blob: 5d3f7b02ce08e645f9a248f87e830dcefd9ce2ea [file] [log] [blame]
#ifndef _LINUX_SCHED_H
#define _LINUX_SCHED_H
#include <asm/param.h> /* for HZ */
extern unsigned long event;
#include <linux/config.h>
#include <linux/binfmts.h>
#include <linux/threads.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/times.h>
#include <linux/timex.h>
#include <linux/rbtree.h>
#include <asm/system.h>
#include <asm/semaphore.h>
#include <asm/page.h>
#include <asm/ptrace.h>
#include <asm/mmu.h>
#include <linux/smp.h>
#include <linux/sem.h>
#include <linux/signal.h>
#include <linux/securebits.h>
#include <linux/fs_struct.h>
#include <linux/compiler.h>
struct exec_domain;
/*
* cloning flags:
*/
#define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
#define CLONE_VM 0x00000100 /* set if VM shared between processes */
#define CLONE_FS 0x00000200 /* set if fs info shared between processes */
#define CLONE_FILES 0x00000400 /* set if open files shared between processes */
#define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
#define CLONE_PID 0x00001000 /* set if pid shared */
#define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
#define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
#define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
#define CLONE_THREAD 0x00010000 /* Same thread group? */
#define CLONE_NEWNS 0x00020000 /* New namespace group? */
#define CLONE_SIGNAL (CLONE_SIGHAND | CLONE_THREAD)
/*
* These are the constant used to fake the fixed-point load-average
* counting. Some notes:
* - 11 bit fractions expand to 22 bits by the multiplies: this gives
* a load-average precision of 10 bits integer + 11 bits fractional
* - if you want to count load-averages more often, you need more
* precision, or rounding will get you. With 2-second counting freq,
* the EXP_n values would be 1981, 2034 and 2043 if still using only
* 11 bit fractions.
*/
extern unsigned long avenrun[]; /* Load averages */
#define FSHIFT 11 /* nr of bits of precision */
#define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
#define LOAD_FREQ (5*HZ) /* 5 sec intervals */
#define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
#define EXP_5 2014 /* 1/exp(5sec/5min) */
#define EXP_15 2037 /* 1/exp(5sec/15min) */
#define CALC_LOAD(load,exp,n) \
load *= exp; \
load += n*(FIXED_1-exp); \
load >>= FSHIFT;
#define CT_TO_SECS(x) ((x) / HZ)
#define CT_TO_USECS(x) (((x) % HZ) * 1000000/HZ)
extern int nr_threads;
extern int last_pid;
extern unsigned long nr_running(void);
#include <linux/fs.h>
#include <linux/time.h>
#include <linux/param.h>
#include <linux/resource.h>
#include <linux/timer.h>
#include <asm/processor.h>
#define TASK_RUNNING 0
#define TASK_INTERRUPTIBLE 1
#define TASK_UNINTERRUPTIBLE 2
#define TASK_ZOMBIE 4
#define TASK_STOPPED 8
#define __set_task_state(tsk, state_value) \
do { (tsk)->state = (state_value); } while (0)
#ifdef CONFIG_SMP
#define set_task_state(tsk, state_value) \
set_mb((tsk)->state, (state_value))
#else
#define set_task_state(tsk, state_value) \
__set_task_state((tsk), (state_value))
#endif
#define __set_current_state(state_value) \
do { current->state = (state_value); } while (0)
#ifdef CONFIG_SMP
#define set_current_state(state_value) \
set_mb(current->state, (state_value))
#else
#define set_current_state(state_value) \
__set_current_state(state_value)
#endif
/*
* Scheduling policies
*/
#define SCHED_OTHER 0
#define SCHED_FIFO 1
#define SCHED_RR 2
struct sched_param {
int sched_priority;
};
struct completion;
#ifdef __KERNEL__
#include <linux/spinlock.h>
/*
* This serializes "schedule()" and also protects
* the run-queue from deletions/modifications (but
* _adding_ to the beginning of the run-queue has
* a separate lock).
