| // SPDX-License-Identifier: GPL-2.0 | 
 | #include "bcachefs.h" | 
 | #include "checksum.h" | 
 | #include "compress.h" | 
 | #include "extents.h" | 
 | #include "super-io.h" | 
 |  | 
 | #include <linux/lz4.h> | 
 | #include <linux/zlib.h> | 
 | #include <linux/zstd.h> | 
 |  | 
 | /* Bounce buffer: */ | 
 | struct bbuf { | 
 | 	void		*b; | 
 | 	enum { | 
 | 		BB_NONE, | 
 | 		BB_VMAP, | 
 | 		BB_KMALLOC, | 
 | 		BB_MEMPOOL, | 
 | 	}		type; | 
 | 	int		rw; | 
 | }; | 
 |  | 
 | static struct bbuf __bounce_alloc(struct bch_fs *c, unsigned size, int rw) | 
 | { | 
 | 	void *b; | 
 |  | 
 | 	BUG_ON(size > c->opts.encoded_extent_max); | 
 |  | 
 | 	b = kmalloc(size, GFP_NOFS|__GFP_NOWARN); | 
 | 	if (b) | 
 | 		return (struct bbuf) { .b = b, .type = BB_KMALLOC, .rw = rw }; | 
 |  | 
 | 	b = mempool_alloc(&c->compression_bounce[rw], GFP_NOFS); | 
 | 	if (b) | 
 | 		return (struct bbuf) { .b = b, .type = BB_MEMPOOL, .rw = rw }; | 
 |  | 
 | 	BUG(); | 
 | } | 
 |  | 
 | static bool bio_phys_contig(struct bio *bio, struct bvec_iter start) | 
 | { | 
 | 	struct bio_vec bv; | 
 | 	struct bvec_iter iter; | 
 | 	void *expected_start = NULL; | 
 |  | 
 | 	__bio_for_each_bvec(bv, bio, iter, start) { | 
 | 		if (expected_start && | 
 | 		    expected_start != page_address(bv.bv_page) + bv.bv_offset) | 
 | 			return false; | 
 |  | 
 | 		expected_start = page_address(bv.bv_page) + | 
 | 			bv.bv_offset + bv.bv_len; | 
 | 	} | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static struct bbuf __bio_map_or_bounce(struct bch_fs *c, struct bio *bio, | 
 | 				       struct bvec_iter start, int rw) | 
 | { | 
 | 	struct bbuf ret; | 
 | 	struct bio_vec bv; | 
 | 	struct bvec_iter iter; | 
 | 	unsigned nr_pages = 0; | 
 | 	struct page *stack_pages[16]; | 
 | 	struct page **pages = NULL; | 
 | 	void *data; | 
 |  | 
 | 	BUG_ON(start.bi_size > c->opts.encoded_extent_max); | 
 |  | 
 | 	if (!PageHighMem(bio_iter_page(bio, start)) && | 
 | 	    bio_phys_contig(bio, start)) | 
 | 		return (struct bbuf) { | 
 | 			.b = page_address(bio_iter_page(bio, start)) + | 
 | 				bio_iter_offset(bio, start), | 
 | 			.type = BB_NONE, .rw = rw | 
 | 		}; | 
 |  | 
 | 	/* check if we can map the pages contiguously: */ | 
 | 	__bio_for_each_segment(bv, bio, iter, start) { | 
 | 		if (iter.bi_size != start.bi_size && | 
 | 		    bv.bv_offset) | 
 | 			goto bounce; | 
 |  | 
 | 		if (bv.bv_len < iter.bi_size && | 
 | 		    bv.bv_offset + bv.bv_len < PAGE_SIZE) | 
 | 			goto bounce; | 
 |  | 
 | 		nr_pages++; | 
 | 	} | 
 |  | 
 | 	BUG_ON(DIV_ROUND_UP(start.bi_size, PAGE_SIZE) > nr_pages); | 
 |  | 
 | 	pages = nr_pages > ARRAY_SIZE(stack_pages) | 
 | 		? kmalloc_array(nr_pages, sizeof(struct page *), GFP_NOFS) | 
 | 		: stack_pages; | 
 | 	if (!pages) | 
 | 		goto bounce; | 
 |  | 
 | 	nr_pages = 0; | 
