|  | /* | 
|  | * Copyright (C) Ericsson AB 2007-2008 | 
|  | * Copyright (C) ST-Ericsson SA 2008-2010 | 
|  | * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson | 
|  | * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson | 
|  | * License terms: GNU General Public License (GPL) version 2 | 
|  | */ | 
|  |  | 
|  | #include <linux/dma-mapping.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/dmaengine.h> | 
|  | #include <linux/platform_device.h> | 
|  | #include <linux/clk.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/log2.h> | 
|  | #include <linux/pm.h> | 
|  | #include <linux/pm_runtime.h> | 
|  | #include <linux/err.h> | 
|  | #include <linux/of.h> | 
|  | #include <linux/of_dma.h> | 
|  | #include <linux/amba/bus.h> | 
|  | #include <linux/regulator/consumer.h> | 
|  | #include <linux/platform_data/dma-ste-dma40.h> | 
|  |  | 
|  | #include "dmaengine.h" | 
|  | #include "ste_dma40_ll.h" | 
|  |  | 
|  | #define D40_NAME "dma40" | 
|  |  | 
|  | #define D40_PHY_CHAN -1 | 
|  |  | 
|  | /* For masking out/in 2 bit channel positions */ | 
|  | #define D40_CHAN_POS(chan)  (2 * (chan / 2)) | 
|  | #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan)) | 
|  |  | 
|  | /* Maximum iterations taken before giving up suspending a channel */ | 
|  | #define D40_SUSPEND_MAX_IT 500 | 
|  |  | 
|  | /* Milliseconds */ | 
|  | #define DMA40_AUTOSUSPEND_DELAY	100 | 
|  |  | 
|  | /* Hardware requirement on LCLA alignment */ | 
|  | #define LCLA_ALIGNMENT 0x40000 | 
|  |  | 
|  | /* Max number of links per event group */ | 
|  | #define D40_LCLA_LINK_PER_EVENT_GRP 128 | 
|  | #define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP | 
|  |  | 
|  | /* Max number of logical channels per physical channel */ | 
|  | #define D40_MAX_LOG_CHAN_PER_PHY 32 | 
|  |  | 
|  | /* Attempts before giving up to trying to get pages that are aligned */ | 
|  | #define MAX_LCLA_ALLOC_ATTEMPTS 256 | 
|  |  | 
|  | /* Bit markings for allocation map */ | 
|  | #define D40_ALLOC_FREE		BIT(31) | 
|  | #define D40_ALLOC_PHY		BIT(30) | 
|  | #define D40_ALLOC_LOG_FREE	0 | 
|  |  | 
|  | #define D40_MEMCPY_MAX_CHANS	8 | 
|  |  | 
|  | /* Reserved event lines for memcpy only. */ | 
|  | #define DB8500_DMA_MEMCPY_EV_0	51 | 
|  | #define DB8500_DMA_MEMCPY_EV_1	56 | 
|  | #define DB8500_DMA_MEMCPY_EV_2	57 | 
|  | #define DB8500_DMA_MEMCPY_EV_3	58 | 
|  | #define DB8500_DMA_MEMCPY_EV_4	59 | 
|  | #define DB8500_DMA_MEMCPY_EV_5	60 | 
|  |  | 
|  | static int dma40_memcpy_channels[] = { | 
|  | DB8500_DMA_MEMCPY_EV_0, | 
|  | DB8500_DMA_MEMCPY_EV_1, | 
|  | DB8500_DMA_MEMCPY_EV_2, | 
|  | DB8500_DMA_MEMCPY_EV_3, | 
|  | DB8500_DMA_MEMCPY_EV_4, | 
|  | DB8500_DMA_MEMCPY_EV_5, | 
|  | }; | 
|  |  | 
|  | /* Default configuration for physcial memcpy */ | 
|  | static const struct stedma40_chan_cfg dma40_memcpy_conf_phy = { | 
|  | .mode = STEDMA40_MODE_PHYSICAL, | 
|  | .dir = DMA_MEM_TO_MEM, | 
|  |  | 
|  | .src_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE, | 
|  | .src_info.psize = STEDMA40_PSIZE_PHY_1, | 
|  | .src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL, | 
|  |  | 
|  | .dst_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE, | 
|  | .dst_info.psize = STEDMA40_PSIZE_PHY_1, | 
|  | .dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL, | 
|  | }; | 
|  |  | 
|  | /* Default configuration for logical memcpy */ | 
|  | static const struct stedma40_chan_cfg dma40_memcpy_conf_log = { | 
|  | .mode = STEDMA40_MODE_LOGICAL, | 
|  | .dir = DMA_MEM_TO_MEM, | 
|  |  | 
|  | .src_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE, | 
|  | .src_info.psize = STEDMA40_PSIZE_LOG_1, | 
|  | .src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL, | 
|  |  | 
|  | .dst_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE, | 
|  | .dst_info.psize = STEDMA40_PSIZE_LOG_1, | 
|  | .dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL, | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * enum 40_command - The different commands and/or statuses. | 
|  | * | 
|  | * @D40_DMA_STOP: DMA channel command STOP or status STOPPED, | 
|  | * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN. | 
|  | * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible. | 
|  | * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED. | 
|  | */ | 
|  | enum d40_command { | 
|  | D40_DMA_STOP		= 0, | 
|  | D40_DMA_RUN		= 1, | 
|  | D40_DMA_SUSPEND_REQ	= 2, | 
|  | D40_DMA_SUSPENDED	= 3 | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * enum d40_events - The different Event Enables for the event lines. | 
|  | * | 
|  | * @D40_DEACTIVATE_EVENTLINE: De-activate Event line, stopping the logical chan. | 
|  | * @D40_ACTIVATE_EVENTLINE: Activate the Event line, to start a logical chan. | 
|  | * @D40_SUSPEND_REQ_EVENTLINE: Requesting for suspending a event line. | 
|  | * @D40_ROUND_EVENTLINE: Status check for event line. | 
|  | */ | 
|  |  | 
|  | enum d40_events { | 
|  | D40_DEACTIVATE_EVENTLINE	= 0, | 
|  | D40_ACTIVATE_EVENTLINE		= 1, | 
|  | D40_SUSPEND_REQ_EVENTLINE	= 2, | 
|  | D40_ROUND_EVENTLINE		= 3 | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * These are the registers that has to be saved and later restored | 
|  | * when the DMA hw is powered off. | 
|  | * TODO: Add save/restore of D40_DREG_GCC on dma40 v3 or later, if that works. | 
|  | */ | 
|  | static u32 d40_backup_regs[] = { | 
|  | D40_DREG_LCPA, | 
|  | D40_DREG_LCLA, | 
|  | D40_DREG_PRMSE, | 
|  | D40_DREG_PRMSO, | 
|  | D40_DREG_PRMOE, | 
|  | D40_DREG_PRMOO, | 
|  | }; | 
|  |  | 
|  | #define BACKUP_REGS_SZ ARRAY_SIZE(d40_backup_regs) | 
|  |  | 
|  | /* | 
|  | * since 9540 and 8540 has the same HW revision | 
|  | * use v4a for 9540 or ealier | 
|  | * use v4b for 8540 or later | 
|  | * HW revision: | 
|  | * DB8500ed has revision 0 | 
|  | * DB8500v1 has revision 2 | 
|  | * DB8500v2 has revision 3 | 
|  | * AP9540v1 has revision 4 | 
|  | * DB8540v1 has revision 4 | 
|  | * TODO: Check if all these registers have to be saved/restored on dma40 v4a | 
|  | */ | 
|  | static u32 d40_backup_regs_v4a[] = { | 
|  | D40_DREG_PSEG1, | 
|  | D40_DREG_PSEG2, | 
|  | D40_DREG_PSEG3, | 
|  | D40_DREG_PSEG4, | 
|  | D40_DREG_PCEG1, | 
|  | D40_DREG_PCEG2, | 
|  | D40_DREG_PCEG3, | 
|  | D40_DREG_PCEG4, | 
|  | D40_DREG_RSEG1, | 
|  | D40_DREG_RSEG2, | 
|  | D40_DREG_RSEG3, | 
|  | D40_DREG_RSEG4, | 
|  | D40_DREG_RCEG1, | 
|  | D40_DREG_RCEG2, | 
|  | D40_DREG_RCEG3, | 
|  | D40_DREG_RCEG4, | 
|  | }; | 
|  |  | 
|  | #define BACKUP_REGS_SZ_V4A ARRAY_SIZE(d40_backup_regs_v4a) | 
|  |  | 
|  | static u32 d40_backup_regs_v4b[] = { | 
|  | D40_DREG_CPSEG1, | 
|  | D40_DREG_CPSEG2, | 
|  | D40_DREG_CPSEG3, | 
|  | D40_DREG_CPSEG4, | 
|  | D40_DREG_CPSEG5, | 
|  | D40_DREG_CPCEG1, | 
|  | D40_DREG_CPCEG2, | 
|  | D40_DREG_CPCEG3, | 
|  | D40_DREG_CPCEG4, | 
|  | D40_DREG_CPCEG5, | 
|  | D40_DREG_CRSEG1, | 
|  | D40_DREG_CRSEG2, | 
|  | D40_DREG_CRSEG3, | 
|  | D40_DREG_CRSEG4, | 
|  | D40_DREG_CRSEG5, | 
|  | D40_DREG_CRCEG1, | 
|  | D40_DREG_CRCEG2, | 
|  | D40_DREG_CRCEG3, | 
|  | D40_DREG_CRCEG4, | 
|  | D40_DREG_CRCEG5, | 
|  | }; | 
|  |  | 
|  | #define BACKUP_REGS_SZ_V4B ARRAY_SIZE(d40_backup_regs_v4b) | 
|  |  | 
|  | static u32 d40_backup_regs_chan[] = { | 
|  | D40_CHAN_REG_SSCFG, | 
|  | D40_CHAN_REG_SSELT, | 
|  | D40_CHAN_REG_SSPTR, | 
|  | D40_CHAN_REG_SSLNK, | 
|  | D40_CHAN_REG_SDCFG, | 
|  | D40_CHAN_REG_SDELT, | 
|  | D40_CHAN_REG_SDPTR, | 
|  | D40_CHAN_REG_SDLNK, | 
|  | }; | 
|  |  | 
|  | #define BACKUP_REGS_SZ_MAX ((BACKUP_REGS_SZ_V4A > BACKUP_REGS_SZ_V4B) ? \ | 
|  | BACKUP_REGS_SZ_V4A : BACKUP_REGS_SZ_V4B) | 
|  |  | 
|  | /** | 
|  | * struct d40_interrupt_lookup - lookup table for interrupt handler | 
|  | * | 
|  | * @src: Interrupt mask register. | 
|  | * @clr: Interrupt clear register. | 
|  | * @is_error: true if this is an error interrupt. | 
|  | * @offset: start delta in the lookup_log_chans in d40_base. If equals to | 
|  | * D40_PHY_CHAN, the lookup_phy_chans shall be used instead. | 
|  | */ | 
|  | struct d40_interrupt_lookup { | 
|  | u32 src; | 
|  | u32 clr; | 
|  | bool is_error; | 
|  | int offset; | 
|  | }; | 
|  |  | 
|  |  | 
|  | static struct d40_interrupt_lookup il_v4a[] = { | 
|  | {D40_DREG_LCTIS0, D40_DREG_LCICR0, false,  0}, | 
|  | {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32}, | 
|  | {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64}, | 
|  | {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96}, | 
|  | {D40_DREG_LCEIS0, D40_DREG_LCICR0, true,   0}, | 
|  | {D40_DREG_LCEIS1, D40_DREG_LCICR1, true,  32}, | 
|  | {D40_DREG_LCEIS2, D40_DREG_LCICR2, true,  64}, | 
|  | {D40_DREG_LCEIS3, D40_DREG_LCICR3, true,  96}, | 
|  | {D40_DREG_PCTIS,  D40_DREG_PCICR,  false, D40_PHY_CHAN}, | 
|  | {D40_DREG_PCEIS,  D40_DREG_PCICR,  true,  D40_PHY_CHAN}, | 
|  | }; | 
|  |  | 
|  | static struct d40_interrupt_lookup il_v4b[] = { | 
|  | {D40_DREG_CLCTIS1, D40_DREG_CLCICR1, false,  0}, | 
|  | {D40_DREG_CLCTIS2, D40_DREG_CLCICR2, false, 32}, | 
|  | {D40_DREG_CLCTIS3, D40_DREG_CLCICR3, false, 64}, | 
|  | {D40_DREG_CLCTIS4, D40_DREG_CLCICR4, false, 96}, | 
|  | {D40_DREG_CLCTIS5, D40_DREG_CLCICR5, false, 128}, | 
|  | {D40_DREG_CLCEIS1, D40_DREG_CLCICR1, true,   0}, | 
|  | {D40_DREG_CLCEIS2, D40_DREG_CLCICR2, true,  32}, | 
|  | {D40_DREG_CLCEIS3, D40_DREG_CLCICR3, true,  64}, | 
|  | {D40_DREG_CLCEIS4, D40_DREG_CLCICR4, true,  96}, | 
|  | {D40_DREG_CLCEIS5, D40_DREG_CLCICR5, true,  128}, | 
|  | {D40_DREG_CPCTIS,  D40_DREG_CPCICR,  false, D40_PHY_CHAN}, | 
|  | {D40_DREG_CPCEIS,  D40_DREG_CPCICR,  true,  D40_PHY_CHAN}, | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * struct d40_reg_val - simple lookup struct | 
|  | * | 
|  | * @reg: The register. | 
|  | * @val: The value that belongs to the register in reg. | 
|  | */ | 
|  | struct d40_reg_val { | 
|  | unsigned int reg; | 
|  | unsigned int val; | 
|  | }; | 
|  |  | 
|  | static __initdata struct d40_reg_val dma_init_reg_v4a[] = { | 
|  | /* Clock every part of the DMA block from start */ | 
|  | { .reg = D40_DREG_GCC,    .val = D40_DREG_GCC_ENABLE_ALL}, | 
|  |  | 
|  | /* Interrupts on all logical channels */ | 
|  | { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF}, | 
|  | { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF}, | 
|  | { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF}, | 
|  | { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF}, | 
|  | { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF}, | 
|  | { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF}, | 
|  | { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF}, | 
|  | { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF}, | 
|  | { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF}, | 
|  | { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF}, | 
|  | { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF}, | 
|  | { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF} | 
|  | }; | 
|  | static __initdata struct d40_reg_val dma_init_reg_v4b[] = { | 
|  | /* Clock every part of the DMA block from start */ | 
|  | { .reg = D40_DREG_GCC,    .val = D40_DREG_GCC_ENABLE_ALL}, | 
|  |  | 
|  | /* Interrupts on all logical channels */ | 
|  | { .reg = D40_DREG_CLCMIS1, .val = 0xFFFFFFFF}, | 
|  | { .reg = D40_DREG_CLCMIS2, .val = 0xFFFFFFFF}, | 
|  | { .reg = D40_DREG_CLCMIS3, .val = 0xFFFFFFFF}, | 
|  | { .reg = D40_DREG_CLCMIS4, .val = 0xFFFFFFFF}, | 
|  | { .reg = D40_DREG_CLCMIS5, .val = 0xFFFFFFFF}, | 
|  | { .reg = D40_DREG_CLCICR1, .val = 0xFFFFFFFF}, | 
|  | { .reg = D40_DREG_CLCICR2, .val = 0xFFFFFFFF}, | 
|  | { .reg = D40_DREG_CLCICR3, .val = 0xFFFFFFFF}, | 
|  | { .reg = D40_DREG_CLCICR4, .val = 0xFFFFFFFF}, | 
|  | { .reg = D40_DREG_CLCICR5, .val = 0xFFFFFFFF}, | 
|  | { .reg = D40_DREG_CLCTIS1, .val = 0xFFFFFFFF}, | 
|  | { .reg = D40_DREG_CLCTIS2, .val = 0xFFFFFFFF}, | 
|  | { .reg = D40_DREG_CLCTIS3, .val = 0xFFFFFFFF}, | 
|  | { .reg = D40_DREG_CLCTIS4, .val = 0xFFFFFFFF}, | 
|  | { .reg = D40_DREG_CLCTIS5, .val = 0xFFFFFFFF} | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * struct d40_lli_pool - Structure for keeping LLIs in memory | 
|  | * | 
|  | * @base: Pointer to memory area when the pre_alloc_lli's are not large | 
|  | * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if | 
|  | * pre_alloc_lli is used. | 
|  | * @dma_addr: DMA address, if mapped | 
|  | * @size: The size in bytes of the memory at base or the size of pre_alloc_lli. | 
|  | * @pre_alloc_lli: Pre allocated area for the most common case of transfers, | 
|  | * one buffer to one buffer. | 
|  | */ | 
|  | struct d40_lli_pool { | 
|  | void	*base; | 
|  | int	 size; | 
|  | dma_addr_t	dma_addr; | 
|  | /* Space for dst and src, plus an extra for padding */ | 
|  | u8	 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)]; | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * struct d40_desc - A descriptor is one DMA job. | 
|  | * | 
|  | * @lli_phy: LLI settings for physical channel. Both src and dst= | 
|  | * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if | 
|  | * lli_len equals one. | 
|  | * @lli_log: Same as above but for logical channels. | 
|  | * @lli_pool: The pool with two entries pre-allocated. | 
|  | * @lli_len: Number of llis of current descriptor. | 
|  | * @lli_current: Number of transferred llis. | 
|  | * @lcla_alloc: Number of LCLA entries allocated. | 
|  | * @txd: DMA engine struct. Used for among other things for communication | 
|  | * during a transfer. | 
|  | * @node: List entry. | 
|  | * @is_in_client_list: true if the client owns this descriptor. | 
|  | * @cyclic: true if this is a cyclic job | 
|  | * | 
|  | * This descriptor is used for both logical and physical transfers. | 
|  | */ | 
|  | struct d40_desc { | 
|  | /* LLI physical */ | 
|  | struct d40_phy_lli_bidir	 lli_phy; | 
|  | /* LLI logical */ | 
|  | struct d40_log_lli_bidir	 lli_log; | 
|  |  | 
|  | struct d40_lli_pool		 lli_pool; | 
|  | int				 lli_len; | 
|  | int				 lli_current; | 
|  | int				 lcla_alloc; | 
|  |  | 
|  | struct dma_async_tx_descriptor	 txd; | 
|  | struct list_head		 node; | 
|  |  | 
|  | bool				 is_in_client_list; | 
|  | bool				 cyclic; | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * struct d40_lcla_pool - LCLA pool settings and data. | 
|  | * | 
|  | * @base: The virtual address of LCLA. 18 bit aligned. | 
|  | * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used. | 
|  | * This pointer is only there for clean-up on error. | 
|  | * @pages: The number of pages needed for all physical channels. | 
|  | * Only used later for clean-up on error | 
|  | * @lock: Lock to protect the content in this struct. | 
|  | * @alloc_map: big map over which LCLA entry is own by which job. | 
|  | */ | 
|  | struct d40_lcla_pool { | 
|  | void		*base; | 
|  | dma_addr_t	dma_addr; | 
|  | void		*base_unaligned; | 
|  | int		 pages; | 
|  | spinlock_t	 lock; | 
|  | struct d40_desc	**alloc_map; | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * struct d40_phy_res - struct for handling eventlines mapped to physical | 
|  | * channels. | 
|  | * | 
|  | * @lock: A lock protection this entity. | 
|  | * @reserved: True if used by secure world or otherwise. | 
|  | * @num: The physical channel number of this entity. | 