*/
extern rwlock_t tasklist_lock;
extern spinlock_t mmlist_lock;
typedef struct task_struct task_t;
extern void sched_init(void);
extern void init_idle(task_t *idle, int cpu);
extern void show_state(void);
extern void cpu_init (void);
extern void trap_init(void);
extern void update_process_times(int user);
extern void update_one_process(struct task_struct *p, unsigned long user,
unsigned long system, int cpu);
extern void scheduler_tick(struct task_struct *p);
extern void sched_task_migrated(struct task_struct *p);
extern void smp_migrate_task(int cpu, task_t *task);
extern unsigned long cache_decay_ticks;
#define MAX_SCHEDULE_TIMEOUT LONG_MAX
extern signed long FASTCALL(schedule_timeout(signed long timeout));
asmlinkage void schedule(void);
extern int schedule_task(struct tq_struct *task);
extern void flush_scheduled_tasks(void);
extern int start_context_thread(void);
extern int current_is_keventd(void);
struct namespace;
/* Maximum number of active map areas.. This is a random (large) number */
#define MAX_MAP_COUNT (65536)
struct mm_struct {
struct vm_area_struct * mmap; /* list of VMAs */
rb_root_t mm_rb;
struct vm_area_struct * mmap_cache; /* last find_vma result */
pgd_t * pgd;
atomic_t mm_users; /* How many users with user space? */
atomic_t mm_count; /* How many references to "struct mm_struct" (users count as 1) */
int map_count; /* number of VMAs */
struct rw_semaphore mmap_sem;
spinlock_t page_table_lock; /* Protects task page tables and mm->rss */
struct list_head mmlist; /* List of all active mm's. These are globally strung
* together off init_mm.mmlist, and are protected
* by mmlist_lock
*/
unsigned long start_code, end_code, start_data, end_data;
unsigned long start_brk, brk, start_stack;
unsigned long arg_start, arg_end, env_start, env_end;
unsigned long rss, total_vm, locked_vm;
unsigned long def_flags;
unsigned long cpu_vm_mask;
unsigned long swap_address;
unsigned dumpable:1;
/* Architecture-specific MM context */
mm_context_t context;
};
extern int mmlist_nr;
struct signal_struct {
atomic_t count;
struct k_sigaction action[_NSIG];
spinlock_t siglock;
};
/*
* Some day this will be a full-fledged user tracking system..
*/
struct user_struct {
atomic_t __count; /* reference count */
atomic_t processes; /* How many processes does this user have? */
atomic_t files; /* How many open files does this user have? */
/* Hash table maintenance information */
struct user_struct *next, **pprev;
uid_t uid;
};
#define get_current_user() ({ \
struct user_struct *__user = current->user; \
atomic_inc(&__user->__count); \
__user; })
extern struct user_struct root_user;
#define INIT_USER (&root_user)
typedef struct prio_array prio_array_t;
/* this struct must occupy one 32-bit chunk so that is can be read in one go */
struct task_work {
__s8 need_resched;
__u8 syscall_trace; /* count of syscall interceptors */
__u8 sigpending;
__u8 notify_resume; /* request for notification on
userspace execution resumption */
} __attribute__((packed));
struct task_struct {
/*
* offsets of these are hardcoded elsewhere - touch with care
*/
volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
unsigned long flags; /* per process flags, defined below */
volatile struct task_work work;
mm_segment_t addr_limit; /* thread address space:
0-0xBFFFFFFF for user-thead
0-0xFFFFFFFF for kernel-thread
*/
struct exec_domain *exec_domain;
long __pad;
unsigned long ptrace;
int lock_depth; /* Lock depth */
/*
* offset 32 begins here on 32-bit platforms.
