|  | /* | 
|  | * raid1.c : Multiple Devices driver for Linux | 
|  | * | 
|  | * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat | 
|  | * | 
|  | * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman | 
|  | * | 
|  | * RAID-1 management functions. | 
|  | * | 
|  | * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000 | 
|  | * | 
|  | * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk> | 
|  | * Various fixes by Neil Brown <neilb@cse.unsw.edu.au> | 
|  | * | 
|  | * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support | 
|  | * bitmapped intelligence in resync: | 
|  | * | 
|  | *      - bitmap marked during normal i/o | 
|  | *      - bitmap used to skip nondirty blocks during sync | 
|  | * | 
|  | * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology: | 
|  | * - persistent bitmap code | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License as published by | 
|  | * the Free Software Foundation; either version 2, or (at your option) | 
|  | * any later version. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * (for example /usr/src/linux/COPYING); if not, write to the Free | 
|  | * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | 
|  | */ | 
|  |  | 
|  | #include <linux/slab.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/blkdev.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/seq_file.h> | 
|  | #include <linux/ratelimit.h> | 
|  | #include "md.h" | 
|  | #include "raid1.h" | 
|  | #include "bitmap.h" | 
|  |  | 
|  | /* | 
|  | * Number of guaranteed r1bios in case of extreme VM load: | 
|  | */ | 
|  | #define	NR_RAID1_BIOS 256 | 
|  |  | 
|  | /* when we get a read error on a read-only array, we redirect to another | 
|  | * device without failing the first device, or trying to over-write to | 
|  | * correct the read error.  To keep track of bad blocks on a per-bio | 
|  | * level, we store IO_BLOCKED in the appropriate 'bios' pointer | 
|  | */ | 
|  | #define IO_BLOCKED ((struct bio *)1) | 
|  | /* When we successfully write to a known bad-block, we need to remove the | 
|  | * bad-block marking which must be done from process context.  So we record | 
|  | * the success by setting devs[n].bio to IO_MADE_GOOD | 
|  | */ | 
|  | #define IO_MADE_GOOD ((struct bio *)2) | 
|  |  | 
|  | #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2) | 
|  |  | 
|  | /* When there are this many requests queue to be written by | 
|  | * the raid1 thread, we become 'congested' to provide back-pressure | 
|  | * for writeback. | 
|  | */ | 
|  | static int max_queued_requests = 1024; | 
|  |  | 
|  | static void allow_barrier(struct r1conf *conf, sector_t start_next_window, | 
|  | sector_t bi_sector); | 
|  | static void lower_barrier(struct r1conf *conf); | 
|  |  | 
|  | static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data) | 
|  | { | 
|  | struct pool_info *pi = data; | 
|  | int size = offsetof(struct r1bio, bios[pi->raid_disks]); | 
|  |  | 
|  | /* allocate a r1bio with room for raid_disks entries in the bios array */ | 
|  | return kzalloc(size, gfp_flags); | 
|  | } | 
|  |  | 
|  | static void r1bio_pool_free(void *r1_bio, void *data) | 
|  | { | 
|  | kfree(r1_bio); | 
|  | } | 
|  |  | 
|  | #define RESYNC_BLOCK_SIZE (64*1024) | 
|  | #define RESYNC_DEPTH 32 | 
|  | #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) | 
|  | #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) | 
|  | #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH) | 
|  | #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9) | 
|  | #define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS) | 
|  |  | 
|  | static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data) | 
|  | { | 
|  | struct pool_info *pi = data; | 
|  | struct r1bio *r1_bio; | 
|  | struct bio *bio; | 
|  | int i, j; | 
|  |  | 
|  | r1_bio = r1bio_pool_alloc(gfp_flags, pi); | 
|  | if (!r1_bio) | 
|  | return NULL; | 
|  |  | 
|  | /* | 
|  | * Allocate bios : 1 for reading, n-1 for writing | 
|  | */ | 
|  | for (j = pi->raid_disks ; j-- ; ) { | 
|  | bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); | 
|  | if (!bio) | 
|  | goto out_free_bio; | 
|  | r1_bio->bios[j] = bio; | 
|  | } | 
|  | /* | 
|  | * Allocate RESYNC_PAGES data pages and attach them to | 
|  | * the first bio. | 
|  | * If this is a user-requested check/repair, allocate | 
|  | * RESYNC_PAGES for each bio. | 
|  | */ | 
|  | if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) | 
|  | j = pi->raid_disks; | 
|  | else | 
|  | j = 1; | 
|  | while(j--) { | 
|  | bio = r1_bio->bios[j]; | 
|  | bio->bi_vcnt = RESYNC_PAGES; | 
|  |  | 
|  | if (bio_alloc_pages(bio, gfp_flags)) | 
|  | goto out_free_bio; | 
|  | } | 
|  | /* If not user-requests, copy the page pointers to all bios */ | 
|  | if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) { | 
|  | for (i=0; i<RESYNC_PAGES ; i++) | 
|  | for (j=1; j<pi->raid_disks; j++) | 
|  | r1_bio->bios[j]->bi_io_vec[i].bv_page = | 
|  | r1_bio->bios[0]->bi_io_vec[i].bv_page; | 
|  | } | 
|  |  | 
|  | r1_bio->master_bio = NULL; | 
|  |  | 
|  | return r1_bio; | 
|  |  | 
|  | out_free_bio: | 
|  | while (++j < pi->raid_disks) | 
|  | bio_put(r1_bio->bios[j]); | 
|  | r1bio_pool_free(r1_bio, data); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void r1buf_pool_free(void *__r1_bio, void *data) | 
|  | { | 
|  | struct pool_info *pi = data; | 
|  | int i,j; | 
|  | struct r1bio *r1bio = __r1_bio; | 
|  |  | 
|  | for (i = 0; i < RESYNC_PAGES; i++) | 
|  | for (j = pi->raid_disks; j-- ;) { | 
|  | if (j == 0 || | 
|  | r1bio->bios[j]->bi_io_vec[i].bv_page != | 
|  | r1bio->bios[0]->bi_io_vec[i].bv_page) | 
|  | safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page); | 
|  | } | 
|  | for (i=0 ; i < pi->raid_disks; i++) | 
|  | bio_put(r1bio->bios[i]); | 
|  |  | 
|  | r1bio_pool_free(r1bio, data); | 
|  | } | 
|  |  | 
|  | static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < conf->raid_disks * 2; i++) { | 
|  | struct bio **bio = r1_bio->bios + i; | 
|  | if (!BIO_SPECIAL(*bio)) | 
|  | bio_put(*bio); | 
|  | *bio = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void free_r1bio(struct r1bio *r1_bio) | 
|  | { | 
|  | struct r1conf *conf = r1_bio->mddev->private; | 
|  |  | 
|  | put_all_bios(conf, r1_bio); | 
|  | mempool_free(r1_bio, conf->r1bio_pool); | 
|  | } | 
|  |  | 
|  | static void put_buf(struct r1bio *r1_bio) | 
|  | { | 
|  | struct r1conf *conf = r1_bio->mddev->private; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < conf->raid_disks * 2; i++) { | 
|  | struct bio *bio = r1_bio->bios[i]; | 
|  | if (bio->bi_end_io) | 
|  | rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev); | 
|  | } | 
|  |  | 
|  | mempool_free(r1_bio, conf->r1buf_pool); | 
|  |  | 
|  | lower_barrier(conf); | 
|  | } | 
|  |  | 
|  | static void reschedule_retry(struct r1bio *r1_bio) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct mddev *mddev = r1_bio->mddev; | 
|  | struct r1conf *conf = mddev->private; | 
|  |  | 
|  | spin_lock_irqsave(&conf->device_lock, flags); | 
|  | list_add(&r1_bio->retry_list, &conf->retry_list); | 
|  | conf->nr_queued ++; | 
|  | spin_unlock_irqrestore(&conf->device_lock, flags); | 
|  |  | 
|  | wake_up(&conf->wait_barrier); | 
|  | md_wakeup_thread(mddev->thread); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * raid_end_bio_io() is called when we have finished servicing a mirrored | 
|  | * operation and are ready to return a success/failure code to the buffer | 
|  | * cache layer. | 
|  | */ | 
|  | static void call_bio_endio(struct r1bio *r1_bio) | 
|  | { | 
|  | struct bio *bio = r1_bio->master_bio; | 
|  | int done; | 
|  | struct r1conf *conf = r1_bio->mddev->private; | 
|  | sector_t start_next_window = r1_bio->start_next_window; | 
|  | sector_t bi_sector = bio->bi_iter.bi_sector; | 
|  |  | 
|  | if (bio->bi_phys_segments) { | 
|  | unsigned long flags; | 
|  | spin_lock_irqsave(&conf->device_lock, flags); | 
|  | bio->bi_phys_segments--; | 
|  | done = (bio->bi_phys_segments == 0); | 
|  | spin_unlock_irqrestore(&conf->device_lock, flags); | 
|  | /* | 
|  | * make_request() might be waiting for | 
|  | * bi_phys_segments to decrease | 
|  | */ | 
|  | wake_up(&conf->wait_barrier); | 
|  | } else | 
|  | done = 1; | 
|  |  | 
|  | if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) | 
|  | clear_bit(BIO_UPTODATE, &bio->bi_flags); | 
|  | if (done) { | 
|  | bio_endio(bio, 0); | 
|  | /* | 
|  | * Wake up any possible resync thread that waits for the device | 
|  | * to go idle. | 
|  | */ | 
|  | allow_barrier(conf, start_next_window, bi_sector); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void raid_end_bio_io(struct r1bio *r1_bio) | 
|  | { | 
|  | struct bio *bio = r1_bio->master_bio; | 
|  |  | 
|  | /* if nobody has done the final endio yet, do it now */ | 
|  | if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { | 
|  | pr_debug("raid1: sync end %s on sectors %llu-%llu\n", | 
|  | (bio_data_dir(bio) == WRITE) ? "write" : "read", | 
|  | (unsigned long long) bio->bi_iter.bi_sector, | 
|  | (unsigned long long) bio_end_sector(bio) - 1); | 
|  |  | 
|  | call_bio_endio(r1_bio); | 
|  | } | 
|  | free_r1bio(r1_bio); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Update disk head position estimator based on IRQ completion info. | 
|  | */ | 
|  | static inline void update_head_pos(int disk, struct r1bio *r1_bio) | 
|  | { | 
|  | struct r1conf *conf = r1_bio->mddev->private; | 
|  |  | 
|  | conf->mirrors[disk].head_position = | 
|  | r1_bio->sector + (r1_bio->sectors); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find the disk number which triggered given bio | 
|  | */ | 
|  | static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio) | 
|  | { | 
|  | int mirror; | 
|  | struct r1conf *conf = r1_bio->mddev->private; | 
|  | int raid_disks = conf->raid_disks; | 
|  |  | 
|  | for (mirror = 0; mirror < raid_disks * 2; mirror++) | 
|  | if (r1_bio->bios[mirror] == bio) | 
|  | break; | 
|  |  | 
|  | BUG_ON(mirror == raid_disks * 2); | 
|  | update_head_pos(mirror, r1_bio); | 
|  |  | 
|  | return mirror; | 
|  | } | 
|  |  | 
|  | static void raid1_end_read_request(struct bio *bio, int error) | 
|  | { | 
|  | int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); | 
|  | struct r1bio *r1_bio = bio->bi_private; | 
|  | int mirror; | 
|  | struct r1conf *conf = r1_bio->mddev->private; | 
|  |  | 
|  | mirror = r1_bio->read_disk; | 
|  | /* | 
|  | * this branch is our 'one mirror IO has finished' event handler: | 
|  | */ | 
|  | update_head_pos(mirror, r1_bio); | 
|  |  | 
|  | if (uptodate) | 
|  | set_bit(R1BIO_Uptodate, &r1_bio->state); | 
|  | else { | 
|  | /* If all other devices have failed, we want to return | 
|  | * the error upwards rather than fail the last device. | 
|  | * Here we redefine "uptodate" to mean "Don't want to retry" | 
|  | */ | 
|  | unsigned long flags; | 
|  | spin_lock_irqsave(&conf->device_lock, flags); | 
|  | if (r1_bio->mddev->degraded == conf->raid_disks || | 
|  | (r1_bio->mddev->degraded == conf->raid_disks-1 && | 
|  | !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))) | 
|  | uptodate = 1; | 
|  | spin_unlock_irqrestore(&conf->device_lock, flags); | 
|  | } | 
|  |  | 
|  | if (uptodate) { | 
|  | raid_end_bio_io(r1_bio); | 
|  | rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev); | 
|  | } else { | 
|  | /* | 
|  | * oops, read error: | 
|  | */ | 
|  | char b[BDEVNAME_SIZE]; | 
|  | printk_ratelimited( | 
|  | KERN_ERR "md/raid1:%s: %s: " | 
|  | "rescheduling sector %llu\n", | 
|  | mdname(conf->mddev), | 
|  | bdevname(conf->mirrors[mirror].rdev->bdev, | 
|  | b), | 
|  | (unsigned long long)r1_bio->sector); | 
|  | set_bit(R1BIO_ReadError, &r1_bio->state); | 
|  | reschedule_retry(r1_bio); | 
|  | /* don't drop the reference on read_disk yet */ | 
|  | } | 
|  | } | 
|  |  | 
|  | static void close_write(struct r1bio *r1_bio) | 
|  | { | 
|  | /* it really is the end of this request */ | 
|  | if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { | 
|  | /* free extra copy of the data pages */ | 
|  | int i = r1_bio->behind_page_count; | 
|  | while (i--) | 
|  | safe_put_page(r1_bio->behind_bvecs[i].bv_page); | 
|  | kfree(r1_bio->behind_bvecs); | 
|  | r1_bio->behind_bvecs = NULL; | 
|  | } | 
|  | /* clear the bitmap if all writes complete successfully */ | 
|  | bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector, | 
|  | r1_bio->sectors, | 
|  | !test_bit(R1BIO_Degraded, &r1_bio->state), | 
|  | test_bit(R1BIO_BehindIO, &r1_bio->state)); | 
|  | md_write_end(r1_bio->mddev); | 
|  | } | 
|  |  | 
|  | static void r1_bio_write_done(struct r1bio *r1_bio) | 
|  | { | 
|  | if (!atomic_dec_and_test(&r1_bio->remaining)) | 
|  | return; | 
|  |  | 
|  | if (test_bit(R1BIO_WriteError, &r1_bio->state)) | 
|  | reschedule_retry(r1_bio); | 
|  | else { | 
|  | close_write(r1_bio); | 
|  | if (test_bit(R1BIO_MadeGood, &r1_bio->state)) | 
|  | reschedule_retry(r1_bio); | 
|  | else | 
|  | raid_end_bio_io(r1_bio); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void raid1_end_write_request(struct bio *bio, int error) | 
|  | { | 
|  | int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); | 
|  | struct r1bio *r1_bio = bio->bi_private; | 
|  | int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state); | 