|  | * @allocated_src: Bit mapped to show which src event line's are mapped to | 
|  | * this physical channel. Can also be free or physically allocated. | 
|  | * @allocated_dst: Same as for src but is dst. | 
|  | * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as | 
|  | * event line number. | 
|  | * @use_soft_lli: To mark if the linked lists of channel are managed by SW. | 
|  | */ | 
|  | struct d40_phy_res { | 
|  | spinlock_t lock; | 
|  | bool	   reserved; | 
|  | int	   num; | 
|  | u32	   allocated_src; | 
|  | u32	   allocated_dst; | 
|  | bool	   use_soft_lli; | 
|  | }; | 
|  |  | 
|  | struct d40_base; | 
|  |  | 
|  | /** | 
|  | * struct d40_chan - Struct that describes a channel. | 
|  | * | 
|  | * @lock: A spinlock to protect this struct. | 
|  | * @log_num: The logical number, if any of this channel. | 
|  | * @pending_tx: The number of pending transfers. Used between interrupt handler | 
|  | * and tasklet. | 
|  | * @busy: Set to true when transfer is ongoing on this channel. | 
|  | * @phy_chan: Pointer to physical channel which this instance runs on. If this | 
|  | * point is NULL, then the channel is not allocated. | 
|  | * @chan: DMA engine handle. | 
|  | * @tasklet: Tasklet that gets scheduled from interrupt context to complete a | 
|  | * transfer and call client callback. | 
|  | * @client: Cliented owned descriptor list. | 
|  | * @pending_queue: Submitted jobs, to be issued by issue_pending() | 
|  | * @active: Active descriptor. | 
|  | * @done: Completed jobs | 
|  | * @queue: Queued jobs. | 
|  | * @prepare_queue: Prepared jobs. | 
|  | * @dma_cfg: The client configuration of this dma channel. | 
|  | * @slave_config: DMA slave configuration. | 
|  | * @configured: whether the dma_cfg configuration is valid | 
|  | * @base: Pointer to the device instance struct. | 
|  | * @src_def_cfg: Default cfg register setting for src. | 
|  | * @dst_def_cfg: Default cfg register setting for dst. | 
|  | * @log_def: Default logical channel settings. | 
|  | * @lcpa: Pointer to dst and src lcpa settings. | 
|  | * @runtime_addr: runtime configured address. | 
|  | * @runtime_direction: runtime configured direction. | 
|  | * | 
|  | * This struct can either "be" a logical or a physical channel. | 
|  | */ | 
|  | struct d40_chan { | 
|  | spinlock_t			 lock; | 
|  | int				 log_num; | 
|  | int				 pending_tx; | 
|  | bool				 busy; | 
|  | struct d40_phy_res		*phy_chan; | 
|  | struct dma_chan			 chan; | 
|  | struct tasklet_struct		 tasklet; | 
|  | struct list_head		 client; | 
|  | struct list_head		 pending_queue; | 
|  | struct list_head		 active; | 
|  | struct list_head		 done; | 
|  | struct list_head		 queue; | 
|  | struct list_head		 prepare_queue; | 
|  | struct stedma40_chan_cfg	 dma_cfg; | 
|  | struct dma_slave_config		 slave_config; | 
|  | bool				 configured; | 
|  | struct d40_base			*base; | 
|  | /* Default register configurations */ | 
|  | u32				 src_def_cfg; | 
|  | u32				 dst_def_cfg; | 
|  | struct d40_def_lcsp		 log_def; | 
|  | struct d40_log_lli_full		*lcpa; | 
|  | /* Runtime reconfiguration */ | 
|  | dma_addr_t			runtime_addr; | 
|  | enum dma_transfer_direction	runtime_direction; | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * struct d40_gen_dmac - generic values to represent u8500/u8540 DMA | 
|  | * controller | 
|  | * | 
|  | * @backup: the pointer to the registers address array for backup | 
|  | * @backup_size: the size of the registers address array for backup | 
|  | * @realtime_en: the realtime enable register | 
|  | * @realtime_clear: the realtime clear register | 
|  | * @high_prio_en: the high priority enable register | 
|  | * @high_prio_clear: the high priority clear register | 
|  | * @interrupt_en: the interrupt enable register | 
|  | * @interrupt_clear: the interrupt clear register | 
|  | * @il: the pointer to struct d40_interrupt_lookup | 
|  | * @il_size: the size of d40_interrupt_lookup array | 
|  | * @init_reg: the pointer to the struct d40_reg_val | 
|  | * @init_reg_size: the size of d40_reg_val array | 
|  | */ | 
|  | struct d40_gen_dmac { | 
|  | u32				*backup; | 
|  | u32				 backup_size; | 
|  | u32				 realtime_en; | 
|  | u32				 realtime_clear; | 
|  | u32				 high_prio_en; | 
|  | u32				 high_prio_clear; | 
|  | u32				 interrupt_en; | 
|  | u32				 interrupt_clear; | 
|  | struct d40_interrupt_lookup	*il; | 
|  | u32				 il_size; | 
|  | struct d40_reg_val		*init_reg; | 
|  | u32				 init_reg_size; | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * struct d40_base - The big global struct, one for each probe'd instance. | 
|  | * | 
|  | * @interrupt_lock: Lock used to make sure one interrupt is handle a time. | 
|  | * @execmd_lock: Lock for execute command usage since several channels share | 
|  | * the same physical register. | 
|  | * @dev: The device structure. | 
|  | * @virtbase: The virtual base address of the DMA's register. | 
|  | * @rev: silicon revision detected. | 
|  | * @clk: Pointer to the DMA clock structure. | 
|  | * @phy_start: Physical memory start of the DMA registers. | 
|  | * @phy_size: Size of the DMA register map. | 
|  | * @irq: The IRQ number. | 
|  | * @num_memcpy_chans: The number of channels used for memcpy (mem-to-mem | 
|  | * transfers). | 
|  | * @num_phy_chans: The number of physical channels. Read from HW. This | 
|  | * is the number of available channels for this driver, not counting "Secure | 
|  | * mode" allocated physical channels. | 
|  | * @num_log_chans: The number of logical channels. Calculated from | 
|  | * num_phy_chans. | 
|  | * @dma_both: dma_device channels that can do both memcpy and slave transfers. | 
|  | * @dma_slave: dma_device channels that can do only do slave transfers. | 
|  | * @dma_memcpy: dma_device channels that can do only do memcpy transfers. | 
|  | * @phy_chans: Room for all possible physical channels in system. | 
|  | * @log_chans: Room for all possible logical channels in system. | 
|  | * @lookup_log_chans: Used to map interrupt number to logical channel. Points | 
|  | * to log_chans entries. | 
|  | * @lookup_phy_chans: Used to map interrupt number to physical channel. Points | 
|  | * to phy_chans entries. | 
|  | * @plat_data: Pointer to provided platform_data which is the driver | 
|  | * configuration. | 
|  | * @lcpa_regulator: Pointer to hold the regulator for the esram bank for lcla. | 
|  | * @phy_res: Vector containing all physical channels. | 
|  | * @lcla_pool: lcla pool settings and data. | 
|  | * @lcpa_base: The virtual mapped address of LCPA. | 
|  | * @phy_lcpa: The physical address of the LCPA. | 
|  | * @lcpa_size: The size of the LCPA area. | 
|  | * @desc_slab: cache for descriptors. | 
|  | * @reg_val_backup: Here the values of some hardware registers are stored | 
|  | * before the DMA is powered off. They are restored when the power is back on. | 
|  | * @reg_val_backup_v4: Backup of registers that only exits on dma40 v3 and | 
|  | * later | 
|  | * @reg_val_backup_chan: Backup data for standard channel parameter registers. | 
|  | * @regs_interrupt: Scratch space for registers during interrupt. | 
|  | * @gcc_pwr_off_mask: Mask to maintain the channels that can be turned off. | 
|  | * @gen_dmac: the struct for generic registers values to represent u8500/8540 | 
|  | * DMA controller | 
|  | */ | 
|  | struct d40_base { | 
|  | spinlock_t			 interrupt_lock; | 
|  | spinlock_t			 execmd_lock; | 
|  | struct device			 *dev; | 
|  | void __iomem			 *virtbase; | 
|  | u8				  rev:4; | 
|  | struct clk			 *clk; | 
|  | phys_addr_t			  phy_start; | 
|  | resource_size_t			  phy_size; | 
|  | int				  irq; | 
|  | int				  num_memcpy_chans; | 
|  | int				  num_phy_chans; | 
|  | int				  num_log_chans; | 
|  | struct device_dma_parameters	  dma_parms; | 
|  | struct dma_device		  dma_both; | 
|  | struct dma_device		  dma_slave; | 
|  | struct dma_device		  dma_memcpy; | 
|  | struct d40_chan			 *phy_chans; | 
|  | struct d40_chan			 *log_chans; | 
|  | struct d40_chan			**lookup_log_chans; | 
|  | struct d40_chan			**lookup_phy_chans; | 
|  | struct stedma40_platform_data	 *plat_data; | 
|  | struct regulator		 *lcpa_regulator; | 
|  | /* Physical half channels */ | 
|  | struct d40_phy_res		 *phy_res; | 
|  | struct d40_lcla_pool		  lcla_pool; | 
|  | void				 *lcpa_base; | 
|  | dma_addr_t			  phy_lcpa; | 
|  | resource_size_t			  lcpa_size; | 
|  | struct kmem_cache		 *desc_slab; | 
|  | u32				  reg_val_backup[BACKUP_REGS_SZ]; | 
|  | u32				  reg_val_backup_v4[BACKUP_REGS_SZ_MAX]; | 
|  | u32				 *reg_val_backup_chan; | 
|  | u32				 *regs_interrupt; | 
|  | u16				  gcc_pwr_off_mask; | 
|  | struct d40_gen_dmac		  gen_dmac; | 
|  | }; | 
|  |  | 
|  | static struct device *chan2dev(struct d40_chan *d40c) | 
|  | { | 
|  | return &d40c->chan.dev->device; | 
|  | } | 
|  |  | 
|  | static bool chan_is_physical(struct d40_chan *chan) | 
|  | { | 
|  | return chan->log_num == D40_PHY_CHAN; | 
|  | } | 
|  |  | 
|  | static bool chan_is_logical(struct d40_chan *chan) | 
|  | { | 
|  | return !chan_is_physical(chan); | 
|  | } | 
|  |  | 
|  | static void __iomem *chan_base(struct d40_chan *chan) | 
|  | { | 
|  | return chan->base->virtbase + D40_DREG_PCBASE + | 
|  | chan->phy_chan->num * D40_DREG_PCDELTA; | 
|  | } | 
|  |  | 
|  | #define d40_err(dev, format, arg...)		\ | 
|  | dev_err(dev, "[%s] " format, __func__, ## arg) | 
|  |  | 
|  | #define chan_err(d40c, format, arg...)		\ | 
|  | d40_err(chan2dev(d40c), format, ## arg) | 
|  |  | 
|  | static int d40_set_runtime_config_write(struct dma_chan *chan, | 
|  | struct dma_slave_config *config, | 
|  | enum dma_transfer_direction direction); | 
|  |  | 
|  | static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d, | 
|  | int lli_len) | 
|  | { | 
|  | bool is_log = chan_is_logical(d40c); | 
|  | u32 align; | 
|  | void *base; | 
|  |  | 
|  | if (is_log) | 
|  | align = sizeof(struct d40_log_lli); | 
|  | else | 
|  | align = sizeof(struct d40_phy_lli); | 
|  |  | 
|  | if (lli_len == 1) { | 
|  | base = d40d->lli_pool.pre_alloc_lli; | 
|  | d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli); | 
|  | d40d->lli_pool.base = NULL; | 
|  | } else { | 
|  | d40d->lli_pool.size = lli_len * 2 * align; | 
|  |  | 
|  | base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT); | 
|  | d40d->lli_pool.base = base; | 
|  |  | 
|  | if (d40d->lli_pool.base == NULL) | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | if (is_log) { | 
|  | d40d->lli_log.src = PTR_ALIGN(base, align); | 
|  | d40d->lli_log.dst = d40d->lli_log.src + lli_len; | 
|  |  | 
|  | d40d->lli_pool.dma_addr = 0; | 
|  | } else { | 
|  | d40d->lli_phy.src = PTR_ALIGN(base, align); | 
|  | d40d->lli_phy.dst = d40d->lli_phy.src + lli_len; | 
|  |  | 
|  | d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev, | 
|  | d40d->lli_phy.src, | 
|  | d40d->lli_pool.size, | 
|  | DMA_TO_DEVICE); | 
|  |  | 
|  | if (dma_mapping_error(d40c->base->dev, | 
|  | d40d->lli_pool.dma_addr)) { | 
|  | kfree(d40d->lli_pool.base); | 
|  | d40d->lli_pool.base = NULL; | 
|  | d40d->lli_pool.dma_addr = 0; | 
|  | return -ENOMEM; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d) | 
|  | { | 
|  | if (d40d->lli_pool.dma_addr) | 
|  | dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr, | 
|  | d40d->lli_pool.size, DMA_TO_DEVICE); | 
|  |  | 
|  | kfree(d40d->lli_pool.base); | 
|  | d40d->lli_pool.base = NULL; | 
|  | d40d->lli_pool.size = 0; | 
|  | d40d->lli_log.src = NULL; | 
|  | d40d->lli_log.dst = NULL; | 
|  | d40d->lli_phy.src = NULL; | 
|  | d40d->lli_phy.dst = NULL; | 
|  | } | 
|  |  | 
|  | static int d40_lcla_alloc_one(struct d40_chan *d40c, | 
|  | struct d40_desc *d40d) | 
|  | { | 
|  | unsigned long flags; | 
|  | int i; | 
|  | int ret = -EINVAL; | 
|  |  | 
|  | spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags); | 
|  |  | 
|  | /* | 
|  | * Allocate both src and dst at the same time, therefore the half | 
|  | * start on 1 since 0 can't be used since zero is used as end marker. | 
|  | */ | 
|  | for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) { | 
|  | int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i; | 
|  |  | 
|  | if (!d40c->base->lcla_pool.alloc_map[idx]) { | 
|  | d40c->base->lcla_pool.alloc_map[idx] = d40d; | 
|  | d40d->lcla_alloc++; | 
|  | ret = i; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int d40_lcla_free_all(struct d40_chan *d40c, | 
|  | struct d40_desc *d40d) | 
|  | { | 
|  | unsigned long flags; | 
|  | int i; | 
|  | int ret = -EINVAL; | 
|  |  | 
|  | if (chan_is_physical(d40c)) | 
|  | return 0; | 
|  |  | 
|  | spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags); | 
|  |  | 
|  | for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) { | 
|  | int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i; | 
|  |  | 
|  | if (d40c->base->lcla_pool.alloc_map[idx] == d40d) { | 
|  | d40c->base->lcla_pool.alloc_map[idx] = NULL; | 
|  | d40d->lcla_alloc--; | 
|  | if (d40d->lcla_alloc == 0) { | 
|  | ret = 0; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags); | 
|  |  | 
|  | return ret; | 
|  |  | 
|  | } | 
|  |  | 
|  | static void d40_desc_remove(struct d40_desc *d40d) | 
|  | { | 
|  | list_del(&d40d->node); | 
|  | } | 
|  |  | 
|  | static struct d40_desc *d40_desc_get(struct d40_chan *d40c) | 
|  | { | 
|  | struct d40_desc *desc = NULL; | 
|  |  | 
|  | if (!list_empty(&d40c->client)) { | 
|  | struct d40_desc *d; | 
|  | struct d40_desc *_d; | 
|  |  | 
|  | list_for_each_entry_safe(d, _d, &d40c->client, node) { | 
|  | if (async_tx_test_ack(&d->txd)) { | 
|  | d40_desc_remove(d); | 
|  | desc = d; | 
|  | memset(desc, 0, sizeof(*desc)); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!desc) | 
|  | desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT); | 
|  |  | 
|  | if (desc) | 
|  | INIT_LIST_HEAD(&desc->node); | 
|  |  | 
|  | return desc; | 
|  | } | 
|  |  | 
|  | static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d) | 
|  | { | 
|  |  | 
|  | d40_pool_lli_free(d40c, d40d); | 
|  | d40_lcla_free_all(d40c, d40d); | 
|  | kmem_cache_free(d40c->base->desc_slab, d40d); | 
|  | } | 
|  |  | 
|  | static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc) | 
|  | { | 
|  | list_add_tail(&desc->node, &d40c->active); | 
|  | } | 
|  |  | 
|  | static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc) | 
|  | { | 
|  | struct d40_phy_lli *lli_dst = desc->lli_phy.dst; | 
|  | struct d40_phy_lli *lli_src = desc->lli_phy.src; | 
|  | void __iomem *base = chan_base(chan); | 
|  |  | 
|  | writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG); | 
|  | writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT); | 
|  | writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR); | 
|  | writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK); | 
|  |  | 
|  | writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG); | 
|  | writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT); | 
|  | writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR); | 
|  | writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK); | 
|  | } | 
|  |  | 
|  | static void d40_desc_done(struct d40_chan *d40c, struct d40_desc *desc) | 
|  | { | 
|  | list_add_tail(&desc->node, &d40c->done); | 
|  | } | 
|  |  | 
