frame + qh->period - 1) & -qh->period; | 
|  |  | 
|  | } else if (qh->period != urb->interval) { | 
|  | return -EINVAL;		/* Can't change the period */ | 
|  |  | 
|  | } else { | 
|  | next = uhci->frame_number + 1; | 
|  |  | 
|  | /* Find the next unused frame */ | 
|  | if (list_empty(&qh->queue)) { | 
|  | frame = qh->iso_frame; | 
|  | } else { | 
|  | struct urb *lurb; | 
|  |  | 
|  | lurb = list_entry(qh->queue.prev, | 
|  | struct urb_priv, node)->urb; | 
|  | frame = lurb->start_frame + | 
|  | lurb->number_of_packets * | 
|  | lurb->interval; | 
|  | } | 
|  |  | 
|  | /* Fell behind? */ | 
|  | if (!uhci_frame_before_eq(next, frame)) { | 
|  |  | 
|  | /* USB_ISO_ASAP: Round up to the first available slot */ | 
|  | if (urb->transfer_flags & URB_ISO_ASAP) | 
|  | frame += (next - frame + qh->period - 1) & | 
|  | -qh->period; | 
|  |  | 
|  | /* | 
|  | * Not ASAP: Use the next slot in the stream, | 
|  | * no matter what. | 
|  | */ | 
|  | else if (!uhci_frame_before_eq(next, | 
|  | frame + (urb->number_of_packets - 1) * | 
|  | qh->period)) | 
|  | dev_dbg(uhci_dev(uhci), "iso underrun %p (%u+%u < %u)\n", | 
|  | urb, frame, | 
|  | (urb->number_of_packets - 1) * | 
|  | qh->period, | 
|  | next); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Make sure we won't have to go too far into the future */ | 
|  | if (uhci_frame_before_eq(uhci->last_iso_frame + UHCI_NUMFRAMES, | 
|  | frame + urb->number_of_packets * urb->interval)) | 
|  | return -EFBIG; | 
|  | urb->start_frame = frame; | 
|  |  | 
|  | status = TD_CTRL_ACTIVE | TD_CTRL_IOS; | 
|  | destination = (urb->pipe & PIPE_DEVEP_MASK) | usb_packetid(urb->pipe); | 
|  |  | 
|  | for (i = 0; i < urb->number_of_packets; i++) { | 
|  | td = uhci_alloc_td(uhci); | 
|  | if (!td) | 
|  | return -ENOMEM; | 
|  |  | 
|  | uhci_add_td_to_urbp(td, urbp); | 
|  | uhci_fill_td(uhci, td, status, destination | | 
|  | uhci_explen(urb->iso_frame_desc[i].length), | 
|  | urb->transfer_dma + | 
|  | urb->iso_frame_desc[i].offset); | 
|  | } | 
|  |  | 
|  | /* Set the interrupt-on-completion flag on the last packet. */ | 
|  | td->status |= cpu_to_hc32(uhci, TD_CTRL_IOC); | 
|  |  | 
|  | /* Add the TDs to the frame list */ | 
|  | frame = urb->start_frame; | 
|  | list_for_each_entry(td, &urbp->td_list, list) { | 
|  | uhci_insert_td_in_frame_list(uhci, td, frame); | 
|  | frame += qh->period; | 
|  | } | 
|  |  | 
|  | if (list_empty(&qh->queue)) { | 
|  | qh->iso_packet_desc = &urb->iso_frame_desc[0]; | 
|  | qh->iso_frame = urb->start_frame; | 
|  | } | 
|  |  | 
|  | qh->skel = SKEL_ISO; | 
|  | if (!qh->bandwidth_reserved) | 
|  | uhci_reserve_bandwidth(uhci, qh); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int uhci_result_isochronous(struct uhci_hcd *uhci, struct urb *urb) | 
|  | { | 
|  | struct uhci_td *td, *tmp; | 
|  | struct urb_priv *urbp = urb->hcpriv; | 
|  | struct uhci_qh *qh = urbp->qh; | 
|  |  | 
|  | list_for_each_entry_safe(td, tmp, &urbp->td_list, list) { | 
|  | unsigned int ctrlstat; | 
|  | int status; | 
|  | int actlength; | 
|  |  | 
|  | if (uhci_frame_before_eq(uhci->cur_iso_frame, qh->iso_frame)) | 
|  | return -EINPROGRESS; | 
|  |  | 
|  | uhci_remove_tds_from_frame(uhci, qh->iso_frame); | 
|  |  | 
|  | ctrlstat = td_status(uhci, td); | 
|  | if (ctrlstat & TD_CTRL_ACTIVE) { | 