 | 	__bio_for_each_segment(bv, bio, iter, start) | 
 | 		pages[nr_pages++] = bv.bv_page; | 
 |  | 
 | 	data = vmap(pages, nr_pages, VM_MAP, PAGE_KERNEL); | 
 | 	if (pages != stack_pages) | 
 | 		kfree(pages); | 
 |  | 
 | 	if (data) | 
 | 		return (struct bbuf) { | 
 | 			.b = data + bio_iter_offset(bio, start), | 
 | 			.type = BB_VMAP, .rw = rw | 
 | 		}; | 
 | bounce: | 
 | 	ret = __bounce_alloc(c, start.bi_size, rw); | 
 |  | 
 | 	if (rw == READ) | 
 | 		memcpy_from_bio(ret.b, bio, start); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static struct bbuf bio_map_or_bounce(struct bch_fs *c, struct bio *bio, int rw) | 
 | { | 
 | 	return __bio_map_or_bounce(c, bio, bio->bi_iter, rw); | 
 | } | 
 |  | 
 | static void bio_unmap_or_unbounce(struct bch_fs *c, struct bbuf buf) | 
 | { | 
 | 	switch (buf.type) { | 
 | 	case BB_NONE: | 
 | 		break; | 
 | 	case BB_VMAP: | 
 | 		vunmap((void *) ((unsigned long) buf.b & PAGE_MASK)); | 
 | 		break; | 
 | 	case BB_KMALLOC: | 
 | 		kfree(buf.b); | 
 | 		break; | 
 | 	case BB_MEMPOOL: | 
 | 		mempool_free(buf.b, &c->compression_bounce[buf.rw]); | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | static inline void zlib_set_workspace(z_stream *strm, void *workspace) | 
 | { | 
 | #ifdef __KERNEL__ | 
 | 	strm->workspace = workspace; | 
 | #endif | 
 | } | 
 |  | 
 | static int __bio_uncompress(struct bch_fs *c, struct bio *src, | 
 | 			    void *dst_data, struct bch_extent_crc_unpacked crc) | 
 | { | 
 | 	struct bbuf src_data = { NULL }; | 
 | 	size_t src_len = src->bi_iter.bi_size; | 
 | 	size_t dst_len = crc.uncompressed_size << 9; | 
 | 	void *workspace; | 
 | 	int ret; | 
 |  | 
 | 	src_data = bio_map_or_bounce(c, src, READ); | 
 |  | 
 | 	switch (crc.compression_type) { | 
 | 	case BCH_COMPRESSION_TYPE_lz4_old: | 
 | 	case BCH_COMPRESSION_TYPE_lz4: | 
 | 		ret = LZ4_decompress_safe_partial(src_data.b, dst_data, | 
 | 						  src_len, dst_len, dst_len); | 
 | 		if (ret != dst_len) | 
 | 			goto err; | 
 | 		break; | 
 | 	case BCH_COMPRESSION_TYPE_gzip: { | 
 | 		z_stream strm = { | 
 | 			.next_in	= src_data.b, | 
 | 			.avail_in	= src_len, | 
 | 			.next_out	= dst_data, | 
 | 			.avail_out	= dst_len, | 
 | 		}; | 
 |  | 
 | 		workspace = mempool_alloc(&c->decompress_workspace, GFP_NOFS); | 
 |  | 
 | 		zlib_set_workspace(&strm, workspace); | 
 | 		zlib_inflateInit2(&strm, -MAX_WBITS); | 
 | 		ret = zlib_inflate(&strm, Z_FINISH); | 
 |  | 
 | 		mempool_free(workspace, &c->decompress_workspace); | 
 |  | 
 | 		if (ret != Z_STREAM_END) | 
 | 			goto err; | 
 | 		break; | 
 | 	} | 
 | 	case BCH_COMPRESSION_TYPE_zstd: { | 
 | 		ZSTD_DCtx *ctx; | 
 | 		size_t real_src_len = le32_to_cpup(src_data.b); | 
 |  | 
 | 		if (real_src_len > src_len - 4) | 
 | 			goto err; | 
 |  | 
