blob: 7fb2401c7727dff8a2ce8761eebcc2cd8eb2b44f [file] [log] [blame]
/*
* Compaq Hot Plug Controller Driver
*
* Copyright (c) 1995,2001 Compaq Computer Corporation
* Copyright (c) 2001 Greg Kroah-Hartman (greg@kroah.com)
* Copyright (c) 2001 IBM Corp.
*
* All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
* Send feedback to <greg@kroah.com>
*
*/
#include <linux/config.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/proc_fs.h>
#include <linux/pci.h>
#include "cpqphp.h"
#include "cpqphp_nvram.h"
#include "../../arch/i386/kernel/pci-i386.h" /* horrible hack showing how processor dependant we are... */
u8 cpqhp_nic_irq;
u8 cpqhp_disk_irq;
static u16 unused_IRQ;
static int is_pci_dev_in_use(struct pci_dev* dev)
{
/*
* dev->driver will be set if the device is in use by a new-style
* driver -- otherwise, check the device's regions to see if any
* driver has claimed them
*/
int i, inuse=0;
if (dev->driver) return 1; //assume driver feels responsible
for (i = 0; !dev->driver && !inuse && (i < 6); i++) {
if (!pci_resource_start(dev, i))
continue;
if (pci_resource_flags(dev, i) & IORESOURCE_IO)
inuse = check_region(pci_resource_start(dev, i),
pci_resource_len(dev, i));
else if (pci_resource_flags(dev, i) & IORESOURCE_MEM)
inuse = check_mem_region(pci_resource_start(dev, i),
pci_resource_len(dev, i));
}
return inuse;
}
static int pci_hp_remove_device(struct pci_dev *dev)
{
if (is_pci_dev_in_use(dev)) {
err("***Cannot safely power down device -- "
"it appears to be in use***\n");
return -EBUSY;
}
pci_remove_device(dev);
return 0;
}
/*
* detect_HRT_floating_pointer
*
* find the Hot Plug Resource Table in the specified region of memory.
*
*/
static void *detect_HRT_floating_pointer(void *begin, void *end)
{
void *fp;
void *endp;
u8 temp1, temp2, temp3, temp4;
int status = 0;
endp = (end - sizeof(struct hrt) + 1);
for (fp = begin; fp <= endp; fp += 16) {
temp1 = readb(fp + SIG0);
temp2 = readb(fp + SIG1);
temp3 = readb(fp + SIG2);
temp4 = readb(fp + SIG3);
if (temp1 == '$' &&
temp2 == 'H' &&
temp3 == 'R' &&
temp4 == 'T') {
status = 1;
break;
}
}
if (!status)
fp = NULL;
dbg("Discovered Hotplug Resource Table at %p\n", fp);
return fp;
}
static int configure_visit_pci_dev (struct pci_dev_wrapped *wrapped_dev, struct pci_bus_wrapped *wrapped_bus)
{
struct pci_bus* bus = wrapped_bus->bus;
struct pci_dev* dev = wrapped_dev->dev;
struct pci_func *temp_func;
int i=0;
//We need to fix up the hotplug function representation with the linux representation
do {
temp_func = cpqhp_slot_find(dev->bus->number, dev->devfn >> 3, i++);
} while (temp_func && (temp_func->function != (dev->devfn & 0x07)));
if (temp_func) {
temp_func->pci_dev = dev;
} else {
//We did not even find a hotplug rep of the function, create it
//This code might be taken out if we can guarantee the creation of functions
//in parallel (hotplug and Linux at the same time).
dbg("@@@@@@@@@@@ cpqhp_slot_create in "__FUNCTION__"\n");
temp_func = cpqhp_slot_create(bus->number);
if (temp_func == NULL)
return -ENOMEM;
temp_func->pci_dev = dev;
}
//Create /proc/bus/pci proc entry for this device and bus device is on
//Notify the drivers of the change
if (temp_func->pci_dev) {
pci_proc_attach_device(temp_func->pci_dev);
pci_announce_device_to_drivers(temp_func->pci_dev);
}
return 0;
}
static int unconfigure_visit_pci_dev_phase2 (struct pci_dev_wrapped *wrapped_dev, struct pci_bus_wrapped *wrapped_bus)
{
struct pci_dev* dev = wrapped_dev->dev;
struct pci_func *temp_func;
int i=0;
//We need to remove the hotplug function representation with the linux representation
do {
temp_func = cpqhp_slot_find(dev->bus->number, dev->devfn >> 3, i++);
if (temp_func) {
dbg("temp_func->function = %d\n", temp_func->function);
}
} while (temp_func && (temp_func->function != (dev->devfn & 0x07)));
//Now, remove the Linux Representation
if (dev) {
if (pci_hp_remove_device(dev) == 0) {
kfree(dev); //Now, remove
} else {
return -1; // problems while freeing, abort visitation
}
}
if (temp_func) {
temp_func->pci_dev = NULL;
} else {
dbg("No pci_func representation for bus, devfn = %d, %x\n", dev->bus->number, dev->devfn);
}
return 0;
}
static int unconfigure_visit_pci_bus_phase2 (struct pci_bus_wrapped *wrapped_bus, struct pci_dev_wrapped *wrapped_dev)
{
struct pci_bus* bus = wrapped_bus->bus;
//The cleanup code for proc entries regarding buses should be in the kernel...
if (bus->procdir)
dbg("detach_pci_bus %s\n", bus->procdir->name);
pci_proc_detach_bus(bus);
// The cleanup code should live in the kernel...
bus->self->subordinate = NULL;
// unlink from parent bus
list_del(&bus->node);
// Now, remove
if (bus)
kfree(bus);
return 0;
}
static int unconfigure_visit_pci_dev_phase1 (struct pci_dev_wrapped *wrapped_dev, struct pci_bus_wrapped *wrapped_bus)
{
struct pci_dev* dev = wrapped_dev->dev;
dbg("attempting removal of driver for device (%x, %x, %x)\n", dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn));
//Now, remove the Linux Driver Representation
if (dev->driver) {
if (dev->driver->remove) {
dev->driver->remove(dev);
dbg("driver was properly removed\n");
}
dev->driver = NULL;
}
return is_pci_dev_in_use(dev);
}
static struct pci_visit configure_functions = {
visit_pci_dev: configure_visit_pci_dev,
};
static struct pci_visit unconfigure_functions_phase1 = {
post_visit_pci_dev: unconfigure_visit_pci_dev_phase1
};
static struct pci_visit unconfigure_functions_phase2 = {
post_visit_pci_bus: unconfigure_visit_pci_bus_phase2,
post_visit_pci_dev: unconfigure_visit_pci_dev_phase2
};
int cpqhp_configure_device (struct controller* ctrl, struct pci_func* func)
{
unsigned char bus;
struct pci_dev dev0;
struct pci_bus *child;
struct pci_dev* temp;
int rc = 0;
struct pci_dev_wrapped wrapped_dev;
struct pci_bus_wrapped wrapped_bus;
memset(&wrapped_dev, 0, sizeof(struct pci_dev_wrapped));
memset(&wrapped_bus, 0, sizeof(struct pci_bus_wrapped));
memset(&dev0, 0, sizeof(struct pci_dev));
if (func->pci_dev == NULL)
func->pci_dev = pci_find_slot(func->bus, (func->device << 3) | (func->function & 0x7));
//Still NULL ? Well then scan for it !
