| // SPDX-License-Identifier: GPL-2.0+ | 
 | /* | 
 |  * page.c - buffer/page management specific to NILFS | 
 |  * | 
 |  * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation. | 
 |  * | 
 |  * Written by Ryusuke Konishi and Seiji Kihara. | 
 |  */ | 
 |  | 
 | #include <linux/pagemap.h> | 
 | #include <linux/writeback.h> | 
 | #include <linux/swap.h> | 
 | #include <linux/bitops.h> | 
 | #include <linux/page-flags.h> | 
 | #include <linux/list.h> | 
 | #include <linux/highmem.h> | 
 | #include <linux/pagevec.h> | 
 | #include <linux/gfp.h> | 
 | #include "nilfs.h" | 
 | #include "page.h" | 
 | #include "mdt.h" | 
 |  | 
 |  | 
 | #define NILFS_BUFFER_INHERENT_BITS					\ | 
 | 	(BIT(BH_Uptodate) | BIT(BH_Mapped) | BIT(BH_NILFS_Node) |	\ | 
 | 	 BIT(BH_NILFS_Volatile) | BIT(BH_NILFS_Checked)) | 
 |  | 
 | static struct buffer_head * | 
 | __nilfs_get_page_block(struct page *page, unsigned long block, pgoff_t index, | 
 | 		       int blkbits, unsigned long b_state) | 
 |  | 
 | { | 
 | 	unsigned long first_block; | 
 | 	struct buffer_head *bh; | 
 |  | 
 | 	if (!page_has_buffers(page)) | 
 | 		create_empty_buffers(page, 1 << blkbits, b_state); | 
 |  | 
 | 	first_block = (unsigned long)index << (PAGE_SHIFT - blkbits); | 
 | 	bh = nilfs_page_get_nth_block(page, block - first_block); | 
 |  | 
 | 	touch_buffer(bh); | 
 | 	wait_on_buffer(bh); | 
 | 	return bh; | 
 | } | 
 |  | 
 | struct buffer_head *nilfs_grab_buffer(struct inode *inode, | 
 | 				      struct address_space *mapping, | 
 | 				      unsigned long blkoff, | 
 | 				      unsigned long b_state) | 
 | { | 
 | 	int blkbits = inode->i_blkbits; | 
 | 	pgoff_t index = blkoff >> (PAGE_SHIFT - blkbits); | 
 | 	struct page *page; | 
 | 	struct buffer_head *bh; | 
 |  | 
 | 	page = grab_cache_page(mapping, index); | 
 | 	if (unlikely(!page)) | 
 | 		return NULL; | 
 |  | 
 | 	bh = __nilfs_get_page_block(page, blkoff, index, blkbits, b_state); | 
 | 	if (unlikely(!bh)) { | 
 | 		unlock_page(page); | 
 | 		put_page(page); | 
 | 		return NULL; | 
 | 	} | 
 | 	return bh; | 
 | } | 
 |  | 
 | /** | 
 |  * nilfs_forget_buffer - discard dirty state | 
 |  * @inode: owner inode of the buffer | 
 |  * @bh: buffer head of the buffer to be discarded | 
 |  */ | 
 | void nilfs_forget_buffer(struct buffer_head *bh) | 
 | { | 
 | 	struct page *page = bh->b_page; | 
 | 	const unsigned long clear_bits = | 
 | 		(BIT(BH_Uptodate) | BIT(BH_Dirty) | BIT(BH_Mapped) | | 
 | 		 BIT(BH_Async_Write) | BIT(BH_NILFS_Volatile) | | 
 | 		 BIT(BH_NILFS_Checked) | BIT(BH_NILFS_Redirected)); | 
 |  | 
 | 	lock_buffer(bh); | 
 | 	set_mask_bits(&bh->b_state, clear_bits, 0); | 
 | 	if (nilfs_page_buffers_clean(page)) | 
 | 		__nilfs_clear_page_dirty(page); | 
 |  | 
 | 	bh->b_blocknr = -1; | 
 | 	ClearPageUptodate(page); | 
 | 	ClearPageMappedToDisk(page); | 
 | 	unlock_buffer(bh); | 
 | 	brelse(bh); | 
 | } | 