|  | struct r1conf *conf = r1_bio->mddev->private; | 
|  | struct bio *to_put = NULL; | 
|  |  | 
|  | mirror = find_bio_disk(r1_bio, bio); | 
|  |  | 
|  | /* | 
|  | * 'one mirror IO has finished' event handler: | 
|  | */ | 
|  | if (!uptodate) { | 
|  | set_bit(WriteErrorSeen, | 
|  | &conf->mirrors[mirror].rdev->flags); | 
|  | if (!test_and_set_bit(WantReplacement, | 
|  | &conf->mirrors[mirror].rdev->flags)) | 
|  | set_bit(MD_RECOVERY_NEEDED, & | 
|  | conf->mddev->recovery); | 
|  |  | 
|  | set_bit(R1BIO_WriteError, &r1_bio->state); | 
|  | } else { | 
|  | /* | 
|  | * Set R1BIO_Uptodate in our master bio, so that we | 
|  | * will return a good error code for to the higher | 
|  | * levels even if IO on some other mirrored buffer | 
|  | * fails. | 
|  | * | 
|  | * The 'master' represents the composite IO operation | 
|  | * to user-side. So if something waits for IO, then it | 
|  | * will wait for the 'master' bio. | 
|  | */ | 
|  | sector_t first_bad; | 
|  | int bad_sectors; | 
|  |  | 
|  | r1_bio->bios[mirror] = NULL; | 
|  | to_put = bio; | 
|  | /* | 
|  | * Do not set R1BIO_Uptodate if the current device is | 
|  | * rebuilding or Faulty. This is because we cannot use | 
|  | * such device for properly reading the data back (we could | 
|  | * potentially use it, if the current write would have felt | 
|  | * before rdev->recovery_offset, but for simplicity we don't | 
|  | * check this here. | 
|  | */ | 
|  | if (test_bit(In_sync, &conf->mirrors[mirror].rdev->flags) && | 
|  | !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)) | 
|  | set_bit(R1BIO_Uptodate, &r1_bio->state); | 
|  |  | 
|  | /* Maybe we can clear some bad blocks. */ | 
|  | if (is_badblock(conf->mirrors[mirror].rdev, | 
|  | r1_bio->sector, r1_bio->sectors, | 
|  | &first_bad, &bad_sectors)) { | 
|  | r1_bio->bios[mirror] = IO_MADE_GOOD; | 
|  | set_bit(R1BIO_MadeGood, &r1_bio->state); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (behind) { | 
|  | if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags)) | 
|  | atomic_dec(&r1_bio->behind_remaining); | 
|  |  | 
|  | /* | 
|  | * In behind mode, we ACK the master bio once the I/O | 
|  | * has safely reached all non-writemostly | 
|  | * disks. Setting the Returned bit ensures that this | 
|  | * gets done only once -- we don't ever want to return | 
|  | * -EIO here, instead we'll wait | 
|  | */ | 
|  | if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) && | 
|  | test_bit(R1BIO_Uptodate, &r1_bio->state)) { | 
|  | /* Maybe we can return now */ | 
|  | if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { | 
|  | struct bio *mbio = r1_bio->master_bio; | 
|  | pr_debug("raid1: behind end write sectors" | 
|  | " %llu-%llu\n", | 
|  | (unsigned long long) mbio->bi_iter.bi_sector, | 
|  | (unsigned long long) bio_end_sector(mbio) - 1); | 
|  | call_bio_endio(r1_bio); | 
|  | } | 
|  | } | 
|  | } | 
|  | if (r1_bio->bios[mirror] == NULL) | 
|  | rdev_dec_pending(conf->mirrors[mirror].rdev, | 
|  | conf->mddev); | 
|  |  | 
|  | /* | 
|  | * Let's see if all mirrored write operations have finished | 
|  | * already. | 
|  | */ | 
|  | r1_bio_write_done(r1_bio); | 
|  |  | 
|  | if (to_put) | 
|  | bio_put(to_put); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * This routine returns the disk from which the requested read should | 
|  | * be done. There is a per-array 'next expected sequential IO' sector | 
|  | * number - if this matches on the next IO then we use the last disk. | 
|  | * There is also a per-disk 'last know head position' sector that is | 
|  | * maintained from IRQ contexts, both the normal and the resync IO | 
|  | * completion handlers update this position correctly. If there is no | 
|  | * perfect sequential match then we pick the disk whose head is closest. | 
|  | * | 
|  | * If there are 2 mirrors in the same 2 devices, performance degrades | 
|  | * because position is mirror, not device based. | 
|  | * | 
|  | * The rdev for the device selected will have nr_pending incremented. | 
|  | */ | 
|  | static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors) | 
|  | { | 
|  | const sector_t this_sector = r1_bio->sector; | 
|  | int sectors; | 
|  | int best_good_sectors; | 
|  | int best_disk, best_dist_disk, best_pending_disk; | 
|  | int has_nonrot_disk; | 
|  | int disk; | 
|  | sector_t best_dist; | 
|  | unsigned int min_pending; | 
|  | struct md_rdev *rdev; | 
|  | int choose_first; | 
|  | int choose_next_idle; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | /* | 
|  | * Check if we can balance. We can balance on the whole | 
|  | * device if no resync is going on, or below the resync window. | 
|  | * We take the first readable disk when above the resync window. | 
|  | */ | 
|  | retry: | 
|  | sectors = r1_bio->sectors; | 
|  | best_disk = -1; | 
|  | best_dist_disk = -1; | 
|  | best_dist = MaxSector; | 
|  | best_pending_disk = -1; | 
|  | min_pending = UINT_MAX; | 
|  | best_good_sectors = 0; | 
|  | has_nonrot_disk = 0; | 
|  | choose_next_idle = 0; | 
|  |  | 
|  | if (conf->mddev->recovery_cp < MaxSector && | 
|  | (this_sector + sectors >= conf->next_resync)) | 
|  | choose_first = 1; | 
|  | else | 
|  | choose_first = 0; | 
|  |  | 
|  | for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) { | 
|  | sector_t dist; | 
|  | sector_t first_bad; | 
|  | int bad_sectors; | 
|  | unsigned int pending; | 
|  | bool nonrot; | 
|  |  | 
|  | rdev = rcu_dereference(conf->mirrors[disk].rdev); | 
|  | if (r1_bio->bios[disk] == IO_BLOCKED | 
|  | || rdev == NULL | 
|  | || test_bit(Unmerged, &rdev->flags) | 
|  | || test_bit(Faulty, &rdev->flags)) | 
|  | continue; | 
|  | if (!test_bit(In_sync, &rdev->flags) && | 
|  | rdev->recovery_offset < this_sector + sectors) | 
|  | continue; | 
|  | if (test_bit(WriteMostly, &rdev->flags)) { | 
|  | /* Don't balance among write-mostly, just | 
|  | * use the first as a last resort */ | 
|  | if (best_disk < 0) { | 
|  | if (is_badblock(rdev, this_sector, sectors, | 
|  | &first_bad, &bad_sectors)) { | 
|  | if (first_bad < this_sector) | 
|  | /* Cannot use this */ | 
|  | continue; | 
|  | best_good_sectors = first_bad - this_sector; | 
|  | } else | 
|  | best_good_sectors = sectors; | 
|  | best_disk = disk; | 
|  | } | 
|  | continue; | 
|  | } | 
|  | /* This is a reasonable device to use.  It might | 
|  | * even be best. | 
|  | */ | 
|  | if (is_badblock(rdev, this_sector, sectors, | 
|  | &first_bad, &bad_sectors)) { | 
|  | if (best_dist < MaxSector) | 
|  | /* already have a better device */ | 
|  | continue; | 
|  | if (first_bad <= this_sector) { | 
|  | /* cannot read here. If this is the 'primary' | 
|  | * device, then we must not read beyond | 
|  | * bad_sectors from another device.. | 
|  | */ | 
|  | bad_sectors -= (this_sector - first_bad); | 
|  | if (choose_first && sectors > bad_sectors) | 
|  | sectors = bad_sectors; | 
|  | if (best_good_sectors > sectors) | 
|  | best_good_sectors = sectors; | 
|  |  | 
|  | } else { | 
|  | sector_t good_sectors = first_bad - this_sector; | 
|  | if (good_sectors > best_good_sectors) { | 
|  | best_good_sectors = good_sectors; | 
|  | best_disk = disk; | 
|  | } | 
|  | if (choose_first) | 
|  | break; | 
|  | } | 
|  | continue; | 
|  | } else | 
|  | best_good_sectors = sectors; | 
|  |  | 
|  | nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev)); | 
|  | has_nonrot_disk |= nonrot; | 
|  | pending = atomic_read(&rdev->nr_pending); | 
|  | dist = abs(this_sector - conf->mirrors[disk].head_position); | 
|  | if (choose_first) { | 
|  | best_disk = disk; | 
|  | break; | 
|  | } | 
|  | /* Don't change to another disk for sequential reads */ | 
|  | if (conf->mirrors[disk].next_seq_sect == this_sector | 
|  | || dist == 0) { | 
|  | int opt_iosize = bdev_io_opt(rdev->bdev) >> 9; | 
|  | struct raid1_info *mirror = &conf->mirrors[disk]; | 
|  |  | 
|  | best_disk = disk; | 
|  | /* | 
|  | * If buffered sequential IO size exceeds optimal | 
|  | * iosize, check if there is idle disk. If yes, choose | 
|  | * the idle disk. read_balance could already choose an | 
|  | * idle disk before noticing it's a sequential IO in | 
|  | * this disk. This doesn't matter because this disk | 
|  | * will idle, next time it will be utilized after the | 
|  | * first disk has IO size exceeds optimal iosize. In | 
|  | * this way, iosize of the first disk will be optimal | 
|  | * iosize at least. iosize of the second disk might be | 
|  | * small, but not a big deal since when the second disk | 
|  | * starts IO, the first disk is likely still busy. | 
|  | */ | 
|  | if (nonrot && opt_iosize > 0 && | 
|  | mirror->seq_start != MaxSector && | 
|  | mirror->next_seq_sect > opt_iosize && | 
|  | mirror->next_seq_sect - opt_iosize >= | 
|  | mirror->seq_start) { | 
|  | choose_next_idle = 1; | 
|  | continue; | 
|  | } | 
|  | break; | 
|  | } | 
|  | /* If device is idle, use it */ | 
|  | if (pending == 0) { | 
|  | best_disk = disk; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (choose_next_idle) | 
|  | continue; | 
|  |  | 
|  | if (min_pending > pending) { | 
|  | min_pending = pending; | 
|  | best_pending_disk = disk; | 
|  | } | 
|  |  | 
|  | if (dist < best_dist) { | 
|  | best_dist = dist; | 
|  | best_dist_disk = disk; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If all disks are rotational, choose the closest disk. If any disk is | 
|  | * non-rotational, choose the disk with less pending request even the | 
|  | * disk is rotational, which might/might not be optimal for raids with | 
|  | * mixed ratation/non-rotational disks depending on workload. | 
|  | */ | 
|  | if (best_disk == -1) { | 
|  | if (has_nonrot_disk) | 
|  | best_disk = best_pending_disk; | 
|  | else | 
|  | best_disk = best_dist_disk; | 
|  | } | 
|  |  | 
|  | if (best_disk >= 0) { | 
|  | rdev = rcu_dereference(conf->mirrors[best_disk].rdev); | 
|  | if (!rdev) | 
|  | goto retry; | 
|  | atomic_inc(&rdev->nr_pending); | 
|  | if (test_bit(Faulty, &rdev->flags)) { | 
|  | /* cannot risk returning a device that failed | 
|  | * before we inc'ed nr_pending | 
|  | */ | 
|  | rdev_dec_pending(rdev, conf->mddev); | 
|  | goto retry; | 
|  | } | 
|  | sectors = best_good_sectors; | 
|  |  | 
|  | if (conf->mirrors[best_disk].next_seq_sect != this_sector) | 
|  | conf->mirrors[best_disk].seq_start = this_sector; | 
|  |  | 
|  | conf->mirrors[best_disk].next_seq_sect = this_sector + sectors; | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | *max_sectors = sectors; | 
|  |  | 
|  | return best_disk; | 
|  | } | 
|  |  | 
|  | static int raid1_mergeable_bvec(struct request_queue *q, | 
|  | struct bvec_merge_data *bvm, | 
|  | struct bio_vec *biovec) | 
|  | { | 
|  | struct mddev *mddev = q->queuedata; | 
|  | struct r1conf *conf = mddev->private; | 
|  | sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev); | 
|  | int max = biovec->bv_len; | 
|  |  | 
|  | if (mddev->merge_check_needed) { | 
|  | int disk; | 
|  | rcu_read_lock(); | 
|  | for (disk = 0; disk < conf->raid_disks * 2; disk++) { | 
|  | struct md_rdev *rdev = rcu_dereference( | 
|  | conf->mirrors[disk].rdev); | 
|  | if (rdev && !test_bit(Faulty, &rdev->flags)) { | 
|  | struct request_queue *q = | 
|  | bdev_get_queue(rdev->bdev); | 
|  | if (q->merge_bvec_fn) { | 
|  | bvm->bi_sector = sector + | 
|  | rdev->data_offset; | 
|  | bvm->bi_bdev = rdev->bdev; | 
|  | max = min(max, q->merge_bvec_fn( | 
|  | q, bvm, biovec)); | 
|  | } | 
|  | } | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | } | 
|  | return max; | 
|  |  | 
|  | } | 
|  |  | 
|  | int md_raid1_congested(struct mddev *mddev, int bits) | 
|  | { | 
|  | struct r1conf *conf = mddev->private; | 
|  | int i, ret = 0; | 
|  |  | 
|  | if ((bits & (1 << BDI_async_congested)) && | 
|  | conf->pending_count >= max_queued_requests) | 
|  | return 1; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | for (i = 0; i < conf->raid_disks * 2; i++) { | 
|  | struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); | 
|  | if (rdev && !test_bit(Faulty, &rdev->flags)) { | 
|  | struct request_queue *q = bdev_get_queue(rdev->bdev); | 
|  |  | 
|  | BUG_ON(!q); | 
|  |  | 
|  | /* Note the '|| 1' - when read_balance prefers | 
|  | * non-congested targets, it can be removed | 
|  | */ | 
|  | if ((bits & (1<<BDI_async_congested)) || 1) | 
|  | ret |= bdi_congested(&q->backing_dev_info, bits); | 
|  | else | 
|  | ret &= bdi_congested(&q->backing_dev_info, bits); | 
|  | } | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(md_raid1_congested); | 
|  |  | 
|  | static int raid1_congested(void *data, int bits) | 
|  | { | 
|  | struct mddev *mddev = data; | 
|  |  | 
|  | return mddev_congested(mddev, bits) || | 
|  | md_raid1_congested(mddev, bits); | 
|  | } | 
|  |  | 
|  | static void flush_pending_writes(struct r1conf *conf) | 
|  | { | 
|  | /* Any writes that have been queued but are awaiting | 
|  | * bitmap updates get flushed here. | 
|  | */ | 
|  | spin_lock_irq(&conf->device_lock); | 
|  |  | 
|  | if (conf->pending_bio_list.head) { | 
|  | struct bio *bio; | 
|  | bio = bio_list_get(&conf->pending_bio_list); | 
|  | conf->pending_count = 0; | 
|  | spin_unlock_irq(&conf->device_lock); | 
|  | /* flush any pending bitmap writes to | 
|  | * disk before proceeding w/ I/O */ | 
