|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * Copyright (C) 2000  Ani Joshi <ajoshi@unixbox.com> | 
|  | * Copyright (C) 2000, 2001, 06	 Ralf Baechle <ralf@linux-mips.org> | 
|  | * swiped from i386, and cloned for MIPS by Geert, polished by Ralf. | 
|  | */ | 
|  | #include <linux/dma-direct.h> | 
|  | #include <linux/dma-noncoherent.h> | 
|  | #include <linux/dma-contiguous.h> | 
|  | #include <linux/highmem.h> | 
|  |  | 
|  | #include <asm/cache.h> | 
|  | #include <asm/cpu-type.h> | 
|  | #include <asm/dma-coherence.h> | 
|  | #include <asm/io.h> | 
|  |  | 
|  | /* | 
|  | * The affected CPUs below in 'cpu_needs_post_dma_flush()' can speculatively | 
|  | * fill random cachelines with stale data at any time, requiring an extra | 
|  | * flush post-DMA. | 
|  | * | 
|  | * Warning on the terminology - Linux calls an uncached area coherent;  MIPS | 
|  | * terminology calls memory areas with hardware maintained coherency coherent. | 
|  | * | 
|  | * Note that the R14000 and R16000 should also be checked for in this condition. | 
|  | * However this function is only called on non-I/O-coherent systems and only the | 
|  | * R10000 and R12000 are used in such systems, the SGI IP28 Indigo² rsp. | 
|  | * SGI IP32 aka O2. | 
|  | */ | 
|  | static inline bool cpu_needs_post_dma_flush(struct device *dev) | 
|  | { | 
|  | switch (boot_cpu_type()) { | 
|  | case CPU_R10000: | 
|  | case CPU_R12000: | 
|  | case CPU_BMIPS5000: | 
|  | return true; | 
|  | default: | 
|  | /* | 
|  | * Presence of MAARs suggests that the CPU supports | 
|  | * speculatively prefetching data, and therefore requires | 
|  | * the post-DMA flush/invalidate. | 
|  | */ | 
|  | return cpu_has_maar; | 
|  | } | 
|  | } | 
|  |  | 
|  | void *arch_dma_alloc(struct device *dev, size_t size, | 
|  | dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs) | 
|  | { | 
|  | void *ret; | 
|  |  | 
|  | ret = dma_direct_alloc_pages(dev, size, dma_handle, gfp, attrs); | 
|  | if (ret && !(attrs & DMA_ATTR_NON_CONSISTENT)) { | 
|  | dma_cache_wback_inv((unsigned long) ret, size); | 
|  | ret = (void *)UNCAC_ADDR(ret); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void arch_dma_free(struct device *dev, size_t size, void *cpu_addr, | 
|  | dma_addr_t dma_addr, unsigned long attrs) | 
|  | { | 
|  | if (!(attrs & DMA_ATTR_NON_CONSISTENT)) | 
|  | cpu_addr = (void *)CAC_ADDR((unsigned long)cpu_addr); | 
|  | dma_direct_free_pages(dev, size, cpu_addr, dma_addr, attrs); | 
|  | } | 
|  |  | 
|  | long arch_dma_coherent_to_pfn(struct device *dev, void *cpu_addr, | 
|  | dma_addr_t dma_addr) | 
|  | { | 
|  | unsigned long addr = CAC_ADDR((unsigned long)cpu_addr); | 
|  | return page_to_pfn(virt_to_page((void *)addr)); | 
|  | } | 
|  |  | 
|  | pgprot_t arch_dma_mmap_pgprot(struct device *dev, pgprot_t prot, | 
|  | unsigned long attrs) | 
|  | { | 
|  | if (attrs & DMA_ATTR_WRITE_COMBINE) | 
|  | return pgprot_writecombine(prot); | 
|  | return pgprot_noncached(prot); | 
|  | } | 
|  |  | 
|  | static inline void dma_sync_virt(void *addr, size_t size, | 
|  | enum dma_data_direction dir) | 
|  | { | 
|  | switch (dir) { | 
|  | case DMA_TO_DEVICE: | 
|  | dma_cache_wback((unsigned long)addr, size); | 
|  | break; | 
|  |  | 
|  | case DMA_FROM_DEVICE: | 
|  | dma_cache_inv((unsigned long)addr, size); | 
|  | break; | 
|  |  | 
|  | case DMA_BIDIRECTIONAL: | 
|  | dma_cache_wback_inv((unsigned long)addr, size); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * A single sg entry may refer to multiple physically contiguous pages.  But | 
|  | * we still need to process highmem pages individually.  If highmem is not | 
|  | * configured then the bulk of this loop gets optimized out. | 
|  | */ | 
|  | static inline void dma_sync_phys(phys_addr_t paddr, size_t size, | 
|  | enum dma_data_direction dir) | 
|  | { | 
|  | struct page *page = pfn_to_page(paddr >> PAGE_SHIFT); | 
|  | unsigned long offset = paddr & ~PAGE_MASK; | 
|  | size_t left = size; | 
|  |  | 
|  | do { | 
|  | size_t len = left; | 
|  |  | 
|  | if (PageHighMem(page)) { | 
|  | void *addr; | 
|  |  | 
|  | if (offset + len > PAGE_SIZE) | 
|  | len = PAGE_SIZE - offset; | 
|  |  | 
|  | addr = kmap_atomic(page); | 
|  | dma_sync_virt(addr + offset, len, dir); | 
|  | kunmap_atomic(addr); | 
|  | } else | 
|  | dma_sync_virt(page_address(page) + offset, size, dir); | 
|  | offset = 0; | 
|  | page++; | 
|  | left -= len; | 
|  | } while (left); | 
|  | } | 
|  |  | 
|  | void arch_sync_dma_for_device(struct device *dev, phys_addr_t paddr, | 
|  | size_t size, enum dma_data_direction dir) | 
|  | { | 
|  | dma_sync_phys(paddr, size, dir); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU | 
|  | void arch_sync_dma_for_cpu(struct device *dev, phys_addr_t paddr, | 
|  | size_t size, enum dma_data_direction dir) | 
|  | { | 
|  | if (cpu_needs_post_dma_flush(dev)) | 
|  | dma_sync_phys(paddr, size, dir); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void arch_dma_cache_sync(struct device *dev, void *vaddr, size_t size, | 
|  | enum dma_data_direction direction) | 
|  | { | 
|  | BUG_ON(direction == DMA_NONE); | 
|  |  | 
|  | dma_sync_virt(vaddr, size, direction); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_DMA_PERDEV_COHERENT | 
|  | void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size, | 
|  | const struct iommu_ops *iommu, bool coherent) | 
|  | { | 
|  | dev->dma_coherent = coherent; | 
|  | } | 
|  | #endif |