 |  | 
 | /** | 
 |  * nilfs_copy_buffer -- copy buffer data and flags | 
 |  * @dbh: destination buffer | 
 |  * @sbh: source buffer | 
 |  */ | 
 | void nilfs_copy_buffer(struct buffer_head *dbh, struct buffer_head *sbh) | 
 | { | 
 | 	void *kaddr0, *kaddr1; | 
 | 	unsigned long bits; | 
 | 	struct page *spage = sbh->b_page, *dpage = dbh->b_page; | 
 | 	struct buffer_head *bh; | 
 |  | 
 | 	kaddr0 = kmap_atomic(spage); | 
 | 	kaddr1 = kmap_atomic(dpage); | 
 | 	memcpy(kaddr1 + bh_offset(dbh), kaddr0 + bh_offset(sbh), sbh->b_size); | 
 | 	kunmap_atomic(kaddr1); | 
 | 	kunmap_atomic(kaddr0); | 
 |  | 
 | 	dbh->b_state = sbh->b_state & NILFS_BUFFER_INHERENT_BITS; | 
 | 	dbh->b_blocknr = sbh->b_blocknr; | 
 | 	dbh->b_bdev = sbh->b_bdev; | 
 |  | 
 | 	bh = dbh; | 
 | 	bits = sbh->b_state & (BIT(BH_Uptodate) | BIT(BH_Mapped)); | 
 | 	while ((bh = bh->b_this_page) != dbh) { | 
 | 		lock_buffer(bh); | 
 | 		bits &= bh->b_state; | 
 | 		unlock_buffer(bh); | 
 | 	} | 
 | 	if (bits & BIT(BH_Uptodate)) | 
 | 		SetPageUptodate(dpage); | 
 | 	else | 
 | 		ClearPageUptodate(dpage); | 
 | 	if (bits & BIT(BH_Mapped)) | 
 | 		SetPageMappedToDisk(dpage); | 
 | 	else | 
 | 		ClearPageMappedToDisk(dpage); | 
 | } | 
 |  | 
 | /** | 
 |  * nilfs_page_buffers_clean - check if a page has dirty buffers or not. | 
 |  * @page: page to be checked | 
 |  * | 
 |  * nilfs_page_buffers_clean() returns zero if the page has dirty buffers. | 
 |  * Otherwise, it returns non-zero value. | 
 |  */ | 
 | int nilfs_page_buffers_clean(struct page *page) | 
 | { | 
 | 	struct buffer_head *bh, *head; | 
 |  | 
 | 	bh = head = page_buffers(page); | 
 | 	do { | 
 | 		if (buffer_dirty(bh)) | 
 | 			return 0; | 
 | 		bh = bh->b_this_page; | 
 | 	} while (bh != head); | 
 | 	return 1; | 
 | } | 
 |  | 
 | void nilfs_page_bug(struct page *page) | 
 | { | 
 | 	struct address_space *m; | 
 | 	unsigned long ino; | 
 |  | 
 | 	if (unlikely(!page)) { | 
 | 		printk(KERN_CRIT "NILFS_PAGE_BUG(NULL)\n"); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	m = page->mapping; | 
 | 	ino = m ? m->host->i_ino : 0; | 
 |  | 
 | 	printk(KERN_CRIT "NILFS_PAGE_BUG(%p): cnt=%d index#=%llu flags=0x%lx " | 
 | 	       "mapping=%p ino=%lu\n", | 
 | 	       page, page_ref_count(page), | 
 | 	       (unsigned long long)page->index, page->flags, m, ino); | 
 |  | 
 | 	if (page_has_buffers(page)) { | 
 | 		struct buffer_head *bh, *head; | 
 | 		int i = 0; | 
 |  | 
 | 		bh = head = page_buffers(page); | 
 | 		do { | 
 | 			printk(KERN_CRIT | 
 | 			       " BH[%d] %p: cnt=%d block#=%llu state=0x%lx\n", | 
 | 			       i++, bh, atomic_read(&bh->b_count), | 
 | 			       (unsigned long long)bh->b_blocknr, bh->b_state); | 
 | 			bh = bh->b_this_page; | 
 | 		} while (bh != head); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * nilfs_copy_page -- copy the page with buffers | 
 |  * @dst: destination page | 