|  | status = -EXDEV;	/* TD was added too late? */ | 
|  | } else { | 
|  | status = uhci_map_status(uhci_status_bits(ctrlstat), | 
|  | usb_pipeout(urb->pipe)); | 
|  | actlength = uhci_actual_length(ctrlstat); | 
|  |  | 
|  | urb->actual_length += actlength; | 
|  | qh->iso_packet_desc->actual_length = actlength; | 
|  | qh->iso_packet_desc->status = status; | 
|  | } | 
|  | if (status) | 
|  | urb->error_count++; | 
|  |  | 
|  | uhci_remove_td_from_urbp(td); | 
|  | uhci_free_td(uhci, td); | 
|  | qh->iso_frame += qh->period; | 
|  | ++qh->iso_packet_desc; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int uhci_urb_enqueue(struct usb_hcd *hcd, | 
|  | struct urb *urb, gfp_t mem_flags) | 
|  | { | 
|  | int ret; | 
|  | struct uhci_hcd *uhci = hcd_to_uhci(hcd); | 
|  | unsigned long flags; | 
|  | struct urb_priv *urbp; | 
|  | struct uhci_qh *qh; | 
|  |  | 
|  | spin_lock_irqsave(&uhci->lock, flags); | 
|  |  | 
|  | ret = usb_hcd_link_urb_to_ep(hcd, urb); | 
|  | if (ret) | 
|  | goto done_not_linked; | 
|  |  | 
|  | ret = -ENOMEM; | 
|  | urbp = uhci_alloc_urb_priv(uhci, urb); | 
|  | if (!urbp) | 
|  | goto done; | 
|  |  | 
|  | if (urb->ep->hcpriv) | 
|  | qh = urb->ep->hcpriv; | 
|  | else { | 
|  | qh = uhci_alloc_qh(uhci, urb->dev, urb->ep); | 
|  | if (!qh) | 
|  | goto err_no_qh; | 
|  | } | 
|  | urbp->qh = qh; | 
|  |  | 
|  | switch (qh->type) { | 
|  | case USB_ENDPOINT_XFER_CONTROL: | 
|  | ret = uhci_submit_control(uhci, urb, qh); | 
|  | break; | 
|  | case USB_ENDPOINT_XFER_BULK: | 
|  | ret = uhci_submit_bulk(uhci, urb, qh); | 
|  | break; | 
|  | case USB_ENDPOINT_XFER_INT: | 
|  | ret = uhci_submit_interrupt(uhci, urb, qh); | 
|  | break; | 
|  | case USB_ENDPOINT_XFER_ISOC: | 
|  | urb->error_count = 0; | 
|  | ret = uhci_submit_isochronous(uhci, urb, qh); | 
|  | break; | 
|  | } | 
|  | if (ret != 0) | 
|  | goto err_submit_failed; | 
|  |  | 
|  | /* Add this URB to the QH */ | 
|  | list_add_tail(&urbp->node, &qh->queue); | 
|  |  | 
|  | /* If the new URB is the first and only one on this QH then either | 
|  | * the QH is new and idle or else it's unlinked and waiting to | 
|  | * become idle, so we can activate it right away.  But only if the | 
|  | * queue isn't stopped. */ | 
|  | if (qh->queue.next == &urbp->node && !qh->is_stopped) { | 
|  | uhci_activate_qh(uhci, qh); | 
|  | uhci_urbp_wants_fsbr(uhci, urbp); | 
|  | } | 
|  | goto done; | 
|  |  | 
|  | err_submit_failed: | 
|  | if (qh->state == QH_STATE_IDLE) | 
|  | uhci_make_qh_idle(uhci, qh);	/* Reclaim unused QH */ | 
|  | err_no_qh: | 
|  | uhci_free_urb_priv(uhci, urbp); | 
|  | done: | 
|  | if (ret) | 
|  | usb_hcd_unlink_urb_from_ep(hcd, urb); | 
|  | done_not_linked: | 
|  | spin_unlock_irqrestore(&uhci->lock, flags); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int uhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) | 
|  | { | 
|  | struct uhci_hcd *uhci = hcd_to_uhci(hcd); | 
|  | unsigned long flags; | 
|  | struct uhci_qh *qh; | 
|  | int rc; | 
|  |  | 
|  | spin_lock_irqsave(&uhci->lock, flags); | 
|  | rc = usb_hcd_check_unlink_urb(hcd, urb, status); | 
|  | if (rc) | 
|  | goto done; | 
|  |  | 
|  | qh = ((struct urb_priv *) urb->hcpriv)->qh; | 
|  |  | 
|  | /* Remove Isochronous TDs from the frame list ASAP */ | 
|  | if (qh->type == USB_ENDPOINT_XFER_ISOC) { | 
