| /* | 
 |  * A fairly generic DMA-API to IOMMU-API glue layer. | 
 |  * | 
 |  * Copyright (C) 2014-2015 ARM Ltd. | 
 |  * | 
 |  * based in part on arch/arm/mm/dma-mapping.c: | 
 |  * Copyright (C) 2000-2004 Russell King | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify | 
 |  * it under the terms of the GNU General Public License version 2 as | 
 |  * published by the Free Software Foundation. | 
 |  * | 
 |  * This program is distributed in the hope that it will be useful, | 
 |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 |  * GNU General Public License for more details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public License | 
 |  * along with this program.  If not, see <http://www.gnu.org/licenses/>. | 
 |  */ | 
 |  | 
 | #include <linux/acpi_iort.h> | 
 | #include <linux/device.h> | 
 | #include <linux/dma-iommu.h> | 
 | #include <linux/gfp.h> | 
 | #include <linux/huge_mm.h> | 
 | #include <linux/iommu.h> | 
 | #include <linux/iova.h> | 
 | #include <linux/irq.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/pci.h> | 
 | #include <linux/scatterlist.h> | 
 | #include <linux/vmalloc.h> | 
 |  | 
 | #define IOMMU_MAPPING_ERROR	0 | 
 |  | 
 | struct iommu_dma_msi_page { | 
 | 	struct list_head	list; | 
 | 	dma_addr_t		iova; | 
 | 	phys_addr_t		phys; | 
 | }; | 
 |  | 
 | enum iommu_dma_cookie_type { | 
 | 	IOMMU_DMA_IOVA_COOKIE, | 
 | 	IOMMU_DMA_MSI_COOKIE, | 
 | }; | 
 |  | 
 | struct iommu_dma_cookie { | 
 | 	enum iommu_dma_cookie_type	type; | 
 | 	union { | 
 | 		/* Full allocator for IOMMU_DMA_IOVA_COOKIE */ | 
 | 		struct iova_domain	iovad; | 
 | 		/* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */ | 
 | 		dma_addr_t		msi_iova; | 
 | 	}; | 
 | 	struct list_head		msi_page_list; | 
 | 	spinlock_t			msi_lock; | 
 |  | 
 | 	/* Domain for flush queue callback; NULL if flush queue not in use */ | 
 | 	struct iommu_domain		*fq_domain; | 
 | }; | 
 |  | 
 | static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie) | 
 | { | 
 | 	if (cookie->type == IOMMU_DMA_IOVA_COOKIE) | 
 | 		return cookie->iovad.granule; | 
 | 	return PAGE_SIZE; | 
 | } | 
 |  | 
 | static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type) | 
 | { | 
 | 	struct iommu_dma_cookie *cookie; | 
 |  | 
 | 	cookie = kzalloc(sizeof(*cookie), GFP_KERNEL); | 
 | 	if (cookie) { | 
 | 		spin_lock_init(&cookie->msi_lock); | 
 | 		INIT_LIST_HEAD(&cookie->msi_page_list); | 
 | 		cookie->type = type; | 
 | 	} | 
 | 	return cookie; | 
 | } | 
 |  | 
 | int iommu_dma_init(void) | 
 | { | 
 | 	return iova_cache_get(); | 
 | } | 
 |  | 
 | /** | 
 |  * iommu_get_dma_cookie - Acquire DMA-API resources for a domain | 
 |  * @domain: IOMMU domain to prepare for DMA-API usage | 
 |  * | 
 |  * IOMMU drivers should normally call this from their domain_alloc | 
 |  * callback when domain->type == IOMMU_DOMAIN_DMA. | 
 |  */ | 
 | int iommu_get_dma_cookie(struct iommu_domain *domain) | 
 | { | 
 | 	if (domain->iova_cookie) | 
 | 		return -EEXIST; | 
 |  | 
 | 	domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE); | 
 | 	if (!domain->iova_cookie) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(iommu_get_dma_cookie); | 
 |  | 
 | /** | 
 |  * iommu_get_msi_cookie - Acquire just MSI remapping resources | 
 |  * @domain: IOMMU domain to prepare | 
 |  * @base: Start address of IOVA region for MSI mappings | 
 |  * | 
 |  * Users who manage their own IOVA allocation and do not want DMA API support, | 
 |  * but would still like to take advantage of automatic MSI remapping, can use | 
 |  * this to initialise their own domain appropriately. Users should reserve a | 
 |  * contiguous IOVA region, starting at @base, large enough to accommodate the | 
 |  * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address | 
 |  * used by the devices attached to @domain. | 
 |  */ | 
 | int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base) | 
 | { | 
 | 	struct iommu_dma_cookie *cookie; | 
 |  | 
 | 	if (domain->type != IOMMU_DOMAIN_UNMANAGED) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (domain->iova_cookie) | 