 | 		workspace = mempool_alloc(&c->decompress_workspace, GFP_NOFS); | 
 | 		ctx = zstd_init_dctx(workspace, zstd_dctx_workspace_bound()); | 
 |  | 
 | 		ret = zstd_decompress_dctx(ctx, | 
 | 				dst_data,	dst_len, | 
 | 				src_data.b + 4, real_src_len); | 
 |  | 
 | 		mempool_free(workspace, &c->decompress_workspace); | 
 |  | 
 | 		if (ret != dst_len) | 
 | 			goto err; | 
 | 		break; | 
 | 	} | 
 | 	default: | 
 | 		BUG(); | 
 | 	} | 
 | 	ret = 0; | 
 | out: | 
 | 	bio_unmap_or_unbounce(c, src_data); | 
 | 	return ret; | 
 | err: | 
 | 	ret = -EIO; | 
 | 	goto out; | 
 | } | 
 |  | 
 | int bch2_bio_uncompress_inplace(struct bch_fs *c, struct bio *bio, | 
 | 				struct bch_extent_crc_unpacked *crc) | 
 | { | 
 | 	struct bbuf data = { NULL }; | 
 | 	size_t dst_len = crc->uncompressed_size << 9; | 
 |  | 
 | 	/* bio must own its pages: */ | 
 | 	BUG_ON(!bio->bi_vcnt); | 
 | 	BUG_ON(DIV_ROUND_UP(crc->live_size, PAGE_SECTORS) > bio->bi_max_vecs); | 
 |  | 
 | 	if (crc->uncompressed_size << 9	> c->opts.encoded_extent_max || | 
 | 	    crc->compressed_size << 9	> c->opts.encoded_extent_max) { | 
 | 		bch_err(c, "error rewriting existing data: extent too big"); | 
 | 		return -EIO; | 
 | 	} | 
 |  | 
 | 	data = __bounce_alloc(c, dst_len, WRITE); | 
 |  | 
 | 	if (__bio_uncompress(c, bio, data.b, *crc)) { | 
 | 		if (!c->opts.no_data_io) | 
 | 			bch_err(c, "error rewriting existing data: decompression error"); | 
 | 		bio_unmap_or_unbounce(c, data); | 
 | 		return -EIO; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * XXX: don't have a good way to assert that the bio was allocated with | 
 | 	 * enough space, we depend on bch2_move_extent doing the right thing | 
 | 	 */ | 
 | 	bio->bi_iter.bi_size = crc->live_size << 9; | 
 |  | 
 | 	memcpy_to_bio(bio, bio->bi_iter, data.b + (crc->offset << 9)); | 
 |  | 
 | 	crc->csum_type		= 0; | 
 | 	crc->compression_type	= 0; | 
 | 	crc->compressed_size	= crc->live_size; | 
 | 	crc->uncompressed_size	= crc->live_size; | 
 | 	crc->offset		= 0; | 
 | 	crc->csum		= (struct bch_csum) { 0, 0 }; | 
 |  | 
 | 	bio_unmap_or_unbounce(c, data); | 
 | 	return 0; | 
 | } | 
 |  | 
 | int bch2_bio_uncompress(struct bch_fs *c, struct bio *src, | 
 | 		       struct bio *dst, struct bvec_iter dst_iter, | 
 | 		       struct bch_extent_crc_unpacked crc) | 
 | { | 
 | 	struct bbuf dst_data = { NULL }; | 
 | 	size_t dst_len = crc.uncompressed_size << 9; | 
 | 	int ret; | 
 |  | 
 | 	if (crc.uncompressed_size << 9	> c->opts.encoded_extent_max || | 
 | 	    crc.compressed_size << 9	> c->opts.encoded_extent_max) | 
 | 		return -EIO; | 
 |  | 
 | 	dst_data = dst_len == dst_iter.bi_size | 
 | 		? __bio_map_or_bounce(c, dst, dst_iter, WRITE) | 
 | 		: __bounce_alloc(c, dst_len, WRITE); | 
 |  | 
 | 	ret = __bio_uncompress(c, src, dst_data.b, crc); | 
 | 	if (ret) | 
