| // SPDX-License-Identifier: GPL-2.0-only | 
 | /* | 
 |  * efi.c - EFI subsystem | 
 |  * | 
 |  * Copyright (C) 2001,2003,2004 Dell <Matt_Domsch@dell.com> | 
 |  * Copyright (C) 2004 Intel Corporation <matthew.e.tolentino@intel.com> | 
 |  * Copyright (C) 2013 Tom Gundersen <teg@jklm.no> | 
 |  * | 
 |  * This code registers /sys/firmware/efi{,/efivars} when EFI is supported, | 
 |  * allowing the efivarfs to be mounted or the efivars module to be loaded. | 
 |  * The existance of /sys/firmware/efi may also be used by userspace to | 
 |  * determine that the system supports EFI. | 
 |  */ | 
 |  | 
 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
 |  | 
 | #include <linux/kobject.h> | 
 | #include <linux/module.h> | 
 | #include <linux/init.h> | 
 | #include <linux/debugfs.h> | 
 | #include <linux/device.h> | 
 | #include <linux/efi.h> | 
 | #include <linux/of.h> | 
 | #include <linux/io.h> | 
 | #include <linux/kexec.h> | 
 | #include <linux/platform_device.h> | 
 | #include <linux/random.h> | 
 | #include <linux/reboot.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/acpi.h> | 
 | #include <linux/ucs2_string.h> | 
 | #include <linux/memblock.h> | 
 | #include <linux/security.h> | 
 |  | 
 | #include <asm/early_ioremap.h> | 
 |  | 
 | struct efi __read_mostly efi = { | 
 | 	.runtime_supported_mask = EFI_RT_SUPPORTED_ALL, | 
 | 	.acpi			= EFI_INVALID_TABLE_ADDR, | 
 | 	.acpi20			= EFI_INVALID_TABLE_ADDR, | 
 | 	.smbios			= EFI_INVALID_TABLE_ADDR, | 
 | 	.smbios3		= EFI_INVALID_TABLE_ADDR, | 
 | 	.esrt			= EFI_INVALID_TABLE_ADDR, | 
 | 	.tpm_log		= EFI_INVALID_TABLE_ADDR, | 
 | 	.tpm_final_log		= EFI_INVALID_TABLE_ADDR, | 
 | }; | 
 | EXPORT_SYMBOL(efi); | 
 |  | 
 | unsigned long __ro_after_init efi_rng_seed = EFI_INVALID_TABLE_ADDR; | 
 | static unsigned long __initdata mem_reserve = EFI_INVALID_TABLE_ADDR; | 
 | static unsigned long __initdata rt_prop = EFI_INVALID_TABLE_ADDR; | 
 |  | 
 | struct mm_struct efi_mm = { | 
 | 	.mm_rb			= RB_ROOT, | 
 | 	.mm_users		= ATOMIC_INIT(2), | 
 | 	.mm_count		= ATOMIC_INIT(1), | 
 | 	MMAP_LOCK_INITIALIZER(efi_mm) | 
 | 	.page_table_lock	= __SPIN_LOCK_UNLOCKED(efi_mm.page_table_lock), | 
 | 	.mmlist			= LIST_HEAD_INIT(efi_mm.mmlist), | 
 | 	.cpu_bitmap		= { [BITS_TO_LONGS(NR_CPUS)] = 0}, | 
 | }; | 
 |  | 
 | struct workqueue_struct *efi_rts_wq; | 
 |  | 
 | static bool disable_runtime; | 
 | static int __init setup_noefi(char *arg) | 
 | { | 
 | 	disable_runtime = true; | 
 | 	return 0; | 
 | } | 
 | early_param("noefi", setup_noefi); | 
 |  | 
 | bool efi_runtime_disabled(void) | 
 | { | 
 | 	return disable_runtime; | 
 | } | 
 |  | 
 | bool __pure __efi_soft_reserve_enabled(void) | 
 | { | 
 | 	return !efi_enabled(EFI_MEM_NO_SOFT_RESERVE); | 
 | } | 
 |  | 
 | static int __init parse_efi_cmdline(char *str) | 
 | { | 
 | 	if (!str) { | 
 | 		pr_warn("need at least one option\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (parse_option_str(str, "debug")) | 
 | 		set_bit(EFI_DBG, &efi.flags); | 
 |  | 
 | 	if (parse_option_str(str, "noruntime")) | 
 | 		disable_runtime = true; | 
 |  | 
 | 	if (parse_option_str(str, "nosoftreserve")) | 
 | 		set_bit(EFI_MEM_NO_SOFT_RESERVE, &efi.flags); | 
 |  | 
 | 	return 0; | 
 | } | 
 | early_param("efi", parse_efi_cmdline); | 
 |  | 
 | struct kobject *efi_kobj; | 
 |  | 
 | /* | 
 |  * Let's not leave out systab information that snuck into | 
 |  * the efivars driver | 
 |  * Note, do not add more fields in systab sysfs file as it breaks sysfs | 
 |  * one value per file rule! | 
 |  */ | 
 | static ssize_t systab_show(struct kobject *kobj, | 
 | 			   struct kobj_attribute *attr, char *buf) | 
 | { | 
 | 	char *str = buf; | 
 |  | 
 | 	if (!kobj || !buf) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (efi.acpi20 != EFI_INVALID_TABLE_ADDR) | 
 | 		str += sprintf(str, "ACPI20=0x%lx\n", efi.acpi20); | 
 | 	if (efi.acpi != EFI_INVALID_TABLE_ADDR) | 
 | 		str += sprintf(str, "ACPI=0x%lx\n", efi.acpi); | 
 | 	/* | 
 | 	 * If both SMBIOS and SMBIOS3 entry points are implemented, the | 
