|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * Copyright (c) 2000-2006 Silicon Graphics, Inc. | 
|  | * All Rights Reserved. | 
|  | */ | 
|  | #include "xfs.h" | 
|  | #include <linux/stddef.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/gfp.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <linux/bio.h> | 
|  | #include <linux/sysctl.h> | 
|  | #include <linux/proc_fs.h> | 
|  | #include <linux/workqueue.h> | 
|  | #include <linux/percpu.h> | 
|  | #include <linux/blkdev.h> | 
|  | #include <linux/hash.h> | 
|  | #include <linux/kthread.h> | 
|  | #include <linux/migrate.h> | 
|  | #include <linux/backing-dev.h> | 
|  | #include <linux/freezer.h> | 
|  |  | 
|  | #include "xfs_format.h" | 
|  | #include "xfs_log_format.h" | 
|  | #include "xfs_trans_resv.h" | 
|  | #include "xfs_sb.h" | 
|  | #include "xfs_mount.h" | 
|  | #include "xfs_trace.h" | 
|  | #include "xfs_log.h" | 
|  | #include "xfs_errortag.h" | 
|  | #include "xfs_error.h" | 
|  |  | 
|  | static kmem_zone_t *xfs_buf_zone; | 
|  |  | 
|  | #define xb_to_gfp(flags) \ | 
|  | ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN) | 
|  |  | 
|  | /* | 
|  | * Locking orders | 
|  | * | 
|  | * xfs_buf_ioacct_inc: | 
|  | * xfs_buf_ioacct_dec: | 
|  | *	b_sema (caller holds) | 
|  | *	  b_lock | 
|  | * | 
|  | * xfs_buf_stale: | 
|  | *	b_sema (caller holds) | 
|  | *	  b_lock | 
|  | *	    lru_lock | 
|  | * | 
|  | * xfs_buf_rele: | 
|  | *	b_lock | 
|  | *	  pag_buf_lock | 
|  | *	    lru_lock | 
|  | * | 
|  | * xfs_buftarg_wait_rele | 
|  | *	lru_lock | 
|  | *	  b_lock (trylock due to inversion) | 
|  | * | 
|  | * xfs_buftarg_isolate | 
|  | *	lru_lock | 
|  | *	  b_lock (trylock due to inversion) | 
|  | */ | 
|  |  | 
|  | static inline int | 
|  | xfs_buf_is_vmapped( | 
|  | struct xfs_buf	*bp) | 
|  | { | 
|  | /* | 
|  | * Return true if the buffer is vmapped. | 
|  | * | 
|  | * b_addr is null if the buffer is not mapped, but the code is clever | 
|  | * enough to know it doesn't have to map a single page, so the check has | 
|  | * to be both for b_addr and bp->b_page_count > 1. | 
|  | */ | 
|  | return bp->b_addr && bp->b_page_count > 1; | 
|  | } | 
|  |  | 
|  | static inline int | 
|  | xfs_buf_vmap_len( | 
|  | struct xfs_buf	*bp) | 
|  | { | 
|  | return (bp->b_page_count * PAGE_SIZE) - bp->b_offset; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Bump the I/O in flight count on the buftarg if we haven't yet done so for | 
|  | * this buffer. The count is incremented once per buffer (per hold cycle) | 
|  | * because the corresponding decrement is deferred to buffer release. Buffers | 
|  | * can undergo I/O multiple times in a hold-release cycle and per buffer I/O | 
|  | * tracking adds unnecessary overhead. This is used for sychronization purposes | 
|  | * with unmount (see xfs_wait_buftarg()), so all we really need is a count of | 
|  | * in-flight buffers. | 
|  | * | 
|  | * Buffers that are never released (e.g., superblock, iclog buffers) must set | 
|  | * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count | 
|  | * never reaches zero and unmount hangs indefinitely. | 
|  | */ | 
|  | static inline void | 
|  | xfs_buf_ioacct_inc( | 
|  | struct xfs_buf	*bp) | 
|  | { | 
|  | if (bp->b_flags & XBF_NO_IOACCT) | 
|  | return; | 
|  |  | 
|  | ASSERT(bp->b_flags & XBF_ASYNC); | 
|  | spin_lock(&bp->b_lock); | 
|  | if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) { | 
|  | bp->b_state |= XFS_BSTATE_IN_FLIGHT; | 
|  | percpu_counter_inc(&bp->b_target->bt_io_count); | 
|  | } | 
|  | spin_unlock(&bp->b_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Clear the in-flight state on a buffer about to be released to the LRU or | 
|  | * freed and unaccount from the buftarg. | 
|  | */ | 
|  | static inline void | 
|  | __xfs_buf_ioacct_dec( | 
|  | struct xfs_buf	*bp) | 
|  | { | 
|  | lockdep_assert_held(&bp->b_lock); | 
|  |  | 
|  | if (bp->b_state & XFS_BSTATE_IN_FLIGHT) { | 
|  | bp->b_state &= ~XFS_BSTATE_IN_FLIGHT; | 
|  | percpu_counter_dec(&bp->b_target->bt_io_count); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | xfs_buf_ioacct_dec( | 
|  | struct xfs_buf	*bp) | 
|  | { | 
|  | spin_lock(&bp->b_lock); | 
|  | __xfs_buf_ioacct_dec(bp); | 
|  | spin_unlock(&bp->b_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When we mark a buffer stale, we remove the buffer from the LRU and clear the | 
|  | * b_lru_ref count so that the buffer is freed immediately when the buffer | 
|  | * reference count falls to zero. If the buffer is already on the LRU, we need | 
|  | * to remove the reference that LRU holds on the buffer. | 
|  | * | 
|  | * This prevents build-up of stale buffers on the LRU. | 
|  | */ | 
|  | void | 
|  | xfs_buf_stale( | 
|  | struct xfs_buf	*bp) | 
|  | { | 
|  | ASSERT(xfs_buf_islocked(bp)); | 
|  |  | 
|  | bp->b_flags |= XBF_STALE; | 
|  |  | 
|  | /* | 
|  | * Clear the delwri status so that a delwri queue walker will not | 
|  | * flush this buffer to disk now that it is stale. The delwri queue has | 
|  | * a reference to the buffer, so this is safe to do. | 
|  | */ | 
|  | bp->b_flags &= ~_XBF_DELWRI_Q; | 
|  |  | 
|  | /* | 
|  | * Once the buffer is marked stale and unlocked, a subsequent lookup | 
|  | * could reset b_flags. There is no guarantee that the buffer is | 
|  | * unaccounted (released to LRU) before that occurs. Drop in-flight | 
|  | * status now to preserve accounting consistency. | 
|  | */ | 
|  | spin_lock(&bp->b_lock); | 
|  | __xfs_buf_ioacct_dec(bp); | 
|  |  | 
|  | atomic_set(&bp->b_lru_ref, 0); | 
|  | if (!(bp->b_state & XFS_BSTATE_DISPOSE) && | 
|  | (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru))) | 
|  | atomic_dec(&bp->b_hold); | 
|  |  | 
|  | ASSERT(atomic_read(&bp->b_hold) >= 1); | 
|  | spin_unlock(&bp->b_lock); | 
|  | } | 
|  |  | 
|  | static int | 
|  | xfs_buf_get_maps( | 
|  | struct xfs_buf		*bp, | 
|  | int			map_count) | 
|  | { | 
|  | ASSERT(bp->b_maps == NULL); | 
|  | bp->b_map_count = map_count; | 
|  |  | 
|  | if (map_count == 1) { | 
|  | bp->b_maps = &bp->__b_map; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map), | 
|  | KM_NOFS); | 
|  | if (!bp->b_maps) | 
|  | return -ENOMEM; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Frees b_pages if it was allocated. | 
|  | */ | 
|  | static void | 
|  | xfs_buf_free_maps( | 
|  | struct xfs_buf	*bp) | 
|  | { | 
|  | if (bp->b_maps != &bp->__b_map) { | 
|  | kmem_free(bp->b_maps); | 
|  | bp->b_maps = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | struct xfs_buf * | 
|  | _xfs_buf_alloc( | 
|  | struct xfs_buftarg	*target, | 
|  | struct xfs_buf_map	*map, | 
|  | int			nmaps, | 
|  | xfs_buf_flags_t		flags) | 
|  | { | 
|  | struct xfs_buf		*bp; | 
|  | int			error; | 
|  | int			i; | 
|  |  | 
|  | bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS); | 
|  | if (unlikely(!bp)) | 
|  | return NULL; | 
|  |  | 
|  | /* | 
|  | * We don't want certain flags to appear in b_flags unless they are | 
|  | * specifically set by later operations on the buffer. | 
|  | */ | 
|  | flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD); | 
|  |  | 
|  | atomic_set(&bp->b_hold, 1); | 
|  | atomic_set(&bp->b_lru_ref, 1); | 
|  | init_completion(&bp->b_iowait); | 
|  | INIT_LIST_HEAD(&bp->b_lru); | 
|  | INIT_LIST_HEAD(&bp->b_list); | 
|  | INIT_LIST_HEAD(&bp->b_li_list); | 
|  | sema_init(&bp->b_sema, 0); /* held, no waiters */ | 
|  | spin_lock_init(&bp->b_lock); | 
|  | bp->b_target = target; | 
|  | bp->b_flags = flags; | 
|  |  | 
|  | /* | 
|  | * Set length and io_length to the same value initially. | 
|  | * I/O routines should use io_length, which will be the same in | 
|  | * most cases but may be reset (e.g. XFS recovery). | 
|  | */ | 
|  | error = xfs_buf_get_maps(bp, nmaps); | 
|  | if (error)  { | 
|  | kmem_zone_free(xfs_buf_zone, bp); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | bp->b_bn = map[0].bm_bn; | 
|  | bp->b_length = 0; | 
|  | for (i = 0; i < nmaps; i++) { | 
|  | bp->b_maps[i].bm_bn = map[i].bm_bn; | 
|  | bp->b_maps[i].bm_len = map[i].bm_len; | 
|  | bp->b_length += map[i].bm_len; | 
|  | } | 
|  | bp->b_io_length = bp->b_length; | 
|  |  | 
|  | atomic_set(&bp->b_pin_count, 0); | 
|  | init_waitqueue_head(&bp->b_waiters); | 
|  |  | 
|  | XFS_STATS_INC(target->bt_mount, xb_create); | 
|  | trace_xfs_buf_init(bp, _RET_IP_); | 
|  |  | 
|  | return bp; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Allocate a page array capable of holding a specified number | 
|  | *	of pages, and point the page buf at it. | 
|  | */ | 