 | 		goto err; | 
 |  | 
 | 	if (dst_data.type != BB_NONE && | 
 | 	    dst_data.type != BB_VMAP) | 
 | 		memcpy_to_bio(dst, dst_iter, dst_data.b + (crc.offset << 9)); | 
 | err: | 
 | 	bio_unmap_or_unbounce(c, dst_data); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int attempt_compress(struct bch_fs *c, | 
 | 			    void *workspace, | 
 | 			    void *dst, size_t dst_len, | 
 | 			    void *src, size_t src_len, | 
 | 			    struct bch_compression_opt compression) | 
 | { | 
 | 	enum bch_compression_type compression_type = | 
 | 		__bch2_compression_opt_to_type[compression.type]; | 
 |  | 
 | 	switch (compression_type) { | 
 | 	case BCH_COMPRESSION_TYPE_lz4: | 
 | 		if (compression.level < LZ4HC_MIN_CLEVEL) { | 
 | 			int len = src_len; | 
 | 			int ret = LZ4_compress_destSize( | 
 | 					src,		dst, | 
 | 					&len,		dst_len, | 
 | 					workspace); | 
 | 			if (len < src_len) | 
 | 				return -len; | 
 |  | 
 | 			return ret; | 
 | 		} else { | 
 | 			int ret = LZ4_compress_HC( | 
 | 					src,		dst, | 
 | 					src_len,	dst_len, | 
 | 					compression.level, | 
 | 					workspace); | 
 |  | 
 | 			return ret ?: -1; | 
 | 		} | 
 | 	case BCH_COMPRESSION_TYPE_gzip: { | 
 | 		z_stream strm = { | 
 | 			.next_in	= src, | 
 | 			.avail_in	= src_len, | 
 | 			.next_out	= dst, | 
 | 			.avail_out	= dst_len, | 
 | 		}; | 
 |  | 
 | 		zlib_set_workspace(&strm, workspace); | 
 | 		zlib_deflateInit2(&strm, | 
 | 				  compression.level | 
 | 				  ? clamp_t(unsigned, compression.level, | 
 | 					    Z_BEST_SPEED, Z_BEST_COMPRESSION) | 
 | 				  : Z_DEFAULT_COMPRESSION, | 
 | 				  Z_DEFLATED, -MAX_WBITS, DEF_MEM_LEVEL, | 
 | 				  Z_DEFAULT_STRATEGY); | 
 |  | 
 | 		if (zlib_deflate(&strm, Z_FINISH) != Z_STREAM_END) | 
 | 			return 0; | 
 |  | 
 | 		if (zlib_deflateEnd(&strm) != Z_OK) | 
 | 			return 0; | 
 |  | 
 | 		return strm.total_out; | 
 | 	} | 
 | 	case BCH_COMPRESSION_TYPE_zstd: { | 
 | 		/* | 
 | 		 * rescale: | 
 | 		 * zstd max compression level is 22, our max level is 15 | 
 | 		 */ | 
 | 		unsigned level = min((compression.level * 3) / 2, zstd_max_clevel()); | 
 | 		ZSTD_parameters params = zstd_get_params(level, c->opts.encoded_extent_max); | 
 | 		ZSTD_CCtx *ctx = zstd_init_cctx(workspace, c->zstd_workspace_size); | 
 |  | 
 | 		/* | 
 | 		 * ZSTD requires that when we decompress we pass in the exact | 
 | 		 * compressed size - rounding it up to the nearest sector | 
 | 		 * doesn't work, so we use the first 4 bytes of the buffer for | 
 | 		 * that. | 
 | 		 * | 
 | 		 * Additionally, the ZSTD code seems to have a bug where it will | 
 | 		 * write just past the end of the buffer - so subtract a fudge | 
 | 		 * factor (7 bytes) from the dst buffer size to account for | 
 | 		 * that. | 
 | 		 */ | 
 | 		size_t len = zstd_compress_cctx(ctx, | 
