| // SPDX-License-Identifier: GPL-2.0 | 
 | /* | 
 |  * Copyright (C) 2011 STRATO.  All rights reserved. | 
 |  */ | 
 |  | 
 | #include <linux/mm.h> | 
 | #include <linux/rbtree.h> | 
 | #include <trace/events/btrfs.h> | 
 | #include "ctree.h" | 
 | #include "disk-io.h" | 
 | #include "backref.h" | 
 | #include "ulist.h" | 
 | #include "transaction.h" | 
 | #include "delayed-ref.h" | 
 | #include "locking.h" | 
 | #include "misc.h" | 
 |  | 
 | /* Just an arbitrary number so we can be sure this happened */ | 
 | #define BACKREF_FOUND_SHARED 6 | 
 |  | 
 | struct extent_inode_elem { | 
 | 	u64 inum; | 
 | 	u64 offset; | 
 | 	struct extent_inode_elem *next; | 
 | }; | 
 |  | 
 | static int check_extent_in_eb(const struct btrfs_key *key, | 
 | 			      const struct extent_buffer *eb, | 
 | 			      const struct btrfs_file_extent_item *fi, | 
 | 			      u64 extent_item_pos, | 
 | 			      struct extent_inode_elem **eie, | 
 | 			      bool ignore_offset) | 
 | { | 
 | 	u64 offset = 0; | 
 | 	struct extent_inode_elem *e; | 
 |  | 
 | 	if (!ignore_offset && | 
 | 	    !btrfs_file_extent_compression(eb, fi) && | 
 | 	    !btrfs_file_extent_encryption(eb, fi) && | 
 | 	    !btrfs_file_extent_other_encoding(eb, fi)) { | 
 | 		u64 data_offset; | 
 | 		u64 data_len; | 
 |  | 
 | 		data_offset = btrfs_file_extent_offset(eb, fi); | 
 | 		data_len = btrfs_file_extent_num_bytes(eb, fi); | 
 |  | 
 | 		if (extent_item_pos < data_offset || | 
 | 		    extent_item_pos >= data_offset + data_len) | 
 | 			return 1; | 
 | 		offset = extent_item_pos - data_offset; | 
 | 	} | 
 |  | 
 | 	e = kmalloc(sizeof(*e), GFP_NOFS); | 
 | 	if (!e) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	e->next = *eie; | 
 | 	e->inum = key->objectid; | 
 | 	e->offset = key->offset + offset; | 
 | 	*eie = e; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void free_inode_elem_list(struct extent_inode_elem *eie) | 
 | { | 
 | 	struct extent_inode_elem *eie_next; | 
 |  | 
 | 	for (; eie; eie = eie_next) { | 
 | 		eie_next = eie->next; | 
 | 		kfree(eie); | 
 | 	} | 
 | } | 
 |  | 
 | static int find_extent_in_eb(const struct extent_buffer *eb, | 
 | 			     u64 wanted_disk_byte, u64 extent_item_pos, | 
 | 			     struct extent_inode_elem **eie, | 
 | 			     bool ignore_offset) | 
 | { | 
 | 	u64 disk_byte; | 
 | 	struct btrfs_key key; | 
 | 	struct btrfs_file_extent_item *fi; | 
 | 	int slot; | 
 | 	int nritems; | 
 | 	int extent_type; | 
 | 	int ret; | 
 |  | 
 | 	/* | 
 | 	 * from the shared data ref, we only have the leaf but we need | 
 | 	 * the key. thus, we must look into all items and see that we | 
 | 	 * find one (some) with a reference to our extent item. | 
 | 	 */ | 
 | 	nritems = btrfs_header_nritems(eb); | 
 | 	for (slot = 0; slot < nritems; ++slot) { | 
 | 		btrfs_item_key_to_cpu(eb, &key, slot); | 
 | 		if (key.type != BTRFS_EXTENT_DATA_KEY) | 
 | 			continue; | 
 | 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); | 
 | 		extent_type = btrfs_file_extent_type(eb, fi); | 
 | 		if (extent_type == BTRFS_FILE_EXTENT_INLINE) | 
 | 			continue; | 
 | 		/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */ | 
 | 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); | 
 | 		if (disk_byte != wanted_disk_byte) | 
 | 			continue; | 
 |  | 
 | 		ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie, ignore_offset); | 
 | 		if (ret < 0) | 
 | 			return ret; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | struct preftree { | 
 | 	struct rb_root_cached root; | 
 | 	unsigned int count; | 
 | }; | 
 |  | 
 | #define PREFTREE_INIT	{ .root = RB_ROOT_CACHED, .count = 0 } | 
 |  | 
 | struct preftrees { | 
 | 	struct preftree direct;    /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */ | 
 | 	struct preftree indirect;  /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */ | 
 | 	struct preftree indirect_missing_keys; | 
 | }; | 
 |  | 
 | /* | 
 |  * Checks for a shared extent during backref search. | 
 |  * | 
 |  * The share_count tracks prelim_refs (direct and indirect) having a | 
 |  * ref->count >0: | 
 |  *  - incremented when a ref->count transitions to >0 | 
 |  *  - decremented when a ref->count transitions to <1 | 
 |  */ | 
 | struct share_check { | 
 | 	u64 root_objectid; | 
 | 	u64 inum; | 
 | 	int share_count; | 
 | }; | 
 |  | 
 | static inline int extent_is_shared(struct share_check *sc) | 
 | { | 
 | 	return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0; | 
 | } | 
 |  | 
 | static struct kmem_cache *btrfs_prelim_ref_cache; | 
 |  | 
 | int __init btrfs_prelim_ref_init(void) | 
 | { | 
 | 	btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref", | 
 | 					sizeof(struct prelim_ref), | 
 | 					0, | 
 | 					SLAB_MEM_SPREAD, | 
 | 					NULL); | 
 | 	if (!btrfs_prelim_ref_cache) | 
 | 		return -ENOMEM; | 
 | 	return 0; | 
 | } | 
 |  | 
 | void __cold btrfs_prelim_ref_exit(void) | 
 | { | 
 | 	kmem_cache_destroy(btrfs_prelim_ref_cache); | 
 | } | 
 |  | 
 | static void free_pref(struct prelim_ref *ref) | 
 | { | 
 | 	kmem_cache_free(btrfs_prelim_ref_cache, ref); | 
 | } | 
 |  | 
 | /* | 
 |  * Return 0 when both refs are for the same block (and can be merged). | 
 |  * A -1 return indicates ref1 is a 'lower' block than ref2, while 1 | 
 |  * indicates a 'higher' block. | 
 |  */ | 
 | static int prelim_ref_compare(struct prelim_ref *ref1, | 
 | 			      struct prelim_ref *ref2) | 
 | { | 
 | 	if (ref1->level < ref2->level) | 
 | 		return -1; | 
 | 	if (ref1->level > ref2->level) | 
 | 		return 1; | 
 | 	if (ref1->root_id < ref2->root_id) | 
 | 		return -1; | 
 | 	if (ref1->root_id > ref2->root_id) | 
 | 		return 1; | 
 | 	if (ref1->key_for_search.type < ref2->key_for_search.type) | 
 | 		return -1; | 
 | 	if (ref1->key_for_search.type > ref2->key_for_search.type) | 
 | 		return 1; | 
 | 	if (ref1->key_for_search.objectid < ref2->key_for_search.objectid) | 
 | 		return -1; | 
 | 	if (ref1->key_for_search.objectid > ref2->key_for_search.objectid) | 
 | 		return 1; | 
 | 	if (ref1->key_for_search.offset < ref2->key_for_search.offset) | 
 | 		return -1; | 
 | 	if (ref1->key_for_search.offset > ref2->key_for_search.offset) | 
 | 		return 1; | 
 | 	if (ref1->parent < ref2->parent) | 
 | 		return -1; | 
 | 	if (ref1->parent > ref2->parent) | 
 | 		return 1; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void update_share_count(struct share_check *sc, int oldcount, | 
 | 			       int newcount) | 
 | { | 
 | 	if ((!sc) || (oldcount == 0 && newcount < 1)) | 
 | 		return; | 
 |  | 
 | 	if (oldcount > 0 && newcount < 1) | 
 | 		sc->share_count--; | 
 | 	else if (oldcount < 1 && newcount > 0) | 
 | 		sc->share_count++; | 
 | } | 
 |  | 
 | /* | 
 |  * Add @newref to the @root rbtree, merging identical refs. | 
 |  * | 
 |  * Callers should assume that newref has been freed after calling. | 
 |  */ | 
 | static void prelim_ref_insert(const struct btrfs_fs_info *fs_info, | 
 | 			      struct preftree *preftree, | 
 | 			      struct prelim_ref *newref, | 
 | 			      struct share_check *sc) | 
 | { | 
 | 	struct rb_root_cached *root; | 
 | 	struct rb_node **p; | 
 | 	struct rb_node *parent = NULL; | 
 | 	struct prelim_ref *ref; | 
 | 	int result; | 
 | 	bool leftmost = true; | 
 |  | 
 | 	root = &preftree->root; | 
 | 	p = &root->rb_root.rb_node; | 
 |  | 
 | 	while (*p) { | 
 | 		parent = *p; | 
 | 		ref = rb_entry(parent, struct prelim_ref, rbnode); | 
 | 		result = prelim_ref_compare(ref, newref); | 
 | 		if (result < 0) { | 
 | 			p = &(*p)->rb_left; | 
 | 		} else if (result > 0) { | 
 | 			p = &(*p)->rb_right; | 
 | 			leftmost = false; | 
 | 		} else { | 
 | 			/* Identical refs, merge them and free @newref */ | 
 | 			struct extent_inode_elem *eie = ref->inode_list; | 
 |  | 
 | 			while (eie && eie->next) | 
 | 				eie = eie->next; | 
 |  | 
 | 			if (!eie) | 
 | 				ref->inode_list = newref->inode_list; | 
 | 			else | 
 | 				eie->next = newref->inode_list; | 
 | 			trace_btrfs_prelim_ref_merge(fs_info, ref, newref, | 
 | 						     preftree->count); | 
 | 			/* | 
 | 			 * A delayed ref can have newref->count < 0. | 
 | 			 * The ref->count is updated to follow any | 
 | 			 * BTRFS_[ADD|DROP]_DELAYED_REF actions. | 
 | 			 */ | 
 | 			update_share_count(sc, ref->count, | 
 | 					   ref->count + newref->count); | 
 | 			ref->count += newref->count; | 
 | 			free_pref(newref); | 
 | 			return; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	update_share_count(sc, 0, newref->count); | 
 | 	preftree->count++; | 
 | 	trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count); | 
 | 	rb_link_node(&newref->rbnode, parent, p); | 
 | 	rb_insert_color_cached(&newref->rbnode, root, leftmost); | 
 | } | 
 |  | 
 | /* | 
 |  * Release the entire tree.  We don't care about internal consistency so | 
 |  * just free everything and then reset the tree root. | 
 |  */ | 
 | static void prelim_release(struct preftree *preftree) | 
 | { | 
 | 	struct prelim_ref *ref, *next_ref; | 
 |  | 
 | 	rbtree_postorder_for_each_entry_safe(ref, next_ref, | 
 | 					     &preftree->root.rb_root, rbnode) | 
 | 		free_pref(ref); | 
 |  | 
 | 	preftree->root = RB_ROOT_CACHED; | 
 | 	preftree->count = 0; | 
 | } | 
 |  | 
 | /* | 
 |  * the rules for all callers of this function are: | 
 |  * - obtaining the parent is the goal | 
 |  * - if you add a key, you must know that it is a correct key | 
 |  * - if you cannot add the parent or a correct key, then we will look into the | 
 |  *   block later to set a correct key | 
 |  * | 
 |  * delayed refs | 
 |  * ============ | 
 |  *        backref type | shared | indirect | shared | indirect | 
 |  * information         |   tree |     tree |   data |     data | 
 |  * --------------------+--------+----------+--------+---------- | 
 |  *      parent logical |    y   |     -    |    -   |     - | 
 |  *      key to resolve |    -   |     y    |    y   |     y | 
 |  *  tree block logical |    -   |     -    |    -   |     - | 
 |  *  root for resolving |    y   |     y    |    y   |     y | 
 |  * | 
 |  * - column 1:       we've the parent -> done | 
 |  * - column 2, 3, 4: we use the key to find the parent | 
 |  * | 
 |  * on disk refs (inline or keyed) | 
 |  * ============================== | 
 |  *        backref type | shared | indirect | shared | indirect | 
 |  * information         |   tree |     tree |   data |     data | 
 |  * --------------------+--------+----------+--------+---------- | 
 |  *      parent logical |    y   |     -    |    y   |     - | 
 |  *      key to resolve |    -   |     -    |    -   |     y | 
 |  *  tree block logical |    y   |     y    |    y   |     y | 
 |  *  root for resolving |    -   |     y    |    y   |     y | 
 |  * | 
 |  * - column 1, 3: we've the parent -> done | 
 |  * - column 2:    we take the first key from the block to find the parent | 
 |  *                (see add_missing_keys) | 
 |  * - column 4:    we use the key to find the parent | 
 |  * | 
 |  * additional information that's available but not required to find the parent | 
 |  * block might help in merging entries to gain some speed. | 
 |  */ | 
 | static int add_prelim_ref(const struct btrfs_fs_info *fs_info, | 
 | 			  struct preftree *preftree, u64 root_id, | 
 | 			  const struct btrfs_key *key, int level, u64 parent, | 
 | 			  u64 wanted_disk_byte, int count, | 
 | 			  struct share_check *sc, gfp_t gfp_mask) | 
 | { | 
 | 	struct prelim_ref *ref; | 
 |  | 
 | 	if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID) | 
 | 		return 0; | 
 |  | 
 | 	ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask); | 
 | 	if (!ref) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	ref->root_id = root_id; | 
 | 	if (key) | 
 | 		ref->key_for_search = *key; | 
 | 	else | 
 | 		memset(&ref->key_for_search, 0, sizeof(ref->key_for_search)); | 
 |  | 
 | 	ref->inode_list = NULL; | 
 | 	ref->level = level; | 
 | 	ref->count = count; | 
 | 	ref->parent = parent; | 
 | 	ref->wanted_disk_byte = wanted_disk_byte; | 
 | 	prelim_ref_insert(fs_info, preftree, ref, sc); | 
 | 	return extent_is_shared(sc); | 
 | } | 
 |  | 
 | /* direct refs use root == 0, key == NULL */ | 
 | static int add_direct_ref(const struct btrfs_fs_info *fs_info, | 
 | 			  struct preftrees *preftrees, int level, u64 parent, | 
 | 			  u64 wanted_disk_byte, int count, | 
 | 			  struct share_check *sc, gfp_t gfp_mask) | 
 | { | 
 | 	return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level, | 
 | 			      parent, wanted_disk_byte, count, sc, gfp_mask); | 
 | } | 
 |  | 
 | /* indirect refs use parent == 0 */ | 
 | static int add_indirect_ref(const struct btrfs_fs_info *fs_info, | 
 | 			    struct preftrees *preftrees, u64 root_id, | 
 | 			    const struct btrfs_key *key, int level, | 
 | 			    u64 wanted_disk_byte, int count, | 
 | 			    struct share_check *sc, gfp_t gfp_mask) | 