|  | bitmap_unplug(conf->mddev->bitmap); | 
|  | wake_up(&conf->wait_barrier); | 
|  |  | 
|  | while (bio) { /* submit pending writes */ | 
|  | struct bio *next = bio->bi_next; | 
|  | bio->bi_next = NULL; | 
|  | if (unlikely((bio->bi_rw & REQ_DISCARD) && | 
|  | !blk_queue_discard(bdev_get_queue(bio->bi_bdev)))) | 
|  | /* Just ignore it */ | 
|  | bio_endio(bio, 0); | 
|  | else | 
|  | generic_make_request(bio); | 
|  | bio = next; | 
|  | } | 
|  | } else | 
|  | spin_unlock_irq(&conf->device_lock); | 
|  | } | 
|  |  | 
|  | /* Barriers.... | 
|  | * Sometimes we need to suspend IO while we do something else, | 
|  | * either some resync/recovery, or reconfigure the array. | 
|  | * To do this we raise a 'barrier'. | 
|  | * The 'barrier' is a counter that can be raised multiple times | 
|  | * to count how many activities are happening which preclude | 
|  | * normal IO. | 
|  | * We can only raise the barrier if there is no pending IO. | 
|  | * i.e. if nr_pending == 0. | 
|  | * We choose only to raise the barrier if no-one is waiting for the | 
|  | * barrier to go down.  This means that as soon as an IO request | 
|  | * is ready, no other operations which require a barrier will start | 
|  | * until the IO request has had a chance. | 
|  | * | 
|  | * So: regular IO calls 'wait_barrier'.  When that returns there | 
|  | *    is no backgroup IO happening,  It must arrange to call | 
|  | *    allow_barrier when it has finished its IO. | 
|  | * backgroup IO calls must call raise_barrier.  Once that returns | 
|  | *    there is no normal IO happeing.  It must arrange to call | 
|  | *    lower_barrier when the particular background IO completes. | 
|  | */ | 
|  | static void raise_barrier(struct r1conf *conf) | 
|  | { | 
|  | spin_lock_irq(&conf->resync_lock); | 
|  |  | 
|  | /* Wait until no block IO is waiting */ | 
|  | wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting, | 
|  | conf->resync_lock); | 
|  |  | 
|  | /* block any new IO from starting */ | 
|  | conf->barrier++; | 
|  |  | 
|  | /* For these conditions we must wait: | 
|  | * A: while the array is in frozen state | 
|  | * B: while barrier >= RESYNC_DEPTH, meaning resync reach | 
|  | *    the max count which allowed. | 
|  | * C: next_resync + RESYNC_SECTORS > start_next_window, meaning | 
|  | *    next resync will reach to the window which normal bios are | 
|  | *    handling. | 
|  | */ | 
|  | wait_event_lock_irq(conf->wait_barrier, | 
|  | !conf->array_frozen && | 
|  | conf->barrier < RESYNC_DEPTH && | 
|  | (conf->start_next_window >= | 
|  | conf->next_resync + RESYNC_SECTORS), | 
|  | conf->resync_lock); | 
|  |  | 
|  | spin_unlock_irq(&conf->resync_lock); | 
|  | } | 
|  |  | 
|  | static void lower_barrier(struct r1conf *conf) | 
|  | { | 
|  | unsigned long flags; | 
|  | BUG_ON(conf->barrier <= 0); | 
|  | spin_lock_irqsave(&conf->resync_lock, flags); | 
|  | conf->barrier--; | 
|  | spin_unlock_irqrestore(&conf->resync_lock, flags); | 
|  | wake_up(&conf->wait_barrier); | 
|  | } | 
|  |  | 
|  | static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio) | 
|  | { | 
|  | bool wait = false; | 
|  |  | 
|  | if (conf->array_frozen || !bio) | 
|  | wait = true; | 
|  | else if (conf->barrier && bio_data_dir(bio) == WRITE) { | 
|  | if (conf->next_resync < RESYNC_WINDOW_SECTORS) | 
|  | wait = true; | 
|  | else if ((conf->next_resync - RESYNC_WINDOW_SECTORS | 
|  | >= bio_end_sector(bio)) || | 
|  | (conf->next_resync + NEXT_NORMALIO_DISTANCE | 
|  | <= bio->bi_iter.bi_sector)) | 
|  | wait = false; | 
|  | else | 
|  | wait = true; | 
|  | } | 
|  |  | 
|  | return wait; | 
|  | } | 
|  |  | 
|  | static sector_t wait_barrier(struct r1conf *conf, struct bio *bio) | 
|  | { | 
|  | sector_t sector = 0; | 
|  |  | 
|  | spin_lock_irq(&conf->resync_lock); | 
|  | if (need_to_wait_for_sync(conf, bio)) { | 
|  | conf->nr_waiting++; | 
|  | /* Wait for the barrier to drop. | 
|  | * However if there are already pending | 
|  | * requests (preventing the barrier from | 
|  | * rising completely), and the | 
|  | * pre-process bio queue isn't empty, | 
|  | * then don't wait, as we need to empty | 
|  | * that queue to get the nr_pending | 
|  | * count down. | 
|  | */ | 
|  | wait_event_lock_irq(conf->wait_barrier, | 
|  | !conf->array_frozen && | 
|  | (!conf->barrier || | 
|  | ((conf->start_next_window < | 
|  | conf->next_resync + RESYNC_SECTORS) && | 
|  | current->bio_list && | 
|  | !bio_list_empty(current->bio_list))), | 
|  | conf->resync_lock); | 
|  | conf->nr_waiting--; | 
|  | } | 
|  |  | 
|  | if (bio && bio_data_dir(bio) == WRITE) { | 
|  | if (conf->next_resync + NEXT_NORMALIO_DISTANCE | 
|  | <= bio->bi_iter.bi_sector) { | 
|  | if (conf->start_next_window == MaxSector) | 
|  | conf->start_next_window = | 
|  | conf->next_resync + | 
|  | NEXT_NORMALIO_DISTANCE; | 
|  |  | 
|  | if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE) | 
|  | <= bio->bi_iter.bi_sector) | 
|  | conf->next_window_requests++; | 
|  | else | 
|  | conf->current_window_requests++; | 
|  | sector = conf->start_next_window; | 
|  | } | 
|  | } | 
|  |  | 
|  | conf->nr_pending++; | 
|  | spin_unlock_irq(&conf->resync_lock); | 
|  | return sector; | 
|  | } | 
|  |  | 
|  | static void allow_barrier(struct r1conf *conf, sector_t start_next_window, | 
|  | sector_t bi_sector) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&conf->resync_lock, flags); | 
|  | conf->nr_pending--; | 
|  | if (start_next_window) { | 
|  | if (start_next_window == conf->start_next_window) { | 
|  | if (conf->start_next_window + NEXT_NORMALIO_DISTANCE | 
|  | <= bi_sector) | 
|  | conf->next_window_requests--; | 
|  | else | 
|  | conf->current_window_requests--; | 
|  | } else | 
|  | conf->current_window_requests--; | 
|  |  | 
|  | if (!conf->current_window_requests) { | 
|  | if (conf->next_window_requests) { | 
|  | conf->current_window_requests = | 
|  | conf->next_window_requests; | 
|  | conf->next_window_requests = 0; | 
|  | conf->start_next_window += | 
|  | NEXT_NORMALIO_DISTANCE; | 
|  | } else | 
|  | conf->start_next_window = MaxSector; | 
|  | } | 
|  | } | 
|  | spin_unlock_irqrestore(&conf->resync_lock, flags); | 
|  | wake_up(&conf->wait_barrier); | 
|  | } | 
|  |  | 
|  | static void freeze_array(struct r1conf *conf, int extra) | 
|  | { | 
|  | /* stop syncio and normal IO and wait for everything to | 
|  | * go quite. | 
|  | * We wait until nr_pending match nr_queued+extra | 
|  | * This is called in the context of one normal IO request | 
|  | * that has failed. Thus any sync request that might be pending | 
|  | * will be blocked by nr_pending, and we need to wait for | 
|  | * pending IO requests to complete or be queued for re-try. | 
|  | * Thus the number queued (nr_queued) plus this request (extra) | 
|  | * must match the number of pending IOs (nr_pending) before | 
|  | * we continue. | 
|  | */ | 
|  | spin_lock_irq(&conf->resync_lock); | 
|  | conf->array_frozen = 1; | 
|  | wait_event_lock_irq_cmd(conf->wait_barrier, | 
|  | conf->nr_pending == conf->nr_queued+extra, | 
|  | conf->resync_lock, | 
|  | flush_pending_writes(conf)); | 
|  | spin_unlock_irq(&conf->resync_lock); | 
|  | } | 
|  | static void unfreeze_array(struct r1conf *conf) | 
|  | { | 
|  | /* reverse the effect of the freeze */ | 
|  | spin_lock_irq(&conf->resync_lock); | 
|  | conf->array_frozen = 0; | 
|  | wake_up(&conf->wait_barrier); | 
|  | spin_unlock_irq(&conf->resync_lock); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* duplicate the data pages for behind I/O | 
|  | */ | 
|  | static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio) | 
|  | { | 
|  | int i; | 
|  | struct bio_vec *bvec; | 
|  | struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec), | 
|  | GFP_NOIO); | 
|  | if (unlikely(!bvecs)) | 
|  | return; | 
|  |  | 
|  | bio_for_each_segment_all(bvec, bio, i) { | 
|  | bvecs[i] = *bvec; | 
|  | bvecs[i].bv_page = alloc_page(GFP_NOIO); | 
|  | if (unlikely(!bvecs[i].bv_page)) | 
|  | goto do_sync_io; | 
|  | memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset, | 
|  | kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len); | 
|  | kunmap(bvecs[i].bv_page); | 
|  | kunmap(bvec->bv_page); | 
|  | } | 
|  | r1_bio->behind_bvecs = bvecs; | 
|  | r1_bio->behind_page_count = bio->bi_vcnt; | 
|  | set_bit(R1BIO_BehindIO, &r1_bio->state); | 
|  | return; | 
|  |  | 
|  | do_sync_io: | 
|  | for (i = 0; i < bio->bi_vcnt; i++) | 
|  | if (bvecs[i].bv_page) | 
|  | put_page(bvecs[i].bv_page); | 
|  | kfree(bvecs); | 
|  | pr_debug("%dB behind alloc failed, doing sync I/O\n", | 
|  | bio->bi_iter.bi_size); | 
|  | } | 
|  |  | 
|  | struct raid1_plug_cb { | 
|  | struct blk_plug_cb	cb; | 
|  | struct bio_list		pending; | 
|  | int			pending_cnt; | 
|  | }; | 
|  |  | 
|  | static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule) | 
|  | { | 
|  | struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, | 
|  | cb); | 
|  | struct mddev *mddev = plug->cb.data; | 
|  | struct r1conf *conf = mddev->private; | 
|  | struct bio *bio; | 
|  |  | 
|  | if (from_schedule || current->bio_list) { | 
|  | spin_lock_irq(&conf->device_lock); | 
|  | bio_list_merge(&conf->pending_bio_list, &plug->pending); | 
|  | conf->pending_count += plug->pending_cnt; | 
|  | spin_unlock_irq(&conf->device_lock); | 
|  | wake_up(&conf->wait_barrier); | 
|  | md_wakeup_thread(mddev->thread); | 
|  | kfree(plug); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* we aren't scheduling, so we can do the write-out directly. */ | 
|  | bio = bio_list_get(&plug->pending); | 
|  | bitmap_unplug(mddev->bitmap); | 
|  | wake_up(&conf->wait_barrier); | 
|  |  | 
|  | while (bio) { /* submit pending writes */ | 
|  | struct bio *next = bio->bi_next; | 
|  | bio->bi_next = NULL; | 
|  | if (unlikely((bio->bi_rw & REQ_DISCARD) && | 
|  | !blk_queue_discard(bdev_get_queue(bio->bi_bdev)))) | 
|  | /* Just ignore it */ | 
|  | bio_endio(bio, 0); | 
|  | else | 
|  | generic_make_request(bio); | 
|  | bio = next; | 
|  | } | 
|  | kfree(plug); | 
|  | } | 
|  |  | 
|  | static void make_request(struct mddev *mddev, struct bio * bio) | 
|  | { | 
|  | struct r1conf *conf = mddev->private; | 
|  | struct raid1_info *mirror; | 
|  | struct r1bio *r1_bio; | 
|  | struct bio *read_bio; | 
|  | int i, disks; | 
|  | struct bitmap *bitmap; | 
|  | unsigned long flags; | 
|  | const int rw = bio_data_dir(bio); | 
|  | const unsigned long do_sync = (bio->bi_rw & REQ_SYNC); | 
|  | const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA)); | 
|  | const unsigned long do_discard = (bio->bi_rw | 
|  | & (REQ_DISCARD | REQ_SECURE)); | 
|  | const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME); | 
|  | struct md_rdev *blocked_rdev; | 
|  | struct blk_plug_cb *cb; | 
|  | struct raid1_plug_cb *plug = NULL; | 
|  | int first_clone; | 
|  | int sectors_handled; | 
|  | int max_sectors; | 
|  | sector_t start_next_window; | 
|  |  | 
|  | /* | 
|  | * Register the new request and wait if the reconstruction | 
|  | * thread has put up a bar for new requests. | 
|  | * Continue immediately if no resync is active currently. | 
|  | */ | 
|  |  | 
|  | md_write_start(mddev, bio); /* wait on superblock update early */ | 
|  |  | 
|  | if (bio_data_dir(bio) == WRITE && | 
|  | bio_end_sector(bio) > mddev->suspend_lo && | 
|  | bio->bi_iter.bi_sector < mddev->suspend_hi) { | 
|  | /* As the suspend_* range is controlled by | 
|  | * userspace, we want an interruptible | 
|  | * wait. | 
|  | */ | 
|  | DEFINE_WAIT(w); | 
|  | for (;;) { | 
|  | flush_signals(current); | 
|  | prepare_to_wait(&conf->wait_barrier, | 
|  | &w, TASK_INTERRUPTIBLE); | 
|  | if (bio_end_sector(bio) <= mddev->suspend_lo || | 
|  | bio->bi_iter.bi_sector >= mddev->suspend_hi) | 
|  | break; | 
|  | schedule(); | 
|  | } | 
|  | finish_wait(&conf->wait_barrier, &w); | 
|  | } | 
|  |  | 
|  | start_next_window = wait_barrier(conf, bio); | 
|  |  | 
|  | bitmap = mddev->bitmap; | 
|  |  | 
|  | /* | 
|  | * make_request() can abort the operation when READA is being | 
|  | * used and no empty request is available. | 
|  | * | 
|  | */ | 
|  | r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); | 
|  |  | 
|  | r1_bio->master_bio = bio; | 
|  | r1_bio->sectors = bio_sectors(bio); | 
|  | r1_bio->state = 0; | 
|  | r1_bio->mddev = mddev; | 
|  | r1_bio->sector = bio->bi_iter.bi_sector; | 
|  |  | 
|  | /* We might need to issue multiple reads to different | 
|  | * devices if there are bad blocks around, so we keep | 
|  | * track of the number of reads in bio->bi_phys_segments. | 
|  | * If this is 0, there is only one r1_bio and no locking | 
|  | * will be needed when requests complete.  If it is | 
|  | * non-zero, then it is the number of not-completed requests. | 
|  | */ | 
|  | bio->bi_phys_segments = 0; | 
|  | clear_bit(BIO_SEG_VALID, &bio->bi_flags); | 
|  |  | 
|  | if (rw == READ) { | 
|  | /* | 
|  | * read balancing logic: | 
|  | */ | 
|  | int rdisk; | 
|  |  | 
|  | read_again: | 
|  | rdisk = read_balance(conf, r1_bio, &max_sectors); | 
|  |  | 
|  | if (rdisk < 0) { | 
|  | /* couldn't find anywhere to read from */ | 
|  | raid_end_bio_io(r1_bio); | 
|  | return; | 
|  | } | 
|  | mirror = conf->mirrors + rdisk; | 
|  |  | 
|  | if (test_bit(WriteMostly, &mirror->rdev->flags) && | 