 |  * @src: source page | 
 |  * @copy_dirty: flag whether to copy dirty states on the page's buffer heads. | 
 |  * | 
 |  * This function is for both data pages and btnode pages.  The dirty flag | 
 |  * should be treated by caller.  The page must not be under i/o. | 
 |  * Both src and dst page must be locked | 
 |  */ | 
 | static void nilfs_copy_page(struct page *dst, struct page *src, int copy_dirty) | 
 | { | 
 | 	struct buffer_head *dbh, *dbufs, *sbh, *sbufs; | 
 | 	unsigned long mask = NILFS_BUFFER_INHERENT_BITS; | 
 |  | 
 | 	BUG_ON(PageWriteback(dst)); | 
 |  | 
 | 	sbh = sbufs = page_buffers(src); | 
 | 	if (!page_has_buffers(dst)) | 
 | 		create_empty_buffers(dst, sbh->b_size, 0); | 
 |  | 
 | 	if (copy_dirty) | 
 | 		mask |= BIT(BH_Dirty); | 
 |  | 
 | 	dbh = dbufs = page_buffers(dst); | 
 | 	do { | 
 | 		lock_buffer(sbh); | 
 | 		lock_buffer(dbh); | 
 | 		dbh->b_state = sbh->b_state & mask; | 
 | 		dbh->b_blocknr = sbh->b_blocknr; | 
 | 		dbh->b_bdev = sbh->b_bdev; | 
 | 		sbh = sbh->b_this_page; | 
 | 		dbh = dbh->b_this_page; | 
 | 	} while (dbh != dbufs); | 
 |  | 
 | 	copy_highpage(dst, src); | 
 |  | 
 | 	if (PageUptodate(src) && !PageUptodate(dst)) | 
 | 		SetPageUptodate(dst); | 
 | 	else if (!PageUptodate(src) && PageUptodate(dst)) | 
 | 		ClearPageUptodate(dst); | 
 | 	if (PageMappedToDisk(src) && !PageMappedToDisk(dst)) | 
 | 		SetPageMappedToDisk(dst); | 
 | 	else if (!PageMappedToDisk(src) && PageMappedToDisk(dst)) | 
 | 		ClearPageMappedToDisk(dst); | 
 |  | 
 | 	do { | 
 | 		unlock_buffer(sbh); | 
 | 		unlock_buffer(dbh); | 
 | 		sbh = sbh->b_this_page; | 
 | 		dbh = dbh->b_this_page; | 
 | 	} while (dbh != dbufs); | 
 | } | 
 |  | 
 | int nilfs_copy_dirty_pages(struct address_space *dmap, | 
 | 			   struct address_space *smap) | 
 | { | 
 | 	struct pagevec pvec; | 
 | 	unsigned int i; | 
 | 	pgoff_t index = 0; | 
 | 	int err = 0; | 
 |  | 
 | 	pagevec_init(&pvec); | 
 | repeat: | 
 | 	if (!pagevec_lookup_tag(&pvec, smap, &index, PAGECACHE_TAG_DIRTY)) | 
 | 		return 0; | 
 |  | 
 | 	for (i = 0; i < pagevec_count(&pvec); i++) { | 
 | 		struct page *page = pvec.pages[i], *dpage; | 
 |  | 
 | 		lock_page(page); | 
 | 		if (unlikely(!PageDirty(page))) | 
 | 			NILFS_PAGE_BUG(page, "inconsistent dirty state"); | 
 |  | 
 | 		dpage = grab_cache_page(dmap, page->index); | 
 | 		if (unlikely(!dpage)) { | 
 | 			/* No empty page is added to the page cache */ | 
 | 			err = -ENOMEM; | 
 | 			unlock_page(page); | 
 | 			break; | 
 | 		} | 
 | 		if (unlikely(!page_has_buffers(page))) | 
 | 			NILFS_PAGE_BUG(page, | 
 | 				       "found empty page in dat page cache"); | 
 |  | 
 | 		nilfs_copy_page(dpage, page, 1); | 
 | 		__set_page_dirty_nobuffers(dpage); | 
 |  | 
 | 		unlock_page(dpage); | 
 | 		put_page(dpage); | 
 | 		unlock_page(page); | 
 | 	} | 
 | 	pagevec_release(&pvec); | 
 | 	cond_resched(); | 
 |  | 