|  | static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc) | 
|  | { | 
|  | struct d40_lcla_pool *pool = &chan->base->lcla_pool; | 
|  | struct d40_log_lli_bidir *lli = &desc->lli_log; | 
|  | int lli_current = desc->lli_current; | 
|  | int lli_len = desc->lli_len; | 
|  | bool cyclic = desc->cyclic; | 
|  | int curr_lcla = -EINVAL; | 
|  | int first_lcla = 0; | 
|  | bool use_esram_lcla = chan->base->plat_data->use_esram_lcla; | 
|  | bool linkback; | 
|  |  | 
|  | /* | 
|  | * We may have partially running cyclic transfers, in case we did't get | 
|  | * enough LCLA entries. | 
|  | */ | 
|  | linkback = cyclic && lli_current == 0; | 
|  |  | 
|  | /* | 
|  | * For linkback, we need one LCLA even with only one link, because we | 
|  | * can't link back to the one in LCPA space | 
|  | */ | 
|  | if (linkback || (lli_len - lli_current > 1)) { | 
|  | /* | 
|  | * If the channel is expected to use only soft_lli don't | 
|  | * allocate a lcla. This is to avoid a HW issue that exists | 
|  | * in some controller during a peripheral to memory transfer | 
|  | * that uses linked lists. | 
|  | */ | 
|  | if (!(chan->phy_chan->use_soft_lli && | 
|  | chan->dma_cfg.dir == DMA_DEV_TO_MEM)) | 
|  | curr_lcla = d40_lcla_alloc_one(chan, desc); | 
|  |  | 
|  | first_lcla = curr_lcla; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For linkback, we normally load the LCPA in the loop since we need to | 
|  | * link it to the second LCLA and not the first.  However, if we | 
|  | * couldn't even get a first LCLA, then we have to run in LCPA and | 
|  | * reload manually. | 
|  | */ | 
|  | if (!linkback || curr_lcla == -EINVAL) { | 
|  | unsigned int flags = 0; | 
|  |  | 
|  | if (curr_lcla == -EINVAL) | 
|  | flags |= LLI_TERM_INT; | 
|  |  | 
|  | d40_log_lli_lcpa_write(chan->lcpa, | 
|  | &lli->dst[lli_current], | 
|  | &lli->src[lli_current], | 
|  | curr_lcla, | 
|  | flags); | 
|  | lli_current++; | 
|  | } | 
|  |  | 
|  | if (curr_lcla < 0) | 
|  | goto set_current; | 
|  |  | 
|  | for (; lli_current < lli_len; lli_current++) { | 
|  | unsigned int lcla_offset = chan->phy_chan->num * 1024 + | 
|  | 8 * curr_lcla * 2; | 
|  | struct d40_log_lli *lcla = pool->base + lcla_offset; | 
|  | unsigned int flags = 0; | 
|  | int next_lcla; | 
|  |  | 
|  | if (lli_current + 1 < lli_len) | 
|  | next_lcla = d40_lcla_alloc_one(chan, desc); | 
|  | else | 
|  | next_lcla = linkback ? first_lcla : -EINVAL; | 
|  |  | 
|  | if (cyclic || next_lcla == -EINVAL) | 
|  | flags |= LLI_TERM_INT; | 
|  |  | 
|  | if (linkback && curr_lcla == first_lcla) { | 
|  | /* First link goes in both LCPA and LCLA */ | 
|  | d40_log_lli_lcpa_write(chan->lcpa, | 
|  | &lli->dst[lli_current], | 
|  | &lli->src[lli_current], | 
|  | next_lcla, flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * One unused LCLA in the cyclic case if the very first | 
|  | * next_lcla fails... | 
|  | */ | 
|  | d40_log_lli_lcla_write(lcla, | 
|  | &lli->dst[lli_current], | 
|  | &lli->src[lli_current], | 
|  | next_lcla, flags); | 
|  |  | 
|  | /* | 
|  | * Cache maintenance is not needed if lcla is | 
|  | * mapped in esram | 
|  | */ | 
|  | if (!use_esram_lcla) { | 
|  | dma_sync_single_range_for_device(chan->base->dev, | 
|  | pool->dma_addr, lcla_offset, | 
|  | 2 * sizeof(struct d40_log_lli), | 
|  | DMA_TO_DEVICE); | 
|  | } | 
|  | curr_lcla = next_lcla; | 
|  |  | 
|  | if (curr_lcla == -EINVAL || curr_lcla == first_lcla) { | 
|  | lli_current++; | 
|  | break; | 
|  | } | 
|  | } | 
|  | set_current: | 
|  | desc->lli_current = lli_current; | 
|  | } | 
|  |  | 
|  | static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d) | 
|  | { | 
|  | if (chan_is_physical(d40c)) { | 
|  | d40_phy_lli_load(d40c, d40d); | 
|  | d40d->lli_current = d40d->lli_len; | 
|  | } else | 
|  | d40_log_lli_to_lcxa(d40c, d40d); | 
|  | } | 
|  |  | 
|  | static struct d40_desc *d40_first_active_get(struct d40_chan *d40c) | 
|  | { | 
|  | return list_first_entry_or_null(&d40c->active, struct d40_desc, node); | 
|  | } | 
|  |  | 
|  | /* remove desc from current queue and add it to the pending_queue */ | 
|  | static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc) | 
|  | { | 
|  | d40_desc_remove(desc); | 
|  | desc->is_in_client_list = false; | 
|  | list_add_tail(&desc->node, &d40c->pending_queue); | 
|  | } | 
|  |  | 
|  | static struct d40_desc *d40_first_pending(struct d40_chan *d40c) | 
|  | { | 
|  | return list_first_entry_or_null(&d40c->pending_queue, struct d40_desc, | 
|  | node); | 
|  | } | 
|  |  | 
|  | static struct d40_desc *d40_first_queued(struct d40_chan *d40c) | 
|  | { | 
|  | return list_first_entry_or_null(&d40c->queue, struct d40_desc, node); | 
|  | } | 
|  |  | 
|  | static struct d40_desc *d40_first_done(struct d40_chan *d40c) | 
|  | { | 
|  | return list_first_entry_or_null(&d40c->done, struct d40_desc, node); | 
|  | } | 
|  |  | 
|  | static int d40_psize_2_burst_size(bool is_log, int psize) | 
|  | { | 
|  | if (is_log) { | 
|  | if (psize == STEDMA40_PSIZE_LOG_1) | 
|  | return 1; | 
|  | } else { | 
|  | if (psize == STEDMA40_PSIZE_PHY_1) | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return 2 << psize; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The dma only supports transmitting packages up to | 
|  | * STEDMA40_MAX_SEG_SIZE * data_width, where data_width is stored in Bytes. | 
|  | * | 
|  | * Calculate the total number of dma elements required to send the entire sg list. | 
|  | */ | 
|  | static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2) | 
|  | { | 
|  | int dmalen; | 
|  | u32 max_w = max(data_width1, data_width2); | 
|  | u32 min_w = min(data_width1, data_width2); | 
|  | u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE * min_w, max_w); | 
|  |  | 
|  | if (seg_max > STEDMA40_MAX_SEG_SIZE) | 
|  | seg_max -= max_w; | 
|  |  | 
|  | if (!IS_ALIGNED(size, max_w)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (size <= seg_max) | 
|  | dmalen = 1; | 
|  | else { | 
|  | dmalen = size / seg_max; | 
|  | if (dmalen * seg_max < size) | 
|  | dmalen++; | 
|  | } | 
|  | return dmalen; | 
|  | } | 
|  |  | 
|  | static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len, | 
|  | u32 data_width1, u32 data_width2) | 
|  | { | 
|  | struct scatterlist *sg; | 
|  | int i; | 
|  | int len = 0; | 
|  | int ret; | 
|  |  | 
|  | for_each_sg(sgl, sg, sg_len, i) { | 
|  | ret = d40_size_2_dmalen(sg_dma_len(sg), | 
|  | data_width1, data_width2); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | len += ret; | 
|  | } | 
|  | return len; | 
|  | } | 
|  |  | 
|  | static int __d40_execute_command_phy(struct d40_chan *d40c, | 
|  | enum d40_command command) | 
|  | { | 
|  | u32 status; | 
|  | int i; | 
|  | void __iomem *active_reg; | 
|  | int ret = 0; | 
|  | unsigned long flags; | 
|  | u32 wmask; | 
|  |  | 
|  | if (command == D40_DMA_STOP) { | 
|  | ret = __d40_execute_command_phy(d40c, D40_DMA_SUSPEND_REQ); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | spin_lock_irqsave(&d40c->base->execmd_lock, flags); | 
|  |  | 
|  | if (d40c->phy_chan->num % 2 == 0) | 
|  | active_reg = d40c->base->virtbase + D40_DREG_ACTIVE; | 
|  | else | 
|  | active_reg = d40c->base->virtbase + D40_DREG_ACTIVO; | 
|  |  | 
|  | if (command == D40_DMA_SUSPEND_REQ) { | 
|  | status = (readl(active_reg) & | 
|  | D40_CHAN_POS_MASK(d40c->phy_chan->num)) >> | 
|  | D40_CHAN_POS(d40c->phy_chan->num); | 
|  |  | 
|  | if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP) | 
|  | goto unlock; | 
|  | } | 
|  |  | 
|  | wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num)); | 
|  | writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)), | 
|  | active_reg); | 
|  |  | 
|  | if (command == D40_DMA_SUSPEND_REQ) { | 
|  |  | 
|  | for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) { | 
|  | status = (readl(active_reg) & | 
|  | D40_CHAN_POS_MASK(d40c->phy_chan->num)) >> | 
|  | D40_CHAN_POS(d40c->phy_chan->num); | 
|  |  | 
|  | cpu_relax(); | 
|  | /* | 
|  | * Reduce the number of bus accesses while | 
|  | * waiting for the DMA to suspend. | 
|  | */ | 
|  | udelay(3); | 
|  |  | 
|  | if (status == D40_DMA_STOP || | 
|  | status == D40_DMA_SUSPENDED) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (i == D40_SUSPEND_MAX_IT) { | 
|  | chan_err(d40c, | 
|  | "unable to suspend the chl %d (log: %d) status %x\n", | 
|  | d40c->phy_chan->num, d40c->log_num, | 
|  | status); | 
|  | dump_stack(); | 
|  | ret = -EBUSY; | 
|  | } | 
|  |  | 
|  | } | 
|  | unlock: | 
|  | spin_unlock_irqrestore(&d40c->base->execmd_lock, flags); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void d40_term_all(struct d40_chan *d40c) | 
|  | { | 
|  | struct d40_desc *d40d; | 
|  | struct d40_desc *_d; | 
|  |  | 
|  | /* Release completed descriptors */ | 
|  | while ((d40d = d40_first_done(d40c))) { | 
|  | d40_desc_remove(d40d); | 
|  | d40_desc_free(d40c, d40d); | 
|  | } | 
|  |  | 
|  | /* Release active descriptors */ | 
|  | while ((d40d = d40_first_active_get(d40c))) { | 
|  | d40_desc_remove(d40d); | 
|  | d40_desc_free(d40c, d40d); | 
|  | } | 
|  |  | 
|  | /* Release queued descriptors waiting for transfer */ | 
|  | while ((d40d = d40_first_queued(d40c))) { | 
|  | d40_desc_remove(d40d); | 
|  | d40_desc_free(d40c, d40d); | 
|  | } | 
|  |  | 
|  | /* Release pending descriptors */ | 
|  | while ((d40d = d40_first_pending(d40c))) { | 
|  | d40_desc_remove(d40d); | 
|  | d40_desc_free(d40c, d40d); | 
|  | } | 
|  |  | 
|  | /* Release client owned descriptors */ | 
|  | if (!list_empty(&d40c->client)) | 
|  | list_for_each_entry_safe(d40d, _d, &d40c->client, node) { | 
|  | d40_desc_remove(d40d); | 
|  | d40_desc_free(d40c, d40d); | 
|  | } | 
|  |  | 
|  | /* Release descriptors in prepare queue */ | 
|  | if (!list_empty(&d40c->prepare_queue)) | 
|  | list_for_each_entry_safe(d40d, _d, | 
|  | &d40c->prepare_queue, node) { | 
|  | d40_desc_remove(d40d); | 
|  | d40_desc_free(d40c, d40d); | 
|  | } | 
|  |  | 
|  | d40c->pending_tx = 0; | 
|  | } | 
|  |  | 
|  | static void __d40_config_set_event(struct d40_chan *d40c, | 
|  | enum d40_events event_type, u32 event, | 
|  | int reg) | 
|  | { | 
|  | void __iomem *addr = chan_base(d40c) + reg; | 
|  | int tries; | 
|  | u32 status; | 
|  |  | 
|  | switch (event_type) { | 
|  |  | 
|  | case D40_DEACTIVATE_EVENTLINE: | 
|  |  | 
|  | writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event)) | 
|  | | ~D40_EVENTLINE_MASK(event), addr); | 
|  | break; | 
|  |  | 
|  | case D40_SUSPEND_REQ_EVENTLINE: | 
|  | status = (readl(addr) & D40_EVENTLINE_MASK(event)) >> | 
|  | D40_EVENTLINE_POS(event); | 
|  |  | 
|  | if (status == D40_DEACTIVATE_EVENTLINE || | 
|  | status == D40_SUSPEND_REQ_EVENTLINE) | 
|  | break; | 
|  |  | 
|  | writel((D40_SUSPEND_REQ_EVENTLINE << D40_EVENTLINE_POS(event)) | 
|  | | ~D40_EVENTLINE_MASK(event), addr); | 
|  |  | 
|  | for (tries = 0 ; tries < D40_SUSPEND_MAX_IT; tries++) { | 
|  |  | 
|  | status = (readl(addr) & D40_EVENTLINE_MASK(event)) >> | 
|  | D40_EVENTLINE_POS(event); | 
|  |  | 
|  | cpu_relax(); | 
|  | /* | 
|  | * Reduce the number of bus accesses while | 
|  | * waiting for the DMA to suspend. | 
|  | */ | 
|  | udelay(3); | 
|  |  | 
|  | if (status == D40_DEACTIVATE_EVENTLINE) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (tries == D40_SUSPEND_MAX_IT) { | 
|  | chan_err(d40c, | 
|  | "unable to stop the event_line chl %d (log: %d)" | 
|  | "status %x\n", d40c->phy_chan->num, | 
|  | d40c->log_num, status); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case D40_ACTIVATE_EVENTLINE: | 
|  | /* | 
|  | * The hardware sometimes doesn't register the enable when src and dst | 
|  | * event lines are active on the same logical channel.  Retry to ensure | 
|  | * it does.  Usually only one retry is sufficient. | 
|  | */ | 
|  | tries = 100; | 
|  | while (--tries) { | 
|  | writel((D40_ACTIVATE_EVENTLINE << | 
|  | D40_EVENTLINE_POS(event)) | | 
|  | ~D40_EVENTLINE_MASK(event), addr); | 
|  |  | 
|  | if (readl(addr) & D40_EVENTLINE_MASK(event)) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (tries != 99) | 
|  | dev_dbg(chan2dev(d40c), | 
|  | "[%s] workaround enable S%cLNK (%d tries)\n", | 
|  | __func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D', | 
|  | 100 - tries); | 
|  |  | 
|  | WARN_ON(!tries); | 
|  | break; | 
|  |  | 
|  | case D40_ROUND_EVENTLINE: | 
|  | BUG(); | 
|  | break; | 
|  |  | 
|  | } | 
|  | } | 
|  |  | 
|  | static void d40_config_set_event(struct d40_chan *d40c, | 
|  | enum d40_events event_type) | 
|  | { | 
|  | u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type); | 
|  |  | 
|  | /* Enable event line connected to device (or memcpy) */ | 
|  | if ((d40c->dma_cfg.dir == DMA_DEV_TO_MEM) || | 
|  | (d40c->dma_cfg.dir == DMA_DEV_TO_DEV)) | 
|  | __d40_config_set_event(d40c, event_type, event, | 
|  | D40_CHAN_REG_SSLNK); | 
|  |  | 
|  | if (d40c->dma_cfg.dir !=  DMA_DEV_TO_MEM) | 
|  | __d40_config_set_event(d40c, event_type, event, | 
|  | D40_CHAN_REG_SDLNK); | 
|  | } | 
|  |  | 
|  | static u32 d40_chan_has_events(struct d40_chan *d40c) | 
|  | { | 
|  | void __iomem *chanbase = chan_base(d40c); | 
|  | u32 val; | 
|  |  | 
|  | val = readl(chanbase + D40_CHAN_REG_SSLNK); | 
|  | val |= readl(chanbase + D40_CHAN_REG_SDLNK); | 
|  |  | 
|  | return val; | 
|  | } | 
|  |  | 
|  | static int | 
|  | __d40_execute_command_log(struct d40_chan *d40c, enum d40_command command) | 
|  | { | 
|  | unsigned long flags; | 
|  | int ret = 0; | 
|  | u32 active_status; | 
|  | void __iomem *active_reg; | 
|  |  | 
|  | if (d40c->phy_chan->num % 2 == 0) | 
|  | active_reg = d40c->base->virtbase + D40_DREG_ACTIVE; | 
|  | else | 
|  | active_reg = d40c->base->virtbase + D40_DREG_ACTIVO; | 
|  |  | 
|  |  | 
|  | spin_lock_irqsave(&d40c->phy_chan->lock, flags); | 
|  |  | 
|  | switch (command) { | 
|  | case D40_DMA_STOP: | 
|  | case D40_DMA_SUSPEND_REQ: | 
|  |  | 
|  | active_status = (readl(active_reg) & | 
|  | D40_CHAN_POS_MASK(d40c->phy_chan->num)) >> | 
|  | D40_CHAN_POS(d40c->phy_chan->num); | 
|  |  | 
|  | if (active_status == D40_DMA_RUN) | 
|  | d40_config_set_event(d40c, D40_SUSPEND_REQ_EVENTLINE); | 
|  | else | 
|  | d40_config_set_event(d40c, D40_DEACTIVATE_EVENTLINE); | 
|  |  | 
|  | if (!d40_chan_has_events(d40c) && (command == D40_DMA_STOP)) | 
|  | ret = __d40_execute_command_phy(d40c, command); | 
|  |  | 
|  | break; | 
|  |  | 
|  | case D40_DMA_RUN: | 
|  |  | 
|  | d40_config_set_event(d40c, D40_ACTIVATE_EVENTLINE); | 
|  | ret = __d40_execute_command_phy(d40c, command); | 
|  | break; | 
|  |  | 
|  | case D40_DMA_SUSPENDED: | 
|  | BUG(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | spin_unlock_irqrestore(&d40c->phy_chan->lock, flags); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int d40_channel_execute_command(struct d40_chan *d40c, | 
|  | enum d40_command command) | 
|  | { | 
|  | if (chan_is_logical(d40c)) | 
|  | return __d40_execute_command_log(d40c, command); | 
|  | else | 
|  | return __d40_execute_command_phy(d40c, command); | 
|  | } | 
|  |  | 
|  | static u32 d40_get_prmo(struct d40_chan *d40c) | 
|  | { | 
|  | static const unsigned int phy_map[] = { | 
|  | [STEDMA40_PCHAN_BASIC_MODE] | 
|  | = D40_DREG_PRMO_PCHAN_BASIC, | 