|  | bitmap) { | 
|  | /* Reading from a write-mostly device must | 
|  | * take care not to over-take any writes | 
|  | * that are 'behind' | 
|  | */ | 
|  | wait_event(bitmap->behind_wait, | 
|  | atomic_read(&bitmap->behind_writes) == 0); | 
|  | } | 
|  | r1_bio->read_disk = rdisk; | 
|  |  | 
|  | read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev); | 
|  | bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector, | 
|  | max_sectors); | 
|  |  | 
|  | r1_bio->bios[rdisk] = read_bio; | 
|  |  | 
|  | read_bio->bi_iter.bi_sector = r1_bio->sector + | 
|  | mirror->rdev->data_offset; | 
|  | read_bio->bi_bdev = mirror->rdev->bdev; | 
|  | read_bio->bi_end_io = raid1_end_read_request; | 
|  | read_bio->bi_rw = READ | do_sync; | 
|  | read_bio->bi_private = r1_bio; | 
|  |  | 
|  | if (max_sectors < r1_bio->sectors) { | 
|  | /* could not read all from this device, so we will | 
|  | * need another r1_bio. | 
|  | */ | 
|  |  | 
|  | sectors_handled = (r1_bio->sector + max_sectors | 
|  | - bio->bi_iter.bi_sector); | 
|  | r1_bio->sectors = max_sectors; | 
|  | spin_lock_irq(&conf->device_lock); | 
|  | if (bio->bi_phys_segments == 0) | 
|  | bio->bi_phys_segments = 2; | 
|  | else | 
|  | bio->bi_phys_segments++; | 
|  | spin_unlock_irq(&conf->device_lock); | 
|  | /* Cannot call generic_make_request directly | 
|  | * as that will be queued in __make_request | 
|  | * and subsequent mempool_alloc might block waiting | 
|  | * for it.  So hand bio over to raid1d. | 
|  | */ | 
|  | reschedule_retry(r1_bio); | 
|  |  | 
|  | r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); | 
|  |  | 
|  | r1_bio->master_bio = bio; | 
|  | r1_bio->sectors = bio_sectors(bio) - sectors_handled; | 
|  | r1_bio->state = 0; | 
|  | r1_bio->mddev = mddev; | 
|  | r1_bio->sector = bio->bi_iter.bi_sector + | 
|  | sectors_handled; | 
|  | goto read_again; | 
|  | } else | 
|  | generic_make_request(read_bio); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * WRITE: | 
|  | */ | 
|  | if (conf->pending_count >= max_queued_requests) { | 
|  | md_wakeup_thread(mddev->thread); | 
|  | wait_event(conf->wait_barrier, | 
|  | conf->pending_count < max_queued_requests); | 
|  | } | 
|  | /* first select target devices under rcu_lock and | 
|  | * inc refcount on their rdev.  Record them by setting | 
|  | * bios[x] to bio | 
|  | * If there are known/acknowledged bad blocks on any device on | 
|  | * which we have seen a write error, we want to avoid writing those | 
|  | * blocks. | 
|  | * This potentially requires several writes to write around | 
|  | * the bad blocks.  Each set of writes gets it's own r1bio | 
|  | * with a set of bios attached. | 
|  | */ | 
|  |  | 
|  | disks = conf->raid_disks * 2; | 
|  | retry_write: | 
|  | r1_bio->start_next_window = start_next_window; | 
|  | blocked_rdev = NULL; | 
|  | rcu_read_lock(); | 
|  | max_sectors = r1_bio->sectors; | 
|  | for (i = 0;  i < disks; i++) { | 
|  | struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); | 
|  | if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { | 
|  | atomic_inc(&rdev->nr_pending); | 
|  | blocked_rdev = rdev; | 
|  | break; | 
|  | } | 
|  | r1_bio->bios[i] = NULL; | 
|  | if (!rdev || test_bit(Faulty, &rdev->flags) | 
|  | || test_bit(Unmerged, &rdev->flags)) { | 
|  | if (i < conf->raid_disks) | 
|  | set_bit(R1BIO_Degraded, &r1_bio->state); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | atomic_inc(&rdev->nr_pending); | 
|  | if (test_bit(WriteErrorSeen, &rdev->flags)) { | 
|  | sector_t first_bad; | 
|  | int bad_sectors; | 
|  | int is_bad; | 
|  |  | 
|  | is_bad = is_badblock(rdev, r1_bio->sector, | 
|  | max_sectors, | 
|  | &first_bad, &bad_sectors); | 
|  | if (is_bad < 0) { | 
|  | /* mustn't write here until the bad block is | 
|  | * acknowledged*/ | 
|  | set_bit(BlockedBadBlocks, &rdev->flags); | 
|  | blocked_rdev = rdev; | 
|  | break; | 
|  | } | 
|  | if (is_bad && first_bad <= r1_bio->sector) { | 
|  | /* Cannot write here at all */ | 
|  | bad_sectors -= (r1_bio->sector - first_bad); | 
|  | if (bad_sectors < max_sectors) | 
|  | /* mustn't write more than bad_sectors | 
|  | * to other devices yet | 
|  | */ | 
|  | max_sectors = bad_sectors; | 
|  | rdev_dec_pending(rdev, mddev); | 
|  | /* We don't set R1BIO_Degraded as that | 
|  | * only applies if the disk is | 
|  | * missing, so it might be re-added, | 
|  | * and we want to know to recover this | 
|  | * chunk. | 
|  | * In this case the device is here, | 
|  | * and the fact that this chunk is not | 
|  | * in-sync is recorded in the bad | 
|  | * block log | 
|  | */ | 
|  | continue; | 
|  | } | 
|  | if (is_bad) { | 
|  | int good_sectors = first_bad - r1_bio->sector; | 
|  | if (good_sectors < max_sectors) | 
|  | max_sectors = good_sectors; | 
|  | } | 
|  | } | 
|  | r1_bio->bios[i] = bio; | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | if (unlikely(blocked_rdev)) { | 
|  | /* Wait for this device to become unblocked */ | 
|  | int j; | 
|  | sector_t old = start_next_window; | 
|  |  | 
|  | for (j = 0; j < i; j++) | 
|  | if (r1_bio->bios[j]) | 
|  | rdev_dec_pending(conf->mirrors[j].rdev, mddev); | 
|  | r1_bio->state = 0; | 
|  | allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector); | 
|  | md_wait_for_blocked_rdev(blocked_rdev, mddev); | 
|  | start_next_window = wait_barrier(conf, bio); | 
|  | /* | 
|  | * We must make sure the multi r1bios of bio have | 
|  | * the same value of bi_phys_segments | 
|  | */ | 
|  | if (bio->bi_phys_segments && old && | 
|  | old != start_next_window) | 
|  | /* Wait for the former r1bio(s) to complete */ | 
|  | wait_event(conf->wait_barrier, | 
|  | bio->bi_phys_segments == 1); | 
|  | goto retry_write; | 
|  | } | 
|  |  | 
|  | if (max_sectors < r1_bio->sectors) { | 
|  | /* We are splitting this write into multiple parts, so | 
|  | * we need to prepare for allocating another r1_bio. | 
|  | */ | 
|  | r1_bio->sectors = max_sectors; | 
|  | spin_lock_irq(&conf->device_lock); | 
|  | if (bio->bi_phys_segments == 0) | 
|  | bio->bi_phys_segments = 2; | 
|  | else | 
|  | bio->bi_phys_segments++; | 
|  | spin_unlock_irq(&conf->device_lock); | 
|  | } | 
|  | sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector; | 
|  |  | 
|  | atomic_set(&r1_bio->remaining, 1); | 
|  | atomic_set(&r1_bio->behind_remaining, 0); | 
|  |  | 
|  | first_clone = 1; | 
|  | for (i = 0; i < disks; i++) { | 
|  | struct bio *mbio; | 
|  | if (!r1_bio->bios[i]) | 
|  | continue; | 
|  |  | 
|  | mbio = bio_clone_mddev(bio, GFP_NOIO, mddev); | 
|  | bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector, max_sectors); | 
|  |  | 
|  | if (first_clone) { | 
|  | /* do behind I/O ? | 
|  | * Not if there are too many, or cannot | 
|  | * allocate memory, or a reader on WriteMostly | 
|  | * is waiting for behind writes to flush */ | 
|  | if (bitmap && | 
|  | (atomic_read(&bitmap->behind_writes) | 
|  | < mddev->bitmap_info.max_write_behind) && | 
|  | !waitqueue_active(&bitmap->behind_wait)) | 
|  | alloc_behind_pages(mbio, r1_bio); | 
|  |  | 
|  | bitmap_startwrite(bitmap, r1_bio->sector, | 
|  | r1_bio->sectors, | 
|  | test_bit(R1BIO_BehindIO, | 
|  | &r1_bio->state)); | 
|  | first_clone = 0; | 
|  | } | 
|  | if (r1_bio->behind_bvecs) { | 
|  | struct bio_vec *bvec; | 
|  | int j; | 
|  |  | 
|  | /* | 
|  | * We trimmed the bio, so _all is legit | 
|  | */ | 
|  | bio_for_each_segment_all(bvec, mbio, j) | 
|  | bvec->bv_page = r1_bio->behind_bvecs[j].bv_page; | 
|  | if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags)) | 
|  | atomic_inc(&r1_bio->behind_remaining); | 
|  | } | 
|  |  | 
|  | r1_bio->bios[i] = mbio; | 
|  |  | 
|  | mbio->bi_iter.bi_sector	= (r1_bio->sector + | 
|  | conf->mirrors[i].rdev->data_offset); | 
|  | mbio->bi_bdev = conf->mirrors[i].rdev->bdev; | 
|  | mbio->bi_end_io	= raid1_end_write_request; | 
|  | mbio->bi_rw = | 
|  | WRITE | do_flush_fua | do_sync | do_discard | do_same; | 
|  | mbio->bi_private = r1_bio; | 
|  |  | 
|  | atomic_inc(&r1_bio->remaining); | 
|  |  | 
|  | cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug)); | 
|  | if (cb) | 
|  | plug = container_of(cb, struct raid1_plug_cb, cb); | 
|  | else | 
|  | plug = NULL; | 
|  | spin_lock_irqsave(&conf->device_lock, flags); | 
|  | if (plug) { | 
|  | bio_list_add(&plug->pending, mbio); | 
|  | plug->pending_cnt++; | 
|  | } else { | 
|  | bio_list_add(&conf->pending_bio_list, mbio); | 
|  | conf->pending_count++; | 
|  | } | 
|  | spin_unlock_irqrestore(&conf->device_lock, flags); | 
|  | if (!plug) | 
|  | md_wakeup_thread(mddev->thread); | 
|  | } | 
|  | /* Mustn't call r1_bio_write_done before this next test, | 
|  | * as it could result in the bio being freed. | 
|  | */ | 
|  | if (sectors_handled < bio_sectors(bio)) { | 
|  | r1_bio_write_done(r1_bio); | 
|  | /* We need another r1_bio.  It has already been counted | 
|  | * in bio->bi_phys_segments | 
|  | */ | 
|  | r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); | 
|  | r1_bio->master_bio = bio; | 
|  | r1_bio->sectors = bio_sectors(bio) - sectors_handled; | 
|  | r1_bio->state = 0; | 
|  | r1_bio->mddev = mddev; | 
|  | r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled; | 
|  | goto retry_write; | 
|  | } | 
|  |  | 
|  | r1_bio_write_done(r1_bio); | 
|  |  | 
|  | /* In case raid1d snuck in to freeze_array */ | 
|  | wake_up(&conf->wait_barrier); | 
|  | } | 
|  |  | 
|  | static void status(struct seq_file *seq, struct mddev *mddev) | 
|  | { | 
|  | struct r1conf *conf = mddev->private; | 
|  | int i; | 
|  |  | 
|  | seq_printf(seq, " [%d/%d] [", conf->raid_disks, | 
|  | conf->raid_disks - mddev->degraded); | 
|  | rcu_read_lock(); | 
|  | for (i = 0; i < conf->raid_disks; i++) { | 
|  | struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); | 
|  | seq_printf(seq, "%s", | 
|  | rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | seq_printf(seq, "]"); | 
|  | } | 
|  |  | 
|  |  | 
|  | static void error(struct mddev *mddev, struct md_rdev *rdev) | 
|  | { | 
|  | char b[BDEVNAME_SIZE]; | 
|  | struct r1conf *conf = mddev->private; | 
|  |  | 
|  | /* | 
|  | * If it is not operational, then we have already marked it as dead | 
|  | * else if it is the last working disks, ignore the error, let the | 
|  | * next level up know. | 
|  | * else mark the drive as failed | 
|  | */ | 
|  | if (test_bit(In_sync, &rdev->flags) | 
|  | && (conf->raid_disks - mddev->degraded) == 1) { | 
|  | /* | 
|  | * Don't fail the drive, act as though we were just a | 
|  | * normal single drive. | 
|  | * However don't try a recovery from this drive as | 
|  | * it is very likely to fail. | 
|  | */ | 
|  | conf->recovery_disabled = mddev->recovery_disabled; | 
|  | return; | 
|  | } | 
|  | set_bit(Blocked, &rdev->flags); | 
|  | if (test_and_clear_bit(In_sync, &rdev->flags)) { | 
|  | unsigned long flags; | 
|  | spin_lock_irqsave(&conf->device_lock, flags); | 
|  | mddev->degraded++; | 
|  | set_bit(Faulty, &rdev->flags); | 
|  | spin_unlock_irqrestore(&conf->device_lock, flags); | 
|  | /* | 
|  | * if recovery is running, make sure it aborts. | 
|  | */ | 
|  | set_bit(MD_RECOVERY_INTR, &mddev->recovery); | 
|  | } else | 
|  | set_bit(Faulty, &rdev->flags); | 
|  | set_bit(MD_CHANGE_DEVS, &mddev->flags); | 
|  | printk(KERN_ALERT | 
|  | "md/raid1:%s: Disk failure on %s, disabling device.\n" | 
|  | "md/raid1:%s: Operation continuing on %d devices.\n", | 
|  | mdname(mddev), bdevname(rdev->bdev, b), | 
|  | mdname(mddev), conf->raid_disks - mddev->degraded); | 
|  | } | 
|  |  | 
|  | static void print_conf(struct r1conf *conf) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | printk(KERN_DEBUG "RAID1 conf printout:\n"); | 
|  | if (!conf) { | 
|  | printk(KERN_DEBUG "(!conf)\n"); | 
|  | return; | 
|  | } | 
|  | printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, | 
|  | conf->raid_disks); | 
|  |  | 
|  | rcu_read_lock(); | 
|  | for (i = 0; i < conf->raid_disks; i++) { | 
|  | char b[BDEVNAME_SIZE]; | 
|  | struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); | 
|  | if (rdev) | 
|  | printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n", | 
|  | i, !test_bit(In_sync, &rdev->flags), | 
|  | !test_bit(Faulty, &rdev->flags), | 
|  | bdevname(rdev->bdev,b)); | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | static void close_sync(struct r1conf *conf) | 
|  | { | 
|  | wait_barrier(conf, NULL); | 
|  | allow_barrier(conf, 0, 0); | 
|  |  | 
|  | mempool_destroy(conf->r1buf_pool); | 
|  | conf->r1buf_pool = NULL; | 
|  |  | 
|  | conf->next_resync = 0; | 
|  | conf->start_next_window = MaxSector; | 
|  | } | 
|  |  | 
|  | static int raid1_spare_active(struct mddev *mddev) | 
|  | { | 
|  | int i; | 
|  | struct r1conf *conf = mddev->private; | 
|  | int count = 0; | 
|  | unsigned long flags; | 
|  |  | 
|  | /* | 
|  | * Find all failed disks within the RAID1 configuration | 
|  | * and mark them readable. | 
|  | * Called under mddev lock, so rcu protection not needed. | 
|  | */ | 
|  | for (i = 0; i < conf->raid_disks; i++) { | 
|  | struct md_rdev *rdev = conf->mirrors[i].rdev; | 
|  | struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev; | 
|  | if (repl | 
|  | && repl->recovery_offset == MaxSector | 
|  | && !test_bit(Faulty, &repl->flags) | 