 | 	 * SMBIOS3 entry point shall be preferred, so we list it first to | 
 | 	 * let applications stop parsing after the first match. | 
 | 	 */ | 
 | 	if (efi.smbios3 != EFI_INVALID_TABLE_ADDR) | 
 | 		str += sprintf(str, "SMBIOS3=0x%lx\n", efi.smbios3); | 
 | 	if (efi.smbios != EFI_INVALID_TABLE_ADDR) | 
 | 		str += sprintf(str, "SMBIOS=0x%lx\n", efi.smbios); | 
 |  | 
 | 	if (IS_ENABLED(CONFIG_IA64) || IS_ENABLED(CONFIG_X86)) | 
 | 		str = efi_systab_show_arch(str); | 
 |  | 
 | 	return str - buf; | 
 | } | 
 |  | 
 | static struct kobj_attribute efi_attr_systab = __ATTR_RO_MODE(systab, 0400); | 
 |  | 
 | static ssize_t fw_platform_size_show(struct kobject *kobj, | 
 | 				     struct kobj_attribute *attr, char *buf) | 
 | { | 
 | 	return sprintf(buf, "%d\n", efi_enabled(EFI_64BIT) ? 64 : 32); | 
 | } | 
 |  | 
 | extern __weak struct kobj_attribute efi_attr_fw_vendor; | 
 | extern __weak struct kobj_attribute efi_attr_runtime; | 
 | extern __weak struct kobj_attribute efi_attr_config_table; | 
 | static struct kobj_attribute efi_attr_fw_platform_size = | 
 | 	__ATTR_RO(fw_platform_size); | 
 |  | 
 | static struct attribute *efi_subsys_attrs[] = { | 
 | 	&efi_attr_systab.attr, | 
 | 	&efi_attr_fw_platform_size.attr, | 
 | 	&efi_attr_fw_vendor.attr, | 
 | 	&efi_attr_runtime.attr, | 
 | 	&efi_attr_config_table.attr, | 
 | 	NULL, | 
 | }; | 
 |  | 
 | umode_t __weak efi_attr_is_visible(struct kobject *kobj, struct attribute *attr, | 
 | 				   int n) | 
 | { | 
 | 	return attr->mode; | 
 | } | 
 |  | 
 | static const struct attribute_group efi_subsys_attr_group = { | 
 | 	.attrs = efi_subsys_attrs, | 
 | 	.is_visible = efi_attr_is_visible, | 
 | }; | 
 |  | 
 | static struct efivars generic_efivars; | 
 | static struct efivar_operations generic_ops; | 
 |  | 
 | static int generic_ops_register(void) | 
 | { | 
 | 	generic_ops.get_variable = efi.get_variable; | 
 | 	generic_ops.get_next_variable = efi.get_next_variable; | 
 | 	generic_ops.query_variable_store = efi_query_variable_store; | 
 |  | 
 | 	if (efi_rt_services_supported(EFI_RT_SUPPORTED_SET_VARIABLE)) { | 
 | 		generic_ops.set_variable = efi.set_variable; | 
 | 		generic_ops.set_variable_nonblocking = efi.set_variable_nonblocking; | 
 | 	} | 
 | 	return efivars_register(&generic_efivars, &generic_ops, efi_kobj); | 
 | } | 
 |  | 
 | static void generic_ops_unregister(void) | 
 | { | 
 | 	efivars_unregister(&generic_efivars); | 
 | } | 
 |  | 
 | #ifdef CONFIG_EFI_CUSTOM_SSDT_OVERLAYS | 
 | #define EFIVAR_SSDT_NAME_MAX	16 | 
 | static char efivar_ssdt[EFIVAR_SSDT_NAME_MAX] __initdata; | 
 | static int __init efivar_ssdt_setup(char *str) | 
 | { | 
 | 	int ret = security_locked_down(LOCKDOWN_ACPI_TABLES); | 
 |  | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	if (strlen(str) < sizeof(efivar_ssdt)) | 
 | 		memcpy(efivar_ssdt, str, strlen(str)); | 
 | 	else | 
 | 		pr_warn("efivar_ssdt: name too long: %s\n", str); | 
 | 	return 0; | 
 | } | 
 | __setup("efivar_ssdt=", efivar_ssdt_setup); | 
 |  | 
 | static __init int efivar_ssdt_iter(efi_char16_t *name, efi_guid_t vendor, | 
 | 				   unsigned long name_size, void *data) | 
 | { | 
 | 	struct efivar_entry *entry; | 
 | 	struct list_head *list = data; | 
 | 	char utf8_name[EFIVAR_SSDT_NAME_MAX]; | 
 | 	int limit = min_t(unsigned long, EFIVAR_SSDT_NAME_MAX, name_size); | 
 |  | 
 | 	ucs2_as_utf8(utf8_name, name, limit - 1); | 
 | 	if (strncmp(utf8_name, efivar_ssdt, limit) != 0) | 
 | 		return 0; | 
 |  | 
 | 	entry = kmalloc(sizeof(*entry), GFP_KERNEL); | 
 | 	if (!entry) | 
 | 		return 0; | 
 |  | 
 | 	memcpy(entry->var.VariableName, name, name_size); | 
 | 	memcpy(&entry->var.VendorGuid, &vendor, sizeof(efi_guid_t)); | 
 |  | 
 | 	efivar_entry_add(entry, list); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static __init int efivar_ssdt_load(void) | 
 | { | 
 | 	LIST_HEAD(entries); | 
 | 	struct efivar_entry *entry, *aux; | 
 | 	unsigned long size; | 
 | 	void *data; | 
 | 	int ret; | 
 |  | 