 | 				dst + 4,	dst_len - 4 - 7, | 
 | 				src,		src_len, | 
 | 				¶ms); | 
 | 		if (zstd_is_error(len)) | 
 | 			return 0; | 
 |  | 
 | 		*((__le32 *) dst) = cpu_to_le32(len); | 
 | 		return len + 4; | 
 | 	} | 
 | 	default: | 
 | 		BUG(); | 
 | 	} | 
 | } | 
 |  | 
 | static unsigned __bio_compress(struct bch_fs *c, | 
 | 			       struct bio *dst, size_t *dst_len, | 
 | 			       struct bio *src, size_t *src_len, | 
 | 			       struct bch_compression_opt compression) | 
 | { | 
 | 	struct bbuf src_data = { NULL }, dst_data = { NULL }; | 
 | 	void *workspace; | 
 | 	enum bch_compression_type compression_type = | 
 | 		__bch2_compression_opt_to_type[compression.type]; | 
 | 	unsigned pad; | 
 | 	int ret = 0; | 
 |  | 
 | 	BUG_ON(compression_type >= BCH_COMPRESSION_TYPE_NR); | 
 | 	BUG_ON(!mempool_initialized(&c->compress_workspace[compression_type])); | 
 |  | 
 | 	/* If it's only one block, don't bother trying to compress: */ | 
 | 	if (src->bi_iter.bi_size <= c->opts.block_size) | 
 | 		return BCH_COMPRESSION_TYPE_incompressible; | 
 |  | 
 | 	dst_data = bio_map_or_bounce(c, dst, WRITE); | 
 | 	src_data = bio_map_or_bounce(c, src, READ); | 
 |  | 
 | 	workspace = mempool_alloc(&c->compress_workspace[compression_type], GFP_NOFS); | 
 |  | 
 | 	*src_len = src->bi_iter.bi_size; | 
 | 	*dst_len = dst->bi_iter.bi_size; | 
 |  | 
 | 	/* | 
 | 	 * XXX: this algorithm sucks when the compression code doesn't tell us | 
 | 	 * how much would fit, like LZ4 does: | 
 | 	 */ | 
 | 	while (1) { | 
 | 		if (*src_len <= block_bytes(c)) { | 
 | 			ret = -1; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		ret = attempt_compress(c, workspace, | 
 | 				       dst_data.b,	*dst_len, | 
 | 				       src_data.b,	*src_len, | 
 | 				       compression); | 
 | 		if (ret > 0) { | 
 | 			*dst_len = ret; | 
 | 			ret = 0; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		/* Didn't fit: should we retry with a smaller amount?  */ | 
 | 		if (*src_len <= *dst_len) { | 
 | 			ret = -1; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * If ret is negative, it's a hint as to how much data would fit | 
 | 		 */ | 
 | 		BUG_ON(-ret >= *src_len); | 
 |  | 
 | 		if (ret < 0) | 
 | 			*src_len = -ret; | 
 | 		else | 
 | 			*src_len -= (*src_len - *dst_len) / 2; | 
 | 		*src_len = round_down(*src_len, block_bytes(c)); | 
 | 	} | 
 |  | 
 | 	mempool_free(workspace, &c->compress_workspace[compression_type]); | 
 |  | 
 | 	if (ret) | 
 | 		goto err; | 
 |  | 
 | 	/* Didn't get smaller: */ | 
 | 	if (round_up(*dst_len, block_bytes(c)) >= *src_len) | 
 | 		goto err; | 
 |  | 
 | 	pad = round_up(*dst_len, block_bytes(c)) - *dst_len; | 
 |  | 
 | 	memset(dst_data.b + *dst_len, 0, pad); | 
 | 	*dst_len += pad; | 
 |  | 
 | 	if (dst_data.type != BB_NONE && | 
 | 	    dst_data.type != BB_VMAP) | 