|  | && !test_and_set_bit(In_sync, &repl->flags)) { | 
|  | /* replacement has just become active */ | 
|  | if (!rdev || | 
|  | !test_and_clear_bit(In_sync, &rdev->flags)) | 
|  | count++; | 
|  | if (rdev) { | 
|  | /* Replaced device not technically | 
|  | * faulty, but we need to be sure | 
|  | * it gets removed and never re-added | 
|  | */ | 
|  | set_bit(Faulty, &rdev->flags); | 
|  | sysfs_notify_dirent_safe( | 
|  | rdev->sysfs_state); | 
|  | } | 
|  | } | 
|  | if (rdev | 
|  | && rdev->recovery_offset == MaxSector | 
|  | && !test_bit(Faulty, &rdev->flags) | 
|  | && !test_and_set_bit(In_sync, &rdev->flags)) { | 
|  | count++; | 
|  | sysfs_notify_dirent_safe(rdev->sysfs_state); | 
|  | } | 
|  | } | 
|  | spin_lock_irqsave(&conf->device_lock, flags); | 
|  | mddev->degraded -= count; | 
|  | spin_unlock_irqrestore(&conf->device_lock, flags); | 
|  |  | 
|  | print_conf(conf); | 
|  | return count; | 
|  | } | 
|  |  | 
|  |  | 
|  | static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev) | 
|  | { | 
|  | struct r1conf *conf = mddev->private; | 
|  | int err = -EEXIST; | 
|  | int mirror = 0; | 
|  | struct raid1_info *p; | 
|  | int first = 0; | 
|  | int last = conf->raid_disks - 1; | 
|  | struct request_queue *q = bdev_get_queue(rdev->bdev); | 
|  |  | 
|  | if (mddev->recovery_disabled == conf->recovery_disabled) | 
|  | return -EBUSY; | 
|  |  | 
|  | if (rdev->raid_disk >= 0) | 
|  | first = last = rdev->raid_disk; | 
|  |  | 
|  | if (q->merge_bvec_fn) { | 
|  | set_bit(Unmerged, &rdev->flags); | 
|  | mddev->merge_check_needed = 1; | 
|  | } | 
|  |  | 
|  | for (mirror = first; mirror <= last; mirror++) { | 
|  | p = conf->mirrors+mirror; | 
|  | if (!p->rdev) { | 
|  |  | 
|  | if (mddev->gendisk) | 
|  | disk_stack_limits(mddev->gendisk, rdev->bdev, | 
|  | rdev->data_offset << 9); | 
|  |  | 
|  | p->head_position = 0; | 
|  | rdev->raid_disk = mirror; | 
|  | err = 0; | 
|  | /* As all devices are equivalent, we don't need a full recovery | 
|  | * if this was recently any drive of the array | 
|  | */ | 
|  | if (rdev->saved_raid_disk < 0) | 
|  | conf->fullsync = 1; | 
|  | rcu_assign_pointer(p->rdev, rdev); | 
|  | break; | 
|  | } | 
|  | if (test_bit(WantReplacement, &p->rdev->flags) && | 
|  | p[conf->raid_disks].rdev == NULL) { | 
|  | /* Add this device as a replacement */ | 
|  | clear_bit(In_sync, &rdev->flags); | 
|  | set_bit(Replacement, &rdev->flags); | 
|  | rdev->raid_disk = mirror; | 
|  | err = 0; | 
|  | conf->fullsync = 1; | 
|  | rcu_assign_pointer(p[conf->raid_disks].rdev, rdev); | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (err == 0 && test_bit(Unmerged, &rdev->flags)) { | 
|  | /* Some requests might not have seen this new | 
|  | * merge_bvec_fn.  We must wait for them to complete | 
|  | * before merging the device fully. | 
|  | * First we make sure any code which has tested | 
|  | * our function has submitted the request, then | 
|  | * we wait for all outstanding requests to complete. | 
|  | */ | 
|  | synchronize_sched(); | 
|  | freeze_array(conf, 0); | 
|  | unfreeze_array(conf); | 
|  | clear_bit(Unmerged, &rdev->flags); | 
|  | } | 
|  | md_integrity_add_rdev(rdev, mddev); | 
|  | if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev))) | 
|  | queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue); | 
|  | print_conf(conf); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev) | 
|  | { | 
|  | struct r1conf *conf = mddev->private; | 
|  | int err = 0; | 
|  | int number = rdev->raid_disk; | 
|  | struct raid1_info *p = conf->mirrors + number; | 
|  |  | 
|  | if (rdev != p->rdev) | 
|  | p = conf->mirrors + conf->raid_disks + number; | 
|  |  | 
|  | print_conf(conf); | 
|  | if (rdev == p->rdev) { | 
|  | if (test_bit(In_sync, &rdev->flags) || | 
|  | atomic_read(&rdev->nr_pending)) { | 
|  | err = -EBUSY; | 
|  | goto abort; | 
|  | } | 
|  | /* Only remove non-faulty devices if recovery | 
|  | * is not possible. | 
|  | */ | 
|  | if (!test_bit(Faulty, &rdev->flags) && | 
|  | mddev->recovery_disabled != conf->recovery_disabled && | 
|  | mddev->degraded < conf->raid_disks) { | 
|  | err = -EBUSY; | 
|  | goto abort; | 
|  | } | 
|  | p->rdev = NULL; | 
|  | synchronize_rcu(); | 
|  | if (atomic_read(&rdev->nr_pending)) { | 
|  | /* lost the race, try later */ | 
|  | err = -EBUSY; | 
|  | p->rdev = rdev; | 
|  | goto abort; | 
|  | } else if (conf->mirrors[conf->raid_disks + number].rdev) { | 
|  | /* We just removed a device that is being replaced. | 
|  | * Move down the replacement.  We drain all IO before | 
|  | * doing this to avoid confusion. | 
|  | */ | 
|  | struct md_rdev *repl = | 
|  | conf->mirrors[conf->raid_disks + number].rdev; | 
|  | freeze_array(conf, 0); | 
|  | clear_bit(Replacement, &repl->flags); | 
|  | p->rdev = repl; | 
|  | conf->mirrors[conf->raid_disks + number].rdev = NULL; | 
|  | unfreeze_array(conf); | 
|  | clear_bit(WantReplacement, &rdev->flags); | 
|  | } else | 
|  | clear_bit(WantReplacement, &rdev->flags); | 
|  | err = md_integrity_register(mddev); | 
|  | } | 
|  | abort: | 
|  |  | 
|  | print_conf(conf); | 
|  | return err; | 
|  | } | 
|  |  | 
|  |  | 
|  | static void end_sync_read(struct bio *bio, int error) | 
|  | { | 
|  | struct r1bio *r1_bio = bio->bi_private; | 
|  |  | 
|  | update_head_pos(r1_bio->read_disk, r1_bio); | 
|  |  | 
|  | /* | 
|  | * we have read a block, now it needs to be re-written, | 
|  | * or re-read if the read failed. | 
|  | * We don't do much here, just schedule handling by raid1d | 
|  | */ | 
|  | if (test_bit(BIO_UPTODATE, &bio->bi_flags)) | 
|  | set_bit(R1BIO_Uptodate, &r1_bio->state); | 
|  |  | 
|  | if (atomic_dec_and_test(&r1_bio->remaining)) | 
|  | reschedule_retry(r1_bio); | 
|  | } | 
|  |  | 
|  | static void end_sync_write(struct bio *bio, int error) | 
|  | { | 
|  | int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); | 
|  | struct r1bio *r1_bio = bio->bi_private; | 
|  | struct mddev *mddev = r1_bio->mddev; | 
|  | struct r1conf *conf = mddev->private; | 
|  | int mirror=0; | 
|  | sector_t first_bad; | 
|  | int bad_sectors; | 
|  |  | 
|  | mirror = find_bio_disk(r1_bio, bio); | 
|  |  | 
|  | if (!uptodate) { | 
|  | sector_t sync_blocks = 0; | 
|  | sector_t s = r1_bio->sector; | 
|  | long sectors_to_go = r1_bio->sectors; | 
|  | /* make sure these bits doesn't get cleared. */ | 
|  | do { | 
|  | bitmap_end_sync(mddev->bitmap, s, | 
|  | &sync_blocks, 1); | 
|  | s += sync_blocks; | 
|  | sectors_to_go -= sync_blocks; | 
|  | } while (sectors_to_go > 0); | 
|  | set_bit(WriteErrorSeen, | 
|  | &conf->mirrors[mirror].rdev->flags); | 
|  | if (!test_and_set_bit(WantReplacement, | 
|  | &conf->mirrors[mirror].rdev->flags)) | 
|  | set_bit(MD_RECOVERY_NEEDED, & | 
|  | mddev->recovery); | 
|  | set_bit(R1BIO_WriteError, &r1_bio->state); | 
|  | } else if (is_badblock(conf->mirrors[mirror].rdev, | 
|  | r1_bio->sector, | 
|  | r1_bio->sectors, | 
|  | &first_bad, &bad_sectors) && | 
|  | !is_badblock(conf->mirrors[r1_bio->read_disk].rdev, | 
|  | r1_bio->sector, | 
|  | r1_bio->sectors, | 
|  | &first_bad, &bad_sectors) | 
|  | ) | 
|  | set_bit(R1BIO_MadeGood, &r1_bio->state); | 
|  |  | 
|  | if (atomic_dec_and_test(&r1_bio->remaining)) { | 
|  | int s = r1_bio->sectors; | 
|  | if (test_bit(R1BIO_MadeGood, &r1_bio->state) || | 
|  | test_bit(R1BIO_WriteError, &r1_bio->state)) | 
|  | reschedule_retry(r1_bio); | 
|  | else { | 
|  | put_buf(r1_bio); | 
|  | md_done_sync(mddev, s, uptodate); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector, | 
|  | int sectors, struct page *page, int rw) | 
|  | { | 
|  | if (sync_page_io(rdev, sector, sectors << 9, page, rw, false)) | 
|  | /* success */ | 
|  | return 1; | 
|  | if (rw == WRITE) { | 
|  | set_bit(WriteErrorSeen, &rdev->flags); | 
|  | if (!test_and_set_bit(WantReplacement, | 
|  | &rdev->flags)) | 
|  | set_bit(MD_RECOVERY_NEEDED, & | 
|  | rdev->mddev->recovery); | 
|  | } | 
|  | /* need to record an error - either for the block or the device */ | 
|  | if (!rdev_set_badblocks(rdev, sector, sectors, 0)) | 
|  | md_error(rdev->mddev, rdev); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int fix_sync_read_error(struct r1bio *r1_bio) | 
|  | { | 
|  | /* Try some synchronous reads of other devices to get | 
|  | * good data, much like with normal read errors.  Only | 
|  | * read into the pages we already have so we don't | 
|  | * need to re-issue the read request. | 
|  | * We don't need to freeze the array, because being in an | 
|  | * active sync request, there is no normal IO, and | 
|  | * no overlapping syncs. | 
|  | * We don't need to check is_badblock() again as we | 
|  | * made sure that anything with a bad block in range | 
|  | * will have bi_end_io clear. | 
|  | */ | 
|  | struct mddev *mddev = r1_bio->mddev; | 
|  | struct r1conf *conf = mddev->private; | 
|  | struct bio *bio = r1_bio->bios[r1_bio->read_disk]; | 
|  | sector_t sect = r1_bio->sector; | 
|  | int sectors = r1_bio->sectors; | 
|  | int idx = 0; | 
|  |  | 
|  | while(sectors) { | 
|  | int s = sectors; | 
|  | int d = r1_bio->read_disk; | 
|  | int success = 0; | 
|  | struct md_rdev *rdev; | 
|  | int start; | 
|  |  | 
|  | if (s > (PAGE_SIZE>>9)) | 
|  | s = PAGE_SIZE >> 9; | 
|  | do { | 
|  | if (r1_bio->bios[d]->bi_end_io == end_sync_read) { | 
|  | /* No rcu protection needed here devices | 
|  | * can only be removed when no resync is | 
|  | * active, and resync is currently active | 
|  | */ | 
|  | rdev = conf->mirrors[d].rdev; | 
|  | if (sync_page_io(rdev, sect, s<<9, | 
|  | bio->bi_io_vec[idx].bv_page, | 
|  | READ, false)) { | 
|  | success = 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  | d++; | 
|  | if (d == conf->raid_disks * 2) | 
|  | d = 0; | 
|  | } while (!success && d != r1_bio->read_disk); | 
|  |  | 
|  | if (!success) { | 
|  | char b[BDEVNAME_SIZE]; | 
|  | int abort = 0; | 
|  | /* Cannot read from anywhere, this block is lost. | 
|  | * Record a bad block on each device.  If that doesn't | 
|  | * work just disable and interrupt the recovery. | 
|  | * Don't fail devices as that won't really help. | 
|  | */ | 
|  | printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error" | 
|  | " for block %llu\n", | 
|  | mdname(mddev), | 
|  | bdevname(bio->bi_bdev, b), | 
|  | (unsigned long long)r1_bio->sector); | 
|  | for (d = 0; d < conf->raid_disks * 2; d++) { | 
|  | rdev = conf->mirrors[d].rdev; | 
|  | if (!rdev || test_bit(Faulty, &rdev->flags)) | 
|  | continue; | 
|  | if (!rdev_set_badblocks(rdev, sect, s, 0)) | 
|  | abort = 1; | 
|  | } | 
|  | if (abort) { | 
|  | conf->recovery_disabled = | 
|  | mddev->recovery_disabled; | 
|  | set_bit(MD_RECOVERY_INTR, &mddev->recovery); | 
|  | md_done_sync(mddev, r1_bio->sectors, 0); | 
|  | put_buf(r1_bio); | 
|  | return 0; | 
|  | } | 
|  | /* Try next page */ | 
|  | sectors -= s; | 
|  | sect += s; | 
|  | idx++; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | start = d; | 
|  | /* write it back and re-read */ | 
|  | while (d != r1_bio->read_disk) { | 
|  | if (d == 0) | 
|  | d = conf->raid_disks * 2; | 
|  | d--; | 
|  | if (r1_bio->bios[d]->bi_end_io != end_sync_read) | 
|  | continue; | 
|  | rdev = conf->mirrors[d].rdev; | 
|  | if (r1_sync_page_io(rdev, sect, s, | 
|  | bio->bi_io_vec[idx].bv_page, | 
|  | WRITE) == 0) { | 
|  | r1_bio->bios[d]->bi_end_io = NULL; | 
|  | rdev_dec_pending(rdev, mddev); | 
|  | } | 
|  | } | 
|  | d = start; | 
|  | while (d != r1_bio->read_disk) { | 
|  | if (d == 0) | 
|  | d = conf->raid_disks * 2; | 
|  | d--; | 
|  | if (r1_bio->bios[d]->bi_end_io != end_sync_read) | 
|  | continue; | 
|  | rdev = conf->mirrors[d].rdev; | 
|  | if (r1_sync_page_io(rdev, sect, s, | 
|  | bio->bi_io_vec[idx].bv_page, | 
|  | READ) != 0) | 
|  | atomic_add(s, &rdev->corrected_errors); | 
|  | } | 
|  | sectors -= s; | 
|  | sect += s; | 
|  | idx ++; | 
|  | } | 
|  | set_bit(R1BIO_Uptodate, &r1_bio->state); | 
|  | set_bit(BIO_UPTODATE, &bio->bi_flags); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int process_checks(struct r1bio *r1_bio) | 
|  | { | 
|  | /* We have read all readable devices.  If we haven't | 
|  | * got the block, then there is no hope left. | 
|  | * If we have, then we want to do a comparison | 
|  | * and skip the write if everything is the same. | 
|  | * If any blocks failed to read, then we need to | 
|  | * attempt an over-write | 
|  | */ | 
|  | struct mddev *mddev = r1_bio->mddev; | 
|  | struct r1conf *conf = mddev->private; | 
|  | int primary; | 
|  | int i; | 
|  | int vcnt; | 
|  |  | 
|  | /* Fix variable parts of all bios */ | 
|  | vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9); | 
|  | for (i = 0; i < conf->raid_disks * 2; i++) { | 
|  | int j; | 
|  | int size; | 
|  | int uptodate; | 
|  | struct bio *b = r1_bio->bios[i]; | 
|  | if (b->bi_end_io != end_sync_read) | 
|  | continue; | 
|  | /* fixup the bio for reuse, but preserve BIO_UPTODATE */ | 
|  | uptodate = test_bit(BIO_UPTODATE, &b->bi_flags); | 
|  | bio_reset(b); | 
|  | if (!uptodate) | 
|  | clear_bit(BIO_UPTODATE, &b->bi_flags); | 
|  | b->bi_vcnt = vcnt; | 
|  | b->bi_iter.bi_size = r1_bio->sectors << 9; | 
|  | b->bi_iter.bi_sector = r1_bio->sector + | 
|  | conf->mirrors[i].rdev->data_offset; | 
|  | b->bi_bdev = conf->mirrors[i].rdev->bdev; | 