 | { | 
 | 	struct preftree *tree = &preftrees->indirect; | 
 |  | 
 | 	if (!key) | 
 | 		tree = &preftrees->indirect_missing_keys; | 
 | 	return add_prelim_ref(fs_info, tree, root_id, key, level, 0, | 
 | 			      wanted_disk_byte, count, sc, gfp_mask); | 
 | } | 
 |  | 
 | static int is_shared_data_backref(struct preftrees *preftrees, u64 bytenr) | 
 | { | 
 | 	struct rb_node **p = &preftrees->direct.root.rb_root.rb_node; | 
 | 	struct rb_node *parent = NULL; | 
 | 	struct prelim_ref *ref = NULL; | 
 | 	struct prelim_ref target = {}; | 
 | 	int result; | 
 |  | 
 | 	target.parent = bytenr; | 
 |  | 
 | 	while (*p) { | 
 | 		parent = *p; | 
 | 		ref = rb_entry(parent, struct prelim_ref, rbnode); | 
 | 		result = prelim_ref_compare(ref, &target); | 
 |  | 
 | 		if (result < 0) | 
 | 			p = &(*p)->rb_left; | 
 | 		else if (result > 0) | 
 | 			p = &(*p)->rb_right; | 
 | 		else | 
 | 			return 1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path, | 
 | 			   struct ulist *parents, | 
 | 			   struct preftrees *preftrees, struct prelim_ref *ref, | 
 | 			   int level, u64 time_seq, const u64 *extent_item_pos, | 
 | 			   bool ignore_offset) | 
 | { | 
 | 	int ret = 0; | 
 | 	int slot; | 
 | 	struct extent_buffer *eb; | 
 | 	struct btrfs_key key; | 
 | 	struct btrfs_key *key_for_search = &ref->key_for_search; | 
 | 	struct btrfs_file_extent_item *fi; | 
 | 	struct extent_inode_elem *eie = NULL, *old = NULL; | 
 | 	u64 disk_byte; | 
 | 	u64 wanted_disk_byte = ref->wanted_disk_byte; | 
 | 	u64 count = 0; | 
 | 	u64 data_offset; | 
 |  | 
 | 	if (level != 0) { | 
 | 		eb = path->nodes[level]; | 
 | 		ret = ulist_add(parents, eb->start, 0, GFP_NOFS); | 
 | 		if (ret < 0) | 
 | 			return ret; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * 1. We normally enter this function with the path already pointing to | 
 | 	 *    the first item to check. But sometimes, we may enter it with | 
 | 	 *    slot == nritems. | 
 | 	 * 2. We are searching for normal backref but bytenr of this leaf | 
 | 	 *    matches shared data backref | 
 | 	 * 3. The leaf owner is not equal to the root we are searching | 
 | 	 * | 
 | 	 * For these cases, go to the next leaf before we continue. | 
 | 	 */ | 
 | 	eb = path->nodes[0]; | 
 | 	if (path->slots[0] >= btrfs_header_nritems(eb) || | 
 | 	    is_shared_data_backref(preftrees, eb->start) || | 
 | 	    ref->root_id != btrfs_header_owner(eb)) { | 
 | 		if (time_seq == SEQ_LAST) | 
 | 			ret = btrfs_next_leaf(root, path); | 
 | 		else | 
 | 			ret = btrfs_next_old_leaf(root, path, time_seq); | 
 | 	} | 
 |  | 
 | 	while (!ret && count < ref->count) { | 
 | 		eb = path->nodes[0]; | 
 | 		slot = path->slots[0]; | 
 |  | 
 | 		btrfs_item_key_to_cpu(eb, &key, slot); | 
 |  | 
 | 		if (key.objectid != key_for_search->objectid || | 
 | 		    key.type != BTRFS_EXTENT_DATA_KEY) | 
 | 			break; | 
 |  | 
 | 		/* | 
 | 		 * We are searching for normal backref but bytenr of this leaf | 
 | 		 * matches shared data backref, OR | 
 | 		 * the leaf owner is not equal to the root we are searching for | 
 | 		 */ | 
 | 		if (slot == 0 && | 
 | 		    (is_shared_data_backref(preftrees, eb->start) || | 
 | 		     ref->root_id != btrfs_header_owner(eb))) { | 
 | 			if (time_seq == SEQ_LAST) | 
 | 				ret = btrfs_next_leaf(root, path); | 
 | 			else | 
 | 				ret = btrfs_next_old_leaf(root, path, time_seq); | 
 | 			continue; | 
 | 		} | 
 | 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); | 
 | 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); | 
 | 		data_offset = btrfs_file_extent_offset(eb, fi); | 
 |  | 
 | 		if (disk_byte == wanted_disk_byte) { | 
 | 			eie = NULL; | 
 | 			old = NULL; | 
 | 			if (ref->key_for_search.offset == key.offset - data_offset) | 
 | 				count++; | 
 | 			else | 
 | 				goto next; | 
 | 			if (extent_item_pos) { | 
 | 				ret = check_extent_in_eb(&key, eb, fi, | 
 | 						*extent_item_pos, | 
 | 						&eie, ignore_offset); | 
 | 				if (ret < 0) | 
 | 					break; | 
 | 			} | 
 | 			if (ret > 0) | 
 | 				goto next; | 
 | 			ret = ulist_add_merge_ptr(parents, eb->start, | 
 | 						  eie, (void **)&old, GFP_NOFS); | 
 | 			if (ret < 0) | 
 | 				break; | 
 | 			if (!ret && extent_item_pos) { | 
 | 				while (old->next) | 
 | 					old = old->next; | 
 | 				old->next = eie; | 
 | 			} | 
 | 			eie = NULL; | 
 | 		} | 
 | next: | 
 | 		if (time_seq == SEQ_LAST) | 
 | 			ret = btrfs_next_item(root, path); | 
 | 		else | 
 | 			ret = btrfs_next_old_item(root, path, time_seq); | 
 | 	} | 
 |  | 
 | 	if (ret > 0) | 
 | 		ret = 0; | 
 | 	else if (ret < 0) | 
 | 		free_inode_elem_list(eie); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * resolve an indirect backref in the form (root_id, key, level) | 
 |  * to a logical address | 
 |  */ | 
 | static int resolve_indirect_ref(struct btrfs_fs_info *fs_info, | 
 | 				struct btrfs_path *path, u64 time_seq, | 
 | 				struct preftrees *preftrees, | 
 | 				struct prelim_ref *ref, struct ulist *parents, | 
 | 				const u64 *extent_item_pos, bool ignore_offset) | 
 | { | 
 | 	struct btrfs_root *root; | 
 | 	struct extent_buffer *eb; | 
 | 	int ret = 0; | 
 | 	int root_level; | 
 | 	int level = ref->level; | 
 | 	struct btrfs_key search_key = ref->key_for_search; | 
 |  | 
 | 	root = btrfs_get_fs_root(fs_info, ref->root_id, false); | 
 | 	if (IS_ERR(root)) { | 
 | 		ret = PTR_ERR(root); | 
 | 		goto out_free; | 
 | 	} | 
 |  | 
 | 	if (!path->search_commit_root && | 
 | 	    test_bit(BTRFS_ROOT_DELETING, &root->state)) { | 
 | 		ret = -ENOENT; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (btrfs_is_testing(fs_info)) { | 
 | 		ret = -ENOENT; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (path->search_commit_root) | 
 | 		root_level = btrfs_header_level(root->commit_root); | 
 | 	else if (time_seq == SEQ_LAST) | 
 | 		root_level = btrfs_header_level(root->node); | 
 | 	else | 
 | 		root_level = btrfs_old_root_level(root, time_seq); | 
 |  | 
 | 	if (root_level + 1 == level) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * We can often find data backrefs with an offset that is too large | 
 | 	 * (>= LLONG_MAX, maximum allowed file offset) due to underflows when | 
 | 	 * subtracting a file's offset with the data offset of its | 
 | 	 * corresponding extent data item. This can happen for example in the | 
 | 	 * clone ioctl. | 
 | 	 * | 
 | 	 * So if we detect such case we set the search key's offset to zero to | 
 | 	 * make sure we will find the matching file extent item at | 
 | 	 * add_all_parents(), otherwise we will miss it because the offset | 
 | 	 * taken form the backref is much larger then the offset of the file | 
 | 	 * extent item. This can make us scan a very large number of file | 
 | 	 * extent items, but at least it will not make us miss any. | 
 | 	 * | 
 | 	 * This is an ugly workaround for a behaviour that should have never | 
 | 	 * existed, but it does and a fix for the clone ioctl would touch a lot | 
 | 	 * of places, cause backwards incompatibility and would not fix the | 
 | 	 * problem for extents cloned with older kernels. | 
 | 	 */ | 
 | 	if (search_key.type == BTRFS_EXTENT_DATA_KEY && | 
 | 	    search_key.offset >= LLONG_MAX) | 
 | 		search_key.offset = 0; | 
 | 	path->lowest_level = level; | 
 | 	if (time_seq == SEQ_LAST) | 
 | 		ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); | 
 | 	else | 
 | 		ret = btrfs_search_old_slot(root, &search_key, path, time_seq); | 
 |  | 
 | 	btrfs_debug(fs_info, | 
 | 		"search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)", | 
 | 		 ref->root_id, level, ref->count, ret, | 
 | 		 ref->key_for_search.objectid, ref->key_for_search.type, | 
 | 		 ref->key_for_search.offset); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	eb = path->nodes[level]; | 
 | 	while (!eb) { | 
 | 		if (WARN_ON(!level)) { | 
 | 			ret = 1; | 
 | 			goto out; | 
 | 		} | 
 | 		level--; | 
 | 		eb = path->nodes[level]; | 
 | 	} | 
 |  | 
 | 	ret = add_all_parents(root, path, parents, preftrees, ref, level, | 
 | 			      time_seq, extent_item_pos, ignore_offset); | 
 | out: | 
 | 	btrfs_put_root(root); | 
 | out_free: | 
 | 	path->lowest_level = 0; | 
 | 	btrfs_release_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static struct extent_inode_elem * | 
 | unode_aux_to_inode_list(struct ulist_node *node) | 
 | { | 
 | 	if (!node) | 
 | 		return NULL; | 
 | 	return (struct extent_inode_elem *)(uintptr_t)node->aux; | 
 | } | 
 |  | 
 | /* | 
 |  * We maintain three separate rbtrees: one for direct refs, one for | 
 |  * indirect refs which have a key, and one for indirect refs which do not | 
 |  * have a key. Each tree does merge on insertion. | 
 |  * | 
 |  * Once all of the references are located, we iterate over the tree of | 
 |  * indirect refs with missing keys. An appropriate key is located and | 
 |  * the ref is moved onto the tree for indirect refs. After all missing | 
 |  * keys are thus located, we iterate over the indirect ref tree, resolve | 
 |  * each reference, and then insert the resolved reference onto the | 
 |  * direct tree (merging there too). | 
 |  * | 
 |  * New backrefs (i.e., for parent nodes) are added to the appropriate | 
 |  * rbtree as they are encountered. The new backrefs are subsequently | 
 |  * resolved as above. | 
 |  */ | 
 | static int resolve_indirect_refs(struct btrfs_fs_info *fs_info, | 
 | 				 struct btrfs_path *path, u64 time_seq, | 
 | 				 struct preftrees *preftrees, | 
 | 				 const u64 *extent_item_pos, | 
 | 				 struct share_check *sc, bool ignore_offset) | 
 | { | 
 | 	int err; | 
 | 	int ret = 0; | 
 | 	struct ulist *parents; | 
 | 	struct ulist_node *node; | 
 | 	struct ulist_iterator uiter; | 
 | 	struct rb_node *rnode; | 
 |  | 
 | 	parents = ulist_alloc(GFP_NOFS); | 
 | 	if (!parents) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	/* | 
 | 	 * We could trade memory usage for performance here by iterating | 
 | 	 * the tree, allocating new refs for each insertion, and then | 
 | 	 * freeing the entire indirect tree when we're done.  In some test | 
 | 	 * cases, the tree can grow quite large (~200k objects). | 
 | 	 */ | 
 | 	while ((rnode = rb_first_cached(&preftrees->indirect.root))) { | 
 | 		struct prelim_ref *ref; | 
 |  | 
 | 		ref = rb_entry(rnode, struct prelim_ref, rbnode); | 
 | 		if (WARN(ref->parent, | 
 | 			 "BUG: direct ref found in indirect tree")) { | 
 | 			ret = -EINVAL; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		rb_erase_cached(&ref->rbnode, &preftrees->indirect.root); | 
 | 		preftrees->indirect.count--; | 
 |  | 
 | 		if (ref->count == 0) { | 
 | 			free_pref(ref); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (sc && sc->root_objectid && | 
 | 		    ref->root_id != sc->root_objectid) { | 
 | 			free_pref(ref); | 
 | 			ret = BACKREF_FOUND_SHARED; | 
 | 			goto out; | 
 | 		} | 
 | 		err = resolve_indirect_ref(fs_info, path, time_seq, preftrees, | 
 | 					   ref, parents, extent_item_pos, | 
 | 					   ignore_offset); | 
 | 		/* | 
 | 		 * we can only tolerate ENOENT,otherwise,we should catch error | 
 | 		 * and return directly. | 
 | 		 */ | 
 | 		if (err == -ENOENT) { | 
 | 			prelim_ref_insert(fs_info, &preftrees->direct, ref, | 
 | 					  NULL); | 
 | 			continue; | 
 | 		} else if (err) { | 
 | 			free_pref(ref); | 
 | 			ret = err; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		/* we put the first parent into the ref at hand */ | 
 | 		ULIST_ITER_INIT(&uiter); | 
 | 		node = ulist_next(parents, &uiter); | 
 | 		ref->parent = node ? node->val : 0; | 
 | 		ref->inode_list = unode_aux_to_inode_list(node); | 
 |  | 
 | 		/* Add a prelim_ref(s) for any other parent(s). */ | 
 | 		while ((node = ulist_next(parents, &uiter))) { | 
 | 			struct prelim_ref *new_ref; | 
 |  | 
 | 			new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache, | 
 | 						   GFP_NOFS); | 
 | 			if (!new_ref) { | 
 | 				free_pref(ref); | 
 | 				ret = -ENOMEM; | 
 | 				goto out; | 
 | 			} | 
 | 			memcpy(new_ref, ref, sizeof(*ref)); | 
 | 			new_ref->parent = node->val; | 
 | 			new_ref->inode_list = unode_aux_to_inode_list(node); | 
 | 			prelim_ref_insert(fs_info, &preftrees->direct, | 
 | 					  new_ref, NULL); | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Now it's a direct ref, put it in the direct tree. We must | 
 | 		 * do this last because the ref could be merged/freed here. | 
 | 		 */ | 
 | 		prelim_ref_insert(fs_info, &preftrees->direct, ref, NULL); | 
 |  | 
 | 		ulist_reinit(parents); | 
 | 		cond_resched(); | 
 | 	} | 
 | out: | 
 | 	ulist_free(parents); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * read tree blocks and add keys where required. | 
 |  */ | 
 | static int add_missing_keys(struct btrfs_fs_info *fs_info, | 
 | 			    struct preftrees *preftrees, bool lock) | 
 | { | 
 | 	struct prelim_ref *ref; | 