|  | uhci_unlink_isochronous_tds(uhci, urb); | 
|  | mb(); | 
|  |  | 
|  | /* If the URB has already started, update the QH unlink time */ | 
|  | uhci_get_current_frame_number(uhci); | 
|  | if (uhci_frame_before_eq(urb->start_frame, uhci->frame_number)) | 
|  | qh->unlink_frame = uhci->frame_number; | 
|  | } | 
|  |  | 
|  | uhci_unlink_qh(uhci, qh); | 
|  |  | 
|  | done: | 
|  | spin_unlock_irqrestore(&uhci->lock, flags); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Finish unlinking an URB and give it back | 
|  | */ | 
|  | static void uhci_giveback_urb(struct uhci_hcd *uhci, struct uhci_qh *qh, | 
|  | struct urb *urb, int status) | 
|  | __releases(uhci->lock) | 
|  | __acquires(uhci->lock) | 
|  | { | 
|  | struct urb_priv *urbp = (struct urb_priv *) urb->hcpriv; | 
|  |  | 
|  | if (qh->type == USB_ENDPOINT_XFER_CONTROL) { | 
|  |  | 
|  | /* Subtract off the length of the SETUP packet from | 
|  | * urb->actual_length. | 
|  | */ | 
|  | urb->actual_length -= min_t(u32, 8, urb->actual_length); | 
|  | } | 
|  |  | 
|  | /* When giving back the first URB in an Isochronous queue, | 
|  | * reinitialize the QH's iso-related members for the next URB. */ | 
|  | else if (qh->type == USB_ENDPOINT_XFER_ISOC && | 
|  | urbp->node.prev == &qh->queue && | 
|  | urbp->node.next != &qh->queue) { | 
|  | struct urb *nurb = list_entry(urbp->node.next, | 
|  | struct urb_priv, node)->urb; | 
|  |  | 
|  | qh->iso_packet_desc = &nurb->iso_frame_desc[0]; | 
|  | qh->iso_frame = nurb->start_frame; | 
|  | } | 
|  |  | 
|  | /* Take the URB off the QH's queue.  If the queue is now empty, | 
|  | * this is a perfect time for a toggle fixup. */ | 
|  | list_del_init(&urbp->node); | 
|  | if (list_empty(&qh->queue) && qh->needs_fixup) { | 
|  | usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), | 
|  | usb_pipeout(urb->pipe), qh->initial_toggle); | 
|  | qh->needs_fixup = 0; | 
|  | } | 
|  |  | 
|  | uhci_free_urb_priv(uhci, urbp); | 
|  | usb_hcd_unlink_urb_from_ep(uhci_to_hcd(uhci), urb); | 
|  |  | 
|  | spin_unlock(&uhci->lock); | 
|  | usb_hcd_giveback_urb(uhci_to_hcd(uhci), urb, status); | 
|  | spin_lock(&uhci->lock); | 
|  |  | 
|  | /* If the queue is now empty, we can unlink the QH and give up its | 
|  | * reserved bandwidth. */ | 
|  | if (list_empty(&qh->queue)) { | 
|  | uhci_unlink_qh(uhci, qh); | 
|  | if (qh->bandwidth_reserved) | 
|  | uhci_release_bandwidth(uhci, qh); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Scan the URBs in a QH's queue | 
|  | */ | 
|  | #define QH_FINISHED_UNLINKING(qh)			\ | 
|  | (qh->state == QH_STATE_UNLINKING &&	\ | 
|  | uhci->frame_number + uhci->is_stopped != qh->unlink_frame) | 
|  |  | 
|  | static void uhci_scan_qh(struct uhci_hcd *uhci, struct uhci_qh *qh) | 
|  | { | 
|  | struct urb_priv *urbp; | 
|  | struct urb *urb; | 
|  | int status; | 
|  |  | 
|  | while (!list_empty(&qh->queue)) { | 
|  | urbp = list_entry(qh->queue.next, struct urb_priv, node); | 
|  | urb = urbp->urb; | 
|  |  | 
|  | if (qh->type == USB_ENDPOINT_XFER_ISOC) | 
|  | status = uhci_result_isochronous(uhci, urb); | 
|  | else | 
|  | status = uhci_result_common(uhci, urb); | 
|  | if (status == -EINPROGRESS) | 
|  | break; | 
|  |  | 
|  | /* Dequeued but completed URBs can't be given back unless | 
|  | * the QH is stopped or has finished unlinking. */ | 
|  | if (urb->unlinked) { | 