if (func->pci_dev == NULL) {
dbg("INFO: pci_dev still null\n");
dev0.bus = ctrl->pci_dev->bus;
dev0.devfn = (func->device << 3) + (func->function & 0x7);
dev0.sysdata = ctrl->pci_dev->sysdata;
//this will generate pci_dev structures for all functions, but we will only call this case when lookup fails
func->pci_dev = pci_scan_slot(&dev0);
if (func->pci_dev == NULL) {
dbg("ERROR: pci_dev still null\n");
return 0;
}
}
if (func->pci_dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
pci_read_config_byte(func->pci_dev, PCI_SECONDARY_BUS, &bus);
child = (struct pci_bus*) pci_add_new_bus(func->pci_dev->bus, (func->pci_dev), bus);
pci_do_scan_bus(child);
}
temp = func->pci_dev;
if (temp) {
wrapped_dev.dev = temp;
wrapped_bus.bus = temp->bus;
rc = pci_visit_dev(&configure_functions, &wrapped_dev, &wrapped_bus);
}
return rc;
}
int cpqhp_unconfigure_device(struct pci_func* func)
{
int rc = 0;
int j;
struct pci_dev_wrapped wrapped_dev;
struct pci_bus_wrapped wrapped_bus;
memset(&wrapped_dev, 0, sizeof(struct pci_dev_wrapped));
memset(&wrapped_bus, 0, sizeof(struct pci_bus_wrapped));
dbg(__FUNCTION__": bus/dev/func = %x/%x/%x\n",func->bus, func->device, func->function);
for (j=0; j<8 ; j++) {
struct pci_dev* temp = pci_find_slot(func->bus, (func->device << 3) | j);
if (temp) {
wrapped_dev.dev = temp;
wrapped_bus.bus = temp->bus;
rc = pci_visit_dev(&unconfigure_functions_phase1, &wrapped_dev, &wrapped_bus);
if (rc)
break;
rc = pci_visit_dev(&unconfigure_functions_phase2, &wrapped_dev, &wrapped_bus);
if (rc)
break;
}
}
return rc;
}
static int PCI_RefinedAccessConfig(struct pci_ops *ops, u8 bus, u8 device, u8 function, u8 offset, u32 *value)
{
u32 vendID = 0;
if (pci_read_config_dword_nodev (ops, bus, device, function, PCI_VENDOR_ID, &vendID) == -1)
return -1;
if (vendID == 0xffffffff)
return -1;
return pci_read_config_dword_nodev (ops, bus, device, function, offset, value);
}
/*
* cpqhp_set_irq
*
* @bus_num: bus number of PCI device
* @dev_num: device number of PCI device
* @slot: pointer to u8 where slot number will be returned
*/
int cpqhp_set_irq (u8 bus_num, u8 dev_num, u8 int_pin, u8 irq_num)
{
int rc;
u16 temp_word;
struct pci_dev fakedev;
struct pci_bus fakebus;
fakedev.devfn = dev_num << 3;
fakedev.bus = &fakebus;
fakebus.number = bus_num;
dbg(__FUNCTION__": dev %d, bus %d, pin %d, num %d\n",
dev_num, bus_num, int_pin, irq_num);
rc = pcibios_set_irq_routing(&fakedev, int_pin - 0x0a, irq_num);
dbg(__FUNCTION__":rc %d\n", rc);
if (rc)
return rc;
// set the Edge Level Control Register (ELCR)
temp_word = inb(0x4d0);
temp_word |= inb(0x4d1) << 8;
temp_word |= 0x01 << irq_num;
// This should only be for x86 as it sets the Edge Level Control Register
outb((u8) (temp_word & 0xFF), 0x4d0);
outb((u8) ((temp_word & 0xFF00) >> 8), 0x4d1);
return 0;
}
/*
* WTF??? This function isn't in the code, yet a function calls it, but the
* compiler optimizes it away? strange. Here as a placeholder to keep the
* compiler happy.
*/
static int PCI_ScanBusNonBridge (u8 bus, u8 device)
{
return 0;
}
static int PCI_ScanBusForNonBridge(struct controller *ctrl, u8 bus_num, u8 * dev_num)
{
u8 tdevice;
u32 work;
u8 tbus;
for (tdevice = 0; tdevice < 0x100; tdevice++) {
//Scan for access first
if (PCI_RefinedAccessConfig(ctrl->pci_ops, bus_num, tdevice >> 3, tdevice & 0x7, 0x08, &work) == -1)
continue;
dbg("Looking for nonbridge bus_num %d dev_num %d\n", bus_num, tdevice);
//Yep we got one. Not a bridge ?
if ((work >> 8) != PCI_TO_PCI_BRIDGE_CLASS) {
*dev_num = tdevice;
dbg("found it !\n");
return 0;
}
}
for (tdevice = 0; tdevice < 0x100; tdevice++) {
//Scan for access first
if (PCI_RefinedAccessConfig(ctrl->pci_ops, bus_num, tdevice >> 3, tdevice & 0x7, 0x08, &work) == -1)
continue;
dbg("Looking for bridge bus_num %d dev_num %d\n", bus_num, tdevice);
//Yep we got one. bridge ?