 | 	if (!efivar_ssdt[0]) | 
 | 		return 0; | 
 |  | 
 | 	ret = efivar_init(efivar_ssdt_iter, &entries, true, &entries); | 
 |  | 
 | 	list_for_each_entry_safe(entry, aux, &entries, list) { | 
 | 		pr_info("loading SSDT from variable %s-%pUl\n", efivar_ssdt, | 
 | 			&entry->var.VendorGuid); | 
 |  | 
 | 		list_del(&entry->list); | 
 |  | 
 | 		ret = efivar_entry_size(entry, &size); | 
 | 		if (ret) { | 
 | 			pr_err("failed to get var size\n"); | 
 | 			goto free_entry; | 
 | 		} | 
 |  | 
 | 		data = kmalloc(size, GFP_KERNEL); | 
 | 		if (!data) { | 
 | 			ret = -ENOMEM; | 
 | 			goto free_entry; | 
 | 		} | 
 |  | 
 | 		ret = efivar_entry_get(entry, NULL, &size, data); | 
 | 		if (ret) { | 
 | 			pr_err("failed to get var data\n"); | 
 | 			goto free_data; | 
 | 		} | 
 |  | 
 | 		ret = acpi_load_table(data, NULL); | 
 | 		if (ret) { | 
 | 			pr_err("failed to load table: %d\n", ret); | 
 | 			goto free_data; | 
 | 		} | 
 |  | 
 | 		goto free_entry; | 
 |  | 
 | free_data: | 
 | 		kfree(data); | 
 |  | 
 | free_entry: | 
 | 		kfree(entry); | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 | #else | 
 | static inline int efivar_ssdt_load(void) { return 0; } | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_DEBUG_FS | 
 |  | 
 | #define EFI_DEBUGFS_MAX_BLOBS 32 | 
 |  | 
 | static struct debugfs_blob_wrapper debugfs_blob[EFI_DEBUGFS_MAX_BLOBS]; | 
 |  | 
 | static void __init efi_debugfs_init(void) | 
 | { | 
 | 	struct dentry *efi_debugfs; | 
 | 	efi_memory_desc_t *md; | 
 | 	char name[32]; | 
 | 	int type_count[EFI_BOOT_SERVICES_DATA + 1] = {}; | 
 | 	int i = 0; | 
 |  | 
 | 	efi_debugfs = debugfs_create_dir("efi", NULL); | 
 | 	if (IS_ERR_OR_NULL(efi_debugfs)) | 
 | 		return; | 
 |  | 
 | 	for_each_efi_memory_desc(md) { | 
 | 		switch (md->type) { | 
 | 		case EFI_BOOT_SERVICES_CODE: | 
 | 			snprintf(name, sizeof(name), "boot_services_code%d", | 
 | 				 type_count[md->type]++); | 
 | 			break; | 
 | 		case EFI_BOOT_SERVICES_DATA: | 
 | 			snprintf(name, sizeof(name), "boot_services_data%d", | 
 | 				 type_count[md->type]++); | 
 | 			break; | 
 | 		default: | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (i >= EFI_DEBUGFS_MAX_BLOBS) { | 
 | 			pr_warn("More then %d EFI boot service segments, only showing first %d in debugfs\n", | 
 | 				EFI_DEBUGFS_MAX_BLOBS, EFI_DEBUGFS_MAX_BLOBS); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		debugfs_blob[i].size = md->num_pages << EFI_PAGE_SHIFT; | 
 | 		debugfs_blob[i].data = memremap(md->phys_addr, | 
 | 						debugfs_blob[i].size, | 
 | 						MEMREMAP_WB); | 
 | 		if (!debugfs_blob[i].data) | 
 | 			continue; | 
 |  | 
 | 		debugfs_create_blob(name, 0400, efi_debugfs, &debugfs_blob[i]); | 
 | 		i++; | 
 | 	} | 
 | } | 
 | #else | 
 | static inline void efi_debugfs_init(void) {} | 
 | #endif | 
 |  | 
 | /* | 
 |  * We register the efi subsystem with the firmware subsystem and the | 
 |  * efivars subsystem with the efi subsystem, if the system was booted with | 
 |  * EFI. | 
 |  */ | 
 | static int __init efisubsys_init(void) | 
 | { | 
 | 	int error; | 
 |  | 
 | 	if (!efi_enabled(EFI_RUNTIME_SERVICES)) | 
 | 		efi.runtime_supported_mask = 0; | 
 |  | 
 | 	if (!efi_enabled(EFI_BOOT)) | 
 | 		return 0; | 
 |  | 
 | 	if (efi.runtime_supported_mask) { | 
 | 		/* | 
 | 		 * Since we process only one efi_runtime_service() at a time, an | 
 | 		 * ordered workqueue (which creates only one execution context) | 
 | 		 * should suffice for all our needs. | 
 | 		 */ | 
 | 		efi_rts_wq = alloc_ordered_workqueue("efi_rts_wq", 0); | 
 | 		if (!efi_rts_wq) { | 
 | 			pr_err("Creating efi_rts_wq failed, EFI runtime services disabled.\n"); | 
 | 			clear_bit(EFI_RUNTIME_SERVICES, &efi.flags); | 
 | 			efi.runtime_supported_mask = 0; | 
 | 			return 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (efi_rt_services_supported(EFI_RT_SUPPORTED_TIME_SERVICES)) | 
 | 		platform_device_register_simple("rtc-efi", 0, NULL, 0); | 
 |  | 
 | 	/* We register the efi directory at /sys/firmware/efi */ | 
 | 	efi_kobj = kobject_create_and_add("efi", firmware_kobj); | 
 | 	if (!efi_kobj) { | 
 | 		pr_err("efi: Firmware registration failed.\n"); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	if (efi_rt_services_supported(EFI_RT_SUPPORTED_GET_VARIABLE | | 
 | 				      EFI_RT_SUPPORTED_GET_NEXT_VARIABLE_NAME)) { | 
 | 		efivar_ssdt_load(); | 
 | 		error = generic_ops_register(); | 
 | 		if (error) | 
 | 			goto err_put; | 
 | 		platform_device_register_simple("efivars", 0, NULL, 0); | 
 | 	} | 
 |  | 
 | 	error = sysfs_create_group(efi_kobj, &efi_subsys_attr_group); | 
 | 	if (error) { | 
 | 		pr_err("efi: Sysfs attribute export failed with error %d.\n", | 
 | 		       error); | 
 | 		goto err_unregister; | 
 | 	} | 
 |  | 
 | 	error = efi_runtime_map_init(efi_kobj); | 
 | 	if (error) | 
 | 		goto err_remove_group; | 
 |  | 
 | 	/* and the standard mountpoint for efivarfs */ | 
 | 	error = sysfs_create_mount_point(efi_kobj, "efivars"); | 
 | 	if (error) { | 
 | 		pr_err("efivars: Subsystem registration failed.\n"); | 
 | 		goto err_remove_group; | 
 | 	} | 
 |  | 
 | 	if (efi_enabled(EFI_DBG) && efi_enabled(EFI_PRESERVE_BS_REGIONS)) | 
 | 		efi_debugfs_init(); | 
 |  | 
 | 	return 0; | 
 |  | 
 | err_remove_group: | 
 | 	sysfs_remove_group(efi_kobj, &efi_subsys_attr_group); | 
 | err_unregister: | 
 | 	if (efi_rt_services_supported(EFI_RT_SUPPORTED_GET_VARIABLE | | 
 | 				      EFI_RT_SUPPORTED_GET_NEXT_VARIABLE_NAME)) | 
 | 		generic_ops_unregister(); | 
 | err_put: | 
 | 	kobject_put(efi_kobj); | 
 | 	return error; | 
 | } | 
 |  | 
 | subsys_initcall(efisubsys_init); | 
 |  | 
 | /* | 
 |  * Find the efi memory descriptor for a given physical address.  Given a | 
 |  * physical address, determine if it exists within an EFI Memory Map entry, | 
 |  * and if so, populate the supplied memory descriptor with the appropriate | 
 |  * data. | 
 |  */ | 
 | int efi_mem_desc_lookup(u64 phys_addr, efi_memory_desc_t *out_md) | 
 | { | 
 | 	efi_memory_desc_t *md; | 
 |  | 
 | 	if (!efi_enabled(EFI_MEMMAP)) { | 
 | 		pr_err_once("EFI_MEMMAP is not enabled.\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (!out_md) { | 
 | 		pr_err_once("out_md is null.\n"); | 
 | 		return -EINVAL; | 
 |         } | 
 |  | 
 | 	for_each_efi_memory_desc(md) { | 
 | 		u64 size; | 
 | 		u64 end; | 
 |  | 
 | 		size = md->num_pages << EFI_PAGE_SHIFT; | 
 | 		end = md->phys_addr + size; | 
 | 		if (phys_addr >= md->phys_addr && phys_addr < end) { | 
 | 			memcpy(out_md, md, sizeof(*out_md)); | 
 | 			return 0; | 
 | 		} | 
 | 	} | 
 | 	return -ENOENT; | 
 | } | 
 |  | 
 | /* | 
 |  * Calculate the highest address of an efi memory descriptor. | 
 |  */ | 
 | u64 __init efi_mem_desc_end(efi_memory_desc_t *md) | 
 | { | 
 | 	u64 size = md->num_pages << EFI_PAGE_SHIFT; | 
 | 	u64 end = md->phys_addr + size; | 
 | 	return end; | 
 | } | 
 |  | 
 | void __init __weak efi_arch_mem_reserve(phys_addr_t addr, u64 size) {} | 
 |  | 
 | /** | 
 |  * efi_mem_reserve - Reserve an EFI memory region | 
 |  * @addr: Physical address to reserve | 
 |  * @size: Size of reservation | 
 |  * | 
 |  * Mark a region as reserved from general kernel allocation and | 
 |  * prevent it being released by efi_free_boot_services(). | 
 |  * | 
 |  * This function should be called drivers once they've parsed EFI | 
 |  * configuration tables to figure out where their data lives, e.g. | 
 |  * efi_esrt_init(). | 
 |  */ | 
 | void __init efi_mem_reserve(phys_addr_t addr, u64 size) | 
 | { | 
 | 	if (!memblock_is_region_reserved(addr, size)) | 
 | 		memblock_reserve(addr, size); | 
 |  | 
 | 	/* | 
 | 	 * Some architectures (x86) reserve all boot services ranges | 
 | 	 * until efi_free_boot_services() because of buggy firmware | 
 | 	 * implementations. This means the above memblock_reserve() is | 
 | 	 * superfluous on x86 and instead what it needs to do is | 
 | 	 * ensure the @start, @size is not freed. | 
 | 	 */ | 
 | 	efi_arch_mem_reserve(addr, size); | 
 | } | 
 |  | 
 | static const efi_config_table_type_t common_tables[] __initconst = { | 