*/
unsigned int cpu;
int prio;
long __nice;
list_t run_list;
prio_array_t *array;
unsigned int time_slice;
unsigned long sleep_avg;
unsigned long sleep_timestamp;
unsigned long policy;
unsigned long cpus_allowed;
struct task_struct *next_task, *prev_task;
struct mm_struct *mm, *active_mm;
struct list_head local_pages;
unsigned int allocation_order, nr_local_pages;
/* task state */
struct linux_binfmt *binfmt;
int exit_code, exit_signal;
int pdeath_signal; /* The signal sent when the parent dies */
/* ??? */
unsigned long personality;
int did_exec:1;
pid_t pid;
pid_t pgrp;
pid_t tty_old_pgrp;
pid_t session;
pid_t tgid;
/* boolean value for session group leader */
int leader;
/*
* pointers to (original) parent process, youngest child, younger sibling,
* older sibling, respectively. (p->father can be replaced with
* p->p_pptr->pid)
*/
struct task_struct *p_opptr, *p_pptr, *p_cptr, *p_ysptr, *p_osptr;
struct list_head thread_group;
/* PID hash table linkage. */
struct task_struct *pidhash_next;
struct task_struct **pidhash_pprev;
wait_queue_head_t wait_chldexit; /* for wait4() */
struct completion *vfork_done; /* for vfork() */
unsigned long rt_priority;
unsigned long it_real_value, it_prof_value, it_virt_value;
unsigned long it_real_incr, it_prof_incr, it_virt_incr;
struct timer_list real_timer;
struct tms times;
unsigned long start_time;
long per_cpu_utime[NR_CPUS], per_cpu_stime[NR_CPUS];
/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
unsigned long min_flt, maj_flt, nswap, cmin_flt, cmaj_flt, cnswap;
int swappable:1;
/* process credentials */
uid_t uid,euid,suid,fsuid;
gid_t gid,egid,sgid,fsgid;
int ngroups;
gid_t groups[NGROUPS];
kernel_cap_t cap_effective, cap_inheritable, cap_permitted;
int keep_capabilities:1;
struct user_struct *user;
/* limits */
struct rlimit rlim[RLIM_NLIMITS];
unsigned short used_math;
char comm[16];
/* file system info */
int link_count, total_link_count;
struct tty_struct *tty; /* NULL if no tty */
unsigned int locks; /* How many file locks are being held */
/* ipc stuff */
struct sem_undo *semundo;
struct sem_queue *semsleeping;
/* CPU-specific state of this task */
struct thread_struct thread;
/* filesystem information */
struct fs_struct *fs;
/* open file information */
struct files_struct *files;
/* namespace */
struct namespace *namespace;
/* signal handlers */
spinlock_t sigmask_lock; /* Protects signal and blocked */
struct signal_struct *sig;
sigset_t blocked;
struct sigpending pending;
unsigned long sas_ss_sp;
size_t sas_ss_size;
int (*notifier)(void *priv);
void *notifier_data;
sigset_t *notifier_mask;
/* Thread group tracking */
u32 parent_exec_id;
u32 self_exec_id;
/* Protection of (de-)allocation: mm, files, fs, tty */
spinlock_t alloc_lock;
/* journalling filesystem info */
void *journal_info;
};
/*
* Per process flags
*/
#define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */
/* Not implemented yet, only for 486*/
#define PF_STARTING 0x00000002 /* being created */
#define PF_EXITING 0x00000004 /* getting shut down */
#define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
#define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
#define PF_DUMPCORE 0x00000200 /* dumped core */
#define PF_SIGNALED 0x00000400 /* killed by a signal */
#define PF_MEMALLOC 0x00000800 /* Allocating memory */
#define PF_MEMDIE 0x00001000 /* Killed for out-of-memory */
#define PF_FREE_PAGES 0x00002000 /* per process page freeing */
#define PF_NOIO 0x00004000 /* avoid generating further I/O */
#define PF_USEDFPU 0x00100000 /* task used FPU this quantum (SMP) */
/*
* Ptrace flags
*/
#define PT_PTRACED 0x00000001
#define PT_SYSCALLTRACE 0x00000002 /* T if syscall_trace is +1 for ptrace() */
#define PT_DTRACE 0x00000004 /* delayed trace (used on m68k, i386) */
#define PT_TRACESYSGOOD 0x00000008
#define PT_PTRACE_CAP 0x00000010 /* ptracer can follow suid-exec */
/*
* Limit the stack by to some sane default: root can always
* increase this limit if needed.. 8MB seems reasonable.
*/
#define _STK_LIM (8*1024*1024)
/*
* RT priorites go from 0 to 99, but internally we max
* them out at 128 to make it easier to search the
* scheduler bitmap.
*/
#define MAX_RT_PRIO 128
/*
* The lower the priority of a process, the more likely it is
* to run. Priority of a process goes from 0 to 167. The 0-99
* priority range is allocated to RT tasks, the 128-167 range
* is for SCHED_OTHER tasks.
*/
#define MAX_PRIO (MAX_RT_PRIO + 40)
/*
* Scales user-nice values [ -20 ... 0 ... 19 ]
* to static priority [ 128 ... 167 (MAX_PRIO-1) ]
*
* User-nice value of -20 == static priority 128, and
* user-nice value 19 == static priority 167. The lower
* the priority value, the higher the task's priority.
*/
#define NICE_TO_PRIO(n) (MAX_RT_PRIO + (n) + 20)
#define DEF_USER_NICE 0
/*
* Default timeslice is 150 msecs, maximum is 300 msecs.
* Minimum timeslice is 10 msecs.
*
* These are the 'tuning knobs' of the scheduler:
*/
#define MIN_TIMESLICE ( 10 * HZ / 1000)
#define MAX_TIMESLICE (300 * HZ / 1000)
#define CHILD_FORK_PENALTY 95
#define PARENT_FORK_PENALTY 100
#define EXIT_WEIGHT 3
#define PRIO_INTERACTIVE_RATIO 20
#define PRIO_CPU_HOG_RATIO 60
#define PRIO_BONUS_RATIO 70
#define INTERACTIVE_DELTA 3
#define MAX_SLEEP_AVG (2*HZ)
#define STARVATION_LIMIT (2*HZ)
#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
/*
* NICE_TO_TIMESLICE scales nice values [ -20 ... 19 ]
* to time slice values.
*
* The higher a process's priority, the bigger timeslices
* it gets during one round of execution. But even the lowest
* priority process gets MIN_TIMESLICE worth of execution time.
*/
#define NICE_TO_TIMESLICE(n) (MIN_TIMESLICE + \
((MAX_TIMESLICE - MIN_TIMESLICE) * (19-(n))) / 39)
extern void set_cpus_allowed(task_t *p, unsigned long new_mask);
extern void set_user_nice(task_t *p, long nice);
asmlinkage long sys_sched_yield(void);
#define yield() sys_sched_yield()
/*
* The default (Linux) execution domain.
*/
extern struct exec_domain default_exec_domain;
#ifndef INIT_TASK_SIZE
# define INIT_TASK_SIZE 2048*sizeof(long)
#endif
union task_union {
struct task_struct task;
unsigned long stack[INIT_TASK_SIZE/sizeof(long)];
};
extern union task_union init_task_union;
extern struct mm_struct init_mm;
extern struct task_struct *init_tasks[NR_CPUS];
/* PID hashing. (shouldnt this be dynamic?) */
#define PIDHASH_SZ (4096 >> 2)
extern struct task_struct *pidhash[PIDHASH_SZ];
#define pid_hashfn(x) ((((x) >> 8) ^ (x)) & (PIDHASH_SZ - 1))
static inline void hash_pid(struct task_struct *p)
{
struct task_struct **htable = &pidhash[pid_hashfn(p->pid)];
if((p->pidhash_next = *htable) != NULL)
(*htable)->pidhash_pprev = &p->pidhash_next;
*htable = p;
p->pidhash_pprev = htable;
}
static inline void unhash_pid(struct task_struct *p)
{
if(p->pidhash_next)
p->pidhash_next->pidhash_pprev = p->pidhash_pprev;
*p->pidhash_pprev = p->pidhash_next;
}
static inline struct task_struct *find_task_by_pid(int pid)
{
struct task_struct *p, **htable = &pidhash[pid_hashfn(pid)];
for(p = *htable; p && p->pid != pid; p = p->pidhash_next)
;
return p;
}
/* per-UID process charging. */
extern struct user_struct * alloc_uid(uid_t);
extern void free_uid(struct user_struct *);
#include <asm/current.h>
extern unsigned long volatile jiffies;
extern unsigned long itimer_ticks;
extern unsigned long itimer_next;
extern struct timeval xtime;
extern void do_timer(struct pt_regs *);
extern unsigned int * prof_buffer;
extern unsigned long prof_len;
extern unsigned long prof_shift;
#define CURRENT_TIME (xtime.tv_sec)
extern void FASTCALL(__wake_up(wait_queue_head_t *q, unsigned int mode, int nr));
extern void FASTCALL(__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr));
extern void FASTCALL(sleep_on(wait_queue_head_t *q));
extern long FASTCALL(sleep_on_timeout(wait_queue_head_t *q,
signed long timeout));
extern void FASTCALL(interruptible_sleep_on(wait_queue_head_t *q));
extern long FASTCALL(interruptible_sleep_on_timeout(wait_queue_head_t *q,
signed long timeout));
extern int FASTCALL(wake_up_process(struct task_struct * tsk));
extern void FASTCALL(wake_up_forked_process(struct task_struct * tsk));
#define wake_up(x) __wake_up((x),TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE, 1)
#define wake_up_nr(x, nr) __wake_up((x),TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE, nr)
#define wake_up_all(x) __wake_up((x),TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE, 0)
#define wake_up_sync(x) __wake_up_sync((x),TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE, 1)
#define wake_up_sync_nr(x, nr) __wake_up_sync((x),TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE, nr)
#define wake_up_interruptible(x) __wake_up((x),TASK_INTERRUPTIBLE, 1)
#define wake_up_interruptible_nr(x, nr) __wake_up((x),TASK_INTERRUPTIBLE, nr)
#define wake_up_interruptible_all(x) __wake_up((x),TASK_INTERRUPTIBLE, 0)
#define wake_up_interruptible_sync(x) __wake_up_sync((x),TASK_INTERRUPTIBLE, 1)
#define wake_up_interruptible_sync_nr(x) __wake_up_sync((x),TASK_INTERRUPTIBLE, nr)
asmlinkage long sys_wait4(pid_t pid,unsigned int * stat_addr, int options, struct rusage * ru);
extern int in_group_p(gid_t);
extern int in_egroup_p(gid_t);
extern void proc_caches_init(void);
extern void flush_signals(struct task_struct *);
extern void flush_signal_handlers(struct task_struct *);
extern void sig_exit(int, int, struct siginfo *);
extern int dequeue_signal(sigset_t *, siginfo_t *);
extern void block_all_signals(int (*notifier)(void *priv), void *priv,
sigset_t *mask);
extern void unblock_all_signals(void);
extern int send_sig_info(int, struct siginfo *, struct task_struct *);
extern int force_sig_info(int, struct siginfo *, struct task_struct *);
extern int kill_pg_info(int, struct siginfo *, pid_t);
extern int kill_sl_info(int, struct siginfo *, pid_t);
extern int kill_proc_info(int, struct siginfo *, pid_t);
extern void notify_parent(struct task_struct *, int);
extern void do_notify_parent(struct task_struct *, int);
extern void force_sig(int, struct task_struct *);
extern int send_sig(int, struct task_struct *, int);
extern int kill_pg(pid_t, int, int);
extern int kill_sl(pid_t, int, int);
extern int kill_proc(pid_t, int, int);
extern int do_sigaction(int, const struct k_sigaction *, struct k_sigaction *);
extern int do_sigaltstack(const stack_t *, stack_t *, unsigned long);
static inline int signal_pending(struct task_struct *p)
{
return (p->work.sigpending != 0);
}
static inline int need_resched(void)
{
return unlikely(current->work.need_resched != 0);
}
static inline void cond_resched(void)
{
if (need_resched())
schedule();
}
/*
* Re-calculate pending state from the set of locally pending
* signals, globally pending signals, and blocked signals.
*/
static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
{
unsigned long ready;
long i;
switch (_NSIG_WORDS) {
default:
for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
ready |= signal->sig[i] &~ blocked->sig[i];
break;
case 4: ready = signal->sig[3] &~ blocked->sig[3];
ready |= signal->sig[2] &~ blocked->sig[2];
ready |= signal->sig[1] &~ blocked->sig[1];
ready |= signal->sig[0] &~ blocked->sig[0];
break;
case 2: ready = signal->sig[1] &~ blocked->sig[1];
ready |= signal->sig[0] &~ blocked->sig[0];
break;
case 1: ready = signal->sig[0] &~ blocked->sig[0];
}
return ready != 0;
}
/* Reevaluate whether the task has signals pending delivery.
This is required every time the blocked sigset_t changes.
All callers should have t->sigmask_lock. */
static inline void recalc_sigpending(struct task_struct *t)
{
t->work.sigpending = has_pending_signals(&t->pending.signal, &t->blocked);
}
/* True if we are on the alternate signal stack. */
static inline int on_sig_stack(unsigned long sp)
{
return (sp - current->sas_ss_sp < current->sas_ss_size);
}
static inline int sas_ss_flags(unsigned long sp)
{
return (current->sas_ss_size == 0 ? SS_DISABLE
: on_sig_stack(sp) ? SS_ONSTACK : 0);
}
extern int request_irq(unsigned int,
void (*handler)(int, void *, struct pt_regs *),
unsigned long, const char *, void *);
extern void free_irq(unsigned int, void *);
/*
* This has now become a routine instead of a macro, it sets a flag if
* it returns true (to do BSD-style accounting where the process is flagged
* if it uses root privs). The implication of this is that you should do
* normal permissions checks first, and check suser() last.
*
* [Dec 1997 -- Chris Evans]
* For correctness, the above considerations need to be extended to
* fsuser(). This is done, along with moving fsuser() checks to be
* last.
*
* These will be removed, but in the mean time, when the SECURE_NOROOT
* flag is set, uids don't grant privilege.
*/
static inline int suser(void)
{
if (!issecure(SECURE_NOROOT) && current->euid == 0) {
current->flags |= PF_SUPERPRIV;
return 1;
}
return 0;
}
static inline int fsuser(void)
{
if (!issecure(SECURE_NOROOT) && current->fsuid == 0) {
current->flags |= PF_SUPERPRIV;
return 1;
}
return 0;
}
/*
* capable() checks for a particular capability.
* New privilege checks should use this interface, rather than suser() or
* fsuser(). See include/linux/capability.h for defined capabilities.
*/
static inline int capable(int cap)
{
#if 1 /* ok now */
if (cap_raised(current->cap_effective, cap))
#else
if (cap_is_fs_cap(cap) ? current->fsuid == 0 : current->euid == 0)
#endif
{
current->flags |= PF_SUPERPRIV;
return 1;
}
return 0;
}
/*
* Routines for handling mm_structs
*/
extern struct mm_struct * mm_alloc(void);
extern struct mm_struct * start_lazy_tlb(void);
extern void end_lazy_tlb(struct mm_struct *mm);
/* mmdrop drops the mm and the page tables */
extern inline void FASTCALL(__mmdrop(struct mm_struct *));
static inline void mmdrop(struct mm_struct * mm)
{
if (atomic_dec_and_test(&mm->mm_count))
__mmdrop(mm);
}
/* mmput gets rid of the mappings and all user-space */
extern void mmput(struct mm_struct *);
/* Remove the current tasks stale references to the old mm_struct */
extern void mm_release(void);
/*
* Routines for handling the fd arrays
*/
extern struct file ** alloc_fd_array(int);
extern int expand_fd_array(struct files_struct *, int nr);
extern void free_fd_array(struct file **, int);
extern fd_set *alloc_fdset(int);
extern int expand_fdset(struct files_struct *, int nr);
extern void free_fdset(fd_set *, int);
extern int copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *);
extern void flush_thread(void);
extern void exit_thread(void);
extern void exit_mm(struct task_struct *);
extern void exit_files(struct task_struct *);
extern void exit_sighand(struct task_struct *);
extern void reparent_to_init(void);
extern void daemonize(void);
extern task_t *child_reaper;
extern int do_execve(char *, char **, char **, struct pt_regs *);