if ((work >> 8) == PCI_TO_PCI_BRIDGE_CLASS) {
pci_read_config_byte_nodev (ctrl->pci_ops, tbus, tdevice, 0, PCI_SECONDARY_BUS, &tbus);
dbg("Recurse on bus_num %d tdevice %d\n", tbus, tdevice);
if (PCI_ScanBusNonBridge(tbus, tdevice) == 0)
return 0;
}
}
return -1;
}
static int PCI_GetBusDevHelper(struct controller *ctrl, u8 *bus_num, u8 *dev_num, u8 slot, u8 nobridge)
{
struct irq_routing_table *PCIIRQRoutingInfoLength;
long len;
long loop;
u32 work;
u8 tbus, tdevice, tslot;
PCIIRQRoutingInfoLength = pcibios_get_irq_routing_table();
len = (PCIIRQRoutingInfoLength->size -
sizeof(struct irq_routing_table)) / sizeof(struct irq_info);
// Make sure I got at least one entry
if (len == 0) {
if (PCIIRQRoutingInfoLength != NULL)
kfree(PCIIRQRoutingInfoLength );
return -1;
}
for (loop = 0; loop < len; ++loop) {
tbus = PCIIRQRoutingInfoLength->slots[loop].bus;
tdevice = PCIIRQRoutingInfoLength->slots[loop].devfn;
tslot = PCIIRQRoutingInfoLength->slots[loop].slot;
if (tslot == slot) {
*bus_num = tbus;
*dev_num = tdevice;
pci_read_config_dword_nodev (ctrl->pci_ops, *bus_num, *dev_num >> 3, *dev_num & 0x7, PCI_VENDOR_ID, &work);
if (!nobridge || (work == 0xffffffff)) {
if (PCIIRQRoutingInfoLength != NULL)
kfree(PCIIRQRoutingInfoLength );
return 0;
}
dbg("bus_num %d dev_num %d func_num %d\n", *bus_num, *dev_num >> 3, *dev_num & 0x7);
pci_read_config_dword_nodev (ctrl->pci_ops, *bus_num, *dev_num >> 3, *dev_num & 0x7, PCI_CLASS_REVISION, &work);
dbg("work >> 8 (%x) = BRIDGE (%x)\n", work >> 8, PCI_TO_PCI_BRIDGE_CLASS);
if ((work >> 8) == PCI_TO_PCI_BRIDGE_CLASS) {
pci_read_config_byte_nodev (ctrl->pci_ops, *bus_num, *dev_num >> 3, *dev_num & 0x7, PCI_SECONDARY_BUS, &tbus);
dbg("Scan bus for Non Bridge: bus %d\n", tbus);
if (PCI_ScanBusForNonBridge(ctrl, tbus, dev_num) == 0) {
*bus_num = tbus;
if (PCIIRQRoutingInfoLength != NULL)
kfree(PCIIRQRoutingInfoLength );
return 0;
}
} else {
if (PCIIRQRoutingInfoLength != NULL)
kfree(PCIIRQRoutingInfoLength );
return 0;
}
}
}
if (PCIIRQRoutingInfoLength != NULL)
kfree(PCIIRQRoutingInfoLength );
return -1;
}
int cpqhp_get_bus_dev (struct controller *ctrl, u8 * bus_num, u8 * dev_num, u8 slot)
{
return PCI_GetBusDevHelper(ctrl, bus_num, dev_num, slot, 0); //plain (bridges allowed)
}
/* More PCI configuration routines; this time centered around hotplug controller */
/*
* cpqhp_save_config
*
* Reads configuration for all slots in a PCI bus and saves info.
*
* Note: For non-hot plug busses, the slot # saved is the device #
*
* returns 0 if success
*/
int cpqhp_save_config(struct controller *ctrl, int busnumber, int is_hot_plug)
{
long rc;
u8 class_code;
u8 header_type;
u32 ID;
u8 secondary_bus;
struct pci_func *new_slot;
int sub_bus;
int FirstSupported;
int LastSupported;
int max_functions;
int function;
u8 DevError;
int device = 0;
int cloop = 0;
int stop_it;
int index;
// Decide which slots are supported
if (is_hot_plug) {
//*********************************
// is_hot_plug is the slot mask
//*********************************
FirstSupported = is_hot_plug >> 4;
LastSupported = FirstSupported + (is_hot_plug & 0x0F) - 1;
} else {
FirstSupported = 0;
LastSupported = 0x1F;
}
// Save PCI configuration space for all devices in supported slots
for (device = FirstSupported; device <= LastSupported; device++) {
ID = 0xFFFFFFFF;
rc = pci_read_config_dword_nodev (ctrl->pci_ops, busnumber, device, 0, PCI_VENDOR_ID, &ID);
if (ID != 0xFFFFFFFF) { // device in slot
rc = pci_read_config_byte_nodev (ctrl->pci_ops, busnumber, device, 0, 0x0B, &class_code);
if (rc)
return rc;
rc = pci_read_config_byte_nodev (ctrl->pci_ops, busnumber, device, 0, PCI_HEADER_TYPE, &header_type);
if (rc)
return rc;
// If multi-function device, set max_functions to 8
if (header_type & 0x80)
max_functions = 8;
else
max_functions = 1;
function = 0;
do {
DevError = 0;
if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { // P-P Bridge
// Recurse the subordinate bus
// get the subordinate bus number
rc = pci_read_config_byte_nodev (ctrl->pci_ops, busnumber, device, function, PCI_SECONDARY_BUS, &secondary_bus);
if (rc) {
return rc;
} else {
sub_bus = (int) secondary_bus;
// Save secondary bus cfg spc
// with this recursive call.
rc = cpqhp_save_config(ctrl, sub_bus, 0);
if (rc)
return rc;
}
}
index = 0;
new_slot = cpqhp_slot_find(busnumber, device, index++);
while (new_slot &&
(new_slot->function != (u8) function))
new_slot = cpqhp_slot_find(busnumber, device, index++);
if (!new_slot) {
// Setup slot structure.
new_slot = cpqhp_slot_create(busnumber);
if (new_slot == NULL)
return(1);
}
new_slot->bus = (u8) busnumber;
new_slot->device = (u8) device;
new_slot->function = (u8) function;
new_slot->is_a_board = 1;
new_slot->switch_save = 0x10;
// In case of unsupported board
new_slot->status = DevError;
new_slot->pci_dev = pci_find_slot(new_slot->bus, (new_slot->device << 3) | new_slot->function);
for (cloop = 0; cloop < 0x20; cloop++) {
rc = pci_read_config_dword_nodev (ctrl->pci_ops, busnumber, device, function, cloop << 2, (u32 *) & (new_slot-> config_space [cloop]));
if (rc)
return rc;
}
function++;
stop_it = 0;
// this loop skips to the next present function
// reading in Class Code and Header type.
while ((function < max_functions)&&(!stop_it)) {
rc = pci_read_config_dword_nodev (ctrl->pci_ops, busnumber, device, function, PCI_VENDOR_ID, &ID);
if (ID == 0xFFFFFFFF) { // nothing there.
function++;
} else { // Something there
rc = pci_read_config_byte_nodev (ctrl->pci_ops, busnumber, device, function, 0x0B, &class_code);
if (rc)
return rc;
rc = pci_read_config_byte_nodev (ctrl->pci_ops, busnumber, device, function, PCI_HEADER_TYPE, &header_type);
if (rc)
return rc;
stop_it++;
}
}
} while (function < max_functions);
} // End of IF (device in slot?)
else if (is_hot_plug) {
// Setup slot structure with entry for empty slot
new_slot = cpqhp_slot_create(busnumber);
if (new_slot == NULL) {
return(1);
}
new_slot->bus = (u8) busnumber;
new_slot->device = (u8) device;
new_slot->function = 0;
new_slot->is_a_board = 0;
new_slot->presence_save = 0;
new_slot->switch_save = 0;
}
} // End of FOR loop
return(0);
}
/*
* cpqhp_save_slot_config
*
* Saves configuration info for all PCI devices in a given slot
* including subordinate busses.
*
* returns 0 if success
*/
int cpqhp_save_slot_config (struct controller *ctrl, struct pci_func * new_slot)
{
long rc;
u8 class_code;
u8 header_type;
u32 ID;
u8 secondary_bus;
int sub_bus;
int max_functions;
int function;
int cloop = 0;
int stop_it;
ID = 0xFFFFFFFF;
pci_read_config_dword_nodev (ctrl->pci_ops, new_slot->bus, new_slot->device, 0, PCI_VENDOR_ID, &ID);
if (ID != 0xFFFFFFFF) { // device in slot
pci_read_config_byte_nodev (ctrl->pci_ops, new_slot->bus, new_slot->device, 0, 0x0B, &class_code);
pci_read_config_byte_nodev (ctrl->pci_ops, new_slot->bus, new_slot->device, 0, PCI_HEADER_TYPE, &header_type);
if (header_type & 0x80) // Multi-function device
max_functions = 8;
else
max_functions = 1;
function = 0;
do {
if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { // PCI-PCI Bridge
// Recurse the subordinate bus
pci_read_config_byte_nodev (ctrl->pci_ops, new_slot->bus, new_slot->device, function, PCI_SECONDARY_BUS, &secondary_bus);
sub_bus = (int) secondary_bus;
// Save the config headers for the secondary bus.
rc = cpqhp_save_config(ctrl, sub_bus, 0);
if (rc)
return(rc);
} // End of IF
new_slot->status = 0;
for (cloop = 0; cloop < 0x20; cloop++) {
pci_read_config_dword_nodev (ctrl->pci_ops, new_slot->bus, new_slot->device, function, cloop << 2, (u32 *) & (new_slot-> config_space [cloop]));
}
function++;
stop_it = 0;
// this loop skips to the next present function
// reading in the Class Code and the Header type.
while ((function < max_functions) && (!stop_it)) {
pci_read_config_dword_nodev (ctrl->pci_ops, new_slot->bus, new_slot->device, function, PCI_VENDOR_ID, &ID);
if (ID == 0xFFFFFFFF) { // nothing there.
function++;
} else { // Something there
pci_read_config_byte_nodev (ctrl->pci_ops, new_slot->bus, new_slot->device, function, 0x0B, &class_code);
pci_read_config_byte_nodev (ctrl->pci_ops, new_slot->bus, new_slot->device, function, PCI_HEADER_TYPE, &header_type);
stop_it++;
}
}
} while (function < max_functions);
} // End of IF (device in slot?)
else {
return(2);
}
return(0);
}
/*
* cpqhp_save_base_addr_length
*
* Saves the length of all base address registers for the
* specified slot. this is for hot plug REPLACE
*
* returns 0 if success
*/
int cpqhp_save_base_addr_length(struct controller *ctrl, struct pci_func * func)
{
u8 cloop;
u8 header_type;
u8 secondary_bus;
u8 type;
int sub_bus;
u32 temp_register;
u32 base;
u32 rc;
struct pci_func *next;
int index = 0;
func = cpqhp_slot_find(func->bus, func->device, index++);
while (func != NULL) {
// Check for Bridge
pci_read_config_byte_nodev (ctrl->pci_ops, func->bus, func->device, func->function, PCI_HEADER_TYPE, &header_type);
if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
// PCI-PCI Bridge
pci_read_config_byte_nodev (ctrl->pci_ops, func->bus, func->device, func->function, PCI_SECONDARY_BUS, &secondary_bus);
sub_bus = (int) secondary_bus;
next = cpqhp_slot_list[sub_bus];
while (next != NULL) {
rc = cpqhp_save_base_addr_length(ctrl, next);
if (rc)
return(rc);
next = next->next;
}
//FIXME: this loop is duplicated in the non-bridge case. The two could be rolled together
// Figure out IO and memory base lengths
for (cloop = 0x10; cloop <= 0x14; cloop += 4) {
temp_register = 0xFFFFFFFF;
pci_write_config_dword_nodev(ctrl->pci_ops, func->bus, func->device, func->function, cloop, temp_register);
pci_read_config_dword_nodev (ctrl->pci_ops, func->bus, func->device, func->function, cloop, &base);
if (base) { // If this register is implemented
if (base & 0x01L) {
// IO base
// set base = amount of IO space requested
base = base & 0xFFFFFFFE;
base = (~base) + 1;
type = 1;
} else {
// memory base
base = base & 0xFFFFFFF0;
base = (~base) + 1;
type = 0;
}
} else {
base = 0x0L;
type = 0;
}
// Save information in slot structure
func->base_length[(cloop - 0x10) >> 2] =
base;
func->base_type[(cloop - 0x10) >> 2] = type;
} // End of base register loop
} else if ((header_type & 0x7F) == 0x00) { // PCI-PCI Bridge
// Figure out IO and memory base lengths
for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
temp_register = 0xFFFFFFFF;
pci_write_config_dword_nodev(ctrl->pci_ops, func->bus, func->device, func->function, cloop, temp_register);
pci_read_config_dword_nodev (ctrl->pci_ops, func->bus, func->device, func->function, cloop, &base);
if (base) { // If this register is implemented
if (base & 0x01L) {
// IO base
// base = amount of IO space requested
base = base & 0xFFFFFFFE;
base = (~base) + 1;
type = 1;
} else {
// memory base
// base = amount of memory space requested
base = base & 0xFFFFFFF0;
base = (~base) + 1;
type = 0;
}
} else {
base = 0x0L;
type = 0;
}
// Save information in slot structure
func->base_length[(cloop - 0x10) >> 2] = base;
func->base_type[(cloop - 0x10) >> 2] = type;
} // End of base register loop
} else { // Some other unknown header type
}
// find the next device in this slot
func = cpqhp_slot_find(func->bus, func->device, index++);
}
return(0);
}
/*
* cpqhp_save_used_resources
*
* Stores used resource information for existing boards. this is
* for boards that were in the system when this driver was loaded.