 | 	{ACPI_20_TABLE_GUID,			&efi.acpi20,		"ACPI 2.0"	}, | 
 | 	{ACPI_TABLE_GUID,			&efi.acpi,		"ACPI"		}, | 
 | 	{SMBIOS_TABLE_GUID,			&efi.smbios,		"SMBIOS"	}, | 
 | 	{SMBIOS3_TABLE_GUID,			&efi.smbios3,		"SMBIOS 3.0"	}, | 
 | 	{EFI_SYSTEM_RESOURCE_TABLE_GUID,	&efi.esrt,		"ESRT"		}, | 
 | 	{EFI_MEMORY_ATTRIBUTES_TABLE_GUID,	&efi_mem_attr_table,	"MEMATTR"	}, | 
 | 	{LINUX_EFI_RANDOM_SEED_TABLE_GUID,	&efi_rng_seed,		"RNG"		}, | 
 | 	{LINUX_EFI_TPM_EVENT_LOG_GUID,		&efi.tpm_log,		"TPMEventLog"	}, | 
 | 	{LINUX_EFI_TPM_FINAL_LOG_GUID,		&efi.tpm_final_log,	"TPMFinalLog"	}, | 
 | 	{LINUX_EFI_MEMRESERVE_TABLE_GUID,	&mem_reserve,		"MEMRESERVE"	}, | 
 | 	{EFI_RT_PROPERTIES_TABLE_GUID,		&rt_prop,		"RTPROP"	}, | 
 | #ifdef CONFIG_EFI_RCI2_TABLE | 
 | 	{DELLEMC_EFI_RCI2_TABLE_GUID,		&rci2_table_phys			}, | 
 | #endif | 
 | 	{}, | 
 | }; | 
 |  | 
 | static __init int match_config_table(const efi_guid_t *guid, | 
 | 				     unsigned long table, | 
 | 				     const efi_config_table_type_t *table_types) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; efi_guidcmp(table_types[i].guid, NULL_GUID); i++) { | 
 | 		if (!efi_guidcmp(*guid, table_types[i].guid)) { | 
 | 			*(table_types[i].ptr) = table; | 
 | 			if (table_types[i].name[0]) | 
 | 				pr_cont("%s=0x%lx ", | 
 | 					table_types[i].name, table); | 
 | 			return 1; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int __init efi_config_parse_tables(const efi_config_table_t *config_tables, | 
 | 				   int count, | 
 | 				   const efi_config_table_type_t *arch_tables) | 
 | { | 
 | 	const efi_config_table_64_t *tbl64 = (void *)config_tables; | 
 | 	const efi_config_table_32_t *tbl32 = (void *)config_tables; | 
 | 	const efi_guid_t *guid; | 
 | 	unsigned long table; | 
 | 	int i; | 
 |  | 
 | 	pr_info(""); | 
 | 	for (i = 0; i < count; i++) { | 
 | 		if (!IS_ENABLED(CONFIG_X86)) { | 
 | 			guid = &config_tables[i].guid; | 
 | 			table = (unsigned long)config_tables[i].table; | 
 | 		} else if (efi_enabled(EFI_64BIT)) { | 
 | 			guid = &tbl64[i].guid; | 
 | 			table = tbl64[i].table; | 
 |  | 
 | 			if (IS_ENABLED(CONFIG_X86_32) && | 
 | 			    tbl64[i].table > U32_MAX) { | 
 | 				pr_cont("\n"); | 
 | 				pr_err("Table located above 4GB, disabling EFI.\n"); | 
 | 				return -EINVAL; | 
 | 			} | 
 | 		} else { | 
 | 			guid = &tbl32[i].guid; | 
 | 			table = tbl32[i].table; | 
 | 		} | 
 |  | 
 | 		if (!match_config_table(guid, table, common_tables) && arch_tables) | 
 | 			match_config_table(guid, table, arch_tables); | 
 | 	} | 
 | 	pr_cont("\n"); | 
 | 	set_bit(EFI_CONFIG_TABLES, &efi.flags); | 
 |  | 
 | 	if (efi_rng_seed != EFI_INVALID_TABLE_ADDR) { | 
 | 		struct linux_efi_random_seed *seed; | 
 | 		u32 size = 0; | 
 |  | 
 | 		seed = early_memremap(efi_rng_seed, sizeof(*seed)); | 
 | 		if (seed != NULL) { | 
 | 			size = READ_ONCE(seed->size); | 
 | 			early_memunmap(seed, sizeof(*seed)); | 
 | 		} else { | 
 | 			pr_err("Could not map UEFI random seed!\n"); | 
 | 		} | 
 | 		if (size > 0) { | 
 | 			seed = early_memremap(efi_rng_seed, | 
 | 					      sizeof(*seed) + size); | 
 | 			if (seed != NULL) { | 
 | 				pr_notice("seeding entropy pool\n"); | 
 | 				add_bootloader_randomness(seed->bits, size); | 
 | 				early_memunmap(seed, sizeof(*seed) + size); | 
 | 			} else { | 
 | 				pr_err("Could not map UEFI random seed!\n"); | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (!IS_ENABLED(CONFIG_X86_32) && efi_enabled(EFI_MEMMAP)) | 
 | 		efi_memattr_init(); | 
 |  | 
 | 	efi_tpm_eventlog_init(); | 
 |  | 
 | 	if (mem_reserve != EFI_INVALID_TABLE_ADDR) { | 
 | 		unsigned long prsv = mem_reserve; | 
 |  | 
 | 		while (prsv) { | 
 | 			struct linux_efi_memreserve *rsv; | 
 | 			u8 *p; | 
 |  | 
 | 			/* | 
 | 			 * Just map a full page: that is what we will get | 
 | 			 * anyway, and it permits us to map the entire entry | 
 | 			 * before knowing its size. | 
 | 			 */ | 
 | 			p = early_memremap(ALIGN_DOWN(prsv, PAGE_SIZE), | 
 | 					   PAGE_SIZE); | 