|  | STATIC int | 
|  | _xfs_buf_get_pages( | 
|  | xfs_buf_t		*bp, | 
|  | int			page_count) | 
|  | { | 
|  | /* Make sure that we have a page list */ | 
|  | if (bp->b_pages == NULL) { | 
|  | bp->b_page_count = page_count; | 
|  | if (page_count <= XB_PAGES) { | 
|  | bp->b_pages = bp->b_page_array; | 
|  | } else { | 
|  | bp->b_pages = kmem_alloc(sizeof(struct page *) * | 
|  | page_count, KM_NOFS); | 
|  | if (bp->b_pages == NULL) | 
|  | return -ENOMEM; | 
|  | } | 
|  | memset(bp->b_pages, 0, sizeof(struct page *) * page_count); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Frees b_pages if it was allocated. | 
|  | */ | 
|  | STATIC void | 
|  | _xfs_buf_free_pages( | 
|  | xfs_buf_t	*bp) | 
|  | { | 
|  | if (bp->b_pages != bp->b_page_array) { | 
|  | kmem_free(bp->b_pages); | 
|  | bp->b_pages = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Releases the specified buffer. | 
|  | * | 
|  | * 	The modification state of any associated pages is left unchanged. | 
|  | * 	The buffer must not be on any hash - use xfs_buf_rele instead for | 
|  | * 	hashed and refcounted buffers | 
|  | */ | 
|  | void | 
|  | xfs_buf_free( | 
|  | xfs_buf_t		*bp) | 
|  | { | 
|  | trace_xfs_buf_free(bp, _RET_IP_); | 
|  |  | 
|  | ASSERT(list_empty(&bp->b_lru)); | 
|  |  | 
|  | if (bp->b_flags & _XBF_PAGES) { | 
|  | uint		i; | 
|  |  | 
|  | if (xfs_buf_is_vmapped(bp)) | 
|  | vm_unmap_ram(bp->b_addr - bp->b_offset, | 
|  | bp->b_page_count); | 
|  |  | 
|  | for (i = 0; i < bp->b_page_count; i++) { | 
|  | struct page	*page = bp->b_pages[i]; | 
|  |  | 
|  | __free_page(page); | 
|  | } | 
|  | } else if (bp->b_flags & _XBF_KMEM) | 
|  | kmem_free(bp->b_addr); | 
|  | _xfs_buf_free_pages(bp); | 
|  | xfs_buf_free_maps(bp); | 
|  | kmem_zone_free(xfs_buf_zone, bp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocates all the pages for buffer in question and builds it's page list. | 
|  | */ | 
|  | STATIC int | 
|  | xfs_buf_allocate_memory( | 
|  | xfs_buf_t		*bp, | 
|  | uint			flags) | 
|  | { | 
|  | size_t			size; | 
|  | size_t			nbytes, offset; | 
|  | gfp_t			gfp_mask = xb_to_gfp(flags); | 
|  | unsigned short		page_count, i; | 
|  | xfs_off_t		start, end; | 
|  | int			error; | 
|  |  | 
|  | /* | 
|  | * for buffers that are contained within a single page, just allocate | 
|  | * the memory from the heap - there's no need for the complexity of | 
|  | * page arrays to keep allocation down to order 0. | 
|  | */ | 
|  | size = BBTOB(bp->b_length); | 
|  | if (size < PAGE_SIZE) { | 
|  | bp->b_addr = kmem_alloc(size, KM_NOFS); | 
|  | if (!bp->b_addr) { | 
|  | /* low memory - use alloc_page loop instead */ | 
|  | goto use_alloc_page; | 
|  | } | 
|  |  | 
|  | if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) != | 
|  | ((unsigned long)bp->b_addr & PAGE_MASK)) { | 
|  | /* b_addr spans two pages - use alloc_page instead */ | 
|  | kmem_free(bp->b_addr); | 
|  | bp->b_addr = NULL; | 
|  | goto use_alloc_page; | 
|  | } | 
|  | bp->b_offset = offset_in_page(bp->b_addr); | 
|  | bp->b_pages = bp->b_page_array; | 
|  | bp->b_pages[0] = virt_to_page(bp->b_addr); | 
|  | bp->b_page_count = 1; | 
|  | bp->b_flags |= _XBF_KMEM; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | use_alloc_page: | 
|  | start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT; | 
|  | end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1) | 
|  | >> PAGE_SHIFT; | 
|  | page_count = end - start; | 
|  | error = _xfs_buf_get_pages(bp, page_count); | 
|  | if (unlikely(error)) | 
|  | return error; | 
|  |  | 
|  | offset = bp->b_offset; | 
|  | bp->b_flags |= _XBF_PAGES; | 
|  |  | 
|  | for (i = 0; i < bp->b_page_count; i++) { | 
|  | struct page	*page; | 
|  | uint		retries = 0; | 
|  | retry: | 
|  | page = alloc_page(gfp_mask); | 
|  | if (unlikely(page == NULL)) { | 
|  | if (flags & XBF_READ_AHEAD) { | 
|  | bp->b_page_count = i; | 
|  | error = -ENOMEM; | 
|  | goto out_free_pages; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This could deadlock. | 
|  | * | 
|  | * But until all the XFS lowlevel code is revamped to | 
|  | * handle buffer allocation failures we can't do much. | 
|  | */ | 
|  | if (!(++retries % 100)) | 
|  | xfs_err(NULL, | 
|  | "%s(%u) possible memory allocation deadlock in %s (mode:0x%x)", | 
|  | current->comm, current->pid, | 
|  | __func__, gfp_mask); | 
|  |  | 
|  | XFS_STATS_INC(bp->b_target->bt_mount, xb_page_retries); | 
|  | congestion_wait(BLK_RW_ASYNC, HZ/50); | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | XFS_STATS_INC(bp->b_target->bt_mount, xb_page_found); | 
|  |  | 
|  | nbytes = min_t(size_t, size, PAGE_SIZE - offset); | 
|  | size -= nbytes; | 
|  | bp->b_pages[i] = page; | 
|  | offset = 0; | 
|  | } | 
|  | return 0; | 
|  |  | 
|  | out_free_pages: | 
|  | for (i = 0; i < bp->b_page_count; i++) | 
|  | __free_page(bp->b_pages[i]); | 
|  | bp->b_flags &= ~_XBF_PAGES; | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Map buffer into kernel address-space if necessary. | 
|  | */ | 
|  | STATIC int | 
|  | _xfs_buf_map_pages( | 
|  | xfs_buf_t		*bp, | 
|  | uint			flags) | 
|  | { | 
|  | ASSERT(bp->b_flags & _XBF_PAGES); | 
|  | if (bp->b_page_count == 1) { | 
|  | /* A single page buffer is always mappable */ | 
|  | bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset; | 
|  | } else if (flags & XBF_UNMAPPED) { | 
|  | bp->b_addr = NULL; | 
|  | } else { | 
|  | int retried = 0; | 
|  | unsigned nofs_flag; | 
|  |  | 
|  | /* | 
|  | * vm_map_ram() will allocate auxillary structures (e.g. | 
|  | * pagetables) with GFP_KERNEL, yet we are likely to be under | 
|  | * GFP_NOFS context here. Hence we need to tell memory reclaim | 
|  | * that we are in such a context via PF_MEMALLOC_NOFS to prevent | 
|  | * memory reclaim re-entering the filesystem here and | 
|  | * potentially deadlocking. | 
|  | */ | 
|  | nofs_flag = memalloc_nofs_save(); | 
|  | do { | 
|  | bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count, | 
|  | -1, PAGE_KERNEL); | 
|  | if (bp->b_addr) | 
|  | break; | 
|  | vm_unmap_aliases(); | 
|  | } while (retried++ <= 1); | 
|  | memalloc_nofs_restore(nofs_flag); | 
|  |  | 
|  | if (!bp->b_addr) | 
|  | return -ENOMEM; | 
|  | bp->b_addr += bp->b_offset; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Finding and Reading Buffers | 
|  | */ | 
|  | static int | 
|  | _xfs_buf_obj_cmp( | 
|  | struct rhashtable_compare_arg	*arg, | 
|  | const void			*obj) | 
|  | { | 
|  | const struct xfs_buf_map	*map = arg->key; | 
|  | const struct xfs_buf		*bp = obj; | 
|  |  | 
|  | /* | 
|  | * The key hashing in the lookup path depends on the key being the | 
|  | * first element of the compare_arg, make sure to assert this. | 
|  | */ | 
|  | BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0); | 
|  |  | 
|  | if (bp->b_bn != map->bm_bn) | 
|  | return 1; | 
|  |  | 
|  | if (unlikely(bp->b_length != map->bm_len)) { | 
|  | /* | 
|  | * found a block number match. If the range doesn't | 
|  | * match, the only way this is allowed is if the buffer | 
|  | * in the cache is stale and the transaction that made | 
|  | * it stale has not yet committed. i.e. we are | 
|  | * reallocating a busy extent. Skip this buffer and | 
|  | * continue searching for an exact match. | 
|  | */ | 
|  | ASSERT(bp->b_flags & XBF_STALE); | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct rhashtable_params xfs_buf_hash_params = { | 
|  | .min_size		= 32,	/* empty AGs have minimal footprint */ | 
|  | .nelem_hint		= 16, | 
|  | .key_len		= sizeof(xfs_daddr_t), | 
|  | .key_offset		= offsetof(struct xfs_buf, b_bn), | 
|  | .head_offset		= offsetof(struct xfs_buf, b_rhash_head), | 
|  | .automatic_shrinking	= true, | 
|  | .obj_cmpfn		= _xfs_buf_obj_cmp, | 
|  | }; | 
|  |  | 
|  | int | 
|  | xfs_buf_hash_init( | 
|  | struct xfs_perag	*pag) | 
|  | { | 
|  | spin_lock_init(&pag->pag_buf_lock); | 
|  | return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params); | 
|  | } | 
|  |  | 
|  | void | 
|  | xfs_buf_hash_destroy( | 
|  | struct xfs_perag	*pag) | 
|  | { | 
|  | rhashtable_destroy(&pag->pag_buf_hash); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Look up a buffer in the buffer cache and return it referenced and locked | 
|  | * in @found_bp. | 
|  | * | 
|  | * If @new_bp is supplied and we have a lookup miss, insert @new_bp into the | 
|  | * cache. | 
|  | * | 
|  | * If XBF_TRYLOCK is set in @flags, only try to lock the buffer and return | 
|  | * -EAGAIN if we fail to lock it. | 
|  | * | 
|  | * Return values are: | 