 | 	struct extent_buffer *eb; | 
 | 	struct preftree *tree = &preftrees->indirect_missing_keys; | 
 | 	struct rb_node *node; | 
 |  | 
 | 	while ((node = rb_first_cached(&tree->root))) { | 
 | 		ref = rb_entry(node, struct prelim_ref, rbnode); | 
 | 		rb_erase_cached(node, &tree->root); | 
 |  | 
 | 		BUG_ON(ref->parent);	/* should not be a direct ref */ | 
 | 		BUG_ON(ref->key_for_search.type); | 
 | 		BUG_ON(!ref->wanted_disk_byte); | 
 |  | 
 | 		eb = read_tree_block(fs_info, ref->wanted_disk_byte, 0, | 
 | 				     ref->level - 1, NULL); | 
 | 		if (IS_ERR(eb)) { | 
 | 			free_pref(ref); | 
 | 			return PTR_ERR(eb); | 
 | 		} else if (!extent_buffer_uptodate(eb)) { | 
 | 			free_pref(ref); | 
 | 			free_extent_buffer(eb); | 
 | 			return -EIO; | 
 | 		} | 
 | 		if (lock) | 
 | 			btrfs_tree_read_lock(eb); | 
 | 		if (btrfs_header_level(eb) == 0) | 
 | 			btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0); | 
 | 		else | 
 | 			btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0); | 
 | 		if (lock) | 
 | 			btrfs_tree_read_unlock(eb); | 
 | 		free_extent_buffer(eb); | 
 | 		prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL); | 
 | 		cond_resched(); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * add all currently queued delayed refs from this head whose seq nr is | 
 |  * smaller or equal that seq to the list | 
 |  */ | 
 | static int add_delayed_refs(const struct btrfs_fs_info *fs_info, | 
 | 			    struct btrfs_delayed_ref_head *head, u64 seq, | 
 | 			    struct preftrees *preftrees, struct share_check *sc) | 
 | { | 
 | 	struct btrfs_delayed_ref_node *node; | 
 | 	struct btrfs_delayed_extent_op *extent_op = head->extent_op; | 
 | 	struct btrfs_key key; | 
 | 	struct btrfs_key tmp_op_key; | 
 | 	struct rb_node *n; | 
 | 	int count; | 
 | 	int ret = 0; | 
 |  | 
 | 	if (extent_op && extent_op->update_key) | 
 | 		btrfs_disk_key_to_cpu(&tmp_op_key, &extent_op->key); | 
 |  | 
 | 	spin_lock(&head->lock); | 
 | 	for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) { | 
 | 		node = rb_entry(n, struct btrfs_delayed_ref_node, | 
 | 				ref_node); | 
 | 		if (node->seq > seq) | 
 | 			continue; | 
 |  | 
 | 		switch (node->action) { | 
 | 		case BTRFS_ADD_DELAYED_EXTENT: | 
 | 		case BTRFS_UPDATE_DELAYED_HEAD: | 
 | 			WARN_ON(1); | 
 | 			continue; | 
 | 		case BTRFS_ADD_DELAYED_REF: | 
 | 			count = node->ref_mod; | 
 | 			break; | 
 | 		case BTRFS_DROP_DELAYED_REF: | 
 | 			count = node->ref_mod * -1; | 
 | 			break; | 
 | 		default: | 
 | 			BUG(); | 
 | 		} | 
 | 		switch (node->type) { | 
 | 		case BTRFS_TREE_BLOCK_REF_KEY: { | 
 | 			/* NORMAL INDIRECT METADATA backref */ | 
 | 			struct btrfs_delayed_tree_ref *ref; | 
 |  | 
 | 			ref = btrfs_delayed_node_to_tree_ref(node); | 
 | 			ret = add_indirect_ref(fs_info, preftrees, ref->root, | 
 | 					       &tmp_op_key, ref->level + 1, | 
 | 					       node->bytenr, count, sc, | 
 | 					       GFP_ATOMIC); | 
 | 			break; | 
 | 		} | 
 | 		case BTRFS_SHARED_BLOCK_REF_KEY: { | 
 | 			/* SHARED DIRECT METADATA backref */ | 
 | 			struct btrfs_delayed_tree_ref *ref; | 
 |  | 
 | 			ref = btrfs_delayed_node_to_tree_ref(node); | 
 |  | 
 | 			ret = add_direct_ref(fs_info, preftrees, ref->level + 1, | 
 | 					     ref->parent, node->bytenr, count, | 
 | 					     sc, GFP_ATOMIC); | 
 | 			break; | 
 | 		} | 
 | 		case BTRFS_EXTENT_DATA_REF_KEY: { | 
 | 			/* NORMAL INDIRECT DATA backref */ | 
 | 			struct btrfs_delayed_data_ref *ref; | 
 | 			ref = btrfs_delayed_node_to_data_ref(node); | 
 |  | 
 | 			key.objectid = ref->objectid; | 
 | 			key.type = BTRFS_EXTENT_DATA_KEY; | 
 | 			key.offset = ref->offset; | 
 |  | 
 | 			/* | 
 | 			 * Found a inum that doesn't match our known inum, we | 
 | 			 * know it's shared. | 
 | 			 */ | 
 | 			if (sc && sc->inum && ref->objectid != sc->inum) { | 
 | 				ret = BACKREF_FOUND_SHARED; | 
 | 				goto out; | 
 | 			} | 
 |  | 
 | 			ret = add_indirect_ref(fs_info, preftrees, ref->root, | 
 | 					       &key, 0, node->bytenr, count, sc, | 
 | 					       GFP_ATOMIC); | 
 | 			break; | 
 | 		} | 
 | 		case BTRFS_SHARED_DATA_REF_KEY: { | 
 | 			/* SHARED DIRECT FULL backref */ | 
 | 			struct btrfs_delayed_data_ref *ref; | 
 |  | 
 | 			ref = btrfs_delayed_node_to_data_ref(node); | 
 |  | 
 | 			ret = add_direct_ref(fs_info, preftrees, 0, ref->parent, | 
 | 					     node->bytenr, count, sc, | 
 | 					     GFP_ATOMIC); | 
 | 			break; | 
 | 		} | 
 | 		default: | 
 | 			WARN_ON(1); | 
 | 		} | 
 | 		/* | 
 | 		 * We must ignore BACKREF_FOUND_SHARED until all delayed | 
 | 		 * refs have been checked. | 
 | 		 */ | 
 | 		if (ret && (ret != BACKREF_FOUND_SHARED)) | 
 | 			break; | 
 | 	} | 
 | 	if (!ret) | 
 | 		ret = extent_is_shared(sc); | 
 | out: | 
 | 	spin_unlock(&head->lock); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * add all inline backrefs for bytenr to the list | 
 |  * | 
 |  * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED. | 
 |  */ | 
 | static int add_inline_refs(const struct btrfs_fs_info *fs_info, | 
 | 			   struct btrfs_path *path, u64 bytenr, | 
 | 			   int *info_level, struct preftrees *preftrees, | 
 | 			   struct share_check *sc) | 
 | { | 
 | 	int ret = 0; | 
 | 	int slot; | 
 | 	struct extent_buffer *leaf; | 
 | 	struct btrfs_key key; | 
 | 	struct btrfs_key found_key; | 
 | 	unsigned long ptr; | 
 | 	unsigned long end; | 
 | 	struct btrfs_extent_item *ei; | 
 | 	u64 flags; | 
 | 	u64 item_size; | 
 |  | 
 | 	/* | 
 | 	 * enumerate all inline refs | 
 | 	 */ | 
 | 	leaf = path->nodes[0]; | 
 | 	slot = path->slots[0]; | 
 |  | 
 | 	item_size = btrfs_item_size_nr(leaf, slot); | 
 | 	BUG_ON(item_size < sizeof(*ei)); | 
 |  | 
 | 	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); | 
 | 	flags = btrfs_extent_flags(leaf, ei); | 
 | 	btrfs_item_key_to_cpu(leaf, &found_key, slot); | 
 |  | 
 | 	ptr = (unsigned long)(ei + 1); | 
 | 	end = (unsigned long)ei + item_size; | 
 |  | 
 | 	if (found_key.type == BTRFS_EXTENT_ITEM_KEY && | 
 | 	    flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { | 
 | 		struct btrfs_tree_block_info *info; | 
 |  | 
 | 		info = (struct btrfs_tree_block_info *)ptr; | 
 | 		*info_level = btrfs_tree_block_level(leaf, info); | 
 | 		ptr += sizeof(struct btrfs_tree_block_info); | 
 | 		BUG_ON(ptr > end); | 
 | 	} else if (found_key.type == BTRFS_METADATA_ITEM_KEY) { | 
 | 		*info_level = found_key.offset; | 
 | 	} else { | 
 | 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA)); | 
 | 	} | 
 |  | 
 | 	while (ptr < end) { | 
 | 		struct btrfs_extent_inline_ref *iref; | 
 | 		u64 offset; | 
 | 		int type; | 
 |  | 
 | 		iref = (struct btrfs_extent_inline_ref *)ptr; | 
 | 		type = btrfs_get_extent_inline_ref_type(leaf, iref, | 
 | 							BTRFS_REF_TYPE_ANY); | 
 | 		if (type == BTRFS_REF_TYPE_INVALID) | 
 | 			return -EUCLEAN; | 
 |  | 
 | 		offset = btrfs_extent_inline_ref_offset(leaf, iref); | 
 |  | 
 | 		switch (type) { | 
 | 		case BTRFS_SHARED_BLOCK_REF_KEY: | 
 | 			ret = add_direct_ref(fs_info, preftrees, | 
 | 					     *info_level + 1, offset, | 
 | 					     bytenr, 1, NULL, GFP_NOFS); | 
 | 			break; | 
 | 		case BTRFS_SHARED_DATA_REF_KEY: { | 
 | 			struct btrfs_shared_data_ref *sdref; | 
 | 			int count; | 
 |  | 
 | 			sdref = (struct btrfs_shared_data_ref *)(iref + 1); | 
 | 			count = btrfs_shared_data_ref_count(leaf, sdref); | 
 |  | 
 | 			ret = add_direct_ref(fs_info, preftrees, 0, offset, | 
 | 					     bytenr, count, sc, GFP_NOFS); | 
 | 			break; | 
 | 		} | 
 | 		case BTRFS_TREE_BLOCK_REF_KEY: | 
 | 			ret = add_indirect_ref(fs_info, preftrees, offset, | 
 | 					       NULL, *info_level + 1, | 
 | 					       bytenr, 1, NULL, GFP_NOFS); | 
 | 			break; | 
 | 		case BTRFS_EXTENT_DATA_REF_KEY: { | 
 | 			struct btrfs_extent_data_ref *dref; | 
 | 			int count; | 
 | 			u64 root; | 
 |  | 
 | 			dref = (struct btrfs_extent_data_ref *)(&iref->offset); | 
 | 			count = btrfs_extent_data_ref_count(leaf, dref); | 
 | 			key.objectid = btrfs_extent_data_ref_objectid(leaf, | 
 | 								      dref); | 
 | 			key.type = BTRFS_EXTENT_DATA_KEY; | 
 | 			key.offset = btrfs_extent_data_ref_offset(leaf, dref); | 
 |  | 
 | 			if (sc && sc->inum && key.objectid != sc->inum) { | 
 | 				ret = BACKREF_FOUND_SHARED; | 
 | 				break; | 
 | 			} | 
 |  | 
 | 			root = btrfs_extent_data_ref_root(leaf, dref); | 
 |  | 
 | 			ret = add_indirect_ref(fs_info, preftrees, root, | 
 | 					       &key, 0, bytenr, count, | 
 | 					       sc, GFP_NOFS); | 
 | 			break; | 
 | 		} | 
 | 		default: | 
 | 			WARN_ON(1); | 
 | 		} | 
 | 		if (ret) | 
 | 			return ret; | 
 | 		ptr += btrfs_extent_inline_ref_size(type); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * add all non-inline backrefs for bytenr to the list | 
 |  * | 
 |  * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED. | 
 |  */ | 
 | static int add_keyed_refs(struct btrfs_fs_info *fs_info, | 
 | 			  struct btrfs_path *path, u64 bytenr, | 
 | 			  int info_level, struct preftrees *preftrees, | 
 | 			  struct share_check *sc) | 
 | { | 
 | 	struct btrfs_root *extent_root = fs_info->extent_root; | 
 | 	int ret; | 
 | 	int slot; | 
 | 	struct extent_buffer *leaf; | 
 | 	struct btrfs_key key; | 
 |  | 
 | 	while (1) { | 
 | 		ret = btrfs_next_item(extent_root, path); | 
 | 		if (ret < 0) | 
 | 			break; | 
 | 		if (ret) { | 
 | 			ret = 0; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		slot = path->slots[0]; | 
 | 		leaf = path->nodes[0]; | 
 | 		btrfs_item_key_to_cpu(leaf, &key, slot); | 
 |  | 
 | 		if (key.objectid != bytenr) | 
 | 			break; | 
 | 		if (key.type < BTRFS_TREE_BLOCK_REF_KEY) | 
 | 			continue; | 
 | 		if (key.type > BTRFS_SHARED_DATA_REF_KEY) | 
 | 			break; | 
 |  | 
 | 		switch (key.type) { | 
 | 		case BTRFS_SHARED_BLOCK_REF_KEY: | 
 | 			/* SHARED DIRECT METADATA backref */ | 
 | 			ret = add_direct_ref(fs_info, preftrees, | 
 | 					     info_level + 1, key.offset, | 
 | 					     bytenr, 1, NULL, GFP_NOFS); | 
 | 			break; | 
 | 		case BTRFS_SHARED_DATA_REF_KEY: { | 
 | 			/* SHARED DIRECT FULL backref */ | 
 | 			struct btrfs_shared_data_ref *sdref; | 
 | 			int count; | 
 |  | 
 | 			sdref = btrfs_item_ptr(leaf, slot, | 
 | 					      struct btrfs_shared_data_ref); | 
 | 			count = btrfs_shared_data_ref_count(leaf, sdref); | 
 | 			ret = add_direct_ref(fs_info, preftrees, 0, | 
 | 					     key.offset, bytenr, count, | 
 | 					     sc, GFP_NOFS); | 
 | 			break; | 
 | 		} | 
 | 		case BTRFS_TREE_BLOCK_REF_KEY: | 
 | 			/* NORMAL INDIRECT METADATA backref */ | 
 | 			ret = add_indirect_ref(fs_info, preftrees, key.offset, | 
 | 					       NULL, info_level + 1, bytenr, | 
 | 					       1, NULL, GFP_NOFS); | 
 | 			break; | 
 | 		case BTRFS_EXTENT_DATA_REF_KEY: { | 
 | 			/* NORMAL INDIRECT DATA backref */ | 
 | 			struct btrfs_extent_data_ref *dref; | 
 | 			int count; | 
 | 			u64 root; | 
 |  | 
 | 			dref = btrfs_item_ptr(leaf, slot, | 
 | 					      struct btrfs_extent_data_ref); | 
 | 			count = btrfs_extent_data_ref_count(leaf, dref); | 
 | 			key.objectid = btrfs_extent_data_ref_objectid(leaf, | 
 | 								      dref); | 
 | 			key.type = BTRFS_EXTENT_DATA_KEY; | 
 | 			key.offset = btrfs_extent_data_ref_offset(leaf, dref); | 
 |  | 
 | 			if (sc && sc->inum && key.objectid != sc->inum) { | 
 | 				ret = BACKREF_FOUND_SHARED; | 
 | 				break; | 
 | 			} | 
 |  | 
 | 			root = btrfs_extent_data_ref_root(leaf, dref); | 
 | 			ret = add_indirect_ref(fs_info, preftrees, root, | 
 | 					       &key, 0, bytenr, count, | 
 | 					       sc, GFP_NOFS); | 
 | 			break; | 
 | 		} | 
 | 		default: | 
 | 			WARN_ON(1); | 
 | 		} | 
 | 		if (ret) | 
 | 			return ret; | 
 |  | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * this adds all existing backrefs (inline backrefs, backrefs and delayed | 
 |  * refs) for the given bytenr to the refs list, merges duplicates and resolves | 
 |  * indirect refs to their parent bytenr. | 
 |  * When roots are found, they're added to the roots list | 
 |  * | 
 |  * If time_seq is set to SEQ_LAST, it will not search delayed_refs, and behave | 
 |  * much like trans == NULL case, the difference only lies in it will not | 
 |  * commit root. | 
 |  * The special case is for qgroup to search roots in commit_transaction(). | 
 |  * | 
 |  * @sc - if !NULL, then immediately return BACKREF_FOUND_SHARED when a | 
 |  * shared extent is detected. | 
 |  * | 
 |  * Otherwise this returns 0 for success and <0 for an error. | 
 |  * | 
 |  * If ignore_offset is set to false, only extent refs whose offsets match | 
 |  * extent_item_pos are returned.  If true, every extent ref is returned | 
 |  * and extent_item_pos is ignored. | 
 |  * | 
 |  * FIXME some caching might speed things up | 
 |  */ | 
 | static int find_parent_nodes(struct btrfs_trans_handle *trans, | 