 | 			if (p == NULL) { | 
 | 				pr_err("Could not map UEFI memreserve entry!\n"); | 
 | 				return -ENOMEM; | 
 | 			} | 
 |  | 
 | 			rsv = (void *)(p + prsv % PAGE_SIZE); | 
 |  | 
 | 			/* reserve the entry itself */ | 
 | 			memblock_reserve(prsv, | 
 | 					 struct_size(rsv, entry, rsv->size)); | 
 |  | 
 | 			for (i = 0; i < atomic_read(&rsv->count); i++) { | 
 | 				memblock_reserve(rsv->entry[i].base, | 
 | 						 rsv->entry[i].size); | 
 | 			} | 
 |  | 
 | 			prsv = rsv->next; | 
 | 			early_memunmap(p, PAGE_SIZE); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (rt_prop != EFI_INVALID_TABLE_ADDR) { | 
 | 		efi_rt_properties_table_t *tbl; | 
 |  | 
 | 		tbl = early_memremap(rt_prop, sizeof(*tbl)); | 
 | 		if (tbl) { | 
 | 			efi.runtime_supported_mask &= tbl->runtime_services_supported; | 
 | 			early_memunmap(tbl, sizeof(*tbl)); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int __init efi_systab_check_header(const efi_table_hdr_t *systab_hdr, | 
 | 				   int min_major_version) | 
 | { | 
 | 	if (systab_hdr->signature != EFI_SYSTEM_TABLE_SIGNATURE) { | 
 | 		pr_err("System table signature incorrect!\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if ((systab_hdr->revision >> 16) < min_major_version) | 
 | 		pr_err("Warning: System table version %d.%02d, expected %d.00 or greater!\n", | 
 | 		       systab_hdr->revision >> 16, | 
 | 		       systab_hdr->revision & 0xffff, | 
 | 		       min_major_version); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | #ifndef CONFIG_IA64 | 
 | static const efi_char16_t *__init map_fw_vendor(unsigned long fw_vendor, | 
 | 						size_t size) | 
 | { | 
 | 	const efi_char16_t *ret; | 
 |  | 
 | 	ret = early_memremap_ro(fw_vendor, size); | 
 | 	if (!ret) | 
 | 		pr_err("Could not map the firmware vendor!\n"); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void __init unmap_fw_vendor(const void *fw_vendor, size_t size) | 
 | { | 
 | 	early_memunmap((void *)fw_vendor, size); | 
 | } | 
 | #else | 
 | #define map_fw_vendor(p, s)	__va(p) | 
 | #define unmap_fw_vendor(v, s) | 
 | #endif | 
 |  | 
 | void __init efi_systab_report_header(const efi_table_hdr_t *systab_hdr, | 
 | 				     unsigned long fw_vendor) | 
 | { | 
 | 	char vendor[100] = "unknown"; | 
 | 	const efi_char16_t *c16; | 
 | 	size_t i; | 
 |  | 
 | 	c16 = map_fw_vendor(fw_vendor, sizeof(vendor) * sizeof(efi_char16_t)); | 
 | 	if (c16) { | 
 | 		for (i = 0; i < sizeof(vendor) - 1 && c16[i]; ++i) | 
 | 			vendor[i] = c16[i]; | 
 | 		vendor[i] = '\0'; | 
 |  | 
 | 		unmap_fw_vendor(c16, sizeof(vendor) * sizeof(efi_char16_t)); | 
 | 	} | 
 |  | 
 | 	pr_info("EFI v%u.%.02u by %s\n", | 
 | 		systab_hdr->revision >> 16, | 
 | 		systab_hdr->revision & 0xffff, | 
 | 		vendor); | 
 | } | 
 |  | 
 | static __initdata char memory_type_name[][20] = { | 
 | 	"Reserved", | 
 | 	"Loader Code", | 
 | 	"Loader Data", | 
 | 	"Boot Code", | 
 | 	"Boot Data", | 
 | 	"Runtime Code", | 
 | 	"Runtime Data", | 
 | 	"Conventional Memory", | 
 | 	"Unusable Memory", | 
 | 	"ACPI Reclaim Memory", | 
 | 	"ACPI Memory NVS", | 
 | 	"Memory Mapped I/O", | 
 | 	"MMIO Port Space", | 
 | 	"PAL Code", | 
 | 	"Persistent Memory", | 
 | }; | 
 |  | 
 | char * __init efi_md_typeattr_format(char *buf, size_t size, | 
 | 				     const efi_memory_desc_t *md) | 
 | { | 
 | 	char *pos; | 
 | 	int type_len; | 
 | 	u64 attr; | 
 |  | 
 | 	pos = buf; | 
 | 	if (md->type >= ARRAY_SIZE(memory_type_name)) | 
 | 		type_len = snprintf(pos, size, "[type=%u", md->type); | 
 | 	else | 
 | 		type_len = snprintf(pos, size, "[%-*s", | 
 | 				    (int)(sizeof(memory_type_name[0]) - 1), | 
 | 				    memory_type_name[md->type]); | 
 | 	if (type_len >= size) | 
 | 		return buf; | 
 |  | 
 | 	pos += type_len; | 
 | 	size -= type_len; | 
 |  | 
 | 	attr = md->attribute; | 
 | 	if (attr & ~(EFI_MEMORY_UC | EFI_MEMORY_WC | EFI_MEMORY_WT | | 
 | 		     EFI_MEMORY_WB | EFI_MEMORY_UCE | EFI_MEMORY_RO | | 
 | 		     EFI_MEMORY_WP | EFI_MEMORY_RP | EFI_MEMORY_XP | | 
 | 		     EFI_MEMORY_NV | EFI_MEMORY_SP | | 