 | 		memcpy_to_bio(dst, dst->bi_iter, dst_data.b); | 
 |  | 
 | 	BUG_ON(!*dst_len || *dst_len > dst->bi_iter.bi_size); | 
 | 	BUG_ON(!*src_len || *src_len > src->bi_iter.bi_size); | 
 | 	BUG_ON(*dst_len & (block_bytes(c) - 1)); | 
 | 	BUG_ON(*src_len & (block_bytes(c) - 1)); | 
 | 	ret = compression_type; | 
 | out: | 
 | 	bio_unmap_or_unbounce(c, src_data); | 
 | 	bio_unmap_or_unbounce(c, dst_data); | 
 | 	return ret; | 
 | err: | 
 | 	ret = BCH_COMPRESSION_TYPE_incompressible; | 
 | 	goto out; | 
 | } | 
 |  | 
 | unsigned bch2_bio_compress(struct bch_fs *c, | 
 | 			   struct bio *dst, size_t *dst_len, | 
 | 			   struct bio *src, size_t *src_len, | 
 | 			   unsigned compression_opt) | 
 | { | 
 | 	unsigned orig_dst = dst->bi_iter.bi_size; | 
 | 	unsigned orig_src = src->bi_iter.bi_size; | 
 | 	unsigned compression_type; | 
 |  | 
 | 	/* Don't consume more than BCH_ENCODED_EXTENT_MAX from @src: */ | 
 | 	src->bi_iter.bi_size = min_t(unsigned, src->bi_iter.bi_size, | 
 | 				     c->opts.encoded_extent_max); | 
 | 	/* Don't generate a bigger output than input: */ | 
 | 	dst->bi_iter.bi_size = min(dst->bi_iter.bi_size, src->bi_iter.bi_size); | 
 |  | 
 | 	compression_type = | 
 | 		__bio_compress(c, dst, dst_len, src, src_len, | 
 | 			       bch2_compression_decode(compression_opt)); | 
 |  | 
 | 	dst->bi_iter.bi_size = orig_dst; | 
 | 	src->bi_iter.bi_size = orig_src; | 
 | 	return compression_type; | 
 | } | 
 |  | 
 | static int __bch2_fs_compress_init(struct bch_fs *, u64); | 
 |  | 
 | #define BCH_FEATURE_none	0 | 
 |  | 
 | static const unsigned bch2_compression_opt_to_feature[] = { | 
 | #define x(t, n) [BCH_COMPRESSION_OPT_##t] = BCH_FEATURE_##t, | 
 | 	BCH_COMPRESSION_OPTS() | 
 | #undef x | 
 | }; | 
 |  | 
 | #undef BCH_FEATURE_none | 
 |  | 
 | static int __bch2_check_set_has_compressed_data(struct bch_fs *c, u64 f) | 
 | { | 
 | 	int ret = 0; | 
 |  | 
 | 	if ((c->sb.features & f) == f) | 
 | 		return 0; | 
 |  | 
 | 	mutex_lock(&c->sb_lock); | 
 |  | 
 | 	if ((c->sb.features & f) == f) { | 
 | 		mutex_unlock(&c->sb_lock); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	ret = __bch2_fs_compress_init(c, c->sb.features|f); | 
 | 	if (ret) { | 
 | 		mutex_unlock(&c->sb_lock); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	c->disk_sb.sb->features[0] |= cpu_to_le64(f); | 
 | 	bch2_write_super(c); | 
 | 	mutex_unlock(&c->sb_lock); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int bch2_check_set_has_compressed_data(struct bch_fs *c, | 
 | 				       unsigned compression_opt) | 
 | { | 
 | 	unsigned compression_type = bch2_compression_decode(compression_opt).type; | 
 |  | 
 | 	BUG_ON(compression_type >= ARRAY_SIZE(bch2_compression_opt_to_feature)); | 
 |  | 
 | 	return compression_type | 
 | 		? __bch2_check_set_has_compressed_data(c, | 