|  | b->bi_end_io = end_sync_read; | 
|  | b->bi_private = r1_bio; | 
|  |  | 
|  | size = b->bi_iter.bi_size; | 
|  | for (j = 0; j < vcnt ; j++) { | 
|  | struct bio_vec *bi; | 
|  | bi = &b->bi_io_vec[j]; | 
|  | bi->bv_offset = 0; | 
|  | if (size > PAGE_SIZE) | 
|  | bi->bv_len = PAGE_SIZE; | 
|  | else | 
|  | bi->bv_len = size; | 
|  | size -= PAGE_SIZE; | 
|  | } | 
|  | } | 
|  | for (primary = 0; primary < conf->raid_disks * 2; primary++) | 
|  | if (r1_bio->bios[primary]->bi_end_io == end_sync_read && | 
|  | test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) { | 
|  | r1_bio->bios[primary]->bi_end_io = NULL; | 
|  | rdev_dec_pending(conf->mirrors[primary].rdev, mddev); | 
|  | break; | 
|  | } | 
|  | r1_bio->read_disk = primary; | 
|  | for (i = 0; i < conf->raid_disks * 2; i++) { | 
|  | int j; | 
|  | struct bio *pbio = r1_bio->bios[primary]; | 
|  | struct bio *sbio = r1_bio->bios[i]; | 
|  | int uptodate = test_bit(BIO_UPTODATE, &sbio->bi_flags); | 
|  |  | 
|  | if (sbio->bi_end_io != end_sync_read) | 
|  | continue; | 
|  | /* Now we can 'fixup' the BIO_UPTODATE flag */ | 
|  | set_bit(BIO_UPTODATE, &sbio->bi_flags); | 
|  |  | 
|  | if (uptodate) { | 
|  | for (j = vcnt; j-- ; ) { | 
|  | struct page *p, *s; | 
|  | p = pbio->bi_io_vec[j].bv_page; | 
|  | s = sbio->bi_io_vec[j].bv_page; | 
|  | if (memcmp(page_address(p), | 
|  | page_address(s), | 
|  | sbio->bi_io_vec[j].bv_len)) | 
|  | break; | 
|  | } | 
|  | } else | 
|  | j = 0; | 
|  | if (j >= 0) | 
|  | atomic64_add(r1_bio->sectors, &mddev->resync_mismatches); | 
|  | if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery) | 
|  | && uptodate)) { | 
|  | /* No need to write to this device. */ | 
|  | sbio->bi_end_io = NULL; | 
|  | rdev_dec_pending(conf->mirrors[i].rdev, mddev); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | bio_copy_data(sbio, pbio); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio) | 
|  | { | 
|  | struct r1conf *conf = mddev->private; | 
|  | int i; | 
|  | int disks = conf->raid_disks * 2; | 
|  | struct bio *bio, *wbio; | 
|  |  | 
|  | bio = r1_bio->bios[r1_bio->read_disk]; | 
|  |  | 
|  | if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) | 
|  | /* ouch - failed to read all of that. */ | 
|  | if (!fix_sync_read_error(r1_bio)) | 
|  | return; | 
|  |  | 
|  | if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) | 
|  | if (process_checks(r1_bio) < 0) | 
|  | return; | 
|  | /* | 
|  | * schedule writes | 
|  | */ | 
|  | atomic_set(&r1_bio->remaining, 1); | 
|  | for (i = 0; i < disks ; i++) { | 
|  | wbio = r1_bio->bios[i]; | 
|  | if (wbio->bi_end_io == NULL || | 
|  | (wbio->bi_end_io == end_sync_read && | 
|  | (i == r1_bio->read_disk || | 
|  | !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)))) | 
|  | continue; | 
|  |  | 
|  | wbio->bi_rw = WRITE; | 
|  | wbio->bi_end_io = end_sync_write; | 
|  | atomic_inc(&r1_bio->remaining); | 
|  | md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio)); | 
|  |  | 
|  | generic_make_request(wbio); | 
|  | } | 
|  |  | 
|  | if (atomic_dec_and_test(&r1_bio->remaining)) { | 
|  | /* if we're here, all write(s) have completed, so clean up */ | 
|  | int s = r1_bio->sectors; | 
|  | if (test_bit(R1BIO_MadeGood, &r1_bio->state) || | 
|  | test_bit(R1BIO_WriteError, &r1_bio->state)) | 
|  | reschedule_retry(r1_bio); | 
|  | else { | 
|  | put_buf(r1_bio); | 
|  | md_done_sync(mddev, s, 1); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is a kernel thread which: | 
|  | * | 
|  | *	1.	Retries failed read operations on working mirrors. | 
|  | *	2.	Updates the raid superblock when problems encounter. | 
|  | *	3.	Performs writes following reads for array synchronising. | 
|  | */ | 
|  |  | 
|  | static void fix_read_error(struct r1conf *conf, int read_disk, | 
|  | sector_t sect, int sectors) | 
|  | { | 
|  | struct mddev *mddev = conf->mddev; | 
|  | while(sectors) { | 
|  | int s = sectors; | 
|  | int d = read_disk; | 
|  | int success = 0; | 
|  | int start; | 
|  | struct md_rdev *rdev; | 
|  |  | 
|  | if (s > (PAGE_SIZE>>9)) | 
|  | s = PAGE_SIZE >> 9; | 
|  |  | 
|  | do { | 
|  | /* Note: no rcu protection needed here | 
|  | * as this is synchronous in the raid1d thread | 
|  | * which is the thread that might remove | 
|  | * a device.  If raid1d ever becomes multi-threaded.... | 
|  | */ | 
|  | sector_t first_bad; | 
|  | int bad_sectors; | 
|  |  | 
|  | rdev = conf->mirrors[d].rdev; | 
|  | if (rdev && | 
|  | (test_bit(In_sync, &rdev->flags) || | 
|  | (!test_bit(Faulty, &rdev->flags) && | 
|  | rdev->recovery_offset >= sect + s)) && | 
|  | is_badblock(rdev, sect, s, | 
|  | &first_bad, &bad_sectors) == 0 && | 
|  | sync_page_io(rdev, sect, s<<9, | 
|  | conf->tmppage, READ, false)) | 
|  | success = 1; | 
|  | else { | 
|  | d++; | 
|  | if (d == conf->raid_disks * 2) | 
|  | d = 0; | 
|  | } | 
|  | } while (!success && d != read_disk); | 
|  |  | 
|  | if (!success) { | 
|  | /* Cannot read from anywhere - mark it bad */ | 
|  | struct md_rdev *rdev = conf->mirrors[read_disk].rdev; | 
|  | if (!rdev_set_badblocks(rdev, sect, s, 0)) | 
|  | md_error(mddev, rdev); | 
|  | break; | 
|  | } | 
|  | /* write it back and re-read */ | 
|  | start = d; | 
|  | while (d != read_disk) { | 
|  | if (d==0) | 
|  | d = conf->raid_disks * 2; | 
|  | d--; | 
|  | rdev = conf->mirrors[d].rdev; | 
|  | if (rdev && | 
|  | test_bit(In_sync, &rdev->flags)) | 
|  | r1_sync_page_io(rdev, sect, s, | 
|  | conf->tmppage, WRITE); | 
|  | } | 
|  | d = start; | 
|  | while (d != read_disk) { | 
|  | char b[BDEVNAME_SIZE]; | 
|  | if (d==0) | 
|  | d = conf->raid_disks * 2; | 
|  | d--; | 
|  | rdev = conf->mirrors[d].rdev; | 
|  | if (rdev && | 
|  | test_bit(In_sync, &rdev->flags)) { | 
|  | if (r1_sync_page_io(rdev, sect, s, | 
|  | conf->tmppage, READ)) { | 
|  | atomic_add(s, &rdev->corrected_errors); | 
|  | printk(KERN_INFO | 
|  | "md/raid1:%s: read error corrected " | 
|  | "(%d sectors at %llu on %s)\n", | 
|  | mdname(mddev), s, | 
|  | (unsigned long long)(sect + | 
|  | rdev->data_offset), | 
|  | bdevname(rdev->bdev, b)); | 
|  | } | 
|  | } | 
|  | } | 
|  | sectors -= s; | 
|  | sect += s; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int narrow_write_error(struct r1bio *r1_bio, int i) | 
|  | { | 
|  | struct mddev *mddev = r1_bio->mddev; | 
|  | struct r1conf *conf = mddev->private; | 
|  | struct md_rdev *rdev = conf->mirrors[i].rdev; | 
|  |  | 
|  | /* bio has the data to be written to device 'i' where | 
|  | * we just recently had a write error. | 
|  | * We repeatedly clone the bio and trim down to one block, | 
|  | * then try the write.  Where the write fails we record | 
|  | * a bad block. | 
|  | * It is conceivable that the bio doesn't exactly align with | 
|  | * blocks.  We must handle this somehow. | 
|  | * | 
|  | * We currently own a reference on the rdev. | 
|  | */ | 
|  |  | 
|  | int block_sectors; | 
|  | sector_t sector; | 
|  | int sectors; | 
|  | int sect_to_write = r1_bio->sectors; | 
|  | int ok = 1; | 
|  |  | 
|  | if (rdev->badblocks.shift < 0) | 
|  | return 0; | 
|  |  | 
|  | block_sectors = 1 << rdev->badblocks.shift; | 
|  | sector = r1_bio->sector; | 
|  | sectors = ((sector + block_sectors) | 
|  | & ~(sector_t)(block_sectors - 1)) | 
|  | - sector; | 
|  |  | 
|  | while (sect_to_write) { | 
|  | struct bio *wbio; | 
|  | if (sectors > sect_to_write) | 
|  | sectors = sect_to_write; | 
|  | /* Write at 'sector' for 'sectors'*/ | 
|  |  | 
|  | if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { | 
|  | unsigned vcnt = r1_bio->behind_page_count; | 
|  | struct bio_vec *vec = r1_bio->behind_bvecs; | 
|  |  | 
|  | while (!vec->bv_page) { | 
|  | vec++; | 
|  | vcnt--; | 
|  | } | 
|  |  | 
|  | wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev); | 
|  | memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec)); | 
|  |  | 
|  | wbio->bi_vcnt = vcnt; | 
|  | } else { | 
|  | wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev); | 
|  | } | 
|  |  | 
|  | wbio->bi_rw = WRITE; | 
|  | wbio->bi_iter.bi_sector = r1_bio->sector; | 
|  | wbio->bi_iter.bi_size = r1_bio->sectors << 9; | 
|  |  | 
|  | bio_trim(wbio, sector - r1_bio->sector, sectors); | 
|  | wbio->bi_iter.bi_sector += rdev->data_offset; | 
|  | wbio->bi_bdev = rdev->bdev; | 
|  | if (submit_bio_wait(WRITE, wbio) == 0) | 
|  | /* failure! */ | 
|  | ok = rdev_set_badblocks(rdev, sector, | 
|  | sectors, 0) | 
|  | && ok; | 
|  |  | 
|  | bio_put(wbio); | 
|  | sect_to_write -= sectors; | 
|  | sector += sectors; | 
|  | sectors = block_sectors; | 
|  | } | 
|  | return ok; | 
|  | } | 
|  |  | 
|  | static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio) | 
|  | { | 
|  | int m; | 
|  | int s = r1_bio->sectors; | 
|  | for (m = 0; m < conf->raid_disks * 2 ; m++) { | 
|  | struct md_rdev *rdev = conf->mirrors[m].rdev; | 
|  | struct bio *bio = r1_bio->bios[m]; | 
|  | if (bio->bi_end_io == NULL) | 
|  | continue; | 
|  | if (test_bit(BIO_UPTODATE, &bio->bi_flags) && | 
|  | test_bit(R1BIO_MadeGood, &r1_bio->state)) { | 
|  | rdev_clear_badblocks(rdev, r1_bio->sector, s, 0); | 
|  | } | 
|  | if (!test_bit(BIO_UPTODATE, &bio->bi_flags) && | 
|  | test_bit(R1BIO_WriteError, &r1_bio->state)) { | 
|  | if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0)) | 
|  | md_error(conf->mddev, rdev); | 
|  | } | 
|  | } | 
|  | put_buf(r1_bio); | 
|  | md_done_sync(conf->mddev, s, 1); | 
|  | } | 
|  |  | 
|  | static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio) | 
|  | { | 
|  | int m; | 
|  | for (m = 0; m < conf->raid_disks * 2 ; m++) | 
|  | if (r1_bio->bios[m] == IO_MADE_GOOD) { | 
|  | struct md_rdev *rdev = conf->mirrors[m].rdev; | 
|  | rdev_clear_badblocks(rdev, | 
|  | r1_bio->sector, | 
|  | r1_bio->sectors, 0); | 
|  | rdev_dec_pending(rdev, conf->mddev); | 
|  | } else if (r1_bio->bios[m] != NULL) { | 
|  | /* This drive got a write error.  We need to | 
|  | * narrow down and record precise write | 
|  | * errors. | 
|  | */ | 
|  | if (!narrow_write_error(r1_bio, m)) { | 
|  | md_error(conf->mddev, | 
|  | conf->mirrors[m].rdev); | 
|  | /* an I/O failed, we can't clear the bitmap */ | 
|  | set_bit(R1BIO_Degraded, &r1_bio->state); | 
|  | } | 
|  | rdev_dec_pending(conf->mirrors[m].rdev, | 
|  | conf->mddev); | 
|  | } | 
|  | if (test_bit(R1BIO_WriteError, &r1_bio->state)) | 
|  | close_write(r1_bio); | 
|  | raid_end_bio_io(r1_bio); | 
|  | } | 
|  |  | 
|  | static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio) | 
|  | { | 
|  | int disk; | 
|  | int max_sectors; | 
|  | struct mddev *mddev = conf->mddev; | 
|  | struct bio *bio; | 
|  | char b[BDEVNAME_SIZE]; | 
|  | struct md_rdev *rdev; | 
|  |  | 
|  | clear_bit(R1BIO_ReadError, &r1_bio->state); | 
|  | /* we got a read error. Maybe the drive is bad.  Maybe just | 
|  | * the block and we can fix it. | 
|  | * We freeze all other IO, and try reading the block from | 
|  | * other devices.  When we find one, we re-write | 
|  | * and check it that fixes the read error. | 
|  | * This is all done synchronously while the array is | 
|  | * frozen | 
|  | */ | 
|  | if (mddev->ro == 0) { | 
|  | freeze_array(conf, 1); | 
|  | fix_read_error(conf, r1_bio->read_disk, | 
|  | r1_bio->sector, r1_bio->sectors); | 
|  | unfreeze_array(conf); | 
|  | } else | 
|  | md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev); | 
|  | rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev); | 
|  |  | 
|  | bio = r1_bio->bios[r1_bio->read_disk]; | 
|  | bdevname(bio->bi_bdev, b); | 
|  | read_more: | 
|  | disk = read_balance(conf, r1_bio, &max_sectors); | 
|  | if (disk == -1) { | 
|  | printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O" | 
|  | " read error for block %llu\n", | 
|  | mdname(mddev), b, (unsigned long long)r1_bio->sector); | 
|  | raid_end_bio_io(r1_bio); | 
|  | } else { | 
|  | const unsigned long do_sync | 
|  | = r1_bio->master_bio->bi_rw & REQ_SYNC; | 
|  | if (bio) { | 
|  | r1_bio->bios[r1_bio->read_disk] = | 
|  | mddev->ro ? IO_BLOCKED : NULL; | 
|  | bio_put(bio); | 
|  | } | 
|  | r1_bio->read_disk = disk; | 
|  | bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev); | 
|  | bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector, | 
|  | max_sectors); | 
|  | r1_bio->bios[r1_bio->read_disk] = bio; | 
|  | rdev = conf->mirrors[disk].rdev; | 
|  | printk_ratelimited(KERN_ERR | 
|  | "md/raid1:%s: redirecting sector %llu" | 
|  | " to other mirror: %s\n", | 
|  | mdname(mddev), | 
|  | (unsigned long long)r1_bio->sector, | 
|  | bdevname(rdev->bdev, b)); | 
|  | bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset; | 
|  | bio->bi_bdev = rdev->bdev; | 
|  | bio->bi_end_io = raid1_end_read_request; | 
|  | bio->bi_rw = READ | do_sync; | 
|  | bio->bi_private = r1_bio; | 
|  | if (max_sectors < r1_bio->sectors) { | 
|  | /* Drat - have to split this up more */ | 
|  | struct bio *mbio = r1_bio->master_bio; | 
|  | int sectors_handled = (r1_bio->sector + max_sectors | 
|  | - mbio->bi_iter.bi_sector); | 
|  | r1_bio->sectors = max_sectors; | 
|  | spin_lock_irq(&conf->device_lock); | 
|  | if (mbio->bi_phys_segments == 0) | 
|  | mbio->bi_phys_segments = 2; | 
|  | else | 
|  | mbio->bi_phys_segments++; | 
|  | spin_unlock_irq(&conf->device_lock); | 
|  | generic_make_request(bio); | 
|  | bio = NULL; | 
|  |  | 
|  | r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); | 
|  |  | 
|  | r1_bio->master_bio = mbio; | 
|  | r1_bio->sectors = bio_sectors(mbio) - sectors_handled; | 
|  | r1_bio->state = 0; | 
|  | set_bit(R1BIO_ReadError, &r1_bio->state); | 
|  | r1_bio->mddev = mddev; | 
|  | r1_bio->sector = mbio->bi_iter.bi_sector + | 
|  | sectors_handled; | 
|  |  | 
|  | goto read_more; | 
|  | } else | 
|  | generic_make_request(bio); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void raid1d(struct md_thread *thread) | 
|  | { | 
|  | struct mddev *mddev = thread->mddev; | 
|  | struct r1bio *r1_bio; | 
|  | unsigned long flags; | 
|  | struct r1conf *conf = mddev->private; | 
|  | struct list_head *head = &conf->retry_list; | 
|  | struct blk_plug plug; | 
|  |  | 
|  | md_check_recovery(mddev); | 
|  |  | 
|  | blk_start_plug(&plug); | 
|  | for (;;) { | 
|  |  | 
|  | flush_pending_writes(conf); | 
|  |  | 
|  | spin_lock_irqsave(&conf->device_lock, flags); | 
|  | if (list_empty(head)) { | 
|  | spin_unlock_irqrestore(&conf->device_lock, flags); | 
|  | break; | 
|  | } | 
|  | r1_bio = list_entry(head->prev, struct r1bio, retry_list); | 
|  | list_del(head->prev); | 
|  | conf->nr_queued--; | 
|  | spin_unlock_irqrestore(&conf->device_lock, flags); | 
|  |  | 
|  | mddev = r1_bio->mddev; | 
|  | conf = mddev->private; | 
|  | if (test_bit(R1BIO_IsSync, &r1_bio->state)) { | 
|  | if (test_bit(R1BIO_MadeGood, &r1_bio->state) || | 
|  | test_bit(R1BIO_WriteError, &r1_bio->state)) | 
|  | handle_sync_write_finished(conf, r1_bio); | 
|  | else | 
|  | sync_request_write(mddev, r1_bio); | 
|  | } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) || | 
|  | test_bit(R1BIO_WriteError, &r1_bio->state)) | 
|  | handle_write_finished(conf, r1_bio); | 
|  | else if (test_bit(R1BIO_ReadError, &r1_bio->state)) | 
|  | handle_read_error(conf, r1_bio); | 
|  | else | 
|  | /* just a partial read to be scheduled from separate | 
|  | * context | 
|  | */ | 
|  | generic_make_request(r1_bio->bios[r1_bio->read_disk]); | 
|  |  | 
|  | cond_resched(); | 
|  | if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) | 
|  | md_check_recovery(mddev); | 
|  | } | 
|  | blk_finish_plug(&plug); | 
|  | } | 
|  |  | 
|  |  | 
|  | static int init_resync(struct r1conf *conf) | 
|  | { | 
|  | int buffs; | 
|  |  | 
|  | buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; | 
|  | BUG_ON(conf->r1buf_pool); | 
|  | conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free, | 
|  | conf->poolinfo); | 
|  | if (!conf->r1buf_pool) | 
|  | return -ENOMEM; | 
|  | conf->next_resync = 0; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * perform a "sync" on one "block" | 
|  | * | 
|  | * We need to make sure that no normal I/O request - particularly write | 
|  | * requests - conflict with active sync requests. | 
|  | * | 
|  | * This is achieved by tracking pending requests and a 'barrier' concept | 
|  | * that can be installed to exclude normal IO requests. | 
|  | */ | 
|  |  | 
|  | static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster) | 
|  | { | 
|  | struct r1conf *conf = mddev->private; | 
|  | struct r1bio *r1_bio; | 
|  | struct bio *bio; | 
|  | sector_t max_sector, nr_sectors; | 
|  | int disk = -1; | 
|  | int i; | 
|  | int wonly = -1; | 
|  | int write_targets = 0, read_targets = 0; | 
|  | sector_t sync_blocks; | 
|  | int still_degraded = 0; | 
|  | int good_sectors = RESYNC_SECTORS; | 
|  | int min_bad = 0; /* number of sectors that are bad in all devices */ | 
|  |  | 
|  | if (!conf->r1buf_pool) | 
|  | if (init_resync(conf)) | 
|  | return 0; | 
|  |  | 
|  | max_sector = mddev->dev_sectors; | 
|  | if (sector_nr >= max_sector) { | 
|  | /* If we aborted, we need to abort the | 
|  | * sync on the 'current' bitmap chunk (there will | 
|  | * only be one in raid1 resync. | 
|  | * We can find the current addess in mddev->curr_resync | 
|  | */ | 
|  | if (mddev->curr_resync < max_sector) /* aborted */ | 
|  | bitmap_end_sync(mddev->bitmap, mddev->curr_resync, | 
|  | &sync_blocks, 1); | 
|  | else /* completed sync */ | 
|  | conf->fullsync = 0; | 
|  |  | 
|  | bitmap_close_sync(mddev->bitmap); | 
|  | close_sync(conf); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (mddev->bitmap == NULL && | 
|  | mddev->recovery_cp == MaxSector && | 
|  | !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && | 
|  | conf->fullsync == 0) { | 
|  | *skipped = 1; | 
|  | return max_sector - sector_nr; | 
|  | } | 
|  | /* before building a request, check if we can skip these blocks.. | 
|  | * This call the bitmap_start_sync doesn't actually record anything | 
|  | */ | 
|  | if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && | 
|  | !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { | 
|  | /* We can skip this block, and probably several more */ | 
|  | *skipped = 1; | 
|  | return sync_blocks; | 
|  | } | 
|  | /* | 
|  | * If there is non-resync activity waiting for a turn, | 
|  | * and resync is going fast enough, | 
|  | * then let it though before starting on this new sync request. | 
|  | */ | 
|  | if (!go_faster && conf->nr_waiting) | 
|  | msleep_interruptible(1000); | 
|  |  | 
|  | bitmap_cond_end_sync(mddev->bitmap, sector_nr); | 
|  | r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO); | 
|  | raise_barrier(conf); | 
|  |  | 
|  | conf->next_resync = sector_nr; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | /* | 
|  | * If we get a correctably read error during resync or recovery, | 
|  | * we might want to read from a different device.  So we | 
|  | * flag all drives that could conceivably be read from for READ, | 
|  | * and any others (which will be non-In_sync devices) for WRITE. | 
|  | * If a read fails, we try reading from something else for which READ | 
|  | * is OK. | 
|  | */ | 
|  |  | 
|  | r1_bio->mddev = mddev; | 
|  | r1_bio->sector = sector_nr; | 
|  | r1_bio->state = 0; | 
|  | set_bit(R1BIO_IsSync, &r1_bio->state); | 
|  |  | 
|  | for (i = 0; i < conf->raid_disks * 2; i++) { | 
|  | struct md_rdev *rdev; | 
|  | bio = r1_bio->bios[i]; | 
|  | bio_reset(bio); | 
|  |  | 
|  | rdev = rcu_dereference(conf->mirrors[i].rdev); | 
|  | if (rdev == NULL || | 
|  | test_bit(Faulty, &rdev->flags)) { | 
|  | if (i < conf->raid_disks) | 
|  | still_degraded = 1; | 
|  | } else if (!test_bit(In_sync, &rdev->flags)) { | 
|  | bio->bi_rw = WRITE; | 
|  | bio->bi_end_io = end_sync_write; | 
|  | write_targets ++; | 
|  | } else { | 
|  | /* may need to read from here */ | 
|  | sector_t first_bad = MaxSector; | 
|  | int bad_sectors; | 
|  |  | 
|  | if (is_badblock(rdev, sector_nr, good_sectors, | 
|  | &first_bad, &bad_sectors)) { | 
|  | if (first_bad > sector_nr) | 
|  | good_sectors = first_bad - sector_nr; | 
|  | else { | 
|  | bad_sectors -= (sector_nr - first_bad); | 
|  | if (min_bad == 0 || | 
|  | min_bad > bad_sectors) | 
|  | min_bad = bad_sectors; | 
|  | } | 
|  | } | 
|  | if (sector_nr < first_bad) { | 
|  | if (test_bit(WriteMostly, &rdev->flags)) { | 
|  | if (wonly < 0) | 
|  | wonly = i; | 
|  | } else { | 
|  | if (disk < 0) | 
|  | disk = i; | 
|  | } | 
|  | bio->bi_rw = READ; | 
|  | bio->bi_end_io = end_sync_read; | 
|  | read_targets++; | 
|  | } else if (!test_bit(WriteErrorSeen, &rdev->flags) && | 
|  | test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && | 
|  | !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { | 
|  | /* | 
|  | * The device is suitable for reading (InSync), | 
|  | * but has bad block(s) here. Let's try to correct them, | 
|  | * if we are doing resync or repair. Otherwise, leave | 
|  | * this device alone for this sync request. | 
|  | */ | 
|  | bio->bi_rw = WRITE; | 
|  | bio->bi_end_io = end_sync_write; | 
|  | write_targets++; | 
|  | } | 
|  | } | 
|  | if (bio->bi_end_io) { | 
|  | atomic_inc(&rdev->nr_pending); | 
|  | bio->bi_iter.bi_sector = sector_nr + rdev->data_offset; | 
|  | bio->bi_bdev = rdev->bdev; | 
|  | bio->bi_private = r1_bio; | 
|  | } | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | if (disk < 0) | 
|  | disk = wonly; | 
|  | r1_bio->read_disk = disk; | 
|  |  | 
|  | if (read_targets == 0 && min_bad > 0) { | 
|  | /* These sectors are bad on all InSync devices, so we | 
|  | * need to mark them bad on all write targets | 
|  | */ | 
|  | int ok = 1; | 
|  | for (i = 0 ; i < conf->raid_disks * 2 ; i++) | 
|  | if (r1_bio->bios[i]->bi_end_io == end_sync_write) { | 
|  | struct md_rdev *rdev = conf->mirrors[i].rdev; | 
|  | ok = rdev_set_badblocks(rdev, sector_nr, | 
|  | min_bad, 0 | 
|  | ) && ok; | 
|  | } | 
|  | set_bit(MD_CHANGE_DEVS, &mddev->flags); | 
|  | *skipped = 1; | 
|  | put_buf(r1_bio); | 
|  |  | 
|  | if (!ok) { | 
|  | /* Cannot record the badblocks, so need to | 
|  | * abort the resync. | 
|  | * If there are multiple read targets, could just | 
|  | * fail the really bad ones ??? | 
|  | */ | 
|  | conf->recovery_disabled = mddev->recovery_disabled; | 
|  | set_bit(MD_RECOVERY_INTR, &mddev->recovery); | 
|  | return 0; | 
|  | } else | 
|  | return min_bad; | 
|  |  | 
|  | } | 
|  | if (min_bad > 0 && min_bad < good_sectors) { | 
|  | /* only resync enough to reach the next bad->good | 
|  | * transition */ | 
|  | good_sectors = min_bad; | 
|  | } | 
|  |  | 
|  | if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0) | 
|  | /* extra read targets are also write targets */ | 
|  | write_targets += read_targets-1; | 
|  |  | 
|  | if (write_targets == 0 || read_targets == 0) { | 
|  | /* There is nowhere to write, so all non-sync | 
|  | * drives must be failed - so we are finished | 
|  | */ | 
|  | sector_t rv; | 
|  | if (min_bad > 0) | 
|  | max_sector = sector_nr + min_bad; | 
|  | rv = max_sector - sector_nr; | 
|  | *skipped = 1; | 
|  | put_buf(r1_bio); | 
|  | return rv; | 
|  | } | 
|  |  | 
|  | if (max_sector > mddev->resync_max) | 
|  | max_sector = mddev->resync_max; /* Don't do IO beyond here */ | 
|  | if (max_sector > sector_nr + good_sectors) | 
|  | max_sector = sector_nr + good_sectors; | 
|  | nr_sectors = 0; | 
|  | sync_blocks = 0; | 
|  | do { | 
|  | struct page *page; | 
|  | int len = PAGE_SIZE; | 
|  | if (sector_nr + (len>>9) > max_sector) | 
|  | len = (max_sector - sector_nr) << 9; | 
|  | if (len == 0) | 
|  | break; | 
|  | if (sync_blocks == 0) { | 
|  | if (!bitmap_start_sync(mddev->bitmap, sector_nr, | 
|  | &sync_blocks, still_degraded) && | 
|  | !conf->fullsync && | 
|  | !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) | 
|  | break; | 
|  | BUG_ON(sync_blocks < (PAGE_SIZE>>9)); | 
|  | if ((len >> 9) > sync_blocks) | 
|  | len = sync_blocks<<9; | 
|  | } | 
|  |  | 
|  | for (i = 0 ; i < conf->raid_disks * 2; i++) { | 
|  | bio = r1_bio->bios[i]; | 
|  | if (bio->bi_end_io) { | 
|  | page = bio->bi_io_vec[bio->bi_vcnt].bv_page; | 
|  | if (bio_add_page(bio, page, len, 0) == 0) { | 
|  | /* stop here */ | 
|  | bio->bi_io_vec[bio->bi_vcnt].bv_page = page; | 
|  | while (i > 0) { | 
|  | i--; | 
|  | bio = r1_bio->bios[i]; | 
|  | if (bio->bi_end_io==NULL) | 
|  | continue; | 
|  | /* remove last page from this bio */ | 
|  | bio->bi_vcnt--; | 
|  | bio->bi_iter.bi_size -= len; | 
|  | bio->bi_flags &= ~(1<< BIO_SEG_VALID); | 
|  | } | 
|  | goto bio_full; | 
|  | } | 
|  | } | 
|  | } | 
|  | nr_sectors += len>>9; | 
|  | sector_nr += len>>9; | 
|  | sync_blocks -= (len>>9); | 
|  | } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES); | 
|  | bio_full: | 
|  | r1_bio->sectors = nr_sectors; | 
|  |  | 
|  | /* For a user-requested sync, we read all readable devices and do a | 
|  | * compare | 
|  | */ | 
|  | if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { | 
|  | atomic_set(&r1_bio->remaining, read_targets); | 
|  | for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) { | 
|  | bio = r1_bio->bios[i]; | 
|  | if (bio->bi_end_io == end_sync_read) { | 
|  | read_targets--; | 
|  | md_sync_acct(bio->bi_bdev, nr_sectors); | 
|  | generic_make_request(bio); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | atomic_set(&r1_bio->remaining, 1); | 
|  | bio = r1_bio->bios[r1_bio->read_disk]; | 
|  | md_sync_acct(bio->bi_bdev, nr_sectors); | 
|  | generic_make_request(bio); | 
|  |  | 
|  | } | 
|  | return nr_sectors; | 
|  | } | 
|  |  | 
|  | static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks) | 
|  | { | 
|  | if (sectors) | 
|  | return sectors; | 
|  |  | 
|  | return mddev->dev_sectors; | 
|  | } | 
|  |  | 
|  | static struct r1conf *setup_conf(struct mddev *mddev) | 
|  | { | 
|  | struct r1conf *conf; | 
|  | int i; | 
|  | struct raid1_info *disk; | 
|  | struct md_rdev *rdev; | 
|  | int err = -ENOMEM; | 
|  |  | 
|  | conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL); | 
|  | if (!conf) | 
|  | goto abort; | 
|  |  | 
|  | conf->mirrors = kzalloc(sizeof(struct raid1_info) | 
|  | * mddev->raid_disks * 2, | 
|  | GFP_KERNEL); | 
|  | if (!conf->mirrors) | 
|  | goto abort; | 
|  |  | 
|  | conf->tmppage = alloc_page(GFP_KERNEL); | 
|  | if (!conf->tmppage) | 
|  | goto abort; | 
|  |  | 
|  | conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL); | 
|  | if (!conf->poolinfo) | 
|  | goto abort; | 
|  | conf->poolinfo->raid_disks = mddev->raid_disks * 2; | 
|  | conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, | 