|  | [STEDMA40_PCHAN_MODULO_MODE] | 
|  | = D40_DREG_PRMO_PCHAN_MODULO, | 
|  | [STEDMA40_PCHAN_DOUBLE_DST_MODE] | 
|  | = D40_DREG_PRMO_PCHAN_DOUBLE_DST, | 
|  | }; | 
|  | static const unsigned int log_map[] = { | 
|  | [STEDMA40_LCHAN_SRC_PHY_DST_LOG] | 
|  | = D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG, | 
|  | [STEDMA40_LCHAN_SRC_LOG_DST_PHY] | 
|  | = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY, | 
|  | [STEDMA40_LCHAN_SRC_LOG_DST_LOG] | 
|  | = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG, | 
|  | }; | 
|  |  | 
|  | if (chan_is_physical(d40c)) | 
|  | return phy_map[d40c->dma_cfg.mode_opt]; | 
|  | else | 
|  | return log_map[d40c->dma_cfg.mode_opt]; | 
|  | } | 
|  |  | 
|  | static void d40_config_write(struct d40_chan *d40c) | 
|  | { | 
|  | u32 addr_base; | 
|  | u32 var; | 
|  |  | 
|  | /* Odd addresses are even addresses + 4 */ | 
|  | addr_base = (d40c->phy_chan->num % 2) * 4; | 
|  | /* Setup channel mode to logical or physical */ | 
|  | var = ((u32)(chan_is_logical(d40c)) + 1) << | 
|  | D40_CHAN_POS(d40c->phy_chan->num); | 
|  | writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base); | 
|  |  | 
|  | /* Setup operational mode option register */ | 
|  | var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num); | 
|  |  | 
|  | writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base); | 
|  |  | 
|  | if (chan_is_logical(d40c)) { | 
|  | int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS) | 
|  | & D40_SREG_ELEM_LOG_LIDX_MASK; | 
|  | void __iomem *chanbase = chan_base(d40c); | 
|  |  | 
|  | /* Set default config for CFG reg */ | 
|  | writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG); | 
|  | writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG); | 
|  |  | 
|  | /* Set LIDX for lcla */ | 
|  | writel(lidx, chanbase + D40_CHAN_REG_SSELT); | 
|  | writel(lidx, chanbase + D40_CHAN_REG_SDELT); | 
|  |  | 
|  | /* Clear LNK which will be used by d40_chan_has_events() */ | 
|  | writel(0, chanbase + D40_CHAN_REG_SSLNK); | 
|  | writel(0, chanbase + D40_CHAN_REG_SDLNK); | 
|  | } | 
|  | } | 
|  |  | 
|  | static u32 d40_residue(struct d40_chan *d40c) | 
|  | { | 
|  | u32 num_elt; | 
|  |  | 
|  | if (chan_is_logical(d40c)) | 
|  | num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK) | 
|  | >> D40_MEM_LCSP2_ECNT_POS; | 
|  | else { | 
|  | u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT); | 
|  | num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK) | 
|  | >> D40_SREG_ELEM_PHY_ECNT_POS; | 
|  | } | 
|  |  | 
|  | return num_elt * d40c->dma_cfg.dst_info.data_width; | 
|  | } | 
|  |  | 
|  | static bool d40_tx_is_linked(struct d40_chan *d40c) | 
|  | { | 
|  | bool is_link; | 
|  |  | 
|  | if (chan_is_logical(d40c)) | 
|  | is_link = readl(&d40c->lcpa->lcsp3) &  D40_MEM_LCSP3_DLOS_MASK; | 
|  | else | 
|  | is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK) | 
|  | & D40_SREG_LNK_PHYS_LNK_MASK; | 
|  |  | 
|  | return is_link; | 
|  | } | 
|  |  | 
|  | static int d40_pause(struct dma_chan *chan) | 
|  | { | 
|  | struct d40_chan *d40c = container_of(chan, struct d40_chan, chan); | 
|  | int res = 0; | 
|  | unsigned long flags; | 
|  |  | 
|  | if (d40c->phy_chan == NULL) { | 
|  | chan_err(d40c, "Channel is not allocated!\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (!d40c->busy) | 
|  | return 0; | 
|  |  | 
|  | spin_lock_irqsave(&d40c->lock, flags); | 
|  | pm_runtime_get_sync(d40c->base->dev); | 
|  |  | 
|  | res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ); | 
|  |  | 
|  | pm_runtime_mark_last_busy(d40c->base->dev); | 
|  | pm_runtime_put_autosuspend(d40c->base->dev); | 
|  | spin_unlock_irqrestore(&d40c->lock, flags); | 
|  | return res; | 
|  | } | 
|  |  | 
|  | static int d40_resume(struct dma_chan *chan) | 
|  | { | 
|  | struct d40_chan *d40c = container_of(chan, struct d40_chan, chan); | 
|  | int res = 0; | 
|  | unsigned long flags; | 
|  |  | 
|  | if (d40c->phy_chan == NULL) { | 
|  | chan_err(d40c, "Channel is not allocated!\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (!d40c->busy) | 
|  | return 0; | 
|  |  | 
|  | spin_lock_irqsave(&d40c->lock, flags); | 
|  | pm_runtime_get_sync(d40c->base->dev); | 
|  |  | 
|  | /* If bytes left to transfer or linked tx resume job */ | 
|  | if (d40_residue(d40c) || d40_tx_is_linked(d40c)) | 
|  | res = d40_channel_execute_command(d40c, D40_DMA_RUN); | 
|  |  | 
|  | pm_runtime_mark_last_busy(d40c->base->dev); | 
|  | pm_runtime_put_autosuspend(d40c->base->dev); | 
|  | spin_unlock_irqrestore(&d40c->lock, flags); | 
|  | return res; | 
|  | } | 
|  |  | 
|  | static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx) | 
|  | { | 
|  | struct d40_chan *d40c = container_of(tx->chan, | 
|  | struct d40_chan, | 
|  | chan); | 
|  | struct d40_desc *d40d = container_of(tx, struct d40_desc, txd); | 
|  | unsigned long flags; | 
|  | dma_cookie_t cookie; | 
|  |  | 
|  | spin_lock_irqsave(&d40c->lock, flags); | 
|  | cookie = dma_cookie_assign(tx); | 
|  | d40_desc_queue(d40c, d40d); | 
|  | spin_unlock_irqrestore(&d40c->lock, flags); | 
|  |  | 
|  | return cookie; | 
|  | } | 
|  |  | 
|  | static int d40_start(struct d40_chan *d40c) | 
|  | { | 
|  | return d40_channel_execute_command(d40c, D40_DMA_RUN); | 
|  | } | 
|  |  | 
|  | static struct d40_desc *d40_queue_start(struct d40_chan *d40c) | 
|  | { | 
|  | struct d40_desc *d40d; | 
|  | int err; | 
|  |  | 
|  | /* Start queued jobs, if any */ | 
|  | d40d = d40_first_queued(d40c); | 
|  |  | 
|  | if (d40d != NULL) { | 
|  | if (!d40c->busy) { | 
|  | d40c->busy = true; | 
|  | pm_runtime_get_sync(d40c->base->dev); | 
|  | } | 
|  |  | 
|  | /* Remove from queue */ | 
|  | d40_desc_remove(d40d); | 
|  |  | 
|  | /* Add to active queue */ | 
|  | d40_desc_submit(d40c, d40d); | 
|  |  | 
|  | /* Initiate DMA job */ | 
|  | d40_desc_load(d40c, d40d); | 
|  |  | 
|  | /* Start dma job */ | 
|  | err = d40_start(d40c); | 
|  |  | 
|  | if (err) | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | return d40d; | 
|  | } | 
|  |  | 
|  | /* called from interrupt context */ | 
|  | static void dma_tc_handle(struct d40_chan *d40c) | 
|  | { | 
|  | struct d40_desc *d40d; | 
|  |  | 
|  | /* Get first active entry from list */ | 
|  | d40d = d40_first_active_get(d40c); | 
|  |  | 
|  | if (d40d == NULL) | 
|  | return; | 
|  |  | 
|  | if (d40d->cyclic) { | 
|  | /* | 
|  | * If this was a paritially loaded list, we need to reloaded | 
|  | * it, and only when the list is completed.  We need to check | 
|  | * for done because the interrupt will hit for every link, and | 
|  | * not just the last one. | 
|  | */ | 
|  | if (d40d->lli_current < d40d->lli_len | 
|  | && !d40_tx_is_linked(d40c) | 
|  | && !d40_residue(d40c)) { | 
|  | d40_lcla_free_all(d40c, d40d); | 
|  | d40_desc_load(d40c, d40d); | 
|  | (void) d40_start(d40c); | 
|  |  | 
|  | if (d40d->lli_current == d40d->lli_len) | 
|  | d40d->lli_current = 0; | 
|  | } | 
|  | } else { | 
|  | d40_lcla_free_all(d40c, d40d); | 
|  |  | 
|  | if (d40d->lli_current < d40d->lli_len) { | 
|  | d40_desc_load(d40c, d40d); | 
|  | /* Start dma job */ | 
|  | (void) d40_start(d40c); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (d40_queue_start(d40c) == NULL) { | 
|  | d40c->busy = false; | 
|  |  | 
|  | pm_runtime_mark_last_busy(d40c->base->dev); | 
|  | pm_runtime_put_autosuspend(d40c->base->dev); | 
|  | } | 
|  |  | 
|  | d40_desc_remove(d40d); | 
|  | d40_desc_done(d40c, d40d); | 
|  | } | 
|  |  | 
|  | d40c->pending_tx++; | 
|  | tasklet_schedule(&d40c->tasklet); | 
|  |  | 
|  | } | 
|  |  | 
|  | static void dma_tasklet(unsigned long data) | 
|  | { | 
|  | struct d40_chan *d40c = (struct d40_chan *) data; | 
|  | struct d40_desc *d40d; | 
|  | unsigned long flags; | 
|  | bool callback_active; | 
|  | struct dmaengine_desc_callback cb; | 
|  |  | 
|  | spin_lock_irqsave(&d40c->lock, flags); | 
|  |  | 
|  | /* Get first entry from the done list */ | 
|  | d40d = d40_first_done(d40c); | 
|  | if (d40d == NULL) { | 
|  | /* Check if we have reached here for cyclic job */ | 
|  | d40d = d40_first_active_get(d40c); | 
|  | if (d40d == NULL || !d40d->cyclic) | 
|  | goto check_pending_tx; | 
|  | } | 
|  |  | 
|  | if (!d40d->cyclic) | 
|  | dma_cookie_complete(&d40d->txd); | 
|  |  | 
|  | /* | 
|  | * If terminating a channel pending_tx is set to zero. | 
|  | * This prevents any finished active jobs to return to the client. | 
|  | */ | 
|  | if (d40c->pending_tx == 0) { | 
|  | spin_unlock_irqrestore(&d40c->lock, flags); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Callback to client */ | 
|  | callback_active = !!(d40d->txd.flags & DMA_PREP_INTERRUPT); | 
|  | dmaengine_desc_get_callback(&d40d->txd, &cb); | 
|  |  | 
|  | if (!d40d->cyclic) { | 
|  | if (async_tx_test_ack(&d40d->txd)) { | 
|  | d40_desc_remove(d40d); | 
|  | d40_desc_free(d40c, d40d); | 
|  | } else if (!d40d->is_in_client_list) { | 
|  | d40_desc_remove(d40d); | 
|  | d40_lcla_free_all(d40c, d40d); | 
|  | list_add_tail(&d40d->node, &d40c->client); | 
|  | d40d->is_in_client_list = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | d40c->pending_tx--; | 
|  |  | 
|  | if (d40c->pending_tx) | 
|  | tasklet_schedule(&d40c->tasklet); | 
|  |  | 
|  | spin_unlock_irqrestore(&d40c->lock, flags); | 
|  |  | 
|  | if (callback_active) | 
|  | dmaengine_desc_callback_invoke(&cb, NULL); | 
|  |  | 
|  | return; | 
|  | check_pending_tx: | 
|  | /* Rescue manouver if receiving double interrupts */ | 
|  | if (d40c->pending_tx > 0) | 
|  | d40c->pending_tx--; | 
|  | spin_unlock_irqrestore(&d40c->lock, flags); | 
|  | } | 
|  |  | 
|  | static irqreturn_t d40_handle_interrupt(int irq, void *data) | 
|  | { | 
|  | int i; | 
|  | u32 idx; | 
|  | u32 row; | 
|  | long chan = -1; | 
|  | struct d40_chan *d40c; | 
|  | unsigned long flags; | 
|  | struct d40_base *base = data; | 
|  | u32 *regs = base->regs_interrupt; | 
|  | struct d40_interrupt_lookup *il = base->gen_dmac.il; | 
|  | u32 il_size = base->gen_dmac.il_size; | 
|  |  | 
|  | spin_lock_irqsave(&base->interrupt_lock, flags); | 
|  |  | 
|  | /* Read interrupt status of both logical and physical channels */ | 
|  | for (i = 0; i < il_size; i++) | 
|  | regs[i] = readl(base->virtbase + il[i].src); | 
|  |  | 
|  | for (;;) { | 
|  |  | 
|  | chan = find_next_bit((unsigned long *)regs, | 
|  | BITS_PER_LONG * il_size, chan + 1); | 
|  |  | 
|  | /* No more set bits found? */ | 
|  | if (chan == BITS_PER_LONG * il_size) | 
|  | break; | 
|  |  | 
|  | row = chan / BITS_PER_LONG; | 
|  | idx = chan & (BITS_PER_LONG - 1); | 
|  |  | 
|  | if (il[row].offset == D40_PHY_CHAN) | 
|  | d40c = base->lookup_phy_chans[idx]; | 
|  | else | 
|  | d40c = base->lookup_log_chans[il[row].offset + idx]; | 
|  |  | 
|  | if (!d40c) { | 
|  | /* | 
|  | * No error because this can happen if something else | 
|  | * in the system is using the channel. | 
|  | */ | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* ACK interrupt */ | 
|  | writel(BIT(idx), base->virtbase + il[row].clr); | 
|  |  | 
|  | spin_lock(&d40c->lock); | 
|  |  | 
|  | if (!il[row].is_error) | 
|  | dma_tc_handle(d40c); | 
|  | else | 
|  | d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n", | 
|  | chan, il[row].offset, idx); | 
|  |  | 
|  | spin_unlock(&d40c->lock); | 
|  | } | 
|  |  | 
|  | spin_unlock_irqrestore(&base->interrupt_lock, flags); | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | static int d40_validate_conf(struct d40_chan *d40c, | 
|  | struct stedma40_chan_cfg *conf) | 
|  | { | 
|  | int res = 0; | 
|  | bool is_log = conf->mode == STEDMA40_MODE_LOGICAL; | 
|  |  | 
|  | if (!conf->dir) { | 
|  | chan_err(d40c, "Invalid direction.\n"); | 
|  | res = -EINVAL; | 
|  | } | 
|  |  | 
|  | if ((is_log && conf->dev_type > d40c->base->num_log_chans)  || | 
|  | (!is_log && conf->dev_type > d40c->base->num_phy_chans) || | 
|  | (conf->dev_type < 0)) { | 
|  | chan_err(d40c, "Invalid device type (%d)\n", conf->dev_type); | 
|  | res = -EINVAL; | 
|  | } | 
|  |  | 
|  | if (conf->dir == DMA_DEV_TO_DEV) { | 
|  | /* | 
|  | * DMAC HW supports it. Will be added to this driver, | 
|  | * in case any dma client requires it. | 
|  | */ | 
|  | chan_err(d40c, "periph to periph not supported\n"); | 
|  | res = -EINVAL; | 
|  | } | 
|  |  | 
|  | if (d40_psize_2_burst_size(is_log, conf->src_info.psize) * | 
|  | conf->src_info.data_width != | 
|  | d40_psize_2_burst_size(is_log, conf->dst_info.psize) * | 
|  | conf->dst_info.data_width) { | 
|  | /* | 
|  | * The DMAC hardware only supports | 
|  | * src (burst x width) == dst (burst x width) | 
|  | */ | 
|  |  | 
|  | chan_err(d40c, "src (burst x width) != dst (burst x width)\n"); | 
|  | res = -EINVAL; | 
|  | } | 
|  |  | 
|  | return res; | 
|  | } | 
|  |  | 
|  | static bool d40_alloc_mask_set(struct d40_phy_res *phy, | 
|  | bool is_src, int log_event_line, bool is_log, | 
|  | bool *first_user) | 
|  | { | 
|  | unsigned long flags; | 
|  | spin_lock_irqsave(&phy->lock, flags); | 
|  |  | 
|  | *first_user = ((phy->allocated_src | phy->allocated_dst) | 
|  | == D40_ALLOC_FREE); | 
|  |  | 
|  | if (!is_log) { | 
|  | /* Physical interrupts are masked per physical full channel */ | 
|  | if (phy->allocated_src == D40_ALLOC_FREE && | 
|  | phy->allocated_dst == D40_ALLOC_FREE) { | 
|  | phy->allocated_dst = D40_ALLOC_PHY; | 
|  | phy->allocated_src = D40_ALLOC_PHY; | 
|  | goto found_unlock; | 
|  | } else | 
|  | goto not_found_unlock; | 
|  | } | 
|  |  | 
|  | /* Logical channel */ | 
|  | if (is_src) { | 
|  | if (phy->allocated_src == D40_ALLOC_PHY) | 
|  | goto not_found_unlock; | 
|  |  | 
|  | if (phy->allocated_src == D40_ALLOC_FREE) | 
|  | phy->allocated_src = D40_ALLOC_LOG_FREE; | 
|  |  | 
|  | if (!(phy->allocated_src & BIT(log_event_line))) { | 
|  | phy->allocated_src |= BIT(log_event_line); | 
|  | goto found_unlock; | 
|  | } else | 
|  | goto not_found_unlock; | 
|  | } else { | 
|  | if (phy->allocated_dst == D40_ALLOC_PHY) | 
|  | goto not_found_unlock; | 
|  |  | 
|  | if (phy->allocated_dst == D40_ALLOC_FREE) | 
|  | phy->allocated_dst = D40_ALLOC_LOG_FREE; | 
|  |  | 
|  | if (!(phy->allocated_dst & BIT(log_event_line))) { | 
|  | phy->allocated_dst |= BIT(log_event_line); | 
|  | goto found_unlock; | 
|  | } | 
|  | } | 
|  | not_found_unlock: | 
|  | spin_unlock_irqrestore(&phy->lock, flags); | 
|  | return false; | 
|  | found_unlock: | 
|  | spin_unlock_irqrestore(&phy->lock, flags); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src, | 
|  | int log_event_line) | 
|  | { | 
|  | unsigned long flags; | 
|  | bool is_free = false; | 
|  |  | 
|  | spin_lock_irqsave(&phy->lock, flags); | 
|  | if (!log_event_line) { | 
|  | phy->allocated_dst = D40_ALLOC_FREE; | 
|  | phy->allocated_src = D40_ALLOC_FREE; | 
|  | is_free = true; | 
|  | goto unlock; | 
|  | } | 
|  |  | 
|  | /* Logical channel */ | 
|  | if (is_src) { | 
|  | phy->allocated_src &= ~BIT(log_event_line); | 
|  | if (phy->allocated_src == D40_ALLOC_LOG_FREE) | 
|  | phy->allocated_src = D40_ALLOC_FREE; | 
|  | } else { | 
|  | phy->allocated_dst &= ~BIT(log_event_line); | 
|  | if (phy->allocated_dst == D40_ALLOC_LOG_FREE) | 
|  | phy->allocated_dst = D40_ALLOC_FREE; | 
|  | } | 
|  |  | 
|  | is_free = ((phy->allocated_src | phy->allocated_dst) == | 