 | 		return -EEXIST; | 
 |  | 
 | 	cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE); | 
 | 	if (!cookie) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	cookie->msi_iova = base; | 
 | 	domain->iova_cookie = cookie; | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(iommu_get_msi_cookie); | 
 |  | 
 | /** | 
 |  * iommu_put_dma_cookie - Release a domain's DMA mapping resources | 
 |  * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or | 
 |  *          iommu_get_msi_cookie() | 
 |  * | 
 |  * IOMMU drivers should normally call this from their domain_free callback. | 
 |  */ | 
 | void iommu_put_dma_cookie(struct iommu_domain *domain) | 
 | { | 
 | 	struct iommu_dma_cookie *cookie = domain->iova_cookie; | 
 | 	struct iommu_dma_msi_page *msi, *tmp; | 
 |  | 
 | 	if (!cookie) | 
 | 		return; | 
 |  | 
 | 	if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule) | 
 | 		put_iova_domain(&cookie->iovad); | 
 |  | 
 | 	list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) { | 
 | 		list_del(&msi->list); | 
 | 		kfree(msi); | 
 | 	} | 
 | 	kfree(cookie); | 
 | 	domain->iova_cookie = NULL; | 
 | } | 
 | EXPORT_SYMBOL(iommu_put_dma_cookie); | 
 |  | 
 | /** | 
 |  * iommu_dma_get_resv_regions - Reserved region driver helper | 
 |  * @dev: Device from iommu_get_resv_regions() | 
 |  * @list: Reserved region list from iommu_get_resv_regions() | 
 |  * | 
 |  * IOMMU drivers can use this to implement their .get_resv_regions callback | 
 |  * for general non-IOMMU-specific reservations. Currently, this covers GICv3 | 
 |  * ITS region reservation on ACPI based ARM platforms that may require HW MSI | 
 |  * reservation. | 
 |  */ | 
 | void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list) | 
 | { | 
 |  | 
 | 	if (!is_of_node(dev->iommu_fwspec->iommu_fwnode)) | 
 | 		iort_iommu_msi_get_resv_regions(dev, list); | 
 |  | 
 | } | 
 | EXPORT_SYMBOL(iommu_dma_get_resv_regions); | 
 |  | 
 | static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie, | 
 | 		phys_addr_t start, phys_addr_t end) | 
 | { | 
 | 	struct iova_domain *iovad = &cookie->iovad; | 
 | 	struct iommu_dma_msi_page *msi_page; | 
 | 	int i, num_pages; | 
 |  | 
 | 	start -= iova_offset(iovad, start); | 
 | 	num_pages = iova_align(iovad, end - start) >> iova_shift(iovad); | 
 |  | 
 | 	msi_page = kcalloc(num_pages, sizeof(*msi_page), GFP_KERNEL); | 
 | 	if (!msi_page) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	for (i = 0; i < num_pages; i++) { | 
 | 		msi_page[i].phys = start; | 
 | 		msi_page[i].iova = start; | 
 | 		INIT_LIST_HEAD(&msi_page[i].list); | 
 | 		list_add(&msi_page[i].list, &cookie->msi_page_list); | 
 | 		start += iovad->granule; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void iova_reserve_pci_windows(struct pci_dev *dev, | 
 | 		struct iova_domain *iovad) | 
 | { | 
 | 	struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus); | 
 | 	struct resource_entry *window; | 
 | 	unsigned long lo, hi; | 
 |  | 
 | 	resource_list_for_each_entry(window, &bridge->windows) { | 
 | 		if (resource_type(window->res) != IORESOURCE_MEM) | 
 | 			continue; | 
 |  | 
 | 		lo = iova_pfn(iovad, window->res->start - window->offset); | 
 | 		hi = iova_pfn(iovad, window->res->end - window->offset); | 
 | 		reserve_iova(iovad, lo, hi); | 
 | 	} | 
 | } | 
 |  | 
 | static int iova_reserve_iommu_regions(struct device *dev, | 
 | 		struct iommu_domain *domain) | 
 | { | 
 | 	struct iommu_dma_cookie *cookie = domain->iova_cookie; | 
 | 	struct iova_domain *iovad = &cookie->iovad; | 
 | 	struct iommu_resv_region *region; | 
 | 	LIST_HEAD(resv_regions); | 
 | 	int ret = 0; | 
 |  | 
 | 	if (dev_is_pci(dev)) | 
 | 		iova_reserve_pci_windows(to_pci_dev(dev), iovad); | 
 |  | 
 | 	iommu_get_resv_regions(dev, &resv_regions); | 
 | 	list_for_each_entry(region, &resv_regions, list) { | 
 | 		unsigned long lo, hi; | 
 |  | 
 | 		/* We ARE the software that manages these! */ | 
 | 		if (region->type == IOMMU_RESV_SW_MSI) | 
 | 			continue; | 
 |  | 
 | 		lo = iova_pfn(iovad, region->start); | 