 | 			     struct btrfs_fs_info *fs_info, u64 bytenr, | 
 | 			     u64 time_seq, struct ulist *refs, | 
 | 			     struct ulist *roots, const u64 *extent_item_pos, | 
 | 			     struct share_check *sc, bool ignore_offset) | 
 | { | 
 | 	struct btrfs_key key; | 
 | 	struct btrfs_path *path; | 
 | 	struct btrfs_delayed_ref_root *delayed_refs = NULL; | 
 | 	struct btrfs_delayed_ref_head *head; | 
 | 	int info_level = 0; | 
 | 	int ret; | 
 | 	struct prelim_ref *ref; | 
 | 	struct rb_node *node; | 
 | 	struct extent_inode_elem *eie = NULL; | 
 | 	struct preftrees preftrees = { | 
 | 		.direct = PREFTREE_INIT, | 
 | 		.indirect = PREFTREE_INIT, | 
 | 		.indirect_missing_keys = PREFTREE_INIT | 
 | 	}; | 
 |  | 
 | 	key.objectid = bytenr; | 
 | 	key.offset = (u64)-1; | 
 | 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) | 
 | 		key.type = BTRFS_METADATA_ITEM_KEY; | 
 | 	else | 
 | 		key.type = BTRFS_EXTENT_ITEM_KEY; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 | 	if (!trans) { | 
 | 		path->search_commit_root = 1; | 
 | 		path->skip_locking = 1; | 
 | 	} | 
 |  | 
 | 	if (time_seq == SEQ_LAST) | 
 | 		path->skip_locking = 1; | 
 |  | 
 | 	/* | 
 | 	 * grab both a lock on the path and a lock on the delayed ref head. | 
 | 	 * We need both to get a consistent picture of how the refs look | 
 | 	 * at a specified point in time | 
 | 	 */ | 
 | again: | 
 | 	head = NULL; | 
 |  | 
 | 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 | 	BUG_ON(ret == 0); | 
 |  | 
 | #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS | 
 | 	if (trans && likely(trans->type != __TRANS_DUMMY) && | 
 | 	    time_seq != SEQ_LAST) { | 
 | #else | 
 | 	if (trans && time_seq != SEQ_LAST) { | 
 | #endif | 
 | 		/* | 
 | 		 * look if there are updates for this ref queued and lock the | 
 | 		 * head | 
 | 		 */ | 
 | 		delayed_refs = &trans->transaction->delayed_refs; | 
 | 		spin_lock(&delayed_refs->lock); | 
 | 		head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); | 
 | 		if (head) { | 
 | 			if (!mutex_trylock(&head->mutex)) { | 
 | 				refcount_inc(&head->refs); | 
 | 				spin_unlock(&delayed_refs->lock); | 
 |  | 
 | 				btrfs_release_path(path); | 
 |  | 
 | 				/* | 
 | 				 * Mutex was contended, block until it's | 
 | 				 * released and try again | 
 | 				 */ | 
 | 				mutex_lock(&head->mutex); | 
 | 				mutex_unlock(&head->mutex); | 
 | 				btrfs_put_delayed_ref_head(head); | 
 | 				goto again; | 
 | 			} | 
 | 			spin_unlock(&delayed_refs->lock); | 
 | 			ret = add_delayed_refs(fs_info, head, time_seq, | 
 | 					       &preftrees, sc); | 
 | 			mutex_unlock(&head->mutex); | 
 | 			if (ret) | 
 | 				goto out; | 
 | 		} else { | 
 | 			spin_unlock(&delayed_refs->lock); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (path->slots[0]) { | 
 | 		struct extent_buffer *leaf; | 
 | 		int slot; | 
 |  | 
 | 		path->slots[0]--; | 
 | 		leaf = path->nodes[0]; | 
 | 		slot = path->slots[0]; | 
 | 		btrfs_item_key_to_cpu(leaf, &key, slot); | 
 | 		if (key.objectid == bytenr && | 
 | 		    (key.type == BTRFS_EXTENT_ITEM_KEY || | 
 | 		     key.type == BTRFS_METADATA_ITEM_KEY)) { | 
 | 			ret = add_inline_refs(fs_info, path, bytenr, | 
 | 					      &info_level, &preftrees, sc); | 
 | 			if (ret) | 
 | 				goto out; | 
 | 			ret = add_keyed_refs(fs_info, path, bytenr, info_level, | 
 | 					     &preftrees, sc); | 
 | 			if (ret) | 
 | 				goto out; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	btrfs_release_path(path); | 
 |  | 
 | 	ret = add_missing_keys(fs_info, &preftrees, path->skip_locking == 0); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root)); | 
 |  | 
 | 	ret = resolve_indirect_refs(fs_info, path, time_seq, &preftrees, | 
 | 				    extent_item_pos, sc, ignore_offset); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root)); | 
 |  | 
 | 	/* | 
 | 	 * This walks the tree of merged and resolved refs. Tree blocks are | 
 | 	 * read in as needed. Unique entries are added to the ulist, and | 
 | 	 * the list of found roots is updated. | 
 | 	 * | 
 | 	 * We release the entire tree in one go before returning. | 
 | 	 */ | 
 | 	node = rb_first_cached(&preftrees.direct.root); | 
 | 	while (node) { | 
 | 		ref = rb_entry(node, struct prelim_ref, rbnode); | 
 | 		node = rb_next(&ref->rbnode); | 
 | 		/* | 
 | 		 * ref->count < 0 can happen here if there are delayed | 
 | 		 * refs with a node->action of BTRFS_DROP_DELAYED_REF. | 
 | 		 * prelim_ref_insert() relies on this when merging | 
 | 		 * identical refs to keep the overall count correct. | 
 | 		 * prelim_ref_insert() will merge only those refs | 
 | 		 * which compare identically.  Any refs having | 
 | 		 * e.g. different offsets would not be merged, | 
 | 		 * and would retain their original ref->count < 0. | 
 | 		 */ | 
 | 		if (roots && ref->count && ref->root_id && ref->parent == 0) { | 
 | 			if (sc && sc->root_objectid && | 
 | 			    ref->root_id != sc->root_objectid) { | 
 | 				ret = BACKREF_FOUND_SHARED; | 
 | 				goto out; | 
 | 			} | 
 |  | 
 | 			/* no parent == root of tree */ | 
 | 			ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS); | 
 | 			if (ret < 0) | 
 | 				goto out; | 
 | 		} | 
 | 		if (ref->count && ref->parent) { | 
 | 			if (extent_item_pos && !ref->inode_list && | 
 | 			    ref->level == 0) { | 
 | 				struct extent_buffer *eb; | 
 |  | 
 | 				eb = read_tree_block(fs_info, ref->parent, 0, | 
 | 						     ref->level, NULL); | 
 | 				if (IS_ERR(eb)) { | 
 | 					ret = PTR_ERR(eb); | 
 | 					goto out; | 
 | 				} else if (!extent_buffer_uptodate(eb)) { | 
 | 					free_extent_buffer(eb); | 
 | 					ret = -EIO; | 
 | 					goto out; | 
 | 				} | 
 |  | 
 | 				if (!path->skip_locking) { | 
 | 					btrfs_tree_read_lock(eb); | 
 | 					btrfs_set_lock_blocking_read(eb); | 
 | 				} | 
 | 				ret = find_extent_in_eb(eb, bytenr, | 
 | 							*extent_item_pos, &eie, ignore_offset); | 
 | 				if (!path->skip_locking) | 
 | 					btrfs_tree_read_unlock_blocking(eb); | 
 | 				free_extent_buffer(eb); | 
 | 				if (ret < 0) | 
 | 					goto out; | 
 | 				ref->inode_list = eie; | 
 | 			} | 
 | 			ret = ulist_add_merge_ptr(refs, ref->parent, | 
 | 						  ref->inode_list, | 
 | 						  (void **)&eie, GFP_NOFS); | 
 | 			if (ret < 0) | 
 | 				goto out; | 
 | 			if (!ret && extent_item_pos) { | 
 | 				/* | 
 | 				 * we've recorded that parent, so we must extend | 
 | 				 * its inode list here | 
 | 				 */ | 
 | 				BUG_ON(!eie); | 
 | 				while (eie->next) | 
 | 					eie = eie->next; | 
 | 				eie->next = ref->inode_list; | 
 | 			} | 
 | 			eie = NULL; | 
 | 		} | 
 | 		cond_resched(); | 
 | 	} | 
 |  | 
 | out: | 
 | 	btrfs_free_path(path); | 
 |  | 
 | 	prelim_release(&preftrees.direct); | 
 | 	prelim_release(&preftrees.indirect); | 
 | 	prelim_release(&preftrees.indirect_missing_keys); | 
 |  | 
 | 	if (ret < 0) | 
 | 		free_inode_elem_list(eie); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void free_leaf_list(struct ulist *blocks) | 
 | { | 
 | 	struct ulist_node *node = NULL; | 
 | 	struct extent_inode_elem *eie; | 
 | 	struct ulist_iterator uiter; | 
 |  | 
 | 	ULIST_ITER_INIT(&uiter); | 
 | 	while ((node = ulist_next(blocks, &uiter))) { | 
 | 		if (!node->aux) | 
 | 			continue; | 
 | 		eie = unode_aux_to_inode_list(node); | 
 | 		free_inode_elem_list(eie); | 
 | 		node->aux = 0; | 
 | 	} | 
 |  | 
 | 	ulist_free(blocks); | 
 | } | 
 |  | 
 | /* | 
 |  * Finds all leafs with a reference to the specified combination of bytenr and | 
 |  * offset. key_list_head will point to a list of corresponding keys (caller must | 
 |  * free each list element). The leafs will be stored in the leafs ulist, which | 
 |  * must be freed with ulist_free. | 
 |  * | 
 |  * returns 0 on success, <0 on error | 
 |  */ | 
 | int btrfs_find_all_leafs(struct btrfs_trans_handle *trans, | 
 | 			 struct btrfs_fs_info *fs_info, u64 bytenr, | 
 | 			 u64 time_seq, struct ulist **leafs, | 
 | 			 const u64 *extent_item_pos, bool ignore_offset) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	*leafs = ulist_alloc(GFP_NOFS); | 
 | 	if (!*leafs) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	ret = find_parent_nodes(trans, fs_info, bytenr, time_seq, | 
 | 				*leafs, NULL, extent_item_pos, NULL, ignore_offset); | 
 | 	if (ret < 0 && ret != -ENOENT) { | 
 | 		free_leaf_list(*leafs); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * walk all backrefs for a given extent to find all roots that reference this | 
 |  * extent. Walking a backref means finding all extents that reference this | 
 |  * extent and in turn walk the backrefs of those, too. Naturally this is a | 
 |  * recursive process, but here it is implemented in an iterative fashion: We | 
 |  * find all referencing extents for the extent in question and put them on a | 
 |  * list. In turn, we find all referencing extents for those, further appending | 
 |  * to the list. The way we iterate the list allows adding more elements after | 
 |  * the current while iterating. The process stops when we reach the end of the | 
 |  * list. Found roots are added to the roots list. | 
 |  * | 
 |  * returns 0 on success, < 0 on error. | 
 |  */ | 
 | static int btrfs_find_all_roots_safe(struct btrfs_trans_handle *trans, | 
 | 				     struct btrfs_fs_info *fs_info, u64 bytenr, | 
 | 				     u64 time_seq, struct ulist **roots, | 
 | 				     bool ignore_offset) | 
 | { | 
 | 	struct ulist *tmp; | 
 | 	struct ulist_node *node = NULL; | 
 | 	struct ulist_iterator uiter; | 
 | 	int ret; | 
 |  | 
 | 	tmp = ulist_alloc(GFP_NOFS); | 
 | 	if (!tmp) | 
 | 		return -ENOMEM; | 
 | 	*roots = ulist_alloc(GFP_NOFS); | 
 | 	if (!*roots) { | 
 | 		ulist_free(tmp); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	ULIST_ITER_INIT(&uiter); | 
 | 	while (1) { | 
 | 		ret = find_parent_nodes(trans, fs_info, bytenr, time_seq, | 
 | 					tmp, *roots, NULL, NULL, ignore_offset); | 
 | 		if (ret < 0 && ret != -ENOENT) { | 
 | 			ulist_free(tmp); | 
 | 			ulist_free(*roots); | 
 | 			return ret; | 
 | 		} | 
 | 		node = ulist_next(tmp, &uiter); | 
 | 		if (!node) | 
 | 			break; | 
 | 		bytenr = node->val; | 
 | 		cond_resched(); | 
 | 	} | 
 |  | 
 | 	ulist_free(tmp); | 
 | 	return 0; | 
 | } | 
 |  | 
 | int btrfs_find_all_roots(struct btrfs_trans_handle *trans, | 
 | 			 struct btrfs_fs_info *fs_info, u64 bytenr, | 
 | 			 u64 time_seq, struct ulist **roots, | 
 | 			 bool ignore_offset) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	if (!trans) | 
 | 		down_read(&fs_info->commit_root_sem); | 
 | 	ret = btrfs_find_all_roots_safe(trans, fs_info, bytenr, | 
 | 					time_seq, roots, ignore_offset); | 
 | 	if (!trans) | 
 | 		up_read(&fs_info->commit_root_sem); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * btrfs_check_shared - tell us whether an extent is shared | 
 |  * | 
 |  * btrfs_check_shared uses the backref walking code but will short | 
 |  * circuit as soon as it finds a root or inode that doesn't match the | 
 |  * one passed in. This provides a significant performance benefit for | 
 |  * callers (such as fiemap) which want to know whether the extent is | 
 |  * shared but do not need a ref count. | 
 |  * | 
 |  * This attempts to attach to the running transaction in order to account for | 
 |  * delayed refs, but continues on even when no running transaction exists. | 
 |  * | 
 |  * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error. | 
 |  */ | 
 | int btrfs_check_shared(struct btrfs_root *root, u64 inum, u64 bytenr, | 
 | 		struct ulist *roots, struct ulist *tmp) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = root->fs_info; | 
 | 	struct btrfs_trans_handle *trans; | 
 | 	struct ulist_iterator uiter; | 
 | 	struct ulist_node *node; | 
 | 	struct seq_list elem = SEQ_LIST_INIT(elem); | 
 | 	int ret = 0; | 
 | 	struct share_check shared = { | 
 | 		.root_objectid = root->root_key.objectid, | 
 | 		.inum = inum, | 
 | 		.share_count = 0, | 
 | 	}; | 
 |  | 
 | 	ulist_init(roots); | 
 | 	ulist_init(tmp); | 
 |  | 
 | 	trans = btrfs_join_transaction_nostart(root); | 
 | 	if (IS_ERR(trans)) { | 
 | 		if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) { | 
 | 			ret = PTR_ERR(trans); | 
 | 			goto out; | 
 | 		} | 
 | 		trans = NULL; | 
 | 		down_read(&fs_info->commit_root_sem); | 
 | 	} else { | 
 | 		btrfs_get_tree_mod_seq(fs_info, &elem); | 
 | 	} | 
 |  | 
 | 	ULIST_ITER_INIT(&uiter); | 
 | 	while (1) { | 
 | 		ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp, | 
 | 					roots, NULL, &shared, false); | 
 | 		if (ret == BACKREF_FOUND_SHARED) { | 
 | 			/* this is the only condition under which we return 1 */ | 
 | 			ret = 1; | 
 | 			break; | 
 | 		} | 
 | 		if (ret < 0 && ret != -ENOENT) | 
 | 			break; | 
 | 		ret = 0; | 
 | 		node = ulist_next(tmp, &uiter); | 
 | 		if (!node) | 
 | 			break; | 
 | 		bytenr = node->val; | 