|  | *	-EFSCORRUPTED if have been supplied with an invalid address | 
|  | *	-EAGAIN on trylock failure | 
|  | *	-ENOENT if we fail to find a match and @new_bp was NULL | 
|  | *	0, with @found_bp: | 
|  | *		- @new_bp if we inserted it into the cache | 
|  | *		- the buffer we found and locked. | 
|  | */ | 
|  | static int | 
|  | xfs_buf_find( | 
|  | struct xfs_buftarg	*btp, | 
|  | struct xfs_buf_map	*map, | 
|  | int			nmaps, | 
|  | xfs_buf_flags_t		flags, | 
|  | struct xfs_buf		*new_bp, | 
|  | struct xfs_buf		**found_bp) | 
|  | { | 
|  | struct xfs_perag	*pag; | 
|  | xfs_buf_t		*bp; | 
|  | struct xfs_buf_map	cmap = { .bm_bn = map[0].bm_bn }; | 
|  | xfs_daddr_t		eofs; | 
|  | int			i; | 
|  |  | 
|  | *found_bp = NULL; | 
|  |  | 
|  | for (i = 0; i < nmaps; i++) | 
|  | cmap.bm_len += map[i].bm_len; | 
|  |  | 
|  | /* Check for IOs smaller than the sector size / not sector aligned */ | 
|  | ASSERT(!(BBTOB(cmap.bm_len) < btp->bt_meta_sectorsize)); | 
|  | ASSERT(!(BBTOB(cmap.bm_bn) & (xfs_off_t)btp->bt_meta_sectormask)); | 
|  |  | 
|  | /* | 
|  | * Corrupted block numbers can get through to here, unfortunately, so we | 
|  | * have to check that the buffer falls within the filesystem bounds. | 
|  | */ | 
|  | eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks); | 
|  | if (cmap.bm_bn < 0 || cmap.bm_bn >= eofs) { | 
|  | xfs_alert(btp->bt_mount, | 
|  | "%s: daddr 0x%llx out of range, EOFS 0x%llx", | 
|  | __func__, cmap.bm_bn, eofs); | 
|  | WARN_ON(1); | 
|  | return -EFSCORRUPTED; | 
|  | } | 
|  |  | 
|  | pag = xfs_perag_get(btp->bt_mount, | 
|  | xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn)); | 
|  |  | 
|  | spin_lock(&pag->pag_buf_lock); | 
|  | bp = rhashtable_lookup_fast(&pag->pag_buf_hash, &cmap, | 
|  | xfs_buf_hash_params); | 
|  | if (bp) { | 
|  | atomic_inc(&bp->b_hold); | 
|  | goto found; | 
|  | } | 
|  |  | 
|  | /* No match found */ | 
|  | if (!new_bp) { | 
|  | XFS_STATS_INC(btp->bt_mount, xb_miss_locked); | 
|  | spin_unlock(&pag->pag_buf_lock); | 
|  | xfs_perag_put(pag); | 
|  | return -ENOENT; | 
|  | } | 
|  |  | 
|  | /* the buffer keeps the perag reference until it is freed */ | 
|  | new_bp->b_pag = pag; | 
|  | rhashtable_insert_fast(&pag->pag_buf_hash, &new_bp->b_rhash_head, | 
|  | xfs_buf_hash_params); | 
|  | spin_unlock(&pag->pag_buf_lock); | 
|  | *found_bp = new_bp; | 
|  | return 0; | 
|  |  | 
|  | found: | 
|  | spin_unlock(&pag->pag_buf_lock); | 
|  | xfs_perag_put(pag); | 
|  |  | 
|  | if (!xfs_buf_trylock(bp)) { | 
|  | if (flags & XBF_TRYLOCK) { | 
|  | xfs_buf_rele(bp); | 
|  | XFS_STATS_INC(btp->bt_mount, xb_busy_locked); | 
|  | return -EAGAIN; | 
|  | } | 
|  | xfs_buf_lock(bp); | 
|  | XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * if the buffer is stale, clear all the external state associated with | 
|  | * it. We need to keep flags such as how we allocated the buffer memory | 
|  | * intact here. | 
|  | */ | 
|  | if (bp->b_flags & XBF_STALE) { | 
|  | ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0); | 
|  | ASSERT(bp->b_iodone == NULL); | 
|  | bp->b_flags &= _XBF_KMEM | _XBF_PAGES; | 
|  | bp->b_ops = NULL; | 
|  | } | 
|  |  | 
|  | trace_xfs_buf_find(bp, flags, _RET_IP_); | 
|  | XFS_STATS_INC(btp->bt_mount, xb_get_locked); | 
|  | *found_bp = bp; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | struct xfs_buf * | 
|  | xfs_buf_incore( | 
|  | struct xfs_buftarg	*target, | 
|  | xfs_daddr_t		blkno, | 
|  | size_t			numblks, | 
|  | xfs_buf_flags_t		flags) | 
|  | { | 
|  | struct xfs_buf		*bp; | 
|  | int			error; | 
|  | DEFINE_SINGLE_BUF_MAP(map, blkno, numblks); | 
|  |  | 
|  | error = xfs_buf_find(target, &map, 1, flags, NULL, &bp); | 
|  | if (error) | 
|  | return NULL; | 
|  | return bp; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Assembles a buffer covering the specified range. The code is optimised for | 
|  | * cache hits, as metadata intensive workloads will see 3 orders of magnitude | 
|  | * more hits than misses. | 
|  | */ | 
|  | struct xfs_buf * | 
|  | xfs_buf_get_map( | 
|  | struct xfs_buftarg	*target, | 
|  | struct xfs_buf_map	*map, | 
|  | int			nmaps, | 
|  | xfs_buf_flags_t		flags) | 
|  | { | 
|  | struct xfs_buf		*bp; | 
|  | struct xfs_buf		*new_bp; | 
|  | int			error = 0; | 
|  |  | 
|  | error = xfs_buf_find(target, map, nmaps, flags, NULL, &bp); | 
|  |  | 
|  | switch (error) { | 
|  | case 0: | 
|  | /* cache hit */ | 
|  | goto found; | 
|  | case -EAGAIN: | 
|  | /* cache hit, trylock failure, caller handles failure */ | 
|  | ASSERT(flags & XBF_TRYLOCK); | 
|  | return NULL; | 
|  | case -ENOENT: | 
|  | /* cache miss, go for insert */ | 
|  | break; | 
|  | case -EFSCORRUPTED: | 
|  | default: | 
|  | /* | 
|  | * None of the higher layers understand failure types | 
|  | * yet, so return NULL to signal a fatal lookup error. | 
|  | */ | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | new_bp = _xfs_buf_alloc(target, map, nmaps, flags); | 
|  | if (unlikely(!new_bp)) | 
|  | return NULL; | 
|  |  | 
|  | error = xfs_buf_allocate_memory(new_bp, flags); | 
|  | if (error) { | 
|  | xfs_buf_free(new_bp); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | error = xfs_buf_find(target, map, nmaps, flags, new_bp, &bp); | 
|  | if (error) { | 
|  | xfs_buf_free(new_bp); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | if (bp != new_bp) | 
|  | xfs_buf_free(new_bp); | 
|  |  | 
|  | found: | 
|  | if (!bp->b_addr) { | 
|  | error = _xfs_buf_map_pages(bp, flags); | 
|  | if (unlikely(error)) { | 
|  | xfs_warn(target->bt_mount, | 
|  | "%s: failed to map pagesn", __func__); | 
|  | xfs_buf_relse(bp); | 
|  | return NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Clear b_error if this is a lookup from a caller that doesn't expect | 
|  | * valid data to be found in the buffer. | 
|  | */ | 
|  | if (!(flags & XBF_READ)) | 
|  | xfs_buf_ioerror(bp, 0); | 
|  |  | 
|  | XFS_STATS_INC(target->bt_mount, xb_get); | 
|  | trace_xfs_buf_get(bp, flags, _RET_IP_); | 
|  | return bp; | 
|  | } | 
|  |  | 
|  | STATIC int | 
|  | _xfs_buf_read( | 
|  | xfs_buf_t		*bp, | 
|  | xfs_buf_flags_t		flags) | 
|  | { | 
|  | ASSERT(!(flags & XBF_WRITE)); | 
|  | ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL); | 
|  |  | 
|  | bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD); | 
|  | bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD); | 
|  |  | 
|  | return xfs_buf_submit(bp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set buffer ops on an unchecked buffer and validate it, if possible. | 
|  | * | 
|  | * If the caller passed in an ops structure and the buffer doesn't have ops | 
|  | * assigned, set the ops and use them to verify the contents.  If the contents | 
|  | * cannot be verified, we'll clear XBF_DONE.  We assume the buffer has no | 
|  | * recorded errors and is already in XBF_DONE state. | 
|  | * | 
|  | * Under normal operations, every in-core buffer must have buffer ops assigned | 
|  | * to them when the buffer is read in from disk so that we can validate the | 
|  | * metadata. | 
|  | * | 
|  | * However, there are two scenarios where one can encounter in-core buffers | 
|  | * that don't have buffer ops.  The first is during log recovery of buffers on | 
|  | * a V4 filesystem, though these buffers are purged at the end of recovery. | 
|  | * | 
|  | * The other is online repair, which tries to match arbitrary metadata blocks | 
|  | * with btree types in order to find the root.  If online repair doesn't match | 
|  | * the buffer with /any/ btree type, the buffer remains in memory in DONE state | 
|  | * with no ops, and a subsequent read_buf call from elsewhere will not set the | 
|  | * ops.  This function helps us fix this situation. | 
|  | */ | 
|  | int | 
|  | xfs_buf_ensure_ops( | 
|  | struct xfs_buf		*bp, | 
|  | const struct xfs_buf_ops *ops) | 
|  | { | 
|  | ASSERT(bp->b_flags & XBF_DONE); | 
|  | ASSERT(bp->b_error == 0); | 
|  |  | 
|  | if (!ops || bp->b_ops) | 
|  | return 0; | 
|  |  | 
|  | bp->b_ops = ops; | 
|  | bp->b_ops->verify_read(bp); | 
|  | if (bp->b_error) | 
|  | bp->b_flags &= ~XBF_DONE; | 
|  | return bp->b_error; | 
|  | } | 
|  |  | 
|  | xfs_buf_t * | 
|  | xfs_buf_read_map( | 
|  | struct xfs_buftarg	*target, | 
|  | struct xfs_buf_map	*map, | 
|  | int			nmaps, | 
|  | xfs_buf_flags_t		flags, | 
|  | const struct xfs_buf_ops *ops) | 
|  | { | 
|  | struct xfs_buf		*bp; | 
|  |  | 
|  | flags |= XBF_READ; | 
|  |  | 
|  | bp = xfs_buf_get_map(target, map, nmaps, flags); | 
|  | if (!bp) | 
|  | return NULL; | 
|  |  | 
|  | trace_xfs_buf_read(bp, flags, _RET_IP_); | 
|  |  | 
|  | if (!(bp->b_flags & XBF_DONE)) { | 
|  | XFS_STATS_INC(target->bt_mount, xb_get_read); | 
|  | bp->b_ops = ops; | 
|  | _xfs_buf_read(bp, flags); | 
|  | return bp; | 
|  | } | 
|  |  | 
|  | xfs_buf_ensure_ops(bp, ops); | 
|  |  | 
|  | if (flags & XBF_ASYNC) { | 
|  | /* | 
|  | * Read ahead call which is already satisfied, | 
|  | * drop the buffer | 
|  | */ | 
|  | xfs_buf_relse(bp); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* We do not want read in the flags */ | 
|  | bp->b_flags &= ~XBF_READ; | 
|  | ASSERT(bp->b_ops != NULL || ops == NULL); | 
|  | return bp; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	If we are not low on memory then do the readahead in a deadlock | 
|  | *	safe manner. | 
|  | */ | 
|  | void | 
|  | xfs_buf_readahead_map( | 
|  | struct xfs_buftarg	*target, | 
|  | struct xfs_buf_map	*map, | 
|  | int			nmaps, | 
|  | const struct xfs_buf_ops *ops) | 
|  | { | 
|  | if (bdi_read_congested(target->bt_bdev->bd_bdi)) | 
|  | return; | 
|  |  | 
|  | xfs_buf_read_map(target, map, nmaps, | 
|  | XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Read an uncached buffer from disk. Allocates and returns a locked | 
|  | * buffer containing the disk contents or nothing. | 
|  | */ | 
|  | int | 
|  | xfs_buf_read_uncached( | 
|  | struct xfs_buftarg	*target, | 
|  | xfs_daddr_t		daddr, | 
|  | size_t			numblks, | 
|  | int			flags, | 
|  | struct xfs_buf		**bpp, | 
|  | const struct xfs_buf_ops *ops) | 
|  | { | 
|  | struct xfs_buf		*bp; | 
|  |  | 
|  | *bpp = NULL; | 
|  |  | 
|  | bp = xfs_buf_get_uncached(target, numblks, flags); | 
|  | if (!bp) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* set up the buffer for a read IO */ | 
|  | ASSERT(bp->b_map_count == 1); | 
|  | bp->b_bn = XFS_BUF_DADDR_NULL;  /* always null for uncached buffers */ | 
|  | bp->b_maps[0].bm_bn = daddr; | 
|  | bp->b_flags |= XBF_READ; | 
|  | bp->b_ops = ops; | 
|  |  | 
|  | xfs_buf_submit(bp); | 
|  | if (bp->b_error) { | 
|  | int	error = bp->b_error; | 
|  | xfs_buf_relse(bp); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | *bpp = bp; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return a buffer allocated as an empty buffer and associated to external | 
|  | * memory via xfs_buf_associate_memory() back to it's empty state. | 
|  | */ | 
|  | void | 
|  | xfs_buf_set_empty( | 
|  | struct xfs_buf		*bp, | 
|  | size_t			numblks) | 
|  | { | 
|  | if (bp->b_pages) | 
|  | _xfs_buf_free_pages(bp); | 
|  |  | 
|  | bp->b_pages = NULL; | 
|  | bp->b_page_count = 0; | 
|  | bp->b_addr = NULL; | 
|  | bp->b_length = numblks; | 
|  | bp->b_io_length = numblks; | 
|  |  | 
|  | ASSERT(bp->b_map_count == 1); | 
|  | bp->b_bn = XFS_BUF_DADDR_NULL; | 
|  | bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL; | 
|  | bp->b_maps[0].bm_len = bp->b_length; | 
|  | } | 
|  |  | 
|  | static inline struct page * | 
|  | mem_to_page( | 
|  | void			*addr) | 
|  | { | 
|  | if ((!is_vmalloc_addr(addr))) { | 
|  | return virt_to_page(addr); | 
|  | } else { | 
|  | return vmalloc_to_page(addr); | 
|  | } | 
|  | } | 
|  |  | 
|  | int | 
|  | xfs_buf_associate_memory( | 
|  | xfs_buf_t		*bp, | 
|  | void			*mem, | 
|  | size_t			len) | 
|  | { | 
|  | int			rval; | 
|  | int			i = 0; | 
|  | unsigned long		pageaddr; | 
|  | unsigned long		offset; | 
|  | size_t			buflen; | 
|  | int			page_count; | 
|  |  | 
|  | pageaddr = (unsigned long)mem & PAGE_MASK; | 
|  | offset = (unsigned long)mem - pageaddr; | 
|  | buflen = PAGE_ALIGN(len + offset); | 
|  | page_count = buflen >> PAGE_SHIFT; | 
|  |  | 
|  | /* Free any previous set of page pointers */ | 
|  | if (bp->b_pages) | 
|  | _xfs_buf_free_pages(bp); | 
|  |  | 
|  | bp->b_pages = NULL; | 
|  | bp->b_addr = mem; | 
|  |  | 
|  | rval = _xfs_buf_get_pages(bp, page_count); | 
|  | if (rval) | 
|  | return rval; | 
|  |  | 
|  | bp->b_offset = offset; | 
|  |  | 
|  | for (i = 0; i < bp->b_page_count; i++) { | 
|  | bp->b_pages[i] = mem_to_page((void *)pageaddr); | 
|  | pageaddr += PAGE_SIZE; | 
|  | } | 
|  |  | 
|  | bp->b_io_length = BTOBB(len); | 
|  | bp->b_length = BTOBB(buflen); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | xfs_buf_t * | 
|  | xfs_buf_get_uncached( | 
|  | struct xfs_buftarg	*target, | 
|  | size_t			numblks, | 
|  | int			flags) | 
|  | { | 
|  | unsigned long		page_count; | 
|  | int			error, i; | 
|  | struct xfs_buf		*bp; | 
|  | DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks); | 
|  |  | 
|  | /* flags might contain irrelevant bits, pass only what we care about */ | 
|  | bp = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT); | 
|  | if (unlikely(bp == NULL)) | 
|  | goto fail; | 
|  |  | 
|  | page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT; | 
|  | error = _xfs_buf_get_pages(bp, page_count); | 
|  | if (error) | 
|  | goto fail_free_buf; | 
|  |  | 
|  | for (i = 0; i < page_count; i++) { | 
|  | bp->b_pages[i] = alloc_page(xb_to_gfp(flags)); | 
|  | if (!bp->b_pages[i]) | 
|  | goto fail_free_mem; | 
|  | } | 
|  | bp->b_flags |= _XBF_PAGES; | 
|  |  | 
|  | error = _xfs_buf_map_pages(bp, 0); | 
|  | if (unlikely(error)) { | 
|  | xfs_warn(target->bt_mount, | 
|  | "%s: failed to map pages", __func__); | 
|  | goto fail_free_mem; | 
|  | } | 
|  |  | 
|  | trace_xfs_buf_get_uncached(bp, _RET_IP_); | 
|  | return bp; | 
|  |  | 
|  | fail_free_mem: | 
|  | while (--i >= 0) | 
|  | __free_page(bp->b_pages[i]); | 
|  | _xfs_buf_free_pages(bp); | 
|  | fail_free_buf: | 
|  | xfs_buf_free_maps(bp); | 
|  | kmem_zone_free(xfs_buf_zone, bp); | 
|  | fail: | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Increment reference count on buffer, to hold the buffer concurrently | 
|  | *	with another thread which may release (free) the buffer asynchronously. | 
|  | *	Must hold the buffer already to call this function. | 
|  | */ | 
|  | void | 
|  | xfs_buf_hold( | 
|  | xfs_buf_t		*bp) | 
|  | { | 
|  | trace_xfs_buf_hold(bp, _RET_IP_); | 
|  | atomic_inc(&bp->b_hold); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Release a hold on the specified buffer. If the hold count is 1, the buffer is | 
|  | * placed on LRU or freed (depending on b_lru_ref). | 
|  | */ | 
|  | void | 
|  | xfs_buf_rele( | 
|  | xfs_buf_t		*bp) | 
|  | { | 
|  | struct xfs_perag	*pag = bp->b_pag; | 
|  | bool			release; | 
|  | bool			freebuf = false; | 
|  |  | 
|  | trace_xfs_buf_rele(bp, _RET_IP_); | 
|  |  | 
|  | if (!pag) { | 
|  | ASSERT(list_empty(&bp->b_lru)); | 
|  | if (atomic_dec_and_test(&bp->b_hold)) { | 
|  | xfs_buf_ioacct_dec(bp); | 
|  | xfs_buf_free(bp); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | ASSERT(atomic_read(&bp->b_hold) > 0); | 
|  |  | 
|  | /* | 
|  | * We grab the b_lock here first to serialise racing xfs_buf_rele() | 
|  | * calls. The pag_buf_lock being taken on the last reference only | 
|  | * serialises against racing lookups in xfs_buf_find(). IOWs, the second | 
|  | * to last reference we drop here is not serialised against the last | 
|  | * reference until we take bp->b_lock. Hence if we don't grab b_lock | 
|  | * first, the last "release" reference can win the race to the lock and | 
|  | * free the buffer before the second-to-last reference is processed, | 
|  | * leading to a use-after-free scenario. | 
|  | */ | 
|  | spin_lock(&bp->b_lock); | 
|  | release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock); | 
|  | if (!release) { | 
|  | /* | 
|  | * Drop the in-flight state if the buffer is already on the LRU | 
|  | * and it holds the only reference. This is racy because we | 
|  | * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT | 
|  | * ensures the decrement occurs only once per-buf. | 
|  | */ | 
|  | if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru)) | 
|  | __xfs_buf_ioacct_dec(bp); | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | /* the last reference has been dropped ... */ | 
|  | __xfs_buf_ioacct_dec(bp); | 
|  | if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) { | 
|  | /* | 
|  | * If the buffer is added to the LRU take a new reference to the | 
|  | * buffer for the LRU and clear the (now stale) dispose list | 
|  | * state flag | 
|  | */ | 
|  | if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) { | 
|  | bp->b_state &= ~XFS_BSTATE_DISPOSE; | 
|  | atomic_inc(&bp->b_hold); | 
|  | } | 
|  | spin_unlock(&pag->pag_buf_lock); | 
|  | } else { | 
|  | /* | 
|  | * most of the time buffers will already be removed from the | 
|  | * LRU, so optimise that case by checking for the | 
|  | * XFS_BSTATE_DISPOSE flag indicating the last list the buffer | 
|  | * was on was the disposal list | 
|  | */ | 
|  | if (!(bp->b_state & XFS_BSTATE_DISPOSE)) { | 
|  | list_lru_del(&bp->b_target->bt_lru, &bp->b_lru); | 
|  | } else { | 
|  | ASSERT(list_empty(&bp->b_lru)); | 
|  | } | 
|  |  | 
|  | ASSERT(!(bp->b_flags & _XBF_DELWRI_Q)); | 
|  | rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head, | 
|  | xfs_buf_hash_params); | 
|  | spin_unlock(&pag->pag_buf_lock); | 
|  | xfs_perag_put(pag); | 
|  | freebuf = true; | 
|  | } | 
|  |  | 
|  | out_unlock: | 
|  | spin_unlock(&bp->b_lock); | 
|  |  | 
|  | if (freebuf) | 
|  | xfs_buf_free(bp); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | *	Lock a buffer object, if it is not already locked. | 
|  | * | 
|  | *	If we come across a stale, pinned, locked buffer, we know that we are | 
|  | *	being asked to lock a buffer that has been reallocated. Because it is | 
|  | *	pinned, we know that the log has not been pushed to disk and hence it | 
|  | *	will still be locked.  Rather than continuing to have trylock attempts | 
|  | *	fail until someone else pushes the log, push it ourselves before | 
|  | *	returning.  This means that the xfsaild will not get stuck trying | 
|  | *	to push on stale inode buffers. | 
|  | */ | 
|  | int | 
|  | xfs_buf_trylock( | 
|  | struct xfs_buf		*bp) | 
|  | { | 
|  | int			locked; | 
|  |  | 
|  | locked = down_trylock(&bp->b_sema) == 0; | 
|  | if (locked) | 
|  | trace_xfs_buf_trylock(bp, _RET_IP_); | 
|  | else | 
|  | trace_xfs_buf_trylock_fail(bp, _RET_IP_); | 
|  | return locked; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Lock a buffer object. | 
|  | * | 
|  | *	If we come across a stale, pinned, locked buffer, we know that we | 
|  | *	are being asked to lock a buffer that has been reallocated. Because | 
|  | *	it is pinned, we know that the log has not been pushed to disk and | 
|  | *	hence it will still be locked. Rather than sleeping until someone | 
|  | *	else pushes the log, push it ourselves before trying to get the lock. | 
|  | */ | 
|  | void | 
|  | xfs_buf_lock( | 
|  | struct xfs_buf		*bp) | 
|  | { | 
|  | trace_xfs_buf_lock(bp, _RET_IP_); | 
|  |  | 
|  | if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE)) | 
|  | xfs_log_force(bp->b_target->bt_mount, 0); | 
|  | down(&bp->b_sema); | 
|  |  | 
|  | trace_xfs_buf_lock_done(bp, _RET_IP_); | 
|  | } | 
|  |  | 
|  | void | 
|  | xfs_buf_unlock( | 
|  | struct xfs_buf		*bp) | 
|  | { | 
|  | ASSERT(xfs_buf_islocked(bp)); | 
|  |  | 
|  | up(&bp->b_sema); | 
|  | trace_xfs_buf_unlock(bp, _RET_IP_); | 
|  | } | 
|  |  | 
|  | STATIC void | 
|  | xfs_buf_wait_unpin( | 
|  | xfs_buf_t		*bp) | 
|  | { | 
|  | DECLARE_WAITQUEUE	(wait, current); | 
|  |  | 
|  | if (atomic_read(&bp->b_pin_count) == 0) | 
|  | return; | 
|  |  | 
|  | add_wait_queue(&bp->b_waiters, &wait); | 
|  | for (;;) { | 
|  | set_current_state(TASK_UNINTERRUPTIBLE); | 
|  | if (atomic_read(&bp->b_pin_count) == 0) | 
|  | break; | 
|  | io_schedule(); | 
|  | } | 
|  | remove_wait_queue(&bp->b_waiters, &wait); | 
|  | set_current_state(TASK_RUNNING); | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Buffer Utility Routines | 
|  | */ | 
|  |  | 
|  | void | 
|  | xfs_buf_ioend( | 
|  | struct xfs_buf	*bp) | 
|  | { | 
|  | bool		read = bp->b_flags & XBF_READ; | 
|  |  | 
|  | trace_xfs_buf_iodone(bp, _RET_IP_); | 
|  |  | 
|  | bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD); | 
|  |  | 
|  | /* | 
|  | * Pull in IO completion errors now. We are guaranteed to be running | 
|  | * single threaded, so we don't need the lock to read b_io_error. | 
|  | */ | 
|  | if (!bp->b_error && bp->b_io_error) | 
|  | xfs_buf_ioerror(bp, bp->b_io_error); | 
|  |  | 
|  | /* Only validate buffers that were read without errors */ | 
|  | if (read && !bp->b_error && bp->b_ops) { | 
|  | ASSERT(!bp->b_iodone); | 
|  | bp->b_ops->verify_read(bp); | 
|  | } | 
|  |  | 
|  | if (!bp->b_error) | 
|  | bp->b_flags |= XBF_DONE; | 
|  |  | 
|  | if (bp->b_iodone) | 
|  | (*(bp->b_iodone))(bp); | 
|  | else if (bp->b_flags & XBF_ASYNC) | 
|  | xfs_buf_relse(bp); | 
|  | else | 
|  | complete(&bp->b_iowait); | 
|  | } | 
|  |  | 
|  | static void | 
|  | xfs_buf_ioend_work( | 
|  | struct work_struct	*work) | 
|  | { | 
|  | struct xfs_buf		*bp = | 
|  | container_of(work, xfs_buf_t, b_ioend_work); | 
|  |  | 
|  | xfs_buf_ioend(bp); | 
|  | } | 
|  |  | 
|  | static void | 
|  | xfs_buf_ioend_async( | 
|  | struct xfs_buf	*bp) | 
|  | { | 
|  | INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work); | 
|  | queue_work(bp->b_ioend_wq, &bp->b_ioend_work); | 
|  | } | 
|  |  | 
|  | void | 
|  | __xfs_buf_ioerror( | 
|  | xfs_buf_t		*bp, | 
|  | int			error, | 
|  | xfs_failaddr_t		failaddr) | 
|  | { | 
|  | ASSERT(error <= 0 && error >= -1000); | 
|  | bp->b_error = error; | 
|  | trace_xfs_buf_ioerror(bp, error, failaddr); | 
|  | } | 
|  |  | 
|  | void | 
|  | xfs_buf_ioerror_alert( | 
|  | struct xfs_buf		*bp, | 
|  | const char		*func) | 
|  | { | 
|  | xfs_alert(bp->b_target->bt_mount, | 
|  | "metadata I/O error in \"%s\" at daddr 0x%llx len %d error %d", | 
|  | func, (uint64_t)XFS_BUF_ADDR(bp), bp->b_length, | 
|  | -bp->b_error); | 
|  | } | 
|  |  | 
|  | int | 
|  | xfs_bwrite( | 
|  | struct xfs_buf		*bp) | 
|  | { | 
|  | int			error; | 
|  |  | 
|  | ASSERT(xfs_buf_islocked(bp)); | 
|  |  | 
|  | bp->b_flags |= XBF_WRITE; | 
|  | bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q | | 
|  | XBF_WRITE_FAIL | XBF_DONE); | 
|  |  | 
|  | error = xfs_buf_submit(bp); | 
|  | if (error) { | 
|  | xfs_force_shutdown(bp->b_target->bt_mount, | 
|  | SHUTDOWN_META_IO_ERROR); | 
|  | } | 
|  | return error; | 
|  | } | 
|  |  | 
|  | static void | 
|  | xfs_buf_bio_end_io( | 
|  | struct bio		*bio) | 
|  | { | 
|  | struct xfs_buf		*bp = (struct xfs_buf *)bio->bi_private; | 
|  |  | 
|  | /* | 
|  | * don't overwrite existing errors - otherwise we can lose errors on | 
|  | * buffers that require multiple bios to complete. | 
|  | */ | 
|  | if (bio->bi_status) { | 
|  | int error = blk_status_to_errno(bio->bi_status); | 
|  |  | 
|  | cmpxchg(&bp->b_io_error, 0, error); | 
|  | } | 
|  |  | 
|  | if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ)) | 
|  | invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp)); | 
|  |  | 
|  | if (atomic_dec_and_test(&bp->b_io_remaining) == 1) | 
|  | xfs_buf_ioend_async(bp); | 
|  | bio_put(bio); | 
|  | } | 
|  |  | 
|  | static void | 
|  | xfs_buf_ioapply_map( | 
|  | struct xfs_buf	*bp, | 
|  | int		map, | 
|  | int		*buf_offset, | 
|  | int		*count, | 
|  | int		op, | 
|  | int		op_flags) | 
|  | { | 
|  | int		page_index; | 
|  | int		total_nr_pages = bp->b_page_count; | 
|  | int		nr_pages; | 
|  | struct bio	*bio; | 
|  | sector_t	sector =  bp->b_maps[map].bm_bn; | 
|  | int		size; | 
|  | int		offset; | 
|  |  | 
|  | /* skip the pages in the buffer before the start offset */ | 
|  | page_index = 0; | 
|  | offset = *buf_offset; | 
|  | while (offset >= PAGE_SIZE) { | 
|  | page_index++; | 
|  | offset -= PAGE_SIZE; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Limit the IO size to the length of the current vector, and update the | 
|  | * remaining IO count for the next time around. | 
|  | */ | 
|  | size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count); | 
|  | *count -= size; | 
|  | *buf_offset += size; | 
|  |  | 
|  | next_chunk: | 
|  | atomic_inc(&bp->b_io_remaining); | 
|  | nr_pages = min(total_nr_pages, BIO_MAX_PAGES); | 
|  |  | 
|  | bio = bio_alloc(GFP_NOIO, nr_pages); | 
|  | bio_set_dev(bio, bp->b_target->bt_bdev); | 
|  | bio->bi_iter.bi_sector = sector; | 
|  | bio->bi_end_io = xfs_buf_bio_end_io; | 
|  | bio->bi_private = bp; | 
|  | bio_set_op_attrs(bio, op, op_flags); | 
|  |  | 
|  | for (; size && nr_pages; nr_pages--, page_index++) { | 
|  | int	rbytes, nbytes = PAGE_SIZE - offset; | 
|  |  | 
|  | if (nbytes > size) | 
|  | nbytes = size; | 
|  |  | 
|  | rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes, | 
|  | offset); | 
|  | if (rbytes < nbytes) | 
|  | break; | 
|  |  | 
|  | offset = 0; | 
|  | sector += BTOBB(nbytes); | 
|  | size -= nbytes; | 
|  | total_nr_pages--; | 
|  | } | 
|  |  | 
|  | if (likely(bio->bi_iter.bi_size)) { | 
|  | if (xfs_buf_is_vmapped(bp)) { | 
|  | flush_kernel_vmap_range(bp->b_addr, | 
|  | xfs_buf_vmap_len(bp)); | 
|  | } | 
|  | submit_bio(bio); | 
|  | if (size) | 
|  | goto next_chunk; | 
|  | } else { | 
|  | /* | 
|  | * This is guaranteed not to be the last io reference count | 
|  | * because the caller (xfs_buf_submit) holds a count itself. | 
|  | */ | 
|  | atomic_dec(&bp->b_io_remaining); | 
|  | xfs_buf_ioerror(bp, -EIO); | 
|  | bio_put(bio); | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | STATIC void | 
|  | _xfs_buf_ioapply( | 
|  | struct xfs_buf	*bp) | 
|  | { | 
|  | struct blk_plug	plug; | 
|  | int		op; | 
|  | int		op_flags = 0; | 
|  | int		offset; | 
|  | int		size; | 
|  | int		i; | 
|  |  | 
|  | /* | 
|  | * Make sure we capture only current IO errors rather than stale errors | 
|  | * left over from previous use of the buffer (e.g. failed readahead). | 
|  | */ | 
|  | bp->b_error = 0; | 
|  |  | 
|  | /* | 
|  | * Initialize the I/O completion workqueue if we haven't yet or the | 
|  | * submitter has not opted to specify a custom one. | 
|  | */ | 
|  | if (!bp->b_ioend_wq) | 
|  | bp->b_ioend_wq = bp->b_target->bt_mount->m_buf_workqueue; | 
|  |  | 
|  | if (bp->b_flags & XBF_WRITE) { | 
|  | op = REQ_OP_WRITE; | 
|  | if (bp->b_flags & XBF_SYNCIO) | 
|  | op_flags = REQ_SYNC; | 
|  | if (bp->b_flags & XBF_FUA) | 
|  | op_flags |= REQ_FUA; | 
|  | if (bp->b_flags & XBF_FLUSH) | 
|  | op_flags |= REQ_PREFLUSH; | 
|  |  | 
|  | /* | 
|  | * Run the write verifier callback function if it exists. If | 
|  | * this function fails it will mark the buffer with an error and | 
|  | * the IO should not be dispatched. | 
|  | */ | 
|  | if (bp->b_ops) { | 
|  | bp->b_ops->verify_write(bp); | 
|  | if (bp->b_error) { | 
|  | xfs_force_shutdown(bp->b_target->bt_mount, | 
|  | SHUTDOWN_CORRUPT_INCORE); | 
|  | return; | 
|  | } | 
|  | } else if (bp->b_bn != XFS_BUF_DADDR_NULL) { | 
|  | struct xfs_mount *mp = bp->b_target->bt_mount; | 
|  |  | 
|  | /* | 
|  | * non-crc filesystems don't attach verifiers during | 
|  | * log recovery, so don't warn for such filesystems. | 
|  | */ | 
|  | if (xfs_sb_version_hascrc(&mp->m_sb)) { | 
|  | xfs_warn(mp, | 
|  | "%s: no buf ops on daddr 0x%llx len %d", | 
|  | __func__, bp->b_bn, bp->b_length); | 
|  | xfs_hex_dump(bp->b_addr, | 
|  | XFS_CORRUPTION_DUMP_LEN); | 
|  | dump_stack(); | 
|  | } | 
|  | } | 
|  | } else if (bp->b_flags & XBF_READ_AHEAD) { | 
|  | op = REQ_OP_READ; | 
|  | op_flags = REQ_RAHEAD; | 
|  | } else { | 
|  | op = REQ_OP_READ; | 
|  | } | 
|  |  | 
|  | /* we only use the buffer cache for meta-data */ | 
|  | op_flags |= REQ_META; | 
|  |  | 
|  | /* | 
|  | * Walk all the vectors issuing IO on them. Set up the initial offset | 
|  | * into the buffer and the desired IO size before we start - | 
|  | * _xfs_buf_ioapply_vec() will modify them appropriately for each | 
|  | * subsequent call. | 
|  | */ | 
|  | offset = bp->b_offset; | 
|  | size = BBTOB(bp->b_io_length); | 
|  | blk_start_plug(&plug); | 
|  | for (i = 0; i < bp->b_map_count; i++) { | 
|  | xfs_buf_ioapply_map(bp, i, &offset, &size, op, op_flags); | 
|  | if (bp->b_error) | 
|  | break; | 
|  | if (size <= 0) | 
|  | break;	/* all done */ | 
|  | } | 
|  | blk_finish_plug(&plug); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Wait for I/O completion of a sync buffer and return the I/O error code. | 
|  | */ | 
|  | static int | 
|  | xfs_buf_iowait( | 
|  | struct xfs_buf	*bp) | 
|  | { | 
|  | ASSERT(!(bp->b_flags & XBF_ASYNC)); | 
|  |  | 
|  | trace_xfs_buf_iowait(bp, _RET_IP_); | 
|  | wait_for_completion(&bp->b_iowait); | 
|  | trace_xfs_buf_iowait_done(bp, _RET_IP_); | 
|  |  | 
|  | return bp->b_error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Buffer I/O submission path, read or write. Asynchronous submission transfers | 
|  | * the buffer lock ownership and the current reference to the IO. It is not | 
|  | * safe to reference the buffer after a call to this function unless the caller | 
|  | * holds an additional reference itself. | 
|  | */ | 
|  | int | 
|  | __xfs_buf_submit( | 
|  | struct xfs_buf	*bp, | 
|  | bool		wait) | 
|  | { | 
|  | int		error = 0; | 
|  |  | 
|  | trace_xfs_buf_submit(bp, _RET_IP_); | 
|  |  | 
|  | ASSERT(!(bp->b_flags & _XBF_DELWRI_Q)); | 
|  |  | 
|  | /* on shutdown we stale and complete the buffer immediately */ | 
|  | if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) { | 
|  | xfs_buf_ioerror(bp, -EIO); | 
|  | bp->b_flags &= ~XBF_DONE; | 
|  | xfs_buf_stale(bp); | 
|  | xfs_buf_ioend(bp); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Grab a reference so the buffer does not go away underneath us. For | 
|  | * async buffers, I/O completion drops the callers reference, which | 
|  | * could occur before submission returns. | 
|  | */ | 
|  | xfs_buf_hold(bp); | 
|  |  | 
|  | if (bp->b_flags & XBF_WRITE) | 
|  | xfs_buf_wait_unpin(bp); | 
|  |  | 
|  | /* clear the internal error state to avoid spurious errors */ | 
|  | bp->b_io_error = 0; | 
|  |  | 
|  | /* | 
|  | * Set the count to 1 initially, this will stop an I/O completion | 
|  | * callout which happens before we have started all the I/O from calling | 
|  | * xfs_buf_ioend too early. | 
|  | */ | 
|  | atomic_set(&bp->b_io_remaining, 1); | 
|  | if (bp->b_flags & XBF_ASYNC) | 
|  | xfs_buf_ioacct_inc(bp); | 
|  | _xfs_buf_ioapply(bp); | 
|  |  | 
|  | /* | 
|  | * If _xfs_buf_ioapply failed, we can get back here with only the IO | 
|  | * reference we took above. If we drop it to zero, run completion so | 
|  | * that we don't return to the caller with completion still pending. | 
|  | */ | 
|  | if (atomic_dec_and_test(&bp->b_io_remaining) == 1) { | 
|  | if (bp->b_error || !(bp->b_flags & XBF_ASYNC)) | 
|  | xfs_buf_ioend(bp); | 
|  | else | 
|  | xfs_buf_ioend_async(bp); | 
|  | } | 
|  |  | 
|  | if (wait) | 
|  | error = xfs_buf_iowait(bp); | 
|  |  | 
|  | /* | 
|  | * Release the hold that keeps the buffer referenced for the entire | 
|  | * I/O. Note that if the buffer is async, it is not safe to reference | 
|  | * after this release. | 
|  | */ | 
|  | xfs_buf_rele(bp); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | void * | 
|  | xfs_buf_offset( | 
|  | struct xfs_buf		*bp, | 
|  | size_t			offset) | 
|  | { | 
|  | struct page		*page; | 
|  |  | 
|  | if (bp->b_addr) | 
|  | return bp->b_addr + offset; | 
|  |  | 
|  | offset += bp->b_offset; | 
|  | page = bp->b_pages[offset >> PAGE_SHIFT]; | 
|  | return page_address(page) + (offset & (PAGE_SIZE-1)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Move data into or out of a buffer. | 
|  | */ | 
|  | void | 
|  | xfs_buf_iomove( | 
|  | xfs_buf_t		*bp,	/* buffer to process		*/ | 
|  | size_t			boff,	/* starting buffer offset	*/ | 
|  | size_t			bsize,	/* length to copy		*/ | 
|  | void			*data,	/* data address			*/ | 
|  | xfs_buf_rw_t		mode)	/* read/write/zero flag		*/ | 
|  | { | 
|  | size_t			bend; | 
|  |  | 
|  | bend = boff + bsize; | 
|  | while (boff < bend) { | 
|  | struct page	*page; | 
|  | int		page_index, page_offset, csize; | 
|  |  | 
|  | page_index = (boff + bp->b_offset) >> PAGE_SHIFT; | 
|  | page_offset = (boff + bp->b_offset) & ~PAGE_MASK; | 
|  | page = bp->b_pages[page_index]; | 
|  | csize = min_t(size_t, PAGE_SIZE - page_offset, | 
|  | BBTOB(bp->b_io_length) - boff); | 
|  |  | 
|  | ASSERT((csize + page_offset) <= PAGE_SIZE); | 
|  |  | 
|  | switch (mode) { | 
|  | case XBRW_ZERO: | 
|  | memset(page_address(page) + page_offset, 0, csize); | 
|  | break; | 
|  | case XBRW_READ: | 
|  | memcpy(data, page_address(page) + page_offset, csize); | 
|  | break; | 
|  | case XBRW_WRITE: | 
|  | memcpy(page_address(page) + page_offset, data, csize); | 
|  | } | 
|  |  | 
|  | boff += csize; | 
|  | data += csize; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Handling of buffer targets (buftargs). | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Wait for any bufs with callbacks that have been submitted but have not yet | 
|  | * returned. These buffers will have an elevated hold count, so wait on those | 
|  | * while freeing all the buffers only held by the LRU. | 
|  | */ | 
|  | static enum lru_status | 
|  | xfs_buftarg_wait_rele( | 
|  | struct list_head	*item, | 
|  | struct list_lru_one	*lru, | 
|  | spinlock_t		*lru_lock, | 
|  | void			*arg) | 
|  |  | 
|  | { | 
|  | struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru); | 
|  | struct list_head	*dispose = arg; | 
|  |  | 
|  | if (atomic_read(&bp->b_hold) > 1) { | 
|  | /* need to wait, so skip it this pass */ | 
|  | trace_xfs_buf_wait_buftarg(bp, _RET_IP_); | 
|  | return LRU_SKIP; | 
|  | } | 
|  | if (!spin_trylock(&bp->b_lock)) | 
|  | return LRU_SKIP; | 
|  |  | 
|  | /* | 
|  | * clear the LRU reference count so the buffer doesn't get | 
|  | * ignored in xfs_buf_rele(). | 
|  | */ | 
|  | atomic_set(&bp->b_lru_ref, 0); | 
|  | bp->b_state |= XFS_BSTATE_DISPOSE; | 
|  | list_lru_isolate_move(lru, item, dispose); | 
|  | spin_unlock(&bp->b_lock); | 
|  | return LRU_REMOVED; | 
|  | } | 
|  |  | 
|  | void | 
|  | xfs_wait_buftarg( | 
|  | struct xfs_buftarg	*btp) | 
|  | { | 
|  | LIST_HEAD(dispose); | 
|  | int loop = 0; | 
|  |  | 
|  | /* | 
|  | * First wait on the buftarg I/O count for all in-flight buffers to be | 
|  | * released. This is critical as new buffers do not make the LRU until | 
|  | * they are released. | 
|  | * | 
|  | * Next, flush the buffer workqueue to ensure all completion processing | 
|  | * has finished. Just waiting on buffer locks is not sufficient for | 
|  | * async IO as the reference count held over IO is not released until | 
|  | * after the buffer lock is dropped. Hence we need to ensure here that | 
|  | * all reference counts have been dropped before we start walking the | 
|  | * LRU list. | 
|  | */ | 
|  | while (percpu_counter_sum(&btp->bt_io_count)) | 
|  | delay(100); | 
|  | flush_workqueue(btp->bt_mount->m_buf_workqueue); | 
|  |  | 
|  | /* loop until there is nothing left on the lru list. */ | 
|  | while (list_lru_count(&btp->bt_lru)) { | 
|  | list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele, | 
|  | &dispose, LONG_MAX); | 
|  |  | 
|  | while (!list_empty(&dispose)) { | 
|  | struct xfs_buf *bp; | 
|  | bp = list_first_entry(&dispose, struct xfs_buf, b_lru); | 
|  | list_del_init(&bp->b_lru); | 
|  | if (bp->b_flags & XBF_WRITE_FAIL) { | 
|  | xfs_alert(btp->bt_mount, | 
|  | "Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!", | 
|  | (long long)bp->b_bn); | 
|  | xfs_alert(btp->bt_mount, | 
|  | "Please run xfs_repair to determine the extent of the problem."); | 
|  | } | 
|  | xfs_buf_rele(bp); | 
|  | } | 
|  | if (loop++ != 0) | 
|  | delay(100); | 
|  | } | 
|  | } | 
|  |  | 
|  | static enum lru_status | 
|  | xfs_buftarg_isolate( | 
|  | struct list_head	*item, | 
|  | struct list_lru_one	*lru, | 
|  | spinlock_t		*lru_lock, | 
|  | void			*arg) | 
|  | { | 
|  | struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru); | 
|  | struct list_head	*dispose = arg; | 
|  |  | 
|  | /* | 
|  | * we are inverting the lru lock/bp->b_lock here, so use a trylock. | 
|  | * If we fail to get the lock, just skip it. | 
|  | */ | 
|  | if (!spin_trylock(&bp->b_lock)) | 
|  | return LRU_SKIP; | 
|  | /* | 
|  | * Decrement the b_lru_ref count unless the value is already | 
|  | * zero. If the value is already zero, we need to reclaim the | 
|  | * buffer, otherwise it gets another trip through the LRU. | 
|  | */ | 
|  | if (atomic_add_unless(&bp->b_lru_ref, -1, 0)) { | 
|  | spin_unlock(&bp->b_lock); | 
|  | return LRU_ROTATE; | 
|  | } | 
|  |  | 
|  | bp->b_state |= XFS_BSTATE_DISPOSE; | 
|  | list_lru_isolate_move(lru, item, dispose); | 
|  | spin_unlock(&bp->b_lock); | 
|  | return LRU_REMOVED; | 
|  | } | 
|  |  | 
|  | static unsigned long | 
|  | xfs_buftarg_shrink_scan( | 
|  | struct shrinker		*shrink, | 
|  | struct shrink_control	*sc) | 
|  | { | 
|  | struct xfs_buftarg	*btp = container_of(shrink, | 
|  | struct xfs_buftarg, bt_shrinker); | 
|  | LIST_HEAD(dispose); | 
|  | unsigned long		freed; | 
|  |  | 
|  | freed = list_lru_shrink_walk(&btp->bt_lru, sc, | 
|  | xfs_buftarg_isolate, &dispose); | 
|  |  | 
|  | while (!list_empty(&dispose)) { | 
|  | struct xfs_buf *bp; | 
|  | bp = list_first_entry(&dispose, struct xfs_buf, b_lru); | 
|  | list_del_init(&bp->b_lru); | 
|  | xfs_buf_rele(bp); | 
|  | } | 
|  |  | 
|  | return freed; | 
|  | } | 
|  |  | 
|  | static unsigned long | 
|  | xfs_buftarg_shrink_count( | 
|  | struct shrinker		*shrink, | 
|  | struct shrink_control	*sc) | 
|  | { | 
|  | struct xfs_buftarg	*btp = container_of(shrink, | 
|  | struct xfs_buftarg, bt_shrinker); | 
|  | return list_lru_shrink_count(&btp->bt_lru, sc); | 
|  | } | 
|  |  | 
|  | void | 
|  | xfs_free_buftarg( | 
|  | struct xfs_buftarg	*btp) | 
|  | { | 
|  | unregister_shrinker(&btp->bt_shrinker); | 
|  | ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0); | 
|  | percpu_counter_destroy(&btp->bt_io_count); | 
|  | list_lru_destroy(&btp->bt_lru); | 
|  |  | 
|  | xfs_blkdev_issue_flush(btp); | 
|  |  | 
|  | kmem_free(btp); | 
|  | } | 
|  |  | 
|  | int | 
|  | xfs_setsize_buftarg( | 
|  | xfs_buftarg_t		*btp, | 
|  | unsigned int		sectorsize) | 
|  | { | 
|  | /* Set up metadata sector size info */ | 
|  | btp->bt_meta_sectorsize = sectorsize; | 
|  | btp->bt_meta_sectormask = sectorsize - 1; | 
|  |  | 
|  | if (set_blocksize(btp->bt_bdev, sectorsize)) { | 
|  | xfs_warn(btp->bt_mount, | 
|  | "Cannot set_blocksize to %u on device %pg", | 
|  | sectorsize, btp->bt_bdev); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Set up device logical sector size mask */ | 
|  | btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev); | 
|  | btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When allocating the initial buffer target we have not yet | 
|  | * read in the superblock, so don't know what sized sectors | 
|  | * are being used at this early stage.  Play safe. | 
|  | */ | 
|  | STATIC int | 
|  | xfs_setsize_buftarg_early( | 
|  | xfs_buftarg_t		*btp, | 
|  | struct block_device	*bdev) | 
|  | { | 
|  | return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev)); | 
|  | } | 
|  |  | 
|  | xfs_buftarg_t * | 
|  | xfs_alloc_buftarg( | 
|  | struct xfs_mount	*mp, | 
|  | struct block_device	*bdev, | 
|  | struct dax_device	*dax_dev) | 
|  | { | 
|  | xfs_buftarg_t		*btp; | 
|  |  | 
|  | btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS); | 
|  |  | 
|  | btp->bt_mount = mp; | 
|  | btp->bt_dev =  bdev->bd_dev; | 
|  | btp->bt_bdev = bdev; | 
|  | btp->bt_daxdev = dax_dev; | 
|  |  | 
|  | if (xfs_setsize_buftarg_early(btp, bdev)) | 
|  | goto error_free; | 
|  |  | 
|  | if (list_lru_init(&btp->bt_lru)) | 
|  | goto error_free; | 
|  |  | 
|  | if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL)) | 
|  | goto error_lru; | 
|  |  | 
|  | btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count; | 
|  | btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan; | 
|  | btp->bt_shrinker.seeks = DEFAULT_SEEKS; | 
|  | btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE; | 
|  | if (register_shrinker(&btp->bt_shrinker)) | 
|  | goto error_pcpu; | 
|  | return btp; | 
|  |  | 
|  | error_pcpu: | 
|  | percpu_counter_destroy(&btp->bt_io_count); | 
|  | error_lru: | 
|  | list_lru_destroy(&btp->bt_lru); | 
|  | error_free: | 
|  | kmem_free(btp); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Cancel a delayed write list. | 
|  | * | 
|  | * Remove each buffer from the list, clear the delwri queue flag and drop the | 
|  | * associated buffer reference. | 
|  | */ | 
|  | void | 
|  | xfs_buf_delwri_cancel( | 
|  | struct list_head	*list) | 
|  | { | 
|  | struct xfs_buf		*bp; | 
|  |  | 
|  | while (!list_empty(list)) { | 
|  | bp = list_first_entry(list, struct xfs_buf, b_list); | 
|  |  | 
|  | xfs_buf_lock(bp); | 
|  | bp->b_flags &= ~_XBF_DELWRI_Q; | 
|  | list_del_init(&bp->b_list); | 
|  | xfs_buf_relse(bp); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Add a buffer to the delayed write list. | 
|  | * | 
|  | * This queues a buffer for writeout if it hasn't already been.  Note that | 
|  | * neither this routine nor the buffer list submission functions perform | 
|  | * any internal synchronization.  It is expected that the lists are thread-local | 
|  | * to the callers. | 
|  | * | 
|  | * Returns true if we queued up the buffer, or false if it already had | 
|  | * been on the buffer list. | 
|  | */ | 
|  | bool | 
|  | xfs_buf_delwri_queue( | 
|  | struct xfs_buf		*bp, | 
|  | struct list_head	*list) | 
|  | { | 
|  | ASSERT(xfs_buf_islocked(bp)); | 
|  | ASSERT(!(bp->b_flags & XBF_READ)); | 
|  |  | 
|  | /* | 
|  | * If the buffer is already marked delwri it already is queued up | 
|  | * by someone else for imediate writeout.  Just ignore it in that | 
|  | * case. | 
|  | */ | 
|  | if (bp->b_flags & _XBF_DELWRI_Q) { | 
|  | trace_xfs_buf_delwri_queued(bp, _RET_IP_); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | trace_xfs_buf_delwri_queue(bp, _RET_IP_); | 
|  |  | 
|  | /* | 
|  | * If a buffer gets written out synchronously or marked stale while it | 
|  | * is on a delwri list we lazily remove it. To do this, the other party | 
|  | * clears the  _XBF_DELWRI_Q flag but otherwise leaves the buffer alone. | 
|  | * It remains referenced and on the list.  In a rare corner case it | 
|  | * might get readded to a delwri list after the synchronous writeout, in | 
|  | * which case we need just need to re-add the flag here. | 
|  | */ | 
|  | bp->b_flags |= _XBF_DELWRI_Q; | 
|  | if (list_empty(&bp->b_list)) { | 
|  | atomic_inc(&bp->b_hold); | 
|  | list_add_tail(&bp->b_list, list); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Compare function is more complex than it needs to be because | 
|  | * the return value is only 32 bits and we are doing comparisons | 
|  | * on 64 bit values | 
|  | */ | 
|  | static int | 
|  | xfs_buf_cmp( | 
|  | void		*priv, | 
|  | struct list_head *a, | 
|  | struct list_head *b) | 
|  | { | 
|  | struct xfs_buf	*ap = container_of(a, struct xfs_buf, b_list); | 
|  | struct xfs_buf	*bp = container_of(b, struct xfs_buf, b_list); | 
|  | xfs_daddr_t		diff; | 
|  |  | 
|  | diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn; | 
|  | if (diff < 0) | 
|  | return -1; | 
|  | if (diff > 0) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Submit buffers for write. If wait_list is specified, the buffers are | 
|  | * submitted using sync I/O and placed on the wait list such that the caller can | 
|  | * iowait each buffer. Otherwise async I/O is used and the buffers are released | 
|  | * at I/O completion time. In either case, buffers remain locked until I/O | 
|  | * completes and the buffer is released from the queue. | 
|  | */ | 
|  | static int | 
|  | xfs_buf_delwri_submit_buffers( | 
|  | struct list_head	*buffer_list, | 
|  | struct list_head	*wait_list) | 
|  | { | 
|  | struct xfs_buf		*bp, *n; | 
|  | int			pinned = 0; | 
|  | struct blk_plug		plug; | 
|  |  | 
|  | list_sort(NULL, buffer_list, xfs_buf_cmp); | 
|  |  | 
|  | blk_start_plug(&plug); | 
|  | list_for_each_entry_safe(bp, n, buffer_list, b_list) { | 
|  | if (!wait_list) { | 
|  | if (xfs_buf_ispinned(bp)) { | 
|  | pinned++; | 
|  | continue; | 
|  | } | 
|  | if (!xfs_buf_trylock(bp)) | 
|  | continue; | 
|  | } else { | 
|  | xfs_buf_lock(bp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Someone else might have written the buffer synchronously or | 
|  | * marked it stale in the meantime.  In that case only the | 
|  | * _XBF_DELWRI_Q flag got cleared, and we have to drop the | 
|  | * reference and remove it from the list here. | 
|  | */ | 
|  | if (!(bp->b_flags & _XBF_DELWRI_Q)) { | 
|  | list_del_init(&bp->b_list); | 
|  | xfs_buf_relse(bp); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | trace_xfs_buf_delwri_split(bp, _RET_IP_); | 
|  |  | 
|  | /* | 
|  | * If we have a wait list, each buffer (and associated delwri | 
|  | * queue reference) transfers to it and is submitted | 
|  | * synchronously. Otherwise, drop the buffer from the delwri | 
|  | * queue and submit async. | 
|  | */ | 
|  | bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_WRITE_FAIL); | 
|  | bp->b_flags |= XBF_WRITE; | 
|  | if (wait_list) { | 
|  | bp->b_flags &= ~XBF_ASYNC; | 
|  | list_move_tail(&bp->b_list, wait_list); | 
|  | } else { | 
|  | bp->b_flags |= XBF_ASYNC; | 
|  | list_del_init(&bp->b_list); | 
|  | } | 
|  | __xfs_buf_submit(bp, false); | 
|  | } | 
|  | blk_finish_plug(&plug); | 
|  |  | 
|  | return pinned; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Write out a buffer list asynchronously. | 
|  | * | 
|  | * This will take the @buffer_list, write all non-locked and non-pinned buffers | 
|  | * out and not wait for I/O completion on any of the buffers.  This interface | 
|  | * is only safely useable for callers that can track I/O completion by higher | 
|  | * level means, e.g. AIL pushing as the @buffer_list is consumed in this | 
|  | * function. | 
|  | * | 
|  | * Note: this function will skip buffers it would block on, and in doing so | 
|  | * leaves them on @buffer_list so they can be retried on a later pass. As such, | 
|  | * it is up to the caller to ensure that the buffer list is fully submitted or | 
|  | * cancelled appropriately when they are finished with the list. Failure to | 
|  | * cancel or resubmit the list until it is empty will result in leaked buffers | 
|  | * at unmount time. | 
|  | */ | 
|  | int | 
|  | xfs_buf_delwri_submit_nowait( | 
|  | struct list_head	*buffer_list) | 
|  | { | 
|  | return xfs_buf_delwri_submit_buffers(buffer_list, NULL); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Write out a buffer list synchronously. | 
|  | * | 
|  | * This will take the @buffer_list, write all buffers out and wait for I/O | 
|  | * completion on all of the buffers. @buffer_list is consumed by the function, | 
|  | * so callers must have some other way of tracking buffers if they require such | 
|  | * functionality. | 
|  | */ | 
|  | int | 
|  | xfs_buf_delwri_submit( | 
|  | struct list_head	*buffer_list) | 
|  | { | 
|  | LIST_HEAD		(wait_list); | 
|  | int			error = 0, error2; | 
|  | struct xfs_buf		*bp; | 
|  |  | 
|  | xfs_buf_delwri_submit_buffers(buffer_list, &wait_list); | 
|  |  | 
|  | /* Wait for IO to complete. */ | 
|  | while (!list_empty(&wait_list)) { | 
|  | bp = list_first_entry(&wait_list, struct xfs_buf, b_list); | 
|  |  | 
|  | list_del_init(&bp->b_list); | 
|  |  | 
|  | /* | 
|  | * Wait on the locked buffer, check for errors and unlock and | 
|  | * release the delwri queue reference. | 
|  | */ | 
|  | error2 = xfs_buf_iowait(bp); | 
|  | xfs_buf_relse(bp); | 
|  | if (!error) | 
|  | error = error2; | 
|  | } | 
|  |  | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Push a single buffer on a delwri queue. | 
|  | * | 
|  | * The purpose of this function is to submit a single buffer of a delwri queue | 
|  | * and return with the buffer still on the original queue. The waiting delwri | 
|  | * buffer submission infrastructure guarantees transfer of the delwri queue | 
|  | * buffer reference to a temporary wait list. We reuse this infrastructure to | 
|  | * transfer the buffer back to the original queue. | 
|  | * | 
|  | * Note the buffer transitions from the queued state, to the submitted and wait | 
|  | * listed state and back to the queued state during this call. The buffer | 
|  | * locking and queue management logic between _delwri_pushbuf() and | 
|  | * _delwri_queue() guarantee that the buffer cannot be queued to another list | 
|  | * before returning. | 
|  | */ | 
|  | int | 
|  | xfs_buf_delwri_pushbuf( | 
|  | struct xfs_buf		*bp, | 
|  | struct list_head	*buffer_list) | 
|  | { | 
|  | LIST_HEAD		(submit_list); | 
|  | int			error; | 
|  |  | 
|  | ASSERT(bp->b_flags & _XBF_DELWRI_Q); | 
|  |  | 
|  | trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_); | 
|  |  | 
|  | /* | 
|  | * Isolate the buffer to a new local list so we can submit it for I/O | 
|  | * independently from the rest of the original list. | 
|  | */ | 
|  | xfs_buf_lock(bp); | 
|  | list_move(&bp->b_list, &submit_list); | 
|  | xfs_buf_unlock(bp); | 
|  |  | 
|  | /* | 
|  | * Delwri submission clears the DELWRI_Q buffer flag and returns with | 
|  | * the buffer on the wait list with the original reference. Rather than | 
|  | * bounce the buffer from a local wait list back to the original list | 
|  | * after I/O completion, reuse the original list as the wait list. | 
|  | */ | 
|  | xfs_buf_delwri_submit_buffers(&submit_list, buffer_list); | 
|  |  | 
|  | /* | 
|  | * The buffer is now locked, under I/O and wait listed on the original | 
|  | * delwri queue. Wait for I/O completion, restore the DELWRI_Q flag and | 
|  | * return with the buffer unlocked and on the original queue. | 
|  | */ | 
|  | error = xfs_buf_iowait(bp); | 
|  | bp->b_flags |= _XBF_DELWRI_Q; | 
|  | xfs_buf_unlock(bp); | 
|  |  | 
|  | return error; | 
|  | } | 
|  |  | 
|  | int __init | 
|  | xfs_buf_init(void) | 
|  | { | 
|  | xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf", | 
|  | KM_ZONE_HWALIGN, NULL); | 
|  | if (!xfs_buf_zone) | 
|  | goto out; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out: | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | void | 
|  | xfs_buf_terminate(void) | 
|  | { | 
|  | kmem_zone_destroy(xfs_buf_zone); | 
|  | } | 
|  |  | 
|  | void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref) | 
|  | { | 
|  | /* | 
|  | * Set the lru reference count to 0 based on the error injection tag. | 
|  | * This allows userspace to disrupt buffer caching for debug/testing | 
|  | * purposes. | 
|  | */ | 
|  | if (XFS_TEST_ERROR(false, bp->b_target->bt_mount, | 
|  | XFS_ERRTAG_BUF_LRU_REF)) | 
|  | lru_ref = 0; | 
|  |  | 
|  | atomic_set(&bp->b_lru_ref, lru_ref); | 
|  | } |