 | 		hi = iova_pfn(iovad, region->start + region->length - 1); | 
 | 		reserve_iova(iovad, lo, hi); | 
 |  | 
 | 		if (region->type == IOMMU_RESV_MSI) | 
 | 			ret = cookie_init_hw_msi_region(cookie, region->start, | 
 | 					region->start + region->length); | 
 | 		if (ret) | 
 | 			break; | 
 | 	} | 
 | 	iommu_put_resv_regions(dev, &resv_regions); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void iommu_dma_flush_iotlb_all(struct iova_domain *iovad) | 
 | { | 
 | 	struct iommu_dma_cookie *cookie; | 
 | 	struct iommu_domain *domain; | 
 |  | 
 | 	cookie = container_of(iovad, struct iommu_dma_cookie, iovad); | 
 | 	domain = cookie->fq_domain; | 
 | 	/* | 
 | 	 * The IOMMU driver supporting DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE | 
 | 	 * implies that ops->flush_iotlb_all must be non-NULL. | 
 | 	 */ | 
 | 	domain->ops->flush_iotlb_all(domain); | 
 | } | 
 |  | 
 | /** | 
 |  * iommu_dma_init_domain - Initialise a DMA mapping domain | 
 |  * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() | 
 |  * @base: IOVA at which the mappable address space starts | 
 |  * @size: Size of IOVA space | 
 |  * @dev: Device the domain is being initialised for | 
 |  * | 
 |  * @base and @size should be exact multiples of IOMMU page granularity to | 
 |  * avoid rounding surprises. If necessary, we reserve the page at address 0 | 
 |  * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but | 
 |  * any change which could make prior IOVAs invalid will fail. | 
 |  */ | 
 | int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base, | 
 | 		u64 size, struct device *dev) | 
 | { | 
 | 	struct iommu_dma_cookie *cookie = domain->iova_cookie; | 
 | 	struct iova_domain *iovad = &cookie->iovad; | 
 | 	unsigned long order, base_pfn, end_pfn; | 
 | 	int attr; | 
 |  | 
 | 	if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* Use the smallest supported page size for IOVA granularity */ | 
 | 	order = __ffs(domain->pgsize_bitmap); | 
 | 	base_pfn = max_t(unsigned long, 1, base >> order); | 
 | 	end_pfn = (base + size - 1) >> order; | 
 |  | 
 | 	/* Check the domain allows at least some access to the device... */ | 
 | 	if (domain->geometry.force_aperture) { | 
 | 		if (base > domain->geometry.aperture_end || | 
 | 		    base + size <= domain->geometry.aperture_start) { | 
 | 			pr_warn("specified DMA range outside IOMMU capability\n"); | 
 | 			return -EFAULT; | 
 | 		} | 
 | 		/* ...then finally give it a kicking to make sure it fits */ | 
 | 		base_pfn = max_t(unsigned long, base_pfn, | 
 | 				domain->geometry.aperture_start >> order); | 
 | 	} | 
 |  | 
 | 	/* start_pfn is always nonzero for an already-initialised domain */ | 
 | 	if (iovad->start_pfn) { | 
 | 		if (1UL << order != iovad->granule || | 
 | 		    base_pfn != iovad->start_pfn) { | 
 | 			pr_warn("Incompatible range for DMA domain\n"); | 
 | 			return -EFAULT; | 
 | 		} | 
 |  | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	init_iova_domain(iovad, 1UL << order, base_pfn); | 
 |  | 
 | 	if (!cookie->fq_domain && !iommu_domain_get_attr(domain, | 
 | 			DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE, &attr) && attr) { | 
 | 		cookie->fq_domain = domain; | 
 | 		init_iova_flush_queue(iovad, iommu_dma_flush_iotlb_all, NULL); | 
 | 	} | 
 |  | 
 | 	if (!dev) | 
 | 		return 0; | 
 |  | 
 | 	return iova_reserve_iommu_regions(dev, domain); | 
 | } | 
 | EXPORT_SYMBOL(iommu_dma_init_domain); | 
 |  | 
 | /** | 
 |  * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API | 
 |  *                    page flags. | 
 |  * @dir: Direction of DMA transfer | 
 |  * @coherent: Is the DMA master cache-coherent? | 
 |  * @attrs: DMA attributes for the mapping | 
 |  * | 
 |  * Return: corresponding IOMMU API page protection flags | 
 |  */ | 
 | int dma_info_to_prot(enum dma_data_direction dir, bool coherent, | 
 | 		     unsigned long attrs) | 
 | { | 
 | 	int prot = coherent ? IOMMU_CACHE : 0; | 
 |  | 
 | 	if (attrs & DMA_ATTR_PRIVILEGED) | 
 | 		prot |= IOMMU_PRIV; | 
 |  | 
 | 	switch (dir) { | 
 | 	case DMA_BIDIRECTIONAL: | 