 | 		shared.share_count = 0; | 
 | 		cond_resched(); | 
 | 	} | 
 |  | 
 | 	if (trans) { | 
 | 		btrfs_put_tree_mod_seq(fs_info, &elem); | 
 | 		btrfs_end_transaction(trans); | 
 | 	} else { | 
 | 		up_read(&fs_info->commit_root_sem); | 
 | 	} | 
 | out: | 
 | 	ulist_release(roots); | 
 | 	ulist_release(tmp); | 
 | 	return ret; | 
 | } | 
 |  | 
 | int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid, | 
 | 			  u64 start_off, struct btrfs_path *path, | 
 | 			  struct btrfs_inode_extref **ret_extref, | 
 | 			  u64 *found_off) | 
 | { | 
 | 	int ret, slot; | 
 | 	struct btrfs_key key; | 
 | 	struct btrfs_key found_key; | 
 | 	struct btrfs_inode_extref *extref; | 
 | 	const struct extent_buffer *leaf; | 
 | 	unsigned long ptr; | 
 |  | 
 | 	key.objectid = inode_objectid; | 
 | 	key.type = BTRFS_INODE_EXTREF_KEY; | 
 | 	key.offset = start_off; | 
 |  | 
 | 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
 | 	if (ret < 0) | 
 | 		return ret; | 
 |  | 
 | 	while (1) { | 
 | 		leaf = path->nodes[0]; | 
 | 		slot = path->slots[0]; | 
 | 		if (slot >= btrfs_header_nritems(leaf)) { | 
 | 			/* | 
 | 			 * If the item at offset is not found, | 
 | 			 * btrfs_search_slot will point us to the slot | 
 | 			 * where it should be inserted. In our case | 
 | 			 * that will be the slot directly before the | 
 | 			 * next INODE_REF_KEY_V2 item. In the case | 
 | 			 * that we're pointing to the last slot in a | 
 | 			 * leaf, we must move one leaf over. | 
 | 			 */ | 
 | 			ret = btrfs_next_leaf(root, path); | 
 | 			if (ret) { | 
 | 				if (ret >= 1) | 
 | 					ret = -ENOENT; | 
 | 				break; | 
 | 			} | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		btrfs_item_key_to_cpu(leaf, &found_key, slot); | 
 |  | 
 | 		/* | 
 | 		 * Check that we're still looking at an extended ref key for | 
 | 		 * this particular objectid. If we have different | 
 | 		 * objectid or type then there are no more to be found | 
 | 		 * in the tree and we can exit. | 
 | 		 */ | 
 | 		ret = -ENOENT; | 
 | 		if (found_key.objectid != inode_objectid) | 
 | 			break; | 
 | 		if (found_key.type != BTRFS_INODE_EXTREF_KEY) | 
 | 			break; | 
 |  | 
 | 		ret = 0; | 
 | 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); | 
 | 		extref = (struct btrfs_inode_extref *)ptr; | 
 | 		*ret_extref = extref; | 
 | 		if (found_off) | 
 | 			*found_off = found_key.offset; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * this iterates to turn a name (from iref/extref) into a full filesystem path. | 
 |  * Elements of the path are separated by '/' and the path is guaranteed to be | 
 |  * 0-terminated. the path is only given within the current file system. | 
 |  * Therefore, it never starts with a '/'. the caller is responsible to provide | 
 |  * "size" bytes in "dest". the dest buffer will be filled backwards. finally, | 
 |  * the start point of the resulting string is returned. this pointer is within | 
 |  * dest, normally. | 
 |  * in case the path buffer would overflow, the pointer is decremented further | 
 |  * as if output was written to the buffer, though no more output is actually | 
 |  * generated. that way, the caller can determine how much space would be | 
 |  * required for the path to fit into the buffer. in that case, the returned | 
 |  * value will be smaller than dest. callers must check this! | 
 |  */ | 
 | char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path, | 
 | 			u32 name_len, unsigned long name_off, | 
 | 			struct extent_buffer *eb_in, u64 parent, | 
 | 			char *dest, u32 size) | 
 | { | 
 | 	int slot; | 
 | 	u64 next_inum; | 
 | 	int ret; | 
 | 	s64 bytes_left = ((s64)size) - 1; | 
 | 	struct extent_buffer *eb = eb_in; | 
 | 	struct btrfs_key found_key; | 
 | 	int leave_spinning = path->leave_spinning; | 
 | 	struct btrfs_inode_ref *iref; | 
 |  | 
 | 	if (bytes_left >= 0) | 
 | 		dest[bytes_left] = '\0'; | 
 |  | 
 | 	path->leave_spinning = 1; | 
 | 	while (1) { | 
 | 		bytes_left -= name_len; | 
 | 		if (bytes_left >= 0) | 
 | 			read_extent_buffer(eb, dest + bytes_left, | 
 | 					   name_off, name_len); | 
 | 		if (eb != eb_in) { | 
 | 			if (!path->skip_locking) | 
 | 				btrfs_tree_read_unlock_blocking(eb); | 
 | 			free_extent_buffer(eb); | 
 | 		} | 
 | 		ret = btrfs_find_item(fs_root, path, parent, 0, | 
 | 				BTRFS_INODE_REF_KEY, &found_key); | 
 | 		if (ret > 0) | 
 | 			ret = -ENOENT; | 
 | 		if (ret) | 
 | 			break; | 
 |  | 
 | 		next_inum = found_key.offset; | 
 |  | 
 | 		/* regular exit ahead */ | 
 | 		if (parent == next_inum) | 
 | 			break; | 
 |  | 
 | 		slot = path->slots[0]; | 
 | 		eb = path->nodes[0]; | 
 | 		/* make sure we can use eb after releasing the path */ | 
 | 		if (eb != eb_in) { | 
 | 			if (!path->skip_locking) | 
 | 				btrfs_set_lock_blocking_read(eb); | 
 | 			path->nodes[0] = NULL; | 
 | 			path->locks[0] = 0; | 
 | 		} | 
 | 		btrfs_release_path(path); | 
 | 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); | 
 |  | 
 | 		name_len = btrfs_inode_ref_name_len(eb, iref); | 
 | 		name_off = (unsigned long)(iref + 1); | 
 |  | 
 | 		parent = next_inum; | 
 | 		--bytes_left; | 
 | 		if (bytes_left >= 0) | 
 | 			dest[bytes_left] = '/'; | 
 | 	} | 
 |  | 
 | 	btrfs_release_path(path); | 
 | 	path->leave_spinning = leave_spinning; | 
 |  | 
 | 	if (ret) | 
 | 		return ERR_PTR(ret); | 
 |  | 
 | 	return dest + bytes_left; | 
 | } | 
 |  | 
 | /* | 
 |  * this makes the path point to (logical EXTENT_ITEM *) | 
 |  * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for | 
 |  * tree blocks and <0 on error. | 
 |  */ | 
 | int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical, | 
 | 			struct btrfs_path *path, struct btrfs_key *found_key, | 
 | 			u64 *flags_ret) | 
 | { | 
 | 	int ret; | 
 | 	u64 flags; | 
 | 	u64 size = 0; | 
 | 	u32 item_size; | 
 | 	const struct extent_buffer *eb; | 
 | 	struct btrfs_extent_item *ei; | 
 | 	struct btrfs_key key; | 
 |  | 
 | 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) | 
 | 		key.type = BTRFS_METADATA_ITEM_KEY; | 
 | 	else | 
 | 		key.type = BTRFS_EXTENT_ITEM_KEY; | 
 | 	key.objectid = logical; | 
 | 	key.offset = (u64)-1; | 
 |  | 
 | 	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0); | 
 | 	if (ret < 0) | 
 | 		return ret; | 
 |  | 
 | 	ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0); | 
 | 	if (ret) { | 
 | 		if (ret > 0) | 
 | 			ret = -ENOENT; | 
 | 		return ret; | 
 | 	} | 
 | 	btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]); | 
 | 	if (found_key->type == BTRFS_METADATA_ITEM_KEY) | 
 | 		size = fs_info->nodesize; | 
 | 	else if (found_key->type == BTRFS_EXTENT_ITEM_KEY) | 
 | 		size = found_key->offset; | 
 |  | 
 | 	if (found_key->objectid > logical || | 
 | 	    found_key->objectid + size <= logical) { | 
 | 		btrfs_debug(fs_info, | 
 | 			"logical %llu is not within any extent", logical); | 
 | 		return -ENOENT; | 
 | 	} | 
 |  | 
 | 	eb = path->nodes[0]; | 
 | 	item_size = btrfs_item_size_nr(eb, path->slots[0]); | 
 | 	BUG_ON(item_size < sizeof(*ei)); | 
 |  | 
 | 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); | 
 | 	flags = btrfs_extent_flags(eb, ei); | 
 |  | 
 | 	btrfs_debug(fs_info, | 
 | 		"logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u", | 
 | 		 logical, logical - found_key->objectid, found_key->objectid, | 
 | 		 found_key->offset, flags, item_size); | 
 |  | 
 | 	WARN_ON(!flags_ret); | 
 | 	if (flags_ret) { | 
 | 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) | 
 | 			*flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK; | 
 | 		else if (flags & BTRFS_EXTENT_FLAG_DATA) | 
 | 			*flags_ret = BTRFS_EXTENT_FLAG_DATA; | 
 | 		else | 
 | 			BUG(); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	return -EIO; | 
 | } | 
 |  | 
 | /* | 
 |  * helper function to iterate extent inline refs. ptr must point to a 0 value | 
 |  * for the first call and may be modified. it is used to track state. | 
 |  * if more refs exist, 0 is returned and the next call to | 
 |  * get_extent_inline_ref must pass the modified ptr parameter to get the | 
 |  * next ref. after the last ref was processed, 1 is returned. | 
 |  * returns <0 on error | 
 |  */ | 
 | static int get_extent_inline_ref(unsigned long *ptr, | 
 | 				 const struct extent_buffer *eb, | 
 | 				 const struct btrfs_key *key, | 
 | 				 const struct btrfs_extent_item *ei, | 
 | 				 u32 item_size, | 
 | 				 struct btrfs_extent_inline_ref **out_eiref, | 
 | 				 int *out_type) | 
 | { | 
 | 	unsigned long end; | 
 | 	u64 flags; | 
 | 	struct btrfs_tree_block_info *info; | 
 |  | 
 | 	if (!*ptr) { | 
 | 		/* first call */ | 
 | 		flags = btrfs_extent_flags(eb, ei); | 
 | 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { | 
 | 			if (key->type == BTRFS_METADATA_ITEM_KEY) { | 
 | 				/* a skinny metadata extent */ | 
 | 				*out_eiref = | 
 | 				     (struct btrfs_extent_inline_ref *)(ei + 1); | 
 | 			} else { | 
 | 				WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY); | 
 | 				info = (struct btrfs_tree_block_info *)(ei + 1); | 
 | 				*out_eiref = | 
 | 				   (struct btrfs_extent_inline_ref *)(info + 1); | 
 | 			} | 
 | 		} else { | 
 | 			*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1); | 
 | 		} | 
 | 		*ptr = (unsigned long)*out_eiref; | 
 | 		if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size) | 
 | 			return -ENOENT; | 
 | 	} | 
 |  | 
 | 	end = (unsigned long)ei + item_size; | 
 | 	*out_eiref = (struct btrfs_extent_inline_ref *)(*ptr); | 
 | 	*out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref, | 
 | 						     BTRFS_REF_TYPE_ANY); | 
 | 	if (*out_type == BTRFS_REF_TYPE_INVALID) | 
 | 		return -EUCLEAN; | 
 |  | 
 | 	*ptr += btrfs_extent_inline_ref_size(*out_type); | 
 | 	WARN_ON(*ptr > end); | 
 | 	if (*ptr == end) | 
 | 		return 1; /* last */ | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * reads the tree block backref for an extent. tree level and root are returned | 
 |  * through out_level and out_root. ptr must point to a 0 value for the first | 
 |  * call and may be modified (see get_extent_inline_ref comment). | 
 |  * returns 0 if data was provided, 1 if there was no more data to provide or | 
 |  * <0 on error. | 
 |  */ | 
 | int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb, | 
 | 			    struct btrfs_key *key, struct btrfs_extent_item *ei, | 
 | 			    u32 item_size, u64 *out_root, u8 *out_level) | 
 | { | 
 | 	int ret; | 
 | 	int type; | 
 | 	struct btrfs_extent_inline_ref *eiref; | 
 |  | 
 | 	if (*ptr == (unsigned long)-1) | 
 | 		return 1; | 
 |  | 
 | 	while (1) { | 
 | 		ret = get_extent_inline_ref(ptr, eb, key, ei, item_size, | 
 | 					      &eiref, &type); | 
 | 		if (ret < 0) | 
 | 			return ret; | 
 |  | 
 | 		if (type == BTRFS_TREE_BLOCK_REF_KEY || | 
 | 		    type == BTRFS_SHARED_BLOCK_REF_KEY) | 
 | 			break; | 
 |  | 
 | 		if (ret == 1) | 
 | 			return 1; | 
 | 	} | 
 |  | 
 | 	/* we can treat both ref types equally here */ | 
 | 	*out_root = btrfs_extent_inline_ref_offset(eb, eiref); | 
 |  | 
 | 	if (key->type == BTRFS_EXTENT_ITEM_KEY) { | 
 | 		struct btrfs_tree_block_info *info; | 
 |  | 
 | 		info = (struct btrfs_tree_block_info *)(ei + 1); | 
 | 		*out_level = btrfs_tree_block_level(eb, info); | 
 | 	} else { | 
 | 		ASSERT(key->type == BTRFS_METADATA_ITEM_KEY); | 
 | 		*out_level = (u8)key->offset; | 
 | 	} | 
 |  | 
 | 	if (ret == 1) | 
 | 		*ptr = (unsigned long)-1; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int iterate_leaf_refs(struct btrfs_fs_info *fs_info, | 
 | 			     struct extent_inode_elem *inode_list, | 
 | 			     u64 root, u64 extent_item_objectid, | 
 | 			     iterate_extent_inodes_t *iterate, void *ctx) | 
 | { | 
 | 	struct extent_inode_elem *eie; | 
 | 	int ret = 0; | 
 |  | 
 | 	for (eie = inode_list; eie; eie = eie->next) { | 
 | 		btrfs_debug(fs_info, | 
 | 			    "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu", | 
 | 			    extent_item_objectid, eie->inum, | 
 | 			    eie->offset, root); | 
 | 		ret = iterate(eie->inum, eie->offset, root, ctx); | 
 | 		if (ret) { | 
 | 			btrfs_debug(fs_info, | 
 | 				    "stopping iteration for %llu due to ret=%d", | 
 | 				    extent_item_objectid, ret); | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * calls iterate() for every inode that references the extent identified by | 
 |  * the given parameters. | 
 |  * when the iterator function returns a non-zero value, iteration stops. | 
 |  */ | 
 | int iterate_extent_inodes(struct btrfs_fs_info *fs_info, | 
 | 				u64 extent_item_objectid, u64 extent_item_pos, | 
 | 				int search_commit_root, | 
 | 				iterate_extent_inodes_t *iterate, void *ctx, | 
 | 				bool ignore_offset) | 
 | { | 
 | 	int ret; | 
 | 	struct btrfs_trans_handle *trans = NULL; | 
 | 	struct ulist *refs = NULL; | 
 | 	struct ulist *roots = NULL; | 
 | 	struct ulist_node *ref_node = NULL; | 