 | 	if (likely(!err)) | 
 | 		goto repeat; | 
 | 	return err; | 
 | } | 
 |  | 
 | /** | 
 |  * nilfs_copy_back_pages -- copy back pages to original cache from shadow cache | 
 |  * @dmap: destination page cache | 
 |  * @smap: source page cache | 
 |  * | 
 |  * No pages must be added to the cache during this process. | 
 |  * This must be ensured by the caller. | 
 |  */ | 
 | void nilfs_copy_back_pages(struct address_space *dmap, | 
 | 			   struct address_space *smap) | 
 | { | 
 | 	struct pagevec pvec; | 
 | 	unsigned int i, n; | 
 | 	pgoff_t index = 0; | 
 |  | 
 | 	pagevec_init(&pvec); | 
 | repeat: | 
 | 	n = pagevec_lookup(&pvec, smap, &index); | 
 | 	if (!n) | 
 | 		return; | 
 |  | 
 | 	for (i = 0; i < pagevec_count(&pvec); i++) { | 
 | 		struct page *page = pvec.pages[i], *dpage; | 
 | 		pgoff_t offset = page->index; | 
 |  | 
 | 		lock_page(page); | 
 | 		dpage = find_lock_page(dmap, offset); | 
 | 		if (dpage) { | 
 | 			/* overwrite existing page in the destination cache */ | 
 | 			WARN_ON(PageDirty(dpage)); | 
 | 			nilfs_copy_page(dpage, page, 0); | 
 | 			unlock_page(dpage); | 
 | 			put_page(dpage); | 
 | 			/* Do we not need to remove page from smap here? */ | 
 | 		} else { | 
 | 			struct page *p; | 
 |  | 
 | 			/* move the page to the destination cache */ | 
 | 			xa_lock_irq(&smap->i_pages); | 
 | 			p = __xa_erase(&smap->i_pages, offset); | 
 | 			WARN_ON(page != p); | 
 | 			smap->nrpages--; | 
 | 			xa_unlock_irq(&smap->i_pages); | 
 |  | 
 | 			xa_lock_irq(&dmap->i_pages); | 
 | 			p = __xa_store(&dmap->i_pages, offset, page, GFP_NOFS); | 
 | 			if (unlikely(p)) { | 
 | 				/* Probably -ENOMEM */ | 
 | 				page->mapping = NULL; | 
 | 				put_page(page); | 
 | 			} else { | 
 | 				page->mapping = dmap; | 
 | 				dmap->nrpages++; | 
 | 				if (PageDirty(page)) | 
 | 					__xa_set_mark(&dmap->i_pages, offset, | 
 | 							PAGECACHE_TAG_DIRTY); | 
 | 			} | 
 | 			xa_unlock_irq(&dmap->i_pages); | 
 | 		} | 
 | 		unlock_page(page); | 
 | 	} | 
 | 	pagevec_release(&pvec); | 
 | 	cond_resched(); | 
 |  | 
 | 	goto repeat; | 
 | } | 
 |  | 
 | /** | 
 |  * nilfs_clear_dirty_pages - discard dirty pages in address space | 
 |  * @mapping: address space with dirty pages for discarding | 
 |  * @silent: suppress [true] or print [false] warning messages | 
 |  */ | 
 | void nilfs_clear_dirty_pages(struct address_space *mapping, bool silent) | 
 | { | 
 | 	struct pagevec pvec; | 
 | 	unsigned int i; | 
 | 	pgoff_t index = 0; | 
 |  | 
 | 	pagevec_init(&pvec); | 
 |  | 
 | 	while (pagevec_lookup_tag(&pvec, mapping, &index, | 
 | 					PAGECACHE_TAG_DIRTY)) { | 
 | 		for (i = 0; i < pagevec_count(&pvec); i++) { | 
 | 			struct page *page = pvec.pages[i]; | 
 |  | 
 | 			lock_page(page); | 
 | 			nilfs_clear_dirty_page(page, silent); | 
 | 			unlock_page(page); | 
 | 		} | 
 | 		pagevec_release(&pvec); | 
 | 		cond_resched(); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * nilfs_clear_dirty_page - discard dirty page | 
 |  * @page: dirty page that will be discarded | 
 |  * @silent: suppress [true] or print [false] warning messages | 
 |  */ | 
 | void nilfs_clear_dirty_page(struct page *page, bool silent) | 
 | { | 
 | 	struct inode *inode = page->mapping->host; | 
 | 	struct super_block *sb = inode->i_sb; | 
 |  | 
 | 	BUG_ON(!PageLocked(page)); | 
 |  | 
 | 	if (!silent) | 
 | 		nilfs_msg(sb, KERN_WARNING, | 
 | 			  "discard dirty page: offset=%lld, ino=%lu", | 
 | 			  page_offset(page), inode->i_ino); | 
 |  | 
 | 	ClearPageUptodate(page); | 
 | 	ClearPageMappedToDisk(page); | 
 |  | 
 | 	if (page_has_buffers(page)) { | 
 | 		struct buffer_head *bh, *head; | 
 | 		const unsigned long clear_bits = | 
 | 			(BIT(BH_Uptodate) | BIT(BH_Dirty) | BIT(BH_Mapped) | | 
 | 			 BIT(BH_Async_Write) | BIT(BH_NILFS_Volatile) | | 
 | 			 BIT(BH_NILFS_Checked) | BIT(BH_NILFS_Redirected)); | 
 |  | 
 | 		bh = head = page_buffers(page); | 
 | 		do { | 
 | 			lock_buffer(bh); | 
 | 			if (!silent) | 
 | 				nilfs_msg(sb, KERN_WARNING, | 
 | 					  "discard dirty block: blocknr=%llu, size=%zu", | 
 | 					  (u64)bh->b_blocknr, bh->b_size); | 
 |  | 
 | 			set_mask_bits(&bh->b_state, clear_bits, 0); | 
 | 			unlock_buffer(bh); | 
 | 		} while (bh = bh->b_this_page, bh != head); | 
 | 	} | 
 |  | 
 | 	__nilfs_clear_page_dirty(page); | 
 | } | 
 |  | 
 | unsigned int nilfs_page_count_clean_buffers(struct page *page, | 
 | 					    unsigned int from, unsigned int to) | 
 | { | 
 | 	unsigned int block_start, block_end; | 
 | 	struct buffer_head *bh, *head; | 
 | 	unsigned int nc = 0; | 
 |  | 
 | 	for (bh = head = page_buffers(page), block_start = 0; | 
 | 	     bh != head || !block_start; | 
 | 	     block_start = block_end, bh = bh->b_this_page) { | 
 | 		block_end = block_start + bh->b_size; | 
 | 		if (block_end > from && block_start < to && !buffer_dirty(bh)) | 
 | 			nc++; | 
 | 	} | 
 | 	return nc; | 
 | } | 
 |  | 
 | void nilfs_mapping_init(struct address_space *mapping, struct inode *inode) | 
 | { | 
 | 	mapping->host = inode; | 
 | 	mapping->flags = 0; | 
 | 	mapping_set_gfp_mask(mapping, GFP_NOFS); | 
 | 	mapping->private_data = NULL; | 
 | 	mapping->a_ops = &empty_aops; | 
 | } | 
 |  | 
 | /* | 
 |  * NILFS2 needs clear_page_dirty() in the following two cases: | 
 |  * | 
 |  * 1) For B-tree node pages and data pages of the dat/gcdat, NILFS2 clears | 
 |  *    page dirty flags when it copies back pages from the shadow cache | 
 |  *    (gcdat->{i_mapping,i_btnode_cache}) to its original cache | 
 |  *    (dat->{i_mapping,i_btnode_cache}). | 
 |  * | 
 |  * 2) Some B-tree operations like insertion or deletion may dispose buffers | 
 |  *    in dirty state, and this needs to cancel the dirty state of their pages. | 
 |  */ | 
 | int __nilfs_clear_page_dirty(struct page *page) | 