 | 		     EFI_MEMORY_RUNTIME | EFI_MEMORY_MORE_RELIABLE)) | 
 | 		snprintf(pos, size, "|attr=0x%016llx]", | 
 | 			 (unsigned long long)attr); | 
 | 	else | 
 | 		snprintf(pos, size, | 
 | 			 "|%3s|%2s|%2s|%2s|%2s|%2s|%2s|%2s|%3s|%2s|%2s|%2s|%2s]", | 
 | 			 attr & EFI_MEMORY_RUNTIME ? "RUN" : "", | 
 | 			 attr & EFI_MEMORY_MORE_RELIABLE ? "MR" : "", | 
 | 			 attr & EFI_MEMORY_SP      ? "SP"  : "", | 
 | 			 attr & EFI_MEMORY_NV      ? "NV"  : "", | 
 | 			 attr & EFI_MEMORY_XP      ? "XP"  : "", | 
 | 			 attr & EFI_MEMORY_RP      ? "RP"  : "", | 
 | 			 attr & EFI_MEMORY_WP      ? "WP"  : "", | 
 | 			 attr & EFI_MEMORY_RO      ? "RO"  : "", | 
 | 			 attr & EFI_MEMORY_UCE     ? "UCE" : "", | 
 | 			 attr & EFI_MEMORY_WB      ? "WB"  : "", | 
 | 			 attr & EFI_MEMORY_WT      ? "WT"  : "", | 
 | 			 attr & EFI_MEMORY_WC      ? "WC"  : "", | 
 | 			 attr & EFI_MEMORY_UC      ? "UC"  : ""); | 
 | 	return buf; | 
 | } | 
 |  | 
 | /* | 
 |  * IA64 has a funky EFI memory map that doesn't work the same way as | 
 |  * other architectures. | 
 |  */ | 
 | #ifndef CONFIG_IA64 | 
 | /* | 
 |  * efi_mem_attributes - lookup memmap attributes for physical address | 
 |  * @phys_addr: the physical address to lookup | 
 |  * | 
 |  * Search in the EFI memory map for the region covering | 
 |  * @phys_addr. Returns the EFI memory attributes if the region | 
 |  * was found in the memory map, 0 otherwise. | 
 |  */ | 
 | u64 efi_mem_attributes(unsigned long phys_addr) | 
 | { | 
 | 	efi_memory_desc_t *md; | 
 |  | 
 | 	if (!efi_enabled(EFI_MEMMAP)) | 
 | 		return 0; | 
 |  | 
 | 	for_each_efi_memory_desc(md) { | 
 | 		if ((md->phys_addr <= phys_addr) && | 
 | 		    (phys_addr < (md->phys_addr + | 
 | 		    (md->num_pages << EFI_PAGE_SHIFT)))) | 
 | 			return md->attribute; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * efi_mem_type - lookup memmap type for physical address | 
 |  * @phys_addr: the physical address to lookup | 
 |  * | 
 |  * Search in the EFI memory map for the region covering @phys_addr. | 
 |  * Returns the EFI memory type if the region was found in the memory | 
 |  * map, -EINVAL otherwise. | 
 |  */ | 
 | int efi_mem_type(unsigned long phys_addr) | 
 | { | 
 | 	const efi_memory_desc_t *md; | 
 |  | 
 | 	if (!efi_enabled(EFI_MEMMAP)) | 
 | 		return -ENOTSUPP; | 
 |  | 
 | 	for_each_efi_memory_desc(md) { | 
 | 		if ((md->phys_addr <= phys_addr) && | 
 | 		    (phys_addr < (md->phys_addr + | 
 | 				  (md->num_pages << EFI_PAGE_SHIFT)))) | 
 | 			return md->type; | 
 | 	} | 
 | 	return -EINVAL; | 
 | } | 
 | #endif | 
 |  | 
 | int efi_status_to_err(efi_status_t status) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	switch (status) { | 
 | 	case EFI_SUCCESS: | 
 | 		err = 0; | 
 | 		break; | 
 | 	case EFI_INVALID_PARAMETER: | 
 | 		err = -EINVAL; | 
 | 		break; | 
 | 	case EFI_OUT_OF_RESOURCES: | 
 | 		err = -ENOSPC; | 
 | 		break; | 
 | 	case EFI_DEVICE_ERROR: | 
 | 		err = -EIO; | 
 | 		break; | 
 | 	case EFI_WRITE_PROTECTED: | 
 | 		err = -EROFS; | 
 | 		break; | 
 | 	case EFI_SECURITY_VIOLATION: | 
 | 		err = -EACCES; | 
 | 		break; | 
 | 	case EFI_NOT_FOUND: | 
 | 		err = -ENOENT; | 
 | 		break; | 
 | 	case EFI_ABORTED: | 
 | 		err = -EINTR; | 
 | 		break; | 
 | 	default: | 
 | 		err = -EINVAL; | 
 | 	} | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static DEFINE_SPINLOCK(efi_mem_reserve_persistent_lock); | 
 | static struct linux_efi_memreserve *efi_memreserve_root __ro_after_init; | 
 |  | 
 | static int __init efi_memreserve_map_root(void) | 
 | { | 
 | 	if (mem_reserve == EFI_INVALID_TABLE_ADDR) | 
 | 		return -ENODEV; | 
 |  | 
 | 	efi_memreserve_root = memremap(mem_reserve, | 
 | 				       sizeof(*efi_memreserve_root), | 
 | 				       MEMREMAP_WB); | 
 | 	if (WARN_ON_ONCE(!efi_memreserve_root)) | 
 | 		return -ENOMEM; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int efi_mem_reserve_iomem(phys_addr_t addr, u64 size) | 
 | { | 
 | 	struct resource *res, *parent; | 
 |  | 