|  | D40_ALLOC_FREE); | 
|  | unlock: | 
|  | spin_unlock_irqrestore(&phy->lock, flags); | 
|  |  | 
|  | return is_free; | 
|  | } | 
|  |  | 
|  | static int d40_allocate_channel(struct d40_chan *d40c, bool *first_phy_user) | 
|  | { | 
|  | int dev_type = d40c->dma_cfg.dev_type; | 
|  | int event_group; | 
|  | int event_line; | 
|  | struct d40_phy_res *phys; | 
|  | int i; | 
|  | int j; | 
|  | int log_num; | 
|  | int num_phy_chans; | 
|  | bool is_src; | 
|  | bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL; | 
|  |  | 
|  | phys = d40c->base->phy_res; | 
|  | num_phy_chans = d40c->base->num_phy_chans; | 
|  |  | 
|  | if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) { | 
|  | log_num = 2 * dev_type; | 
|  | is_src = true; | 
|  | } else if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV || | 
|  | d40c->dma_cfg.dir == DMA_MEM_TO_MEM) { | 
|  | /* dst event lines are used for logical memcpy */ | 
|  | log_num = 2 * dev_type + 1; | 
|  | is_src = false; | 
|  | } else | 
|  | return -EINVAL; | 
|  |  | 
|  | event_group = D40_TYPE_TO_GROUP(dev_type); | 
|  | event_line = D40_TYPE_TO_EVENT(dev_type); | 
|  |  | 
|  | if (!is_log) { | 
|  | if (d40c->dma_cfg.dir == DMA_MEM_TO_MEM) { | 
|  | /* Find physical half channel */ | 
|  | if (d40c->dma_cfg.use_fixed_channel) { | 
|  | i = d40c->dma_cfg.phy_channel; | 
|  | if (d40_alloc_mask_set(&phys[i], is_src, | 
|  | 0, is_log, | 
|  | first_phy_user)) | 
|  | goto found_phy; | 
|  | } else { | 
|  | for (i = 0; i < num_phy_chans; i++) { | 
|  | if (d40_alloc_mask_set(&phys[i], is_src, | 
|  | 0, is_log, | 
|  | first_phy_user)) | 
|  | goto found_phy; | 
|  | } | 
|  | } | 
|  | } else | 
|  | for (j = 0; j < d40c->base->num_phy_chans; j += 8) { | 
|  | int phy_num = j  + event_group * 2; | 
|  | for (i = phy_num; i < phy_num + 2; i++) { | 
|  | if (d40_alloc_mask_set(&phys[i], | 
|  | is_src, | 
|  | 0, | 
|  | is_log, | 
|  | first_phy_user)) | 
|  | goto found_phy; | 
|  | } | 
|  | } | 
|  | return -EINVAL; | 
|  | found_phy: | 
|  | d40c->phy_chan = &phys[i]; | 
|  | d40c->log_num = D40_PHY_CHAN; | 
|  | goto out; | 
|  | } | 
|  | if (dev_type == -1) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* Find logical channel */ | 
|  | for (j = 0; j < d40c->base->num_phy_chans; j += 8) { | 
|  | int phy_num = j + event_group * 2; | 
|  |  | 
|  | if (d40c->dma_cfg.use_fixed_channel) { | 
|  | i = d40c->dma_cfg.phy_channel; | 
|  |  | 
|  | if ((i != phy_num) && (i != phy_num + 1)) { | 
|  | dev_err(chan2dev(d40c), | 
|  | "invalid fixed phy channel %d\n", i); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (d40_alloc_mask_set(&phys[i], is_src, event_line, | 
|  | is_log, first_phy_user)) | 
|  | goto found_log; | 
|  |  | 
|  | dev_err(chan2dev(d40c), | 
|  | "could not allocate fixed phy channel %d\n", i); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Spread logical channels across all available physical rather | 
|  | * than pack every logical channel at the first available phy | 
|  | * channels. | 
|  | */ | 
|  | if (is_src) { | 
|  | for (i = phy_num; i < phy_num + 2; i++) { | 
|  | if (d40_alloc_mask_set(&phys[i], is_src, | 
|  | event_line, is_log, | 
|  | first_phy_user)) | 
|  | goto found_log; | 
|  | } | 
|  | } else { | 
|  | for (i = phy_num + 1; i >= phy_num; i--) { | 
|  | if (d40_alloc_mask_set(&phys[i], is_src, | 
|  | event_line, is_log, | 
|  | first_phy_user)) | 
|  | goto found_log; | 
|  | } | 
|  | } | 
|  | } | 
|  | return -EINVAL; | 
|  |  | 
|  | found_log: | 
|  | d40c->phy_chan = &phys[i]; | 
|  | d40c->log_num = log_num; | 
|  | out: | 
|  |  | 
|  | if (is_log) | 
|  | d40c->base->lookup_log_chans[d40c->log_num] = d40c; | 
|  | else | 
|  | d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | } | 
|  |  | 
|  | static int d40_config_memcpy(struct d40_chan *d40c) | 
|  | { | 
|  | dma_cap_mask_t cap = d40c->chan.device->cap_mask; | 
|  |  | 
|  | if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) { | 
|  | d40c->dma_cfg = dma40_memcpy_conf_log; | 
|  | d40c->dma_cfg.dev_type = dma40_memcpy_channels[d40c->chan.chan_id]; | 
|  |  | 
|  | d40_log_cfg(&d40c->dma_cfg, | 
|  | &d40c->log_def.lcsp1, &d40c->log_def.lcsp3); | 
|  |  | 
|  | } else if (dma_has_cap(DMA_MEMCPY, cap) && | 
|  | dma_has_cap(DMA_SLAVE, cap)) { | 
|  | d40c->dma_cfg = dma40_memcpy_conf_phy; | 
|  |  | 
|  | /* Generate interrrupt at end of transfer or relink. */ | 
|  | d40c->dst_def_cfg |= BIT(D40_SREG_CFG_TIM_POS); | 
|  |  | 
|  | /* Generate interrupt on error. */ | 
|  | d40c->src_def_cfg |= BIT(D40_SREG_CFG_EIM_POS); | 
|  | d40c->dst_def_cfg |= BIT(D40_SREG_CFG_EIM_POS); | 
|  |  | 
|  | } else { | 
|  | chan_err(d40c, "No memcpy\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int d40_free_dma(struct d40_chan *d40c) | 
|  | { | 
|  |  | 
|  | int res = 0; | 
|  | u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type); | 
|  | struct d40_phy_res *phy = d40c->phy_chan; | 
|  | bool is_src; | 
|  |  | 
|  | /* Terminate all queued and active transfers */ | 
|  | d40_term_all(d40c); | 
|  |  | 
|  | if (phy == NULL) { | 
|  | chan_err(d40c, "phy == null\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (phy->allocated_src == D40_ALLOC_FREE && | 
|  | phy->allocated_dst == D40_ALLOC_FREE) { | 
|  | chan_err(d40c, "channel already free\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV || | 
|  | d40c->dma_cfg.dir == DMA_MEM_TO_MEM) | 
|  | is_src = false; | 
|  | else if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) | 
|  | is_src = true; | 
|  | else { | 
|  | chan_err(d40c, "Unknown direction\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | pm_runtime_get_sync(d40c->base->dev); | 
|  | res = d40_channel_execute_command(d40c, D40_DMA_STOP); | 
|  | if (res) { | 
|  | chan_err(d40c, "stop failed\n"); | 
|  | goto mark_last_busy; | 
|  | } | 
|  |  | 
|  | d40_alloc_mask_free(phy, is_src, chan_is_logical(d40c) ? event : 0); | 
|  |  | 
|  | if (chan_is_logical(d40c)) | 
|  | d40c->base->lookup_log_chans[d40c->log_num] = NULL; | 
|  | else | 
|  | d40c->base->lookup_phy_chans[phy->num] = NULL; | 
|  |  | 
|  | if (d40c->busy) { | 
|  | pm_runtime_mark_last_busy(d40c->base->dev); | 
|  | pm_runtime_put_autosuspend(d40c->base->dev); | 
|  | } | 
|  |  | 
|  | d40c->busy = false; | 
|  | d40c->phy_chan = NULL; | 
|  | d40c->configured = false; | 
|  | mark_last_busy: | 
|  | pm_runtime_mark_last_busy(d40c->base->dev); | 
|  | pm_runtime_put_autosuspend(d40c->base->dev); | 
|  | return res; | 
|  | } | 
|  |  | 
|  | static bool d40_is_paused(struct d40_chan *d40c) | 
|  | { | 
|  | void __iomem *chanbase = chan_base(d40c); | 
|  | bool is_paused = false; | 
|  | unsigned long flags; | 
|  | void __iomem *active_reg; | 
|  | u32 status; | 
|  | u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type); | 
|  |  | 
|  | spin_lock_irqsave(&d40c->lock, flags); | 
|  |  | 
|  | if (chan_is_physical(d40c)) { | 
|  | if (d40c->phy_chan->num % 2 == 0) | 
|  | active_reg = d40c->base->virtbase + D40_DREG_ACTIVE; | 
|  | else | 
|  | active_reg = d40c->base->virtbase + D40_DREG_ACTIVO; | 
|  |  | 
|  | status = (readl(active_reg) & | 
|  | D40_CHAN_POS_MASK(d40c->phy_chan->num)) >> | 
|  | D40_CHAN_POS(d40c->phy_chan->num); | 
|  | if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP) | 
|  | is_paused = true; | 
|  | goto unlock; | 
|  | } | 
|  |  | 
|  | if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV || | 
|  | d40c->dma_cfg.dir == DMA_MEM_TO_MEM) { | 
|  | status = readl(chanbase + D40_CHAN_REG_SDLNK); | 
|  | } else if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) { | 
|  | status = readl(chanbase + D40_CHAN_REG_SSLNK); | 
|  | } else { | 
|  | chan_err(d40c, "Unknown direction\n"); | 
|  | goto unlock; | 
|  | } | 
|  |  | 
|  | status = (status & D40_EVENTLINE_MASK(event)) >> | 
|  | D40_EVENTLINE_POS(event); | 
|  |  | 
|  | if (status != D40_DMA_RUN) | 
|  | is_paused = true; | 
|  | unlock: | 
|  | spin_unlock_irqrestore(&d40c->lock, flags); | 
|  | return is_paused; | 
|  |  | 
|  | } | 
|  |  | 
|  | static u32 stedma40_residue(struct dma_chan *chan) | 
|  | { | 
|  | struct d40_chan *d40c = | 
|  | container_of(chan, struct d40_chan, chan); | 
|  | u32 bytes_left; | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&d40c->lock, flags); | 
|  | bytes_left = d40_residue(d40c); | 
|  | spin_unlock_irqrestore(&d40c->lock, flags); | 
|  |  | 
|  | return bytes_left; | 
|  | } | 
|  |  | 
|  | static int | 
|  | d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc, | 
|  | struct scatterlist *sg_src, struct scatterlist *sg_dst, | 
|  | unsigned int sg_len, dma_addr_t src_dev_addr, | 
|  | dma_addr_t dst_dev_addr) | 
|  | { | 
|  | struct stedma40_chan_cfg *cfg = &chan->dma_cfg; | 
|  | struct stedma40_half_channel_info *src_info = &cfg->src_info; | 
|  | struct stedma40_half_channel_info *dst_info = &cfg->dst_info; | 
|  | int ret; | 
|  |  | 
|  | ret = d40_log_sg_to_lli(sg_src, sg_len, | 
|  | src_dev_addr, | 
|  | desc->lli_log.src, | 
|  | chan->log_def.lcsp1, | 
|  | src_info->data_width, | 
|  | dst_info->data_width); | 
|  |  | 
|  | ret = d40_log_sg_to_lli(sg_dst, sg_len, | 
|  | dst_dev_addr, | 
|  | desc->lli_log.dst, | 
|  | chan->log_def.lcsp3, | 
|  | dst_info->data_width, | 
|  | src_info->data_width); | 
|  |  | 
|  | return ret < 0 ? ret : 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc, | 
|  | struct scatterlist *sg_src, struct scatterlist *sg_dst, | 
|  | unsigned int sg_len, dma_addr_t src_dev_addr, | 
|  | dma_addr_t dst_dev_addr) | 
|  | { | 
|  | struct stedma40_chan_cfg *cfg = &chan->dma_cfg; | 
|  | struct stedma40_half_channel_info *src_info = &cfg->src_info; | 
|  | struct stedma40_half_channel_info *dst_info = &cfg->dst_info; | 
|  | unsigned long flags = 0; | 
|  | int ret; | 
|  |  | 
|  | if (desc->cyclic) | 
|  | flags |= LLI_CYCLIC | LLI_TERM_INT; | 
|  |  | 
|  | ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr, | 
|  | desc->lli_phy.src, | 
|  | virt_to_phys(desc->lli_phy.src), | 
|  | chan->src_def_cfg, | 
|  | src_info, dst_info, flags); | 
|  |  | 
|  | ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr, | 
|  | desc->lli_phy.dst, | 
|  | virt_to_phys(desc->lli_phy.dst), | 
|  | chan->dst_def_cfg, | 
|  | dst_info, src_info, flags); | 
|  |  | 
|  | dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr, | 
|  | desc->lli_pool.size, DMA_TO_DEVICE); | 
|  |  | 
|  | return ret < 0 ? ret : 0; | 
|  | } | 
|  |  | 
|  | static struct d40_desc * | 
|  | d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg, | 
|  | unsigned int sg_len, unsigned long dma_flags) | 
|  | { | 
|  | struct stedma40_chan_cfg *cfg; | 
|  | struct d40_desc *desc; | 
|  | int ret; | 
|  |  | 
|  | desc = d40_desc_get(chan); | 
|  | if (!desc) | 
|  | return NULL; | 
|  |  | 
|  | cfg = &chan->dma_cfg; | 
|  | desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width, | 
|  | cfg->dst_info.data_width); | 
|  | if (desc->lli_len < 0) { | 
|  | chan_err(chan, "Unaligned size\n"); | 
|  | goto free_desc; | 
|  | } | 
|  |  | 
|  | ret = d40_pool_lli_alloc(chan, desc, desc->lli_len); | 
|  | if (ret < 0) { | 
|  | chan_err(chan, "Could not allocate lli\n"); | 
|  | goto free_desc; | 
|  | } | 
|  |  | 
|  | desc->lli_current = 0; | 
|  | desc->txd.flags = dma_flags; | 
|  | desc->txd.tx_submit = d40_tx_submit; | 
|  |  | 
|  | dma_async_tx_descriptor_init(&desc->txd, &chan->chan); | 
|  |  | 
|  | return desc; | 
|  | free_desc: | 
|  | d40_desc_free(chan, desc); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static struct dma_async_tx_descriptor * | 
|  | d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src, | 
|  | struct scatterlist *sg_dst, unsigned int sg_len, | 
|  | enum dma_transfer_direction direction, unsigned long dma_flags) | 
|  | { | 
|  | struct d40_chan *chan = container_of(dchan, struct d40_chan, chan); | 
|  | dma_addr_t src_dev_addr; | 
|  | dma_addr_t dst_dev_addr; | 
|  | struct d40_desc *desc; | 
|  | unsigned long flags; | 
|  | int ret; | 
|  |  | 
|  | if (!chan->phy_chan) { | 
|  | chan_err(chan, "Cannot prepare unallocated channel\n"); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | d40_set_runtime_config_write(dchan, &chan->slave_config, direction); | 
|  |  | 
|  | spin_lock_irqsave(&chan->lock, flags); | 
|  |  | 
|  | desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags); | 
|  | if (desc == NULL) | 
|  | goto unlock; | 
|  |  | 
|  | if (sg_next(&sg_src[sg_len - 1]) == sg_src) | 
|  | desc->cyclic = true; | 
|  |  | 
|  | src_dev_addr = 0; | 
|  | dst_dev_addr = 0; | 
|  | if (direction == DMA_DEV_TO_MEM) | 
|  | src_dev_addr = chan->runtime_addr; | 
|  | else if (direction == DMA_MEM_TO_DEV) | 
|  | dst_dev_addr = chan->runtime_addr; | 
|  |  | 
|  | if (chan_is_logical(chan)) | 
|  | ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst, | 
|  | sg_len, src_dev_addr, dst_dev_addr); | 
|  | else | 
|  | ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst, | 
|  | sg_len, src_dev_addr, dst_dev_addr); | 
|  |  | 
|  | if (ret) { | 
|  | chan_err(chan, "Failed to prepare %s sg job: %d\n", | 
|  | chan_is_logical(chan) ? "log" : "phy", ret); | 
|  | goto free_desc; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * add descriptor to the prepare queue in order to be able | 
|  | * to free them later in terminate_all | 
|  | */ | 
|  | list_add_tail(&desc->node, &chan->prepare_queue); | 
|  |  | 
|  | spin_unlock_irqrestore(&chan->lock, flags); | 
|  |  | 
|  | return &desc->txd; | 
|  | free_desc: | 
|  | d40_desc_free(chan, desc); | 
|  | unlock: | 
|  | spin_unlock_irqrestore(&chan->lock, flags); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | bool stedma40_filter(struct dma_chan *chan, void *data) | 
|  | { | 
|  | struct stedma40_chan_cfg *info = data; | 
|  | struct d40_chan *d40c = | 
|  | container_of(chan, struct d40_chan, chan); | 
|  | int err; | 
|  |  | 
|  | if (data) { | 
|  | err = d40_validate_conf(d40c, info); | 
|  | if (!err) | 
|  | d40c->dma_cfg = *info; | 
|  | } else | 
|  | err = d40_config_memcpy(d40c); | 
|  |  | 
|  | if (!err) | 
|  | d40c->configured = true; | 
|  |  | 
|  | return err == 0; | 
|  | } | 
|  | EXPORT_SYMBOL(stedma40_filter); | 
|  |  | 
|  | static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src) | 
|  | { | 
|  | bool realtime = d40c->dma_cfg.realtime; | 
|  | bool highprio = d40c->dma_cfg.high_priority; | 
|  | u32 rtreg; | 
|  | u32 event = D40_TYPE_TO_EVENT(dev_type); | 
|  | u32 group = D40_TYPE_TO_GROUP(dev_type); | 
|  | u32 bit = BIT(event); | 
|  | u32 prioreg; | 
|  | struct d40_gen_dmac *dmac = &d40c->base->gen_dmac; | 
|  |  | 
|  | rtreg = realtime ? dmac->realtime_en : dmac->realtime_clear; | 
|  | /* | 
|  | * Due to a hardware bug, in some cases a logical channel triggered by | 
|  | * a high priority destination event line can generate extra packet | 
|  | * transactions. | 
|  | * | 
|  | * The workaround is to not set the high priority level for the | 
|  | * destination event lines that trigger logical channels. | 
|  | */ | 
|  | if (!src && chan_is_logical(d40c)) | 
|  | highprio = false; | 
|  |  | 
|  | prioreg = highprio ? dmac->high_prio_en : dmac->high_prio_clear; | 
|  |  | 
|  | /* Destination event lines are stored in the upper halfword */ | 