 | 				1ULL << bch2_compression_opt_to_feature[compression_type]) | 
 | 		: 0; | 
 | } | 
 |  | 
 | void bch2_fs_compress_exit(struct bch_fs *c) | 
 | { | 
 | 	unsigned i; | 
 |  | 
 | 	mempool_exit(&c->decompress_workspace); | 
 | 	for (i = 0; i < ARRAY_SIZE(c->compress_workspace); i++) | 
 | 		mempool_exit(&c->compress_workspace[i]); | 
 | 	mempool_exit(&c->compression_bounce[WRITE]); | 
 | 	mempool_exit(&c->compression_bounce[READ]); | 
 | } | 
 |  | 
 | static int __bch2_fs_compress_init(struct bch_fs *c, u64 features) | 
 | { | 
 | 	size_t decompress_workspace_size = 0; | 
 | 	ZSTD_parameters params = zstd_get_params(zstd_max_clevel(), | 
 | 						 c->opts.encoded_extent_max); | 
 |  | 
 | 	c->zstd_workspace_size = zstd_cctx_workspace_bound(¶ms.cParams); | 
 |  | 
 | 	struct { | 
 | 		unsigned			feature; | 
 | 		enum bch_compression_type	type; | 
 | 		size_t				compress_workspace; | 
 | 		size_t				decompress_workspace; | 
 | 	} compression_types[] = { | 
 | 		{ BCH_FEATURE_lz4, BCH_COMPRESSION_TYPE_lz4, | 
 | 			max_t(size_t, LZ4_MEM_COMPRESS, LZ4HC_MEM_COMPRESS), | 
 | 			0 }, | 
 | 		{ BCH_FEATURE_gzip, BCH_COMPRESSION_TYPE_gzip, | 
 | 			zlib_deflate_workspacesize(MAX_WBITS, DEF_MEM_LEVEL), | 
 | 			zlib_inflate_workspacesize(), }, | 
 | 		{ BCH_FEATURE_zstd, BCH_COMPRESSION_TYPE_zstd, | 
 | 			c->zstd_workspace_size, | 
 | 			zstd_dctx_workspace_bound() }, | 
 | 	}, *i; | 
 | 	bool have_compressed = false; | 
 |  | 
 | 	for (i = compression_types; | 
 | 	     i < compression_types + ARRAY_SIZE(compression_types); | 
 | 	     i++) | 
 | 		have_compressed |= (features & (1 << i->feature)) != 0; | 
 |  | 
 | 	if (!have_compressed) | 
 | 		return 0; | 
 |  | 
 | 	if (!mempool_initialized(&c->compression_bounce[READ]) && | 
 | 	    mempool_init_kvmalloc_pool(&c->compression_bounce[READ], | 
 | 				       1, c->opts.encoded_extent_max)) | 
 | 		return -BCH_ERR_ENOMEM_compression_bounce_read_init; | 
 |  | 
 | 	if (!mempool_initialized(&c->compression_bounce[WRITE]) && | 
 | 	    mempool_init_kvmalloc_pool(&c->compression_bounce[WRITE], | 
 | 				       1, c->opts.encoded_extent_max)) | 
 | 		return -BCH_ERR_ENOMEM_compression_bounce_write_init; | 
 |  | 
 | 	for (i = compression_types; | 
 | 	     i < compression_types + ARRAY_SIZE(compression_types); | 
 | 	     i++) { | 
 | 		decompress_workspace_size = | 
 | 			max(decompress_workspace_size, i->decompress_workspace); | 
 |  | 
 | 		if (!(features & (1 << i->feature))) | 
 | 			continue; | 
 |  | 
 | 		if (mempool_initialized(&c->compress_workspace[i->type])) | 
 | 			continue; | 
 |  | 
 | 		if (mempool_init_kvmalloc_pool( | 
 | 				&c->compress_workspace[i->type], | 
 | 				1, i->compress_workspace)) | 
 | 			return -BCH_ERR_ENOMEM_compression_workspace_init; | 
 | 	} | 
 |  | 