extern int do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long);
extern void FASTCALL(add_wait_queue(wait_queue_head_t *q, wait_queue_t * wait));
extern void FASTCALL(add_wait_queue_exclusive(wait_queue_head_t *q, wait_queue_t * wait));
extern void FASTCALL(remove_wait_queue(wait_queue_head_t *q, wait_queue_t * wait));
extern void wait_task_inactive(task_t * p);
extern void kick_if_running(task_t * p);
#define __wait_event(wq, condition) \
do { \
wait_queue_t __wait; \
init_waitqueue_entry(&__wait, current); \
\
add_wait_queue(&wq, &__wait); \
for (;;) { \
set_current_state(TASK_UNINTERRUPTIBLE); \
if (condition) \
break; \
schedule(); \
} \
current->state = TASK_RUNNING; \
remove_wait_queue(&wq, &__wait); \
} while (0)
#define wait_event(wq, condition) \
do { \
if (condition) \
break; \
__wait_event(wq, condition); \
} while (0)
#define __wait_event_interruptible(wq, condition, ret) \
do { \
wait_queue_t __wait; \
init_waitqueue_entry(&__wait, current); \
\
add_wait_queue(&wq, &__wait); \
for (;;) { \
set_current_state(TASK_INTERRUPTIBLE); \
if (condition) \
break; \
if (!signal_pending(current)) { \
schedule(); \
continue; \
} \
ret = -ERESTARTSYS; \
break; \
} \
current->state = TASK_RUNNING; \
remove_wait_queue(&wq, &__wait); \
} while (0)
#define wait_event_interruptible(wq, condition) \
({ \
int __ret = 0; \
if (!(condition)) \
__wait_event_interruptible(wq, condition, __ret); \
__ret; \
})
#define REMOVE_LINKS(p) do { \
(p)->next_task->prev_task = (p)->prev_task; \
(p)->prev_task->next_task = (p)->next_task; \
if ((p)->p_osptr) \
(p)->p_osptr->p_ysptr = (p)->p_ysptr; \
if ((p)->p_ysptr) \
(p)->p_ysptr->p_osptr = (p)->p_osptr; \
else \
(p)->p_pptr->p_cptr = (p)->p_osptr; \
} while (0)
#define SET_LINKS(p) do { \
(p)->next_task = &init_task; \
(p)->prev_task = init_task.prev_task; \
init_task.prev_task->next_task = (p); \
init_task.prev_task = (p); \
(p)->p_ysptr = NULL; \
if (((p)->p_osptr = (p)->p_pptr->p_cptr) != NULL) \
(p)->p_osptr->p_ysptr = p; \
(p)->p_pptr->p_cptr = p; \
} while (0)
#define for_each_task(p) \
for (p = &init_task ; (p = p->next_task) != &init_task ; )
#define for_each_thread(task) \
for (task = next_thread(current) ; task != current ; task = next_thread(task))
#define next_thread(p) \
list_entry((p)->thread_group.next, struct task_struct, thread_group)
#define thread_group_leader(p) (p->pid == p->tgid)
static inline void unhash_process(struct task_struct *p)
{
write_lock_irq(&tasklist_lock);
nr_threads--;
unhash_pid(p);
REMOVE_LINKS(p);
list_del(&p->thread_group);
write_unlock_irq(&tasklist_lock);
}
/* Protects ->fs, ->files, ->mm, and synchronises with wait4(). Nests inside tasklist_lock */
static inline void task_lock(struct task_struct *p)
{
spin_lock(&p->alloc_lock);
}
static inline void task_unlock(struct task_struct *p)
{
spin_unlock(&p->alloc_lock);
}
/* write full pathname into buffer and return start of pathname */
static inline char * d_path(struct dentry *dentry, struct vfsmount *vfsmnt,
char *buf, int buflen)
{
char *res;
struct vfsmount *rootmnt;
struct dentry *root;
read_lock(&current->fs->lock);
rootmnt = mntget(current->fs->rootmnt);
root = dget(current->fs->root);
read_unlock(&current->fs->lock);
spin_lock(&dcache_lock);
res = __d_path(dentry, vfsmnt, root, rootmnt, buf, buflen);
spin_unlock(&dcache_lock);
dput(root);
mntput(rootmnt);
return res;
}
#endif /* __KERNEL__ */
#endif