|  | if (!src) | 
|  | bit <<= 16; | 
|  |  | 
|  | writel(bit, d40c->base->virtbase + prioreg + group * 4); | 
|  | writel(bit, d40c->base->virtbase + rtreg + group * 4); | 
|  | } | 
|  |  | 
|  | static void d40_set_prio_realtime(struct d40_chan *d40c) | 
|  | { | 
|  | if (d40c->base->rev < 3) | 
|  | return; | 
|  |  | 
|  | if ((d40c->dma_cfg.dir ==  DMA_DEV_TO_MEM) || | 
|  | (d40c->dma_cfg.dir == DMA_DEV_TO_DEV)) | 
|  | __d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, true); | 
|  |  | 
|  | if ((d40c->dma_cfg.dir ==  DMA_MEM_TO_DEV) || | 
|  | (d40c->dma_cfg.dir == DMA_DEV_TO_DEV)) | 
|  | __d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, false); | 
|  | } | 
|  |  | 
|  | #define D40_DT_FLAGS_MODE(flags)       ((flags >> 0) & 0x1) | 
|  | #define D40_DT_FLAGS_DIR(flags)        ((flags >> 1) & 0x1) | 
|  | #define D40_DT_FLAGS_BIG_ENDIAN(flags) ((flags >> 2) & 0x1) | 
|  | #define D40_DT_FLAGS_FIXED_CHAN(flags) ((flags >> 3) & 0x1) | 
|  | #define D40_DT_FLAGS_HIGH_PRIO(flags)  ((flags >> 4) & 0x1) | 
|  |  | 
|  | static struct dma_chan *d40_xlate(struct of_phandle_args *dma_spec, | 
|  | struct of_dma *ofdma) | 
|  | { | 
|  | struct stedma40_chan_cfg cfg; | 
|  | dma_cap_mask_t cap; | 
|  | u32 flags; | 
|  |  | 
|  | memset(&cfg, 0, sizeof(struct stedma40_chan_cfg)); | 
|  |  | 
|  | dma_cap_zero(cap); | 
|  | dma_cap_set(DMA_SLAVE, cap); | 
|  |  | 
|  | cfg.dev_type = dma_spec->args[0]; | 
|  | flags = dma_spec->args[2]; | 
|  |  | 
|  | switch (D40_DT_FLAGS_MODE(flags)) { | 
|  | case 0: cfg.mode = STEDMA40_MODE_LOGICAL; break; | 
|  | case 1: cfg.mode = STEDMA40_MODE_PHYSICAL; break; | 
|  | } | 
|  |  | 
|  | switch (D40_DT_FLAGS_DIR(flags)) { | 
|  | case 0: | 
|  | cfg.dir = DMA_MEM_TO_DEV; | 
|  | cfg.dst_info.big_endian = D40_DT_FLAGS_BIG_ENDIAN(flags); | 
|  | break; | 
|  | case 1: | 
|  | cfg.dir = DMA_DEV_TO_MEM; | 
|  | cfg.src_info.big_endian = D40_DT_FLAGS_BIG_ENDIAN(flags); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (D40_DT_FLAGS_FIXED_CHAN(flags)) { | 
|  | cfg.phy_channel = dma_spec->args[1]; | 
|  | cfg.use_fixed_channel = true; | 
|  | } | 
|  |  | 
|  | if (D40_DT_FLAGS_HIGH_PRIO(flags)) | 
|  | cfg.high_priority = true; | 
|  |  | 
|  | return dma_request_channel(cap, stedma40_filter, &cfg); | 
|  | } | 
|  |  | 
|  | /* DMA ENGINE functions */ | 
|  | static int d40_alloc_chan_resources(struct dma_chan *chan) | 
|  | { | 
|  | int err; | 
|  | unsigned long flags; | 
|  | struct d40_chan *d40c = | 
|  | container_of(chan, struct d40_chan, chan); | 
|  | bool is_free_phy; | 
|  | spin_lock_irqsave(&d40c->lock, flags); | 
|  |  | 
|  | dma_cookie_init(chan); | 
|  |  | 
|  | /* If no dma configuration is set use default configuration (memcpy) */ | 
|  | if (!d40c->configured) { | 
|  | err = d40_config_memcpy(d40c); | 
|  | if (err) { | 
|  | chan_err(d40c, "Failed to configure memcpy channel\n"); | 
|  | goto mark_last_busy; | 
|  | } | 
|  | } | 
|  |  | 
|  | err = d40_allocate_channel(d40c, &is_free_phy); | 
|  | if (err) { | 
|  | chan_err(d40c, "Failed to allocate channel\n"); | 
|  | d40c->configured = false; | 
|  | goto mark_last_busy; | 
|  | } | 
|  |  | 
|  | pm_runtime_get_sync(d40c->base->dev); | 
|  |  | 
|  | d40_set_prio_realtime(d40c); | 
|  |  | 
|  | if (chan_is_logical(d40c)) { | 
|  | if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) | 
|  | d40c->lcpa = d40c->base->lcpa_base + | 
|  | d40c->dma_cfg.dev_type * D40_LCPA_CHAN_SIZE; | 
|  | else | 
|  | d40c->lcpa = d40c->base->lcpa_base + | 
|  | d40c->dma_cfg.dev_type * | 
|  | D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA; | 
|  |  | 
|  | /* Unmask the Global Interrupt Mask. */ | 
|  | d40c->src_def_cfg |= BIT(D40_SREG_CFG_LOG_GIM_POS); | 
|  | d40c->dst_def_cfg |= BIT(D40_SREG_CFG_LOG_GIM_POS); | 
|  | } | 
|  |  | 
|  | dev_dbg(chan2dev(d40c), "allocated %s channel (phy %d%s)\n", | 
|  | chan_is_logical(d40c) ? "logical" : "physical", | 
|  | d40c->phy_chan->num, | 
|  | d40c->dma_cfg.use_fixed_channel ? ", fixed" : ""); | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Only write channel configuration to the DMA if the physical | 
|  | * resource is free. In case of multiple logical channels | 
|  | * on the same physical resource, only the first write is necessary. | 
|  | */ | 
|  | if (is_free_phy) | 
|  | d40_config_write(d40c); | 
|  | mark_last_busy: | 
|  | pm_runtime_mark_last_busy(d40c->base->dev); | 
|  | pm_runtime_put_autosuspend(d40c->base->dev); | 
|  | spin_unlock_irqrestore(&d40c->lock, flags); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void d40_free_chan_resources(struct dma_chan *chan) | 
|  | { | 
|  | struct d40_chan *d40c = | 
|  | container_of(chan, struct d40_chan, chan); | 
|  | int err; | 
|  | unsigned long flags; | 
|  |  | 
|  | if (d40c->phy_chan == NULL) { | 
|  | chan_err(d40c, "Cannot free unallocated channel\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | spin_lock_irqsave(&d40c->lock, flags); | 
|  |  | 
|  | err = d40_free_dma(d40c); | 
|  |  | 
|  | if (err) | 
|  | chan_err(d40c, "Failed to free channel\n"); | 
|  | spin_unlock_irqrestore(&d40c->lock, flags); | 
|  | } | 
|  |  | 
|  | static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan, | 
|  | dma_addr_t dst, | 
|  | dma_addr_t src, | 
|  | size_t size, | 
|  | unsigned long dma_flags) | 
|  | { | 
|  | struct scatterlist dst_sg; | 
|  | struct scatterlist src_sg; | 
|  |  | 
|  | sg_init_table(&dst_sg, 1); | 
|  | sg_init_table(&src_sg, 1); | 
|  |  | 
|  | sg_dma_address(&dst_sg) = dst; | 
|  | sg_dma_address(&src_sg) = src; | 
|  |  | 
|  | sg_dma_len(&dst_sg) = size; | 
|  | sg_dma_len(&src_sg) = size; | 
|  |  | 
|  | return d40_prep_sg(chan, &src_sg, &dst_sg, 1, | 
|  | DMA_MEM_TO_MEM, dma_flags); | 
|  | } | 
|  |  | 
|  | static struct dma_async_tx_descriptor * | 
|  | d40_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl, | 
|  | unsigned int sg_len, enum dma_transfer_direction direction, | 
|  | unsigned long dma_flags, void *context) | 
|  | { | 
|  | if (!is_slave_direction(direction)) | 
|  | return NULL; | 
|  |  | 
|  | return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags); | 
|  | } | 
|  |  | 
|  | static struct dma_async_tx_descriptor * | 
|  | dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr, | 
|  | size_t buf_len, size_t period_len, | 
|  | enum dma_transfer_direction direction, unsigned long flags) | 
|  | { | 
|  | unsigned int periods = buf_len / period_len; | 
|  | struct dma_async_tx_descriptor *txd; | 
|  | struct scatterlist *sg; | 
|  | int i; | 
|  |  | 
|  | sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_NOWAIT); | 
|  | if (!sg) | 
|  | return NULL; | 
|  |  | 
|  | for (i = 0; i < periods; i++) { | 
|  | sg_dma_address(&sg[i]) = dma_addr; | 
|  | sg_dma_len(&sg[i]) = period_len; | 
|  | dma_addr += period_len; | 
|  | } | 
|  |  | 
|  | sg_chain(sg, periods + 1, sg); | 
|  |  | 
|  | txd = d40_prep_sg(chan, sg, sg, periods, direction, | 
|  | DMA_PREP_INTERRUPT); | 
|  |  | 
|  | kfree(sg); | 
|  |  | 
|  | return txd; | 
|  | } | 
|  |  | 
|  | static enum dma_status d40_tx_status(struct dma_chan *chan, | 
|  | dma_cookie_t cookie, | 
|  | struct dma_tx_state *txstate) | 
|  | { | 
|  | struct d40_chan *d40c = container_of(chan, struct d40_chan, chan); | 
|  | enum dma_status ret; | 
|  |  | 
|  | if (d40c->phy_chan == NULL) { | 
|  | chan_err(d40c, "Cannot read status of unallocated channel\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | ret = dma_cookie_status(chan, cookie, txstate); | 
|  | if (ret != DMA_COMPLETE && txstate) | 
|  | dma_set_residue(txstate, stedma40_residue(chan)); | 
|  |  | 
|  | if (d40_is_paused(d40c)) | 
|  | ret = DMA_PAUSED; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void d40_issue_pending(struct dma_chan *chan) | 
|  | { | 
|  | struct d40_chan *d40c = container_of(chan, struct d40_chan, chan); | 
|  | unsigned long flags; | 
|  |  | 
|  | if (d40c->phy_chan == NULL) { | 
|  | chan_err(d40c, "Channel is not allocated!\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | spin_lock_irqsave(&d40c->lock, flags); | 
|  |  | 
|  | list_splice_tail_init(&d40c->pending_queue, &d40c->queue); | 
|  |  | 
|  | /* Busy means that queued jobs are already being processed */ | 
|  | if (!d40c->busy) | 
|  | (void) d40_queue_start(d40c); | 
|  |  | 
|  | spin_unlock_irqrestore(&d40c->lock, flags); | 
|  | } | 
|  |  | 
|  | static int d40_terminate_all(struct dma_chan *chan) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct d40_chan *d40c = container_of(chan, struct d40_chan, chan); | 
|  | int ret; | 
|  |  | 
|  | if (d40c->phy_chan == NULL) { | 
|  | chan_err(d40c, "Channel is not allocated!\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | spin_lock_irqsave(&d40c->lock, flags); | 
|  |  | 
|  | pm_runtime_get_sync(d40c->base->dev); | 
|  | ret = d40_channel_execute_command(d40c, D40_DMA_STOP); | 
|  | if (ret) | 
|  | chan_err(d40c, "Failed to stop channel\n"); | 
|  |  | 
|  | d40_term_all(d40c); | 
|  | pm_runtime_mark_last_busy(d40c->base->dev); | 
|  | pm_runtime_put_autosuspend(d40c->base->dev); | 
|  | if (d40c->busy) { | 
|  | pm_runtime_mark_last_busy(d40c->base->dev); | 
|  | pm_runtime_put_autosuspend(d40c->base->dev); | 
|  | } | 
|  | d40c->busy = false; | 
|  |  | 
|  | spin_unlock_irqrestore(&d40c->lock, flags); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | dma40_config_to_halfchannel(struct d40_chan *d40c, | 
|  | struct stedma40_half_channel_info *info, | 
|  | u32 maxburst) | 
|  | { | 
|  | int psize; | 
|  |  | 
|  | if (chan_is_logical(d40c)) { | 
|  | if (maxburst >= 16) | 
|  | psize = STEDMA40_PSIZE_LOG_16; | 
|  | else if (maxburst >= 8) | 
|  | psize = STEDMA40_PSIZE_LOG_8; | 
|  | else if (maxburst >= 4) | 
|  | psize = STEDMA40_PSIZE_LOG_4; | 
|  | else | 
|  | psize = STEDMA40_PSIZE_LOG_1; | 
|  | } else { | 
|  | if (maxburst >= 16) | 
|  | psize = STEDMA40_PSIZE_PHY_16; | 
|  | else if (maxburst >= 8) | 
|  | psize = STEDMA40_PSIZE_PHY_8; | 
|  | else if (maxburst >= 4) | 
|  | psize = STEDMA40_PSIZE_PHY_4; | 
|  | else | 
|  | psize = STEDMA40_PSIZE_PHY_1; | 
|  | } | 
|  |  | 
|  | info->psize = psize; | 
|  | info->flow_ctrl = STEDMA40_NO_FLOW_CTRL; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int d40_set_runtime_config(struct dma_chan *chan, | 
|  | struct dma_slave_config *config) | 
|  | { | 
|  | struct d40_chan *d40c = container_of(chan, struct d40_chan, chan); | 
|  |  | 
|  | memcpy(&d40c->slave_config, config, sizeof(*config)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Runtime reconfiguration extension */ | 
|  | static int d40_set_runtime_config_write(struct dma_chan *chan, | 
|  | struct dma_slave_config *config, | 
|  | enum dma_transfer_direction direction) | 
|  | { | 
|  | struct d40_chan *d40c = container_of(chan, struct d40_chan, chan); | 
|  | struct stedma40_chan_cfg *cfg = &d40c->dma_cfg; | 
|  | enum dma_slave_buswidth src_addr_width, dst_addr_width; | 
|  | dma_addr_t config_addr; | 
|  | u32 src_maxburst, dst_maxburst; | 
|  | int ret; | 
|  |  | 
|  | if (d40c->phy_chan == NULL) { | 
|  | chan_err(d40c, "Channel is not allocated!\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | src_addr_width = config->src_addr_width; | 
|  | src_maxburst = config->src_maxburst; | 
|  | dst_addr_width = config->dst_addr_width; | 
|  | dst_maxburst = config->dst_maxburst; | 
|  |  | 
|  | if (direction == DMA_DEV_TO_MEM) { | 
|  | config_addr = config->src_addr; | 
|  |  | 
|  | if (cfg->dir != DMA_DEV_TO_MEM) | 
|  | dev_dbg(d40c->base->dev, | 
|  | "channel was not configured for peripheral " | 
|  | "to memory transfer (%d) overriding\n", | 
|  | cfg->dir); | 
|  | cfg->dir = DMA_DEV_TO_MEM; | 
|  |  | 
|  | /* Configure the memory side */ | 
|  | if (dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) | 
|  | dst_addr_width = src_addr_width; | 
|  | if (dst_maxburst == 0) | 
|  | dst_maxburst = src_maxburst; | 
|  |  | 
|  | } else if (direction == DMA_MEM_TO_DEV) { | 
|  | config_addr = config->dst_addr; | 
|  |  | 
|  | if (cfg->dir != DMA_MEM_TO_DEV) | 
|  | dev_dbg(d40c->base->dev, | 
|  | "channel was not configured for memory " | 
|  | "to peripheral transfer (%d) overriding\n", | 
|  | cfg->dir); | 
|  | cfg->dir = DMA_MEM_TO_DEV; | 
|  |  | 
|  | /* Configure the memory side */ | 
|  | if (src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) | 
|  | src_addr_width = dst_addr_width; | 
|  | if (src_maxburst == 0) | 
|  | src_maxburst = dst_maxburst; | 
|  | } else { | 
|  | dev_err(d40c->base->dev, | 
|  | "unrecognized channel direction %d\n", | 
|  | direction); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (config_addr <= 0) { | 
|  | dev_err(d40c->base->dev, "no address supplied\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (src_maxburst * src_addr_width != dst_maxburst * dst_addr_width) { | 
|  | dev_err(d40c->base->dev, | 
|  | "src/dst width/maxburst mismatch: %d*%d != %d*%d\n", | 
|  | src_maxburst, | 
|  | src_addr_width, | 
|  | dst_maxburst, | 
|  | dst_addr_width); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (src_maxburst > 16) { | 
|  | src_maxburst = 16; | 
|  | dst_maxburst = src_maxburst * src_addr_width / dst_addr_width; | 
|  | } else if (dst_maxburst > 16) { | 
|  | dst_maxburst = 16; | 
|  | src_maxburst = dst_maxburst * dst_addr_width / src_addr_width; | 
|  | } | 
|  |  | 
|  | /* Only valid widths are; 1, 2, 4 and 8. */ | 
|  | if (src_addr_width <= DMA_SLAVE_BUSWIDTH_UNDEFINED || | 
|  | src_addr_width >  DMA_SLAVE_BUSWIDTH_8_BYTES   || | 
|  | dst_addr_width <= DMA_SLAVE_BUSWIDTH_UNDEFINED || | 
|  | dst_addr_width >  DMA_SLAVE_BUSWIDTH_8_BYTES   || | 
|  | !is_power_of_2(src_addr_width) || | 
|  | !is_power_of_2(dst_addr_width)) | 
|  | return -EINVAL; | 
|  |  | 
|  | cfg->src_info.data_width = src_addr_width; | 
|  | cfg->dst_info.data_width = dst_addr_width; | 
|  |  | 
|  | ret = dma40_config_to_halfchannel(d40c, &cfg->src_info, | 
|  | src_maxburst); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = dma40_config_to_halfchannel(d40c, &cfg->dst_info, | 
|  | dst_maxburst); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* Fill in register values */ | 
|  | if (chan_is_logical(d40c)) | 
|  | d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3); | 
|  | else | 
|  | d40_phy_cfg(cfg, &d40c->src_def_cfg, &d40c->dst_def_cfg); | 
|  |  | 
|  | /* These settings will take precedence later */ | 
|  | d40c->runtime_addr = config_addr; | 
|  | d40c->runtime_direction = direction; | 
|  | dev_dbg(d40c->base->dev, | 
|  | "configured channel %s for %s, data width %d/%d, " | 
|  | "maxburst %d/%d elements, LE, no flow control\n", | 
|  | dma_chan_name(chan), | 
|  | (direction == DMA_DEV_TO_MEM) ? "RX" : "TX", | 
|  | src_addr_width, dst_addr_width, | 
|  | src_maxburst, dst_maxburst); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Initialization functions */ | 
|  |  | 
|  | static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma, | 
|  | struct d40_chan *chans, int offset, | 
|  | int num_chans) | 
|  | { | 
|  | int i = 0; | 
|  | struct d40_chan *d40c; | 
|  |  | 
|  | INIT_LIST_HEAD(&dma->channels); | 
|  |  | 
|  | for (i = offset; i < offset + num_chans; i++) { | 
|  | d40c = &chans[i]; | 
|  | d40c->base = base; | 