 | 	if (!mempool_initialized(&c->decompress_workspace) && | 
 | 	    mempool_init_kvmalloc_pool(&c->decompress_workspace, | 
 | 				       1, decompress_workspace_size)) | 
 | 		return -BCH_ERR_ENOMEM_decompression_workspace_init; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static u64 compression_opt_to_feature(unsigned v) | 
 | { | 
 | 	unsigned type = bch2_compression_decode(v).type; | 
 |  | 
 | 	return BIT_ULL(bch2_compression_opt_to_feature[type]); | 
 | } | 
 |  | 
 | int bch2_fs_compress_init(struct bch_fs *c) | 
 | { | 
 | 	u64 f = c->sb.features; | 
 |  | 
 | 	f |= compression_opt_to_feature(c->opts.compression); | 
 | 	f |= compression_opt_to_feature(c->opts.background_compression); | 
 |  | 
 | 	return __bch2_fs_compress_init(c, f); | 
 | } | 
 |  | 
 | int bch2_opt_compression_parse(struct bch_fs *c, const char *_val, u64 *res, | 
 | 			       struct printbuf *err) | 
 | { | 
 | 	char *val = kstrdup(_val, GFP_KERNEL); | 
 | 	char *p = val, *type_str, *level_str; | 
 | 	struct bch_compression_opt opt = { 0 }; | 
 | 	int ret; | 
 |  | 
 | 	if (!val) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	type_str = strsep(&p, ":"); | 
 | 	level_str = p; | 
 |  | 
 | 	ret = match_string(bch2_compression_opts, -1, type_str); | 
 | 	if (ret < 0 && err) | 
 | 		prt_str(err, "invalid compression type"); | 
 | 	if (ret < 0) | 
 | 		goto err; | 
 |  | 
 | 	opt.type = ret; | 
 |  | 
 | 	if (level_str) { | 
 | 		unsigned level; | 
 |  | 
 | 		ret = kstrtouint(level_str, 10, &level); | 
 | 		if (!ret && !opt.type && level) | 
 | 			ret = -EINVAL; | 
 | 		if (!ret && level > 15) | 
 | 			ret = -EINVAL; | 
 | 		if (ret < 0 && err) | 
 | 			prt_str(err, "invalid compression level"); | 
 | 		if (ret < 0) | 
 | 			goto err; | 
 |  | 
 | 		opt.level = level; | 
 | 	} | 
 |  | 
 | 	*res = bch2_compression_encode(opt); | 
 | err: | 
 | 	kfree(val); | 
 | 	return ret; | 
 | } | 
 |  | 
 | void bch2_compression_opt_to_text(struct printbuf *out, u64 v) | 
 | { | 
 | 	struct bch_compression_opt opt = bch2_compression_decode(v); | 
 |  | 
 | 	if (opt.type < BCH_COMPRESSION_OPT_NR) | 
 | 		prt_str(out, bch2_compression_opts[opt.type]); | 
 | 	else | 
 | 		prt_printf(out, "(unknown compression opt %u)", opt.type); | 
 | 	if (opt.level) | 
 | 		prt_printf(out, ":%u", opt.level); | 
 | } | 
 |  | 
 | void bch2_opt_compression_to_text(struct printbuf *out, | 
 | 				  struct bch_fs *c, | 
 | 				  struct bch_sb *sb, | 
 | 				  u64 v) | 
 | { | 
 | 	return bch2_compression_opt_to_text(out, v); | 
 | } | 
 |  | 
 | int bch2_opt_compression_validate(u64 v, struct printbuf *err) | 
 | { | 
 | 	if (!bch2_compression_opt_valid(v)) { | 
 | 		prt_printf(err, "invalid compression opt %llu", v); | 
 | 		return -BCH_ERR_invalid_sb_opt_compression; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } |