|  | /* | 
|  | *  linux/arch/arm/mm/nommu.c | 
|  | * | 
|  | * ARM uCLinux supporting functions. | 
|  | */ | 
|  | #include <linux/module.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/io.h> | 
|  | #include <linux/memblock.h> | 
|  | #include <linux/kernel.h> | 
|  |  | 
|  | #include <asm/cacheflush.h> | 
|  | #include <asm/sections.h> | 
|  | #include <asm/page.h> | 
|  | #include <asm/setup.h> | 
|  | #include <asm/traps.h> | 
|  | #include <asm/mach/arch.h> | 
|  | #include <asm/cputype.h> | 
|  | #include <asm/mpu.h> | 
|  | #include <asm/procinfo.h> | 
|  |  | 
|  | #include "mm.h" | 
|  |  | 
|  | #ifdef CONFIG_ARM_MPU | 
|  | struct mpu_rgn_info mpu_rgn_info; | 
|  |  | 
|  | /* Region number */ | 
|  | static void rgnr_write(u32 v) | 
|  | { | 
|  | asm("mcr        p15, 0, %0, c6, c2, 0" : : "r" (v)); | 
|  | } | 
|  |  | 
|  | /* Data-side / unified region attributes */ | 
|  |  | 
|  | /* Region access control register */ | 
|  | static void dracr_write(u32 v) | 
|  | { | 
|  | asm("mcr        p15, 0, %0, c6, c1, 4" : : "r" (v)); | 
|  | } | 
|  |  | 
|  | /* Region size register */ | 
|  | static void drsr_write(u32 v) | 
|  | { | 
|  | asm("mcr        p15, 0, %0, c6, c1, 2" : : "r" (v)); | 
|  | } | 
|  |  | 
|  | /* Region base address register */ | 
|  | static void drbar_write(u32 v) | 
|  | { | 
|  | asm("mcr        p15, 0, %0, c6, c1, 0" : : "r" (v)); | 
|  | } | 
|  |  | 
|  | static u32 drbar_read(void) | 
|  | { | 
|  | u32 v; | 
|  | asm("mrc        p15, 0, %0, c6, c1, 0" : "=r" (v)); | 
|  | return v; | 
|  | } | 
|  | /* Optional instruction-side region attributes */ | 
|  |  | 
|  | /* I-side Region access control register */ | 
|  | static void iracr_write(u32 v) | 
|  | { | 
|  | asm("mcr        p15, 0, %0, c6, c1, 5" : : "r" (v)); | 
|  | } | 
|  |  | 
|  | /* I-side Region size register */ | 
|  | static void irsr_write(u32 v) | 
|  | { | 
|  | asm("mcr        p15, 0, %0, c6, c1, 3" : : "r" (v)); | 
|  | } | 
|  |  | 
|  | /* I-side Region base address register */ | 
|  | static void irbar_write(u32 v) | 
|  | { | 
|  | asm("mcr        p15, 0, %0, c6, c1, 1" : : "r" (v)); | 
|  | } | 
|  |  | 
|  | static unsigned long irbar_read(void) | 
|  | { | 
|  | unsigned long v; | 
|  | asm("mrc        p15, 0, %0, c6, c1, 1" : "=r" (v)); | 
|  | return v; | 
|  | } | 
|  |  | 
|  | /* MPU initialisation functions */ | 
|  | void __init sanity_check_meminfo_mpu(void) | 
|  | { | 
|  | int i; | 
|  | struct membank *bank = meminfo.bank; | 
|  | phys_addr_t phys_offset = PHYS_OFFSET; | 
|  | phys_addr_t aligned_region_size, specified_mem_size, rounded_mem_size; | 
|  |  | 
|  | /* Initially only use memory continuous from PHYS_OFFSET */ | 
|  | if (bank_phys_start(&bank[0]) != phys_offset) | 
|  | panic("First memory bank must be contiguous from PHYS_OFFSET"); | 
|  |  | 
|  | /* Banks have already been sorted by start address */ | 
|  | for (i = 1; i < meminfo.nr_banks; i++) { | 
|  | if (bank[i].start <= bank_phys_end(&bank[0]) && | 
|  | bank_phys_end(&bank[i]) > bank_phys_end(&bank[0])) { | 
|  | bank[0].size = bank_phys_end(&bank[i]) - bank[0].start; | 
|  | } else { | 
|  | pr_notice("Ignoring RAM after 0x%.8lx. " | 
|  | "First non-contiguous (ignored) bank start: 0x%.8lx\n", | 
|  | (unsigned long)bank_phys_end(&bank[0]), | 
|  | (unsigned long)bank_phys_start(&bank[i])); | 
|  | break; | 
|  | } | 
|  | } | 
|  | /* All contiguous banks are now merged in to the first bank */ | 
|  | meminfo.nr_banks = 1; | 
|  | specified_mem_size = bank[0].size; | 
|  |  | 
|  | /* | 
|  | * MPU has curious alignment requirements: Size must be power of 2, and | 
|  | * region start must be aligned to the region size | 
|  | */ | 
|  | if (phys_offset != 0) | 
|  | pr_info("PHYS_OFFSET != 0 => MPU Region size constrained by alignment requirements\n"); | 
|  |  | 
|  | /* | 
|  | * Maximum aligned region might overflow phys_addr_t if phys_offset is | 
|  | * 0. Hence we keep everything below 4G until we take the smaller of | 
|  | * the aligned_region_size and rounded_mem_size, one of which is | 
|  | * guaranteed to be smaller than the maximum physical address. | 
|  | */ | 
|  | aligned_region_size = (phys_offset - 1) ^ (phys_offset); | 
|  | /* Find the max power-of-two sized region that fits inside our bank */ | 
|  | rounded_mem_size = (1 <<  __fls(bank[0].size)) - 1; | 
|  |  | 
|  | /* The actual region size is the smaller of the two */ | 
|  | aligned_region_size = aligned_region_size < rounded_mem_size | 
|  | ? aligned_region_size + 1 | 
|  | : rounded_mem_size + 1; | 
|  |  | 
|  | if (aligned_region_size != specified_mem_size) | 
|  | pr_warn("Truncating memory from 0x%.8lx to 0x%.8lx (MPU region constraints)", | 
|  | (unsigned long)specified_mem_size, | 
|  | (unsigned long)aligned_region_size); | 
|  |  | 
|  | meminfo.bank[0].size = aligned_region_size; | 
|  | pr_debug("MPU Region from 0x%.8lx size 0x%.8lx (end 0x%.8lx))\n", | 
|  | (unsigned long)phys_offset, | 
|  | (unsigned long)aligned_region_size, | 
|  | (unsigned long)bank_phys_end(&bank[0])); | 
|  |  | 
|  | } | 
|  |  | 
|  | static int mpu_present(void) | 
|  | { | 
|  | return ((read_cpuid_ext(CPUID_EXT_MMFR0) & MMFR0_PMSA) == MMFR0_PMSAv7); | 
|  | } | 
|  |  | 
|  | static int mpu_max_regions(void) | 
|  | { | 
|  | /* | 
|  | * We don't support a different number of I/D side regions so if we | 
|  | * have separate instruction and data memory maps then return | 
|  | * whichever side has a smaller number of supported regions. | 
|  | */ | 
|  | u32 dregions, iregions, mpuir; | 
|  | mpuir = read_cpuid(CPUID_MPUIR); | 
|  |  | 
|  | dregions = iregions = (mpuir & MPUIR_DREGION_SZMASK) >> MPUIR_DREGION; | 
|  |  | 
|  | /* Check for separate d-side and i-side memory maps */ | 
|  | if (mpuir & MPUIR_nU) | 
|  | iregions = (mpuir & MPUIR_IREGION_SZMASK) >> MPUIR_IREGION; | 
|  |  | 
|  | /* Use the smallest of the two maxima */ | 
|  | return min(dregions, iregions); | 
|  | } | 
|  |  | 
|  | static int mpu_iside_independent(void) | 
|  | { | 
|  | /* MPUIR.nU specifies whether there is *not* a unified memory map */ | 
|  | return read_cpuid(CPUID_MPUIR) & MPUIR_nU; | 
|  | } | 
|  |  | 
|  | static int mpu_min_region_order(void) | 
|  | { | 
|  | u32 drbar_result, irbar_result; | 
|  | /* We've kept a region free for this probing */ | 
|  | rgnr_write(MPU_PROBE_REGION); | 
|  | isb(); | 
|  | /* | 
|  | * As per ARM ARM, write 0xFFFFFFFC to DRBAR to find the minimum | 
|  | * region order | 
|  | */ | 
|  | drbar_write(0xFFFFFFFC); | 
|  | drbar_result = irbar_result = drbar_read(); | 
|  | drbar_write(0x0); | 
|  | /* If the MPU is non-unified, we use the larger of the two minima*/ | 
|  | if (mpu_iside_independent()) { | 
|  | irbar_write(0xFFFFFFFC); | 
|  | irbar_result = irbar_read(); | 
|  | irbar_write(0x0); | 
|  | } | 
|  | isb(); /* Ensure that MPU region operations have completed */ | 
|  | /* Return whichever result is larger */ | 
|  | return __ffs(max(drbar_result, irbar_result)); | 
|  | } | 
|  |  | 
|  | static int mpu_setup_region(unsigned int number, phys_addr_t start, | 
|  | unsigned int size_order, unsigned int properties) | 
|  | { | 
|  | u32 size_data; | 
|  |  | 
|  | /* We kept a region free for probing resolution of MPU regions*/ | 
|  | if (number > mpu_max_regions() || number == MPU_PROBE_REGION) | 
|  | return -ENOENT; | 
|  |  | 
|  | if (size_order > 32) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (size_order < mpu_min_region_order()) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* Writing N to bits 5:1 (RSR_SZ)  specifies region size 2^N+1 */ | 
|  | size_data = ((size_order - 1) << MPU_RSR_SZ) | 1 << MPU_RSR_EN; | 
|  |  | 
|  | dsb(); /* Ensure all previous data accesses occur with old mappings */ | 
|  | rgnr_write(number); | 
|  | isb(); | 
|  | drbar_write(start); | 
|  | dracr_write(properties); | 
|  | isb(); /* Propagate properties before enabling region */ | 
|  | drsr_write(size_data); | 
|  |  | 
|  | /* Check for independent I-side registers */ | 
|  | if (mpu_iside_independent()) { | 
|  | irbar_write(start); | 
|  | iracr_write(properties); | 
|  | isb(); | 
|  | irsr_write(size_data); | 
|  | } | 
|  | isb(); | 
|  |  | 
|  | /* Store region info (we treat i/d side the same, so only store d) */ | 
|  | mpu_rgn_info.rgns[number].dracr = properties; | 
|  | mpu_rgn_info.rgns[number].drbar = start; | 
|  | mpu_rgn_info.rgns[number].drsr = size_data; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set up default MPU regions, doing nothing if there is no MPU | 
|  | */ | 
|  | void __init mpu_setup(void) | 
|  | { | 
|  | int region_err; | 
|  | if (!mpu_present()) | 
|  | return; | 
|  |  | 
|  | region_err = mpu_setup_region(MPU_RAM_REGION, PHYS_OFFSET, | 
|  | ilog2(meminfo.bank[0].size), | 
|  | MPU_AP_PL1RW_PL0RW | MPU_RGN_NORMAL); | 
|  | if (region_err) { | 
|  | panic("MPU region initialization failure! %d", region_err); | 
|  | } else { | 
|  | pr_info("Using ARMv7 PMSA Compliant MPU. " | 
|  | "Region independence: %s, Max regions: %d\n", | 
|  | mpu_iside_independent() ? "Yes" : "No", | 
|  | mpu_max_regions()); | 
|  | } | 
|  | } | 
|  | #else | 
|  | static void sanity_check_meminfo_mpu(void) {} | 
|  | static void __init mpu_setup(void) {} | 
|  | #endif /* CONFIG_ARM_MPU */ | 
|  |  | 
|  | void __init arm_mm_memblock_reserve(void) | 
|  | { | 
|  | #ifndef CONFIG_CPU_V7M | 
|  | /* | 
|  | * Register the exception vector page. | 
|  | * some architectures which the DRAM is the exception vector to trap, | 
|  | * alloc_page breaks with error, although it is not NULL, but "0." | 
|  | */ | 
|  | memblock_reserve(CONFIG_VECTORS_BASE, PAGE_SIZE); | 
|  | #else /* ifndef CONFIG_CPU_V7M */ | 
|  | /* | 
|  | * There is no dedicated vector page on V7-M. So nothing needs to be | 
|  | * reserved here. | 
|  | */ | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void __init sanity_check_meminfo(void) | 
|  | { | 
|  | phys_addr_t end; | 
|  | sanity_check_meminfo_mpu(); | 
|  | end = bank_phys_end(&meminfo.bank[meminfo.nr_banks - 1]); | 
|  | high_memory = __va(end - 1) + 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * early_paging_init() recreates boot time page table setup, allowing machines | 
|  | * to switch over to a high (>4G) address space on LPAE systems | 
|  | */ | 
|  | void __init early_paging_init(const struct machine_desc *mdesc, | 
|  | struct proc_info_list *procinfo) | 
|  | { | 
|  | } | 
|  |  | 
|  | /* | 
|  | * paging_init() sets up the page tables, initialises the zone memory | 
|  | * maps, and sets up the zero page, bad page and bad page tables. | 
|  | */ | 
|  | void __init paging_init(const struct machine_desc *mdesc) | 
|  | { | 
|  | early_trap_init((void *)CONFIG_VECTORS_BASE); | 
|  | mpu_setup(); | 
|  | bootmem_init(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We don't need to do anything here for nommu machines. | 
|  | */ | 
|  | void setup_mm_for_reboot(void) | 
|  | { | 
|  | } | 
|  |  | 
|  | void flush_dcache_page(struct page *page) | 
|  | { | 
|  | __cpuc_flush_dcache_area(page_address(page), PAGE_SIZE); | 
|  | } | 
|  | EXPORT_SYMBOL(flush_dcache_page); | 
|  |  | 
|  | void flush_kernel_dcache_page(struct page *page) | 
|  | { | 
|  | __cpuc_flush_dcache_area(page_address(page), PAGE_SIZE); | 
|  | } | 
|  | EXPORT_SYMBOL(flush_kernel_dcache_page); | 
|  |  | 
|  | void copy_to_user_page(struct vm_area_struct *vma, struct page *page, | 
|  | unsigned long uaddr, void *dst, const void *src, | 
|  | unsigned long len) | 
|  | { | 
|  | memcpy(dst, src, len); | 
|  | if (vma->vm_flags & VM_EXEC) | 
|  | __cpuc_coherent_user_range(uaddr, uaddr + len); | 
|  | } | 
|  |  | 
|  | void __iomem *__arm_ioremap_pfn(unsigned long pfn, unsigned long offset, | 
|  | size_t size, unsigned int mtype) | 
|  | { | 
|  | if (pfn >= (0x100000000ULL >> PAGE_SHIFT)) | 
|  | return NULL; | 
|  | return (void __iomem *) (offset + (pfn << PAGE_SHIFT)); | 
|  | } | 
|  | EXPORT_SYMBOL(__arm_ioremap_pfn); | 
|  |  | 
|  | void __iomem *__arm_ioremap_pfn_caller(unsigned long pfn, unsigned long offset, | 
|  | size_t size, unsigned int mtype, void *caller) | 
|  | { | 
|  | return __arm_ioremap_pfn(pfn, offset, size, mtype); | 
|  | } | 
|  |  | 
|  | void __iomem *__arm_ioremap(phys_addr_t phys_addr, size_t size, | 
|  | unsigned int mtype) | 
|  | { | 
|  | return (void __iomem *)phys_addr; | 
|  | } | 
|  | EXPORT_SYMBOL(__arm_ioremap); | 
|  |  | 
|  | void __iomem * (*arch_ioremap_caller)(phys_addr_t, size_t, unsigned int, void *); | 
|  |  | 
|  | void __iomem *__arm_ioremap_caller(phys_addr_t phys_addr, size_t size, | 
|  | unsigned int mtype, void *caller) | 
|  | { | 
|  | return __arm_ioremap(phys_addr, size, mtype); | 
|  | } | 
|  |  | 
|  | void (*arch_iounmap)(volatile void __iomem *); | 
|  |  | 
|  | void __arm_iounmap(volatile void __iomem *addr) | 
|  | { | 
|  | } | 
|  | EXPORT_SYMBOL(__arm_iounmap); |