|  | if (QH_FINISHED_UNLINKING(qh)) | 
|  | qh->is_stopped = 1; | 
|  | else if (!qh->is_stopped) | 
|  | return; | 
|  | } | 
|  |  | 
|  | uhci_giveback_urb(uhci, qh, urb, status); | 
|  | if (status < 0) | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* If the QH is neither stopped nor finished unlinking (normal case), | 
|  | * our work here is done. */ | 
|  | if (QH_FINISHED_UNLINKING(qh)) | 
|  | qh->is_stopped = 1; | 
|  | else if (!qh->is_stopped) | 
|  | return; | 
|  |  | 
|  | /* Otherwise give back each of the dequeued URBs */ | 
|  | restart: | 
|  | list_for_each_entry(urbp, &qh->queue, node) { | 
|  | urb = urbp->urb; | 
|  | if (urb->unlinked) { | 
|  |  | 
|  | /* Fix up the TD links and save the toggles for | 
|  | * non-Isochronous queues.  For Isochronous queues, | 
|  | * test for too-recent dequeues. */ | 
|  | if (!uhci_cleanup_queue(uhci, qh, urb)) { | 
|  | qh->is_stopped = 0; | 
|  | return; | 
|  | } | 
|  | uhci_giveback_urb(uhci, qh, urb, 0); | 
|  | goto restart; | 
|  | } | 
|  | } | 
|  | qh->is_stopped = 0; | 
|  |  | 
|  | /* There are no more dequeued URBs.  If there are still URBs on the | 
|  | * queue, the QH can now be re-activated. */ | 
|  | if (!list_empty(&qh->queue)) { | 
|  | if (qh->needs_fixup) | 
|  | uhci_fixup_toggles(uhci, qh, 0); | 
|  |  | 
|  | /* If the first URB on the queue wants FSBR but its time | 
|  | * limit has expired, set the next TD to interrupt on | 
|  | * completion before reactivating the QH. */ | 
|  | urbp = list_entry(qh->queue.next, struct urb_priv, node); | 
|  | if (urbp->fsbr && qh->wait_expired) { | 
|  | struct uhci_td *td = list_entry(urbp->td_list.next, | 
|  | struct uhci_td, list); | 
|  |  | 
|  | td->status |= cpu_to_hc32(uhci, TD_CTRL_IOC); | 
|  | } | 
|  |  | 
|  | uhci_activate_qh(uhci, qh); | 
|  | } | 
|  |  | 
|  | /* The queue is empty.  The QH can become idle if it is fully | 
|  | * unlinked. */ | 
|  | else if (QH_FINISHED_UNLINKING(qh)) | 
|  | uhci_make_qh_idle(uhci, qh); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check for queues that have made some forward progress. | 
|  | * Returns 0 if the queue is not Isochronous, is ACTIVE, and | 
|  | * has not advanced since last examined; 1 otherwise. | 
|  | * | 
|  | * Early Intel controllers have a bug which causes qh->element sometimes | 
|  | * not to advance when a TD completes successfully.  The queue remains | 
|  | * stuck on the inactive completed TD.  We detect such cases and advance | 
|  | * the element pointer by hand. | 
|  | */ | 
|  | static int uhci_advance_check(struct uhci_hcd *uhci, struct uhci_qh *qh) | 
|  | { | 
|  | struct urb_priv *urbp = NULL; | 
|  | struct uhci_td *td; | 
|  | int ret = 1; | 
|  | unsigned status; | 
|  |  | 
|  | if (qh->type == USB_ENDPOINT_XFER_ISOC) | 
|  | goto done; | 
|  |  | 
|  | /* Treat an UNLINKING queue as though it hasn't advanced. | 
|  | * This is okay because reactivation will treat it as though | 
|  | * it has advanced, and if it is going to become IDLE then | 
|  | * this doesn't matter anyway.  Furthermore it's possible | 
|  | * for an UNLINKING queue not to have any URBs at all, or | 
|  | * for its first URB not to have any TDs (if it was dequeued | 
|  | * just as it completed).  So it's not easy in any case to | 
|  | * test whether such queues have advanced. */ | 