 | 	struct ulist_node *root_node = NULL; | 
 | 	struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem); | 
 | 	struct ulist_iterator ref_uiter; | 
 | 	struct ulist_iterator root_uiter; | 
 |  | 
 | 	btrfs_debug(fs_info, "resolving all inodes for extent %llu", | 
 | 			extent_item_objectid); | 
 |  | 
 | 	if (!search_commit_root) { | 
 | 		trans = btrfs_attach_transaction(fs_info->extent_root); | 
 | 		if (IS_ERR(trans)) { | 
 | 			if (PTR_ERR(trans) != -ENOENT && | 
 | 			    PTR_ERR(trans) != -EROFS) | 
 | 				return PTR_ERR(trans); | 
 | 			trans = NULL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (trans) | 
 | 		btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem); | 
 | 	else | 
 | 		down_read(&fs_info->commit_root_sem); | 
 |  | 
 | 	ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid, | 
 | 				   tree_mod_seq_elem.seq, &refs, | 
 | 				   &extent_item_pos, ignore_offset); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	ULIST_ITER_INIT(&ref_uiter); | 
 | 	while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) { | 
 | 		ret = btrfs_find_all_roots_safe(trans, fs_info, ref_node->val, | 
 | 						tree_mod_seq_elem.seq, &roots, | 
 | 						ignore_offset); | 
 | 		if (ret) | 
 | 			break; | 
 | 		ULIST_ITER_INIT(&root_uiter); | 
 | 		while (!ret && (root_node = ulist_next(roots, &root_uiter))) { | 
 | 			btrfs_debug(fs_info, | 
 | 				    "root %llu references leaf %llu, data list %#llx", | 
 | 				    root_node->val, ref_node->val, | 
 | 				    ref_node->aux); | 
 | 			ret = iterate_leaf_refs(fs_info, | 
 | 						(struct extent_inode_elem *) | 
 | 						(uintptr_t)ref_node->aux, | 
 | 						root_node->val, | 
 | 						extent_item_objectid, | 
 | 						iterate, ctx); | 
 | 		} | 
 | 		ulist_free(roots); | 
 | 	} | 
 |  | 
 | 	free_leaf_list(refs); | 
 | out: | 
 | 	if (trans) { | 
 | 		btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem); | 
 | 		btrfs_end_transaction(trans); | 
 | 	} else { | 
 | 		up_read(&fs_info->commit_root_sem); | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info, | 
 | 				struct btrfs_path *path, | 
 | 				iterate_extent_inodes_t *iterate, void *ctx, | 
 | 				bool ignore_offset) | 
 | { | 
 | 	int ret; | 
 | 	u64 extent_item_pos; | 
 | 	u64 flags = 0; | 
 | 	struct btrfs_key found_key; | 
 | 	int search_commit_root = path->search_commit_root; | 
 |  | 
 | 	ret = extent_from_logical(fs_info, logical, path, &found_key, &flags); | 
 | 	btrfs_release_path(path); | 
 | 	if (ret < 0) | 
 | 		return ret; | 
 | 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) | 
 | 		return -EINVAL; | 
 |  | 
 | 	extent_item_pos = logical - found_key.objectid; | 
 | 	ret = iterate_extent_inodes(fs_info, found_key.objectid, | 
 | 					extent_item_pos, search_commit_root, | 
 | 					iterate, ctx, ignore_offset); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off, | 
 | 			      struct extent_buffer *eb, void *ctx); | 
 |  | 
 | static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root, | 
 | 			      struct btrfs_path *path, | 
 | 			      iterate_irefs_t *iterate, void *ctx) | 
 | { | 
 | 	int ret = 0; | 
 | 	int slot; | 
 | 	u32 cur; | 
 | 	u32 len; | 
 | 	u32 name_len; | 
 | 	u64 parent = 0; | 
 | 	int found = 0; | 
 | 	struct extent_buffer *eb; | 
 | 	struct btrfs_item *item; | 
 | 	struct btrfs_inode_ref *iref; | 
 | 	struct btrfs_key found_key; | 
 |  | 
 | 	while (!ret) { | 
 | 		ret = btrfs_find_item(fs_root, path, inum, | 
 | 				parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY, | 
 | 				&found_key); | 
 |  | 
 | 		if (ret < 0) | 
 | 			break; | 
 | 		if (ret) { | 
 | 			ret = found ? 0 : -ENOENT; | 
 | 			break; | 
 | 		} | 
 | 		++found; | 
 |  | 
 | 		parent = found_key.offset; | 
 | 		slot = path->slots[0]; | 
 | 		eb = btrfs_clone_extent_buffer(path->nodes[0]); | 
 | 		if (!eb) { | 
 | 			ret = -ENOMEM; | 
 | 			break; | 
 | 		} | 
 | 		btrfs_release_path(path); | 
 |  | 
 | 		item = btrfs_item_nr(slot); | 
 | 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); | 
 |  | 
 | 		for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) { | 
 | 			name_len = btrfs_inode_ref_name_len(eb, iref); | 
 | 			/* path must be released before calling iterate()! */ | 
 | 			btrfs_debug(fs_root->fs_info, | 
 | 				"following ref at offset %u for inode %llu in tree %llu", | 
 | 				cur, found_key.objectid, | 
 | 				fs_root->root_key.objectid); | 
 | 			ret = iterate(parent, name_len, | 
 | 				      (unsigned long)(iref + 1), eb, ctx); | 
 | 			if (ret) | 
 | 				break; | 
 | 			len = sizeof(*iref) + name_len; | 
 | 			iref = (struct btrfs_inode_ref *)((char *)iref + len); | 
 | 		} | 
 | 		free_extent_buffer(eb); | 
 | 	} | 
 |  | 
 | 	btrfs_release_path(path); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root, | 
 | 				 struct btrfs_path *path, | 
 | 				 iterate_irefs_t *iterate, void *ctx) | 
 | { | 
 | 	int ret; | 
 | 	int slot; | 
 | 	u64 offset = 0; | 
 | 	u64 parent; | 
 | 	int found = 0; | 
 | 	struct extent_buffer *eb; | 
 | 	struct btrfs_inode_extref *extref; | 
 | 	u32 item_size; | 
 | 	u32 cur_offset; | 
 | 	unsigned long ptr; | 
 |  | 
 | 	while (1) { | 
 | 		ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref, | 
 | 					    &offset); | 
 | 		if (ret < 0) | 
 | 			break; | 
 | 		if (ret) { | 
 | 			ret = found ? 0 : -ENOENT; | 
 | 			break; | 
 | 		} | 
 | 		++found; | 
 |  | 
 | 		slot = path->slots[0]; | 
 | 		eb = btrfs_clone_extent_buffer(path->nodes[0]); | 
 | 		if (!eb) { | 
 | 			ret = -ENOMEM; | 
 | 			break; | 
 | 		} | 
 | 		btrfs_release_path(path); | 
 |  | 
 | 		item_size = btrfs_item_size_nr(eb, slot); | 
 | 		ptr = btrfs_item_ptr_offset(eb, slot); | 
 | 		cur_offset = 0; | 
 |  | 
 | 		while (cur_offset < item_size) { | 
 | 			u32 name_len; | 
 |  | 
 | 			extref = (struct btrfs_inode_extref *)(ptr + cur_offset); | 
 | 			parent = btrfs_inode_extref_parent(eb, extref); | 
 | 			name_len = btrfs_inode_extref_name_len(eb, extref); | 
 | 			ret = iterate(parent, name_len, | 
 | 				      (unsigned long)&extref->name, eb, ctx); | 
 | 			if (ret) | 
 | 				break; | 
 |  | 
 | 			cur_offset += btrfs_inode_extref_name_len(eb, extref); | 
 | 			cur_offset += sizeof(*extref); | 
 | 		} | 
 | 		free_extent_buffer(eb); | 
 |  | 
 | 		offset++; | 
 | 	} | 
 |  | 
 | 	btrfs_release_path(path); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int iterate_irefs(u64 inum, struct btrfs_root *fs_root, | 
 | 			 struct btrfs_path *path, iterate_irefs_t *iterate, | 
 | 			 void *ctx) | 
 | { | 
 | 	int ret; | 
 | 	int found_refs = 0; | 
 |  | 
 | 	ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx); | 
 | 	if (!ret) | 
 | 		++found_refs; | 
 | 	else if (ret != -ENOENT) | 
 | 		return ret; | 
 |  | 
 | 	ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx); | 
 | 	if (ret == -ENOENT && found_refs) | 
 | 		return 0; | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * returns 0 if the path could be dumped (probably truncated) | 
 |  * returns <0 in case of an error | 
 |  */ | 
 | static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off, | 
 | 			 struct extent_buffer *eb, void *ctx) | 
 | { | 
 | 	struct inode_fs_paths *ipath = ctx; | 
 | 	char *fspath; | 
 | 	char *fspath_min; | 
 | 	int i = ipath->fspath->elem_cnt; | 
 | 	const int s_ptr = sizeof(char *); | 
 | 	u32 bytes_left; | 
 |  | 
 | 	bytes_left = ipath->fspath->bytes_left > s_ptr ? | 
 | 					ipath->fspath->bytes_left - s_ptr : 0; | 
 |  | 
 | 	fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr; | 
 | 	fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len, | 
 | 				   name_off, eb, inum, fspath_min, bytes_left); | 
 | 	if (IS_ERR(fspath)) | 
 | 		return PTR_ERR(fspath); | 
 |  | 
 | 	if (fspath > fspath_min) { | 
 | 		ipath->fspath->val[i] = (u64)(unsigned long)fspath; | 
 | 		++ipath->fspath->elem_cnt; | 
 | 		ipath->fspath->bytes_left = fspath - fspath_min; | 
 | 	} else { | 
 | 		++ipath->fspath->elem_missed; | 
 | 		ipath->fspath->bytes_missing += fspath_min - fspath; | 
 | 		ipath->fspath->bytes_left = 0; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * this dumps all file system paths to the inode into the ipath struct, provided | 
 |  * is has been created large enough. each path is zero-terminated and accessed | 
 |  * from ipath->fspath->val[i]. | 
 |  * when it returns, there are ipath->fspath->elem_cnt number of paths available | 
 |  * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the | 
 |  * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise, | 
 |  * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would | 
 |  * have been needed to return all paths. | 
 |  */ | 
 | int paths_from_inode(u64 inum, struct inode_fs_paths *ipath) | 
 | { | 
 | 	return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path, | 
 | 			     inode_to_path, ipath); | 
 | } | 
 |  | 
 | struct btrfs_data_container *init_data_container(u32 total_bytes) | 
 | { | 
 | 	struct btrfs_data_container *data; | 
 | 	size_t alloc_bytes; | 
 |  | 
 | 	alloc_bytes = max_t(size_t, total_bytes, sizeof(*data)); | 
 | 	data = kvmalloc(alloc_bytes, GFP_KERNEL); | 
 | 	if (!data) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	if (total_bytes >= sizeof(*data)) { | 
 | 		data->bytes_left = total_bytes - sizeof(*data); | 
 | 		data->bytes_missing = 0; | 
 | 	} else { | 
 | 		data->bytes_missing = sizeof(*data) - total_bytes; | 
 | 		data->bytes_left = 0; | 
 | 	} | 
 |  | 
 | 	data->elem_cnt = 0; | 
 | 	data->elem_missed = 0; | 
 |  | 
 | 	return data; | 
 | } | 
 |  | 
 | /* | 
 |  * allocates space to return multiple file system paths for an inode. | 
 |  * total_bytes to allocate are passed, note that space usable for actual path | 
 |  * information will be total_bytes - sizeof(struct inode_fs_paths). | 
 |  * the returned pointer must be freed with free_ipath() in the end. | 
 |  */ | 
 | struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root, | 
 | 					struct btrfs_path *path) | 
 | { | 
 | 	struct inode_fs_paths *ifp; | 
 | 	struct btrfs_data_container *fspath; | 
 |  | 
 | 	fspath = init_data_container(total_bytes); | 
 | 	if (IS_ERR(fspath)) | 
 | 		return ERR_CAST(fspath); | 
 |  | 
 | 	ifp = kmalloc(sizeof(*ifp), GFP_KERNEL); | 
 | 	if (!ifp) { | 
 | 		kvfree(fspath); | 
 | 		return ERR_PTR(-ENOMEM); | 
 | 	} | 
 |  | 
 | 	ifp->btrfs_path = path; | 
 | 	ifp->fspath = fspath; | 
 | 	ifp->fs_root = fs_root; | 
 |  | 
 | 	return ifp; | 
 | } | 
 |  | 
 | void free_ipath(struct inode_fs_paths *ipath) | 
 | { | 
 | 	if (!ipath) | 
 | 		return; | 
 | 	kvfree(ipath->fspath); | 
 | 	kfree(ipath); | 
 | } | 
 |  | 
 | struct btrfs_backref_iter *btrfs_backref_iter_alloc( | 
 | 		struct btrfs_fs_info *fs_info, gfp_t gfp_flag) | 
 | { | 
 | 	struct btrfs_backref_iter *ret; | 
 |  | 
 | 	ret = kzalloc(sizeof(*ret), gfp_flag); | 
 | 	if (!ret) | 
 | 		return NULL; | 
 |  | 
 | 	ret->path = btrfs_alloc_path(); | 
 | 	if (!ret) { | 
 | 		kfree(ret); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	/* Current backref iterator only supports iteration in commit root */ | 
 | 	ret->path->search_commit_root = 1; | 
 | 	ret->path->skip_locking = 1; | 
 | 	ret->fs_info = fs_info; | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | int btrfs_backref_iter_start(struct btrfs_backref_iter *iter, u64 bytenr) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = iter->fs_info; | 
 | 	struct btrfs_path *path = iter->path; | 
 | 	struct btrfs_extent_item *ei; | 
 | 	struct btrfs_key key; | 
 | 	int ret; | 
 |  | 
 | 	key.objectid = bytenr; | 
 | 	key.type = BTRFS_METADATA_ITEM_KEY; | 
 | 	key.offset = (u64)-1; | 
 | 	iter->bytenr = bytenr; | 
 |  | 
 | 	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0); | 
 | 	if (ret < 0) | 
 | 		return ret; | 
 | 	if (ret == 0) { | 
 | 		ret = -EUCLEAN; | 
 | 		goto release; | 
 | 	} | 
 | 	if (path->slots[0] == 0) { | 
 | 		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); | 
 | 		ret = -EUCLEAN; | 
 | 		goto release; | 
 | 	} | 
 | 	path->slots[0]--; | 
 |  | 
 | 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); | 
 | 	if ((key.type != BTRFS_EXTENT_ITEM_KEY && | 
 | 	     key.type != BTRFS_METADATA_ITEM_KEY) || key.objectid != bytenr) { | 
 | 		ret = -ENOENT; | 
 | 		goto release; | 
 | 	} | 
 | 	memcpy(&iter->cur_key, &key, sizeof(key)); | 
 | 	iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0], | 
 | 						    path->slots[0]); | 
 | 	iter->end_ptr = (u32)(iter->item_ptr + | 
 | 			btrfs_item_size_nr(path->nodes[0], path->slots[0])); | 
 | 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0], | 
 | 			    struct btrfs_extent_item); | 
 |  | 
 | 	/* | 
 | 	 * Only support iteration on tree backref yet. | 
 | 	 * | 
 | 	 * This is an extra precaution for non skinny-metadata, where | 
 | 	 * EXTENT_ITEM is also used for tree blocks, that we can only use | 