 | 		return prot | IOMMU_READ | IOMMU_WRITE; | 
 | 	case DMA_TO_DEVICE: | 
 | 		return prot | IOMMU_READ; | 
 | 	case DMA_FROM_DEVICE: | 
 | 		return prot | IOMMU_WRITE; | 
 | 	default: | 
 | 		return 0; | 
 | 	} | 
 | } | 
 |  | 
 | static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain, | 
 | 		size_t size, dma_addr_t dma_limit, struct device *dev) | 
 | { | 
 | 	struct iommu_dma_cookie *cookie = domain->iova_cookie; | 
 | 	struct iova_domain *iovad = &cookie->iovad; | 
 | 	unsigned long shift, iova_len, iova = 0; | 
 |  | 
 | 	if (cookie->type == IOMMU_DMA_MSI_COOKIE) { | 
 | 		cookie->msi_iova += size; | 
 | 		return cookie->msi_iova - size; | 
 | 	} | 
 |  | 
 | 	shift = iova_shift(iovad); | 
 | 	iova_len = size >> shift; | 
 | 	/* | 
 | 	 * Freeing non-power-of-two-sized allocations back into the IOVA caches | 
 | 	 * will come back to bite us badly, so we have to waste a bit of space | 
 | 	 * rounding up anything cacheable to make sure that can't happen. The | 
 | 	 * order of the unadjusted size will still match upon freeing. | 
 | 	 */ | 
 | 	if (iova_len < (1 << (IOVA_RANGE_CACHE_MAX_SIZE - 1))) | 
 | 		iova_len = roundup_pow_of_two(iova_len); | 
 |  | 
 | 	if (dev->bus_dma_mask) | 
 | 		dma_limit &= dev->bus_dma_mask; | 
 |  | 
 | 	if (domain->geometry.force_aperture) | 
 | 		dma_limit = min(dma_limit, domain->geometry.aperture_end); | 
 |  | 
 | 	/* Try to get PCI devices a SAC address */ | 
 | 	if (dma_limit > DMA_BIT_MASK(32) && dev_is_pci(dev)) | 
 | 		iova = alloc_iova_fast(iovad, iova_len, | 
 | 				       DMA_BIT_MASK(32) >> shift, false); | 
 |  | 
 | 	if (!iova) | 
 | 		iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift, | 
 | 				       true); | 
 |  | 
 | 	return (dma_addr_t)iova << shift; | 
 | } | 
 |  | 
 | static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie, | 
 | 		dma_addr_t iova, size_t size) | 
 | { | 
 | 	struct iova_domain *iovad = &cookie->iovad; | 
 |  | 
 | 	/* The MSI case is only ever cleaning up its most recent allocation */ | 
 | 	if (cookie->type == IOMMU_DMA_MSI_COOKIE) | 
 | 		cookie->msi_iova -= size; | 
 | 	else if (cookie->fq_domain)	/* non-strict mode */ | 
 | 		queue_iova(iovad, iova_pfn(iovad, iova), | 
 | 				size >> iova_shift(iovad), 0); | 
 | 	else | 
 | 		free_iova_fast(iovad, iova_pfn(iovad, iova), | 
 | 				size >> iova_shift(iovad)); | 
 | } | 
 |  | 
 | static void __iommu_dma_unmap(struct iommu_domain *domain, dma_addr_t dma_addr, | 
 | 		size_t size) | 
 | { | 
 | 	struct iommu_dma_cookie *cookie = domain->iova_cookie; | 
 | 	struct iova_domain *iovad = &cookie->iovad; | 
 | 	size_t iova_off = iova_offset(iovad, dma_addr); | 
 |  | 
 | 	dma_addr -= iova_off; | 
 | 	size = iova_align(iovad, size + iova_off); | 
 |  | 
 | 	WARN_ON(iommu_unmap_fast(domain, dma_addr, size) != size); | 
 | 	if (!cookie->fq_domain) | 
 | 		iommu_tlb_sync(domain); | 
 | 	iommu_dma_free_iova(cookie, dma_addr, size); | 
 | } | 
 |  | 
 | static void __iommu_dma_free_pages(struct page **pages, int count) | 
 | { | 
 | 	while (count--) | 
 | 		__free_page(pages[count]); | 
 | 	kvfree(pages); | 
 | } | 
 |  | 
 | static struct page **__iommu_dma_alloc_pages(unsigned int count, | 
 | 		unsigned long order_mask, gfp_t gfp) | 
 | { | 
 | 	struct page **pages; | 
 | 	unsigned int i = 0, array_size = count * sizeof(*pages); | 
 |  | 
 | 	order_mask &= (2U << MAX_ORDER) - 1; | 
 | 	if (!order_mask) | 
 | 		return NULL; | 
 |  | 
 | 	if (array_size <= PAGE_SIZE) | 
 | 		pages = kzalloc(array_size, GFP_KERNEL); | 
 | 	else | 
 | 		pages = vzalloc(array_size); | 
 | 	if (!pages) | 
 | 		return NULL; | 
 |  | 
 | 	/* IOMMU can map any pages, so himem can also be used here */ | 
 | 	gfp |= __GFP_NOWARN | __GFP_HIGHMEM; | 
 |  | 
 | 	while (count) { | 
 | 		struct page *page = NULL; | 
 | 		unsigned int order_size; | 
 |  | 
 | 		/* | 
 | 		 * Higher-order allocations are a convenience rather | 
 | 		 * than a necessity, hence using __GFP_NORETRY until | 
 | 		 * falling back to minimum-order allocations. | 
 | 		 */ | 
 | 		for (order_mask &= (2U << __fls(count)) - 1; | 
 | 		     order_mask; order_mask &= ~order_size) { | 
 | 			unsigned int order = __fls(order_mask); | 
 |  | 
 | 			order_size = 1U << order; | 
 | 			page = alloc_pages((order_mask - order_size) ? | 
 | 					   gfp | __GFP_NORETRY : gfp, order); | 
 | 			if (!page) | 
 | 				continue; | 
 | 			if (!order) | 
 | 				break; | 
 | 			if (!PageCompound(page)) { | 
 | 				split_page(page, order); | 
 | 				break; | 
 | 			} else if (!split_huge_page(page)) { | 
 | 				break; | 
 | 			} | 
 | 			__free_pages(page, order); | 
 | 		} | 
 | 		if (!page) { | 
 | 			__iommu_dma_free_pages(pages, i); | 
 | 			return NULL; | 
 | 		} | 
 | 		count -= order_size; | 
 | 		while (order_size--) | 
 | 			pages[i++] = page++; | 
 | 	} | 
 | 	return pages; | 
 | } | 
 |  | 
 | /** | 
 |  * iommu_dma_free - Free a buffer allocated by iommu_dma_alloc() | 
 |  * @dev: Device which owns this buffer | 
 |  * @pages: Array of buffer pages as returned by iommu_dma_alloc() | 
 |  * @size: Size of buffer in bytes | 
 |  * @handle: DMA address of buffer | 
 |  * | 
 |  * Frees both the pages associated with the buffer, and the array | 
 |  * describing them | 
 |  */ | 
 | void iommu_dma_free(struct device *dev, struct page **pages, size_t size, | 
 | 		dma_addr_t *handle) | 
 | { | 
 | 	__iommu_dma_unmap(iommu_get_dma_domain(dev), *handle, size); | 
 | 	__iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT); | 
 | 	*handle = IOMMU_MAPPING_ERROR; | 
 | } | 
 |  | 
 | /** | 
 |  * iommu_dma_alloc - Allocate and map a buffer contiguous in IOVA space | 
 |  * @dev: Device to allocate memory for. Must be a real device | 
 |  *	 attached to an iommu_dma_domain | 
 |  * @size: Size of buffer in bytes | 
 |  * @gfp: Allocation flags | 
 |  * @attrs: DMA attributes for this allocation | 
 |  * @prot: IOMMU mapping flags | 
 |  * @handle: Out argument for allocated DMA handle | 
 |  * @flush_page: Arch callback which must ensure PAGE_SIZE bytes from the | 
 |  *		given VA/PA are visible to the given non-coherent device. | 
 |  * | 
 |  * If @size is less than PAGE_SIZE, then a full CPU page will be allocated, | 
 |  * but an IOMMU which supports smaller pages might not map the whole thing. | 
 |  * | 
 |  * Return: Array of struct page pointers describing the buffer, | 
 |  *	   or NULL on failure. | 
 |  */ | 
 | struct page **iommu_dma_alloc(struct device *dev, size_t size, gfp_t gfp, | 
 | 		unsigned long attrs, int prot, dma_addr_t *handle, | 
 | 		void (*flush_page)(struct device *, const void *, phys_addr_t)) | 
 | { | 
 | 	struct iommu_domain *domain = iommu_get_dma_domain(dev); | 
 | 	struct iommu_dma_cookie *cookie = domain->iova_cookie; | 
 | 	struct iova_domain *iovad = &cookie->iovad; | 
 | 	struct page **pages; | 
 | 	struct sg_table sgt; | 
 | 	dma_addr_t iova; | 
 | 	unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap; | 
 |  | 
 | 	*handle = IOMMU_MAPPING_ERROR; | 
 |  | 
 | 	min_size = alloc_sizes & -alloc_sizes; | 
 | 	if (min_size < PAGE_SIZE) { | 
 | 		min_size = PAGE_SIZE; | 
 | 		alloc_sizes |= PAGE_SIZE; | 
 | 	} else { | 
 | 		size = ALIGN(size, min_size); | 
 | 	} | 
 | 	if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES) | 
 | 		alloc_sizes = min_size; | 
 |  | 
 | 	count = PAGE_ALIGN(size) >> PAGE_SHIFT; | 
 | 	pages = __iommu_dma_alloc_pages(count, alloc_sizes >> PAGE_SHIFT, gfp); | 
 | 	if (!pages) | 
 | 		return NULL; | 
 |  | 
 | 	size = iova_align(iovad, size); | 
 | 	iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev); | 
 | 	if (!iova) | 
 | 		goto out_free_pages; | 
 |  | 
 | 	if (sg_alloc_table_from_pages(&sgt, pages, count, 0, size, GFP_KERNEL)) | 
 | 		goto out_free_iova; | 
 |  | 
 | 	if (!(prot & IOMMU_CACHE)) { | 
 | 		struct sg_mapping_iter miter; | 
 | 		/* | 
 | 		 * The CPU-centric flushing implied by SG_MITER_TO_SG isn't | 
 | 		 * sufficient here, so skip it by using the "wrong" direction. | 
 | 		 */ | 
 | 		sg_miter_start(&miter, sgt.sgl, sgt.orig_nents, SG_MITER_FROM_SG); | 
 | 		while (sg_miter_next(&miter)) | 
 | 			flush_page(dev, miter.addr, page_to_phys(miter.page)); | 