|  | if (qh->state != QH_STATE_ACTIVE) { | 
|  | urbp = NULL; | 
|  | status = 0; | 
|  |  | 
|  | } else { | 
|  | urbp = list_entry(qh->queue.next, struct urb_priv, node); | 
|  | td = list_entry(urbp->td_list.next, struct uhci_td, list); | 
|  | status = td_status(uhci, td); | 
|  | if (!(status & TD_CTRL_ACTIVE)) { | 
|  |  | 
|  | /* We're okay, the queue has advanced */ | 
|  | qh->wait_expired = 0; | 
|  | qh->advance_jiffies = jiffies; | 
|  | goto done; | 
|  | } | 
|  | ret = uhci->is_stopped; | 
|  | } | 
|  |  | 
|  | /* The queue hasn't advanced; check for timeout */ | 
|  | if (qh->wait_expired) | 
|  | goto done; | 
|  |  | 
|  | if (time_after(jiffies, qh->advance_jiffies + QH_WAIT_TIMEOUT)) { | 
|  |  | 
|  | /* Detect the Intel bug and work around it */ | 
|  | if (qh->post_td && qh_element(qh) == | 
|  | LINK_TO_TD(uhci, qh->post_td)) { | 
|  | qh->element = qh->post_td->link; | 
|  | qh->advance_jiffies = jiffies; | 
|  | ret = 1; | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | qh->wait_expired = 1; | 
|  |  | 
|  | /* If the current URB wants FSBR, unlink it temporarily | 
|  | * so that we can safely set the next TD to interrupt on | 
|  | * completion.  That way we'll know as soon as the queue | 
|  | * starts moving again. */ | 
|  | if (urbp && urbp->fsbr && !(status & TD_CTRL_IOC)) | 
|  | uhci_unlink_qh(uhci, qh); | 
|  |  | 
|  | } else { | 
|  | /* Unmoving but not-yet-expired queues keep FSBR alive */ | 
|  | if (urbp) | 
|  | uhci_urbp_wants_fsbr(uhci, urbp); | 
|  | } | 
|  |  | 
|  | done: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Process events in the schedule, but only in one thread at a time | 
|  | */ | 
|  | static void uhci_scan_schedule(struct uhci_hcd *uhci) | 
|  | { | 
|  | int i; | 
|  | struct uhci_qh *qh; | 
|  |  | 
|  | /* Don't allow re-entrant calls */ | 
|  | if (uhci->scan_in_progress) { | 
|  | uhci->need_rescan = 1; | 
|  | return; | 
|  | } | 
|  | uhci->scan_in_progress = 1; | 
|  | rescan: | 
|  | uhci->need_rescan = 0; | 
|  | uhci->fsbr_is_wanted = 0; | 
|  |  | 
|  | uhci_clear_next_interrupt(uhci); | 
|  | uhci_get_current_frame_number(uhci); | 
|  | uhci->cur_iso_frame = uhci->frame_number; | 
|  |  | 
|  | /* Go through all the QH queues and process the URBs in each one */ | 
|  | for (i = 0; i < UHCI_NUM_SKELQH - 1; ++i) { | 
|  | uhci->next_qh = list_entry(uhci->skelqh[i]->node.next, | 
|  | struct uhci_qh, node); | 
|  | while ((qh = uhci->next_qh) != uhci->skelqh[i]) { | 
|  | uhci->next_qh = list_entry(qh->node.next, | 
|  | struct uhci_qh, node); | 
|  |  | 
|  | if (uhci_advance_check(uhci, qh)) { | 
|  | uhci_scan_qh(uhci, qh); | 
|  | if (qh->state == QH_STATE_ACTIVE) { | 
|  | uhci_urbp_wants_fsbr(uhci, | 
|  | list_entry(qh->queue.next, struct urb_priv, node)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | uhci->last_iso_frame = uhci->cur_iso_frame; | 
|  | if (uhci->need_rescan) | 
|  | goto rescan; | 
|  | uhci->scan_in_progress = 0; | 
|  |  | 
|  | if (uhci->fsbr_is_on && !uhci->fsbr_is_wanted && | 
|  | !uhci->fsbr_expiring) { | 
|  | uhci->fsbr_expiring = 1; | 
|  | mod_timer(&uhci->fsbr_timer, jiffies + FSBR_OFF_DELAY); | 
|  | } | 
|  |  | 
|  | if (list_empty(&uhci->skel_unlink_qh->node)) | 
|  | uhci_clear_next_interrupt(uhci); | 
|  | else | 
|  | uhci_set_next_interrupt(uhci); | 
|  | } |