* this function is for hot plug ADD
*
* returns 0 if success
*/
int cpqhp_save_used_resources (struct controller *ctrl, struct pci_func * func)
{
u8 cloop;
u8 header_type;
u8 secondary_bus;
u8 temp_byte;
u8 b_base;
u8 b_length;
u16 command;
u16 save_command;
u16 w_base;
u16 w_length;
u32 temp_register;
u32 save_base;
u32 base;
int index = 0;
struct pci_resource *mem_node;
struct pci_resource *p_mem_node;
struct pci_resource *io_node;
struct pci_resource *bus_node;
func = cpqhp_slot_find(func->bus, func->device, index++);
while ((func != NULL) && func->is_a_board) {
// Save the command register
pci_read_config_word_nodev (ctrl->pci_ops, func->bus, func->device, func->function, PCI_COMMAND, &save_command);
// disable card
command = 0x00;
pci_write_config_word_nodev(ctrl->pci_ops, func->bus, func->device, func->function, PCI_COMMAND, command);
// Check for Bridge
pci_read_config_byte_nodev (ctrl->pci_ops, func->bus, func->device, func->function, PCI_HEADER_TYPE, &header_type);
if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { // PCI-PCI Bridge
// Clear Bridge Control Register
command = 0x00;
pci_write_config_word_nodev(ctrl->pci_ops, func->bus, func->device, func->function, PCI_BRIDGE_CONTROL, command);
pci_read_config_byte_nodev (ctrl->pci_ops, func->bus, func->device, func->function, PCI_SECONDARY_BUS, &secondary_bus);
pci_read_config_byte_nodev (ctrl->pci_ops, func->bus, func->device, func->function, PCI_SUBORDINATE_BUS, &temp_byte);
bus_node =(struct pci_resource *) kmalloc(sizeof(struct pci_resource), GFP_KERNEL);
if (!bus_node)
return -ENOMEM;
bus_node->base = secondary_bus;
bus_node->length = temp_byte - secondary_bus + 1;
bus_node->next = func->bus_head;
func->bus_head = bus_node;
// Save IO base and Limit registers
pci_read_config_byte_nodev (ctrl->pci_ops, func->bus, func->device, func->function, PCI_IO_BASE, &b_base);
pci_read_config_byte_nodev (ctrl->pci_ops, func->bus, func->device, func->function, PCI_IO_LIMIT, &b_length);
if ((b_base <= b_length) && (save_command & 0x01)) {
io_node = (struct pci_resource *) kmalloc(sizeof(struct pci_resource), GFP_KERNEL);
if (!io_node)
return -ENOMEM;
io_node->base = (b_base & 0xF0) << 8;
io_node->length = (b_length - b_base + 0x10) << 8;
io_node->next = func->io_head;
func->io_head = io_node;
}
// Save memory base and Limit registers
pci_read_config_word_nodev (ctrl->pci_ops, func->bus, func->device, func->function, PCI_MEMORY_BASE, &w_base);
pci_read_config_word_nodev (ctrl->pci_ops, func->bus, func->device, func->function, PCI_MEMORY_LIMIT, &w_length);
if ((w_base <= w_length) && (save_command & 0x02)) {
mem_node = (struct pci_resource *) kmalloc(sizeof(struct pci_resource), GFP_KERNEL);
if (!mem_node)
return -ENOMEM;
mem_node->base = w_base << 16;
mem_node->length = (w_length - w_base + 0x10) << 16;
mem_node->next = func->mem_head;
func->mem_head = mem_node;
}
// Save prefetchable memory base and Limit registers
pci_read_config_word_nodev (ctrl->pci_ops, func->bus, func->device, func->function, PCI_PREF_MEMORY_BASE, &w_base);
pci_read_config_word_nodev (ctrl->pci_ops, func->bus, func->device, func->function, PCI_PREF_MEMORY_LIMIT, &w_length);
if ((w_base <= w_length) && (save_command & 0x02)) {
p_mem_node = (struct pci_resource *) kmalloc(sizeof(struct pci_resource), GFP_KERNEL);
if (!p_mem_node)
return -ENOMEM;
p_mem_node->base = w_base << 16;
p_mem_node->length = (w_length - w_base + 0x10) << 16;
p_mem_node->next = func->p_mem_head;
func->p_mem_head = p_mem_node;
}
// Figure out IO and memory base lengths
for (cloop = 0x10; cloop <= 0x14; cloop += 4) {
pci_read_config_dword_nodev (ctrl->pci_ops, func->bus, func->device, func->function, cloop, &save_base);
temp_register = 0xFFFFFFFF;
pci_write_config_dword_nodev(ctrl->pci_ops, func->bus, func->device, func->function, cloop, temp_register);
pci_read_config_dword_nodev (ctrl->pci_ops, func->bus, func->device, func->function, cloop, &base);
temp_register = base;
if (base) { // If this register is implemented
if (((base & 0x03L) == 0x01)
&& (save_command & 0x01)) {
// IO base
// set temp_register = amount of IO space requested
temp_register = base & 0xFFFFFFFE;
temp_register = (~temp_register) + 1;
io_node = (struct pci_resource *) kmalloc(sizeof(struct pci_resource), GFP_KERNEL);
if (!io_node)
return -ENOMEM;
io_node->base =
save_base & (~0x03L);
io_node->length = temp_register;
io_node->next = func->io_head;
func->io_head = io_node;
} else
if (((base & 0x0BL) == 0x08)
&& (save_command & 0x02)) {
// prefetchable memory base
temp_register = base & 0xFFFFFFF0;
temp_register = (~temp_register) + 1;
p_mem_node = (struct pci_resource *) kmalloc(sizeof(struct pci_resource), GFP_KERNEL);
if (!p_mem_node)
return -ENOMEM;
p_mem_node->base = save_base & (~0x0FL);
p_mem_node->length = temp_register;
p_mem_node->next = func->p_mem_head;
func->p_mem_head = p_mem_node;
} else
if (((base & 0x0BL) == 0x00)
&& (save_command & 0x02)) {
// prefetchable memory base
temp_register = base & 0xFFFFFFF0;
temp_register = (~temp_register) + 1;
mem_node = (struct pci_resource *) kmalloc(sizeof(struct pci_resource), GFP_KERNEL);
if (!mem_node)
return -ENOMEM;
mem_node->base = save_base & (~0x0FL);
mem_node->length = temp_register;
mem_node->next = func->mem_head;
func->mem_head = mem_node;
} else
return(1);
}
} // End of base register loop
} else if ((header_type & 0x7F) == 0x00) { // Standard header
// Figure out IO and memory base lengths
for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
pci_read_config_dword_nodev (ctrl->pci_ops, func->bus, func->device, func->function, cloop, &save_base);
temp_register = 0xFFFFFFFF;
pci_write_config_dword_nodev(ctrl->pci_ops, func->bus, func->device, func->function, cloop, temp_register);
pci_read_config_dword_nodev (ctrl->pci_ops, func->bus, func->device, func->function, cloop, &base);
temp_register = base;
if (base) { // If this register is implemented
if (((base & 0x03L) == 0x01)
&& (save_command & 0x01)) {
// IO base
// set temp_register = amount of IO space requested
temp_register = base & 0xFFFFFFFE;
temp_register = (~temp_register) + 1;
io_node = (struct pci_resource *) kmalloc(sizeof(struct pci_resource), GFP_KERNEL);
if (!io_node)
return -ENOMEM;
io_node->base = save_base & (~0x01L);
io_node->length = temp_register;
io_node->next = func->io_head;
func->io_head = io_node;
} else
if (((base & 0x0BL) == 0x08)
&& (save_command & 0x02)) {
// prefetchable memory base
temp_register = base & 0xFFFFFFF0;
temp_register = (~temp_register) + 1;
p_mem_node = (struct pci_resource *) kmalloc(sizeof(struct pci_resource), GFP_KERNEL);
if (!p_mem_node)
return -ENOMEM;
p_mem_node->base = save_base & (~0x0FL);
p_mem_node->length = temp_register;
p_mem_node->next = func->p_mem_head;
func->p_mem_head = p_mem_node;
} else
if (((base & 0x0BL) == 0x00)
&& (save_command & 0x02)) {
// prefetchable memory base
temp_register = base & 0xFFFFFFF0;
temp_register = (~temp_register) + 1;
mem_node = (struct pci_resource *) kmalloc(sizeof(struct pci_resource), GFP_KERNEL);
if (!mem_node)
return -ENOMEM;
mem_node->base = save_base & (~0x0FL);
mem_node->length = temp_register;
mem_node->next = func->mem_head;
func->mem_head = mem_node;
} else
return(1);
}
} // End of base register loop
} else { // Some other unknown header type
}
// find the next device in this slot
func = cpqhp_slot_find(func->bus, func->device, index++);
}
return(0);
}
/*
* cpqhp_configure_board
*
* Copies saved configuration information to one slot.
* this is called recursively for bridge devices.
* this is for hot plug REPLACE!
*
* returns 0 if success
*/
int cpqhp_configure_board(struct controller *ctrl, struct pci_func * func)
{
int cloop;
u8 header_type;
u8 secondary_bus;
int sub_bus;
struct pci_func *next;
u32 temp;
u32 rc;
int index = 0;
func = cpqhp_slot_find(func->bus, func->device, index++);
while (func != NULL) {
// Start at the top of config space so that the control
// registers are programmed last
for (cloop = 0x3C; cloop > 0; cloop -= 4) {
pci_write_config_dword_nodev(ctrl->pci_ops, func->bus, func->device, func->function, cloop, func->config_space[cloop >> 2]);
}
pci_read_config_byte_nodev (ctrl->pci_ops, func->bus, func->device, func->function, PCI_HEADER_TYPE, &header_type);
// If this is a bridge device, restore subordinate devices
if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { // PCI-PCI Bridge
pci_read_config_byte_nodev (ctrl->pci_ops, func->bus, func->device, func->function, PCI_SECONDARY_BUS, &secondary_bus);
sub_bus = (int) secondary_bus;
next = cpqhp_slot_list[sub_bus];
while (next != NULL) {
rc = cpqhp_configure_board(ctrl, next);
if (rc)
return rc;
next = next->next;
}
} else {
// Check all the base Address Registers to make sure
// they are the same. If not, the board is different.
for (cloop = 16; cloop < 40; cloop += 4) {
pci_read_config_dword_nodev (ctrl->pci_ops, func->bus, func->device, func->function, cloop, &temp);
if (temp != func->config_space[cloop >> 2]) {
dbg("Config space compare failure!!! offset = %x\n", cloop);
dbg("bus = %x, device = %x, function = %x\n", func->bus, func->device, func->function);
dbg("temp = %x, config space = %x\n\n", temp, func->config_space[cloop]);
return 1;
}
}
}
func->configured = 1;
func = cpqhp_slot_find(func->bus, func->device, index++);
}
return 0;
}
/*
* cpqhp_valid_replace
*
* this function checks to see if a board is the same as the
* one it is replacing. this check will detect if the device's
* vendor or device id's are the same
*
* returns 0 if the board is the same nonzero otherwise
*/
int cpqhp_valid_replace(struct controller *ctrl, struct pci_func * func)
{
u8 cloop;
u8 header_type;
u8 secondary_bus;
u8 type;
u32 temp_register = 0;
u32 base;
u32 rc;
struct pci_func *next;
int index = 0;
if (!func->is_a_board)
return(ADD_NOT_SUPPORTED);
func = cpqhp_slot_find(func->bus, func->device, index++);
while (func != NULL) {
pci_read_config_dword_nodev (ctrl->pci_ops, func->bus, func->device, func->function, PCI_VENDOR_ID, &temp_register);
// No adapter present
if (temp_register == 0xFFFFFFFF)
return(NO_ADAPTER_PRESENT);
if (temp_register != func->config_space[0])
return(ADAPTER_NOT_SAME);
// Check for same revision number and class code
pci_read_config_dword_nodev (ctrl->pci_ops, func->bus, func->device, func->function, PCI_CLASS_REVISION, &temp_register);
// Adapter not the same
if (temp_register != func->config_space[0x08 >> 2])
return(ADAPTER_NOT_SAME);
// Check for Bridge
pci_read_config_byte_nodev (ctrl->pci_ops, func->bus, func->device, func->function, PCI_HEADER_TYPE, &header_type);
if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { // PCI-PCI Bridge
// In order to continue checking, we must program the
// bus registers in the bridge to respond to accesses
// for it's subordinate bus(es)
temp_register = func->config_space[0x18 >> 2];