 | 		sg_miter_stop(&miter); | 
 | 	} | 
 |  | 
 | 	if (iommu_map_sg(domain, iova, sgt.sgl, sgt.orig_nents, prot) | 
 | 			< size) | 
 | 		goto out_free_sg; | 
 |  | 
 | 	*handle = iova; | 
 | 	sg_free_table(&sgt); | 
 | 	return pages; | 
 |  | 
 | out_free_sg: | 
 | 	sg_free_table(&sgt); | 
 | out_free_iova: | 
 | 	iommu_dma_free_iova(cookie, iova, size); | 
 | out_free_pages: | 
 | 	__iommu_dma_free_pages(pages, count); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /** | 
 |  * iommu_dma_mmap - Map a buffer into provided user VMA | 
 |  * @pages: Array representing buffer from iommu_dma_alloc() | 
 |  * @size: Size of buffer in bytes | 
 |  * @vma: VMA describing requested userspace mapping | 
 |  * | 
 |  * Maps the pages of the buffer in @pages into @vma. The caller is responsible | 
 |  * for verifying the correct size and protection of @vma beforehand. | 
 |  */ | 
 |  | 
 | int iommu_dma_mmap(struct page **pages, size_t size, struct vm_area_struct *vma) | 
 | { | 
 | 	unsigned long uaddr = vma->vm_start; | 
 | 	unsigned int i, count = PAGE_ALIGN(size) >> PAGE_SHIFT; | 
 | 	int ret = -ENXIO; | 
 |  | 
 | 	for (i = vma->vm_pgoff; i < count && uaddr < vma->vm_end; i++) { | 
 | 		ret = vm_insert_page(vma, uaddr, pages[i]); | 
 | 		if (ret) | 
 | 			break; | 
 | 		uaddr += PAGE_SIZE; | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys, | 
 | 		size_t size, int prot, struct iommu_domain *domain) | 
 | { | 
 | 	struct iommu_dma_cookie *cookie = domain->iova_cookie; | 
 | 	size_t iova_off = 0; | 
 | 	dma_addr_t iova; | 
 |  | 
 | 	if (cookie->type == IOMMU_DMA_IOVA_COOKIE) { | 
 | 		iova_off = iova_offset(&cookie->iovad, phys); | 
 | 		size = iova_align(&cookie->iovad, size + iova_off); | 
 | 	} | 
 |  | 
 | 	iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev); | 
 | 	if (!iova) | 
 | 		return IOMMU_MAPPING_ERROR; | 
 |  | 
 | 	if (iommu_map(domain, iova, phys - iova_off, size, prot)) { | 
 | 		iommu_dma_free_iova(cookie, iova, size); | 
 | 		return IOMMU_MAPPING_ERROR; | 
 | 	} | 
 | 	return iova + iova_off; | 
 | } | 
 |  | 
 | dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page, | 
 | 		unsigned long offset, size_t size, int prot) | 
 | { | 
 | 	return __iommu_dma_map(dev, page_to_phys(page) + offset, size, prot, | 
 | 			iommu_get_dma_domain(dev)); | 
 | } | 
 |  | 
 | void iommu_dma_unmap_page(struct device *dev, dma_addr_t handle, size_t size, | 
 | 		enum dma_data_direction dir, unsigned long attrs) | 
 | { | 
 | 	__iommu_dma_unmap(iommu_get_dma_domain(dev), handle, size); | 
 | } | 
 |  | 
 | /* | 
 |  * Prepare a successfully-mapped scatterlist to give back to the caller. | 
 |  * | 
 |  * At this point the segments are already laid out by iommu_dma_map_sg() to | 
 |  * avoid individually crossing any boundaries, so we merely need to check a | 
 |  * segment's start address to avoid concatenating across one. | 
 |  */ | 
 | static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents, | 
 | 		dma_addr_t dma_addr) | 
 | { | 
 | 	struct scatterlist *s, *cur = sg; | 
 | 	unsigned long seg_mask = dma_get_seg_boundary(dev); | 
 | 	unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev); | 
 | 	int i, count = 0; | 
 |  | 
 | 	for_each_sg(sg, s, nents, i) { | 
 | 		/* Restore this segment's original unaligned fields first */ | 
 | 		unsigned int s_iova_off = sg_dma_address(s); | 
 | 		unsigned int s_length = sg_dma_len(s); | 
 | 		unsigned int s_iova_len = s->length; | 
 |  | 
 | 		s->offset += s_iova_off; | 
 | 		s->length = s_length; | 
 | 		sg_dma_address(s) = IOMMU_MAPPING_ERROR; | 
 | 		sg_dma_len(s) = 0; | 
 |  | 
 | 		/* | 
 | 		 * Now fill in the real DMA data. If... | 
 | 		 * - there is a valid output segment to append to | 
 | 		 * - and this segment starts on an IOVA page boundary | 
 | 		 * - but doesn't fall at a segment boundary | 
 | 		 * - and wouldn't make the resulting output segment too long | 
 | 		 */ | 
 | 		if (cur_len && !s_iova_off && (dma_addr & seg_mask) && | 
 | 		    (cur_len + s_length <= max_len)) { | 
 | 			/* ...then concatenate it with the previous one */ | 
 | 			cur_len += s_length; | 
 | 		} else { | 
 | 			/* Otherwise start the next output segment */ | 
 | 			if (i > 0) | 
 | 				cur = sg_next(cur); | 
 | 			cur_len = s_length; | 
 | 			count++; | 
 |  | 
 | 			sg_dma_address(cur) = dma_addr + s_iova_off; | 
 | 		} | 
 |  | 
 | 		sg_dma_len(cur) = cur_len; | 
 | 		dma_addr += s_iova_len; | 
 |  | 
 | 		if (s_length + s_iova_off < s_iova_len) | 
 | 			cur_len = 0; | 
 | 	} | 
 | 	return count; | 
 | } | 
 |  | 
 | /* | 
 |  * If mapping failed, then just restore the original list, | 
 |  * but making sure the DMA fields are invalidated. | 
 |  */ | 
 | static void __invalidate_sg(struct scatterlist *sg, int nents) | 
 | { | 
 | 	struct scatterlist *s; | 
 | 	int i; | 
 |  | 
 | 	for_each_sg(sg, s, nents, i) { | 
 | 		if (sg_dma_address(s) != IOMMU_MAPPING_ERROR) | 
 | 			s->offset += sg_dma_address(s); | 
 | 		if (sg_dma_len(s)) | 
 | 			s->length = sg_dma_len(s); | 
 | 		sg_dma_address(s) = IOMMU_MAPPING_ERROR; | 
 | 		sg_dma_len(s) = 0; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * The DMA API client is passing in a scatterlist which could describe | 
 |  * any old buffer layout, but the IOMMU API requires everything to be | 
 |  * aligned to IOMMU pages. Hence the need for this complicated bit of | 
 |  * impedance-matching, to be able to hand off a suitably-aligned list, | 
 |  * but still preserve the original offsets and sizes for the caller. | 
 |  */ | 
 | int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg, | 
 | 		int nents, int prot) | 
 | { | 
 | 	struct iommu_domain *domain = iommu_get_dma_domain(dev); | 
 | 	struct iommu_dma_cookie *cookie = domain->iova_cookie; | 
 | 	struct iova_domain *iovad = &cookie->iovad; | 
 | 	struct scatterlist *s, *prev = NULL; | 
 | 	dma_addr_t iova; | 
 | 	size_t iova_len = 0; | 
 | 	unsigned long mask = dma_get_seg_boundary(dev); | 
 | 	int i; | 
 |  | 
 | 	/* | 
 | 	 * Work out how much IOVA space we need, and align the segments to | 
 | 	 * IOVA granules for the IOMMU driver to handle. With some clever | 
 | 	 * trickery we can modify the list in-place, but reversibly, by | 
 | 	 * stashing the unaligned parts in the as-yet-unused DMA fields. | 
 | 	 */ | 
 | 	for_each_sg(sg, s, nents, i) { | 
 | 		size_t s_iova_off = iova_offset(iovad, s->offset); | 
 | 		size_t s_length = s->length; | 
 | 		size_t pad_len = (mask - iova_len + 1) & mask; | 
 |  | 
 | 		sg_dma_address(s) = s_iova_off; | 
 | 		sg_dma_len(s) = s_length; | 
 | 		s->offset -= s_iova_off; | 
 | 		s_length = iova_align(iovad, s_length + s_iova_off); | 
 | 		s->length = s_length; | 
 |  | 
 | 		/* | 
 | 		 * Due to the alignment of our single IOVA allocation, we can | 
 | 		 * depend on these assumptions about the segment boundary mask: | 
 | 		 * - If mask size >= IOVA size, then the IOVA range cannot | 
 | 		 *   possibly fall across a boundary, so we don't care. | 
 | 		 * - If mask size < IOVA size, then the IOVA range must start | 
 | 		 *   exactly on a boundary, therefore we can lay things out | 
 | 		 *   based purely on segment lengths without needing to know | 
 | 		 *   the actual addresses beforehand. | 
 | 		 * - The mask must be a power of 2, so pad_len == 0 if | 
 | 		 *   iova_len == 0, thus we cannot dereference prev the first | 
 | 		 *   time through here (i.e. before it has a meaningful value). | 
 | 		 */ | 
 | 		if (pad_len && pad_len < s_length - 1) { | 
 | 			prev->length += pad_len; | 
 | 			iova_len += pad_len; | 
 | 		} | 
 |  | 
 | 		iova_len += s_length; | 
 | 		prev = s; | 
 | 	} | 
 |  | 
 | 	iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev); | 
 | 	if (!iova) | 
 | 		goto out_restore_sg; | 
 |  | 
 | 	/* | 
 | 	 * We'll leave any physical concatenation to the IOMMU driver's | 
 | 	 * implementation - it knows better than we do. | 
 | 	 */ | 
 | 	if (iommu_map_sg(domain, iova, sg, nents, prot) < iova_len) | 
 | 		goto out_free_iova; | 
 |  | 
 | 	return __finalise_sg(dev, sg, nents, iova); | 
 |  | 
 | out_free_iova: | 
 | 	iommu_dma_free_iova(cookie, iova, iova_len); | 
 | out_restore_sg: | 
 | 	__invalidate_sg(sg, nents); | 
 | 	return 0; | 
 | } | 
 |  | 
 | void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, | 
 | 		enum dma_data_direction dir, unsigned long attrs) | 
 | { | 
 | 	dma_addr_t start, end; | 
 | 	struct scatterlist *tmp; | 
 | 	int i; | 
 | 	/* | 
 | 	 * The scatterlist segments are mapped into a single | 
 | 	 * contiguous IOVA allocation, so this is incredibly easy. | 
 | 	 */ | 
 | 	start = sg_dma_address(sg); | 
 | 	for_each_sg(sg_next(sg), tmp, nents - 1, i) { | 
 | 		if (sg_dma_len(tmp) == 0) | 
 | 			break; | 
 | 		sg = tmp; | 
 | 	} | 
 | 	end = sg_dma_address(sg) + sg_dma_len(sg); | 
 | 	__iommu_dma_unmap(iommu_get_dma_domain(dev), start, end - start); | 
 | } | 
 |  | 
 | dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys, | 
 | 		size_t size, enum dma_data_direction dir, unsigned long attrs) | 
 | { | 
 | 	return __iommu_dma_map(dev, phys, size, | 
 | 			dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO, | 
 | 			iommu_get_dma_domain(dev)); | 
 | } | 
 |  | 
 | void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle, | 
 | 		size_t size, enum dma_data_direction dir, unsigned long attrs) | 
 | { | 
 | 	__iommu_dma_unmap(iommu_get_dma_domain(dev), handle, size); | 
 | } | 
 |  | 
 | int iommu_dma_mapping_error(struct device *dev, dma_addr_t dma_addr) | 
 | { | 
 | 	return dma_addr == IOMMU_MAPPING_ERROR; | 
 | } | 
 |  | 
 | static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev, | 
 | 		phys_addr_t msi_addr, struct iommu_domain *domain) | 
 | { | 
 | 	struct iommu_dma_cookie *cookie = domain->iova_cookie; | 
 | 	struct iommu_dma_msi_page *msi_page; | 
 | 	dma_addr_t iova; | 
 | 	int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO; | 
 | 	size_t size = cookie_msi_granule(cookie); | 
 |  | 
 | 	msi_addr &= ~(phys_addr_t)(size - 1); | 
 | 	list_for_each_entry(msi_page, &cookie->msi_page_list, list) | 
 | 		if (msi_page->phys == msi_addr) | 
 | 			return msi_page; | 
 |  | 
 | 	msi_page = kzalloc(sizeof(*msi_page), GFP_ATOMIC); | 
 | 	if (!msi_page) | 
 | 		return NULL; | 
 |  | 
 | 	iova = __iommu_dma_map(dev, msi_addr, size, prot, domain); | 
 | 	if (iommu_dma_mapping_error(dev, iova)) | 
 | 		goto out_free_page; | 
 |  | 
 | 	INIT_LIST_HEAD(&msi_page->list); | 
 | 	msi_page->phys = msi_addr; | 
 | 	msi_page->iova = iova; | 
 | 	list_add(&msi_page->list, &cookie->msi_page_list); | 
 | 	return msi_page; | 
 |  | 
 | out_free_page: | 
 | 	kfree(msi_page); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | void iommu_dma_map_msi_msg(int irq, struct msi_msg *msg) | 
 | { | 
 | 	struct device *dev = msi_desc_to_dev(irq_get_msi_desc(irq)); | 
 | 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev); | 
 | 	struct iommu_dma_cookie *cookie; | 
 | 	struct iommu_dma_msi_page *msi_page; | 
 | 	phys_addr_t msi_addr = (u64)msg->address_hi << 32 | msg->address_lo; | 
 | 	unsigned long flags; | 
 |  | 
 | 	if (!domain || !domain->iova_cookie) | 
 | 		return; | 
 |  | 
 | 	cookie = domain->iova_cookie; | 
 |  | 
 | 	/* | 
 | 	 * We disable IRQs to rule out a possible inversion against | 
 | 	 * irq_desc_lock if, say, someone tries to retarget the affinity | 
 | 	 * of an MSI from within an IPI handler. | 
 | 	 */ | 
 | 	spin_lock_irqsave(&cookie->msi_lock, flags); | 
 | 	msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain); | 
 | 	spin_unlock_irqrestore(&cookie->msi_lock, flags); | 
 |  | 
 | 	if (WARN_ON(!msi_page)) { | 
 | 		/* | 
 | 		 * We're called from a void callback, so the best we can do is | 
 | 		 * 'fail' by filling the message with obviously bogus values. | 
 | 		 * Since we got this far due to an IOMMU being present, it's | 
 | 		 * not like the existing address would have worked anyway... | 
 | 		 */ | 
 | 		msg->address_hi = ~0U; | 
 | 		msg->address_lo = ~0U; | 
 | 		msg->data = ~0U; | 
 | 	} else { | 
 | 		msg->address_hi = upper_32_bits(msi_page->iova); | 
 | 		msg->address_lo &= cookie_msi_granule(cookie) - 1; | 
 | 		msg->address_lo += lower_32_bits(msi_page->iova); | 
 | 	} | 
 | } |