|  | d40c->chan.device = dma; | 
|  |  | 
|  | spin_lock_init(&d40c->lock); | 
|  |  | 
|  | d40c->log_num = D40_PHY_CHAN; | 
|  |  | 
|  | INIT_LIST_HEAD(&d40c->done); | 
|  | INIT_LIST_HEAD(&d40c->active); | 
|  | INIT_LIST_HEAD(&d40c->queue); | 
|  | INIT_LIST_HEAD(&d40c->pending_queue); | 
|  | INIT_LIST_HEAD(&d40c->client); | 
|  | INIT_LIST_HEAD(&d40c->prepare_queue); | 
|  |  | 
|  | tasklet_init(&d40c->tasklet, dma_tasklet, | 
|  | (unsigned long) d40c); | 
|  |  | 
|  | list_add_tail(&d40c->chan.device_node, | 
|  | &dma->channels); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void d40_ops_init(struct d40_base *base, struct dma_device *dev) | 
|  | { | 
|  | if (dma_has_cap(DMA_SLAVE, dev->cap_mask)) { | 
|  | dev->device_prep_slave_sg = d40_prep_slave_sg; | 
|  | dev->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); | 
|  | } | 
|  |  | 
|  | if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) { | 
|  | dev->device_prep_dma_memcpy = d40_prep_memcpy; | 
|  | dev->directions = BIT(DMA_MEM_TO_MEM); | 
|  | /* | 
|  | * This controller can only access address at even | 
|  | * 32bit boundaries, i.e. 2^2 | 
|  | */ | 
|  | dev->copy_align = DMAENGINE_ALIGN_4_BYTES; | 
|  | } | 
|  |  | 
|  | if (dma_has_cap(DMA_CYCLIC, dev->cap_mask)) | 
|  | dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic; | 
|  |  | 
|  | dev->device_alloc_chan_resources = d40_alloc_chan_resources; | 
|  | dev->device_free_chan_resources = d40_free_chan_resources; | 
|  | dev->device_issue_pending = d40_issue_pending; | 
|  | dev->device_tx_status = d40_tx_status; | 
|  | dev->device_config = d40_set_runtime_config; | 
|  | dev->device_pause = d40_pause; | 
|  | dev->device_resume = d40_resume; | 
|  | dev->device_terminate_all = d40_terminate_all; | 
|  | dev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; | 
|  | dev->dev = base->dev; | 
|  | } | 
|  |  | 
|  | static int __init d40_dmaengine_init(struct d40_base *base, | 
|  | int num_reserved_chans) | 
|  | { | 
|  | int err ; | 
|  |  | 
|  | d40_chan_init(base, &base->dma_slave, base->log_chans, | 
|  | 0, base->num_log_chans); | 
|  |  | 
|  | dma_cap_zero(base->dma_slave.cap_mask); | 
|  | dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask); | 
|  | dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask); | 
|  |  | 
|  | d40_ops_init(base, &base->dma_slave); | 
|  |  | 
|  | err = dmaenginem_async_device_register(&base->dma_slave); | 
|  |  | 
|  | if (err) { | 
|  | d40_err(base->dev, "Failed to register slave channels\n"); | 
|  | goto exit; | 
|  | } | 
|  |  | 
|  | d40_chan_init(base, &base->dma_memcpy, base->log_chans, | 
|  | base->num_log_chans, base->num_memcpy_chans); | 
|  |  | 
|  | dma_cap_zero(base->dma_memcpy.cap_mask); | 
|  | dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask); | 
|  |  | 
|  | d40_ops_init(base, &base->dma_memcpy); | 
|  |  | 
|  | err = dmaenginem_async_device_register(&base->dma_memcpy); | 
|  |  | 
|  | if (err) { | 
|  | d40_err(base->dev, | 
|  | "Failed to register memcpy only channels\n"); | 
|  | goto exit; | 
|  | } | 
|  |  | 
|  | d40_chan_init(base, &base->dma_both, base->phy_chans, | 
|  | 0, num_reserved_chans); | 
|  |  | 
|  | dma_cap_zero(base->dma_both.cap_mask); | 
|  | dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask); | 
|  | dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask); | 
|  | dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask); | 
|  |  | 
|  | d40_ops_init(base, &base->dma_both); | 
|  | err = dmaenginem_async_device_register(&base->dma_both); | 
|  |  | 
|  | if (err) { | 
|  | d40_err(base->dev, | 
|  | "Failed to register logical and physical capable channels\n"); | 
|  | goto exit; | 
|  | } | 
|  | return 0; | 
|  | exit: | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* Suspend resume functionality */ | 
|  | #ifdef CONFIG_PM_SLEEP | 
|  | static int dma40_suspend(struct device *dev) | 
|  | { | 
|  | struct d40_base *base = dev_get_drvdata(dev); | 
|  | int ret; | 
|  |  | 
|  | ret = pm_runtime_force_suspend(dev); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (base->lcpa_regulator) | 
|  | ret = regulator_disable(base->lcpa_regulator); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int dma40_resume(struct device *dev) | 
|  | { | 
|  | struct d40_base *base = dev_get_drvdata(dev); | 
|  | int ret = 0; | 
|  |  | 
|  | if (base->lcpa_regulator) { | 
|  | ret = regulator_enable(base->lcpa_regulator); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return pm_runtime_force_resume(dev); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_PM | 
|  | static void dma40_backup(void __iomem *baseaddr, u32 *backup, | 
|  | u32 *regaddr, int num, bool save) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < num; i++) { | 
|  | void __iomem *addr = baseaddr + regaddr[i]; | 
|  |  | 
|  | if (save) | 
|  | backup[i] = readl_relaxed(addr); | 
|  | else | 
|  | writel_relaxed(backup[i], addr); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void d40_save_restore_registers(struct d40_base *base, bool save) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | /* Save/Restore channel specific registers */ | 
|  | for (i = 0; i < base->num_phy_chans; i++) { | 
|  | void __iomem *addr; | 
|  | int idx; | 
|  |  | 
|  | if (base->phy_res[i].reserved) | 
|  | continue; | 
|  |  | 
|  | addr = base->virtbase + D40_DREG_PCBASE + i * D40_DREG_PCDELTA; | 
|  | idx = i * ARRAY_SIZE(d40_backup_regs_chan); | 
|  |  | 
|  | dma40_backup(addr, &base->reg_val_backup_chan[idx], | 
|  | d40_backup_regs_chan, | 
|  | ARRAY_SIZE(d40_backup_regs_chan), | 
|  | save); | 
|  | } | 
|  |  | 
|  | /* Save/Restore global registers */ | 
|  | dma40_backup(base->virtbase, base->reg_val_backup, | 
|  | d40_backup_regs, ARRAY_SIZE(d40_backup_regs), | 
|  | save); | 
|  |  | 
|  | /* Save/Restore registers only existing on dma40 v3 and later */ | 
|  | if (base->gen_dmac.backup) | 
|  | dma40_backup(base->virtbase, base->reg_val_backup_v4, | 
|  | base->gen_dmac.backup, | 
|  | base->gen_dmac.backup_size, | 
|  | save); | 
|  | } | 
|  |  | 
|  | static int dma40_runtime_suspend(struct device *dev) | 
|  | { | 
|  | struct d40_base *base = dev_get_drvdata(dev); | 
|  |  | 
|  | d40_save_restore_registers(base, true); | 
|  |  | 
|  | /* Don't disable/enable clocks for v1 due to HW bugs */ | 
|  | if (base->rev != 1) | 
|  | writel_relaxed(base->gcc_pwr_off_mask, | 
|  | base->virtbase + D40_DREG_GCC); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int dma40_runtime_resume(struct device *dev) | 
|  | { | 
|  | struct d40_base *base = dev_get_drvdata(dev); | 
|  |  | 
|  | d40_save_restore_registers(base, false); | 
|  |  | 
|  | writel_relaxed(D40_DREG_GCC_ENABLE_ALL, | 
|  | base->virtbase + D40_DREG_GCC); | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static const struct dev_pm_ops dma40_pm_ops = { | 
|  | SET_LATE_SYSTEM_SLEEP_PM_OPS(dma40_suspend, dma40_resume) | 
|  | SET_RUNTIME_PM_OPS(dma40_runtime_suspend, | 
|  | dma40_runtime_resume, | 
|  | NULL) | 
|  | }; | 
|  |  | 
|  | /* Initialization functions. */ | 
|  |  | 
|  | static int __init d40_phy_res_init(struct d40_base *base) | 
|  | { | 
|  | int i; | 
|  | int num_phy_chans_avail = 0; | 
|  | u32 val[2]; | 
|  | int odd_even_bit = -2; | 
|  | int gcc = D40_DREG_GCC_ENA; | 
|  |  | 
|  | val[0] = readl(base->virtbase + D40_DREG_PRSME); | 
|  | val[1] = readl(base->virtbase + D40_DREG_PRSMO); | 
|  |  | 
|  | for (i = 0; i < base->num_phy_chans; i++) { | 
|  | base->phy_res[i].num = i; | 
|  | odd_even_bit += 2 * ((i % 2) == 0); | 
|  | if (((val[i % 2] >> odd_even_bit) & 3) == 1) { | 
|  | /* Mark security only channels as occupied */ | 
|  | base->phy_res[i].allocated_src = D40_ALLOC_PHY; | 
|  | base->phy_res[i].allocated_dst = D40_ALLOC_PHY; | 
|  | base->phy_res[i].reserved = true; | 
|  | gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i), | 
|  | D40_DREG_GCC_SRC); | 
|  | gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i), | 
|  | D40_DREG_GCC_DST); | 
|  |  | 
|  |  | 
|  | } else { | 
|  | base->phy_res[i].allocated_src = D40_ALLOC_FREE; | 
|  | base->phy_res[i].allocated_dst = D40_ALLOC_FREE; | 
|  | base->phy_res[i].reserved = false; | 
|  | num_phy_chans_avail++; | 
|  | } | 
|  | spin_lock_init(&base->phy_res[i].lock); | 
|  | } | 
|  |  | 
|  | /* Mark disabled channels as occupied */ | 
|  | for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) { | 
|  | int chan = base->plat_data->disabled_channels[i]; | 
|  |  | 
|  | base->phy_res[chan].allocated_src = D40_ALLOC_PHY; | 
|  | base->phy_res[chan].allocated_dst = D40_ALLOC_PHY; | 
|  | base->phy_res[chan].reserved = true; | 
|  | gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan), | 
|  | D40_DREG_GCC_SRC); | 
|  | gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan), | 
|  | D40_DREG_GCC_DST); | 
|  | num_phy_chans_avail--; | 
|  | } | 
|  |  | 
|  | /* Mark soft_lli channels */ | 
|  | for (i = 0; i < base->plat_data->num_of_soft_lli_chans; i++) { | 
|  | int chan = base->plat_data->soft_lli_chans[i]; | 
|  |  | 
|  | base->phy_res[chan].use_soft_lli = true; | 
|  | } | 
|  |  | 
|  | dev_info(base->dev, "%d of %d physical DMA channels available\n", | 
|  | num_phy_chans_avail, base->num_phy_chans); | 
|  |  | 
|  | /* Verify settings extended vs standard */ | 
|  | val[0] = readl(base->virtbase + D40_DREG_PRTYP); | 
|  |  | 
|  | for (i = 0; i < base->num_phy_chans; i++) { | 
|  |  | 
|  | if (base->phy_res[i].allocated_src == D40_ALLOC_FREE && | 
|  | (val[0] & 0x3) != 1) | 
|  | dev_info(base->dev, | 
|  | "[%s] INFO: channel %d is misconfigured (%d)\n", | 
|  | __func__, i, val[0] & 0x3); | 
|  |  | 
|  | val[0] = val[0] >> 2; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * To keep things simple, Enable all clocks initially. | 
|  | * The clocks will get managed later post channel allocation. | 
|  | * The clocks for the event lines on which reserved channels exists | 
|  | * are not managed here. | 
|  | */ | 
|  | writel(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC); | 
|  | base->gcc_pwr_off_mask = gcc; | 
|  |  | 
|  | return num_phy_chans_avail; | 
|  | } | 
|  |  | 
|  | static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev) | 
|  | { | 
|  | struct stedma40_platform_data *plat_data = dev_get_platdata(&pdev->dev); | 
|  | struct clk *clk; | 
|  | void __iomem *virtbase; | 
|  | struct resource *res; | 
|  | struct d40_base *base; | 
|  | int num_log_chans; | 
|  | int num_phy_chans; | 
|  | int num_memcpy_chans; | 
|  | int clk_ret = -EINVAL; | 
|  | int i; | 
|  | u32 pid; | 
|  | u32 cid; | 
|  | u8 rev; | 
|  |  | 
|  | clk = clk_get(&pdev->dev, NULL); | 
|  | if (IS_ERR(clk)) { | 
|  | d40_err(&pdev->dev, "No matching clock found\n"); | 
|  | goto check_prepare_enabled; | 
|  | } | 
|  |  | 
|  | clk_ret = clk_prepare_enable(clk); | 
|  | if (clk_ret) { | 
|  | d40_err(&pdev->dev, "Failed to prepare/enable clock\n"); | 
|  | goto disable_unprepare; | 
|  | } | 
|  |  | 
|  | /* Get IO for DMAC base address */ | 
|  | res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base"); | 
|  | if (!res) | 
|  | goto disable_unprepare; | 
|  |  | 
|  | if (request_mem_region(res->start, resource_size(res), | 
|  | D40_NAME " I/O base") == NULL) | 
|  | goto release_region; | 
|  |  | 
|  | virtbase = ioremap(res->start, resource_size(res)); | 
|  | if (!virtbase) | 
|  | goto release_region; | 
|  |  | 
|  | /* This is just a regular AMBA PrimeCell ID actually */ | 
|  | for (pid = 0, i = 0; i < 4; i++) | 
|  | pid |= (readl(virtbase + resource_size(res) - 0x20 + 4 * i) | 
|  | & 255) << (i * 8); | 
|  | for (cid = 0, i = 0; i < 4; i++) | 
|  | cid |= (readl(virtbase + resource_size(res) - 0x10 + 4 * i) | 
|  | & 255) << (i * 8); | 
|  |  | 
|  | if (cid != AMBA_CID) { | 
|  | d40_err(&pdev->dev, "Unknown hardware! No PrimeCell ID\n"); | 
|  | goto unmap_io; | 
|  | } | 
|  | if (AMBA_MANF_BITS(pid) != AMBA_VENDOR_ST) { | 
|  | d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n", | 
|  | AMBA_MANF_BITS(pid), | 
|  | AMBA_VENDOR_ST); | 
|  | goto unmap_io; | 
|  | } | 
|  | /* | 
|  | * HW revision: | 
|  | * DB8500ed has revision 0 | 
|  | * ? has revision 1 | 
|  | * DB8500v1 has revision 2 | 
|  | * DB8500v2 has revision 3 | 
|  | * AP9540v1 has revision 4 | 
|  | * DB8540v1 has revision 4 | 
|  | */ | 
|  | rev = AMBA_REV_BITS(pid); | 
|  | if (rev < 2) { | 
|  | d40_err(&pdev->dev, "hardware revision: %d is not supported", rev); | 
|  | goto unmap_io; | 
|  | } | 
|  |  | 
|  | /* The number of physical channels on this HW */ | 
|  | if (plat_data->num_of_phy_chans) | 
|  | num_phy_chans = plat_data->num_of_phy_chans; | 
|  | else | 
|  | num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4; | 
|  |  | 
|  | /* The number of channels used for memcpy */ | 
|  | if (plat_data->num_of_memcpy_chans) | 
|  | num_memcpy_chans = plat_data->num_of_memcpy_chans; | 
|  | else | 
|  | num_memcpy_chans = ARRAY_SIZE(dma40_memcpy_channels); | 
|  |  | 
|  | num_log_chans = num_phy_chans * D40_MAX_LOG_CHAN_PER_PHY; | 
|  |  | 
|  | dev_info(&pdev->dev, | 
|  | "hardware rev: %d @ %pa with %d physical and %d logical channels\n", | 
|  | rev, &res->start, num_phy_chans, num_log_chans); | 
|  |  | 
|  | base = kzalloc(ALIGN(sizeof(struct d40_base), 4) + | 
|  | (num_phy_chans + num_log_chans + num_memcpy_chans) * | 
|  | sizeof(struct d40_chan), GFP_KERNEL); | 
|  |  | 
|  | if (base == NULL) | 
|  | goto unmap_io; | 
|  |  | 
|  | base->rev = rev; | 
|  | base->clk = clk; | 
|  | base->num_memcpy_chans = num_memcpy_chans; | 
|  | base->num_phy_chans = num_phy_chans; | 
|  | base->num_log_chans = num_log_chans; | 
|  | base->phy_start = res->start; | 
|  | base->phy_size = resource_size(res); | 
|  | base->virtbase = virtbase; | 
|  | base->plat_data = plat_data; | 
|  | base->dev = &pdev->dev; | 
|  | base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4); | 
|  | base->log_chans = &base->phy_chans[num_phy_chans]; | 
|  |  | 
|  | if (base->plat_data->num_of_phy_chans == 14) { | 
|  | base->gen_dmac.backup = d40_backup_regs_v4b; | 
|  | base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4B; | 
|  | base->gen_dmac.interrupt_en = D40_DREG_CPCMIS; | 
|  | base->gen_dmac.interrupt_clear = D40_DREG_CPCICR; | 
|  | base->gen_dmac.realtime_en = D40_DREG_CRSEG1; | 
|  | base->gen_dmac.realtime_clear = D40_DREG_CRCEG1; | 
|  | base->gen_dmac.high_prio_en = D40_DREG_CPSEG1; | 
|  | base->gen_dmac.high_prio_clear = D40_DREG_CPCEG1; | 
|  | base->gen_dmac.il = il_v4b; | 
|  | base->gen_dmac.il_size = ARRAY_SIZE(il_v4b); | 
|  | base->gen_dmac.init_reg = dma_init_reg_v4b; | 
|  | base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4b); | 
|  | } else { | 
|  | if (base->rev >= 3) { | 
|  | base->gen_dmac.backup = d40_backup_regs_v4a; | 
|  | base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4A; | 
|  | } | 
|  | base->gen_dmac.interrupt_en = D40_DREG_PCMIS; | 
|  | base->gen_dmac.interrupt_clear = D40_DREG_PCICR; | 
|  | base->gen_dmac.realtime_en = D40_DREG_RSEG1; | 
|  | base->gen_dmac.realtime_clear = D40_DREG_RCEG1; | 
|  | base->gen_dmac.high_prio_en = D40_DREG_PSEG1; | 
|  | base->gen_dmac.high_prio_clear = D40_DREG_PCEG1; | 
|  | base->gen_dmac.il = il_v4a; | 
|  | base->gen_dmac.il_size = ARRAY_SIZE(il_v4a); | 
|  | base->gen_dmac.init_reg = dma_init_reg_v4a; | 
|  | base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4a); | 
|  | } | 
|  |  | 
|  | base->phy_res = kcalloc(num_phy_chans, | 
|  | sizeof(*base->phy_res), | 
|  | GFP_KERNEL); | 
|  | if (!base->phy_res) | 
|  | goto free_base; | 
|  |  | 
|  | base->lookup_phy_chans = kcalloc(num_phy_chans, | 
|  | sizeof(*base->lookup_phy_chans), | 
|  | GFP_KERNEL); | 
|  | if (!base->lookup_phy_chans) | 
|  | goto free_phy_res; | 
|  |  | 
|  | base->lookup_log_chans = kcalloc(num_log_chans, | 
|  | sizeof(*base->lookup_log_chans), | 
|  | GFP_KERNEL); | 
|  | if (!base->lookup_log_chans) | 
|  | goto free_phy_chans; | 
|  |  | 
|  | base->reg_val_backup_chan = kmalloc_array(base->num_phy_chans, | 
|  | sizeof(d40_backup_regs_chan), | 
|  | GFP_KERNEL); | 
|  | if (!base->reg_val_backup_chan) | 
|  | goto free_log_chans; | 
|  |  | 
|  | base->lcla_pool.alloc_map = kcalloc(num_phy_chans | 
|  | * D40_LCLA_LINK_PER_EVENT_GRP, | 
|  | sizeof(*base->lcla_pool.alloc_map), | 
|  | GFP_KERNEL); | 
|  | if (!base->lcla_pool.alloc_map) | 
|  | goto free_backup_chan; | 
|  |  | 
|  | base->regs_interrupt = kmalloc_array(base->gen_dmac.il_size, | 
|  | sizeof(*base->regs_interrupt), | 
|  | GFP_KERNEL); | 
|  | if (!base->regs_interrupt) | 
|  | goto free_map; | 
|  |  | 
|  | base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc), | 
|  | 0, SLAB_HWCACHE_ALIGN, | 
|  | NULL); | 
|  | if (base->desc_slab == NULL) | 
|  | goto free_regs; | 
|  |  | 
|  |  | 
|  | return base; | 
|  | free_regs: | 
|  | kfree(base->regs_interrupt); | 
|  | free_map: | 
|  | kfree(base->lcla_pool.alloc_map); | 
|  | free_backup_chan: | 
|  | kfree(base->reg_val_backup_chan); | 
|  | free_log_chans: | 
|  | kfree(base->lookup_log_chans); | 
|  | free_phy_chans: | 
|  | kfree(base->lookup_phy_chans); | 
|  | free_phy_res: | 
|  | kfree(base->phy_res); | 
|  | free_base: | 
|  | kfree(base); | 
|  | unmap_io: | 
|  | iounmap(virtbase); | 
|  | release_region: | 
|  | release_mem_region(res->start, resource_size(res)); | 
|  | check_prepare_enabled: | 
|  | if (!clk_ret) | 
|  | disable_unprepare: | 
|  | clk_disable_unprepare(clk); | 
|  | if (!IS_ERR(clk)) | 
|  | clk_put(clk); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void __init d40_hw_init(struct d40_base *base) | 
|  | { | 
|  |  | 
|  | int i; | 
|  | u32 prmseo[2] = {0, 0}; | 
|  | u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF}; | 
|  | u32 pcmis = 0; | 
|  | u32 pcicr = 0; | 
|  | struct d40_reg_val *dma_init_reg = base->gen_dmac.init_reg; | 
|  | u32 reg_size = base->gen_dmac.init_reg_size; | 
|  |  | 
|  | for (i = 0; i < reg_size; i++) | 
|  | writel(dma_init_reg[i].val, | 
|  | base->virtbase + dma_init_reg[i].reg); | 
|  |  | 
|  | /* Configure all our dma channels to default settings */ | 
|  | for (i = 0; i < base->num_phy_chans; i++) { | 
|  |  | 
|  | activeo[i % 2] = activeo[i % 2] << 2; | 
|  |  | 
|  | if (base->phy_res[base->num_phy_chans - i - 1].allocated_src | 
|  | == D40_ALLOC_PHY) { | 
|  | activeo[i % 2] |= 3; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* Enable interrupt # */ | 
|  | pcmis = (pcmis << 1) | 1; | 
|  |  | 
|  | /* Clear interrupt # */ | 
|  | pcicr = (pcicr << 1) | 1; | 
|  |  | 
|  | /* Set channel to physical mode */ | 
|  | prmseo[i % 2] = prmseo[i % 2] << 2; | 
|  | prmseo[i % 2] |= 1; | 
|  |  | 
|  | } | 
|  |  | 
|  | writel(prmseo[1], base->virtbase + D40_DREG_PRMSE); | 
|  | writel(prmseo[0], base->virtbase + D40_DREG_PRMSO); | 
|  | writel(activeo[1], base->virtbase + D40_DREG_ACTIVE); | 
|  | writel(activeo[0], base->virtbase + D40_DREG_ACTIVO); | 
|  |  | 
|  | /* Write which interrupt to enable */ | 
|  | writel(pcmis, base->virtbase + base->gen_dmac.interrupt_en); | 
|  |  | 
|  | /* Write which interrupt to clear */ | 
|  | writel(pcicr, base->virtbase + base->gen_dmac.interrupt_clear); | 
|  |  | 
|  | /* These are __initdata and cannot be accessed after init */ | 
|  | base->gen_dmac.init_reg = NULL; | 
|  | base->gen_dmac.init_reg_size = 0; | 
|  | } | 
|  |  | 
|  | static int __init d40_lcla_allocate(struct d40_base *base) | 
|  | { | 
|  | struct d40_lcla_pool *pool = &base->lcla_pool; | 
|  | unsigned long *page_list; | 
|  | int i, j; | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned, | 
|  | * To full fill this hardware requirement without wasting 256 kb | 
|  | * we allocate pages until we get an aligned one. | 
|  | */ | 
|  | page_list = kmalloc_array(MAX_LCLA_ALLOC_ATTEMPTS, | 
|  | sizeof(*page_list), | 
|  | GFP_KERNEL); | 
|  | if (!page_list) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* Calculating how many pages that are required */ | 
|  | base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE; | 
|  |  | 
|  | for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) { | 
|  | page_list[i] = __get_free_pages(GFP_KERNEL, | 
|  | base->lcla_pool.pages); | 
|  | if (!page_list[i]) { | 
|  |  | 
|  | d40_err(base->dev, "Failed to allocate %d pages.\n", | 
|  | base->lcla_pool.pages); | 
|  | ret = -ENOMEM; | 
|  |  | 
|  | for (j = 0; j < i; j++) | 
|  | free_pages(page_list[j], base->lcla_pool.pages); | 
|  | goto free_page_list; | 
|  | } | 
|  |  | 
|  | if ((virt_to_phys((void *)page_list[i]) & | 
|  | (LCLA_ALIGNMENT - 1)) == 0) | 
|  | break; | 
|  | } | 
|  |  | 
|  | for (j = 0; j < i; j++) | 
|  | free_pages(page_list[j], base->lcla_pool.pages); | 
|  |  | 
|  | if (i < MAX_LCLA_ALLOC_ATTEMPTS) { | 
|  | base->lcla_pool.base = (void *)page_list[i]; | 
|  | } else { | 
|  | /* | 
|  | * After many attempts and no succees with finding the correct | 
|  | * alignment, try with allocating a big buffer. | 
|  | */ | 
|  | dev_warn(base->dev, | 
|  | "[%s] Failed to get %d pages @ 18 bit align.\n", | 
|  | __func__, base->lcla_pool.pages); | 
|  | base->lcla_pool.base_unaligned = kmalloc(SZ_1K * | 
|  | base->num_phy_chans + | 
|  | LCLA_ALIGNMENT, | 
|  | GFP_KERNEL); | 
|  | if (!base->lcla_pool.base_unaligned) { | 
|  | ret = -ENOMEM; | 
|  | goto free_page_list; | 
|  | } | 
|  |  | 
|  | base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned, | 
|  | LCLA_ALIGNMENT); | 
|  | } | 
|  |  | 
|  | pool->dma_addr = dma_map_single(base->dev, pool->base, | 
|  | SZ_1K * base->num_phy_chans, | 
|  | DMA_TO_DEVICE); | 
|  | if (dma_mapping_error(base->dev, pool->dma_addr)) { | 
|  | pool->dma_addr = 0; | 
|  | ret = -ENOMEM; | 
|  | goto free_page_list; | 
|  | } | 
|  |  | 
|  | writel(virt_to_phys(base->lcla_pool.base), | 
|  | base->virtbase + D40_DREG_LCLA); | 
|  | ret = 0; | 
|  | free_page_list: | 
|  | kfree(page_list); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int __init d40_of_probe(struct platform_device *pdev, | 
|  | struct device_node *np) | 
|  | { | 
|  | struct stedma40_platform_data *pdata; | 
|  | int num_phy = 0, num_memcpy = 0, num_disabled = 0; | 
|  | const __be32 *list; | 
|  |  | 
|  | pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL); | 
|  | if (!pdata) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* If absent this value will be obtained from h/w. */ | 
|  | of_property_read_u32(np, "dma-channels", &num_phy); | 
|  | if (num_phy > 0) | 
|  | pdata->num_of_phy_chans = num_phy; | 
|  |  | 
|  | list = of_get_property(np, "memcpy-channels", &num_memcpy); | 
|  | num_memcpy /= sizeof(*list); | 
|  |  | 
|  | if (num_memcpy > D40_MEMCPY_MAX_CHANS || num_memcpy <= 0) { | 
|  | d40_err(&pdev->dev, | 
|  | "Invalid number of memcpy channels specified (%d)\n", | 
|  | num_memcpy); | 
|  | return -EINVAL; | 
|  | } | 
|  | pdata->num_of_memcpy_chans = num_memcpy; | 
|  |  | 
|  | of_property_read_u32_array(np, "memcpy-channels", | 
|  | dma40_memcpy_channels, | 
|  | num_memcpy); | 
|  |  | 
|  | list = of_get_property(np, "disabled-channels", &num_disabled); | 
|  | num_disabled /= sizeof(*list); | 
|  |  | 
|  | if (num_disabled >= STEDMA40_MAX_PHYS || num_disabled < 0) { | 
|  | d40_err(&pdev->dev, | 
|  | "Invalid number of disabled channels specified (%d)\n", | 
|  | num_disabled); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | of_property_read_u32_array(np, "disabled-channels", | 
|  | pdata->disabled_channels, | 
|  | num_disabled); | 
|  | pdata->disabled_channels[num_disabled] = -1; | 
|  |  | 
|  | pdev->dev.platform_data = pdata; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __init d40_probe(struct platform_device *pdev) | 
|  | { | 
|  | struct stedma40_platform_data *plat_data = dev_get_platdata(&pdev->dev); | 
|  | struct device_node *np = pdev->dev.of_node; | 
|  | int ret = -ENOENT; | 
|  | struct d40_base *base; | 
|  | struct resource *res; | 
|  | int num_reserved_chans; | 
|  | u32 val; | 
|  |  | 
|  | if (!plat_data) { | 
|  | if (np) { | 
|  | if (d40_of_probe(pdev, np)) { | 
|  | ret = -ENOMEM; | 
|  | goto report_failure; | 
|  | } | 
|  | } else { | 
|  | d40_err(&pdev->dev, "No pdata or Device Tree provided\n"); | 
|  | goto report_failure; | 
|  | } | 
|  | } | 
|  |  | 
|  | base = d40_hw_detect_init(pdev); | 
|  | if (!base) | 
|  | goto report_failure; | 
|  |  | 
|  | num_reserved_chans = d40_phy_res_init(base); | 
|  |  | 
|  | platform_set_drvdata(pdev, base); | 
|  |  | 
|  | spin_lock_init(&base->interrupt_lock); | 
|  | spin_lock_init(&base->execmd_lock); | 
|  |  | 
|  | /* Get IO for logical channel parameter address */ | 
|  | res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa"); | 
|  | if (!res) { | 
|  | ret = -ENOENT; | 
|  | d40_err(&pdev->dev, "No \"lcpa\" memory resource\n"); | 
|  | goto destroy_cache; | 
|  | } | 
|  | base->lcpa_size = resource_size(res); | 
|  | base->phy_lcpa = res->start; | 
|  |  | 
|  | if (request_mem_region(res->start, resource_size(res), | 
|  | D40_NAME " I/O lcpa") == NULL) { | 
|  | ret = -EBUSY; | 
|  | d40_err(&pdev->dev, "Failed to request LCPA region %pR\n", res); | 
|  | goto destroy_cache; | 
|  | } | 
|  |  | 
|  | /* We make use of ESRAM memory for this. */ | 
|  | val = readl(base->virtbase + D40_DREG_LCPA); | 
|  | if (res->start != val && val != 0) { | 
|  | dev_warn(&pdev->dev, | 
|  | "[%s] Mismatch LCPA dma 0x%x, def %pa\n", | 
|  | __func__, val, &res->start); | 
|  | } else | 
|  | writel(res->start, base->virtbase + D40_DREG_LCPA); | 
|  |  | 
|  | base->lcpa_base = ioremap(res->start, resource_size(res)); | 
|  | if (!base->lcpa_base) { | 
|  | ret = -ENOMEM; | 
|  | d40_err(&pdev->dev, "Failed to ioremap LCPA region\n"); | 
|  | goto destroy_cache; | 
|  | } | 
|  | /* If lcla has to be located in ESRAM we don't need to allocate */ | 
|  | if (base->plat_data->use_esram_lcla) { | 
|  | res = platform_get_resource_byname(pdev, IORESOURCE_MEM, | 
|  | "lcla_esram"); | 
|  | if (!res) { | 
|  | ret = -ENOENT; | 
|  | d40_err(&pdev->dev, | 
|  | "No \"lcla_esram\" memory resource\n"); | 
|  | goto destroy_cache; | 
|  | } | 
|  | base->lcla_pool.base = ioremap(res->start, | 
|  | resource_size(res)); | 
|  | if (!base->lcla_pool.base) { | 
|  | ret = -ENOMEM; | 
|  | d40_err(&pdev->dev, "Failed to ioremap LCLA region\n"); | 
|  | goto destroy_cache; | 
|  | } | 
|  | writel(res->start, base->virtbase + D40_DREG_LCLA); | 
|  |  | 
|  | } else { | 
|  | ret = d40_lcla_allocate(base); | 
|  | if (ret) { | 
|  | d40_err(&pdev->dev, "Failed to allocate LCLA area\n"); | 
|  | goto destroy_cache; | 
|  | } | 
|  | } | 
|  |  | 
|  | spin_lock_init(&base->lcla_pool.lock); | 
|  |  | 
|  | base->irq = platform_get_irq(pdev, 0); | 
|  |  | 
|  | ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base); | 
|  | if (ret) { | 
|  | d40_err(&pdev->dev, "No IRQ defined\n"); | 
|  | goto destroy_cache; | 
|  | } | 
|  |  | 
|  | if (base->plat_data->use_esram_lcla) { | 
|  |  | 
|  | base->lcpa_regulator = regulator_get(base->dev, "lcla_esram"); | 
|  | if (IS_ERR(base->lcpa_regulator)) { | 
|  | d40_err(&pdev->dev, "Failed to get lcpa_regulator\n"); | 
|  | ret = PTR_ERR(base->lcpa_regulator); | 
|  | base->lcpa_regulator = NULL; | 
|  | goto destroy_cache; | 
|  | } | 
|  |  | 
|  | ret = regulator_enable(base->lcpa_regulator); | 
|  | if (ret) { | 
|  | d40_err(&pdev->dev, | 
|  | "Failed to enable lcpa_regulator\n"); | 
|  | regulator_put(base->lcpa_regulator); | 
|  | base->lcpa_regulator = NULL; | 
|  | goto destroy_cache; | 
|  | } | 
|  | } | 
|  |  | 
|  | writel_relaxed(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC); | 
|  |  | 
|  | pm_runtime_irq_safe(base->dev); | 
|  | pm_runtime_set_autosuspend_delay(base->dev, DMA40_AUTOSUSPEND_DELAY); | 
|  | pm_runtime_use_autosuspend(base->dev); | 
|  | pm_runtime_mark_last_busy(base->dev); | 
|  | pm_runtime_set_active(base->dev); | 
|  | pm_runtime_enable(base->dev); | 
|  |  | 
|  | ret = d40_dmaengine_init(base, num_reserved_chans); | 
|  | if (ret) | 
|  | goto destroy_cache; | 
|  |  | 
|  | base->dev->dma_parms = &base->dma_parms; | 
|  | ret = dma_set_max_seg_size(base->dev, STEDMA40_MAX_SEG_SIZE); | 
|  | if (ret) { | 
|  | d40_err(&pdev->dev, "Failed to set dma max seg size\n"); | 
|  | goto destroy_cache; | 
|  | } | 
|  |  | 
|  | d40_hw_init(base); | 
|  |  | 
|  | if (np) { | 
|  | ret = of_dma_controller_register(np, d40_xlate, NULL); | 
|  | if (ret) | 
|  | dev_err(&pdev->dev, | 
|  | "could not register of_dma_controller\n"); | 
|  | } | 
|  |  | 
|  | dev_info(base->dev, "initialized\n"); | 
|  | return 0; | 
|  | destroy_cache: | 
|  | kmem_cache_destroy(base->desc_slab); | 
|  | if (base->virtbase) | 
|  | iounmap(base->virtbase); | 
|  |  | 
|  | if (base->lcla_pool.base && base->plat_data->use_esram_lcla) { | 
|  | iounmap(base->lcla_pool.base); | 
|  | base->lcla_pool.base = NULL; | 
|  | } | 
|  |  | 
|  | if (base->lcla_pool.dma_addr) | 
|  | dma_unmap_single(base->dev, base->lcla_pool.dma_addr, | 
|  | SZ_1K * base->num_phy_chans, | 
|  | DMA_TO_DEVICE); | 
|  |  | 
|  | if (!base->lcla_pool.base_unaligned && base->lcla_pool.base) | 
|  | free_pages((unsigned long)base->lcla_pool.base, | 
|  | base->lcla_pool.pages); | 
|  |  | 
|  | kfree(base->lcla_pool.base_unaligned); | 
|  |  | 
|  | if (base->phy_lcpa) | 
|  | release_mem_region(base->phy_lcpa, | 
|  | base->lcpa_size); | 
|  | if (base->phy_start) | 
|  | release_mem_region(base->phy_start, | 
|  | base->phy_size); | 
|  | if (base->clk) { | 
|  | clk_disable_unprepare(base->clk); | 
|  | clk_put(base->clk); | 
|  | } | 
|  |  | 
|  | if (base->lcpa_regulator) { | 
|  | regulator_disable(base->lcpa_regulator); | 
|  | regulator_put(base->lcpa_regulator); | 
|  | } | 
|  |  | 
|  | kfree(base->lcla_pool.alloc_map); | 
|  | kfree(base->lookup_log_chans); | 
|  | kfree(base->lookup_phy_chans); | 
|  | kfree(base->phy_res); | 
|  | kfree(base); | 
|  | report_failure: | 
|  | d40_err(&pdev->dev, "probe failed\n"); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static const struct of_device_id d40_match[] = { | 
|  | { .compatible = "stericsson,dma40", }, | 
|  | {} | 
|  | }; | 
|  |  | 
|  | static struct platform_driver d40_driver = { | 
|  | .driver = { | 
|  | .name  = D40_NAME, | 
|  | .pm = &dma40_pm_ops, | 
|  | .of_match_table = d40_match, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static int __init stedma40_init(void) | 
|  | { | 
|  | return platform_driver_probe(&d40_driver, d40_probe); | 
|  | } | 
|  | subsys_initcall(stedma40_init); |