|  | r1bio_pool_free, | 
|  | conf->poolinfo); | 
|  | if (!conf->r1bio_pool) | 
|  | goto abort; | 
|  |  | 
|  | conf->poolinfo->mddev = mddev; | 
|  |  | 
|  | err = -EINVAL; | 
|  | spin_lock_init(&conf->device_lock); | 
|  | rdev_for_each(rdev, mddev) { | 
|  | struct request_queue *q; | 
|  | int disk_idx = rdev->raid_disk; | 
|  | if (disk_idx >= mddev->raid_disks | 
|  | || disk_idx < 0) | 
|  | continue; | 
|  | if (test_bit(Replacement, &rdev->flags)) | 
|  | disk = conf->mirrors + mddev->raid_disks + disk_idx; | 
|  | else | 
|  | disk = conf->mirrors + disk_idx; | 
|  |  | 
|  | if (disk->rdev) | 
|  | goto abort; | 
|  | disk->rdev = rdev; | 
|  | q = bdev_get_queue(rdev->bdev); | 
|  | if (q->merge_bvec_fn) | 
|  | mddev->merge_check_needed = 1; | 
|  |  | 
|  | disk->head_position = 0; | 
|  | disk->seq_start = MaxSector; | 
|  | } | 
|  | conf->raid_disks = mddev->raid_disks; | 
|  | conf->mddev = mddev; | 
|  | INIT_LIST_HEAD(&conf->retry_list); | 
|  |  | 
|  | spin_lock_init(&conf->resync_lock); | 
|  | init_waitqueue_head(&conf->wait_barrier); | 
|  |  | 
|  | bio_list_init(&conf->pending_bio_list); | 
|  | conf->pending_count = 0; | 
|  | conf->recovery_disabled = mddev->recovery_disabled - 1; | 
|  |  | 
|  | conf->start_next_window = MaxSector; | 
|  | conf->current_window_requests = conf->next_window_requests = 0; | 
|  |  | 
|  | err = -EIO; | 
|  | for (i = 0; i < conf->raid_disks * 2; i++) { | 
|  |  | 
|  | disk = conf->mirrors + i; | 
|  |  | 
|  | if (i < conf->raid_disks && | 
|  | disk[conf->raid_disks].rdev) { | 
|  | /* This slot has a replacement. */ | 
|  | if (!disk->rdev) { | 
|  | /* No original, just make the replacement | 
|  | * a recovering spare | 
|  | */ | 
|  | disk->rdev = | 
|  | disk[conf->raid_disks].rdev; | 
|  | disk[conf->raid_disks].rdev = NULL; | 
|  | } else if (!test_bit(In_sync, &disk->rdev->flags)) | 
|  | /* Original is not in_sync - bad */ | 
|  | goto abort; | 
|  | } | 
|  |  | 
|  | if (!disk->rdev || | 
|  | !test_bit(In_sync, &disk->rdev->flags)) { | 
|  | disk->head_position = 0; | 
|  | if (disk->rdev && | 
|  | (disk->rdev->saved_raid_disk < 0)) | 
|  | conf->fullsync = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | err = -ENOMEM; | 
|  | conf->thread = md_register_thread(raid1d, mddev, "raid1"); | 
|  | if (!conf->thread) { | 
|  | printk(KERN_ERR | 
|  | "md/raid1:%s: couldn't allocate thread\n", | 
|  | mdname(mddev)); | 
|  | goto abort; | 
|  | } | 
|  |  | 
|  | return conf; | 
|  |  | 
|  | abort: | 
|  | if (conf) { | 
|  | if (conf->r1bio_pool) | 
|  | mempool_destroy(conf->r1bio_pool); | 
|  | kfree(conf->mirrors); | 
|  | safe_put_page(conf->tmppage); | 
|  | kfree(conf->poolinfo); | 
|  | kfree(conf); | 
|  | } | 
|  | return ERR_PTR(err); | 
|  | } | 
|  |  | 
|  | static int stop(struct mddev *mddev); | 
|  | static int run(struct mddev *mddev) | 
|  | { | 
|  | struct r1conf *conf; | 
|  | int i; | 
|  | struct md_rdev *rdev; | 
|  | int ret; | 
|  | bool discard_supported = false; | 
|  |  | 
|  | if (mddev->level != 1) { | 
|  | printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n", | 
|  | mdname(mddev), mddev->level); | 
|  | return -EIO; | 
|  | } | 
|  | if (mddev->reshape_position != MaxSector) { | 
|  | printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n", | 
|  | mdname(mddev)); | 
|  | return -EIO; | 
|  | } | 
|  | /* | 
|  | * copy the already verified devices into our private RAID1 | 
|  | * bookkeeping area. [whatever we allocate in run(), | 
|  | * should be freed in stop()] | 
|  | */ | 
|  | if (mddev->private == NULL) | 
|  | conf = setup_conf(mddev); | 
|  | else | 
|  | conf = mddev->private; | 
|  |  | 
|  | if (IS_ERR(conf)) | 
|  | return PTR_ERR(conf); | 
|  |  | 
|  | if (mddev->queue) | 
|  | blk_queue_max_write_same_sectors(mddev->queue, 0); | 
|  |  | 
|  | rdev_for_each(rdev, mddev) { | 
|  | if (!mddev->gendisk) | 
|  | continue; | 
|  | disk_stack_limits(mddev->gendisk, rdev->bdev, | 
|  | rdev->data_offset << 9); | 
|  | if (blk_queue_discard(bdev_get_queue(rdev->bdev))) | 
|  | discard_supported = true; | 
|  | } | 
|  |  | 
|  | mddev->degraded = 0; | 
|  | for (i=0; i < conf->raid_disks; i++) | 
|  | if (conf->mirrors[i].rdev == NULL || | 
|  | !test_bit(In_sync, &conf->mirrors[i].rdev->flags) || | 
|  | test_bit(Faulty, &conf->mirrors[i].rdev->flags)) | 
|  | mddev->degraded++; | 
|  |  | 
|  | if (conf->raid_disks - mddev->degraded == 1) | 
|  | mddev->recovery_cp = MaxSector; | 
|  |  | 
|  | if (mddev->recovery_cp != MaxSector) | 
|  | printk(KERN_NOTICE "md/raid1:%s: not clean" | 
|  | " -- starting background reconstruction\n", | 
|  | mdname(mddev)); | 
|  | printk(KERN_INFO | 
|  | "md/raid1:%s: active with %d out of %d mirrors\n", | 
|  | mdname(mddev), mddev->raid_disks - mddev->degraded, | 
|  | mddev->raid_disks); | 
|  |  | 
|  | /* | 
|  | * Ok, everything is just fine now | 
|  | */ | 
|  | mddev->thread = conf->thread; | 
|  | conf->thread = NULL; | 
|  | mddev->private = conf; | 
|  |  | 
|  | md_set_array_sectors(mddev, raid1_size(mddev, 0, 0)); | 
|  |  | 
|  | if (mddev->queue) { | 
|  | mddev->queue->backing_dev_info.congested_fn = raid1_congested; | 
|  | mddev->queue->backing_dev_info.congested_data = mddev; | 
|  | blk_queue_merge_bvec(mddev->queue, raid1_mergeable_bvec); | 
|  |  | 
|  | if (discard_supported) | 
|  | queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, | 
|  | mddev->queue); | 
|  | else | 
|  | queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, | 
|  | mddev->queue); | 
|  | } | 
|  |  | 
|  | ret =  md_integrity_register(mddev); | 
|  | if (ret) | 
|  | stop(mddev); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int stop(struct mddev *mddev) | 
|  | { | 
|  | struct r1conf *conf = mddev->private; | 
|  | struct bitmap *bitmap = mddev->bitmap; | 
|  |  | 
|  | /* wait for behind writes to complete */ | 
|  | if (bitmap && atomic_read(&bitmap->behind_writes) > 0) { | 
|  | printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n", | 
|  | mdname(mddev)); | 
|  | /* need to kick something here to make sure I/O goes? */ | 
|  | wait_event(bitmap->behind_wait, | 
|  | atomic_read(&bitmap->behind_writes) == 0); | 
|  | } | 
|  |  | 
|  | freeze_array(conf, 0); | 
|  | unfreeze_array(conf); | 
|  |  | 
|  | md_unregister_thread(&mddev->thread); | 
|  | if (conf->r1bio_pool) | 
|  | mempool_destroy(conf->r1bio_pool); | 
|  | kfree(conf->mirrors); | 
|  | safe_put_page(conf->tmppage); | 
|  | kfree(conf->poolinfo); | 
|  | kfree(conf); | 
|  | mddev->private = NULL; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int raid1_resize(struct mddev *mddev, sector_t sectors) | 
|  | { | 
|  | /* no resync is happening, and there is enough space | 
|  | * on all devices, so we can resize. | 
|  | * We need to make sure resync covers any new space. | 
|  | * If the array is shrinking we should possibly wait until | 
|  | * any io in the removed space completes, but it hardly seems | 
|  | * worth it. | 
|  | */ | 
|  | sector_t newsize = raid1_size(mddev, sectors, 0); | 
|  | if (mddev->external_size && | 
|  | mddev->array_sectors > newsize) | 
|  | return -EINVAL; | 
|  | if (mddev->bitmap) { | 
|  | int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  | md_set_array_sectors(mddev, newsize); | 
|  | set_capacity(mddev->gendisk, mddev->array_sectors); | 
|  | revalidate_disk(mddev->gendisk); | 
|  | if (sectors > mddev->dev_sectors && | 
|  | mddev->recovery_cp > mddev->dev_sectors) { | 
|  | mddev->recovery_cp = mddev->dev_sectors; | 
|  | set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); | 
|  | } | 
|  | mddev->dev_sectors = sectors; | 
|  | mddev->resync_max_sectors = sectors; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int raid1_reshape(struct mddev *mddev) | 
|  | { | 
|  | /* We need to: | 
|  | * 1/ resize the r1bio_pool | 
|  | * 2/ resize conf->mirrors | 
|  | * | 
|  | * We allocate a new r1bio_pool if we can. | 
|  | * Then raise a device barrier and wait until all IO stops. | 
|  | * Then resize conf->mirrors and swap in the new r1bio pool. | 
|  | * | 
|  | * At the same time, we "pack" the devices so that all the missing | 
|  | * devices have the higher raid_disk numbers. | 
|  | */ | 
|  | mempool_t *newpool, *oldpool; | 
|  | struct pool_info *newpoolinfo; | 
|  | struct raid1_info *newmirrors; | 
|  | struct r1conf *conf = mddev->private; | 
|  | int cnt, raid_disks; | 
|  | unsigned long flags; | 
|  | int d, d2, err; | 
|  |  | 
|  | /* Cannot change chunk_size, layout, or level */ | 
|  | if (mddev->chunk_sectors != mddev->new_chunk_sectors || | 
|  | mddev->layout != mddev->new_layout || | 
|  | mddev->level != mddev->new_level) { | 
|  | mddev->new_chunk_sectors = mddev->chunk_sectors; | 
|  | mddev->new_layout = mddev->layout; | 
|  | mddev->new_level = mddev->level; | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | err = md_allow_write(mddev); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | raid_disks = mddev->raid_disks + mddev->delta_disks; | 
|  |  | 
|  | if (raid_disks < conf->raid_disks) { | 
|  | cnt=0; | 
|  | for (d= 0; d < conf->raid_disks; d++) | 
|  | if (conf->mirrors[d].rdev) | 
|  | cnt++; | 
|  | if (cnt > raid_disks) | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL); | 
|  | if (!newpoolinfo) | 
|  | return -ENOMEM; | 
|  | newpoolinfo->mddev = mddev; | 
|  | newpoolinfo->raid_disks = raid_disks * 2; | 
|  |  | 
|  | newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, | 
|  | r1bio_pool_free, newpoolinfo); | 
|  | if (!newpool) { | 
|  | kfree(newpoolinfo); | 
|  | return -ENOMEM; | 
|  | } | 
|  | newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2, | 
|  | GFP_KERNEL); | 
|  | if (!newmirrors) { | 
|  | kfree(newpoolinfo); | 
|  | mempool_destroy(newpool); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | freeze_array(conf, 0); | 
|  |  | 
|  | /* ok, everything is stopped */ | 
|  | oldpool = conf->r1bio_pool; | 
|  | conf->r1bio_pool = newpool; | 
|  |  | 
|  | for (d = d2 = 0; d < conf->raid_disks; d++) { | 
|  | struct md_rdev *rdev = conf->mirrors[d].rdev; | 
|  | if (rdev && rdev->raid_disk != d2) { | 
|  | sysfs_unlink_rdev(mddev, rdev); | 
|  | rdev->raid_disk = d2; | 
|  | sysfs_unlink_rdev(mddev, rdev); | 
|  | if (sysfs_link_rdev(mddev, rdev)) | 
|  | printk(KERN_WARNING | 
|  | "md/raid1:%s: cannot register rd%d\n", | 
|  | mdname(mddev), rdev->raid_disk); | 
|  | } | 
|  | if (rdev) | 
|  | newmirrors[d2++].rdev = rdev; | 
|  | } | 
|  | kfree(conf->mirrors); | 
|  | conf->mirrors = newmirrors; | 
|  | kfree(conf->poolinfo); | 
|  | conf->poolinfo = newpoolinfo; | 
|  |  | 
|  | spin_lock_irqsave(&conf->device_lock, flags); | 
|  | mddev->degraded += (raid_disks - conf->raid_disks); | 
|  | spin_unlock_irqrestore(&conf->device_lock, flags); | 
|  | conf->raid_disks = mddev->raid_disks = raid_disks; | 
|  | mddev->delta_disks = 0; | 
|  |  | 
|  | unfreeze_array(conf); | 
|  |  | 
|  | set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); | 
|  | md_wakeup_thread(mddev->thread); | 
|  |  | 
|  | mempool_destroy(oldpool); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void raid1_quiesce(struct mddev *mddev, int state) | 
|  | { | 
|  | struct r1conf *conf = mddev->private; | 
|  |  | 
|  | switch(state) { | 
|  | case 2: /* wake for suspend */ | 
|  | wake_up(&conf->wait_barrier); | 
|  | break; | 
|  | case 1: | 
|  | freeze_array(conf, 0); | 
|  | break; | 
|  | case 0: | 
|  | unfreeze_array(conf); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void *raid1_takeover(struct mddev *mddev) | 
|  | { | 
|  | /* raid1 can take over: | 
|  | *  raid5 with 2 devices, any layout or chunk size | 
|  | */ | 
|  | if (mddev->level == 5 && mddev->raid_disks == 2) { | 
|  | struct r1conf *conf; | 
|  | mddev->new_level = 1; | 
|  | mddev->new_layout = 0; | 
|  | mddev->new_chunk_sectors = 0; | 
|  | conf = setup_conf(mddev); | 
|  | if (!IS_ERR(conf)) | 
|  | /* Array must appear to be quiesced */ | 
|  | conf->array_frozen = 1; | 
|  | return conf; | 
|  | } | 
|  | return ERR_PTR(-EINVAL); | 
|  | } | 
|  |  | 
|  | static struct md_personality raid1_personality = | 
|  | { | 
|  | .name		= "raid1", | 
|  | .level		= 1, | 
|  | .owner		= THIS_MODULE, | 
|  | .make_request	= make_request, | 
|  | .run		= run, | 
|  | .stop		= stop, | 
|  | .status		= status, | 
|  | .error_handler	= error, | 
|  | .hot_add_disk	= raid1_add_disk, | 
|  | .hot_remove_disk= raid1_remove_disk, | 
|  | .spare_active	= raid1_spare_active, | 
|  | .sync_request	= sync_request, | 
|  | .resize		= raid1_resize, | 
|  | .size		= raid1_size, | 
|  | .check_reshape	= raid1_reshape, | 
|  | .quiesce	= raid1_quiesce, | 
|  | .takeover	= raid1_takeover, | 
|  | }; | 
|  |  | 
|  | static int __init raid_init(void) | 
|  | { | 
|  | return register_md_personality(&raid1_personality); | 
|  | } | 
|  |  | 
|  | static void raid_exit(void) | 
|  | { | 
|  | unregister_md_personality(&raid1_personality); | 
|  | } | 
|  |  | 
|  | module_init(raid_init); | 
|  | module_exit(raid_exit); | 
|  | MODULE_LICENSE("GPL"); | 
|  | MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD"); | 
|  | MODULE_ALIAS("md-personality-3"); /* RAID1 */ | 
|  | MODULE_ALIAS("md-raid1"); | 
|  | MODULE_ALIAS("md-level-1"); | 
|  |  | 
|  | module_param(max_queued_requests, int, S_IRUGO|S_IWUSR); |