 | 	 * extent flags to determine if it's a tree block. | 
 | 	 */ | 
 | 	if (btrfs_extent_flags(path->nodes[0], ei) & BTRFS_EXTENT_FLAG_DATA) { | 
 | 		ret = -ENOTSUPP; | 
 | 		goto release; | 
 | 	} | 
 | 	iter->cur_ptr = (u32)(iter->item_ptr + sizeof(*ei)); | 
 |  | 
 | 	/* If there is no inline backref, go search for keyed backref */ | 
 | 	if (iter->cur_ptr >= iter->end_ptr) { | 
 | 		ret = btrfs_next_item(fs_info->extent_root, path); | 
 |  | 
 | 		/* No inline nor keyed ref */ | 
 | 		if (ret > 0) { | 
 | 			ret = -ENOENT; | 
 | 			goto release; | 
 | 		} | 
 | 		if (ret < 0) | 
 | 			goto release; | 
 |  | 
 | 		btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, | 
 | 				path->slots[0]); | 
 | 		if (iter->cur_key.objectid != bytenr || | 
 | 		    (iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY && | 
 | 		     iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY)) { | 
 | 			ret = -ENOENT; | 
 | 			goto release; | 
 | 		} | 
 | 		iter->cur_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0], | 
 | 							   path->slots[0]); | 
 | 		iter->item_ptr = iter->cur_ptr; | 
 | 		iter->end_ptr = (u32)(iter->item_ptr + btrfs_item_size_nr( | 
 | 				      path->nodes[0], path->slots[0])); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | release: | 
 | 	btrfs_backref_iter_release(iter); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Go to the next backref item of current bytenr, can be either inlined or | 
 |  * keyed. | 
 |  * | 
 |  * Caller needs to check whether it's inline ref or not by iter->cur_key. | 
 |  * | 
 |  * Return 0 if we get next backref without problem. | 
 |  * Return >0 if there is no extra backref for this bytenr. | 
 |  * Return <0 if there is something wrong happened. | 
 |  */ | 
 | int btrfs_backref_iter_next(struct btrfs_backref_iter *iter) | 
 | { | 
 | 	struct extent_buffer *eb = btrfs_backref_get_eb(iter); | 
 | 	struct btrfs_path *path = iter->path; | 
 | 	struct btrfs_extent_inline_ref *iref; | 
 | 	int ret; | 
 | 	u32 size; | 
 |  | 
 | 	if (btrfs_backref_iter_is_inline_ref(iter)) { | 
 | 		/* We're still inside the inline refs */ | 
 | 		ASSERT(iter->cur_ptr < iter->end_ptr); | 
 |  | 
 | 		if (btrfs_backref_has_tree_block_info(iter)) { | 
 | 			/* First tree block info */ | 
 | 			size = sizeof(struct btrfs_tree_block_info); | 
 | 		} else { | 
 | 			/* Use inline ref type to determine the size */ | 
 | 			int type; | 
 |  | 
 | 			iref = (struct btrfs_extent_inline_ref *) | 
 | 				((unsigned long)iter->cur_ptr); | 
 | 			type = btrfs_extent_inline_ref_type(eb, iref); | 
 |  | 
 | 			size = btrfs_extent_inline_ref_size(type); | 
 | 		} | 
 | 		iter->cur_ptr += size; | 
 | 		if (iter->cur_ptr < iter->end_ptr) | 
 | 			return 0; | 
 |  | 
 | 		/* All inline items iterated, fall through */ | 
 | 	} | 
 |  | 
 | 	/* We're at keyed items, there is no inline item, go to the next one */ | 
 | 	ret = btrfs_next_item(iter->fs_info->extent_root, iter->path); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, path->slots[0]); | 
 | 	if (iter->cur_key.objectid != iter->bytenr || | 
 | 	    (iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY && | 
 | 	     iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY)) | 
 | 		return 1; | 
 | 	iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0], | 
 | 					path->slots[0]); | 
 | 	iter->cur_ptr = iter->item_ptr; | 
 | 	iter->end_ptr = iter->item_ptr + (u32)btrfs_item_size_nr(path->nodes[0], | 
 | 						path->slots[0]); | 
 | 	return 0; | 
 | } | 
 |  | 
 | void btrfs_backref_init_cache(struct btrfs_fs_info *fs_info, | 
 | 			      struct btrfs_backref_cache *cache, int is_reloc) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	cache->rb_root = RB_ROOT; | 
 | 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) | 
 | 		INIT_LIST_HEAD(&cache->pending[i]); | 
 | 	INIT_LIST_HEAD(&cache->changed); | 
 | 	INIT_LIST_HEAD(&cache->detached); | 
 | 	INIT_LIST_HEAD(&cache->leaves); | 
 | 	INIT_LIST_HEAD(&cache->pending_edge); | 
 | 	INIT_LIST_HEAD(&cache->useless_node); | 
 | 	cache->fs_info = fs_info; | 
 | 	cache->is_reloc = is_reloc; | 
 | } | 
 |  | 
 | struct btrfs_backref_node *btrfs_backref_alloc_node( | 
 | 		struct btrfs_backref_cache *cache, u64 bytenr, int level) | 
 | { | 
 | 	struct btrfs_backref_node *node; | 
 |  | 
 | 	ASSERT(level >= 0 && level < BTRFS_MAX_LEVEL); | 
 | 	node = kzalloc(sizeof(*node), GFP_NOFS); | 
 | 	if (!node) | 
 | 		return node; | 
 |  | 
 | 	INIT_LIST_HEAD(&node->list); | 
 | 	INIT_LIST_HEAD(&node->upper); | 
 | 	INIT_LIST_HEAD(&node->lower); | 
 | 	RB_CLEAR_NODE(&node->rb_node); | 
 | 	cache->nr_nodes++; | 
 | 	node->level = level; | 
 | 	node->bytenr = bytenr; | 
 |  | 
 | 	return node; | 
 | } | 
 |  | 
 | struct btrfs_backref_edge *btrfs_backref_alloc_edge( | 
 | 		struct btrfs_backref_cache *cache) | 
 | { | 
 | 	struct btrfs_backref_edge *edge; | 
 |  | 
 | 	edge = kzalloc(sizeof(*edge), GFP_NOFS); | 
 | 	if (edge) | 
 | 		cache->nr_edges++; | 
 | 	return edge; | 
 | } | 
 |  | 
 | /* | 
 |  * Drop the backref node from cache, also cleaning up all its | 
 |  * upper edges and any uncached nodes in the path. | 
 |  * | 
 |  * This cleanup happens bottom up, thus the node should either | 
 |  * be the lowest node in the cache or a detached node. | 
 |  */ | 
 | void btrfs_backref_cleanup_node(struct btrfs_backref_cache *cache, | 
 | 				struct btrfs_backref_node *node) | 
 | { | 
 | 	struct btrfs_backref_node *upper; | 
 | 	struct btrfs_backref_edge *edge; | 
 |  | 
 | 	if (!node) | 
 | 		return; | 
 |  | 
 | 	BUG_ON(!node->lowest && !node->detached); | 
 | 	while (!list_empty(&node->upper)) { | 
 | 		edge = list_entry(node->upper.next, struct btrfs_backref_edge, | 
 | 				  list[LOWER]); | 
 | 		upper = edge->node[UPPER]; | 
 | 		list_del(&edge->list[LOWER]); | 
 | 		list_del(&edge->list[UPPER]); | 
 | 		btrfs_backref_free_edge(cache, edge); | 
 |  | 
 | 		if (RB_EMPTY_NODE(&upper->rb_node)) { | 
 | 			BUG_ON(!list_empty(&node->upper)); | 
 | 			btrfs_backref_drop_node(cache, node); | 
 | 			node = upper; | 
 | 			node->lowest = 1; | 
 | 			continue; | 
 | 		} | 
 | 		/* | 
 | 		 * Add the node to leaf node list if no other child block | 
 | 		 * cached. | 
 | 		 */ | 
 | 		if (list_empty(&upper->lower)) { | 
 | 			list_add_tail(&upper->lower, &cache->leaves); | 
 | 			upper->lowest = 1; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	btrfs_backref_drop_node(cache, node); | 
 | } | 
 |  | 
 | /* | 
 |  * Release all nodes/edges from current cache | 
 |  */ | 
 | void btrfs_backref_release_cache(struct btrfs_backref_cache *cache) | 
 | { | 
 | 	struct btrfs_backref_node *node; | 
 | 	int i; | 
 |  | 
 | 	while (!list_empty(&cache->detached)) { | 
 | 		node = list_entry(cache->detached.next, | 
 | 				  struct btrfs_backref_node, list); | 
 | 		btrfs_backref_cleanup_node(cache, node); | 
 | 	} | 
 |  | 
 | 	while (!list_empty(&cache->leaves)) { | 
 | 		node = list_entry(cache->leaves.next, | 
 | 				  struct btrfs_backref_node, lower); | 
 | 		btrfs_backref_cleanup_node(cache, node); | 
 | 	} | 
 |  | 
 | 	cache->last_trans = 0; | 
 |  | 
 | 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) | 
 | 		ASSERT(list_empty(&cache->pending[i])); | 
 | 	ASSERT(list_empty(&cache->pending_edge)); | 
 | 	ASSERT(list_empty(&cache->useless_node)); | 
 | 	ASSERT(list_empty(&cache->changed)); | 
 | 	ASSERT(list_empty(&cache->detached)); | 
 | 	ASSERT(RB_EMPTY_ROOT(&cache->rb_root)); | 
 | 	ASSERT(!cache->nr_nodes); | 
 | 	ASSERT(!cache->nr_edges); | 
 | } | 
 |  | 
 | /* | 
 |  * Handle direct tree backref | 
 |  * | 
 |  * Direct tree backref means, the backref item shows its parent bytenr | 
 |  * directly. This is for SHARED_BLOCK_REF backref (keyed or inlined). | 
 |  * | 
 |  * @ref_key:	The converted backref key. | 
 |  *		For keyed backref, it's the item key. | 
 |  *		For inlined backref, objectid is the bytenr, | 
 |  *		type is btrfs_inline_ref_type, offset is | 
 |  *		btrfs_inline_ref_offset. | 
 |  */ | 
 | static int handle_direct_tree_backref(struct btrfs_backref_cache *cache, | 
 | 				      struct btrfs_key *ref_key, | 
 | 				      struct btrfs_backref_node *cur) | 
 | { | 
 | 	struct btrfs_backref_edge *edge; | 
 | 	struct btrfs_backref_node *upper; | 
 | 	struct rb_node *rb_node; | 
 |  | 
 | 	ASSERT(ref_key->type == BTRFS_SHARED_BLOCK_REF_KEY); | 
 |  | 
 | 	/* Only reloc root uses backref pointing to itself */ | 
 | 	if (ref_key->objectid == ref_key->offset) { | 
 | 		struct btrfs_root *root; | 
 |  | 
 | 		cur->is_reloc_root = 1; | 
 | 		/* Only reloc backref cache cares about a specific root */ | 
 | 		if (cache->is_reloc) { | 
 | 			root = find_reloc_root(cache->fs_info, cur->bytenr); | 
 | 			if (WARN_ON(!root)) | 
 | 				return -ENOENT; | 
 | 			cur->root = root; | 
 | 		} else { | 
 | 			/* | 
 | 			 * For generic purpose backref cache, reloc root node | 
 | 			 * is useless. | 
 | 			 */ | 
 | 			list_add(&cur->list, &cache->useless_node); | 
 | 		} | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	edge = btrfs_backref_alloc_edge(cache); | 
 | 	if (!edge) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	rb_node = rb_simple_search(&cache->rb_root, ref_key->offset); | 
 | 	if (!rb_node) { | 
 | 		/* Parent node not yet cached */ | 
 | 		upper = btrfs_backref_alloc_node(cache, ref_key->offset, | 
 | 					   cur->level + 1); | 
 | 		if (!upper) { | 
 | 			btrfs_backref_free_edge(cache, edge); | 
 | 			return -ENOMEM; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 *  Backrefs for the upper level block isn't cached, add the | 
 | 		 *  block to pending list | 
 | 		 */ | 
 | 		list_add_tail(&edge->list[UPPER], &cache->pending_edge); | 
 | 	} else { | 
 | 		/* Parent node already cached */ | 
 | 		upper = rb_entry(rb_node, struct btrfs_backref_node, rb_node); | 
 | 		ASSERT(upper->checked); | 
 | 		INIT_LIST_HEAD(&edge->list[UPPER]); | 
 | 	} | 
 | 	btrfs_backref_link_edge(edge, cur, upper, LINK_LOWER); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Handle indirect tree backref | 
 |  * | 
 |  * Indirect tree backref means, we only know which tree the node belongs to. | 
 |  * We still need to do a tree search to find out the parents. This is for | 
 |  * TREE_BLOCK_REF backref (keyed or inlined). | 
 |  * | 
 |  * @ref_key:	The same as @ref_key in  handle_direct_tree_backref() | 
 |  * @tree_key:	The first key of this tree block. | 
 |  * @path:	A clean (released) path, to avoid allocating path everytime | 
 |  *		the function get called. | 
 |  */ | 
 | static int handle_indirect_tree_backref(struct btrfs_backref_cache *cache, | 
 | 					struct btrfs_path *path, | 
 | 					struct btrfs_key *ref_key, | 
 | 					struct btrfs_key *tree_key, | 
 | 					struct btrfs_backref_node *cur) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = cache->fs_info; | 
 | 	struct btrfs_backref_node *upper; | 
 | 	struct btrfs_backref_node *lower; | 
 | 	struct btrfs_backref_edge *edge; | 
 | 	struct extent_buffer *eb; | 
 | 	struct btrfs_root *root; | 
 | 	struct rb_node *rb_node; | 
 | 	int level; | 
 | 	bool need_check = true; | 
 | 	int ret; | 
 |  | 
 | 	root = btrfs_get_fs_root(fs_info, ref_key->offset, false); | 
 | 	if (IS_ERR(root)) | 
 | 		return PTR_ERR(root); | 
 | 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) | 
 | 		cur->cowonly = 1; | 
 |  | 
 | 	if (btrfs_root_level(&root->root_item) == cur->level) { | 
 | 		/* Tree root */ | 
 | 		ASSERT(btrfs_root_bytenr(&root->root_item) == cur->bytenr); | 
 | 		/* | 
 | 		 * For reloc backref cache, we may ignore reloc root.  But for | 
 | 		 * general purpose backref cache, we can't rely on | 
 | 		 * btrfs_should_ignore_reloc_root() as it may conflict with | 
 | 		 * current running relocation and lead to missing root. | 
 | 		 * | 
 | 		 * For general purpose backref cache, reloc root detection is | 
 | 		 * completely relying on direct backref (key->offset is parent | 
 | 		 * bytenr), thus only do such check for reloc cache. | 
 | 		 */ | 
 | 		if (btrfs_should_ignore_reloc_root(root) && cache->is_reloc) { | 
 | 			btrfs_put_root(root); | 
 | 			list_add(&cur->list, &cache->useless_node); | 
 | 		} else { | 
 | 			cur->root = root; | 
 | 		} | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	level = cur->level + 1; | 
 |  | 
 | 	/* Search the tree to find parent blocks referring to the block */ | 
 | 	path->search_commit_root = 1; | 
 | 	path->skip_locking = 1; | 
 | 	path->lowest_level = level; | 
 | 	ret = btrfs_search_slot(NULL, root, tree_key, path, 0, 0); | 
 | 	path->lowest_level = 0; | 
 | 	if (ret < 0) { | 
 | 		btrfs_put_root(root); | 
 | 		return ret; | 
 | 	} | 
 | 	if (ret > 0 && path->slots[level] > 0) | 
 | 		path->slots[level]--; | 
 |  | 
 | 	eb = path->nodes[level]; | 
 | 	if (btrfs_node_blockptr(eb, path->slots[level]) != cur->bytenr) { | 