 | { | 
 | 	struct address_space *mapping = page->mapping; | 
 |  | 
 | 	if (mapping) { | 
 | 		xa_lock_irq(&mapping->i_pages); | 
 | 		if (test_bit(PG_dirty, &page->flags)) { | 
 | 			__xa_clear_mark(&mapping->i_pages, page_index(page), | 
 | 					     PAGECACHE_TAG_DIRTY); | 
 | 			xa_unlock_irq(&mapping->i_pages); | 
 | 			return clear_page_dirty_for_io(page); | 
 | 		} | 
 | 		xa_unlock_irq(&mapping->i_pages); | 
 | 		return 0; | 
 | 	} | 
 | 	return TestClearPageDirty(page); | 
 | } | 
 |  | 
 | /** | 
 |  * nilfs_find_uncommitted_extent - find extent of uncommitted data | 
 |  * @inode: inode | 
 |  * @start_blk: start block offset (in) | 
 |  * @blkoff: start offset of the found extent (out) | 
 |  * | 
 |  * This function searches an extent of buffers marked "delayed" which | 
 |  * starts from a block offset equal to or larger than @start_blk.  If | 
 |  * such an extent was found, this will store the start offset in | 
 |  * @blkoff and return its length in blocks.  Otherwise, zero is | 
 |  * returned. | 
 |  */ | 
 | unsigned long nilfs_find_uncommitted_extent(struct inode *inode, | 
 | 					    sector_t start_blk, | 
 | 					    sector_t *blkoff) | 
 | { | 
 | 	unsigned int i; | 
 | 	pgoff_t index; | 
 | 	unsigned int nblocks_in_page; | 
 | 	unsigned long length = 0; | 
 | 	sector_t b; | 
 | 	struct pagevec pvec; | 
 | 	struct page *page; | 
 |  | 
 | 	if (inode->i_mapping->nrpages == 0) | 
 | 		return 0; | 
 |  | 
 | 	index = start_blk >> (PAGE_SHIFT - inode->i_blkbits); | 
 | 	nblocks_in_page = 1U << (PAGE_SHIFT - inode->i_blkbits); | 
 |  | 
 | 	pagevec_init(&pvec); | 
 |  | 
 | repeat: | 
 | 	pvec.nr = find_get_pages_contig(inode->i_mapping, index, PAGEVEC_SIZE, | 
 | 					pvec.pages); | 
 | 	if (pvec.nr == 0) | 
 | 		return length; | 
 |  | 
 | 	if (length > 0 && pvec.pages[0]->index > index) | 
 | 		goto out; | 
 |  | 
 | 	b = pvec.pages[0]->index << (PAGE_SHIFT - inode->i_blkbits); | 
 | 	i = 0; | 
 | 	do { | 
 | 		page = pvec.pages[i]; | 
 |  | 
 | 		lock_page(page); | 
 | 		if (page_has_buffers(page)) { | 
 | 			struct buffer_head *bh, *head; | 
 |  | 
 | 			bh = head = page_buffers(page); | 
 | 			do { | 
 | 				if (b < start_blk) | 
 | 					continue; | 
 | 				if (buffer_delay(bh)) { | 
 | 					if (length == 0) | 
 | 						*blkoff = b; | 
 | 					length++; | 
 | 				} else if (length > 0) { | 
 | 					goto out_locked; | 
 | 				} | 
 | 			} while (++b, bh = bh->b_this_page, bh != head); | 
 | 		} else { | 
 | 			if (length > 0) | 
 | 				goto out_locked; | 
 |  | 
 | 			b += nblocks_in_page; | 
 | 		} | 
 | 		unlock_page(page); | 
 |  | 
 | 	} while (++i < pagevec_count(&pvec)); | 
 |  | 
 | 	index = page->index + 1; | 
 | 	pagevec_release(&pvec); | 
 | 	cond_resched(); | 
 | 	goto repeat; | 
 |  | 
 | out_locked: | 
 | 	unlock_page(page); | 
 | out: | 
 | 	pagevec_release(&pvec); | 
 | 	return length; | 
 | } |