pci_write_config_dword_nodev(ctrl->pci_ops, func->bus, func->device, func->function, PCI_PRIMARY_BUS, temp_register);
secondary_bus = (temp_register >> 8) & 0xFF;
next = cpqhp_slot_list[secondary_bus];
while (next != NULL) {
rc = cpqhp_valid_replace(ctrl, next);
if (rc)
return(rc);
next = next->next;
}
}
// Check to see if it is a standard config header
else if ((header_type & 0x7F) == PCI_HEADER_TYPE_NORMAL) {
// Check subsystem vendor and ID
pci_read_config_dword_nodev (ctrl->pci_ops, func->bus, func->device, func->function, PCI_SUBSYSTEM_VENDOR_ID, &temp_register);
if (temp_register != func->config_space[0x2C >> 2]) {
// If it's a SMART-2 and the register isn't filled
// in, ignore the difference because
// they just have an old rev of the firmware
if (!((func->config_space[0] == 0xAE100E11)
&& (temp_register == 0x00L)))
return(ADAPTER_NOT_SAME);
}
// Figure out IO and memory base lengths
for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
temp_register = 0xFFFFFFFF;
pci_write_config_dword_nodev(ctrl->pci_ops, func->bus, func->device, func->function, cloop, temp_register);
pci_read_config_dword_nodev (ctrl->pci_ops, func->bus, func->device, func->function, cloop, &base);
if (base) { // If this register is implemented
if (base & 0x01L) {
// IO base
// set base = amount of IO space requested
base = base & 0xFFFFFFFE;
base = (~base) + 1;
type = 1;
} else {
// memory base
base = base & 0xFFFFFFF0;
base = (~base) + 1;
type = 0;
}
} else {
base = 0x0L;
type = 0;
}
// Check information in slot structure
if (func->base_length[(cloop - 0x10) >> 2] != base)
return(ADAPTER_NOT_SAME);
if (func->base_type[(cloop - 0x10) >> 2] != type)
return(ADAPTER_NOT_SAME);
} // End of base register loop
} // End of (type 0 config space) else
else {
// this is not a type 0 or 1 config space header so
// we don't know how to do it
return(DEVICE_TYPE_NOT_SUPPORTED);
}
// Get the next function
func = cpqhp_slot_find(func->bus, func->device, index++);
}
return(0);
}
/*
* cpqhp_find_available_resources
*
* Finds available memory, IO, and IRQ resources for programming
* devices which may be added to the system
* this function is for hot plug ADD!
*
* returns 0 if success
*/
int cpqhp_find_available_resources (struct controller *ctrl, void *rom_start)
{
u8 temp;
u8 populated_slot;
u8 bridged_slot;
void *one_slot;
struct pci_func *func = NULL;
int i = 10, index;
u32 temp_dword, rc;
struct pci_resource *mem_node;
struct pci_resource *p_mem_node;
struct pci_resource *io_node;
struct pci_resource *bus_node;
void *rom_resource_table;
rom_resource_table = detect_HRT_floating_pointer(rom_start, rom_start+0xffff);
dbg("rom_resource_table = %p\n", rom_resource_table);
if (rom_resource_table == NULL) {
return -ENODEV;
}
// Sum all resources and setup resource maps
unused_IRQ = readl(rom_resource_table + UNUSED_IRQ);
dbg("unused_IRQ = %x\n", unused_IRQ);
temp = 0;
while (unused_IRQ) {
if (unused_IRQ & 1) {
cpqhp_disk_irq = temp;
break;
}
unused_IRQ = unused_IRQ >> 1;
temp++;
}
dbg("cpqhp_disk_irq= %d\n", cpqhp_disk_irq);
unused_IRQ = unused_IRQ >> 1;
temp++;
while (unused_IRQ) {
if (unused_IRQ & 1) {
cpqhp_nic_irq = temp;
break;
}
unused_IRQ = unused_IRQ >> 1;
temp++;
}
dbg("cpqhp_nic_irq= %d\n", cpqhp_nic_irq);
unused_IRQ = readl(rom_resource_table + PCIIRQ);
temp = 0;
if (!cpqhp_nic_irq) {
cpqhp_nic_irq = ctrl->interrupt;
}
if (!cpqhp_disk_irq) {
cpqhp_disk_irq = ctrl->interrupt;
}
dbg("cpqhp_disk_irq, cpqhp_nic_irq= %d, %d\n", cpqhp_disk_irq, cpqhp_nic_irq);
rc = compaq_nvram_load(rom_start, ctrl);
if (rc)
return rc;
one_slot = rom_resource_table + sizeof (struct hrt);
i = readb(rom_resource_table + NUMBER_OF_ENTRIES);
dbg("number_of_entries = %d\n", i);
if (!readb(one_slot + SECONDARY_BUS)) {
return(1);
}
dbg("dev|IO base|length|Mem base|length|Pre base|length|PB SB MB\n");
while (i && readb(one_slot + SECONDARY_BUS)) {
u8 dev_func = readb(one_slot + DEV_FUNC);
u8 primary_bus = readb(one_slot + PRIMARY_BUS);
u8 secondary_bus = readb(one_slot + SECONDARY_BUS);
u8 max_bus = readb(one_slot + MAX_BUS);
u16 io_base = readw(one_slot + IO_BASE);
u16 io_length = readw(one_slot + IO_LENGTH);
u16 mem_base = readw(one_slot + MEM_BASE);
u16 mem_length = readw(one_slot + MEM_LENGTH);
u16 pre_mem_base = readw(one_slot + PRE_MEM_BASE);
u16 pre_mem_length = readw(one_slot + PRE_MEM_LENGTH);
dbg("%2.2x | %4.4x | %4.4x | %4.4x | %4.4x | %4.4x | %4.4x |%2.2x %2.2x %2.2x\n",
dev_func, io_base, io_length, mem_base, mem_length, pre_mem_base, pre_mem_length,
primary_bus, secondary_bus, max_bus);
// If this entry isn't for our controller's bus, ignore it
if (primary_bus != ctrl->bus) {
i--;
one_slot += sizeof (struct slot_rt);
continue;
}
// find out if this entry is for an occupied slot
pci_read_config_dword_nodev (ctrl->pci_ops, primary_bus, dev_func >> 3, dev_func & 0x07, PCI_VENDOR_ID, &temp_dword);
dbg("temp_D_word = %x\n", temp_dword);
if (temp_dword != 0xFFFFFFFF) {
index = 0;
func = cpqhp_slot_find(primary_bus, dev_func >> 3, 0);
while (func && (func->function != (dev_func & 0x07))) {
dbg("func = %p (bus, dev, fun) = (%d, %d, %d)\n", func, primary_bus, dev_func >> 3, index);
func = cpqhp_slot_find(primary_bus, dev_func >> 3, index++);
}
// If we can't find a match, skip this table entry
if (!func) {
i--;
one_slot += sizeof (struct slot_rt);
continue;
}
// this may not work and shouldn't be used
if (secondary_bus != primary_bus)
bridged_slot = 1;
else
bridged_slot = 0;
populated_slot = 1;
} else {
populated_slot = 0;