 | 		btrfs_err(fs_info, | 
 | "couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)", | 
 | 			  cur->bytenr, level - 1, root->root_key.objectid, | 
 | 			  tree_key->objectid, tree_key->type, tree_key->offset); | 
 | 		btrfs_put_root(root); | 
 | 		ret = -ENOENT; | 
 | 		goto out; | 
 | 	} | 
 | 	lower = cur; | 
 |  | 
 | 	/* Add all nodes and edges in the path */ | 
 | 	for (; level < BTRFS_MAX_LEVEL; level++) { | 
 | 		if (!path->nodes[level]) { | 
 | 			ASSERT(btrfs_root_bytenr(&root->root_item) == | 
 | 			       lower->bytenr); | 
 | 			/* Same as previous should_ignore_reloc_root() call */ | 
 | 			if (btrfs_should_ignore_reloc_root(root) && | 
 | 			    cache->is_reloc) { | 
 | 				btrfs_put_root(root); | 
 | 				list_add(&lower->list, &cache->useless_node); | 
 | 			} else { | 
 | 				lower->root = root; | 
 | 			} | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		edge = btrfs_backref_alloc_edge(cache); | 
 | 		if (!edge) { | 
 | 			btrfs_put_root(root); | 
 | 			ret = -ENOMEM; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		eb = path->nodes[level]; | 
 | 		rb_node = rb_simple_search(&cache->rb_root, eb->start); | 
 | 		if (!rb_node) { | 
 | 			upper = btrfs_backref_alloc_node(cache, eb->start, | 
 | 							 lower->level + 1); | 
 | 			if (!upper) { | 
 | 				btrfs_put_root(root); | 
 | 				btrfs_backref_free_edge(cache, edge); | 
 | 				ret = -ENOMEM; | 
 | 				goto out; | 
 | 			} | 
 | 			upper->owner = btrfs_header_owner(eb); | 
 | 			if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) | 
 | 				upper->cowonly = 1; | 
 |  | 
 | 			/* | 
 | 			 * If we know the block isn't shared we can avoid | 
 | 			 * checking its backrefs. | 
 | 			 */ | 
 | 			if (btrfs_block_can_be_shared(root, eb)) | 
 | 				upper->checked = 0; | 
 | 			else | 
 | 				upper->checked = 1; | 
 |  | 
 | 			/* | 
 | 			 * Add the block to pending list if we need to check its | 
 | 			 * backrefs, we only do this once while walking up a | 
 | 			 * tree as we will catch anything else later on. | 
 | 			 */ | 
 | 			if (!upper->checked && need_check) { | 
 | 				need_check = false; | 
 | 				list_add_tail(&edge->list[UPPER], | 
 | 					      &cache->pending_edge); | 
 | 			} else { | 
 | 				if (upper->checked) | 
 | 					need_check = true; | 
 | 				INIT_LIST_HEAD(&edge->list[UPPER]); | 
 | 			} | 
 | 		} else { | 
 | 			upper = rb_entry(rb_node, struct btrfs_backref_node, | 
 | 					 rb_node); | 
 | 			ASSERT(upper->checked); | 
 | 			INIT_LIST_HEAD(&edge->list[UPPER]); | 
 | 			if (!upper->owner) | 
 | 				upper->owner = btrfs_header_owner(eb); | 
 | 		} | 
 | 		btrfs_backref_link_edge(edge, lower, upper, LINK_LOWER); | 
 |  | 
 | 		if (rb_node) { | 
 | 			btrfs_put_root(root); | 
 | 			break; | 
 | 		} | 
 | 		lower = upper; | 
 | 		upper = NULL; | 
 | 	} | 
 | out: | 
 | 	btrfs_release_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Add backref node @cur into @cache. | 
 |  * | 
 |  * NOTE: Even if the function returned 0, @cur is not yet cached as its upper | 
 |  *	 links aren't yet bi-directional. Needs to finish such links. | 
 |  *	 Use btrfs_backref_finish_upper_links() to finish such linkage. | 
 |  * | 
 |  * @path:	Released path for indirect tree backref lookup | 
 |  * @iter:	Released backref iter for extent tree search | 
 |  * @node_key:	The first key of the tree block | 
 |  */ | 
 | int btrfs_backref_add_tree_node(struct btrfs_backref_cache *cache, | 
 | 				struct btrfs_path *path, | 
 | 				struct btrfs_backref_iter *iter, | 
 | 				struct btrfs_key *node_key, | 
 | 				struct btrfs_backref_node *cur) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = cache->fs_info; | 
 | 	struct btrfs_backref_edge *edge; | 
 | 	struct btrfs_backref_node *exist; | 
 | 	int ret; | 
 |  | 
 | 	ret = btrfs_backref_iter_start(iter, cur->bytenr); | 
 | 	if (ret < 0) | 
 | 		return ret; | 
 | 	/* | 
 | 	 * We skip the first btrfs_tree_block_info, as we don't use the key | 
 | 	 * stored in it, but fetch it from the tree block | 
 | 	 */ | 
 | 	if (btrfs_backref_has_tree_block_info(iter)) { | 
 | 		ret = btrfs_backref_iter_next(iter); | 
 | 		if (ret < 0) | 
 | 			goto out; | 
 | 		/* No extra backref? This means the tree block is corrupted */ | 
 | 		if (ret > 0) { | 
 | 			ret = -EUCLEAN; | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 | 	WARN_ON(cur->checked); | 
 | 	if (!list_empty(&cur->upper)) { | 
 | 		/* | 
 | 		 * The backref was added previously when processing backref of | 
 | 		 * type BTRFS_TREE_BLOCK_REF_KEY | 
 | 		 */ | 
 | 		ASSERT(list_is_singular(&cur->upper)); | 
 | 		edge = list_entry(cur->upper.next, struct btrfs_backref_edge, | 
 | 				  list[LOWER]); | 
 | 		ASSERT(list_empty(&edge->list[UPPER])); | 
 | 		exist = edge->node[UPPER]; | 
 | 		/* | 
 | 		 * Add the upper level block to pending list if we need check | 
 | 		 * its backrefs | 
 | 		 */ | 
 | 		if (!exist->checked) | 
 | 			list_add_tail(&edge->list[UPPER], &cache->pending_edge); | 
 | 	} else { | 
 | 		exist = NULL; | 
 | 	} | 
 |  | 
 | 	for (; ret == 0; ret = btrfs_backref_iter_next(iter)) { | 
 | 		struct extent_buffer *eb; | 
 | 		struct btrfs_key key; | 
 | 		int type; | 
 |  | 
 | 		cond_resched(); | 
 | 		eb = btrfs_backref_get_eb(iter); | 
 |  | 
 | 		key.objectid = iter->bytenr; | 
 | 		if (btrfs_backref_iter_is_inline_ref(iter)) { | 
 | 			struct btrfs_extent_inline_ref *iref; | 
 |  | 
 | 			/* Update key for inline backref */ | 
 | 			iref = (struct btrfs_extent_inline_ref *) | 
 | 				((unsigned long)iter->cur_ptr); | 
 | 			type = btrfs_get_extent_inline_ref_type(eb, iref, | 
 | 							BTRFS_REF_TYPE_BLOCK); | 
 | 			if (type == BTRFS_REF_TYPE_INVALID) { | 
 | 				ret = -EUCLEAN; | 
 | 				goto out; | 
 | 			} | 
 | 			key.type = type; | 
 | 			key.offset = btrfs_extent_inline_ref_offset(eb, iref); | 
 | 		} else { | 
 | 			key.type = iter->cur_key.type; | 
 | 			key.offset = iter->cur_key.offset; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Parent node found and matches current inline ref, no need to | 
 | 		 * rebuild this node for this inline ref | 
 | 		 */ | 
 | 		if (exist && | 
 | 		    ((key.type == BTRFS_TREE_BLOCK_REF_KEY && | 
 | 		      exist->owner == key.offset) || | 
 | 		     (key.type == BTRFS_SHARED_BLOCK_REF_KEY && | 
 | 		      exist->bytenr == key.offset))) { | 
 | 			exist = NULL; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* SHARED_BLOCK_REF means key.offset is the parent bytenr */ | 
 | 		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) { | 
 | 			ret = handle_direct_tree_backref(cache, &key, cur); | 
 | 			if (ret < 0) | 
 | 				goto out; | 
 | 			continue; | 
 | 		} else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) { | 
 | 			ret = -EINVAL; | 
 | 			btrfs_print_v0_err(fs_info); | 
 | 			btrfs_handle_fs_error(fs_info, ret, NULL); | 
 | 			goto out; | 
 | 		} else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) { | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref offset | 
 | 		 * means the root objectid. We need to search the tree to get | 
 | 		 * its parent bytenr. | 
 | 		 */ | 
 | 		ret = handle_indirect_tree_backref(cache, path, &key, node_key, | 
 | 						   cur); | 
 | 		if (ret < 0) | 
 | 			goto out; | 
 | 	} | 
 | 	ret = 0; | 
 | 	cur->checked = 1; | 
 | 	WARN_ON(exist); | 
 | out: | 
 | 	btrfs_backref_iter_release(iter); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Finish the upwards linkage created by btrfs_backref_add_tree_node() | 
 |  */ | 
 | int btrfs_backref_finish_upper_links(struct btrfs_backref_cache *cache, | 
 | 				     struct btrfs_backref_node *start) | 
 | { | 
 | 	struct list_head *useless_node = &cache->useless_node; | 
 | 	struct btrfs_backref_edge *edge; | 
 | 	struct rb_node *rb_node; | 
 | 	LIST_HEAD(pending_edge); | 
 |  | 
 | 	ASSERT(start->checked); | 
 |  | 
 | 	/* Insert this node to cache if it's not COW-only */ | 
 | 	if (!start->cowonly) { | 
 | 		rb_node = rb_simple_insert(&cache->rb_root, start->bytenr, | 
 | 					   &start->rb_node); | 
 | 		if (rb_node) | 
 | 			btrfs_backref_panic(cache->fs_info, start->bytenr, | 
 | 					    -EEXIST); | 
 | 		list_add_tail(&start->lower, &cache->leaves); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Use breadth first search to iterate all related edges. | 
 | 	 * | 
 | 	 * The starting points are all the edges of this node | 
 | 	 */ | 
 | 	list_for_each_entry(edge, &start->upper, list[LOWER]) | 
 | 		list_add_tail(&edge->list[UPPER], &pending_edge); | 
 |  | 
 | 	while (!list_empty(&pending_edge)) { | 
 | 		struct btrfs_backref_node *upper; | 
 | 		struct btrfs_backref_node *lower; | 
 | 		struct rb_node *rb_node; | 
 |  | 
 | 		edge = list_first_entry(&pending_edge, | 
 | 				struct btrfs_backref_edge, list[UPPER]); | 
 | 		list_del_init(&edge->list[UPPER]); | 
 | 		upper = edge->node[UPPER]; | 
 | 		lower = edge->node[LOWER]; | 
 |  | 
 | 		/* Parent is detached, no need to keep any edges */ | 
 | 		if (upper->detached) { | 
 | 			list_del(&edge->list[LOWER]); | 
 | 			btrfs_backref_free_edge(cache, edge); | 
 |  | 
 | 			/* Lower node is orphan, queue for cleanup */ | 
 | 			if (list_empty(&lower->upper)) | 
 | 				list_add(&lower->list, useless_node); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * All new nodes added in current build_backref_tree() haven't | 
 | 		 * been linked to the cache rb tree. | 
 | 		 * So if we have upper->rb_node populated, this means a cache | 
 | 		 * hit. We only need to link the edge, as @upper and all its | 
 | 		 * parents have already been linked. | 
 | 		 */ | 
 | 		if (!RB_EMPTY_NODE(&upper->rb_node)) { | 
 | 			if (upper->lowest) { | 
 | 				list_del_init(&upper->lower); | 
 | 				upper->lowest = 0; | 
 | 			} | 
 |  | 
 | 			list_add_tail(&edge->list[UPPER], &upper->lower); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* Sanity check, we shouldn't have any unchecked nodes */ | 
 | 		if (!upper->checked) { | 
 | 			ASSERT(0); | 
 | 			return -EUCLEAN; | 
 | 		} | 
 |  | 
 | 		/* Sanity check, COW-only node has non-COW-only parent */ | 
 | 		if (start->cowonly != upper->cowonly) { | 
 | 			ASSERT(0); | 
 | 			return -EUCLEAN; | 
 | 		} | 
 |  | 
 | 		/* Only cache non-COW-only (subvolume trees) tree blocks */ | 
 | 		if (!upper->cowonly) { | 
 | 			rb_node = rb_simple_insert(&cache->rb_root, upper->bytenr, | 
 | 						   &upper->rb_node); | 
 | 			if (rb_node) { | 
 | 				btrfs_backref_panic(cache->fs_info, | 
 | 						upper->bytenr, -EEXIST); | 
 | 				return -EUCLEAN; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		list_add_tail(&edge->list[UPPER], &upper->lower); | 
 |  | 
 | 		/* | 
 | 		 * Also queue all the parent edges of this uncached node | 
 | 		 * to finish the upper linkage | 
 | 		 */ | 
 | 		list_for_each_entry(edge, &upper->upper, list[LOWER]) | 
 | 			list_add_tail(&edge->list[UPPER], &pending_edge); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | void btrfs_backref_error_cleanup(struct btrfs_backref_cache *cache, | 
 | 				 struct btrfs_backref_node *node) | 
 | { | 
 | 	struct btrfs_backref_node *lower; | 
 | 	struct btrfs_backref_node *upper; | 
 | 	struct btrfs_backref_edge *edge; | 
 |  | 
 | 	while (!list_empty(&cache->useless_node)) { | 
 | 		lower = list_first_entry(&cache->useless_node, | 
 | 				   struct btrfs_backref_node, list); | 
 | 		list_del_init(&lower->list); | 
 | 	} | 
 | 	while (!list_empty(&cache->pending_edge)) { | 
 | 		edge = list_first_entry(&cache->pending_edge, | 
 | 				struct btrfs_backref_edge, list[UPPER]); | 
 | 		list_del(&edge->list[UPPER]); | 
 | 		list_del(&edge->list[LOWER]); | 
 | 		lower = edge->node[LOWER]; | 
 | 		upper = edge->node[UPPER]; | 
 | 		btrfs_backref_free_edge(cache, edge); | 
 |  | 
 | 		/* | 
 | 		 * Lower is no longer linked to any upper backref nodes and | 
 | 		 * isn't in the cache, we can free it ourselves. | 
 | 		 */ | 
 | 		if (list_empty(&lower->upper) && | 
 | 		    RB_EMPTY_NODE(&lower->rb_node)) | 
 | 			list_add(&lower->list, &cache->useless_node); | 
 |  | 
 | 		if (!RB_EMPTY_NODE(&upper->rb_node)) | 
 | 			continue; | 
 |  | 
 | 		/* Add this guy's upper edges to the list to process */ | 
 | 		list_for_each_entry(edge, &upper->upper, list[LOWER]) | 
 | 			list_add_tail(&edge->list[UPPER], | 
 | 				      &cache->pending_edge); | 
 | 		if (list_empty(&upper->upper)) | 
 | 			list_add(&upper->list, &cache->useless_node); | 
 | 	} | 
 |  | 
 | 	while (!list_empty(&cache->useless_node)) { | 
 | 		lower = list_first_entry(&cache->useless_node, | 
 | 				   struct btrfs_backref_node, list); | 
 | 		list_del_init(&lower->list); | 
 | 		if (lower == node) | 
 | 			node = NULL; | 
 | 		btrfs_backref_free_node(cache, lower); | 
 | 	} | 
 |  | 
 | 	btrfs_backref_cleanup_node(cache, node); | 
 | 	ASSERT(list_empty(&cache->useless_node) && | 
 | 	       list_empty(&cache->pending_edge)); | 
 | } |