 | 	res = kzalloc(sizeof(struct resource), GFP_ATOMIC); | 
 | 	if (!res) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	res->name	= "reserved"; | 
 | 	res->flags	= IORESOURCE_MEM; | 
 | 	res->start	= addr; | 
 | 	res->end	= addr + size - 1; | 
 |  | 
 | 	/* we expect a conflict with a 'System RAM' region */ | 
 | 	parent = request_resource_conflict(&iomem_resource, res); | 
 | 	return parent ? request_resource(parent, res) : 0; | 
 | } | 
 |  | 
 | int __ref efi_mem_reserve_persistent(phys_addr_t addr, u64 size) | 
 | { | 
 | 	struct linux_efi_memreserve *rsv; | 
 | 	unsigned long prsv; | 
 | 	int rc, index; | 
 |  | 
 | 	if (efi_memreserve_root == (void *)ULONG_MAX) | 
 | 		return -ENODEV; | 
 |  | 
 | 	if (!efi_memreserve_root) { | 
 | 		rc = efi_memreserve_map_root(); | 
 | 		if (rc) | 
 | 			return rc; | 
 | 	} | 
 |  | 
 | 	/* first try to find a slot in an existing linked list entry */ | 
 | 	for (prsv = efi_memreserve_root->next; prsv; prsv = rsv->next) { | 
 | 		rsv = memremap(prsv, sizeof(*rsv), MEMREMAP_WB); | 
 | 		index = atomic_fetch_add_unless(&rsv->count, 1, rsv->size); | 
 | 		if (index < rsv->size) { | 
 | 			rsv->entry[index].base = addr; | 
 | 			rsv->entry[index].size = size; | 
 |  | 
 | 			memunmap(rsv); | 
 | 			return efi_mem_reserve_iomem(addr, size); | 
 | 		} | 
 | 		memunmap(rsv); | 
 | 	} | 
 |  | 
 | 	/* no slot found - allocate a new linked list entry */ | 
 | 	rsv = (struct linux_efi_memreserve *)__get_free_page(GFP_ATOMIC); | 
 | 	if (!rsv) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	rc = efi_mem_reserve_iomem(__pa(rsv), SZ_4K); | 
 | 	if (rc) { | 
 | 		free_page((unsigned long)rsv); | 
 | 		return rc; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * The memremap() call above assumes that a linux_efi_memreserve entry | 
 | 	 * never crosses a page boundary, so let's ensure that this remains true | 
 | 	 * even when kexec'ing a 4k pages kernel from a >4k pages kernel, by | 
 | 	 * using SZ_4K explicitly in the size calculation below. | 
 | 	 */ | 
 | 	rsv->size = EFI_MEMRESERVE_COUNT(SZ_4K); | 
 | 	atomic_set(&rsv->count, 1); | 
 | 	rsv->entry[0].base = addr; | 
 | 	rsv->entry[0].size = size; | 
 |  | 
 | 	spin_lock(&efi_mem_reserve_persistent_lock); | 
 | 	rsv->next = efi_memreserve_root->next; | 
 | 	efi_memreserve_root->next = __pa(rsv); | 
 | 	spin_unlock(&efi_mem_reserve_persistent_lock); | 
 |  | 
 | 	return efi_mem_reserve_iomem(addr, size); | 
 | } | 
 |  | 
 | static int __init efi_memreserve_root_init(void) | 
 | { | 
 | 	if (efi_memreserve_root) | 
 | 		return 0; | 
 | 	if (efi_memreserve_map_root()) | 
 | 		efi_memreserve_root = (void *)ULONG_MAX; | 
 | 	return 0; | 
 | } | 
 | early_initcall(efi_memreserve_root_init); | 
 |  | 
 | #ifdef CONFIG_KEXEC | 
 | static int update_efi_random_seed(struct notifier_block *nb, | 
 | 				  unsigned long code, void *unused) | 
 | { | 
 | 	struct linux_efi_random_seed *seed; | 
 | 	u32 size = 0; | 
 |  | 
 | 	if (!kexec_in_progress) | 
 | 		return NOTIFY_DONE; | 
 |  | 
 | 	seed = memremap(efi_rng_seed, sizeof(*seed), MEMREMAP_WB); | 
 | 	if (seed != NULL) { | 
 | 		size = min(seed->size, EFI_RANDOM_SEED_SIZE); | 
 | 		memunmap(seed); | 
 | 	} else { | 
 | 		pr_err("Could not map UEFI random seed!\n"); | 
 | 	} | 
 | 	if (size > 0) { | 
 | 		seed = memremap(efi_rng_seed, sizeof(*seed) + size, | 
 | 				MEMREMAP_WB); | 
 | 		if (seed != NULL) { | 
 | 			seed->size = size; | 
 | 			get_random_bytes(seed->bits, seed->size); | 
 | 			memunmap(seed); | 
 | 		} else { | 
 | 			pr_err("Could not map UEFI random seed!\n"); | 
 | 		} | 
 | 	} | 
 | 	return NOTIFY_DONE; | 
 | } | 
 |  | 
 | static struct notifier_block efi_random_seed_nb = { | 
 | 	.notifier_call = update_efi_random_seed, | 
 | }; | 
 |  | 
 | static int __init register_update_efi_random_seed(void) | 
 | { | 
 | 	if (efi_rng_seed == EFI_INVALID_TABLE_ADDR) | 
 | 		return 0; | 
 | 	return register_reboot_notifier(&efi_random_seed_nb); | 
 | } | 
 | late_initcall(register_update_efi_random_seed); | 
 | #endif |