bridged_slot = 0;
}
// If we've got a valid IO base, use it
temp_dword = io_base + io_length;
if ((io_base) && (temp_dword < 0x10000)) {
io_node = (struct pci_resource *) kmalloc(sizeof(struct pci_resource), GFP_KERNEL);
if (!io_node)
return -ENOMEM;
io_node->base = io_base;
io_node->length = io_length;
dbg("found io_node(base, length) = %x, %x\n", io_node->base, io_node->length);
dbg("populated slot =%d \n", populated_slot);
if (!populated_slot) {
io_node->next = ctrl->io_head;
ctrl->io_head = io_node;
} else {
io_node->next = func->io_head;
func->io_head = io_node;
}
}
// If we've got a valid memory base, use it
temp_dword = mem_base + mem_length;
if ((mem_base) && (temp_dword < 0x10000)) {
mem_node = (struct pci_resource *) kmalloc(sizeof(struct pci_resource), GFP_KERNEL);
if (!mem_node)
return -ENOMEM;
mem_node->base = mem_base << 16;
mem_node->length = mem_length << 16;
dbg("found mem_node(base, length) = %x, %x\n", mem_node->base, mem_node->length);
dbg("populated slot =%d \n", populated_slot);
if (!populated_slot) {
mem_node->next = ctrl->mem_head;
ctrl->mem_head = mem_node;
} else {
mem_node->next = func->mem_head;
func->mem_head = mem_node;
}
}
// If we've got a valid prefetchable memory base, and
// the base + length isn't greater than 0xFFFF
temp_dword = pre_mem_base + pre_mem_length;
if ((pre_mem_base) && (temp_dword < 0x10000)) {
p_mem_node = (struct pci_resource *) kmalloc(sizeof(struct pci_resource), GFP_KERNEL);
if (!p_mem_node)
return -ENOMEM;
p_mem_node->base = pre_mem_base << 16;
p_mem_node->length = pre_mem_length << 16;
dbg("found p_mem_node(base, length) = %x, %x\n", p_mem_node->base, p_mem_node->length);
dbg("populated slot =%d \n", populated_slot);
if (!populated_slot) {
p_mem_node->next = ctrl->p_mem_head;
ctrl->p_mem_head = p_mem_node;
} else {
p_mem_node->next = func->p_mem_head;
func->p_mem_head = p_mem_node;
}
}
// If we've got a valid bus number, use it
// The second condition is to ignore bus numbers on
// populated slots that don't have PCI-PCI bridges
if (secondary_bus && (secondary_bus != primary_bus)) {
bus_node = (struct pci_resource *) kmalloc(sizeof(struct pci_resource), GFP_KERNEL);
if (!bus_node)
return -ENOMEM;
bus_node->base = secondary_bus;
bus_node->length = max_bus - secondary_bus + 1;
dbg("found bus_node(base, length) = %x, %x\n", bus_node->base, bus_node->length);
dbg("populated slot =%d \n", populated_slot);
if (!populated_slot) {
bus_node->next = ctrl->bus_head;
ctrl->bus_head = bus_node;
} else {
bus_node->next = func->bus_head;
func->bus_head = bus_node;
}
}
i--;
one_slot += sizeof (struct slot_rt);
}
// If all of the following fail, we don't have any resources for
// hot plug add
rc = 1;
rc &= cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
rc &= cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
rc &= cpqhp_resource_sort_and_combine(&(ctrl->io_head));
rc &= cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
return(rc);
}
/*
* cpqhp_return_board_resources
*
* this routine returns all resources allocated to a board to
* the available pool.
*
* returns 0 if success
*/
int cpqhp_return_board_resources(struct pci_func * func, struct resource_lists * resources)
{
int rc = 0;
struct pci_resource *node;
struct pci_resource *t_node;
dbg(__FUNCTION__"\n");
if (!func)
return(1);
node = func->io_head;
func->io_head = NULL;
while (node) {
t_node = node->next;
return_resource(&(resources->io_head), node);
node = t_node;
}
node = func->mem_head;
func->mem_head = NULL;
while (node) {
t_node = node->next;
return_resource(&(resources->mem_head), node);
node = t_node;
}
node = func->p_mem_head;
func->p_mem_head = NULL;
while (node) {
t_node = node->next;
return_resource(&(resources->p_mem_head), node);
node = t_node;
}
node = func->bus_head;
func->bus_head = NULL;
while (node) {
t_node = node->next;
return_resource(&(resources->bus_head), node);
node = t_node;
}
rc |= cpqhp_resource_sort_and_combine(&(resources->mem_head));
rc |= cpqhp_resource_sort_and_combine(&(resources->p_mem_head));
rc |= cpqhp_resource_sort_and_combine(&(resources->io_head));
rc |= cpqhp_resource_sort_and_combine(&(resources->bus_head));
return(rc);
}
/*
* cpqhp_destroy_resource_list
*
* Puts node back in the resource list pointed to by head
*/
void cpqhp_destroy_resource_list (struct resource_lists * resources)
{
struct pci_resource *res, *tres;
res = resources->io_head;
resources->io_head = NULL;
while (res) {
tres = res;
res = res->next;
kfree(tres);
}
res = resources->mem_head;
resources->mem_head = NULL;
while (res) {
tres = res;
res = res->next;
kfree(tres);
}
res = resources->p_mem_head;
resources->p_mem_head = NULL;
while (res) {
tres = res;
res = res->next;
kfree(tres);
}
res = resources->bus_head;
resources->bus_head = NULL;
while (res) {
tres = res;
res = res->next;
kfree(tres);
}
}
/*
* cpqhp_destroy_board_resources
*
* Puts node back in the resource list pointed to by head
*/
void cpqhp_destroy_board_resources (struct pci_func * func)
{
struct pci_resource *res, *tres;
res = func->io_head;
func->io_head = NULL;
while (res) {
tres = res;
res = res->next;
kfree(tres);
}
res = func->mem_head;
func->mem_head = NULL;
while (res) {
tres = res;
res = res->next;
kfree(tres);
}
res = func->p_mem_head;
func->p_mem_head = NULL;
while (res) {
tres = res;
res = res->next;
kfree(tres);
}
res = func->bus_head;
func->bus_head = NULL;
while (res) {
tres = res;
res = res->next;
kfree(tres);
}
}